2020版高考数学大一轮复习 第三章 导数及其应用 第2讲 导数与函数的单调性分层演练 文.
2020版高考数学一轮总复习 第三单元导数及其应用 教案全集 含解析

导数的概念及运算1.了解导数概念的实际背景.2.通过函数图象直观理解导数的几何意义,会求曲线的切线方程. 3.能根据导数的定义,求一些简单函数的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.知识梳理 1.导数的概念(1)平均变化率: 函数y =f (x )从x 0到x 0+Δx 的平均变化率ΔyΔx= f x0+Δx -f x 0Δx.(2)函数y =f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率 li m Δx →0 ΔyΔx 通常称为f (x )在x =x 0处的导数,并记作f ′(x 0),即 f ′(x 0)=li m Δx →0f x 0+Δx -f x 0Δx.(3)函数f (x )的导函数如果函数y =f (x )在开区间(a ,b )内每一点都是可导的,就说f (x )在开区间(a ,b )内可导,其导数也是开区间(a ,b )内的函数,称作f (x )的导函数,记作 y ′或f ′(x ) .2. 导数的几何意义函数y =f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的 切线的斜率 .曲线在点P (x 0,f (x 0))处的切线方程是 y -f (x 0)=f ′(x 0)(x -x 0) . 3.导数的运算(1)基本初等函数的导数公式 ①C ′= 0 (C 为常数); ②(x n)′= nxn -1(n ∈Q );③(sin x )′= cos x ; ④(cos x )′= -sin x ; ⑤(a x)′= a xln a (a >0且a ≠1);⑥(e x )′= e x; ⑦(log a x )′=1x ln a(a >0且a ≠1); ⑧(ln x )′= 1x.(2)导数的运算法则 ①和差的导数[f (x )±g (x )]′= f ′(x )±g ′(x ) . ②积的导数[f (x )·g (x )]′= f ′(x )g (x )+f (x )g ′(x ) . ③商的导数 [f xg x]′= fx g x -f x gxg 2x(g (x )≠0).热身练习1.若f (x )=2x 2图象上一点(1,2)及附近一点(1+Δx,2+Δy ),则Δy Δx 等于(C)A .3+2ΔxB .4+ΔxC .4+2ΔxD .3+ΔxΔy =f (x +Δx )-f (x )=2(1+Δx )2-2=2[2Δx +(Δx )2],所以Δy Δx =4+2Δx .2.设函数f (x )可导,则lim Δx →0 f+Δx -f2Δx等于(C)A .f ′(1) B.2f ′(1) C.12f ′(1) D.f ′(2)因为f (x )可导,所以lim Δx →0f+Δx -f2Δx =12lim Δx →0 f +Δx -fΔx =12f ′(1). 3.下列求导运算中正确的是(B) A .(x +1x )′=1+1x2 B .(lg x )′=1x ln 10C .(ln x )′=xD .(x 2cos x )′=-2x sin x(x +1x )′=1-1x 2,故A 错;(ln x )′=1x,故C 错;(x 2cos x )′=2x cos x -x 2sin x ,D 错.4.(2018·全国卷Ⅱ)曲线y =2ln x 在点(1,0)处的切线方程为 2x -y -2=0 .因为y ′=2x,y ′| x =1=2,所以切线方程为y -0=2(x -1),即y =2x -2.5.(1)(2016·天津卷)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为 3 .(2)y =xx +1,则y ′x =2= 19.(1)因为f ′(x )=2e x+(2x +1)e x=(2x +3)e x ,所以f ′(0)=3e 0=3. (2)因为y ′=(x x +1)′=x x +-x x +x +2=1x +2,所以y ′x =2=1+2=19.导数的概念利用导数的定义求函数f (x )=1x +2的导数.因为Δy =1x +Δx +2-1x +2=-Δx x +Δx +x +,所以Δy Δx=-1x +Δx +x +,所以f ′(x )=li m Δx →0 ΔyΔx =li m Δx →0[-1x +Δx +x +]=-1x +x +=-1x +2.利用定义求导数的基本步骤: ①求函数的增量:Δy =f (x +Δx )-f (x ); ②求平均变化率:Δy Δx=fx +Δx -f xΔx;③取极限得导数:f ′(x )=li m Δx →0f x +Δx -f xΔx.1.设函数f (x )在x 0处可导,则li m Δx →0 f x 0-Δx -f x 0Δx等于(B)A .f ′(x 0)B .-f ′(x 0)C .f (x 0)D .-f (x 0)li m Δx →0f x 0-Δx -f x 0Δx=-li mΔx →0f [x 0+-Δx-f x 0-Δx=-f ′(x 0).导数的运算求下列函数的导数:(1)y =x 2sin x; (2)y =1+sin x 1-cos x.(1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x . (2)y ′=+sin x-cos x -+sin x-cos x-cos x2=cos x-cos x -+sin xx-cos x2=cos x -sin x -1-cos x2.利用导数公式和运算法则求导数,是求导数的基本方法(称为公式法).用公式法求导数的关键是:认清函数式的结构特点,准确运用常用的导数公式.2.(1)(2018·天津卷)已知函数f (x )=e xln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为 e .(2)设y =1+cos x sin x ,则y ′π2= -1 .(1)因为f (x )=e xln x ,所以f ′(x )=e xln x +ex x,所以f ′(1)=e.(2)因为y ′=+cos x x -+cos x xsin 2x=-sin 2x -+cos x os x sin 2x=-1-cos xsin 2x, 所以y ′π2=-1.求切线方程(1)(2017·全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为____________________.(2)若曲线y =x ln x 存在斜率为2的切线,则该切线方程为________________.因为y′=2x-1x2,所以y′|x=1=1,即曲线在点(1,2)处的切线的斜率k=1,所以切线方程为y-2=x-1,即x-y+1=0.(2)因为y′=ln x+1,设切点为P(x0,y0),则y′x=x0=ln x0+1=2,所以x0=e,此时y0=x0ln x0=eln e=e,所以切点为(e,e).故所求切线方程为y-e=2(x-e),即2x-y-e=0.(1)x-y+1=0 (2)2x-y-e=0(1)求切线方程有如下三种类型:①已知切点(x0,y0),求切线方程;②已知切线的斜率k,求切线方程;③求过(x1,y1)的切线方程.其中①是基本类型,类型②和类型③都可转化为类型①进行处理.(2)三种类型的求解方法:类型①,利用y-f(x0)=f′(x0)(x-x0)直接求出切线方程.类型②,设出切点(x0,y0),再由k=f′(x0),再由(x0,y0)既在切线上,又在曲线上求解;类型③,先设出切点(x0,y0),利用k=f′(x0)及已知点(x1,y1)在切线上求解.3.(2018·广州市模拟)已知直线y=kx-2与曲线y=x ln x相切,则实数k的值为(D) A.ln 2 B.1C.1-ln 2 D.1+ln 2本题实质上是求曲线过点(0,-2)的切线问题,因为(0,-2)不是切点,可先设出切点,写出切线方程,再利用切线过(0,-2)得到所求切线方程.设切点为(x0,x0ln x0),因为y′=ln x+1,所以k=ln x0+1,所以切线方程为y-x0ln x0=(ln x0+1)(x-x0),因为切线过点(0,-2),所以-2-x0ln x0=-x0ln x0-x0,所以x0=2,所以k=ln 2+1.1.函数y=f(x)的导数实质上是“增量(改变量)之比的极限”,即f′(x)=li mΔx→0Δy Δx=li mΔx→0f x+Δx-f xΔx.2.关于函数的导数,要熟练掌握基本导数公式和求导的运算法则,一般要遵循先化简再求导的基本原则.3.导数f′(x0)的几何意义是曲线y=f(x)在点M(x0,f(x0))处切线的斜率,其切线方程为y-f(x0)=f′(x0)(x-x0).若设点(x0,y0)是切线l与曲线C的切点,则有如下结论:①f′(x0)是切线l的斜率;②点(x0,y0)在切线l上;③点(x0,y0)在曲线C上.导数在函数中的应用——单调性1.了解函数的单调性与其导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).知识梳理1.函数的单调性与导数的关系设函数y=f(x)在某个区间(a,b)内有导数.如果f′(x)>0,则f(x)在(a,b)上为增函数;如果f′(x)<0,则f(x)在(a,b)上为减函数.2.导数与函数单调性的关系设函数y=f(x)在某个区间(a,b)内可导,且f′(x)在(a,b)的任意子集内都不恒等于0.如果f (x )在区间(a ,b )内单调递增,则在(a ,b )内f ′(x ) ≥ 0恒成立; 如果f (x )在区间(a ,b )内单调递减,则在(a ,b )内f ′(x ) ≤ 0恒成立.热身练习1.“f ′(x )>0在(a ,b )上成立”是“f (x )在(a ,b )上单调递增”的(A) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件f ′(x )>0在(a ,b )上成立⇒f (x )在(a ,b )上单调递增;反之,不一定成立,如y =x 3在(-1,1)上单调递增,但在(-1,1)上f ′(x )=3x 2≥0.2.设f (x )=2x 2-x 3,则f (x )的单调递减区间是(D) A .(0,43) B .(43,+∞)C .(-∞,0)D .(-∞,0)和(43,+∞)f ′(x )=4x -3x 2<0⇒x <0或x >43.3.函数f (x )=(3-x 2)e x的单调递增区间是(D) A .(-∞,0) B .(0,+∞)C .(-∞,-3)和(1,+∞) D.(-3,1)因为f ′(x )=-2x e x+(3-x 2)e x =(-x 2-2x +3)e x ,令f ′(x )>0,得x 2+2x -3<0,解得-3<x <1.所以f (x )的单调递增区间为(-3,1).4.设定义在区间(a ,b )上的函数f (x ),其导函数f ′(x )的图象如右图所示,其中x 1,x 2,x 3,x 4是f ′(x )的零点且x 1<x 2<x 3<x 4.则(1)f (x )的增区间为 (a ,x 1),(x 2,x 4) ; (2)f (x )的减区间为 (x 1,x 2),(x 4,b ) .5.(2019·福建三明期中)函数f (x )=x 3-3bx +1在区间[1,2]上是减函数,则实数b 的取值范围为 [4,+∞) .因为f ′(x )=3x 2-3b ≤0,所以b ≥x 2,要使b ≥x 2在[1,2]上恒成立, 令g (x )=x 2,x ∈[1,2],当x ∈[1,2],1≤g (x )≤4,所以b ≥4.利用导数求函数的单调区间函数f (x )=x 2-2x -4ln x 的单调递增区间是____________.函数f (x )的定义域为(0,+∞). f ′(x )=2x -2-4x =2x 2-2x -4x,由f ′(x )>0,得x 2-x -2>0,解得x >2或x <-1(舍去). 所以f (x )的单调递增区间为(2,+∞).(2,+∞)求可导函数f (x )的单调区间的步骤: ①求函数f (x )的定义域; ②求导数f ′(x );③解不等式f ′(x )>0和f ′(x )<0;④确定函数y =f (x )的单调区间:使f ′(x )>0的x 的取值区间为增区间,使f ′(x )<0的x 的取值区间为减区间.1.(2017·全国卷Ⅱ节选)设函数f (x )=(1-x 2)e x.讨论f (x )的单调性.f ′(x )=(1-2x -x 2)e x.令f ′(x )=0得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)上单调递减,在(-1-2,-1+2)上单调递增.已知函数的单调性求参数的范围(经典真题)若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是A .(-∞,-2]B .(-∞,-1]C .[2,+∞) D.[1,+∞)依题意得f ′(x )=k -1x≥0在(1,+∞)上恒成立,即k ≥1x在(1,+∞)上恒成立.令g (x )=1x,因为x >1,所以0<g (x )<1,所以k ≥1,即k 的取值范围为[1,+∞).D函数f (x )在(a ,b )上单调递增,可转化为f ′(x )≥0在该区间恒成立,从而转化为函数的最值(或值域)问题.2.(2016·全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是(C)A .[-1,1]B .[-1,13]C .[-13,13]D .[-1,13](方法一)因为f (x )在(-∞,+∞) 单调递增,所以f ′(x )=1-23cos 2x +a cos x ≥0对x ∈(-∞,+∞)恒成立,即f ′(x )=-43cos 2x +a cos x +53≥0对x ∈(-∞,+∞)恒成立,令cos x =t ,-1≤t ≤1,则等价于:g (t )=-43t 2+at +53≥0对t ∈[-1,1]恒成立.等价于⎩⎪⎨⎪⎧g -,g ,即⎩⎪⎨⎪⎧-a +13≥0,a +13≥0,所以-13≤a ≤13.即a 的取值范围为[-13,13].(方法二:特殊值法)取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,因为f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增,排除A ,B ,D.故选C.利用导数求含参数的函数的单调区间已知f (x )=12x 2-a ln x (a ∈R ),求函数f (x )的单调区间.f (x )的定义域为(0,+∞),因为f ′(x )=x -a x =x 2-ax(x >0),当a ≤0时,f ′(x )≥0恒成立,所以函数f (x )的单调递增区间为(0,+∞). 当a >0时,令f ′(x )>0,得x >a . 令f ′(x )<0,得0<x <a .所以函数f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ).综上所述,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ).(1)当函数的解析式中含有参数时,如果参数对导函数的符号有影响或导数的零点是否在定义域内不确定时,要对参数进行分类讨论.(2)讨论时,首先要看f ′(x )的符号是否确定,再看f ′(x )的零点与定义域的关系. (3)画出导函数的示意图有助于确定单调性.3.(2017·全国卷Ⅲ节选)已知函数f (x )=ln x +ax 2+(2a +1)x .讨论f (x )的单调性.f (x )的定义域为(0,+∞),f ′(x )=1x+2ax +2a +1=x +ax +x.若a ≥0,则当x ∈(0,+∞)时,f ′(x )>0, 故f (x )在(0,+∞)上单调递增.若a <0,则当x ∈(0,-12a )时,f ′(x )>0;当x ∈(-12a,+∞)时,f ′(x )<0.故f (x )在(0,-12a )上单调递增,在(-12a,+∞)上单调递减.(1)求f(x)的定义域,并求导数f′(x);(2)解不等式f′(x)>0和f′(x)<0;(3)确定函数y=f(x)的单调区间:使f′(x)>0的x的取值区间为增区间,使f′(x)<0的x的取值区间为减区间.在求单调区间时,要注意如下两点:①要注意函数的定义域;②当求出函数的单调区间(如单调增区间)有多个时,不能把这些区间取并集.2.已知函数在区间上单调,求其中的参数时,要注意单调性与导数的关系的转化.即:(1)如果f(x)在区间[a,b]单调递增⇒f′(x)≥0在x∈[a,b]上恒成立;(2)如果f(x)在区间[a,b]单调递减⇒f′(x)≤0在x∈[a,b]上恒成立.3.处理含参数的单调性问题,实质是转化为含参数的不等式的解法问题,但要注意在函数的定义域内讨论.导数在函数中的应用——极值与最值1.掌握函数极值的定义及可导函数的极值点的必要条件和充分条件(导数在极值点两侧异号).2.会研究一些简单函数的极值.3.会利用导数求一些函数在给定区间上的最值.知识梳理1.函数的极值(1)函数极值的定义:设函数f(x)在点x0附近有定义,如果对x0附近的所有点,都有f(x)<f(x0) ,我们就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0);如果对x0附近的所有点,都有f(x)>f(x0) ,我们就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0).极大值与极小值统称为极值.①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.2.函数的最值(1)(最值定理)一般地,如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)一般地,求函数f(x)在[a,b]上的最大值与最小值的步骤如下:①求函数f(x)在(a,b)内的极值.②将f(x)的极值和端点的函数值比较,其中最大的一个为最大值;最小的一个为最小值.热身练习1.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点(A)A.1个 B.2个C.3个 D.4个因为f′(x)与x轴有4个交点,即f′(x)=0有4个解,但仅左边第二个交点x=x0满足x<x0时,f′(x)<0;x>x0时,f′(x)>0,其他交点均不符合该条件.2.函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则(C) A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件因为函数f(x)在x=x0处可导,所以若x=x0是f(x)的极值点,则f′(x0)=0,所以q⇒p,故p是q的必要条件;反之,以f (x )=x 3为例,f ′(0)=0,但x =0不是极值点.所以p q . 故p 不是q 的充分条件.3.(2016·四川卷)已知a 为函数f (x )=x 3-12x 的极小值点,则a =(D) A .-4 B .-2 C .4 D .2由题意得f ′(x )=3x 2-12,令f ′(x )=0得x =±2,所以当x <-2或x >2时,f ′(x )>0; 当-2<x <2时,f ′(x )<0,所以f (x )在(-∞,-2)上为增函数,在(-2,2)上为减函数,在(2,+∞)上为增函数. 所以f (x )在x =2处取得极小值,所以a =2.4.函数f (x )=x 3-3x +1在闭区间[-3,0]上的最大值、最小值分别是(C) A .1,-1 B .1,-17 C .3,-17 D .9,-19令f ′(x )=3x 2-3=0,得x =±1.f (1)=1-3+1=-1,f (-1)=-1+3+1=3, f (-3)=-17,f (0)=1.所以最大值为3,最小值为-17. 5.(2016·北京卷)函数f (x )=xx -1(x ≥2)的最大值为 2 .f ′(x )=x --x x -2=-1x -2,当x ≥2时,f ′(x )<0,所以f (x )在[2,+∞)上是减函数, 故f (x )max =f (2)=22-1=2.求函数的极值、最值求函数f (x )=13x 3-4x +4的极值.因为f ′(x )=x 2-4=(x -2)(x +2), 令f ′(x )=0,得x =±2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以当x =-2时,f (x )有极大值f (-2)=283;当x =2时,f (x )有极小值f (2)=-43.(1)求可导函数f (x )的极值的步骤: ①确定函数的定义域,求导数f ′(x ); ②求方程f ′(x )=0的根;③检查f ′(x )在方程根左、右值的符号;④作出结论:如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.(2)求可导函数f (x )在[a ,b ]上最值的步骤: ①求f (x )在(a ,b )内的极值;②将f (x )各极值与f (a ),f (b )比较,得出f (x )在[a ,b ]上的最值.1.求函数f (x )=13x 3-4x +4在[-3,3]上的最大值与最小值.由例1可知,在[-3,3]上, 当x =-2时,f (x )有极大值f (-2)=283;当x =2时,f (x )有极小值f (2)=-43.又f (-3)=7,f (3)=1,所以f (x )在[-3,3]上的最大值为283,最小值为-43.含参数的函数的极值的讨论已知函数f (x )=x -a ln x (a ∈R ),求函数f (x )的极值.由f ′(x )=1-a x =x -ax(x >0)可知(1)当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; (2)当a >0时,由f ′(x )=0,解得x =a .当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,所以函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =a 处取得极小值a -a ln a ,无极大值.对于解析式中含有参数的函数求极值,有时需要分类讨论后解决问题.讨论的思路主要有:(1)参数是否影响f ′(x )的零点的存在; (2)参数是否影响f ′(x )不同零点的大小; (3)参数是否影响f ′(x )在零点左右的符号. 如果有影响,则要分类讨论.2.(2018·银川高三模拟节选)已知函数f (x )=ax -1-ln x (a ∈R ).讨论函数f (x )在定义域内的极值点的个数.f (x )的定义域为(0,+∞). f ′(x )=a -1x =ax -1x.当a ≤0时,f ′(x )≤0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递减,所以f (x )在(0,+∞)上没有极值点.当a >0时,由f ′(x )<0得0<x <1a ;由f ′(x )>0得x >1a.所以f (x )在(0,1a )上递减,在(1a,+∞)上递增,所以f (x )在x =1a处有极小值.所以当a ≤0时,f (x )在(0,+∞)上没有极值点, 当a >0时,f (x )在(0,+∞)上有一个极值点.含参数的函数的最值讨论已知函数f (x )=ln x -ax (a >0),求函数f (x )在[1,2]上的最大值.f ′(x )=1x -a =1-axx(x >0),令f ′(x )=0,得x =1a.(1)当1a≤1,即a ≥1时,函数f (x )在[1,2]上是减函数,所以f (x )max =f (1)=-a .(2)当1a ≥2时,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )max =f (2)=ln 2-2a .(3)当1<1a <2,即12<a <1时,函数f (x )在[1,1a ]上是增函数,在[1a ,2]上是减函数.所以f (x )max =f (1a)=-ln a -1.综上可知:当0<a ≤12时,f (x )max =ln 2-2a ;当12<a <1时,f (x )max =-ln a -1; 当a ≥1时,f (x )max =-a .(1)求函数的最值时,要先求函数y =f (x )在(a ,b )内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内使f ′(x )=0的点和区间端点的函数值,最后比较即可.(2)当函数f (x )中含有参数时,需要依据极值点存在的位置与所给区间的关系,对参数进行分类讨论.3.已知函数f (x )=ln x -ax (a >0),求函数f (x )在[1,2]上的最小值.f ′(x )=1x -a =1-axx(x >0),令f ′(x )=0,得x =1a.(1)当1a≤1,即a ≥1时,函数f (x )在[1,2]上是减函数,所以f (x )min =f (2)=ln 2-2a .(2)当1a ≥2时,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )min =f (1)=-a .