概率与数理统计-1.2随机事件
概率论与数理统计目录
![概率论与数理统计目录](https://img.taocdn.com/s3/m/8fea8c510640be1e650e52ea551810a6f424c86e.png)
概率论与数理统计目录一、随机事件及其概率1.1 随机事件的基本概念定义与分类事件的运算1.2 概率的定义与性质概率的公理化定义概率的基本性质1.3 古典概型与几何概型古典概型的计算几何概型的计算1.4 条件概率与独立性条件概率事件的独立性1.5 全概率公式与贝叶斯公式全概率公式贝叶斯公式及其应用二、随机变量及其分布2.1 随机变量的概念随机变量的定义随机变量的分类2.2 离散型随机变量及其分布常见的离散型分布分布律与分布函数2.3 连续型随机变量及其分布常见的连续型分布概率密度函数与分布函数2.4 随机变量函数的分布离散型随机变量函数的分布连续型随机变量函数的分布三、多维随机变量及其分布3.1 多维随机变量的概念联合分布函数边缘分布3.2 多维离散型随机变量联合分布律边缘分布律3.3 多维连续型随机变量联合概率密度函数边缘概率密度函数3.4 条件分布离散型条件分布连续型条件分布3.5 随机变量的独立性独立性的定义独立性的判定与性质四、数字特征4.1 数学期望数学期望的定义与性质数学期望的计算4.2 方差方差的定义与性质方差的计算4.3 协方差与相关系数协方差的定义与性质相关系数的定义与性质4.4 矩与协矩阵矩的定义与计算协矩阵的定义与计算五、大数定律与中心极限定理5.1 大数定律切比雪夫大数定律伯努利大数定律5.2 中心极限定理林德贝格-莱维中心极限定理德莫佛尔-拉普拉斯中心极限定理六、数理统计的基本概念6.1 总体与样本总体的定义与性质样本的定义与性质6.2 统计量与抽样分布统计量的定义与性质常见的抽样分布七、参数估计与假设检验7.1 参数估计点估计区间估计7.2 假设检验假设检验的基本概念单侧检验与双侧检验正态总体的假设检验八、回归分析与方差分析8.1 回归分析一元线性回归多元线性回归回归模型的检验与预测8.2 方差分析单因素方差分析双因素方差分析方差分析的应用。
1.2 概率论——随机事件及其概率
![1.2 概率论——随机事件及其概率](https://img.taocdn.com/s3/m/5d5fe847b52acfc789ebc9e5.png)
反演律
AB A B
AB A B
n
n
Ai Ai
i 1
i 1
运算顺序: 逆交并差,括号优先
n
n
Ai Ai
i 1
i 1
Note1:
“+”的理解,“-”的理解
举例说明: A B C A BC
A {1,2,3,4}, B {1,3,5} A B C {2,4}
而BC {1,2,3,4,5} A 反之,请同学课后练习.
§1.2 随机事件及其概率
自然界中的有两类现象
•1. 确定性现象 • 每天早晨太阳从东方升起; • 水在标准大气压下加温到100oC沸腾;
•2. 随机现象 • 掷一枚硬币,正面朝上?反面朝上? • 一天内进入某超市的顾客数; • 某种型号电视机的寿命;
• 随机现象:在一定的条件下,并不总出现相 同结果的现象称为随机现象.
(4) A1 A2 An A1 A2 An (5) A1 A2 An A1 A2 An
交换律 结合律
分配律
A B B A AB BA
(A B)C A(BC) ( AB)C A(BC )
(A B)C (AC)(BC) A (BC ) ( A B)(A C)
AB
和与积的运算同样定义)
4.事件的差
事件 A 发生而事件B 不发生,是一个事件,称为
事件 A 与 B 差,记作 A B
AB
5.互不相容事件
如果事件 A 与 B 不能同时发生,即 AB ,称事件
A与B互不相容,(或称互斥) 显然, 基本事件是互不相容的 类似地,如果
BA
A1, A2 , , An 两两互不相容,
(6)三个事件至少有两个发生: AB AC BC
概率与数理统计C1_2
![概率与数理统计C1_2](https://img.taocdn.com/s3/m/6f07e61552d380eb62946d70.png)
概率直观意义及运算
Am 所含样本数为
C C m n-m M N-M
从而
P( A)
C C m n-m M N-M
/
C
n N
20.3.22
一般模型:袋中有n个球, 第1类有n1个, 第2类 有n2个,…,第 k类有nk个, 并且n1 +n2 +…+nk = n, 从袋中取出m(m≤n)个,求其中恰有mi个第i类 球的概率P,其中m1 +m2+…+mk=m,mi ≤ni
3r 的概率. 为什么三种解答的结论不同?请分析其原因.
电子科技大学
概率直观意义及运算
20.3.22
例1 抛一枚均匀硬币,观察其出现正面H 和反面T的情况.
通过实践与分析可得:硬币 出现正面的可能性等于它出现 反面的可能性.
#
电子科技大学
概率直观意义及运算
20.3.22
例2 从 10个标有号码 1, 2,…, 10 的小球中任 取一个, 记录所得小球的号码.
摸球试验
注:在古典概率的计算中常用到排列组合的 知识,如乘法原理、加法原理等等。
古典概率性质: (1) 对任意事件A,有0≤P (A)≤1;
(2) P (W )=1;
电子科技大学
概率直观意义及运算
20.3.22
(3) 若A1,A2,…,Am互不相容,则
m
m
P( Ai ) P( Ai ).
i1 i1
62
0.102
44
0.072
58
0.095
67
0.110
电子科技大学
20.3.22
向克斯π的 前608位的 各数码出
现频率
概率论与数理统计第1章随机事件及其概率
![概率论与数理统计第1章随机事件及其概率](https://img.taocdn.com/s3/m/e1df1d3576a20029bc642d40.png)
(ii) S2 {( 正品,次品 ),( 正品,正品 )} .
若用“1 ”表示“正品”,“ 0 ”表示“次品”,这里的两个样本空
间又可表示为
(i) S1 {(1,0),(1,1),(0,1)} ;(ii) S2 {(1,0),(1,1)}. (4) (i) S1 {t t 0};(ii) S2 { 合格品, 不合格品} . 若用“1 ”表示“合格品”,“ 0 ”表示“不合格品”, S2 又可表示为 S2 {1,0} . (5) S5 {(x, y) x2 y2 100}.