(3)当1<1a <2,即12<a <1时,函数f (x )在[1,1a ]上是增函数,在[1a ,2]上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,f (x )min =f (1)=-a ;当ln 2≤a <1时,f (x )min =f (2)=ln 2-2a . 综上可知:当0<a <ln 2时,函数f (x )min =-a ; 当a ≥ln 2时,函数f (x )min =ln 2-2a .1.求可导函数f(x)的极值的步骤:(1)确定f(x)的定义域,求导数f′(x);(2)求方程f′(x)=0的根;(3)检查f′(x)在方程根左、右值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.2.求可导函数f(x)在[a,b]上的最大值和最小值可按如下步骤进行:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a),f(b)比较,确定f(x)的最大值和最小值.3.求含参数的极值,首先求定义域;然后令f′(x)=0,解出根,根据根是否在所给区间或定义域内进行参数讨论,并根据左右两边导函数的正负号,从而判断f(x)在这个根处取极值的情况.4.含参数的最值,首先按照极值点是否在所给区间对参数进行讨论,然后比较区间内的极值和端点值的大小.导数的综合应用——导数与不等式1.能够构造函数利用导数证明一些简单的不等式和解某些不等式.2.会将恒成立问题及存在性问题转化为最值问题进行求解.知识梳理1.如果不等式f(x)≥g(x),x∈[a,b]恒成立,则转化为函数φ(x)=f(x)-g(x)在x ∈[a,b]内的最小值≥0.(填“最小值”“最大值”“极小值”或“极大值”) 2.若f′(x)>0,x∈[a,b],且x0∈(a,b)有f(x0)=0,则f(x)>0的x的取值范围为(x0,b) ,f(x)<0的x的取值范围为(a,x0) .3.若f(x)>m在x∈[a,b]上恒成立,则函数f(x)在x∈[a,b]的最小值>m.(填“最小值”“最大值”“极小值”或“极大值”)若f (x )<m 在x ∈[a ,b ]上恒成立,则函数f (x )在x ∈[a ,b ]的 最大值 <m .(填“最小值”“最大值”“极小值”或“极大值”)4.若f (x )>m 在x ∈[a ,b ]有解,则函数f (x )在x ∈[a ,b ]的 最大值 >m .(填“最小值”“最大值”“极小值”或“极大值”)热身练习1.对于∀x ∈[0,+∞),则e x与1+x 的大小关系为(A) A .e x≥1+x B .e x<1+xC .e x=1+x D .e x与1+x 大小关系不确定令f (x )=e x-(1+x ),因为f ′(x )=e x-1,所以对∀x ∈[0,+∞),f ′(x )≥0,故f (x )在[0,+∞)上递增,故f (x )≥f (0)=0, 即e x≥1+x .2.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )>0,则必有(B) A .f (0)+f (2)<2f (1) B .f (0)+f (2)>2f (1) C .f (0)+f (2)=2f (1)D .f (0)+f (2)与2f (1)的大小不确定依题意,当x >1时,f ′(x )>0,f (x )在(1,+∞)上是增函数;当x <1时,f ′(x )<0,f (x )在(-∞,1)上是减函数, 故当x =1时,f (x )取最小值,所以f (0)>f (1),f (2)>f (1),所以f (0)+f (2)>2f (1).3.已知定义在R 上函数f (x )满足f (-x )=-f (x ),且x >0时,f ′(x )<0,则f (x )>0的解集为(A)A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)因为f (x )是定义在R 上的奇函数,所以f (0)=0,又x >0时,f ′(x )<0,所以f (x )在(-∞,+∞)上单调递减,所以f (x )>0的解集为(-∞,0).4.若函数h (x )=2x -k x +k3在[1,+∞)上是增函数,则实数k 的取值范围是 [-2,+∞).因为h′(x)=2+kx2,且h(x)在[1,+∞)上单调递增,所以h′(x)=2+kx2≥0,所以k≥-2x2,要使k≥-2x2在[1,+∞)上恒成立,则只要k≥(-2x2)max,所以k≥-2.5.设f(x)=-x2+a,g(x)=2x.(1)若∀x∈[0,1],f(x)≥g(x),则实数a的取值范围为[3,+∞);(2)若∃x∈[0,1],f(x)≥g(x),则实数a的取值范围为[0,+∞).(1)F(x)=f(x)-g(x)=-x2-2x+a(x∈[0,1]).则[F(x)]min=F(1)=-3+a.因为“若∀x∈[0,1],f(x)≥g(x)”等价于“[F(x)]min≥0,x∈[0,1]”,所以-3+a≥0,解得a≥3.所以实数a的取值范围为[3,+∞).(2)F(x)=f(x)-g(x)=-x2-2x+a(x∈[0,1]).则[F(x)]max=F(0)=a.因为“若∃x∈[0,1],f(x)≥g(x)”等价于“[F(x)]max≥0,x∈[0,1]”,所以a≥0.所以实数a的取值范围为[0,+∞).利用导数解不等式若f(x)的定义域为R,f′(x)>2恒成立,f(-1)=2,则f(x)>2x+4的解集为A.(-1,1) B.(-1,+∞)C.(-∞,-1) D.(-∞,+∞)令g(x)=f(x)-2x-4,因为g′(x)=f′(x)-2>0,所以g(x)在(-∞,+∞)上是增函数,又g(-1)=f(-1)-2×(-1)-4=0,所以f(x)>2x+4⇔g(x)>g(-x>-1.所以f(x)>2x+4的解集为(-1,+∞).B利用导数解不等式的基本方法:(1)构造函数,利用导数研究其单调性;(2)寻找一个特殊的函数值;(3)根据函数的性质(主要是单调性,结合图象)得到不等式的解集.1.(2018·遂宁模拟)已知f(x)为定义在(-∞,0)上的可导函数,2f(x)+xf′(x)>x2恒成立,则不等式(x+2018)2f(x+2018)-4f(-2)>0的解集为(B)A.(-2020,0) B.(-∞,-2020)C.(-2016,0) D.(-∞,-2016)构造函数F(x)=x2f(x),x<0,当x<0时,F′(x)=2xf(x)+x2f′(x)=x[2f(x)+xf′(x)],因为2f(x)+xf′(x)>x2≥0,所以F′(x)≤0,则F(x)在(-∞,0)上递减.又(x+2018)2f(x+2018)-4f(-2)>0可转化为(x+2018)2f(x+2018)>(-2)2f(-2),即F(x+2018)>F(-2),所以x+2018<-2,所以x<-2020.即原不等式的解集为(-∞,-2020).利用导数证明不等式已知函数f(x)=(1+x)e-2x.当x∈[0,1]时,求证:f(x)≤11+x.要证x∈[0,1]时,(1+x)e-2x≤11+x,只需证明e x≥x+1.记k(x)=e x-x-1,则k′(x)=e x-1,当x∈(0,1)时,k′(x)>0,因此,k(x)在[0,1]上是增函数,故k(x)≥k(0)=0,所以f(x)≤11+x,x∈[0,1].(1)证明f(x)>g(x)的步骤:①构造函数F(x)=f(x)-g(x);②研究F(x)的单调性或最值;③证明F (x )min >0.(2)注意:其中构造函数是将不等式问题转化为函数问题.为了利用导数研究函数的性质,常用分析法...将要证明的不等式进行适当变形或化简,然后构造相应的函数.2.(2018·全国卷Ⅰ节选)已知函数f (x )=a e x-ln x -1.证明:当a ≥1e时,f (x )≥0.当a ≥1e 时,f (x )≥exe -ln x -1.设g (x )=e x e -ln x -1,则g ′(x )=e xe -1x .当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e时,f (x )≥0.已知不等式恒成立求参数的范围已知两个函数f (x )=7x 2-28x -c ,g (x )=2x 3+4x 2-40x .若∀x ∈[-3,3],都有f (x )≤g (x )成立,求实数c 的取值范围.f (x )≤g (x ) ⇔7x 2-28x -c ≤2x 3+4x 2-40x ⇔c ≥-2x 3+3x 2+12x , 所以原命题等价于c ≥-2x 3+3x 2+12x 在x ∈[-3,3]上恒成立. 令h (x )=-2x 3+3x 2+12x ,x ∈[-3,3],则c ≥h (x )max . 因为h ′(x )=-6x 2+6x +12=-6(x -2)(x +1),当x 变化时,h ′(x )和h (x )在[-3,3]上的变化情况如下表:单调递减单调递增 单调递减 易得h (x )max =h (-3)=45,故c ≥45.(1)已知不等式恒成立,求参数a 的范围,例如f (x )>g (x )在x ∈D 上恒成立,其主要方法是:①构造函数法:将不等式变形为f (x )-g (x )>0,构造函数F (x )=f (x )-g (x ),转化为F (x )min >0.②分离参数法:将不等式变为a >h (x )或a <h (x )在x ∈D 内恒成立,从而转化为a >h (x )max或a <h (x )min .(2)注意:①恒成立问题常转化为最值问题,要突出转化思想的运用;②“f (x )max ≤g (x )min ”是“f (x )≤g (x )”的一个充分不必要条件,分析不等式恒成立时,要注意不等号两边的式子中是否是有关联的变量,再采取相应的策略.1. 已知两个函数f (x )=7x 2-28x -c ,g (x )=2x 3+4x 2-40x .若∀x 1∈[-3,3],x 2∈[-3,3]都有f (x 1)≤g (x 2)成立,求实数c 的取值范围.此题与例3不同,例3中不等式两边的式子中均有相同的变化的未知量x ,故可先移项,直接进行转化;而此题中不等式两边的式子中的x 1,x 2相互独立,则等价于f (x 1)max ≤g (x 2)min.由∀x 1∈[-3,3],x 2∈[-3,3], 都有f (x 1)≤g (x 2)成立,得f (x 1)max ≤g (x 2)min . 因为f (x )=7x 2-28x -c =7(x -2)2-28-c , 当x 1∈[-3,3]时,f (x 1)max =f (-3)=147-c ;g (x )=2x 3+4x 2-40x ,g ′(x )=6x 2+8x -40=2(3x +10)(x -2),当x 变化时,g ′(x )和g (x )在[-3,3]上的变化情况如下表:单调递减单调递增易得g (x )min =g (2)=-48, 故147-c ≤-48,即c ≥195.1.利用导数证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数F (x )=f (x )-g(x),然后根据函数的单调性,或者函数的最值证明F(x)>0.其中要特别关注如下两点:(1)是直接构造F(x),还是适当变形化简后构造F(x),对解题的繁简有影响;(2)找到F(x)在什么地方可以等于零,往往是解决问题的一个突破口.2.利用导数解不等式的基本方法是构造函数,寻找一个函数的特殊值,通过研究函数的单调性,从而得出不等式的解集.3.处理已知不等式恒成立求参数范围的问题,要突出转化的思想,将其转化为函数的最值问题.已知f(x)>g(x)在x∈D上恒成立,求其中参数a的范围,其主要方法是:①构造函数法:将不等式变形为f(x)-g(x)>0,构造函数F(x)=f(x)-g(x),转化为F(x)min>0.②分离参数法:将不等式变为a>h(x)或a<h(x)在x∈D内恒成立,从而转化为a>h(x)max 或a<h(x)min.导数的综合应用——导数与方程1.能利用导数研究一般函数的单调性、极值与最值,获得对函数的整体认识.2.会利用导数研究一般函数的零点及其分布.知识梳理1.函数零点的有关知识(1)零点的概念:函数的零点是函数图象与x轴交点的横坐标.(2)几个常用结论:①f(x)有零点y=f(x)的图象与x轴有交点方程f(x)=0有实数解.②F(x)=f(x)-g(x)有零点y=f(x)与y=g(x)的图象有交点方程f(x)=g(x)有实数解.③零点存在定理:f (x )在[a ,b ]上连续,且f (a )·f (b )<0,则f (x )在(a ,b )内 至少有一 个零点.2.利用导数研究函数零点的方法(1)研究y =f (x )的图象,利用数形结合的思想求解. (2)研究方程有解的条件,利用函数与方程的思想求解.热身练习1.(2017·浙江卷)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是(D)观察导函数f ′(x )的图象可知,f ′(x )的函数值从左到右依次为小于0,大于0,小于0,大于0,所以对应函数f (x )的增减性从左到右依次为减、增、减、增. 观察选项可知,排除A ,C.如图所示,f ′(x )有3个零点,从左到右依次设为x 1,x 2,x 3,且x 1,x 3是极小值点,x 2是极大值点,且x 2>0,故选项D 正确.2.函数f (x )=13x 3-4x +4的零点个数为(D)A .0B .1C .2D .3因为f ′(x )=x 2-4=(x -2)(x +2),令f ′(x )=0,得x =±2.当x 变化时,f ′(x ),f (x )的变化情况如下表:单调递增单调递减单调递增由此可得到f (x )的大致图象(如下图).由图可知f (x )有3个零点.3.若方程13x 3-4x +4+a =0有3个不同的解,则a 的取值范围为(B)A .(-43,283)B .(-283,43)C .[-43,283]D .[-283,43]13x 3-4x +4+a =0有3个不同的解⇔f (x )=13x 3-4x +4与g (x )=-a 有3个不同的交点.利用第2题图可知,-43<-a <283,即-283<a <43.4.若函数g (x )=13x 3-4x +4+a 的图象与x 轴恰有两个公共点,则a =(B)A.283或-43 B .-283或43C .-283或283D .-43或43g (x )=13x 3-4x +4+a 与x 轴恰有两个公共点⇔方程13x 3-4x +4+a =0有2个不同的解⇔f (x )=13x 3-4x +4与φ(x )=-a 有2个不同的交点.利用第2题图可知,-a =-43或-a =283,所以a =-283或a =43.5.已知函数f (x )=e x-2x +a 有零点,则实数a 的取值范围是(C) A .(-∞,ln 2) B .(ln 2,+∞) C .(-∞,2ln 2-2] D .[2ln 2-2,+∞)(方法一)因为f′(x)=e x-2,令e x-2=0得,e x=2,所以x=ln 2,当x∈(-∞,ln 2)时,f′(x)<0,f(x)单调递减;当x∈(ln 2,+∞)时,f′(x)>0,f(x)单调递增,所以当x=ln 2时,f(x)取最小值f(x)min=2-2ln 2+a.要f(x)有零点,所以a≤2ln 2-2.(方法二)函数f(x)=e x-2x+a有零点,即关于x的方程e x-2x+a=0有实根,即方程a=2x-e x有实根.令g(x)=2x-e x(x∈R),则g′(x)=2-e x.当x<ln 2时,g′(x)>0;当x>ln 2时,g′(x)<0.所以当x=ln 2时,g(x)max=g(ln 2)=2ln 2-2,所以函数g(x)的值域为(-∞,2ln 2-2].所以a的取值范围为(-∞,2ln 2-2].利用导数研究三次函数的零点及其分布已知函数f(x)=x3-12x+a,其中a≥16,则f(x)的零点的个数是A.0或1 B.1或2C.2 D.3(方法一:从函数角度出发,研究f(x)的图象与x轴的交点)因为f′(x)=3x2-12,令f′(x)=3x2-12=0,得x=±2,当x变化时,f′(x),f(x)的变化情况如下表:单调递增单调递减单调递增由此可得到f(x)的大致图象(如图),由a≥16得,a+16>0,a-16≥0,当a=16时,f(x)的图象与x轴有2个交点;当a>16时,f(x)的图象与x轴只有1个交点.所以f(x)的零点个数为1或2.(方法二:从方程角度出发,利用函数与方程的思想)f(x)=x3-12x+a的零点个数⇔方程x3-12x=-a的解的个数⇔g(x)=x3-12x与h(x)=-a的交点个数.画出g(x)=x3-12x与h(x)=-a的图象.由g′(x)=3x2-12=0,得x=±2,当x变化时,g′(x),g(x)的变化情况如下表:单调递增单调递减单调递增所以g(x)的图象如右图所示:因为a≥16,所以y=-a≤-16.由图可知直线y=-a与y=x3-12x的图象有1个或2个交点.B利用导数研究函数的零点的基本思路: (1)研究y =f (x )的图象,利用数形结合的思想求解; (2)研究f (x )=0有解,利用函数与方程的思想求解.1.(经典真题)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围为(B)A .(2,+∞) B.(-∞,-2) C .(1,+∞) D.(-∞,-1)当a =0时,不符合题意.a ≠0时,f ′(x )=3ax 2-6x ,令f ′(x )=0,得x 1=0,x 2=2a.若a >0,由图象知f (x )有负数零点,不符合题意.若a <0,由图象结合f (0)=1>0知,此时必有f (2a )>0,即a ×8a 3-3×4a2+1>0,化简得a 2>4,又a <0,所以a <-2.利用导数研究超越方程的根及其分布已知函数f (x )=x -a e x(a ∈R ),x ∈R .已知函数y =f (x )有两个零点x 1,x 2,且x 1<x 2,求a 的取值范围.由f (x )=x -a e x,可得f ′(x )=1-a e x. 下面分两种情况讨论:(1)a ≤0时,f ′(x )>0在R 上恒成立,可得f (x )在R 上单调递增,不合题意. (2)a >0时,由f ′(x )=0,得x =-ln a . 当x 变化时,f ′(x ),f (x )的变化情况如下表:这时,f (x )的单调递增区间是(-∞,-ln a );单调递减区间是(-ln a ,+∞). 于是,“函数y =f (x )有两个零点”等价于如下条件同时成立: ①f (-ln a )>0;②存在s 1∈(-∞,-ln a ),满足f (s 1)<0; ③存在s 2∈(-ln a ,+∞),满足f (s 2)<0. 由f (-ln a )>0,即-ln a -1>0,解得0<a <e -1,而此时,取s 1=0,满足s 1∈(-∞,-ln a ),且f (s 1)=-a <0;而当x ∈(-ln a ,+∞)时,由于x →+∞时,e x 增长的速度远远大于x 的增长速度,所以一定存在s 2∈(-ln a ,+∞)满足f (s 2)<0.另法:取s 2=2a +ln 2a ,满足s 2∈(-ln a ,+∞),且f (s 2)=(2a -e 2a )+(ln 2a -e 2a)<0.所以a 的取值范围是(0,e -1).函数的零点是导数研究函数的性质的综合应用,要注意如下方面: (1)利用导数研究函数的单调性、极值、最值等性质; (2)数形结合思想方法的应用;(3)函数零点存在定理及根的分布知识的应用.2.(2018·广州模拟节选)已知函数f (x )=a ln x +x 2(a ≠0),若函数f (x )恰有一个零点,求实数a 的取值范围.函数f (x )的定义域为(0,+∞). 因为f (x )=a ln x +x 2,所以f ′(x )=a x +2x =2x 2+ax.①当a >0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增, 取x 0=e -1a ,则f (e -1a )=-1+(e -1a)2<0,(或:因为0<x 0<a 且x 0<1e 时,所以f (x 0) =a ln x 0 +x 20 < a ln x 0+a <a ln 1e +a =0.)因为f (1)=1,所以f (x 0)·f (1)<0,此时函数f (x )有一个零点.②当a <0时,令f ′(x )=0,解得x =-a2. 当0<x <-a 2时,f ′(x )<0,所以f (x )在(0,-a2)上单调递减, 当x >-a2时,f ′(x )>0,所以f (x )在(-a2,+∞)上单调递增. 要使函数f (x )有一个零点, 则f (-a2)=a ln -a 2-a2=0,即a =-2e. 综上所述,若函数f (x )恰有一个零点,则a =-2e 或a >0.利用导数研究两函数图象的交点问题已知函数f (x )=x +a x (a ∈R ),g (x )=ln x .若关于x 的方程g xx 2=f (x )-2e(e 为自然对数的底数)只有一个实数根,求a 的值.由g x x 2=f (x )-2e ,得ln x x 2=x +ax-2e , 化为ln x x=x 2-2e x +a .问题转化为函数h (x )=ln x x与m (x )=x 2-2e x +a 有一个交点时,求a 的值.由h (x )=ln x x ,得h ′(x )=1-ln x x2.令h ′(x )=0,得x =e. 当0<x <e 时,h ′(x )>0;当x >e 时,h ′(x )<0. 所以h (x )在(0,e)上递增,在(e ,+∞)上递减. 所以当x =e 时,函数h (x )取得最大值,其值为h (e)=1e .而函数m (x )=x 2-2e x +a =(x -e)2+a -e 2,当x =e 时,函数m (x )取得最小值,其值为m (e)=a -e 2.所以当a -e 2=1e ,即a =e 2+1e 时,方程g x x 2=f (x )-2e 只有一个实数根.(1)利用f (x )=g (x )的解⇔y =f (x )与y =g (x )的图象交点的横坐标,可将方程的解的问题转化为两函数图象的交点问题,从而可利用数形结合的思想方法进行求解.(2)在具体转化时,要注意对方程f (x )=g (x )尽量进行同解变形,变到两边的函数是熟悉的形式或较简单的形式,以便于对其图象特征进行研究.3.(经典真题)已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2.(1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点.(1)f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2, 由题意得-2a=-2,所以a =1.(2)证明:由(1)知,f (x )=x 3-3x 2+x +2. 设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4. 由题意知1-k >0,当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )单调递增,g (-1)=k -1<0,g (0)=4,所以g (x )=0在(-∞,0]有唯一实根. 当x >0时,令h (x )=x 3-3x 2+4, 则g (x )=h (x )+(1-k )x >h (x ),h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)上单调递减,在(2,+∞)上单调递增,所以g (x )>h (x )≥h (2)=0.所以g (x )=0在(0,+∞)没有实根.综上,g (x )=0在R 上有唯一实根,即曲线y =f (x )与直线y =kx -2只有一个交点.1.利用导数研究函数的零点及其零点分布问题的基本步骤: (1)构造函数,并确定定义域; (2)求导,确定单调区间及极值; (3)作出函数的草图;(4)根据草图直观判断函数的零点的情况或得到零点所满足的条件. 2.处理函数y =f (x )与y =g (x )的图象的交点问题,常用方法有: (1)数形结合,即分别作出两函数的图象,考察交点情况;。
浙江专用2020版高考数学大一轮复习课时133.2导数与函数单调性课件