字母 E T A O I N S R H
使用频率 0.126 8 0.097 8 0.078 8 0.077 6 0.070 7 0.070 6 0.063 4 0.059 4 0.057 3
字母 L D U C F M W Y G
使用频率 0.039 4 0.038 9 0.028 0 0.026 8 0.025 6 0.024 4 0.021 4 0.020 2 0.018 7
第1章 随机事件及其概率
§1.1 随机事件
1.1.1 随机现象
在自然界以及生产实践和科学实验中普遍存在着两类现象.一类是 在一定条件下,重复进行试验,某一结果必然发生或必然不发生,即是可 以事前预言的,称为确定性现象.
除去确定性现象,人们发现还存在另一类现象,它是事前不可预言 的,即在相同条件下重复进行试验,每次的结果不一定相同,这一类现象 我们称之为偶然性现象或随机现象.
在一定条件下,随机现象有多种可能的结果发生,事前不能预知 将出现哪种结果,但通过大量的重复观察,出现的结果会呈现出某种 规律,称为随机现象的统计规律性.
1.1-1.2 随机试验 样本空间、随机事件
![1.1-1.2 随机试验 样本空间、随机事件](https://img.taocdn.com/s3/m/8941f1f3aeaad1f346933faa.png)
S4 {1, 2, 3, 4, 5, 6}.
E5: 记录某公共汽车站某日
上午某时刻的等车人数.
S5 {0, 1, 2, }.
E6:在一批灯泡中任意抽取一只,测试它的寿命.
S6 : {t | t 0}
E7: 考察某地区一昼夜最高和最低气温.
S7 {( x , y ) T0 x y T1 }.
概率论的基本概念
第一节 随机试验
重点: 概率论的主要研究对象; 随机试验的概念
一、自然界所观察到的两类现象
1. 确定性现象
在一定条件下必然发生的现象 称为确定性现象. 实例
“太阳从东边升起”,
“水从高处流向低处”, “同性电荷必然互斥”,
特征
2. 随机现象
实例1 “在相同条件下掷一枚均匀的硬币, 观察正反两面 发生的情况”. 结果有可能:发生正面、反面.
的结果有一定的规律性——称为统计规律性.
定义 在个别试验中其结果呈现出不确定性,在大量重复 试验中其结果又具有统计规律性的现象,称为随机现象.
特征
说明
研究对象 ——概率论就是研究随机现象统计规律性的一
门数学学科.
研究方法 ——将随机试验的结果数量化.
样本空间(集合)、概率、随机变量(函数)等.
二、随机试验(Experiment )
数。
E 4 :抛一枚骰子,观察出现的点数。
E 5 :记录某城市 120 急救
电话台一昼夜接到的呼唤次数。
在一批灯光中任意抽 E6 : 取一只,测试它的寿命。
E 7 :记录某地一昼夜的最高气温和最低气温。
定义: 随机试验是指具有以下三个特征的试验:
1. 可以在相同的条件下重复地进行; 可重复性 2. 每次试验的可能结果不止一个,并且能事先明确试 可知性 验的所有可能结果;
概率论与数理统计总复习-
![概率论与数理统计总复习-](https://img.taocdn.com/s3/m/89c7dc9c69dc5022aaea006c.png)
一. 二维离散型r.v.
概率统计-总复习-13
1. 联合分布律(2个性质)
P(Xxi,Yyj)pij,
2.联合分布函数(5个性质)
F ( x , y ) P X x , Y y
3.联合分布律与联合分布函数关系
F(x,y)pij, xixyjy
4. 边缘分布律与边缘分布函数
n
Xi
n
E( Xi )
i1 i1
D
n
Xi
n
D( Xi )
i1 i1
X1,,Xn 相互独立
常见离散r.v.的期望与方差
概率统计-总复习-27
分布 概率分布
期望 方差
参数p的 0-1分布
P (X 1 )p ,P (X 0) q
2. 联合分布函数(5个性质)
xy
F(x,y) p(u,v)dvdu
3.联合密度与联合分布函数关系 2F( x,y) p( x,y)
xy
4.边缘密度与边缘分布函数
p (x) p( x,y)dy p ( y) p( x,y)dx
X
Y
FX( x) F(x, ) FY ( y ) F(, y)
5.全概率公式:分解 P(B) P(Ai)P(B|Ai),B
i1
6.贝叶斯公式
P(Aj |B)
P(Aj )P(B| Aj )
,j
P(Ai )P(B|Ai )
i1
四. 概率模型
概率统计-总复习-6
1.古典概型: 摸球、放球、随机取数、配对
2. n重伯努利概型:
概率论与数理统计课后习题答案
![概率论与数理统计课后习题答案](https://img.taocdn.com/s3/m/108635dd0975f46527d3e140.png)
随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题5.习题6.习题7习题8习题9习题10习题11习题12习题13习题14习题15习题16习题17习题18习题19习题20习题21习题22习题23习题24习题25习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为 P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3}; (3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知 P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110, P{X=4}=C32⋅1C53=310, P{X=5}=C42⋅1C53=35,所以X的分布律为设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为X 0123P 351203612021120112 0习题9一批产品共10件,其中有7件正品,3件次品,每次从这批产品中任取一件,取出的产品仍放回去,求直至取到正品为止所需次数X的概率分布.解答:由于每次取出的产品仍放回去,各次抽取相互独立,下次抽取时情况与前一次抽取时完全相同,所以X的可能取值是所有正整数1,2,⋯,k,⋯.设第k次才取到正品(前k-1次都取到次品), 则随机变量X的分布律为P{X=k}=310×310×⋯×310×710=(310)k-1×710,k=1,2,⋯.习题10设随机变量X∼b(2,p),Y∼b(3,p), 若P{X≥1}=59,求P{Y≥1}.解答:因为X∼b(2,p),P{X=0}=(1-p)2=1-P{X≥1}=1-5/9=4/9,所以p=1/3.因为Y∼b(3,p), 所以P{Y≥1}=1-P{Y=0}=1-(2/3)3=19/27.习题11纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005, 在τ这段时间内断头次数不大于2的概率.解答:以X记纺锭断头数, n=800,p=0.005,np=4,应用泊松定理,所求概率为:P{0≤X≤2}=P{⋃0≤xi≤2{X=xi}=∑k=02b(k;800,0.005)≈∑k=02P(k;4)=e-4(1+41!+422!)≈0.2381.习题12设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解答:\becauseP{X=1}=P{X=2}, 即λ11!e-λ=λ22!e-λ⇒λ=2,∴P{X=0}=e-2,∴p=(e-2)4=e-8.2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1,且 F(-∞)=0,F(+∞)=1,所以F(x)是随机变量的分布函数.习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.解答:由题意知X的分布律为:X 135Pk 0.30.50.2所以其分布函数F(x)=P{X≤x}={0,x<10.3,1≤x<30.8,3≤x<51,x≥5.F(x)的图形见图.习题4设离散型随机变量X的分布函数为 F(x)={0,x<-10.4,-1≤x<10.8,1≤x<31,x≥3,试求:(1)X的概率分布; (2)P{X<2∣X≠1}.解答:(1)X -113pk 0.40.40.2(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B; (2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarctanx, -∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1), 所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又 \becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为 p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22), 所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12, 所以c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率.解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1, 即 1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此 x-400060≈1.28, 即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x, 即1-P{X≤x}≤0.05, 亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36), 则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则 X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.Y -101P 21513815习题3设随机变量X服从[a,b]上的均匀分布,令Y=cX+d(c≠0),试求随机变量Y的密度函数.解答: fY(y)={fX(y-dc)⋅1∣c∣,a≤y-dc≤b0,其它,当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它.习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述 fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2), 已知θ=5(T-32)/9, 试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2). θ=59(T-32), 反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y 在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20} =1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X∼b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须 200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.P{保险公司获利不少于200000元}=P{300000-200000X≥200000}=P{X≤5}=∑k=05C2500k(0.002)k×(0.998)2500-k≈∑k=05e-55kk!≈0.615961,即保险公司获利不少于200000元的概率接近于62%.习题4一台总机共有300台分机,总机拥有13条外线,假设每台分机向总机要外线的概率为3%, 试求每台分机向总机要外线时,能及时得到满足的概率和同时向总机要外线的分机的最可能台数.解答:设分机向总机要到外线的台数为X, 300台分机可看成300次伯努利试验,一次试验是否要到外线. 设要到外线的事件为A, 则P(A)=0.03, 显然X∼b(300,0.03), 即P{X=k}=C300k(0.03)k(0.97)300-k(k=0,1,2,⋯,300),因n=300很大,p=0.03又很小,λ=np=300×0.03=9,可用泊松近似公式计算上面的概率. 因总共只有13条外线,要到外线的台数不超过13,故P{X≤13}≈∑k=0139kk!e-9≈0.9265, (查泊松分布表)且同时向总机要外线的分机的最可能台数k0=[(n+1)p]=[301×0.03]=9.习题5在长度为t的时间间隔内,某急救中心收到紧急呼救的次数X服从参数t2的泊松分布,而与时间间隔的起点无关(时间以小时计), 求:(1)某一天从中午12至下午3时没有收到紧急呼救的概率;(2)某一天从中午12时至下午5时至少收到1次紧急呼救的概率.解答:(1)t=3,λ=3/2, P{X=0}=e-3/2≈0.223;(2)t=5,λ=5/2,P{X≥1}=1-P{X=0}=1-e-5/2≈0.918.习题6设X为一离散型随机变量,其分布律为X -101pi 1/21-2qq2试求:(1)q的值; (2)X的分布函数.解答:(1)\because离散型随机变量的概率函数P{X=xi}=pi, 满足∑ipi=1,且0≤pi≤1,∴ {1/2+1-2q+q2=10≤1-2q≤1q2≤1,解得q=1-1/2. 从而X的分布律为下表所示:则A=¯,P{∣X∣<π/6}=¯.解答:应填1;1/2.由分布函数F(x)的右连续性,有F(π2+0)=F(π2)⇒A=1.因F(x)在x=π6处连续,故P{X=π6=12,于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx),其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx),而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1-e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2)dx∫0.10.5(12x2-12x+3)dx =(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且 F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且 a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5), 所以 fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即 K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴ F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002, P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为 fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为 FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.第三章多维随机变量及其分布3.1 二维随机变量及其分布习题1设(X,Y)的分布律为X\123Y1 1/61/91/182 1/3a1/9求a.解答:由分布律性质∑i⋅jPij=1, 可知 1/6+1/9+1/18+1/3+a+1/9=1,解得 a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求: (1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求:(2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求: (3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0} =P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值: (0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0}, {X=0,Y=13, {X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:Y 01/31pk 7/121/121/3习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0), 其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y},故P{X≤Y}=12.习题7设随机变量(X,Y)的概率密度为f(x,y)={k(6-x-y),0<x<2,2<y<40,其它,(1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}.解答:如图所示(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数k.∫02∫24k(6-x-y)dydx=k∫02(6-2x)dx=8k=1,所以k=18.(2)P{X<1,Y<3}=∫01dx∫2318(6-x-y)dy=38.(3)P{X<1.5}=∫01.5dx∫2418(6-x-y)dy=2732. (4)P{X+Y≤4}=∫02dx∫24-x18(6-x-y)dy=23.习题8已知X和Y的联合密度为f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c; (2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1,有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1,有F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1,有F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为 f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度.解答:区域G的面积A=∫01(x-x2)dx=16, 由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1,即fX(x)={6(x-x2),0≤x≤10,其它fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性习题1二维随机变量(X,Y)的分布律为故(1)在Y=1条件下,X的条件分布律为。
第2讲随机事件的概率
![第2讲随机事件的概率](https://img.taocdn.com/s3/m/8241ecc5d5bbfd0a79567388.png)
A与B是相等集合
A与B无相同元素
A与B的并集
A与B的交集
A与B的差集
A的余(补)集
§1.2 随机事件的概率
• 1.直观定义 • 2.统计定义 • 3.古典定义; • 4.公理化定义; • 5.几何定义.