3.2导数与函数单调性教材函数的导数与单调性的关系研读考点突破考点一利用导数判断或证明函数的单调性考点二利用导数求函数的单调区间函数的导数与单调性的关系函数y =f (x )在某个区间内可导,(1)若f '(x )>0在该区间内恒成立,则f (x )在这个区间内①单调递增;(2)若f '(x )<0在该区间内恒成立,则f (x )在这个区间内②单调递减;(3)若f '(x )=0在该区间内恒成立,则f (x )在这个区间内是③常数函数.▶提醒(1)利用导数研究函数的单调性,要在函数的定义域内讨论导数的符号;教材研读(2)对函数划分单调区间时,需确定导数等于零的点、函数的不连续点和不可导点;(3)如果一个函数具有相同单调性的单调区间不止一个,那么单调区间之间不能用“∪”连接,可用“,”隔开或用“和”连接;(4)区间的端点可以属于单调区间,也可以不属于单调区间,对结论没有影响.1.函数f(x)=sin x-2x在(0,π)上的单调性是(D)A.先增后减B.先减后增C.单调递增D.单调递减2.函数f(x)的导函数f'(x)有下列信息:①f'(x)>0时,-1<x<2;②f'(x)<0时,x<-1或x>2;③f'(x)=0时,x=-1或x=2.则函数f(x)的大致图象是(C)3.(2018台州高三期末)已知函数f (x)=ax 3+ax 2+x (a ∈R),下列选项中不可能是函数f (x )的图象的是( D )13124.函数y =x 2-ln x 的单调递减区间为(0,1].125.(2018山东德州模拟)若函数f (x )=2ax 3-6x 2+7在(0,2]内是减函数,则实数a 的取值范围是(-∞,1].解析因为f (x )=2ax 3-6x 2+7,所以f '(x )=6ax 2-12x .又f (x )在(0,2]内是减函数,所以f '(x )=6ax 2-12x ≤0在(0,2]上恒成立.即a ≤在(0,2]上恒成立,令g (x )=,因为g (x )=在(0,2]上为减函数,所以g (x )min =g (2)==1,故a ≤1.2x2x 2x22考点突破利用导数判断或证明函数的单调性典例1(2017课标全国Ⅱ文,21,12分)设函数f(x)=(1-x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时, f(x)≤ax+1,求a的取值范围.解析(1)f '(x )=(1-2x -x 2)e x.令f '(x )=0,得x x .当x ∈(-∞)时, f '(x )<0;当x ∈)时, f '(x )>0;当x ∈,+∞)时, f '(x )<0.所以f (x )在(-∞,+∞)单调递减,在)单调递增.(2)f (x )=(1+x )(1-x )e x.2222222222当a ≥1时,设函数h (x )=(1-x )e x ,h '(x )=-x e x<0(x >0),所以h (x )在[0,+∞)单调递减,而h (0)=1,故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1.当0<a <1时,设函数g (x )=e x -x -1,g '(x )=e x-1>0(x >0),所以g (x )在[0,+∞)单调递增,而g (0)=0,故e x ≥x +1.当0<x <1时, f (x )>(1-x )(1+x )2,(1-x )(1+x )2-ax -1=x (1-a -x -x 2),取x 0,541a --则x 0∈(0,1),(1-x 0)(1+x 0)2-ax 0-1=0,故f (x 0)>ax 0+1.当a ≤0时,取x 0则x 0∈(0,1), f (x 0)>(1-x 0)(1+x 0)2=1≥ax 0+1.综上,a 的取值范围是[1,+∞).51方法指导1.讨论函数单调性时要注意函数的定义域,要从原函数的定义域出发,而不是从导函数的定义域出发.2.讨论函数单调性时,往往要根据参数的取值进行分类讨论,尤其要重视二次式的分类讨论:(1)如果对应的二次方程有实根,那么就根据根分类讨论;(2)如果不是总有根,那么先根据判别式分类,当判别式不小于零时,再根据根分类讨论.1-1设函数f (x )=x --a ln x (a ∈R).讨论f (x )的单调性.1x 解析f (x )的定义域为(0,+∞),f '(x )=1+-=.21x a x 221x ax x -+令g(x)=x2-ax+1,则方程x2-ax+1=0的判别式Δ=a2-4.①当|a|≤2,即-2≤a≤2时,Δ≤0, f'(x)≥0,故f(x)在(0,+∞)上单调递增.②当a<-2时,Δ>0,g(x)=0的两根都小于0,在(0,+∞)上恒有f'(x)>0.故f(x)在(0,+∞)上单调递增.③当a>2时,Δ>0,g(x)=0的两根为x1=x2,当0<x<x1时, f'(x)>0;当x1<x<x2时, f'(x)<0;当x>x2时, f'(x)>0.24a a--24a a +-故f (x )在,上单调递增,在上单调递减.240,a a ⎛⎫-- ⎪ ⎪⎝⎭24,a a ⎛⎫+-+∞ ⎪ ⎪⎝⎭2244,a a a a ⎛⎫--+- ⎪ ⎪⎝⎭利用导数求函数的单调区间典例2已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处有公共切线,求a,b的值;(2)当a2=4b时,求函数f(x)+g(x)的单调区间.解析(1)f '(x )=2ax ,g '(x )=3x 2+b .因为曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处有公共切线,所以f (1)=g (1),且f '(1)=g '(1).即a +1=1+b ,且2a =3+b .解得a =3,b =3.(2)记h (x )=f (x )+g (x ).当a 2=4b ,即b =a 2时,h (x )=x 3+ax 2+a 2x +1,1414h '(x )=3x 2+2ax +a 2.令h '(x )=0,得x 1=-,x 2=-.∵a >0,∴h (x )与h '(x )的情况如下:142a 6ax -∞,---,---,+∞h '(x )+0-0+h (x )↗极大值↘极小值↗a 2a 2a 2a 6a 6a 6∴函数h (x )的单调递增区间为和,单调递减区间为.,2a ⎛⎫-∞- ⎪⎝⎭,6a ⎛⎫-+∞ ⎪⎝⎭,26a a ⎛⎫-- ⎪⎝⎭方法技巧求可导函数单调区间的一般步骤求函数f(x)的定义域→求导数f'(x)→求f'(x)=0在定义域内的根→用求得的根划分定义区间→确定f'(x)在各个开区间内的符号→确定各个开区间上的单调性2-1求函数f(x)=(x+1)ln(x+1)+(1-a)x在x>0时的单调区间.解析∵f(x)=(x+1)ln(x+1)+(1-a)x(x>0),∴f'(x)=ln(x+1)+2-a.∴当2-a≥0,即a≤2时, f'(x)>0对x∈(0,+∞)恒成立.此时, f(x)的单调递增区间为(0,+∞),无单调递减区间.当2-a<0,即a>2时,由f'(x)>0,得x>e a-2-1;由f'(x)<0,得0<x<e a-2-1.此时, f(x)的单调递减区间为(0,e a-2-1),单调递增区间为(e a-2-1,+∞).综上所述,当a≤2时, f(x)的单调递增区间为(0,+∞),无单调递减区间;当a>2时, f(x)的单调递减区间为(0,e a-2-1),单调递增区间为(e a-2-1,+∞).典例3设函数f (x )=x 3-x 2+bx +c ,曲线y =f (x )在点(0, f (0))处的切线方程为y =1.(1)求b ,c 的值;(2)若a >0,求函数f (x )的单调区间;(3)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围.132a 由函数的单调性求参数的范围解析(1)f '(x )=x 2-ax +b .由题意得即(2)由(1)得f '(x )=x 2-ax =x (x -a ),结合a >0知,当x ∈(-∞,0)时, f '(x )>0;当x ∈(0,a )时, f '(x )<0;当x ∈(a ,+∞)时, f '(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ).(0)1, '(0)0,f f =⎧⎨=⎩1,0.c b =⎧⎨=⎩(3)g '(x )=x 2-ax +2,依题意,存在x ∈(-2,-1)使不等式g '(x )=x 2-ax +2<0成立,即x ∈(-2,-1)时,a <,当且仅当x =,即x 时等号成立.所以满足要求的a 的取值范围是(-∞max 2x x ⎛⎫+ ⎪⎝⎭22x 22◆探究在本例(3)中,若g (x )在(-2,-1)内为减函数,如何求解?解析∵g '(x )=x 2-ax +2,且g (x )在(-2,-1)内为减函数,∴g '(x )≤0,即x 2-ax +2≤0在(-2,-1)内恒成立,∴即解得a ≤-3.'(2)0,'(1)0,g g -≤⎧⎨-≤⎩4220,120,a a ++≤⎧⎨++≤⎩方法技巧利用函数的单调性求参数的取值范围的解题思路(1)由可导函数f(x)在区间[a,b]上单调递增(减)可知f'(x)≥0(f'(x)≤0)在区间[a,b]上恒成立,进而列出不等式.(2)利用分离参数法求解恒成立问题.(3)对等号是否成立进行单独检验,检验参数的取值能否使f'(x)在整个区间上(或该区间的子区间上)恒等于0,若f'(x)恒等于0,则参数的这个值应舍去;若只有在个别点(有限点)处有f'(x)=0,则参数可取这个值.3-1若f (x ) =-x 2+m ln x 在(1,+∞)上是减函数,则m 的取值范围是(C )A.[1,+∞)B.(1,+∞)C.(-∞,1]D.(-∞,1)12解析由题意知f '(x )=-x +≤0在(1,+∞)上恒成立,即m ≤x 2在(1,+∞)上恒成立,又x ∈(1,+∞)时,x 2>1,∴m ≤1.m x3-2(2018四川乐山模拟)函数f (x )=x 3-x 2+ax -5在区间[-1,2]上不单调,则实数a 的取值范围是(B )A.(-∞,-3]B.(-3,1)C.[1,+∞)D.(-∞,-3]∪[1,+∞)13所以f '(x )=x 2-2x +a =(x -1)2+a -1,如果函数f (x )=x 3-x 2+ax -5在区间[-1,2]上单调,那么a -1≥0或解得a ≥1或a ≤-3,所以实数a 的取值范围是(-3,1).13'(1)0, '(2)0,f f -≤⎧⎨≤⎩解析因为f (x )=x 3-x 2+ax -5,13。
【数学】2020届高考数学一轮复习:第三章 函数、导数及其应用

第三章⎪⎪⎪函数、导数及其应用第一节函数及其表示1.函数与映射的概念 函数映射两集合A ,B设A ,B 是两个非空的数集 设A ,B 是两个非空的集合 对应关系f :A →B如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数,在集合B 中都有唯一确定的数f ()和它对应如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素,在集合B 中都有唯一确定的元素y 与之对应 名称 称f :A →B 为从集合A 到集合B 的一个函数称对应f :A →B 为从集合A 到集合B 的一个映射记法 y =f (),∈A对应f :A →B 是一个映射2.函数的有关概念 (1)函数的定义域、值域:在函数y =f (),∈A 中,叫做自变量,的取值范围A 叫做函数的定义域;与的值相对应的y 值叫做函数值,函数值的集合{f ()|∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法. 3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.[小题体验]1.(2018·台州模拟)下列四组函数中,表示相等函数的是( ) A .f ()=2,g ()=x 2B .f ()=(x )2x ,g ()=x(x )2C .f ()=1,g ()=(-1)0D .f ()=x 2-9x +3,g ()=-3解析:选B 选项A 中,f ()=2与g ()=x 2的定义域相同,但对应关系不同;选项B 中,二者的定义域都为{|>0},对应关系也相同;选项C 中,f ()=1的定义域为R ,g ()=(-1)0的定义域为{|≠1};选项D 中,f ()=x 2-9x +3的定义域为{|≠-3},g ()=-3的定义域为R .2.若函数y =f ()的定义域为{|-3≤≤8,≠5},值域为{y |-1≤y ≤2,y ≠0},则y =f ()的图象可能是( )解析:选B 根据函数的概念,任意一个只能有唯一的y 值和它对应,故排除C 项;由定义域为{|-3≤≤8,≠5}排除A 、D 两项,故选B.3.函数f ()=2x -1+1x -2的定义域为________.解析:由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得≥0且≠2.答案:[0,2)∪(2,+∞)4.若函数f ()=⎩⎪⎨⎪⎧e x -1,x ≤1,5-x 2,x >1,则f (f (2))=________. 解析:由题意知,f (2)=5-4=1,f (1)=e 0=1, 所以f (f (2))=1. 答案:15.已知函数f ()=a 3-2的图象过点(-1,4),则f (2)=________. 解析:∵函数f ()=a 3-2的图象过点(-1,4), ∴4=-a +2,∴a =-2,即f ()=-23-2, ∴f (2)=-2×23-2×2=-20. 答案:-201.求函数的解析式时要充分根据题目的类型选取相应的方法,同时要注意函数的定义域.2.分段函数无论分成几段,都是一个函数,不要误解为是“由几个函数组成”.求分段函数的函数值,如果自变量的范围不确定,要分类讨论.[小题纠偏]1.(2018·嘉兴模拟)已知函数f ()=⎩⎪⎨⎪⎧log 2x ,x >0,x 2+x ,x ≤0,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=________,方程f ()=2的解为________.解析:f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫log 212=f (-1)=0. 当>0时,log 2=2,得=4;当≤0时,2+=2,得=-2或=1(舍去). 所以f ()=2的解为-2或4. 答案:0 -2或42.已知f ⎝⎛⎭⎫1x =2+5,则f ()=________. 解析:令t =1x , ∴=1t . ∴f (t )=1t 2+5t .∴f ()=5x +1x 2(≠0). 答案:5x +1x 2(≠0)考点一 函数的定义域(基础送分型考点——自主练透)[题组练透]1.y =x -12x-log 2(4-2)的定义域是( ) A .(-2,0)∪(1,2) B .(-2,0]∪(1,2) C .(-2,0)∪[1,2)D .[-2,0]∪[1,2]解析:选C 要使函数有意义,则⎩⎪⎨⎪⎧x -12x ≥0,x ≠0,4-x 2>0,解得∈(-2,0)∪[1,2),即函数的定义域是(-2,0)∪[1,2).2.已知函数y =f (2-1)的定义域为[-3, 3 ],则函数y =f ()的定义域为________.解析:因为y =f (2-1)的定义域为[-3,3],所以∈[-3, 3 ],2-1∈[-1,2],所以y =f ()的定义域为[-1,2].答案:[-1,2]3.若函数f ()=x 2+ax +1的定义域为实数集R ,则实数a 的取值范围为________. 解析:若函数f ()=x 2+ax +1的定义域为实数集R , 则2+a +1≥0恒成立,即Δ=a 2-4≤0,解得-2≤a ≤2, 即实数a 的取值范围为[-2,2]. 答案:[-2,2][谨记通法]函数定义域的求解策略(1)已知函数解析式:构造使解析式有意义的不等式(组)求解. (2)实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)抽象函数:①若已知函数f ()的定义域为[a ,b ],其复合函数f (g ())的定义域由不等式a ≤g ()≤b 求出; ②若已知函数f (g ())的定义域为[a ,b ],则f ()的定义域为g ()在∈[a ,b ]时的值域. 考点二 求函数的解析式(重点保分型考点——师生共研)[典例引领](1)已知f ⎝⎛⎭⎫x +1x =2+1x 2,求f ()的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg ,求f ()的解析式;(3)已知f ()是二次函数,且f (0)=0,f (+1)=f ()++1,求f (); (4)已知函数f ()满足f (-)+2f ()=2,求f ()的解析式. 解:(1)(配凑法)由于f ⎝⎛⎭⎫x +1x =2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f ()=2-2,≥2或≤-2,故f ()的解析式是f ()=2-2,≥2或≤-2.(2)(换元法)令2x +1=t 得=2t -1,代入得f (t )=lg 2t -1,又>0,所以t >1,故f ()的解析式是f ()=lg 2x -1,>1.(3)(待定系数法)设f ()=a 2+b +c (a ≠0), 由f (0)=0,知c =0,f ()=a 2+b , 又由f (+1)=f ()++1,得a (+1)2+b (+1)=a 2+b ++1, 即a 2+(2a +b )+a +b =a 2+(b +1)+1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f ()=122+12,∈R .(4)(解方程组法)由f (-)+2f ()=2,① 得f ()+2f (-)=2-,② ①×2-②,得,3f ()=2+1-2-. 即f ()=2x +1-2-x3.所以f ()的解析式是f ()=2x +1-2-x3.[由题悟法]求函数解析式的4种方法[即时应用]1.已知函数f (-1)=xx +1,则函数f ()的解析式为( ) A .f ()=x +1x +2B .f ()=x x +1 C .f ()=x -1xD .f ()=1x +2解析:选A 令-1=t ,则=t +1,∴f (t )=t +1t +2, 即f ()=x +1x +2.2.若二次函数g ()满足g (1)=1,g (-1)=5,且图象过原点,则g ()=________. 解析:设g ()=a 2+b +c (a ≠0), ∵g (1)=1,g (-1)=5,且图象过原点,∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g ()=32-2.答案:32-23.已知f ()满足2f ()+f ⎝⎛⎭⎫1x =3,则f ()=________. 解析:∵2f ()+f ⎝⎛⎭⎫1x =3,①把①中的换成1x ,得2f ⎝⎛⎭⎫1x +f ()=3x.② 联立①②可得⎩⎨⎧2f (x )+f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f (x )=3x,解此方程组可得f ()=2-1x (≠0). 答案:2-1x(≠0)考点三 分段函数(题点多变型考点——多角探明) [锁定考向]高考对分段函数的考查多以选择题、填空题的形式出现,试题难度一般较小. 常见的命题角度有:(1)分段函数的函数求值问题;(2)分段函数与方程、不等式问题.[题点全练]角度一:分段函数的函数求值问题1.(2018·浙江五校联考)已知函数f ()=⎩⎪⎨⎪⎧4-x ,x ≥0,3x ,x <0,则f (-2)+f (4)=( )A.109 B.19 C .87D.7309解析:选B 由题意可得,f (-2)+f (4)=3-2+4-4=19.角度二:分段函数与方程、不等式问题2.(2018·浙江考前冲刺卷)已知f ()=⎩⎪⎨⎪⎧log 2(1-x ),x <1,3x -7,x ≥1,则不等式f ()<2的解集为( )A .(-3,2)B .(-2,3)C .(2,3)D .(-3,-2)解析:选A 当<1时,f ()<2可化为log 2(1-)<2,即0<1-<4,解得-3<<1;当≥1时,f ()<2可化为3-7<2,即3<9,得1≤<2.综上,不等式f ()<2的解集为(-3,2).3.(2019·嘉兴高三基础测试)设函数f ()=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫23=________,若f (f (a ))=1,则实数a 的值为________.解析:∵f ⎝⎛⎭⎫23=1,∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫23=f (1)=2.对f (f (a ))=⎩⎪⎨⎪⎧3f (a )-1,f (a )<1,2f (a ),f (a )≥1,当a <23时,f (a )=3a -1<1;当23≤a <1时,f (a )=3a -1≥1;当a ≥1时,f (a )=2a ≥2>1,∴f (f (a ))=⎩⎪⎨⎪⎧3(3a -1)-1,a <23,23a -1,23≤a <1,22a,a ≥1,由f (f (a ))=1,得3(3a -1)-1=1,∴a =59<23,符合题意;23a -1=1,a =13<23,舍去;22a =1不成立,舍去.故所求实数a 的值为59.答案:259[通法在握]1.分段函数的求值问题的解题思路求分段函数的函数值先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.2.分段函数与方程、不等式问题的求解思路依据不同范围的不同段分类讨论求解,最后将讨论结果并起.[演练冲关]1.已知f ()=⎩⎪⎨⎪⎧1x +1+2x -2,x ≥0,f (x +3),x <0,则f (-2 019)=________.解析:因为当<0时,f ()=f (+3),所以f (-2 019)=f (-3×673)=f (0)=10+1+20-2=0.答案:02.(2018·浙江十校联盟适考)已知函数f ()=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a的值为________.解析:当a >0时,由f (a )+f (1)=0得2a +2=0,无解;当a ≤0时,由f (a )+f (1)=0得a +1+2=0,解得a =-3.答案:-33.(2018·杭州七校联考)已知函数f ()=⎩⎪⎨⎪⎧12x ,x ≥0,2x -x 2,x <0,若f (2-a 2)>f (|a |),则实数a 的取值范围是________.解析:由题意知,f ()=⎩⎪⎨⎪⎧12x ,x ≥0,-(x -1)2+1,x <0,作出函数f ()的大致图象如图所示,由图象可知,函数f ()在R 上单调递增,由f (2-a 2)>f (|a |),得2-a 2>|a |.当a ≥0时,有2-a 2>a ,即(a +2)(a -1)<0,解得-2<a <1,所以0≤a <1;当a <0时,有2-a 2>-a ,即(a -2)(a +1)<0,解得-1<a <2,所以-1<a <0.综上所述,实数a 的取值范围是(-1,1).答案:(-1,1)一抓基础,多练小题做到眼疾手快 1.(2019·杭州调研)函数y =log 2(2-4)+1x -3的定义域是( ) A .(2,3) B .(2,+∞) C .(3,+∞)D .(2,3)∪(3,+∞)解析:选D 由题意,得⎩⎪⎨⎪⎧2x -4>0,x -3≠0,解得>2且≠3,所以函数y =log 2(2-4)+1x -3的定义域是(2,3)∪(3,+∞).2.已知f ⎝⎛⎭⎫12x -1=2-5,且f (a )=6,则a 等于( ) A .-74B .74C .43D .-43解析:选B 令t =12-1,则=2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a=74. 3.(2018·萧山质检)已知函数f ()=⎩⎪⎨⎪⎧x +1x -2,x >2,x 2+2,x ≤2,则f (f (1))=( )A .-12B .2C .4D .11解析:选C ∵f (1)=12+2=3,∴f (f (1))=f (3)=3+13-2=4. 4.已知f ()满足f ⎝⎛⎭⎫3x -1=lg ,则f ⎝⎛⎭⎫-710=________. 解析:令3x -1=-710,得=10,∴f ⎝⎛⎭⎫-710=lg 10=1. 答案:15.(2018·绍兴模拟)设函数f ()=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=________,方程f (f ())=1的解集为____________.解析:∵f ⎝⎛⎭⎫12=ln 12<0, ∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫ln 12=eln 12=12. ∵<0时,0<e <1,=0时,e =1, ∴当f ()≤0时,由方程f (f ())=1,可得f ()=0, 即ln =0,解得=1.当f ()>0时,由方程f (f ())=1, 可得ln f ()=1,f ()=e , 即ln =e ,解得=e e . 答案:12{1,e e }二保高考,全练题型做到高考达标1.已知函数f ()=||,若f (0)=4,则0的值为( ) A .-2 B .2 C .-2或2D . 2解析:选B 当≥0时,f ()=2,f (0)=4, 即20=4,解得0=2.当<0时,f ()=-2,f (0)=4,即-20=4,无解. 所以0=2,故选B.2.(2019·台州模拟)已知f ()=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3解析:选B 由题意得,f (-2)=a -2+b =5,① f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f ()=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2.3.(2018·金华模拟)函数f ()=4-|x |+lg x 2-5x +6x -3的定义域为( )A .(2,3)B .(2,4]C .(2,3)∪(3,4]D .(-1,3)∪(3,6]解析:选C 要使函数有意义,则⎩⎪⎨⎪⎧4-|x |≥0,x 2-5x +6x -3>0,即⎩⎪⎨⎪⎧-4≤x ≤4,x >2且x ≠3, ∴3<≤4或2<<3,即函数的定义域为(2,3)∪(3,4].4.(2018·金华联考)若函数f ()的定义域是[1,2 019],则函数g ()=f (x +1)x -1的定义域是( )A .[0,2 018]B .[0,1)∪(1,2 018]C .(1,2 019]D .