1.2.1 概率的统计定义
概率的直 在一次试验中事件A发生的可能性大小的 观定义: 量度称为事件A的概率。
B { 取到的两只球都是黑球}
C { 取到的两只球中至少有一只是白球 }
D { 取到的两只球颜色相同 }
显然C B, D A B
(1)
P( A)
P42 P62
12 30
2 5
(2)类似于(1),可求得
P(B)
P22 P62
1 15
由于AB ,Leabharlann 由概率的有限可加性,所求概率为:
P(D) P( A B) P( A) P(B) 2 1 7 5 15 15
加法原理
完成某件事情有 n 类途径, 在第一类途径中有m1种方 法,在第二类途径中有m2种方法,依次类推,在第 n 类 途径中有mn种方法,则完成这件事共有 m1+m2+…+mn种 不同的方法.
乘法原理
完成某件事情需先后分成 n 个步骤,做第一步有m1种 方法,第二步有 m2 种方法,依次类推,第 n 步有mn种方 法,则完成这件事共有 m1×m2×…×mn种不同的方法.
率的稳定值p,记做P(A)。概率是不变的
我们称这一定义为概率的统计定义 。
4 概率是事件的自然属性,有事件就一定有 概率。频率是概率的表现,频率的本质是概率
概率的公理化定义
• 非负性公理: P(A)0; • 正则性公理: P(Ω)=1; • 可列可加性公理:若A1, A2, ……,
概率论与数理统计-随机事件与概率
![概率论与数理统计-随机事件与概率](https://img.taocdn.com/s3/m/583a4b734b73f242336c5fa7.png)
第2章 随机变量及其分布 60
谢谢观赏
《概率论与数理统计》
第2章 随机变量及其分布 36
1.1 随机事件及其运算 1.2 概率的定义及其性质 1.3 等可能概型 1.4 条件概率与事件的相互独立性 1.5 全概率公式与贝叶斯公式
目录/Contents
第2章 随机变量及其分布 37
1.4 条件概率与事件的相互独立性
一、条件概率 二、事件的相互独立性
一、条件概率
所谓可靠度指的是产品能正常工作的概率. 以下讨论中, 假定一个系统中的各个元件能否 正常工作是相互独立的.
二、事件的相互独立性
两个基本模型:
第2章 随机变量及其分布 49
二、事件的相互独立性
两个基本模型:
第2章 随机变量及其分布 50
目录/Contents
第2章 随机变量及其分布 51
1.1 随机事件及其运算 1.2 概率的定义及其性质 1.3 等可能概型 1.4 条件概率与事件的相互独立性 1.5 全概率公式与贝叶斯公式
第2章 随机变量及其分布 28
1.1 随机事件及其运算 1.2 概率的定义及其性质 1.3 等可能概型 1.4 条件概率与事件的相互独立性 1.5 全概率公式与贝叶斯公式
目录/Contents
1.3 等可能概型
一、古典概型 二、几何概型
第2章 随机变量及其分布 29
一、古典概型 古典概型的基本思路:
定义1
第2章 随机变量及其分布 38
一、条件概率
第2章 随机变量及其分布 39
条件概率也满足概率的公理化定义的三条基本性 质, 即:
公理1
公理2 公理3 对可列无限个两两不相容事件
概率论与数理统计整理(一二章)
![概率论与数理统计整理(一二章)](https://img.taocdn.com/s3/m/762b90ff804d2b160b4ec0a6.png)
一、随机事件和概率考试内容:随机事件(可能发生可能不发生的事情)与样本空间(包括所有的样本点) 事件的关系(包含相等和积差互斥对立)与运算(交换分配结合德摸根对差事件文氏图) 完全事件组(所有基本事件的集合) 概率的概念概率的基本性质(非负性规范性可列可加性) 古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求:1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率(弄清几何意义),掌握概率的加法公式(PAUB=PA+PB--PAB)、减法公式(P(A--B)=PA--PAB)、乘法公式(PAB=PA*PB|A)、全概率公式(关键是对S进行正确的划分),以及贝叶斯公式.3.理解事件的独立性(PAB=PA*PB)的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.整理重点:1. 随机事件:可能发生也可能给不发生的事件。
0<概率<1。
2. 样本空间:实验中的结果的每一个可能发生的事件叫做实验的样本点,实验的所有样本点构成的集合叫做样本空间,大写字母S表示。
3. 事件的关系:(1)包含:事件A发生必然导致事件B发生,称事件B包含事件A。
(2)相等:事件A包含事件B且事件B包含事件A。
(3)和:事件的并,记为A∪B。
(4)差:A-B称为A与B的差,A发生而B不发生,A-B=A-AB。
(5)积:事件的交,事件A与B都发生,记为AB或A∩B。
(6)互斥:事件A与事件B不能同时发生,AB=空集。
(7)对立:A∪B=S。
4. 集合的运算:(1)交换律:A∪B=B∪A AB=BA (2结合律:(A∪B)∪C=A∪(B∪C) (AB)C=A(B C) (3)分配率:A (B∪C)=AB∪AC A∪(BC)=(A∪B)(A∪C) (4)德*摩根定律5. 完全事件组:如果n个事件中至少有一个事件一定发生,则称这n个事件构成完全事件组(特别地:互不相容的完全事件组)。
概率论与数理统计
![概率论与数理统计](https://img.taocdn.com/s3/m/55a397b9941ea76e58fa049e.png)
主讲:
第一章 随机事件及其概率
1.1 随机事件及其运算 1.2 随机事件的概率及性质 1.3 概率的计算 1.4 事件的独立性 1.5 独立事件概型
1.1.1 随机事件
手拿一枚硬币,松开手,硬币向下落。 结果唯一
种瓜得瓜,种豆得豆。
太阳每天从东方升起。
确定性现象
概率统计的 硬币落下时哪一面向上?
4040 验
10000
次 数
12000 不
24000
断 增
30000 大
正面出现的频数 1061 2048 4979 6019 12012 14994
频率 0.5181频 0.5069率稳 0.4979定 0.5016在 0.5005附 0.4998近
0.5
频率的特点
(1)波动性 (2)稳定性
当试验次数n增大时,(A) 逐渐趋向一个稳定 值。可将此稳定值记作P(A),作为事件A的 概率。称为统计概率。
问题二:既然取到白粉笔的概率是确定的值,如何在白粉笔数 量确定但未知的情况下计算?
1.2.1 概率的统计定义
定义 设随机事件A在n次重复试验中发生了m次,则称比值m/n为 随机事件A在n次重复试验中发生的频率,记做 ( A) ,即
频率的性质:
( A) m
n
(1)对如何事件A,0 (A) 1;
A63
0.4762
A3 {从中有放回地连取三件都是正品}
P( A3)
63 103
0.216
思考 A1, A2 的概率相等是否巧合?
1.2.2 概率的古典定义
例2.3的推广
一批产品共N件,其中M件次品,N-M件正品,从中取出n个,记A={取出
自考概率论与数理统计(经管类)自学资料
![自考概率论与数理统计(经管类)自学资料](https://img.taocdn.com/s3/m/05f5695bdd3383c4ba4cd288.png)
自考概率论与数理统计(经管类)自学资料第一章随机事件与随机事件的概率1.1 随机事件例一,掷两次硬币,其可能结果有:{上上;上下;下上;下下}则出现两次面向相同的事件A与两次面向不同的事件B都是可能出现,也可能不出现的。
引例二,掷一次骰子,其可能结果的点数有:{1,2,3,4,5,6}则出现偶数点的事件A,点数≤4的事件B都是可能出现,也可能不出现的事件。
从引例一与引例二可见,有些事件在一次试验中,有可能出现,也可能不出现,即它没有确定性结果,这样的事件,我们叫随机事件。
(一)随机事件:在一次试验中,有可能出现,也可能不出现的事件,叫随机事件,习惯用A、B、C表示随机事件。
由于本课程只讨论随机事件,因此今后我们将随机事件简称事件。
虽然我们不研究在一次试验中,一定会出现的事件或者一定不出现的事件,但是有时在演示过程中要利用它,所以我们也介绍这两种事件。
必然事件:在一次试验中,一定出现的事件,叫必然事件,习惯用Ω表示必然事件。
例如,掷一次骰子,点数≤6的事件一定出现,它是必然事件。
不可能事件:在一次试验中,一定不出现的事件叫不可能事件,而习惯用φ表示不可能事件。
例如,掷一次骰子,点数>6的事件一定不出现,它是不可能事件。
(二)基本(随机)事件随机试验的每一个可能出现的结果,叫基本随机事件,简称基本事件,也叫样本点,习惯用ω表示基本事件。
例如,掷一次骰子,点数1,2,3,4,5,6分别是基本事件,或叫样本点。
全部基本事件叫基本事件组或叫样本空间,记作Ω,当然Ω是必然事件。
(三)随机事件的关系(1)事件的包含:若事件A发生则必然导致事件B发生,就说事件B包含事件A ,记作。
例如,掷一次骰子,A表示掷出的点数≤2,B表示掷出的点数≤3。
∴A={1,2},B={1,2,3}。
所以A发生则必然导致B 发生。
显然有(2)事件的相等:若,且就记A=B,即A与B相等,事件A等于事件B,表示A与B实际上是同一事件。
概率论与数理统计高教版第四版课后习题答案
![概率论与数理统计高教版第四版课后习题答案](https://img.taocdn.com/s3/m/db95d1057375a417866f8fce.png)
定义1.2 若试验结果一共由n个基本事件E1,E2,…,En组成, 并且这些事件的出现具有相同的可能性,而事件A由其中的 某m个基本事件E1/,E2/,…,En/组成,则事件A的概率可用下式 计算:
有利于A的基本事件数 m P( A) = = 试验的基本事件总数 n (1.1)
这里E1,E2,…,En构成一个等概率完备事件组。 (三)计算概率的例题 例1 袋内有5个白球,3个黑球,从中任取两个位球,计算 取出的两个球都是白球的概率。 例2 一批产品共200个,有6个废品,求:(1)这些产品的 废品率;(2)任取3个恰有一个是废品的概率;(3)任取3个
12
数值p,即(P(A))就是在一次试验中对事件A发生可能 性的大小的数量描述。 如上所说,频率的稳定性是概率的经验基础,但并不是 说概率决定于试验。一个事件发生的概率完全决定于事件本 身的结构,是先于试验而客观存在的。 概率的统计定义仅仅指出了事件的概率是客观存在的 但 并不能用这个定义计算P(A)。实际上,人们是采用一次大量 实验的频率或一系列频率的平均值作为P(A)的近似值。 这就是说,概率的统计定义还不是真正意义上的数学定 义。 (二)概率的古典定义 直接计算某一事件的概率有时是非常困难的,甚至是不 可能的。仅在某些情况下,才可以直接计算事件的概率。
5
个事件发生。记作
å
¥
Ai 或
¥
Ai
i= 1
i= 1
4. 事件的交(积) 两个事件A与B同时发生,即“A且B” ,是一个事件,称为 A与B的交(积),它是由既属于A又属于B的所有公共样本点 构成的集合,记作 AB或A∩B 5.事件的差 事件A发生而事件B不发生,是一个事件,称为事件A与事 件B的差。它是由属于A但不属于B的样本点构成的集合。记作 A-B. 6. 互不相容事件
概率论与数理统计华工版
![概率论与数理统计华工版](https://img.taocdn.com/s3/m/3de5c27065ce050877321361.png)
试验3:从一批灯泡中,任取一只,测定灯泡的使用寿命
Ω=[0,+∞)={x∈R∣0≤x< +∞}
试验1和试验2的样本空间只含有有限个元素,称为 有限样本空间。
试验3的样本空间含有的元素是无限的,称为无限样 本空间。
随机事件:样本空间的某些子集称为随机事件,简
称事件。常用A、B、C等表示。
答案:西家至少有3个“A”
§1. 4 频率与概率
频率的定义
设事件A在n次试验中出现了r次,则比值 r/n称为事件A在n次试验中出现的频率。
概率的统计定义
在同一组条件下所作的大量重复试验中,事 件A出现的频率总是在区间[0,1]上的一个确定 的常数p附近摆动,并且稳定于p,则p称为事 件A的概率,记作P(A)。
B-A={(1,1),(2,2),(3,3), (4,4),(5,5),(6,6)}
(2)BC表示:满足x-y=0且xy≤20。则 BC={(1,1),(2,2),(3,3), (4,4)} (3)B∪C表示:满足x-y=0或xy>20。则 B∪C={(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(4,6), (6,4),(6,5),(5,6)}
例4:设A、B、C为任意三个事件,写出下列事件
的表达式: 1)恰有二个事件发生。 2) 三个事件同时发生。 3)至少有一个事件发生。
解: 1)、ABC ABCABC 2)、ABC 3)、ABC
3、事件的差 事件A与事件B的差A-B,是指A发生,B不发生。 由定义A-B=A∩B,A=Ω-A
例如:A={出现2点或4点},B={出现2点或 6点};则A-B={出现4点}
求以下事件的概率:
概率论与数理统计 第一章教案
![概率论与数理统计 第一章教案](https://img.taocdn.com/s3/m/eb88be9e69dc5022aaea00a5.png)