[-1,1)∪(1,2 018]解析:选B 由题知,1≤+1≤2 019,解得0≤≤2 018,又≠1,所以函数g ()=f (x +1)x -1的定义域是[0,1)∪(1,2 018].5.(2019·义乌质检)已知函数f ()=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a 的取值范围是( ) A .(-∞,-1]B.⎝⎛⎭⎫-1,12C.⎣⎡⎭⎫-1,12D.⎝⎛⎭⎫0,12 解析:选C 由题意知y =ln (≥1)的值域为[0,+∞),故要使f ()的值域为R ,则必有y =(1-2a )+3a 为增函数,且1-2a +3a ≥0,所以1-2a >0,且a ≥-1,解得-1≤a <12,故选C.6.(2018·湖州月考)定义在R 上的函数g ()满足:g ()+2g (-)=e +2e x -9,则g ()=________.解析:∵g ()+2g (-)=e +2e x -9, ①∴g (-)+2g ()=e -+2e -x-9, 即g (-)+2g ()=2e +1e x -9,②由①②联立解得g ()=e -3. 答案:e -37.(2018·嘉兴高三测试)已知a 为实数,设函数f ()=⎩⎪⎨⎪⎧x -2a ,x <2,log 2(x -2),x ≥2,则f (2a +2)的值为________.解析:∵函数f ()=⎩⎪⎨⎪⎧x -2a ,x <2,log 2(x -2),x ≥2,而2a +2>2,∴f (2a +2)=log 2(2a +2-2)=a . 答案:a8.(2018·稽阳联考)已知f ()=⎩⎪⎨⎪⎧x +1,x ≤0,x +4x -a ,x >0,若f ⎝⎛⎭⎫f ⎝⎛⎭⎫-12=12,则a =________;若f ()的值域为R ,则实数a 的取值范围是________.解析:∵f ()=⎩⎪⎨⎪⎧x +1,x ≤0,x +4x -a ,x >0,∴f ⎝⎛⎭⎫-12=-12+1=12, 则f ⎝⎛⎭⎫f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫12=12+412-a =12+8-a =12,得a =8. 由y =+1,≤0,得y ≤1; 由y =+4x -a ,>0,得y ≥4-a , ∵f ()的值域为R ,∴4-a ≤1,解得a ≥3.答案:8 [3,+∞)9.记为不超过的最大整数,如[-1.2]=-2,[2.3]=2,已知函数f ()=⎩⎪⎨⎪⎧2[x ]-1,x ≥1,x 2+1,x <1,则f (f (-1.2))=________,f ()≤3的解集为________.解析:根据的定义,得f (f (-1.2))=f (2.44)=2[2.44]-1=3. 当≥1时,由f ()=2-1≤3, 得≤2,所以∈[1,3); 当<1时,由f ()=2+1≤3,得-2≤<1.故原不等式的解集为[-2,3). 答案:3 [-2,3)10.如图,已知A (n ,-2),B (1,4)是一次函数y =+b 的图象和反比例函数y =mx 的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的解析式; (2)求△AOC 的面积.解:(1)因为B (1,4)在反比例函数y =mx上,所以m =4,又因为A (n ,-2)在反比例函数y =m x =4x 的图象上,所以n =-2,又因为A (-2,-2),B (1,4)是一次函数y =+b 上的点,联立方程组⎩⎪⎨⎪⎧-2k +b =-2,k +b =4,解得⎩⎪⎨⎪⎧k =2,b =2. 所以y =4x ,y =2+2.(2)因为y =2+2,令=0,得y =2,所以C (0,2),所以△AOC 的面积为:S =12×2×2=2.三上台阶,自主选做志在冲刺名校1.已知实数a ≠0,函数f ()=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为( )A .-32B .-34C .-32或-34D .32或-34解析:选B 当a >0时,1-a <1,1+a >1.由f (1-a )=f (1+a )得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )得-1+a -2a =2+2a +a ,解得a =-34,所以a 的值为-34,故选B. 2.设函数f ()=⎩⎪⎨⎪⎧ln (-x ),x <0,-ln x ,x >0,若f (m )>f (-m ),则实数m 的取值范围是________.解析:函数f ()=⎩⎪⎨⎪⎧ln (-x ),x <0,-ln x ,x >0,当m >0时,f (m )>f (-m ),即-ln m >ln m ,即ln m<0,解得0<m <1;当m <0时,f (m )>f (-m ),即ln(-m )>-ln(-m ), 即ln(-m )>0,解得m <-1. 综上可得,m <-1或0<m <1. 答案:(-∞,-1)∪(0,1)3.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速(千米/时)满足下列关系:y =x 2200+m +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速(千米/时)的关系图.(1)求出y 关于的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1)由题意及函数图象,得⎩⎨⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0, ∴y =x 2200+x100(≥0).(2)令x 2200+x100≤25.2,得-72≤≤70.∵≥0,∴0≤≤70.故行驶的最大速度是70千米/时.第二节函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f()的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值1,2当1<2时,都有f(1)<f(2),那么就说函数f()在区间D上是增函数当1<2时,都有f(1)>f(2),那么就说函数f()在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f()在区间D上是增函数或减函数,那么就说函数y=f()在这一区间具有(严格的)单调性,区间D叫做函数y=f()的单调区间.2.函数的最值前提设函数y=f()的定义域为I,如果存在实数M满足条件①对于任意的∈I,都有f()≤M;②存在0∈I,使得f(0)=M①对于任意∈I,都有f()≥M;②存在0∈I,使得f(0)=M结论M为函数y=f()的最大值M为函数y=f()的最小值[小题体验]1.给定函数①y=12,②y=log12(+1),③y=|-1|,④y=2+1.其中在区间(0,1)上单调递减的函数序号是()A.①②B.②③C .③④D .①④解析:选B ①y =12在(0,1)上递增;②∵t =+1在(0,1)上递增,且0<12<1,∴y =log 12(+1)在(0,1)上递减;③结合图象(图略)可知y =|-1|在(0,1)上递减;④∵u =+1在(0,1)上递增,且2>1,∴y =2+1在(0,1)上递增.故在区间(0,1)上单调递减的函数序号是②③.2.(2019·绍兴调研)函数f ()=⎝⎛⎭⎫13-log 2(+2)在区间[-1,1]上的最大值为________. 解析:由于y =⎝⎛⎭⎫13在R 上单调递减,y =log 2(+2)在[-1,1]上单调递增,所以f ()在[-1,1]上单调递减,故f ()在[-1,1]上的最大值为f (-1)=3.答案:33.(2018·丽水模拟)已知函数 f ()=⎩⎪⎨⎪⎧log 13x ,x >1,-x 2-2x +3,x ≤1,则f (f (3))=________,f ()的单调递减区间是________.解析:∵f (3)=log 133=-1,∴f (f (3))=f (-1)=-1+2+3=4. 当≤1时,f ()=-2-2+3=-(+1)2+4,对称轴=-1,f ()在[-1,1]上单调递减,且f (1)=0, 当>1时,f ()单调递减,且f ()<f (1)=0, ∴f ()在[-1,+∞)上单调递减. 答案:4 [-1,+∞)1.易混淆两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.若函数在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函数f ()在区间(-1,0)上是减函数,在(0,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f ()=1x.3.两函数f (),g ()在∈(a ,b )上都是增(减)函数,则f ()+g ()也为增(减)函数,但f ()·g (),1f (x )等的单调性与其正负有关,切不可盲目类比. [小题纠偏]1.设定义在[-1,7]上的函数y =f ()的图象如图所示,则函数y =f ()的增区间为________.答案:[-1,1],[5,7] 2.函数f ()=2x -1在[-6,-2]上的最大值是________,最小值是________. 解析:因为f ()=2x -1在[-6,-2]上是减函数,所以当=-6时,f ()取得最大值-27.当=-2时,f ()取得最小值-23.答案:-27 -23考点一 函数单调性的判断(基础送分型考点——自主练透)[题组练透]1.下列四个函数中,在(0,+∞)上为增函数的是( ) A .f ()=3- B .f ()=2-3 C .f ()=-1x +1D .f ()=-||解析:选C 当>0时,f ()=3-为减函数; 当∈⎝⎛⎭⎫0,32时,f ()=2-3为减函数, 当∈⎝⎛⎭⎫32,+∞时,f ()=2-3为增函数; 当∈(0,+∞)时,f ()=-1x +1为增函数; 当∈(0,+∞)时,f ()=-||为减函数.2.试讨论函数f ()=axx -1(a ≠0)在(-1,1)上的单调性.解:法一:(定义法)设-1<1<2<1,f ()=a ⎝ ⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,f (1)-f (2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1),由于-1<1<2<1,所以2-1>0,1-1<0,2-1<0, 故当a >0时,f (1)-f (2)>0,即f (1)>f (2), 函数f ()在(-1,1)上递减;当a<0时,f(1)-f(2)<0,即f(1)<f(2),函数f()在(-1,1)上递增.法二:(导数法)f′()=(ax)′(x-1)-ax(x-1)′(x-1)2=a(x-1)-ax(x-1)2=-a(x-1)2.当a>0时,f′()<0,函数f()在(-1,1)上递减;当a<0时,f′()>0,函数f()在(-1,1)上递增.3.判断函数y=x+2x+1在(-1,+∞)上的单调性.解:法一:任取1,2∈(-1,+∞),且1<2,则y1-y2=x1+2x1+1-x2+2x2+1=x2-x1(x1+1)(x2+1).∵1>-1,2>-1,∴1+1>0,2+1>0,又1<2,∴2-1>0,∴x2-x1(x1+1)(x2+1)>0,即y1-y2>0.∴y1>y2,∴函数y=x+2x+1在(-1,+∞)上单调递减.法二:y=x+2x+1=1+1x+1.∵y=+1在(-1,+∞)上是增函数,∴y=1x+1在(-1,+∞)上是减函数,∴y=1+1x+1在(-1,+∞)上是减函数.即函数y=x+2x+1在(-1,+∞)上单调递减.[谨记通法]判断或证明函数的单调性的2种重要方法及其步骤(1)定义法,其基本步骤:取值作差(商)变形确定符号(与1的大小)得出结论(2)导数法,其基本步骤:求导函数确定符号得出结论考点二 求函数的单调区间(重点保分型考点——师生共研)[典例引领]求下列函数的单调区间: (1)y =-2+2||+1; (2)y =log 12(2-3+2).解:(1)由于y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0, 即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0.画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)令u =2-3+2,则原函数可以看作y =log 12u 与u =2-3+2的复合函数.令u =2-3+2>0,则<1或>2.∴函数y =log 12(2-3+2)的定义域为(-∞,1)∪(2,+∞).又u =2-3+2的对称轴=32,且开口向上.∴u =2-3+2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数. 而y =log 12u 在(0,+∞)上是单调减函数,∴y =log 12(2-3+2)的单调递减区间为(2,+∞),单调递增区间为(-∞,1).[由题悟法]确定函数的单调区间的3种方法[提醒] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.[即时应用]1.函数f ()=⎝⎛⎭⎫122x x -的单调递增区间为( )A.⎝⎛⎦⎤-∞,12 B.⎣⎡⎦⎤0,12 C.⎣⎡⎭⎫12,+∞ D.⎣⎡⎦⎤12,1解析:选D 令t =x -x 2,由-2≥0,得0≤≤1,故函数的定义域为[0,1].因为g (t )=⎝⎛⎭⎫12t是减函数,所以f ()的单调递增区间即t =x -x 2的单调递减区间.利用二次函数的性质,得t =x -x 2的单调递减区间为⎣⎡⎦⎤12,1,即原函数的单调递增区间为⎣⎡⎦⎤12,1. 2.(2018·温州十校联考)函数f ()=lg(9-2)的定义域为________;其单调递增区间为________.解析:对于函数f ()=lg(9-2),令t =9-2>0,解得-3<<3,可得函数的定义域为(-3,3).令g ()=9-2,则函数f ()=lg(g ()),又函数g ()在定义域内的增区间为(-3,0]. 所以函数f ()=lg(9-2)在定义域内的单调递增区间为(-3,0]. 答案:(-3,3) (-3,0]考点三 函数单调性的应用(题点多变型考点——多角探明) [锁定考向]高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中.常见的命题角度有: (1)求函数的值域或最值;(2)比较两个函数值或两个自变量的大小; (3)解函数不等式;(4)利用单调性求参数的取值范围或值.[题点全练]角度一:求函数的值域或最值1.(2018·台州三区适应性考试)已知函数f ()=2+a 3+b sin (a >0,b >0),若∈[0,1]时,f ()的最大值为3,则∈[-1,0)时,f ()的最小值是________.解析:因为函数f ()=2+a 3+b sin 在区间[-1,1]上为单调递增函数.所以当∈[0,1]时,f ()的最大值为f (1)=2+a ·13+b sin 1=3,a +b sin 1=1,当∈[-1,0)时,f ()的最小值为f (-1)=2-1+a ·(-1)3+b sin(-1)=12-(a +b sin 1)=-12.答案:-12角度二:比较两个函数值或两个自变量的大小2.(2018·杭州模拟)已知函数f ()的图象关于直线=1对称,当2>1>1时,[f (2)-f (1)](2-1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c解析:选D 因f ()的图象关于直线=1对称. 由此可得f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52. 由2>1>1时,[f (2)-f (1)](2-1)<0恒成立,知f ()在(1,+∞)上单调递减. ∵1<2<52<e ,∴f (2)>f ⎝⎛⎭⎫52>f (e),∴b >a >c . 角度三:解函数不等式3.已知函数f ()为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数的取值范围是( ) A .(-1,1) B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析:选C 由f ()为R 上的减函数且f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1),得⎩⎪⎨⎪⎧⎪⎪⎪⎪1x >1,x ≠0,即⎩⎪⎨⎪⎧|x |<1,x ≠0. ∴-1<<0或0<<1.故选C.角度四:利用单调性求参数的取值范围或值4.若f ()=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,-ax ,x ≥1是定义在R 上的减函数,则a 的取值范围是( )A.⎣⎡⎭⎫18,13 B.⎣⎡⎦⎤0,13 C.⎝⎛⎭⎫0,13 D.⎝⎛⎦⎤-∞,13 解析:选A 由题意知, ⎩⎪⎨⎪⎧3a -1<0,(3a -1)×1+4a ≥-a ,a >0,解得⎩⎪⎨⎪⎧a <13,a ≥18,a >0,所以a ∈⎣⎡⎭⎫18,13,故选A.[通法在握]函数单调性应用问题的常见类型及解题策略 (1)求函数最值单调性法 先确定函数的单调性,再由单调性求最值图象法 先作出函数的图象,再观察其最高点、最低点,求出最值基本不等式法 先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值导数法 先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值 换元法 对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值(2)比较大小比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决. (3)解不等式在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(4)利用单调性求参数视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.[提醒] ①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.[演练冲关]1.设函数f ()=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数f ()在区间(a ,a +1)上单调递增,则实数a 的取值范围是( )A .(-∞,1]B .[1,4]C .[4,+∞)D .(-∞,1]∪[4,+∞)解析:选D 作出函数f ()的图象如图所示,由图象可知,若f ()在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4,故选D.2.已知函数f ()=⎩⎪⎨⎪⎧x 3,x ≤0,ln (x +1),x >0,若f (2-2)>f (),则实数的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)解析:选D ∵当=0时,两个表达式对应的函数值都为零,∴函数的图象是一条连续的曲线.∵当≤0时,函数f ()=3为增函数,当>0时,f ()=ln(+1)也是增函数,∴函数f ()是定义在R 上的增函数.因此,不等式f (2-2)>f ()等价于2-2>,即2+-2<0,解得-2<<1.3.(2017·浙江名校高考联盟联考)若函数f ()=a |+b |-1在(1,+∞)上是减函数,则实数a 的取值范围是________,实数b 的取值范围是________.解析:当a >0时,函数f ()=a |+b |-1在(-∞,-b ]上是减函数,在(-b ,+∞)上是增函数,不满足函数f ()=a |+b |-1在(1,+∞)上是减函数;当a =0时,f ()=-1,不满足函数f ()=a |+b |-1在(1,+∞)上是减函数;当a <0时,函数f ()=a |+b |-1在(-∞,-b ]上是增函数,在(-b ,+∞)上是减函数,因为函数f ()=a |+b |-1在(1,+∞)上是减函数,所以a <0且-b ≤1,即a <0且b ≥-1.答案:(-∞,0) [-1,+∞)一抓基础,多练小题做到眼疾手快1.(2018·珠海摸底)下列函数中,定义域是R 且为增函数的是( ) A .y =2-B .y =C .y =log 2D .y =-1x解析:选B 由题知,只有y =2-与y =的定义域为R ,且只有y =在R 上是增函数. 2.(2018·绍兴模拟)已知函数f ()的图象关于(1,0)对称,当>1时,f ()=log a (-1),且f (3)=-1,若1+2<2,(1-1)(2-1)<0,则( )A .f (1)+f (2)<0B .f (1)+f (2)>0C .f (1)+f (2)可能为0D .f (1)+f (2)可正可负解析:选B ∵当>1时,f ()=log a (-1), f (3)=log a 2=-1,∴a =12,故函数f ()在(1,+∞)上为减函数, 若1+2<2,(1-1)(2-1)<0, 不妨令1<1,2>1,则2<2-1, f (2)>f (2-1),又∵函数f ()的图象关于(1,0)对称, ∴f (1)=-f (2-1),此时f (1)+f (2)=-f (2-1)+f (2)>0,故选B.3.已知函数f ()=log 4(4-||),则f ()的单调递增区间是________;f (0)+4f (2)=________. 解析:令y =log 4u ,其中u =4-||,且u =4-||>0,由于函数y =log 4u 是单调递增函数,故要求f ()的单调递增区间,只需求u =4-||的单调递增区间,得⎩⎪⎨⎪⎧4-|x |>0,x ≤0,解得-4<≤0,所以f ()的单调递增区间是(-4,0];易得f (0)+4f (2)=log 44+4log 42=1+2=3.答案:(-4,0] 34.函数y =x -(≥0)的最大值为________.解析:令t =x ,则t ≥0,所以y =t -t 2=-⎝⎛⎭⎫t -122+14,结合图象知,当t =12,即=14时,y ma =14.答案:145.(2018·杭州十二校联考)设min{,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,若定义域为R 的函数f (),g ()满足f ()+g ()=2xx 2+8,则min{f (),g ()}的最大值为____________.解析:设min{f (),g ()}=m ,∴⎩⎪⎨⎪⎧m ≤f (x ),m ≤g (x )⇒2m ≤f ()+g ()⇒m ≤xx 2+8,显然当m 取到最大值时,>0,∴x x 2+8=1x +8x ≤12 x ·8x=28,∴m ≤28,当且仅当⎩⎪⎨⎪⎧f (x )=g (x ),x =8x ,x >0时等号成立,即m 的最大值是28. 答案:28二保高考,全练题型做到高考达标1.已知函数f ()=x 2-2x -3,则该函数的单调递增区间为( ) A .(-∞,1] B .[3,+∞) C .(-∞,-1]D .[1,+∞)解析:选B 设t =2-2-3,由t ≥0, 即2-2-3≥0,解得≤-1或≥3.所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =2-2-3的图象的对称轴为=1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f ()的单调递增区间为[3,+∞).2.(2018·浙江名校协作体联考)函数y =+x 2-2x +3的值域为( )A .[1+2,+∞)B .(2,+∞)C .[3,+∞)D .(1,+∞)解析:选D 因为函数y =+x 2-2x +3=+(x -1)2+2,所以当≥1时,函数为增函数,所以y ≥2+1;当<1时,设-1=t ,则t <0,函数y =t +t 2+2+1=2t 2+2-t+1,所以函数在(-∞,0)上为增函数,当t →0时,y →2+1,当t →-∞时,y →1,所以1<y <2+1.综上所述,函数y =+x 2-2x +3的值域为(1,+∞).3.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f ()=(1⊕)-(2⊕),∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤≤1时,f ()=-2, 当1<≤2时,f ()=3-2.∵f ()=-2,f ()=3-2在定义域内都为增函数. ∴f ()的最大值为f (2)=23-2=6.4.已知函数f ()=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是( )A.⎣⎡⎭⎫14,12 B.⎣⎡⎦⎤14,12 C.⎝⎛⎦⎤0,12 D.⎣⎡⎭⎫12,1解析:选B 由对数函数的定义可得a >0,且a ≠1.又函数f ()在R 上单调,则二次函数y =a 2--14的图象开口向上,所以函数f ()在R 上单调递减, 故有⎩⎪⎨⎪⎧0<a <1,12a≥1,a ×12-1-14≥log a1-1,即⎩⎪⎨⎪⎧0<a <1,0<a ≤12,a ≥14.所以a ∈⎣⎡⎦⎤14,12.5.(2018·湖州模拟)若f ()是定义在(-1,1)上的减函数,则下列不等式正确的是( ) A .f (sin )>f (cos ) B .f⎝⎛⎭⎫x 2+12>f ()C .f ⎝⎛⎭⎫13x +1≥f ⎝⎛⎭⎫12x +1D .f ⎝⎛⎭⎫13x +3-x ≥f ⎝⎛⎭⎫12x +2-x解析:选D A .∈⎝⎛⎭⎫π4,1时,sin >cos , ∵f ()在(-1,1)上为减函数, ∴f (sin )<f (cos ),∴该选项错误; B .∈(-1,1),∴x 2+12-=12(-1)2>0,∴x 2+12>,且f ()在(-1,1)上单调递减,∴f⎝⎛⎭⎫x 2+12<f (),∴该选项错误;C.13x +1-12x +1=2x-3x(3x +1)(2x +1)=3x ⎣⎡⎦⎤⎝⎛⎭⎫23x -1(3x +1)(2x +1), ∵∈(-1,1),∴∈(-1,0)时,⎝⎛⎭⎫23>1, ∴13x +1>12x +1,且f ()在(-1,1)上为减函数, ∴f ⎝⎛⎭⎫13x +1<f ⎝⎛⎭⎫12x +1,∴该选项错误;D.13x +3-x -12x +2-x =3x ⎣⎡⎦⎤⎝⎛⎭⎫23x -1⎣⎡⎦⎤1-⎝⎛⎭⎫16x (3x +3-x )(2x +2-x ), ∴①∈(-1,0]时,⎝⎛⎭⎫23-1≥0,1-⎝⎛⎭⎫16≤0, ∴13x+3-x ≤12x +2-x. ②∈(0,1)时,⎝⎛⎭⎫23-1<0,1-⎝⎛⎭⎫16>0, ∴13x+3-x <12x +2-x, ∴综上得,13x +3-x ≤12x +2-x,∵f ()为(-1,1)上的减函数,∴f ⎝⎛⎭⎫13x +3-x ≥f ⎝⎛⎭⎫12x +2-x ,∴该选项正确.6.(2019·金华四校联考)若函数f ()=2+a |-2|在(0,+∞)上单调递增,则实数a 的取值范围是________.解析:∵f ()=2+a |-2|,∴f ()=⎩⎪⎨⎪⎧x 2+ax -2a ,x ≥2,x 2-ax +2a ,x <2.又∵f ()在(0,+∞)上单调递增,∴⎩⎨⎧-a2≤2,a2≤0,∴-4≤a ≤0,∴实数a 的取值范围是[-4,0]. 答案:[-4,0]7.设函数f ()=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),函数g ()是二次函数,若函数f (g ())的值域是[0,+∞),则函数g ()的值域是________.解析:因为函数f ()=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),所以m +1=1,解得m =0,所以f ()=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1.画出函数y =f ()的大致图象如图所示,观察图象可知,当纵坐标在[0,+∞)上时,横坐标在(-∞,-1]∪[0,+∞)上变化. 而f ()的值域是(-1,+∞), f (g ())的值域是[0,+∞), 因为g ()是二次函数, 所以g ()的值域是[0,+∞). 答案:[0,+∞)8.若函数f ()=a (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g ()=(1-4m )x 在[0,+∞)上是增函数,则a =________.解析:函数g ()在[0,+∞)上为增函数,则1-4m >0,即m <14.若a >1,则函数f ()在[-1,2]上的最小值为1a =m ,最大值为a 2=4,解得a =2,12=m ,与m <14矛盾;当0<a <1时,函数f ()在[-1,2]上的最小值为a 2=m ,最大值为a -1=4,解得a =14,m =116.所以a =14.答案:149.(2018·杭州五校联考)函数y =f ()的定义域为R ,若存在常数M >0,使得|f ()|≥M ||对一切实数均成立,则称f ()为“圆锥托底型”函数.(1)判断函数f ()=2,g ()=3是否为“圆锥托底型”函数?并说明理由. (2)若f ()=2+1是“圆锥托底型”函数,求出M 的最大值.解:(1)函数f ()=2.∵|2|=2||≥2||,即对于一切实数使得|f ()|≥2||成立, ∴函数f ()=2是“圆锥托底型”函数. 对于g ()=3,如果存在M >0满足|3|≥M ||, 而当=M 2时,由⎪⎪⎪⎪M 23≥M ⎪⎪⎪⎪M 2, ∴M2≥M ,得M ≤0,矛盾, ∴g ()=3不是“圆锥托底型”函数.(2)∵f ()=2+1是“圆锥托底型”函数,故存在M >0,使得|f ()|=|2+1|≥M ||对于任意实数恒成立.∴≠0时,M ≤⎪⎪⎪⎪x +1x =||+1|x |,此时当=±1时,||+1|x |取得最小值2, ∴M ≤2.而当=0时,也成立. ∴M 的最大值等于2. 10.已知函数f ()=a -1|x |.(1)求证:函数y =f ()在(0,+∞)上是增函数;(2)若f ()<2在(1,+∞)上恒成立,求实数a 的取值范围. 解:(1)证明:当∈(0,+∞)时,f ()=a -1x , 设0<1<2,则12>0,2-1>0,f (2)-f (1)=⎝⎛⎭⎫a -1x 2-⎝⎛⎭⎫a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0, 所以f ()在(0,+∞)上是增函数. (2)由题意a -1x <2在(1,+∞)上恒成立,设h ()=2+1x ,则a <h ()在(1,+∞)上恒成立. 任取1,2∈(1,+∞)且1<2, h (1)-h (2)=(1-2)⎝⎛⎭⎫2-1x 1x 2.因为1<1<2,所以1-2<0,12>1,所以2-1x 1x 2>0, 所以h (1)<h (2),所以h ()在(1,+∞)上单调递增. 故a ≤h (1),即a ≤3,所以实数a 的取值范围是(-∞,3]. 三上台阶,自主选做志在冲刺名校1.已知减函数f ()的定义域是实数集R ,m ,n 都是实数.如果不等式f (m )-f (n )>f (-m )-f (-n )成立,那么下列不等式成立的是( )A .m -n <0B .m -n >0C .m +n <0D .m +n >0解析:选A 设F ()=f ()-f (-), 由于f ()是R 上的减函数,∴f (-)是R 上的增函数,-f (-)是R 上的减函数, ∴F ()是R 上的减函数, ∴当m <n 时,有F (m )>F (n ), 即f (m )-f (-m )>f (n )-f (-n )成立.因此,当f (m )-f (n )>f (-m )-f (-n )成立时,不等式m -n <0一定成立,故选A. 2.已知函数f ()=lg ⎝⎛⎭⎫x +ax -2,其中a 是大于0的常数. (1)求函数f ()的定义域;(2)当a ∈(1,4)时,求函数f ()在[2,+∞)上的最小值; (3)若对任意∈[2,+∞)恒有f ()>0,试确定a 的取值范围. 解:(1)由+ax -2>0,得x 2-2x +a x>0,当a >1时,2-2+a >0恒成立,定义域为(0,+∞); 当a =1时,定义域为{|>0且≠1};当0<a <1时,定义域为{|0<<1-1-a 或>1+1-a }.(2)设g ()=+a x -2,当a ∈(1,4),∈[2,+∞)时,g ′()=1-a x 2=x 2-ax 2>0恒成立,所以g ()=+ax -2在[2,+∞)上是增函数. 所以f ()=lg ⎝⎛⎭⎫x +ax -2在[2,+∞)上是增函数. 所以f ()=lg ⎝⎛⎭⎫x +a x -2在[2,+∞)上的最小值为f (2)=lg a 2. (3)对任意∈[2,+∞)恒有f ()>0,即+ax -2>1对任意∈[2,+∞)恒成立.所以a >3-2,令h ()=3-2,而h ()=3-2=-⎝⎛⎭⎫x -322+94在[2,+∞)上是减函数,所以h ()ma =h (2)=2,所以a >2. 即a 的取值范围为(2,+∞).第三节函数的奇偶性及周期性1.函数的奇偶性 奇偶性 定义图象特点 偶函数如果对于函数f ()的定义域内任意一个,都有f (-)=f (),那么函数f ()就叫做偶函数关于y 轴对称奇函数如果对于函数f ()的定义域内任意一个,都有f (-)=-f (),那么函数f ()就叫做奇函数关于原点对称2.函数的周期性 (1)周期函数对于函数f (),如果存在一个非零常数T ,使得当取定义域内的任何值时,都有f (+T )=f (),那么就称函数f ()为周期函数,称T 为这个函数的周期.(2)最小正周期如果在周期函数f ()的所有周期中存在一个最小的正数,那么这个最小正数就叫做f ()的最小正周期.[小题体验]1.(2018·杭州模拟)已知函数f ()是奇函数,且当<0时,f ()=22-1x ,则f (1)的值是( ) A .-3 B .-1 C .1D .3解析:选A 因为函数f ()为奇函数,所以f (1)=-f (-1)=-⎣⎡⎦⎤2×(-1)2-1(-1)=-3,故选A.2.(2018·台州月考)偶函数y =f ()在区间[0,4]上单调递减,则有( ) A .f (-1)>f ⎝⎛⎭⎫π3>f (-π) B .f ⎝⎛⎭⎫π3>f (-1)>f (-π) C .f (-π)>f (-1)>f ⎝⎛⎭⎫π3 D .f (-1)>f (-π)>f ⎝⎛⎭⎫π3解析:选A 由题意得,0<1<π3<π<4⇒f (-1)=f (1)>f ⎝⎛⎭⎫π3>f (π)=f (-π),故选A. 3.(2018·金华模拟)已知函数y =f ()为R 上的偶函数,当≥0时,f ()=log 2(+2)-3,则f (6)=____________,f (f (0))=________________.解析:∵当≥0时,f ()=log 2(+2)-3, ∴f (6)=log 2(6+2)-3=3-3=0, f (0)=1-3=-2,∵函数y =f ()为R 上的偶函数, ∴f (f (0))=f (-2)=f (2)=2-3=-1. 答案:0 -11.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.判断函数f ()的奇偶性时,必须对定义域内的每一个,均有f (-)=-f ()或f (-)=f (),而不能说存在0使f (-0)=-f (0)或f (-0)=f (0).3.分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性.[小题纠偏]1.已知f ()=a 2+b 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .-13 B.13 C.12 D .-12解析:选B ∵f ()=a 2+b 是定义在[a -1,2a ]上的偶函数,∴a -1+2a =0,∴a =13.又f (-)=f (),∴b =0,∴a +b =13.2.(2018·宁波模拟)若函数f ()=⎩⎪⎨⎪⎧x 2+2x +1,x >0,a ,x =0,g (2x ),x <0为奇函数,则a =________,f (g (-2))=________.解析:由题意a =f (0)=0,g (2)=f (), 所以g (-2)=f (-1)=-f (1)=-4, 所以f (g (-2))=f (-4)=-f (4)=-25. 答案:0 -25考点一 函数奇偶性的判断(基础送分型考点——自主练透)[题组练透]判断下列函数的奇偶性: (1)f ()=(+1)1-x1+x; (2)f ()=⎩⎪⎨⎪⎧-x 2+2x +1,x >0,x 2+2x -1,x <0;(3)f ()=4-x 2x 2;(4)f ()=log a (+x 2+1)(a >0且a ≠1). 解:(1)因为f ()有意义,则满足1-x1+x≥0, 所以-1<≤1,所以f ()的定义域不关于原点对称, 所以f ()为非奇非偶函数. (2)法一:(定义法)当>0时,f ()=-2+2+1,-<0,f (-)=(-)2+2(-)-1=2-2-1=-f (); 当<0时,f ()=2+2-1,->0,f (-)=-(-)2+2(-)+1=-2-2+1=-f (). 所以f ()为奇函数. 法二:(图象法)作出函数f ()的图象,由奇函数的图象关于原点对称的特征知函数f ()为奇函数.(3)因为⎩⎪⎨⎪⎧4-x 2≥0,x 2≠0,所以-2≤≤2且≠0,所以定义域关于原点对称. 又f (-)=4-(-x )2(-x )2=4-x 2x 2,所以f (-)=f ().故函数f ()为偶函数. (4)函数的定义域为R , 因为f (-)+f ()=log a [-+(-x )2+1]+log a (+x 2+1) =log a (x 2+1-)+log a (x 2+1+) =log a [(x 2+1-)(x 2+1+)] =log a (2+1-2)=log a 1=0, 即f (-)=-f (),所以f ()为奇函数.[谨记通法]判定函数奇偶性的3种常用方法 (1)定义法(2)图象法(3)性质法①设f (),g ()的定义域分别是 D 1,D 2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.②复合函数的奇偶性可概括为“同奇则奇,一偶则偶”.[提醒] (1)“性质法”中的结论是在两个函数的公共定义域内才成立的.(2)判断分段函数的奇偶性应分段分别证明f (-)与f ()的关系,只有对各段上的都满足相同的关系时,才能判断其奇偶性.考点二 函数的周期性(重点保分型考点——师生共研)[典例引领](1)已知函数f ()=⎩⎪⎨⎪⎧2(1-x ),0≤x ≤1,x -1,1<x ≤2,若对任意的n ∈N *,定义f n ()=f {f [f …n 个f ()]},则f 2019(2)的值为()A .0B .1C .2D .3(2)设定义在R 上的函数f ()满足f (+2)=f (),且当∈[0,2)时,f ()=2-2,则f (0)+f (1)+f (2)+…+f (2 019)=________.解析:(1)∵f 1(2)=f (2)=1,f 2(2)=f (1)=0,f 3(2)=f (0)=2, ∴f n (2)的值具有周期性,且周期为3, ∴f 2 019(2)=f 3×673(2)=f 3(2)=2,故选C. (2)∵f (+2)=f (), ∴函数f ()的周期T =2, ∵当∈[0,2)时,f ()=2-2, ∴f (0)=0,f (1)=1,∴f (0)=f (2)=f (4)=…=f (2 018)=0, f (1)=f (3)=f (5)=…=f (2 019)=1. 故f (0)+f (1)+f (2)+…+f (2 019)=1 010. 答案:(1)C (2)1 010[由题悟法]1.判断函数周期性的2个方法 (1)定义法. (2)图象法.2.周期性3个常用结论 (1)若f (+a )=-f (),则T =2a . (2)若f (+a )=1f (x ),则T =2a . (3)若f (+a )=-1f (x ),则T =2a (a >0). [即时应用]1.已知函数f ()的定义域为R ,当<0时,f ()=3-1;当-1≤≤1时,f (-)=-f ();当>12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12,则f (6)等于( ) A .-2 B .-1 C .0D .2解析:选D 当>12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12,即周期为1,则f (6)=f (1)=-f (-1)=-[(-。
2020版高考数学(理)新增分大一轮人教通用版讲义:第三章 导数及其应用 3.2 第1课时 含解析

§3.2导数的应用1.函数的单调性在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减.2.函数的极值(1)一般地,求函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时:①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤①求f′(x);②求方程f′(x)=0的根;③考察f′(x)在方程f′(x)=0的根附近的左右两侧导数值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求函数y =f (x )在(a ,b )内的极值;②将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值. 概念方法微思考1.“f (x )在区间(a ,b )上是增函数,则f ′(x )>0在(a ,b )上恒成立”,这种说法是否正确? 提示 不正确,正确的说法是:可导函数f (x )在(a ,b )上是增(减)函数的充要条件是对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零.2.对于可导函数f (x ),“f ′(x 0)=0”是“函数f (x )在x =x 0处有极值”的________条件.(填“充要”“充分不必要”“必要不充分”) 提示 必要不充分题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果函数f (x )在某个区间内恒有f ′(x )=0,则f (x )在此区间内没有单调性.( √ ) (2)函数的极大值一定大于其极小值.( × )(3)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( √ ) 题组二 教材改编2.如图是函数y =f (x )的导函数y =f ′(x )的图象,则下列判断正确的是( )A .在区间(-2,1)上f (x )是增函数B .在区间(1,3)上f (x )是减函数C .在区间(4,5)上f (x )是增函数D .当x =2时,f (x )取到极小值 答案 C解析 在(4,5)上f ′(x )>0恒成立,∴f (x )是增函数. 3.函数f (x )=e x -x 的单调递增区间是________. 答案 (0,+∞)解析 由f ′(x )=e x -1>0,解得x >0,故其单调递增区间是(0,+∞). 4.当x >0时,ln x ,x ,e x 的大小关系是______. 答案 ln x <x <e x解析 构造函数f (x )=ln x -x ,则f ′(x )=1x-1,可得x =1为函数f (x )在(0,+∞)上唯一的极大值点,也是最大值点,故f (x )≤f (1)=-1<0,所以ln x <x .同理可得x <e x ,故ln x <x <e x.5.现有一块边长为a 的正方形铁片,铁片的四角截去四个边长均为x 的小正方形,然后做成一个无盖方盒,该方盒容积的最大值是________. 答案227a 3 解析 容积V =(a -2x )2x,0<x <a2,则V ′=2(a -2x )×(-2x )+(a -2x )2=(a -2x )(a -6x ),由V ′=0得x =a 6或x =a 2(舍去),则x =a 6为V 在定义域内唯一的极大值点也是最大值点,此时V max =227a 3.题组三 易错自纠6.函数f (x )=x 3+ax 2-ax 在R 上单调递增,则实数a 的取值范围是________. 答案 [-3,0]解析 f ′(x )=3x 2+2ax -a ≥0在R 上恒成立,即4a 2+12a ≤0,解得-3≤a ≤0,即实数a 的取值范围是[-3,0].7.(2018·铁岭质检)若函数f (x )=13x 3-32x 2+ax +4恰在[-1,4]上单调递减,则实数a 的值为________.答案 -4解析 f ′(x )=x 2-3x +a ,且f (x )恰在[-1,4]上单调递减,∴f ′(x )=x 2-3x +a ≤0的解集为 [-1,4],∴-1,4是方程f ′(x )=0的两根, 则a =(-1)×4=-4.8.若函数f (x )=13x 3-4x +m 在[0,3]上的最大值为4,m =________.答案 4解析 f ′(x )=x 2-4,x ∈[0,3],当x ∈[0,2)时,f ′(x )<0,当x ∈(2,3]时,f ′(x )>0,所以f (x )在[0,2)上是减函数,在(2,3]上是增函数.又f (0)=m ,f (3)=-3+m .所以在[0,3]上,f (x )max =f (0)=4,所以m =4.9.已知函数f (x )=13x 3+x 2-2ax +1,若函数f (x )在(1,2)上有极值,则实数a 的取值范围为________.答案 ⎝⎛⎭⎫32,4解析 f ′(x )=x 2+2x -2a 的图象是开口向上的抛物线,且对称轴为x =-1,则f ′(x )在(1,2)上是单调递增函数,因此⎩⎪⎨⎪⎧f ′(1)=3-2a <0,f ′(2)=8-2a >0,解得32<a <4,故实数a 的取值范围为⎝⎛⎭⎫32,4.第1课时 导数与函数的单调性题型一 不含参函数的单调性1.函数y =4x 2+1x 的单调增区间为( )A .(0,+∞) B.⎝⎛⎭⎫12,+∞ C .(-∞,-1) D.⎝⎛⎭⎫-∞,-12 答案 B解析 由y =4x 2+1x ,得y ′=8x -1x 2(x ≠0),令y ′>0,即8x -1x 2>0,解得x >12,∴函数y =4x 2+1x 的单调增区间为⎝⎛⎭⎫12,+∞. 故选B.2.函数f (x )=x ·e x -e x +1的递增区间是( )A .(-∞,e)B .(1,e)C .(e ,+∞)D .(e -1,+∞)答案 D解析 由f (x )=x ·e x -e x +1,得f ′(x )=(x +1-e)·e x , 令f ′(x )>0,解得x >e -1,所以函数f (x )的递增区间是(e -1,+∞).3.已知函数f (x )=x ln x ,则f (x )的单调递减区间是________. 答案 ⎝⎛⎭⎫0,1e 解析 因为函数f (x )=x ln x 的定义域为(0,+∞), 所以f ′(x )=ln x +1(x >0), 当f ′(x )<0时,解得0<x <1e ,即函数f (x )的单调递减区间为⎝⎛⎭⎫0,1e . 4.(2018·赤峰调研)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是______________________. 答案 ⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2 解析 f ′(x )=sin x +x cos x -sin x =x cos x . 令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2, 即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2. 思维升华 确定函数单调区间的步骤 (1)确定函数f (x )的定义域. (2)求f ′(x ).(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间. (4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间. 题型二 含参数的函数的单调性例1 已知函数f (x )=x 2e-ax-1(a 是常数),求函数y =f (x )的单调区间.解 根据题意可得,当a =0时,f (x )=x 2-1,函数在(0,+∞)上单调递增,在(-∞,0)上单调递减.当a ≠0时,f ′(x )=2x e -ax+x 2(-a )e-ax=e-ax(-ax 2+2x ).因为e-ax>0,所以令g (x )=-ax 2+2x =0,解得x =0或x =2a.①当a >0时,函数g (x )=-ax 2+2x 在(-∞,0)和⎝⎛⎭⎫2a ,+∞上有g (x )<0,即f ′(x )<0,函数y =f (x )单调递减;函数g (x )=-ax 2+2x 在⎣⎡⎦⎤0,2a 上有g (x )≥0, 即f ′(x )≥0,函数y =f (x )单调递增.②当a <0时,函数g (x )=-ax 2+2x 在⎝⎛⎭⎫-∞,2a 和(0,+∞)上有g (x )>0,即f ′(x )>0,函数y =f (x )单调递增;函数g (x )=-ax 2+2x 在⎣⎡⎦⎤2a ,0上有g (x )≤0, 即f ′(x )≤0,函数y =f (x )单调递减.综上所述,当a =0时,函数y =f (x )的单调递增区间为(0,+∞),单调递减区间为(-∞,0); 当a >0时,函数y =f (x )的单调递减区间为(-∞,0),⎝⎛⎭⎫2a ,+∞,单调递增区间为⎣⎡⎦⎤0,2a ; 当a <0时,函数y =f (x )的单调递增区间为⎝⎛⎭⎫-∞,2a ,(0,+∞),单调递减区间为⎣⎡⎦⎤2a ,0. 思维升华 (1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点. 跟踪训练1 讨论函数f (x )=e x (e x -a )-a 2x 的单调性.解 函数f (x )的定义域为(-∞,+∞),f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ). ①若a =0,则f (x )=e 2x ,在(-∞,+∞)上单调递增. ②若a >0,则由f ′(x )=0得x =ln a . 当x ∈(-∞,ln a )时,f ′(x )<0, 当x ∈(ln a ,+∞)时,f ′(x )>0.故f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增. ③若a <0,则由f ′(x )=0得x =ln ⎝⎛⎭⎫-a 2. 