第一讲概率的定义及性质Ⅰ授课题目§1.0 概率论研究的对象§1.1 随机试验§1.2 样本空间、随机事件§1.3 频率与概率,概率的性质Ⅱ教学目的与要求1、理解随机试验、随机事件、必然事件、不可能事件等概念2、理解样本空间、样本点的概念,会用集合表示样本空间和事件3、掌握事件的基本关系与运算4、掌握概率的性质Ⅲ教学重点与难点重点:事件的基本关系与运算,概率的性质难点:用集合表示样本空间和事件Ⅳ讲授内容:§1.0 概率论研究的对象一两类现象---确定现象与不确定现象先从实例来看自然界和社会上存在着两类不同的现象.例1水在一个大气压力下,加热到100℃就沸腾.例2向上抛掷一个五分硬币,往下掉.例3太阳从东方升起.例4一个大气压力下,20℃的水结冰.例1,例2,例3是必然发生的,而例4是必然不发生的.个确切结果)称之为确定性现象或必然现象.微积分,线性代数等就研究必然现象的数学工具.与此同时,在自然界和人类社会中,人们还发现具有不同性质的另一类现象先看下面实例.例5用大炮轰击某一目标,可能击中,也可能击不中.例6在相同的条件下,抛一枚质地均匀的硬币,其结果可能是正面(我们常把有币值的一面称作正面)朝上,也可能是反面朝上.例7次品率为50%的产品,任取一个可能是正品,也可能是次品.例8次品率为1%的产品,任取一个可能是正品,也可能是正品.例5~例8这类现象归纳起来可以看作在相同条件下一系列的试验或观察,而每次试验或观察的可能结果不止一个,在每次试验或观察之前无法预知确切结果,即呈现出不确定性(即这些现象的结果事先不能完全确定),这一类型现象我们称之为不确定性现象或偶然现象,也称之为随机现象.二统计规律性、概率论研究的对象对于不确定性现象,人们经过长时期的观察或实践的结果表明,这些现象并非是杂乱无章的,而是有规律可寻的.例如,大量重复抛一枚硬币,得正面朝上的次数与正面朝下的次数大致都是抛掷总次数的一半.在大量地重复试验或观察中所呈现出的固有规律性,就是我们以后所说的统计规律性.而概率论正是研究这种随机(偶然)现象,寻找他们的内在的统计规律性的一门数学学科.概率论是数理统计的基础,由于随机现象的普遍性,使得概率与数理统计具有及其广泛的应用.另一方面,广泛的应用也促进概率论有了极大的发展.§1.1 随机试验对随机现象进行的试验或观察称为随机试验,简称试验,它具有下列特性(征):(1)试验可以在相同条件下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前不能肯定这次试验会出现哪一个结果.随机实验记为E.例1E1:投掷一枚硬币,观察正反面朝上的情况.它有两种可能的结果就是“正面朝上”或“反面朝上”,投掷之前不能预言哪一个结果出现,且这个试验可以在相同的条件下重复进行,所以E1是一个随机试验。
概率论与数理统计初步(第一节 随机事件与概率)
![概率论与数理统计初步(第一节 随机事件与概率)](https://img.taocdn.com/s3/m/b2b40a20763231126edb11a7.png)
解 根据题意知 , ,, , ,,
例4 随机地抽取三件产品,设表示“三件产品中至少有一件是废
品”,表示“三件中至少有两件是废品”,表示“三件都是正品”,
问,,,,各表示什么事件?
解 =“三件都是正品”;
=“三件产品中至多有一件废品”;
=(必然事件);
(不可能事件);
=“三件中恰有一件废品”。
例5 向目标射击两次,用表示事件“第一次击中目标”,用表示事
定义4 在同样条件下进行大量的重复试验,当试验次数充分大时, 事件发生的频率必然稳定在某一确定的数附近,则称为事件的概率,记 为,即有。
以上定义称为事件概率的统计定义。根据此定义和频率的有关性质 可知概率具有以下性质:
性质1 ≤≤; 性质2 ; 性质3 ; 性质4 若事件与事件互不相容,则。 这一性质可以进行推广:设为两两互不相容的个事件,则
第七章 概率论与数理统计初步
第一节 随机事件与概率
1.1 随机试验与随机事件 1.随机现象与随机试验
自然界和社会上发生的现象是多种多样的。有一类现象在一定 的条件下必然发生或必然不发生,称为确定性现象。例如,沿水平方 向抛出的的物体,一定不作直线运动。另一类现象却呈现出非确定 性。例如,向地面抛一枚硬币,其结果可能是“正面向上”,也可能 是“反面向上”。又如在有少量次品的一批产品中任意地抽取一件产 品,结果可能抽得一件正品,也可能是抽得一件次品。这类现象可看 作在一定条件下的试验或观察,每次试验或观察的可能结果不止一 个,而且在每次试验或观察前无法事先知道确切的结果。人们发现, 这类现象虽然在每次试验或观察中具有不确定性,但在大量重复试验 或观察中,其结果却呈现某种固定的规律性,即统计规律性,称这类 现象为随机现象。概率论与数理统计就是研究和揭示随机现象统计规 律性的一门数学学科。
《概率论与数理统计》第一章知识点
![《概率论与数理统计》第一章知识点](https://img.taocdn.com/s3/m/2f92bea3a1116c175f0e7cd184254b35eefd1a27.png)
第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。
2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。
二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。
(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。
2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。
1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。
2.基本事件:试验的每一可能的结果称为基本事件。
一个样本点w 组成的单点集{w}就是随机试验的基本事件。
3.必然事件:每次实验中必然发生的事件称为必然事件。
用Ω表示。
样本空间是必然事件。
4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。
1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。
2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。
3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。
4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。
5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。
随机事件及其概率
![随机事件及其概率](https://img.taocdn.com/s3/m/e28ce2be998fcc22bdd10d07.png)
例17 会面问题:甲乙两人约定在周末8时到 9时在某地会面,先到者等候20分钟,若 对方仍未到达,则离去,求两人能会面的概 率。
例18 从[0,1]中随机取两个数,求其积 不小于2/9其和不大于1的概率。
02:54:36
例19 P11 蒲丰投针问题(略)
02:54:36
02:54:36
(四) 概率的公理化定义
02:54:36
例11:甲、乙、丙三人各向目标射击一发子弹 ,以A、B、C分别表示甲、乙、丙命中目标, 试用A、B、C的运算关系表示下列事件:
02:54:36
二、 概率的定义及其运算
从直观上来看,事件A的概率是指事件A发 生的可能性
事件A的概率应具有何种性质?