当x ∈⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2时,f ′(x )<0; 当x ∈⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞时,f ′(x )>0. 故f (x )在⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2上单调递减, 在⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞上单调递增. 综上所述,当a =0时,f (x )在(-∞,+∞)上单调递增;当a >0时,f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增;当a <0时,f (x )在⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2上单调递减,在⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞上单调递增.题型三 函数单调性的应用命题点1 比较大小或解不等式例2 (1)设函数f (x )=e x +x -2,g (x )=ln x +x 2-3,若实数a ,b 满足f (a )=0,g (b )=0,则( ) A .g (a )<0<f (b ) B .f (b )<0<g (a ) C .0<g (a )<f (b ) D .f (b )<g (a )<0答案 A解析 因为函数f (x )=e x +x -2在R 上单调递增,且f (0)=1-2<0,f (1)=e -1>0,所以f (a )=0时,a ∈(0,1).又g (x )=ln x +x 2-3在(0,+∞)上单调递增,且g (1)=-2<0,所以g (a )<0. 由g (2)=ln 2+1>0,g (b )=0得b ∈(1,2), 又f (1)=e -1>0,所以f (b )>0.综上可知,g (a )<0<f (b ).(2)已知定义域为R 的偶函数f (x )的导函数为f ′(x ),当x <0时,xf ′(x )-f (x )<0.若a =f (e )e ,b =f (ln 2)ln 2,c =f (3)3,则a ,b ,c 的大小关系是( )A .b <a <cB .a <c <bC .a <b <cD .c <a <b答案 D解析 设g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2,又当x <0时,xf ′(x )-f (x )<0,所以g ′(x )<0,即函数g (x )在区间(-∞,0)内单调递减.因为f (x )为R 上的偶函数,所以g (x )为(-∞,0)∪(0,+∞)上的奇函数,所以函数g (x )在区间(0,+∞)内单调递减.由0<ln 2<e<3,可得g (3)<g (e)<g (ln 2),即c <a <b ,故选D.(3)已知定义在(0,+∞)上的函数f (x )满足xf ′(x )-f (x )<0,其中f ′(x )是函数f (x )的导函数.若2f (m -2 019)>(m -2 019)f (2),则实数m 的取值范围为( ) A .(0,2 019) B .(2 019,+∞) C .(2 021,+∞) D .(2 019,2 021)答案 D解析 令h (x )=f (x )x ,x ∈(0,+∞),则h ′(x )=xf ′(x )-f (x )x 2.∵xf ′(x )-f (x )<0,∴h ′(x )<0, ∴函数h (x )在(0,+∞)上单调递减,∵2f (m -2 019)>(m -2 019)f (2),m -2 019>0, ∴f (m -2 019)m -2 019>f (2)2, 即h (m -2 019)>h (2). ∴m -2 019<2且m -2 019>0, 解得2 019<m <2 021.∴实数m 的取值范围为(2 019,2 021).(4)设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集是__________________. 答案 (-∞,-2)∪(0,2)解析 ∵当x >0时,⎣⎡⎦⎤f (x )x ′=x ·f ′(x )-f (x )x 2<0,∴φ(x )=f (x )x 在(0,+∞)上为减函数,又φ(2)=0,∴在(0,+∞)上,当且仅当0<x <2时,φ(x )>0, 此时x 2f (x )>0. 又f (x )为奇函数,∴h (x )=x 2f (x )也为奇函数.故x 2f (x )>0的解集为(-∞,-2)∪(0,2). 命题点2 根据函数单调性求参数例3 (2018·辽阳质检)已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. 解 (1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2,由于h (x )在(0,+∞)上存在单调递减区间,所以当x ∈(0,+∞)时,1x -ax -2<0有解,即a >1x 2-2x 有解.设G (x )=1x 2-2x ,所以只要a >G (x )min 即可. 而G (x )=⎝⎛⎭⎫1x -12-1, 所以G (x )min =-1. 所以a >-1.又因为a ≠0,所以a 的取值范围为(-1,0)∪(0,+∞). (2)因为h (x )在[1,4]上单调递减,所以当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x 恒成立.由(1)知G (x )=1x 2-2x,所以a ≥G (x )max ,而G (x )=⎝⎛⎭⎫1x -12-1, 因为x ∈[1,4], 所以1x ∈⎣⎡⎦⎤14,1,所以G (x )max =-716(此时x =4), 所以a ≥-716,又因为a ≠0,所以a 的取值范围是⎣⎡⎭⎫-716,0∪(0,+∞). 引申探究1.本例(2)中,若函数h (x )=f (x )-g (x )在[1,4]上单调递增,求a 的取值范围. 解 因为h (x )在[1,4]上单调递增, 所以当x ∈[1,4]时,h ′(x )≥0恒成立, 所以当x ∈[1,4]时,a ≤1x 2-2x 恒成立,又当x ∈[1,4]时,⎝⎛⎭⎫1x 2-2x min =-1(此时x =1), 所以a ≤-1,即a 的取值范围是(-∞,-1].2.本例(2)中,若h (x )在[1,4]上存在单调递减区间,求a 的取值范围. 解 h (x )在[1,4]上存在单调递减区间, 则h ′(x )<0在[1,4]上有解, 所以当x ∈[1,4]时,a >1x 2-2x有解,又当x ∈[1,4]时,⎝⎛⎭⎫1x 2-2x min =-1(此时x =1), 所以a >-1,又因为a ≠0,所以a 的取值范围是(-1,0)∪(0,+∞). 思维升华 根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集. (2)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解. (3)函数在某个区间上存在单调区间可转化为不等式有解问题.跟踪训练2 (1)已知定义在⎝⎛⎭⎫0,π2上的函数f (x )的导函数为f ′(x ),且对于任意的x ∈⎝⎛⎭⎫0,π2,都有f ′(x )sin x <f (x )cos x ,则( ) A.3f ⎝⎛⎭⎫π4>2f ⎝⎛⎭⎫π3 B .f ⎝⎛⎭⎫π3>f (1) C.2f ⎝⎛⎭⎫π6<f ⎝⎛⎭⎫π4 D.3f ⎝⎛⎭⎫π6<f ⎝⎛⎭⎫π3答案 A解析 令g (x )=f (x )sin x,则g ′(x )=f ′(x )sin x -f (x )cos xsin 2x,由已知g ′(x )<0在⎝⎛⎭⎫0,π2上恒成立, ∴g (x )在⎝⎛⎭⎫0,π2上单调递减, ∴g ⎝⎛⎭⎫π4>g ⎝⎛⎭⎫π3, 即f ⎝⎛⎭⎫π422>f ⎝⎛⎭⎫π332,∴3f ⎝⎛⎭⎫π4>2f ⎝⎛⎭⎫π3. (2)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( )A .(1,2]B .[4,+∞)C .(-∞,2]D .(0,3] 答案 A解析 ∵f (x )的定义域是(0,+∞),f ′(x )=x -9x,∴由f ′(x )≤0,解得0<x ≤3,由题意知⎩⎪⎨⎪⎧a -1>0,a +1≤3,解得1<a ≤2.(3)已知函数f (x )=a ln x +x 2+(a -6)x 在(0,3)上不是单调函数,则实数a 的取值范围是________. 答案 (0,2)解析 函数f ′(x )=ax+2x +a -6.①若函数f (x )=a ln x +x 2+(a -6)x 在(0,3)上单调递增,则f ′(x )=ax +2x +a -6≥0在(0,3)上恒成立,即a ≥6x -2x 2x +1=-2⎣⎡⎦⎤(x +1)+4x +1-5在(0,3)上恒成立,令函数g (t )=t +4t ,t ∈(1,4),则g (t )∈[4,5),∴a ≥2;②若函数f (x )=a ln x +x 2+(a -6)x 在(0,3)上单调递减,则f ′(x )=ax +2x +a -6≤0在(0,3)上恒成立,即a ≤6x -2x 2x +1=-2⎣⎡⎦⎤(x +1)+4x +1-5在(0,3)上恒成立,函数g (t )=t +4t ,t ∈(1,4),则g (t )∈[4,5),∴a ≤0,∴当函数f (x )在(0,3)上不是单调函数时,实数a 的取值范围是(0,2).用分类讨论思想研究函数的单调性含参数的函数的单调性问题一般要分类讨论,常见的分类讨论标准有以下几种可能: ①方程f ′(x )=0是否有根;②若f ′(x )=0有根,求出根后判断其是否在定义域内;③若根在定义域内且有两个,比较根的大小是常见的分类方法.例 已知函数g (x )=ln x +ax 2-(2a +1)x ,若a ≥0,试讨论函数g (x )的单调性. 解 g ′(x )=2ax 2-(2a +1)x +1x=(2ax -1)(x -1)x.∵函数g (x )的定义域为(0,+∞), ∴当a =0时,g ′(x )=-x -1x.由g ′(x )>0,得0<x <1,由g ′(x )<0,得x >1. 当a >0时,令g ′(x )=0,得x =1或x =12a ,若12a <1,即a >12, 由g ′(x )>0,得x >1或0<x <12a ,由g ′(x )<0,得12a <x <1;若12a >1,即0<a <12, 由g ′(x )>0,得x >12a 或0<x <1,由g ′(x )<0,得1<x <12a ,若12a =1,即a =12,在(0,+∞)上恒有g ′(x )≥0. 综上可得:当a =0时,函数g (x )在(0,1)上单调递增, 在(1,+∞)上单调递减;当0<a <12时,函数g (x )在(0,1)上单调递增,在⎝⎛⎭⎫1,12a 上单调递减,在⎝⎛⎭⎫12a ,+∞上单调递增; 当a =12时,函数g (x )在(0,+∞)上单调递增;当a >12时,函数g (x )在⎝⎛⎭⎫0,12a 上单调递增, 在⎝⎛⎭⎫12a ,1上单调递减,在(1,+∞)上单调递增.1.函数f (x )=x 2-2ln x 的单调递减区间是( )A .(0,1)B .(1,+∞)C .(-∞,1)D .(-1,1)答案 A解析 ∵f ′(x )=2x -2x =2(x +1)(x -1)x (x >0),∴当x ∈(0,1)时,f ′(x )<0,f (x )为减函数; 当x ∈(1,+∞)时,f ′(x )>0,f (x )为增函数.2.(2018·锦州调研)已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )答案 C解析 由题意得,当x ∈(-∞,c )时,f ′(x )>0, 所以函数f (x )在(-∞,c )上是增函数, 因为a <b <c ,所以f (c )>f (b )>f (a ),故选C.3.函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )答案 D解析 利用导数与函数的单调性进行验证.f ′(x )>0的解集对应y =f (x )的增区间,f ′(x )<0的解集对应y =f (x )的减区间,验证只有D 选项符合.4.已知函数f (x )=x sin x ,x ∈R ,则f ⎝⎛⎭⎫π5,f (1),f ⎝⎛⎭⎫-π3的大小关系为( ) A .f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5 B .f (1)>f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5 C .f ⎝⎛⎭⎫π5>f (1)>f ⎝⎛⎭⎫-π3D .f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5>f (1) 答案 A解析 因为f (x )=x sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ),所以函数f (x )是偶函数,所以f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3.又当x ∈⎝⎛⎭⎫0,π2时,f ′(x )=sin x +x cos x >0,所以函数f (x )在⎝⎛⎭⎫0,π2上是增函数,所以f ⎝⎛⎭⎫π5<f (1)<f ⎝⎛⎭⎫π3,即f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5,故选A. 5.已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 f ′(x )=32x 2+a ,当a ≥0时,f ′(x )≥0恒成立,故“a >0”是“f (x )在R 上单调递增”的充分不必要条件.6.(2018·呼和浩特质检)若函数f (x )=x 3-ax 2-x +6在(0,1)内单调递减,则实数a 的取值范围是( ) A .a ≥1 B .a >1 C .a ≤1 D .0<a <1答案 A解析 f ′(x )=3x 2-2ax -1,由已知得3x 2-2ax -1≤0在(0,1)内恒成立, 即a ≥32x -12x 在(0,1)内恒成立,令g (x )=32x -12x ,又当x ∈(0,1)时,g (x )=32x -12x 的值域为(-∞,1),∴a ≥1.7.(2018·满洲里质检)函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则( ) A .a <b <c B .c <b <a C .c <a <b D .b <c <a答案 C解析 由题意得,当x <1时,f ′(x )>0,f (x )在(-∞,1)上为增函数. 又f (3)=f (-1),且-1<0<12<1,因此有f (-1)<f (0)<f ⎝⎛⎭⎫12, 即有f (3)<f (0)<f ⎝⎛⎭⎫12,即c <a <b .8.(2018·营口调研)已知函数f (x )(x ∈R )满足f (1)=1,f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为____________. 答案 {x |x <-1或x >1} 解析 设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减. ∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减, ∴x 2>1,即不等式的解集为{x |x <-1或x >1}.9.已知函数f (x )=x ln x -ax 2在(0,+∞)上单调递减,则实数a 的取值范围是________. 答案 ⎣⎡⎭⎫12,+∞ 解析 f ′(x )=ln x -2ax +1,若f (x )在(0,+∞)上单调递减,则ln x -2ax +1≤0在(0,+∞)上恒成立,即a ≥ln x +12x 在(0,+∞)上恒成立.令g (x )=ln x +12x ,x ∈(0,+∞),则g ′(x )=-ln x2x 2,令g ′(x )>0,解得0<x <1,令g ′(x )<0,解得x >1,故g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,故g (x )max =g (1)=12,故a ≥12.10.设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是____________. 答案 (-∞,-1)∪(0,1)解析 因为f (x )(x ∈R )为奇函数,f (-1)=0, 所以f (1)=-f (-1)=0. 当x ≠0时,令g (x )=f (x )x ,则g (x )为偶函数,g (1)=g (-1)=0.则当x >0时,g ′(x )=⎣⎡⎦⎤f (x )x ′=xf ′(x )-f (x )x 2<0,故g (x )在(0,+∞)上为减函数,在(-∞,0)上为增函数. 所以在(0,+∞)上,当0<x <1时,由g (x )>g (1)=0,得f (x )x >0,所以f (x )>0;在(-∞,0)上,当x <-1时,由g (x )<g (-1)=0,得f (x )x<0,所以f (x )>0.综上知,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1).11.已知函数f (x )=ln x +ke x (k 为常数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求实数k 的值; (2)求函数f (x )的单调区间. 解 (1)f ′(x )=1x-ln x -k e x(x >0).又由题意知f ′(1)=1-ke =0,所以k =1.(2)f ′(x )=1x-ln x -1e x (x >0).设h (x )=1x -ln x -1(x >0),则h ′(x )=-1x 2-1x<0,所以h (x )在(0,+∞)上单调递减.由h (1)=0知,当0<x <1时,h (x )>0,所以f ′(x )>0; 当x >1时,h (x )<0,所以f ′(x )<0. 综上,f (x )的单调递增区间是(0,1), 单调递减区间是(1,+∞).12.已知函数f (x )=be x -1(b ∈R ,e 为自然对数的底数)在点(0,f (0))处的切线经过点(2,-2).讨论函数F (x )=f (x )+ax (a ∈R )的单调性.解 因为f (0)=b -1,所以过点(0,b -1),(2,-2)的直线的斜率为k =b -1-(-2)0-2=-b +12,而f ′(x )=-be x ,由导数的几何意义可知,f ′(0)=-b =-b +12,所以b =1,所以f (x )=1e x -1.则F (x )=ax +1e x -1,F ′(x )=a -1e x ,当a ≤0时,F ′(x )<0恒成立; 当a >0时,由F ′(x )<0,得x <-ln a , 由F ′(x )>0,得x >-ln a .故当a ≤0时,函数F (x )在R 上单调递减; 当a >0时,函数F (x )在(-∞,-ln a )上单调递减, 在(-ln a ,+∞)上单调递增.13.定义在区间(0,+∞)上的函数y =f (x )使不等式2f (x )<xf ′(x )<3f (x )恒成立,其中y =f ′(x )为y =f (x )的导函数,则( ) A .8<f (2)f (1)<16B .4<f (2)f (1)<8C .3<f (2)f (1)<4D .2<f (2)f (1)<3答案 B解析 ∵xf ′(x )-2f (x )>0,x >0,∴⎣⎡⎦⎤f (x )x 2′=f ′(x )·x 2-2xf (x )x 4=xf ′(x )-2f (x )x 3>0,令g (x )=f (x )x2,∴g (x )=f (x )x 2在(0,+∞)上单调递增,∴f (2)22>f (1)12,又由2f (x )<3f (x ),得f (x )>0,即f (2)f (1)>4.∵xf ′(x )-3f (x )<0,x >0,∴⎣⎡⎦⎤f (x )x 3′=f ′(x )·x 3-3x 2f (x )x 6=xf ′(x )-3f (x )x 4<0,令h (x )=f (x )x3,∴h (x )=f (x )x 3在(0,+∞)上单调递减,∴f (2)23<f (1)13,即f (2)f (1)<8. 综上,4<f (2)f (1)<8.14.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎡⎭⎫23,+∞上存在单调递增区间,则a 的取值范围是________. 答案 ⎝⎛⎭⎫-19,+∞ 解析 对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝⎛⎭⎫x -122+14+2a . 由题意知,f ′(x )>0在⎣⎡⎭⎫23,+∞上有解, 当x ∈⎣⎡⎭⎫23,+∞时,f ′(x )的最大值为f ′⎝⎛⎭⎫23=29+2a . 令29+2a >0,解得a >-19,所以a 的取值范围是⎝⎛⎭⎫-19,+∞.15.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g (x )=2x 3-6x 2+4,则g ⎝⎛⎭⎫1100+g ⎝⎛⎭⎫2100+…+g ⎝⎛⎭⎫199100=________. 答案 0解析 g ′(x )=6x 2-12x ,∴g ″(x )=12x -12, 由g ″(x )=0,得x =1,又g (1)=0, ∴函数g (x )的对称中心为(1,0), 故g (x )+g (2-x )=0,∴g ⎝⎛⎭⎫1100+g ⎝⎛⎭⎫2100+…+g ⎝⎛⎭⎫199100=g (1)=0. 16.已知函数f (x )=12ax 2-(a +1)x +ln x (a >0),讨论函数f (x )的单调性.解 f ′(x )=ax -(a +1)+1x =(ax -1)(x -1)x (x >0),①当0<a <1时,1a>1,由f ′(x )>0,解得x >1a 或0<x <1,由f ′(x )<0,解得1<x <1a.②当a =1时,f ′(x )≥0在(0,+∞)上恒成立. ③当a >1时,0<1a<1,由f ′(x )>0,解得x >1或0<x <1a ,由f ′(x )<0,解得1a<x <1.综上,当0<a <1时,f (x )在⎝⎛⎭⎫1a ,+∞和(0,1)上单调递增,在⎝⎛⎭⎫1,1a 上单调递减; 当a =1时,f (x )在(0,+∞)上单调递增,当a >1时,f (x )在(1,+∞)和⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,1上单调递减.。
(浙江专用)2020版高考数学大一轮复习第三章导数及其应用3.2导数与函数的单调性课件

-16-
考点一
考点二
考点三
利用导数研究函数的单调性(考点难度★★)
e
【例3】 (1)函数f(x)= 的单调递增区间为
③若 a<0,则由 f'(x)=0 得 x=ln -2 .
即当 x∈ -∞,ln -2
时,f'(x)<0;
当 x∈ ln -2 ,+∞ 时,f'(x)>0,
可得 f(x)在 -∞,ln -2
内单调递减,
在 ln -2 ,+∞ 内单调递增.
-12-
考点一
考点二
考点三
求函数单调区间(考点难度★★)
解析
答案
-8知识梳理
双击自测
自测点评
1.函数解析式求单调区间,实质上是求f'(x)>0,f'(x)<0的解区间,并
注意函数f(x)的定义域.
2.函数单调性可以利用区间和函数单调区间的包含关系或转化
为恒成立问题两种思路解决.
考点一
考点二
考点三
判断或证明函数的单调性(考点难度★★)
1
【例1】 (2021浙江杭州四校联考改编)函数f(x)=aln(x+1)+ x2-x,其2
)
关闭
4
f'(x)=1- 2 .令 f'(x)<0,∴
2020版高考数学新增分大一轮新高考专用讲义:第三章 3.2 导数的应用 第2课时含解析

[6 分]
1
1
②当 ≥2,即 0<a≤ 时,函数 f(x)在[1,2]上是增函数,所以 f(x)的最小值是 f(1)=-a.[7 分]
a
2
[ ] [ ] 1
1
1
1
③当 1< <2,即 <a<1 时,函数 f(x)在 1, 上是增函数,在 ,2 上是减函数.
a
2
a
a
又 f(2)-f(1)=ln 2-a,
ex2
-ax2+2a-bx+b-c
=
.
ex
令 g(x)=-ax2+(2a-b)x+b-c,
因为 ex>0,所以 y=f′(x)的零点就是 g(x)=-ax2+(2a-b)x+b-c 的零点且 f′(x)与 g(x)符 号相同.
又因为 a>0,所以当-3<x<0 时,g(x)>0,即 f′(x)>0,
解 (1)因为 f(x)=excos x-x,
所以 f′(x)=ex(cos x-sin x)-1,f′(0)=0.
又因为 f(0)=1,所以曲线 y=f(x)在点(0,f(0))处的切线方程为 y=1.
(2)设 h(x)=ex(cos x-sin x)-1,
则 h′(x)=ex(cos x-sin x-sin x-cos x)=-2exsin x.
( )π
当 x∈ 0, 时,h′(x)<0, 2
[ ]π
所以 h(x)在区间 0, 上单调递减, 2
( ]π
所以对任意 x∈ 0, 有 h(x)<h(0)=0, 2
即 f′(x)<0,
[ ]π
所以函数 f(x)在区间 0, 上单调递减, 2
2020高考数学一轮复习:第三章导数及其应用第2讲导数与函数的单调性(讲义)

第2讲 导数与函数的单调性函数的单调性与导数的关系导师提醒 1.关注两个易错点(1)讨论函数的单调性或求函数的单调区间的实质是解不等式,求解时,要坚持“定义域优先”原则.(2)有相同单调性的单调区间不止一个时,用“,”隔开或用“和”连接,不能用“∪”连接.2.理清三组关系(1)在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件. (2)可导函数f (x )在(a ,b )上是增(减)函数的充要条件是对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零.(3)对于可导函数f (x ),f ′(x 0)=0是函数f (x )在x =x 0处有极值的必要不充分条件.判断正误(正确的打“√”,错误的打“×”)(1)若函数f (x )在(a ,b )内单调递增,那么一定有f ′(x )>0.( )(2)如果函数f (x )在某个区间内恒有f ′(x )=0,则f (x )在此区间内没有单调性.( ) (3)在(a ,b )内f ′(x )≤0且f ′(x )=0的根有有限个,则f (x )在(a ,b )内是减函数.( ) 答案:(1)× (2)√ (3)√如图是函数y =f (x )的导函数y =f ′(x )的图象,则下面判断正确的是( )A .在区间(-3,1)上f (x )是增函数B .在区间(1,3)上f (x )是减函数C .在区间(4,5)上f (x )是增函数D .在区间(3,5)上f (x )是增函数解析:选C.由图象可知,当x ∈(4,5)时,f ′(x )>0,故f (x )在(4,5)上是增函数.(教材习题改编)函数f (x )=cos x -x 在(0,π)上的单调性是( ) A .先增后减 B .先减后增 C .增函数D .减函数解析:选D.因为f ′(x )=-sin x -1<0. 所以f (x )在(0,π)上是减函数,故选D.函数f (x )=x -ln x 的单调递减区间为________.解析:由f ′(x )=1-1x <0,得1x >1,即x <1,又x >0,所以函数f (x )的单调递减区间为(0,1).答案:(0,1)已知f (x )=x 3-ax 在[1,+∞)上是增函数,则实数a 的最大值是________. 解析:f ′(x )=3x 2-a ≥0,即a ≤3x 2,又因为x ∈[1,+∞),所以a ≤3,即a 的最大值是3. 答案:3不含参数函数的单调性(自主练透) 1.函数y =4x 2+1x 的单调增区间为( )A .(0,+∞)B .(12,+∞)C .(-∞,-1)D.⎝⎛⎭⎫-∞,-12 解析:选B.由y =4x 2+1x ,得y ′=8x -1x2,令y ′>0,即8x -1x 2>0,解得x >12,所以函数y =4x 2+1x 的单调增区间为⎝⎛⎭⎫12,+∞. 故选B.2.已知函数f (x )=x ln x ,则f (x )( ) A .在(0,+∞)上递增 B .在(0,+∞)上递减 C .在(0,1e)上递增D .在⎝⎛⎭⎫0,1e 上递减 解析:选D.因为函数f (x )=x ln x ,定义域为(0,+∞),所以f ′(x )=ln x +1(x >0),当f ′(x )>0时,解得x >1e ,即函数的单调递增区间为(1e,+∞);当f ′(x )<0时,解得0<x <1e,即函数的单调递减区间为(0,1e),故选D.3.已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是________.解析:f ′(x )=sin x +x cos x -sin x =x cos x , 令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2, 即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2. 答案:⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2求函数单调区间的步骤(1)确定函数f (x )的定义域. (2)求f ′(x ).(3)在定义域内解不等式f ′(x )>0,得单调递增区间. (4)在定义域内解不等式f ′(x )<0,得单调递减区间.[提醒] 求函数的单调区间时,一定要先确定函数的定义域,否则极易出错.含参数函数的单调性(师生共研)已知f (x )=a (x -ln x )+2x -1x 2,a ∈R .讨论f (x )的单调性.【解】 f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0时,x ∈(0,1)时,f ′(x )>0,f (x )单调递增, x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减. 当a >0时,f ′(x )=a (x -1)x 3⎝⎛⎭⎫x -2a ⎝⎛⎭⎫x +2a . (1)0<a <2时,2a>1, 当x ∈(0,1)或x ∈⎝⎛⎭⎫2a ,+∞时,f ′(x )>0,f (x )单调递增. 当x ∈⎝⎛⎭⎫1,2a 时,f ′(x )<0,f (x )单调递减. (2)a =2时,2a=1,在x ∈(0,+∞)内,f ′(x )≥0, f (x )单调递增. (3)a >2时,0<2a <1,当x ∈⎝⎛⎭⎫0,2a 或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增, 当x ∈⎝⎛⎭⎫2a ,1时,f ′(x )<0,f (x )单调递减. 综上所述,当a ≤0时,f (x )在(0,1)内单调递增,在(1,+∞)内单调递减; 当0<a <2时,f (x )在(0,1)内单调递增,在⎝⎛⎭⎫1,2a 内单调递减,在⎝⎛⎭⎫2a ,+∞内单调递增;当a =2时,f (x )在(0,+∞)内单调递增; 当a >2时,f (x )在⎝⎛⎭⎫0,2a 内单调递增,在⎝⎛⎭⎫2a ,1内单调递减,在(1,+∞)内单调递增.解决含参数的函数单调性问题应注意的2点(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.讨论函数f (x )=(a -1)ln x +ax 2+1的单调性. 解:f (x )的定义域为(0,+∞), f ′(x )=a -1x +2ax =2ax 2+a -1x.①当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; ②当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; ③当0<a <1时,令f ′(x )=0,解得x =1-a 2a ,则当x ∈⎝⎛⎭⎪⎫0, 1-a 2a 时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫1-a2a ,+∞时,f ′(x )>0,故f (x )在⎝ ⎛⎭⎪⎫0, 1-a 2a 上单调递减,在⎝⎛⎭⎪⎫ 1-a2a ,+∞上单调递增.函数单调性的应用(多维探究)角度一 比较大小或解不等式(1)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)(2)已知定义在⎝⎛⎭⎫0,π2上的函数f (x )的导函数为f ′(x ),且对于任意的x ∈⎝⎛⎭⎫0,π2,都有f ′(x )sin x <f (x )cos x ,则( )A.3f ⎝⎛⎭⎫π4>2f ⎝⎛⎭⎫π3 B .f ⎝⎛⎭⎫π3>f (1) C.2f ⎝⎛⎭⎫π6<f ⎝⎛⎭⎫π4D.3f ⎝⎛⎭⎫π6<f ⎝⎛⎭⎫π3【解析】 (1)由f (x )>2x +4,得f (x )-2x -4>0,设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2,因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增,而F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,故选B.(2)令g (x )=f (x )sin x,则g ′(x )=f ′(x )sin x -f (x )cos xsin 2x ,由已知g ′(x )<0在⎝⎛⎭⎫0,π2上恒成立, 所以g (x )在⎝⎛⎭⎫0,π2上单调递减, 所以g ⎝⎛⎭⎫π4>g ⎝⎛⎭⎫π3,即f ⎝⎛⎭⎫π422>f ⎝⎛⎭⎫π332, 所以3f ⎝⎛⎭⎫π4>2f ⎝⎛⎭⎫π3. 【答案】 (1)B (2)A角度二 已知函数的单调性求参数已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. 【解】 (1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2,由于h (x )在(0,+∞)上存在单调递减区间,所以当x ∈(0,+∞)时,1x -ax -2<0有解.即a >1x 2-2x 有解,设G (x )=1x 2-2x,所以只要a >G (x )min 即可. 而G (x )=(1x -1)2-1,所以G (x )min =-1.所以a >-1.(2)由h (x )在[1,4]上单调递减得,当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x恒成立.所以a ≥G (x )max ,而G (x )=(1x -1)2-1,因为x ∈[1,4],所以1x ∈[14,1],所以G (x )max =-716(此时x =4), 所以a ≥-716,即a 的取值范围是[-716,+∞).[迁移探究1] (变问法)若函数h (x )=f (x )-g (x )在[1,4]上单调递增,求a 的取值范围. 解:由h (x )在[1,4]上单调递增得,当x ∈[1,4]时,h ′(x )≥0恒成立, 所以当x ∈[1,4]时,a ≤1x 2-2x 恒成立,又当x ∈[1,4]时,(1x 2-2x )min =-1(此时x =1),所以a ≤-1,即a 的取值范围是(-∞,-1].[迁移探究2] (变问法)若函数h (x )=f (x )-g (x )在[1,4]上存在单调递减区间,求a 的取值范围.解:h (x )在[1,4]上存在单调递减区间, 则h ′(x )<0在[1,4]上有解, 所以当x ∈[1,4]时,a >1x 2-2x 有解,又当x ∈[1,4]时,(1x 2-2x)min =-1,所以a >-1,即a 的取值范围是(-1,+∞).[迁移探究3] (变条件)若函数h (x )=f (x )-g (x )在[1,4]上不单调,求a 的取值范围. 解:因为h (x )在[1,4]上不单调, 所以h ′(x )=0在(1,4)上有解,即a =1x 2-2x有解,令m (x )=1x 2-2x ,x ∈(1,4),则-1<m (x )<-716,所以实数a 的取值范围为⎝⎛⎭⎫-1,-716.(1)利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.(2)利用函数的单调性求参数的取值范围的解题思路①由函数在区间[a ,b ]上单调递增(减)可知f ′(x )≥0(f ′(x )≤0)在区间[a ,b ]上恒成立列出不等式;②利用分离参数法或函数的性质求解恒成立问题;③对等号单独检验,检验参数的取值能否使f ′(x )在整个区间恒等于0,若f ′(x )恒等于0,则参数的这个值应舍去;若只有在个别点处有f ′(x )=0,则参数可取这个值.[提醒] f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任意一个非空子区间上f ′(x )≠0.应注意此时式子中的等号不能省略,否则漏解.1.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时,有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:选C.令F (x )=f (x )g (x ),则F ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2<0,所以F (x )在R上单调递减.又a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ).又f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).2.已知函数f (x )=3xa -2x 2+ln x 在区间[1,2]上为单调函数,求a 的取值范围.解:f ′(x )=3a -4x +1x ,若函数f (x )在区间[1,2]上为单调函数,即在[1,2]上,f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x≤0,即3a -4x +1x ≥0或3a -4x +1x ≤0在[1,2]上恒成立, 即3a ≥4x -1x 或3a ≤4x -1x. 令h (x )=4x -1x ,因为函数h (x )在[1,2]上单调递增,所以3a ≥h (2)或3a ≤h (1),即3a ≥152或3a ≤3,解得a <0或0<a ≤25或a ≥1.分类与整合思想在研究函数单调性中的应用已知函数f (x )=(x -2)·e x +a (x -1)2.讨论f (x )的单调性. 【解】 f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ). (1)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增. (2)设a <0,由f ′(x )=0,解得x =1或x =ln(-2a ). ①若a =-e2,则f ′(x )=(x -1)(e x -e),所以f (x )在(-∞,+∞)上单调递增, ②若a >-e2,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0; 当x ∈(ln(-2a ),1)时,f ′(x )<0,所以f (x )在(-∞,ln(-2a ))和(1,+∞)上单调递增, 在(ln(-2a ),1)上单调递减.③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0; 当x ∈(1,ln(-2a ))时,f ′(x )<0,所以f (x )在(-∞,1)和(ln(-2a ),+∞)上单调递增, 在(1,ln(-2a ))上单调递减.含参数的函数的单调性问题一般要分类讨论,常见有以下几种可能:①方程f ′(x )=0是否有根;②若f ′(x )=0有根,求出根后判断是否在定义域内;③若根在定义域内且有两个,比较根的大小是常见的分类方法.(2019·山东枣庄调研)已知函数f (x )=x e x -a ⎝⎛⎭⎫12x 2+x (a ∈R ). (1)若a =0,求曲线y =f (x )在点(1,e)处的切线方程; (2)当a >0时,求函数f (x )的单调区间.解:(1)a =0时,f ′(x )=(x +1)e x ,所以切线的斜率k =f ′(1)=2e.又f (1)=e ,所以y =f (x )在点(1,e)处的切线方程为y -e =2e(x -1),即2e x -y -e =0.(2)f ′(x )=(x +1)(e x -a ),令f ′(x )=0,得x =-1或x =ln a . ①当a =1e时,f ′(x )≥0恒成立,所以f (x )在R 上单调递增.②当0<a <1e 时,ln a <-1,由f ′(x )>0,得x <ln a 或x >-1;由f ′(x )<0,得ln a <x <-1,所以单调递增区间为(-∞,ln a ),(-1,+∞),单调递减区间为(ln a ,-1).③当a >1e 时,ln a >-1,由f ′(x )>0,得x <-1或x >ln a ;由f ′(x )<0,得-1<x <ln a ,所以单调递增区间为(-∞,-1),(ln a ,+∞),单调递减区间为(-1,ln a ).综上所述,当a =1e 时,f (x )在R 上单调递增;当0<a <1e 时,单调递增区间为(-∞,ln a ),(-1,+∞),单调递减区间为(ln a ,-1);当a >1e 时,单调递增区间为(-∞,-1),(ln a ,+∞),单调递减区间为(-1,ln a ).[基础题组练]1.函数f (x )=1+x -sin x 在(0,2π)上是( ) A .单调递增 B .单调递减C .在(0,π)上增,在(π,2π)上减D .在(0,π)上减,在(π,2π)上增解析:选A.f ′(x )=1-cos x >0恒成立,所以f (x )在R 上递增,在(0,2π)上单调递增. 2.(2019·济南调研)已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )解析:选C.由题意得,当x ∈(-∞,c )时,f ′(x )>0,所以函数f (x )在(-∞,c )上是增函数,因为a <b <c ,所以f (c )>f (b )>f (a ),故选C.3.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞)D .[1,+∞)解析:选D.由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)上单调递增⇔f ′(x )=k -1x ≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x<1,所以k ≥1.即k 的取值范围为[1,+∞).4.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( )A .(1,2]B .(4,+∞)C .(-∞,2)D .(0,3]解析:选A.因为f (x )=12x 2-9ln x ,所以f ′(x )=x -9x (x >0),由x -9x≤0,得0<x ≤3,所以f (x )在(0,3]上是减函数,则[a -1,a +1]⊆(0,3],所以a -1>0且a +1≤3,解得1<a ≤2.5.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:选C.因为当x ∈(-∞,1)时,(x -1)f ′(x )<0,所以f ′(x )>0,所以函数f (x )在(-∞,1)上是单调递增函数,所以a =f (0)<f ⎝⎛⎭⎫12=b ,又f (x )=f (2-x ), 所以c =f (3)=f (-1),所以c =f (-1)<f (0)=a ,所以c <a <b ,故选C. 6.函数f (x )=x 4+54x -ln x 的单调递减区间是________.解析:因为f (x )=x 4+54x -ln x ,所以函数的定义域为(0,+∞),且f ′(x )=14-54x 2-1x =x 2-4x -54x 2,令f ′(x )<0,解得0<x <5,所以函数f (x )的单调递减区间为(0,5). 答案:(0,5)7.若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________. 解析:由题意知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点,所以3ax 2+6x -1=0需满足a ≠0,且Δ=36+12a >0,解得a >-3,所以实数a 的取值范围是(-3,0)∪(0,+∞).答案:(-3,0)∪(0,+∞)8.已知函数y =f (x )(x ∈R )的图象如图所示,则不等式xf ′(x )≥0的解集为________.解析:由f (x )图象特征可得,f ′(x )在⎝⎛⎦⎤-∞,12和[2,+∞)上大于0,在⎝⎛⎭⎫12,2上小于0, 所以xf ′(x )≥0⇔⎩⎪⎨⎪⎧x ≥0,f ′(x )≥0或⎩⎪⎨⎪⎧x ≤0,f ′(x )≤0⇔0≤x ≤12或x ≥2,所以xf ′(x )≥0的解集为⎣⎡⎦⎤0,12∪[2,+∞). 答案:⎣⎡⎦⎤0,12∪[2,+∞) 9.已知函数f (x )=ln x +ke x(k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值; (2)求f (x )的单调区间.解:(1)由题意得f ′(x )=1x-ln x -k e x ,又因为f ′(1)=1-ke =0,故k =1.(2)由(1)知,f ′(x )=1x-ln x -1e x ,设h (x )=1x -ln x -1(x >0),则h ′(x )=-1x 2-1x<0,即h (x )在(0,+∞)上是减函数.由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0; 当x >1时,h (x )<0,从而f ′(x )<0.综上可知,f (x )的单调递增区间是(0,1),单调递减区间是(1,+∞). 10.已知函数f (x )=x 3-ax -1.(1)若f (x )在R 上为增函数,求实数a 的取值范围;(2)若函数f (x )在(-1,1)上为单调减函数,求实数a 的取值范围; (3)若函数f (x )的单调递减区间为(-1,1),求实数a 的值; (4)若函数f (x )在区间(-1,1)上不单调,求实数a 的取值范围. 解:(1)因为f (x )在(-∞,+∞)上是增函数,所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立, 即a ≤3x 2对x ∈R 恒成立. 因为3x 2≥0, 所以只需a ≤0.又因为a =0时,f ′(x )=3x 2≥0,f (x )=x 3-1在R 上是增函数,所以a ≤0,即实数a 的取值范围为(-∞,0]. (2)由题意知f ′(x )=3x 2-a ≤0在(-1,1)上恒成立, 所以a ≥3x 2在(-1,1)上恒成立,因为当-1<x <1时,3x 2<3,所以a ≥3,所以a 的取值范围为[3,+∞). (3)由题意知f ′(x )=3x 2-a ,则f (x )的单调递减区间为⎝⎛⎭⎫-3a 3,3a 3, 又f (x )的单调递减区间为(-1,1), 所以3a3=1,解得a =3. (4)由题意知:f ′(x )=3x 2-a ,当a ≤0时,f ′(x )≥0,此时f (x )在(-∞,+∞)上为增函数,不合题意,故a >0.令f ′(x )=0,解得x =±3a 3. 因为f (x )在区间(-1,1)上不单调,所以f ′(x )=0在(-1,1)上有解,需0<3a3<1,得0<a <3, 所以实数a 的取值范围为(0,3).[综合题组练]1.(2019·南昌模拟)已知函数f (x )=x sin x ,x 1,x 2∈⎝⎛⎭⎫-π2,π2,且f (x 1)<f (x 2),那么( )A .x 1-x 2>0B .x 1+x 2>0C .x 21-x 22>0D .x 21-x 22<0解析:选D.由f (x )=x sin x ,得f ′(x )=sin x +x cos x =cos x (tan x +x ),当x ∈⎝ ⎛⎭⎪⎫0,π2时,f ′(x )>0,即f (x )在⎝ ⎛⎭⎪⎫0,π2上为增函数,又f (-x )=-x sin(-x )=x sin x =f (x ),所以f (x )为偶函数,所以当f (x 1)<f (x 2)时,有f (|x 1|)<f (|x 2|),所以|x 1|<|x 2|,x 21-x 22<0,故选D.2.(应用型)设函数f (x )=e x +x -2,g (x )=ln x +x 2-3.若实数a ,b 满足f (a )=0,g (b )=0,则( )A .g (a )<0<f (b )B .f (b )<0<g (a )C .0<g (a )<f (b )D .f (b )<g (a )<0解析:选A.因为函数f (x )=e x +x -2在R 上单调递增,且f (0)=1-2<0,f (1)=e -1>0,所以f (a )=0时a ∈(0,1).又g (x )=ln x +x 2-3在(0,+∞)上单调递增,且g (1)=-2<0,所以g (a )<0.由g (2)=ln 2+1>0,g (b )=0得b ∈(1,2),又f (1)=e -1>0, 所以f (b )>0.综上可知,g (a )<0<f (b ).3.(应用型)已知函数f (x )=ln x +2x ,若f (x 2+2)<f (3x ),则实数x 的取值范围是________. 解析:由题可得函数定义域为(0,+∞),f ′(x )=1x +2x ln 2,所以在定义域内f ′(x )>0,函数单调递增,所以由f (x 2+2)<f (3x )得x 2+2<3x ,所以1<x <2.答案:(1,2)4.设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是________.解析:设y =g (x )=f (x )x (x ≠0),则g ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0,所以 g ′(x )<0,所以 g (x )在(0,+∞)上为减函数,且g (1)=f (1)=-f (-1)=0.因为 f (x )为奇函数,所以 g (x )为偶函数, 所以 g (x )的图象的示意图如图所示. 当x >0,g (x )>0时,f (x )>0,0<x <1, 当x <0,g (x )<0时,f (x )>0,x <-1,所以 使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1). 答案:(-∞,-1)∪(0,1)5.(综合型)设函数f (x )=a ln x +x -1x +1,其中a 为常数.(1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)讨论函数f (x )的单调性. 解:(1)由题意知a =0时,f (x )=x -1x +1,x ∈(0,+∞), 此时f ′(x )=2(x +1)2, 可得f ′(1)=12,又f (1)=0,所以曲线y =f (x )在(1,f (1))处的切线方程为x -2y -1=0. (2)函数f (x )的定义域为(0,+∞). f ′(x )=a x +2(x +1)2=ax 2+(2a +2)x +a x (x +1)2.当a ≥0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增; 当a <0时,令g (x )=ax 2+(2a +2)x +a , Δ=(2a +2)2-4a 2=4(2a +1).①当a =-12时,Δ=0,f ′(x )=-12(x -1)2x (x +1)2≤0,函数f (x )在(0,+∞)上单调递减. ②当a <-12时,Δ<0,g (x )<0,f ′(x )<0,函数f (x )在(0,+∞)上单调递减. ③当-12<a <0时,Δ>0,设x 1,x 2(x 1<x 2)是函数g (x )的两个零点, 则x 1=-(a +1)+2a +1a ,x 2=-(a +1)-2a +1a.由于x 1=a +1-2a +1-a=a 2+2a +1-2a +1-a>0,所以当x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减,当x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增,当x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减. 综上可得:当a ≥0时,函数f (x )在(0,+∞)上单调递增; 当a ≤-12时,函数f (x )在(0,+∞)上单调递减;当-12<a <0时,f (x )在⎝⎛⎭⎪⎫0,-(a +1)+2a +1a ,⎝ ⎛⎭⎪⎫-(a +1)-2a +1a ,+∞上单调递减,在⎝⎛⎭⎪⎫-(a +1)+2a +1a ,-(a +1)-2a +1a 上单调递增. 6.已知函数f (x )=a ln x -ax -3(a ∈R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎡⎦⎤f ′(x )+m2在区间(t ,3)上总不是单调函数,求m 的取值范围. 解:(1)函数f (x )的定义域为(0,+∞), 且f ′(x )=a (1-x )x,当a >0时,f (x )的单调增区间为(0,1), 单调减区间为(1,+∞);当a <0时,f (x )的单调增区间为(1,+∞),单调减区间为(0,1); 当a =0时,f (x )为常函数.(2)由(1)及题意得f ′(2)=-a2=1,即a =-2,所以f (x )=-2ln x +2x -3,f ′(x )=2x -2x .所以g (x )=x 3+⎝⎛⎭⎫m 2+2x 2-2x , 所以g ′(x )=3x 2+(m +4)x -2.因为g (x )在区间(t ,3)上总不是单调函数, 即g ′(x )在区间(t ,3)上有变号零点. 由于g ′(0)=-2,所以⎩⎪⎨⎪⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0时,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9; 由g ′(3)>0,即m >-373.所以-373<m <-9.即实数m 的取值范围是⎝⎛⎭⎫-373,-9.。
导数与函数的单调性(高三一轮复习)

例1 (1)(多选)下列选项中,在(-∞,+∞)上单调递增的函数有( BD )
A.f(x)=x4
B.f(x)=x-sin x
C.f(x)=xex
D.f(x)=ex-e-x
数学 N 必备知识 自主学习 关键能力 互动探究 (2)函数y=f′(x)的图象如图所示,则函数y=f(x)的大致图象是( A )
∞),∴a≤2.又a>0,∴0<a≤2.
解法二:y′=1-
a2 x2
,依题意知1-
a2 x2
≥0,即a2≤x2在x∈[2,+∞)上恒成立,
∵x∈[2,+∞),∴x2≥4,∴a2≤4,又a>0,∴0<a≤2.
数学 N 必备知识 自主学习 关键能力 互动探究
— 11 —
关键能力 互动探究
命题点1 不含参函数的单调性
数学 N 必备知识 自主学习 关键能力 互动探究
— 6—
基|础|自|测
1.思考辨析(正确的打“√”,错误的打“×”) (1)如果函数f(x)在某个区间内恒有f′(x)≥0,则f(x)在此区间内单调递增.( ×) (2)在(a,b)内f′(x)≤0且f′(x)=0的根有有限个,则f(x)在(a,b)内是减函 数.( √ ) (3)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内不具有单调 性.( √ )
— 16 —
思维点睛►
讨论函数f(x)单调性的步骤 (1)确定函数f(x)的定义域. (2)求导数f′(x),并求方程f′(x)=0的根. (3)利用f′(x)=0的根将函数的定义域分成若干个子区间,在这些子区间上讨论 f′(x)的正负,由符号确定f(x)在该区间上的单调性.