抛一枚硬币,币值面向上的概率为多少? 掷一颗骰子,出现6点的概率为多少? 出现单数点的概率为多少? 向目标射击,命中目标的概率有多大?
频率的性质:
(1) 0 fn(A) 1; (2) fn()=1; fn( )=0 (3) 可加性:若AB= ,则
fn(AB)= fn(A) +fn(B).
02:54:36
(二)古典概型与概率 一个随机试验的样本空间为 满足以下性质: (1)样本点总数有限,即 有限; (2)每个样本点出现的概率相等,即
P( A1 A2 … )= P(A1) +P(A2)+…. 则称P(A)为事件A的概率。
02:54:36
2.一般概率的性质 性质1: 性质2:(有限可加性)设
两两互不相容,则
性质3:
02:54:36
性质4 设
则
推论:设
则
反之不成立。
推广:
性质5:(并定理)
推论:
02:54:36
概率论与数理统计第一章——随机事件及概率
![概率论与数理统计第一章——随机事件及概率](https://img.taocdn.com/s3/m/b8c5cd169b89680202d82548.png)
ex2: 从0,1,2,3,4,5, 这六个数字中任取四 个,问能组成多少个四位偶数?
解:组成的四位数是偶数,要求末位为0,2或
4,可先选末位数,共P31 种,前三位数的选取方法有
P53 种,而0不能作首位,所以所组成的偶数个数为
P1 P3 − P1 P1 P2 = 156 (个)
◼ 为方便起见,记Φ为不可能事件,Φ不 包含任何样本点。
(三) 事件的关系及运算 ❖事件的关系(包含、相等)
1A B:事件A发生一定导致B发生
2A=B
A B
B A
B A
例:
✓ 记A={明天天晴},B={明天无雨} B A ✓ 记A={至少有10人候车},B={至少有5人候车}
B A
✓ 抛两颗均匀的骰子,两颗骰子出现的点数分别 记为x,y.记A={x+y为奇数},B={两次的骰子点
A
B
n Ai:A1, A2,An至少有一发生
i=1
n Ai:A1, A 2 ,An同时发生
i =1
✓当AB= Φ时,称事件A与B是互不相
容的,或互斥的。
A
B
A A= A B =
A的逆事件记为A, A A =
, 若 A B =
,
称A, B互逆(互为对立事件)
AA
A
B
事件A对事件B的差事件:
◼可以在相同条件下重复进行(重复性); ◼事先知道所有可能出现的结果(明确性); ◼每次试验前并不知道哪个试验结果会发生 (随机性)。
例: ❖抛一枚硬币,观察试验结果; ❖对某路公交车某停靠站登记下车人数; ❖对某批同型号灯泡,抽取其中一只测 验其使用寿命(按小时计)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 {0, 1, 2, 3, }
在一批灯泡中任意抽取一只,测试它的寿命. 则样本空间为:
4 {t t 0}
注:⑴建立样本空间,事实上就是建立随机现象的数 学模型. 因此一个样本空间可以概括许多内容 大不相同的实际问题.
如:包含两个样本点的样本空间
{H, T}
它既可以作为抛掷硬币出现正面或出现反面的模 型,也可以作为产品检验中合格与不合格的模型, 又能用于排队现象中有人排队与无人排队的模型 …………
并,记作 A B 或 A B ,即:
A B A发生或B发生
A, B中至少有一个发生
维恩图表示:
A
B
注: n 个事件 A1 , A2 ,, An的和,记为: n A1 A2 An Ak
k 1
3、事件的积(交)
如:抛一颗骰子, A “出现点数不超过3”, B “出现偶数点“,C=“出现2点”,请思考: C与A、B关系?
B A
注:⑴事件 A 是事件 B 的子事件即 A B ,换一说 法:如果事件 B 不发生必然导致事件 A 不发生; ⑵由于必然事件在每一次试验中都发生,所以对 任一随机事件 A ,都有 A .
如:抛两颗骰子, A “两颗骰子点数之和为奇数”, B “两颗骰子的点数为一奇一偶“,请思考A与
7、完备事件组
设 A1 , A2 ,, An 满足: ⑴ Ai Aj ,(i j )即两两互不相容; ⑵ A1 A2 An 即它们的和为必然事件. 则称 A1 , A2 ,, An 为完备事件组
事件运算满足如下规律
⑴交换律 A B B A ⑵结合律 ( A B) C A ( B C ) ( A B) C A ( B C ) ⑶分配律 ( A B) C ( A C ) ( B C )
3、观察这一次出现的所有可能的偶数点结果,并把 此结果写成集合形式.
{2,4,6}
这就是这次随机试验的随机事件,随机事 { 1,4,5} {2,5} 等. 件还如:
基本事件:在试验 E 中,每一种可能结果称为基本 事件,或称为样本点. 常用字母 表示. 样本空间:所有基本事件(或样本点)组成的集合 称为试验 E 的样本空间,记为 . 例1:写出下列随机试验的样本空间
⑵样本空间的元素是由试验的目的所确定的.
如:将一枚硬币连续抛掷两次,观察正面H、反面 T出现的情况. 则样本空间为:
{HH , HT , TH , TT }
第 1次
第 2次
H
T H T
HH HT TH TT
H
H T T
在每次试验中必 有一个样本点出 现且仅有一个样 本点出现 .
随机事件:在随机试验中,有可能发生也有可能不发 生的结果,称之为随机事件,简称为事件,
A1 A2 An Ak
k 1
n
4、事件的差
事件 A 发生而事件 B 不发生,称为事件 A 关于
事件 B 的差,记作 A B ,即:
A B A发生而B不发生
维恩图表示:
A B A B
如:抛一颗骰子, A “出现点数不超过3”, A B {1,3} B “出现偶数点“,则:
二、事件间的关系及运算
事件是一个集合,因而事件间的关系与事件的
运算自然按照集合论中集合之间的关系和集合 运算来处理. 根据“事件发生”的含义,下面给 出事件的关系和运算在概率论中的提法.
设试验E的样本空间为 ,而 A, B, A1 , A2 ,, An
分别为 的子集.
1、事件的包含与相等 如:抛一颗骰子,事件 A “出现4点”, B
例2:将一枚硬币连续抛掷3次,观察正面H、反面T 出现的情况,试写出下列事件: ⑴第一次出现正面H;
A1 {H H H ,H H T ,H TT , H TH }
⑵出现两次正面H;
A2 {H H T ,H TH , TH H}
⑶三次出现同一面T;
A3 {TTT }
⑷四次出现反面T.
A4
C A B
事件的积(交):事件 A与事件 B 同时发生,称为事件
A与事件 B 的积,也称为事件 A 与事件 B 的交,记 作 A B 或 AB ,即: A B A发生且B发生
A, B同时发生
维恩图表示:
A
B
注: n 个事件 A1 , A2 ,, An的积,记为:
A A
AA
⑵ 对立事件一定是互不相容事件,但互不相容 的事件未必是对立事件. 如:抛一颗骰子, A “出现点数不超过3”, B “出现点数大于4“,则:
A {1,2,3} B {5,6}
A {4,5,6}
显然: A 与 A 互为对立事件,同时也是互斥事 件; A 与 B 互为互斥事件,但不是对立事件.
⑹ A1 A2 A2 A3 A的发生,而且 B 的发 生必然导致 A 的发生,所以 A B 事件的相等:若事件 A 包含事件 B ,同时事件 B 也 包含事件 A . 即:A B 且 A B ,则称事件 A 与事件 B 相等,或称 A 与 B 等价,记为 A B . 即: A B
抛一枚硬币,观察正面H、反面T出现的情况. 则样本空间为:
1 {H , T }
将一枚硬币连续抛掷三次,观察正面H、反面T出 现的情况. 则样本空间为:
2 {HHH , HHT , HTT , HTH , THH , TTH , THT , TTT }
记录电话交换台一分钟内接到的呼唤次数. 则样本空间为:
A B 且 A B
维恩图表示:
A B
2、事件的和(并) 如:抛一颗骰子,事件
A {1,2,4}
B {2,4,6} C {1,2,4,6}
请思考:C与A、B的关系?
C A B A B
事件的和( 并 ):事件A 与事件B 中至少有一个发生,称 为事件 A 与事件 B 的和,也称为事件 A 与事件 B 的
常用大写字母 A, B, C …表示.
注:随机事件实际上是样本空间的一个子集,即 是由样本点所构成的集合. 事件发生:当事件A所包含的基本事件或样本点有一个 出现,就说事件A发生了;否则就说事件A 没发生.
必然事件:在每次试验中,一定出现的事件称为必
然事件,记为
不可能事件:在每次试验中,一定不出现的事件称 为不可能事件,记为 注:必然事件和不可能事件是每次试验之前都可以 准确预言的,其结果不是随机事件. 但为了讨 论问题的方便,我们把它们看成是特殊的随机 事件,作为随机事件的两个极端情况.
显然,对偶公式表明:
“至少有一个事件发生”的对立事件是“所有事件都不发生” “所有事件都发生”的对立事件是“至少有一个事件不发生”
四、利用事件间的关系及运算写出相应的事件
例3:某人连续三次购买体育彩票,每次一张,令 A, B, C 分别表示其第一、二、三次所买彩票 中奖的事件. 试用A, B, C 及运算写出下列事件. ⑴第三次未中奖;
C
A BC
⑵只有第三次中了奖;
⑶恰有一次中奖;
ABC
⑷至少有一次中奖; ⑸不止一次中奖; ⑹至多中奖两次.
AB C U ABC U A BC
ABC
AB U BC U AC
例4:甲、乙、丙三人各进行一次试验,事件A1 , A2 , A3 分别表示甲、乙、丙试验成功,说明下列事件
所表示的试验结果.
乙 、 丙 中 至 少 有 一 人 不 成 功 ⑴ A1 ⑷A A 2 3 ⑵ A1 A2 ⑸ A1 A2 A3 ⑶ A2 A3 乙、丙中至 多有一人成功
第一章 随机事件与概率
1.2 随机事件
1.2节需要弄清楚下述问题:
1、基本事件、样本空间的概念,并举例说明? 2、随机事件的概念,并举例说明? 3、事件发生的含义是什么?必然事件与不可能事件的概念, 并举例说明? 4、事件的包含关系是指?并举例说明? 5、事件的相等关系是指?并举例说明? 6、事件的和(并)概念,并举例说明? 7、事件的积(交)的概念,并举例说明? 8、事件的差的概念,并举例说明? 9、互不相容事件是指?并举例说明? 10、对立事件是指?并举例说明? 11、完备事件组的概念,并举例说明? 12、事件之间的运算满足哪些规律?
”出现偶
数点”,请思考:
1、事件 A 发生会导致事件 B 的发生吗? 会 2、事件 B 发生会导致事件 A 的发生吗? 不会 事件的包含关系:若事件 A 发生必然导致事件 B 发 生,则称事件 B 包含事件 A ,也称事件 A 包含 于事件 B . 记为 A B(或 B A ).
维恩图表示:
( A B) C ( A C ) ( B C )
⑷对偶公式(De Morgan定理)
A B A B
A B A B
对偶公式也可推广到多个事件的情形,设 A1 , A2 ,, An 是
n个事件,有:
A1 A2 An A1 A2 An A1 A2 An A1 A2 An
一、样本空间与随机事件
随机试验:请掷一枚均匀的骰子 1、观察出现的所有可能结果,并把此所有可能结果 写成集合形式;
{1,2,3,4,5,6}
事实上这就是这次随 机试验的样本空间
2、观察这一次可能出现的结果,并把这一次可能结果 写成集合形式;
{1},{2},{3},{4},{5},{6}
这些可能结果就是这次 随机试验的基本事件
如:抛一颗骰子,A “出现偶数点”, B 现奇数点“,则: “出
A {2,4,6} B {1,3,5}
A B AB 于是 A, B 互斥
6、对立事件