数学 N 必备知识 自主学习 关键能力 互动探究
2020版高考数学一轮复习第三章导数及其应用第2讲导数与函数的单调性教案理(含解析)新人教A版

第2讲 导数与函数的单调性基础知识整合函数的导数与单调性的关系 函数y =f (x )在某个区间内可导:(1)若f ′(x )>0,则f (x )在这个区间内□01单调递增; (2)若f ′(x )<0,则f (x )在这个区间内□02单调递减; (3)若f ′(x )=0,则f (x )在这个区间内是□03常数函数.1.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件.2.可导函数f (x )在(a ,b )上是增(减)函数的充要条件是对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零.1.(2019·许昌模拟)函数f (x )=ln xx的单调递减区间是( )A .(e ,+∞)B .(1,+∞)C .(0,e)D .(0,1)答案 A解析 f ′(x )=1-ln x x2,由x >0及f ′(x )<0解得x >e.故选A. 2.函数f (x )=x 3-ax 为R 上增函数的一个充分不必要条件是( ) A .a ≤0 B .a <0 C .a ≥0 D .a >0答案 B解析 函数f (x )=x 3-ax 为R 上增函数的充分必要条件是f ′(x )=3x 2-a ≥0在R 上恒成立,所以a ≤(3x 2)min .因为(3x 2)min =0,所以a ≤0.而(-∞,0)⊆(-∞,0].故选B.3.当x >0时,f (x )=x +4x的单调减区间是( )A .(2,+∞)B .(0,2)C .(2,+∞)D .(0,2)答案 B解析 f ′(x )=1-4x2,令f ′(x )<0,∴⎩⎪⎨⎪⎧1-4x2<0,x >0,∴0<x <2.∴f (x )的减区间为(0,2).4.(2019·芜湖模拟)函数f (x )=e x-e x ,x ∈R 的单调递增区间是( ) A .(0,+∞) B .(-∞,0) C .(-∞,1) D .(1,+∞)答案 D解析 由题意知,f ′(x )=e x-e ,令f ′(x )>0,解得x >1.故选D. 5.已知定义在R 上的奇函数f (x )的导函数为f ′(x ),当x >0时,f ′(x )<f xx,且f (-1)=0,则使得f (x )>0成立的x 的取值范围是( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(0,1)∪(1,+∞)D .(-∞,-1)∪(-1,0)答案 B6.(2019·九江模拟)已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎢⎡⎦⎥⎤13,2上是增函数,则实数a 的取值范围为________.答案 ⎣⎢⎡⎭⎪⎫43,+∞解析 由题意知f ′(x )=x +2a -1x ≥0在⎣⎢⎡⎦⎥⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎢⎡⎦⎥⎤13,2上恒成立,因为g (x )=-x +1x 在⎣⎢⎡⎦⎥⎤13,2上单调递减,所以g (x )≤g ⎝ ⎛⎭⎪⎫13=83,所以2a ≥83,即a ≥43.故填⎣⎢⎡⎭⎪⎫43,+∞.核心考向突破考向一 利用导数求函数的单调区间例1 (1)(2019·邯郸模拟)已知函数f (x )=x 2-5x +2ln x ,则函数f (x )的单调递增区间是( )A.⎝ ⎛⎭⎪⎫0,12和(1,+∞) B .(0,1)和(2,+∞)C.⎝ ⎛⎭⎪⎫0,12和(2,+∞) D .(1,2)答案 C解析 函数f (x )=x 2-5x +2ln x 的定义域是(0,+∞),令f ′(x )=2x -5+2x=2x 2-5x +2x=x -x -x>0,解得0<x <12或x >2,故函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,12和(2,+∞).(2)设函数f (x )=x (e x-1)-12x 2,则f (x )的单调递增区间是________,单调递减区间是________.答案 (-∞,-1),(0,+∞) [-1,0] 解析 ∵f (x )=x (e x-1)-12x 2,∴f ′(x )=e x-1+x e x-x =(e x-1)(x +1). 当x ∈(-∞,-1)时,f ′(x )>0. 当x ∈[-1,0]时,f ′(x )≤0. 当x ∈(0,+∞)时,f ′(x )>0.故f (x )在(-∞,-1),(0,+∞)上单调递增,在[-1,0]上单调递减. 触类旁通 当方程fx =0可解时,确定函数的定义域,解方程f x =0,求出实数根,把函数f x 的间断点即f x 的无定义点的横坐标和实根按从小到大的顺序排列起来,把定义域分成若干个小区间,确定fx 在各个区间内的符号,从而确定单调区间.即时训练 1.(2019·陕西模拟)函数f (x )=axx 2+1(a >0)的单调递增区间是( )A .(-∞,-1)B .(-1,1)C .(1,+∞)D .(-∞,-1)∪(1,+∞)答案 B解析 函数f (x )的定义域为R ,f ′(x )=a-x 2x 2+2=a -x +xx 2+2.由于a >0,要使f ′(x )>0,只需(1-x )·(1+x )>0,解得x ∈(-1,1).故选B.2.函数f (x )=x +2cos x (x ∈(0,π))的单调递减区间为________.答案 ⎝ ⎛⎭⎪⎫π6,5π6解析 f ′(x )=1-2sin x ,令f ′(x )<0得sin x >12,故π6<x <5π6.考向二 利用导数讨论函数的单调区间例2 (1)(2018·青岛模拟)已知函数f (x )=ln x -ax (a ∈R ),讨论函数f (x )的单调性.解 f (x )的定义域为(0,+∞),f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x-a >0,即函数f (x )在(0,+∞)上单调递增.②当a >0时,令f ′(x )=1x -a =0,可得x =1a,当0<x <1a 时,f ′(x )=1-axx>0;当x >1a 时,f ′(x )=1-ax x<0,故函数f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.由①②知,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.(2)已知函数f (x )=13x 3+x 2+ax +1(a ∈R ),求函数f (x )的单调区间.解 f ′(x )=x 2+2x +a ,方程x 2+2x +a =0的判别式Δ=4-4a =4(1-a ), 若a ≥1,则Δ≤0,f ′(x )=x 2+2x +a ≥0,∴f (x )在R 上单调递增.若a <1,则Δ>0,方程x 2+2x +a =0有两个不同的实数根,x 1=-1-1-a ,x 2=-1+1-a ,当x <x 1或x >x 2时,f ′(x )>0;当x 1<x <x 2时,f ′(x )<0,∴f (x )的单调递增区间为(-∞,-1-1-a )和(-1+1-a ,+∞), 单调递减区间为(-1-1-a ,-1+1-a ). 触类旁通研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.遇二次三项式因式常考虑二次项系数、对应方程的判别式以及根的大小关系,以此来确定分界点,分情况讨论.划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.个别导数为0的点不影响所在区间的单调性,如f x=x 3,fx =3x2f x =0在x =0时取到,f x 在R 上是增函数.即时训练 3.已知函数f (x )=e x(ax 2-2x +2)(a >0),试讨论f (x )的单调性. 解 由题意得f ′(x )=e x[ax 2+(2a -2)x ](a >0),令f ′(x )=0,解得x 1=0,x 2=2-2aa.(1)当0<a <1时,f (x )的单调递增区间为(-∞,0)和⎝⎛⎭⎪⎫2-2a a ,+∞,单调递减区间为⎝⎛⎭⎪⎫0,2-2a a ;(2)当a =1时,f (x )在(-∞,+∞)内单调递增;(3)当a >1时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-∞,2-2a a 和(0,+∞),单调递减区间为⎝ ⎛⎭⎪⎫2-2a a ,0. 4.已知函数f (x )=(a -1)ln x +ax 2+1,a ∈R ,试讨论f (x )的单调性. 解 f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x.(1)当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增. (2)当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减. (3)当0<a <1时,令f ′(x )=0, 解得x =1-a2a, 则当x ∈⎝⎛⎭⎪⎫0,1-a 2a 时,f ′(x )<0; 当x ∈⎝⎛⎭⎪⎫1-a 2a ,+∞时,f ′(x )>0, 故f (x )在⎝⎛⎭⎪⎫0,1-a 2a 上单调递减, 在⎝⎛⎭⎪⎫1-a 2a ,+∞上单调递增. 考向三 利用导数解决函数单调性的应用问题角度1 比较大小或解不等式例3 (1)已知函数f (x )=-xex +ln 2,则( )A .f ⎝ ⎛⎭⎪⎫1e =f ⎝ ⎛⎭⎪⎫12B .f ⎝ ⎛⎭⎪⎫1e <f ⎝ ⎛⎭⎪⎫12C .f ⎝ ⎛⎭⎪⎫1e >f ⎝ ⎛⎭⎪⎫12 D .f ⎝ ⎛⎭⎪⎫1e ,f ⎝ ⎛⎭⎪⎫12的大小关系无法确定 答案 C解析 f ′(x )=-e x--xxe x ·ex=x -1ex,当x <1时,f ′(x )<0,函数f (x )单调递减.∵1e <12<1,∴f ⎝ ⎛⎭⎪⎫1e >f ⎝ ⎛⎭⎪⎫12.故选C. (2)已知定义域为R 的函数f (x )满足f (4)=-3,且对任意的x ∈R 总有f ′(x )<3,则不等式f (x )<3x -15的解集为________.答案 (4,+∞)解析 令g (x )=f (x )-3x +15,则g ′(x )=f ′(x )-3<0,所以g (x )在R 上是减函数.又g (4)=f (4)-3×4+15=0,所以f (x )<3x -15的解集为(4,+∞).触类旁通利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.即时训练 5.(2019·青岛二中月考)已知定义域为R 的函数f (x )的导数为f ′(x ),且满足f ′(x )<2x ,f (2)=3,则不等式f (x )>x 2-1的解集是( )A .(-∞,-1)B .(-1,+∞)C .(2,+∞)D .(-∞,2)答案 D解析 令g (x )=f (x )-x 2,则g ′(x )=f ′(x )-2x <0,即函数g (x )在R 上单调递减.又不等式f (x )>x 2-1可化为f (x )-x 2>-1,而g (2)=f (2)-22=3-4=-1,所以不等式可化为g (x )>g (2),故不等式的解集为(-∞,2).故选D.6.(2019·河北石家庄模拟)已知f (x )=ln x x,则( )A .f (2)>f (e)>f (3)B .f (3)>f (e)>f (2)C .f (e)>f (2)>f (3)D .f (e)>f (3)>f (2)答案 D解析 f ′(x )=1-ln x x2,当x ∈(0,e)时,f ′(x )>0;当x ∈(e ,+∞)时,f ′(x )<0,x =e 时,f (x )max =f (e).f (2)=ln 22=ln 86,f (3)=ln 33=ln 96, f (e)>f (3)>f (2).故选D.角度2 根据函数的单调性求参数例4 (1)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( )A .(1,2]B .(4,+∞)C .(-∞,2)D .(0,3]答案 A解析 因为f (x )=12x 2-9ln x ,所以f ′(x )=x -9x (x >0),当x -9x ≤0时,有0<x ≤3,即在(0,3]上函数f (x )是减函数,则[a -1,a +1]⊆(0,3],所以a -1>0且a +1≤3,解得1<a ≤2.故选A.(2)(2019·西宁模拟)若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-19,+∞解析 对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a .当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a .令29+2a >0,解得a >-19.所以a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞. 触类旁通(1)f (x )在区间D 上单调递增(减),只要f ′(x )≥0(≤0)在D 上恒成立即可,如果能够分离参数,则尽可能分离参数后转化为参数值与函数最值之间的关系.二次函数在区间D 上大于零恒成立,讨论的标准是二次函数图象的对称轴与区间D 的相对位置,一般分对称轴在区间左侧、内部、右侧进行讨论.即时训练 7.若函数f (x )=x 2+ax +1x 在⎝ ⎛⎭⎪⎫12,+∞上是增函数,则a 的取值范围是________.答案 [3,+∞)解析 由条件知f ′(x )=2x +a -1x 2≥0在⎝ ⎛⎭⎪⎫12,+∞上恒成立,即a ≥1x 2-2x 在⎝ ⎛⎭⎪⎫12,+∞上恒成立.∵函数y =1x 2-2x 在⎝ ⎛⎭⎪⎫12,+∞上为减函数,∴y max<1⎝ ⎛⎭⎪⎫122-2×12=3,∴a ≥3.8.已知函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值范围是________.答案 (0,1)∪(2,3)解析 由题意知f ′(x )=-x +4-3x =-x 2+4x -3x=-x -x -x,由f ′(x )=0得函数f (x )的两个极值点为1,3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,得0<t <1或2<t <3.故填(0,1)∪(2,3).1.(2019·天津模拟)设f (x ),g (x )在[a ,b ]上可导,且f ′(x )>g ′(x ),则当a <x <b 时,有( )A .f (x )>g (x )B .f (x )<g (x )C .f (x )+g (a )>g (x )+f (a )D .f (x )+g (b )>g (x )+f (b ) 答案 C解析 ∵f ′(x )>g ′(x ),∴[f (x )-g (x )]′>0. ∴f (x )-g (x )在[a ,b ]上是增函数. ∴f (a )-g (a )<f (x )-g (x ). 即f (x )+g (a )>g (x )+f (a ).2.f (x )为定义在R 上的可导函数,且f ′(x )>f (x ),对任意正实数a ,则下列式子成立的是( )A .f (a )<e af (0) B .f (a )>e af (0) C .f (a )<feaD .f (a )>fea答案 B 解析 令g (x )=f xex,则g ′(x )=f x x-f xxx2=f x -f xex>0.∴g (x )在R 上为增函数,又∵a >0,∴g (a )>g (0),即f aea>fe.故f (a )>e af (0).答题启示(1)若知xf ′(x )+f (x )的符号,则构造函数g (x )=xf (x );一般地,若知xf ′(x )+nf (x )的符号,则构造函数g (x )=x nf (x ).(2)若知xf ′(x )-f (x )的符号,则构造函数g (x )=f xx;一般地,若知xf ′(x )-nf (x )的符号,则构造函数g (x )=f xx n.(3)若知f ′(x )+f (x )的符号,则构造函数f (x )=e xf (x );一般地,若知f ′(x )+nf (x )的符号,则构造函数g (x )=e nx·f (x ).(4)若知f ′(x )-f (x )的符号,则构造函数f (x )=f xex;一般地,若知f ′(x )-nf (x )的符号,则构造函数g (x )=f xenx.对点训练1.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )-f (x )≤0,对任意正数a ,b ,若a <b ,则必有( )A .af (b )≤bf (a )B .bf (a )≤af (b )C .af (a )≤bf (b )D .bf (b )≤af (a )答案 A解析 设函数F (x )=f x x (x >0),则F ′(x )=⎣⎢⎡⎦⎥⎤f x x ′=xfx -f xx 2.因为x >0,xf ′(x )-f (x )≤0,所以F ′(x )≤0,故函数F (x )在(0,+∞)上为减函数. 又0<a <b ,所以F (a )≥F (b ),即f a a ≥f bb,则bf (a )≥af (b ). 2.(2018·南昌调研)已知函数f (x )是定义在R 上的偶函数,设函数f (x )的导函数为f ′(x ),若对任意的x >0都有2f (x )+xf ′(x )>0成立,则( )A .4f (-2)<9f (3)B .4f (-2)>9f (3)C .2f (3)>3f (-2)D .3f (-3)<2f (-2)答案 A解析 根据题意,令g (x )=x 2f (x ),其导数g ′(x )=2xf (x )+x 2f ′(x ),又对任意的x >0都有2f (x )+xf ′(x )>0成立,则当x >0时,有g ′(x )=x [2f (x )+xf ′(x )]>0恒成立,即函数g (x )在(0,+∞)上为增函数,又由函数f (x )是定义在R 上的偶函数,则f (-x )=f (x ),则有g (-x )=(-x )2f (-x )=x 2f (x )=g (x ),即函数g (x )也为偶函数,则有g (-2)=g (2),且g (2)<g (3),则有g (-2)<g (3),即有4f (-2)<9f (3).故选A.。
全国通用高考数学一轮复习第三章导数及其应用第2讲导数的应用第1课时利用导数研究函数的单调性课件理北师大

【训练 1】 已知函数 f(x)=4x+ax-ln x-32,其中 a∈R,且曲 线 y=f(x)在点(1,f(1))处的切线垂直于直线 y=12x. (1)求 a 的值; (2)求函数 f(x)的单调区间.
解 (1)对 f(x)求导得 f′(x)=14-xa2-1x, 由 f(x)在点(1,f(1))处的切线垂直于直线 y=12x 知 f′(1)=-34 -a=-2,解得 a=54. (2)由(1)知 f(x)=4x+45x-ln x-32,(x>0). 则 f′(x)=x2-44xx2-5.令 f′(x)=0,解得 x=-1 或 x=5. 但-1∉(0,+∞),舍去. 当 x∈(0,5)时,f′(x)<0;当 x∈(5,+∞)时,f′(x)>0. ∴f(x)的增区间为(5,+∞),减区间为(0,5).
规律方法 利用单调性求参数的两类热点问题的处理方法 (1)函数f(x)在区间D上存在递增(减)区间. 方法一:转化为“f′(x)>0(<0)在区间D上有解”; 方法二:转化为“存在区间D的一个子区间使f′(x)>0(<0)成 立”. (2)函数f(x)在区间D上递增(减). 方法一:转化为“f′(x)≥0(≤0)在区间D上恒成立”问题; 方法二:转化为“区间D是函数f(x)的单调递增(减)区间的子 集”.
易错警示 对于①:处理函数单调性问题时,应先求函数 的定义域; 对于②:h(x)在(0,+∞)上存在递减区间,应等价于h′(x)<0 在(0,+∞)上有解,易误认为“等价于h′(x)≤0在(0,+∞) 上有解”,多带一个“=”之所以不正确,是因为“h′(x)≤0在 (0,+∞)上有解即为h′(x)<0在(0,+∞)上有解,或h′(x)=0 在(0,+∞)上有解”,后者显然不正确; 对于③:h(x)在[1,4]上单调递减,应等价于h′(x)≤0在[1, 4]上恒成立,易误认为“等价于h′(x)<0在[1,4]上恒成立”.
浙江专用2020届高考数学一轮复习第三章导数3.2导数的应用教师用书PDF

解题导引
利用导函数大于或
(1)
→ 利用单调性证明不等式
等于零得单调区间
利用第(1)问求得 讨论 h(a) 利用单调性得
(2)→Biblioteka →g( x) 的最小值
的单调性 h(a)的值域
解析 (1)易知 f(x)的定义域为( -∞ ,-2)∪( -2,+∞ ).
(2 分)
f
′( x)=
(x-1)(x+2)ex -(x-2)ex (x+2) 2
∵ e-x >0,
∴ 由 f ′( x) <0,得 x<1 或 x>2,
由 f ′( x) >0,得 1<x<2.
(5 分)
∴ f(x)的单调递减区间为( -∞ ,1),( 2,+∞ ),单调递增区
间为(1,2) .
(7 分)
(2) ∵ f( x) ≥-x2 +2x+m 在 x∈[0,2] 上恒成立,
对应学生用书起始页码 P58
一、利用导数研究函数的单调性问题的解题策略
������������������������������������������������������������������������������������������������������������������������������������������
第三章 导数 3 5
结合 f ( x) 的奇偶性知, f ( x) < 0 的解集为 ( - 2π, - π) ∪
( -π,0) ∪(0,π) ∪( π,2π) .
{f( x) <0,
所以 sin x·f( x) >0 等价于
因此 sin x·f( x) >0 的
sin x<0,
解集是( -π,0) ∪( π,2π) .故选 C.
2023年高考数学总复习第三章 导数及其应用第2节:导数与函数的单调性(教师版)

2023年高考数学总复习第三章导数及其应用第2节导数与函数的单调性考试要求 1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次);2.利用导数研究函数的单调性,并会解决与之有关的方程(不等式)问题.1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.利用导数求函数单调区间的基本步骤(1)确定函数f(x)的定义域;(2)求导数f′(x);(3)由f′(x)>0(或<0)解出相应的x的取值范围.当f′(x)>0时,f(x)在相应的区间内是单调递增函数;当f′(x)<0时,f(x)在相应的区间内是单调递减函数.3.单调性的应用若函数y=f(x)在区间(a,b)上单调,则y=f′(x)在该区间上不变号.若函数f(x)在区间(a,b)上递增,则f′(x)≥0,所以“f′(x)>0在(a,b)上成立”是“f(x)在(a,b)上单调递增”的充分不必要条件.1.思考辨析(在括号内打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.()(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.()(3)函数在(a,b)内单调递减与函数的单调递减区间为(a,b)是不同的.()(4)函数f(x)=x-sin x在R上是增函数.()答案(1)×(2)√(3)√(4)√解析(1)f(x)在(a,b)内单调递增,则有f′(x)≥0.2.(易错题)函数f(x)=x+ln(2-x)的单调递增区间为()A.(-∞,1)B.(-∞,2)C.(1,+∞)D.(2,+∞)答案A解析由f(x)=x+ln(2-x),得f′(x)=1-12-x=1-x2-x(x<2).令f′(x)>0,即1-x2-x>0,解得x<1.∴函数f(x)=x+ln(2-x)的单调递增区间为(-∞,1).3.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图像如图所示,则函数y=f(x)的图像可能是()答案D解析设导函数y=f′(x)与x轴交点的横坐标从左往右依次为x1,x2,x3,由导函数y=f′(x)的图像易得当x∈(-∞,x1)∪(x2,x3)时,f′(x)<0;当x∈(x1,x2)∪(x3,+∞)时,f′(x)>0(其中x1<0<x2<x3),所以函数f(x)在(-∞,x1),(x2,x3)上单调递减,在(x1,x2),(x3,+∞)上单调递增,观察各选项,只有D选项符合.4.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.R答案B解析由f(x)>2x+4,得f(x)-2x-4>0,设F(x)=f(x)-2x-4,则F′(x)=f′(x)-2,因为f′(x)>2,所以F′(x)>0在R上恒成立,所以F(x)在R上递增,而F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x-4>0等价于F(x)>F(-1),所以x>-1,故选B.5.(易错题)若函数f(x)=13x3-32x2+ax+4的单调递减区间为[-1,4],则实数a的值为________.答案-4解析f′(x)=x2-3x+a,且f(x)的单调递减区间为[-1,4],∴f′(x)=x2-3x+a≤0的解集为[-1,4],∴-1,4是方程f′(x)=0的两根,则a=(-1)×4=-4.6.(2021·青岛检测)已知函数f(x)=sin2x+4cos x-ax在R上单调递减,则实数a 的取值范围是________.答案[3,+∞)解析f′(x)=2cos2x-4sin x-a=2(1-2sin2x)-4sin x-a=-4sin2x-4sin x+2-a=-(2sin x+1)2+3-a.由题设,f′(x)≤0在R上恒成立.因此a≥3-(2sin x+1)2恒成立,则a≥3.考点一不含参函数的单调性1.函数f(x)=x+3x+2ln x的单调递减区间是()A.(-3,1)B.(0,1)C.(-1,3)D.(0,3)答案B 解析法一函数的定义域是(0,+∞),f ′(x )=1-3x 2+2x ,令f ′(x )=1-3x 2+2x<0,得0<x <1,故所求函数的单调递减区间为(0,1),故选B.法二由题意知x >0,故排除A 、C 选项;又f (1)=4<f (2)=72+2ln 2,故排除D选项.故选B.2.函数f (x )=(x -3)e x 的单调递增区间为________.答案(2,+∞)解析f (x )的定义域为R ,f ′(x )=(x -2)e x ,令f ′(x )>0,得x >2,∴f (x )的单调递增区间为(2,+∞).3.已知定义在区间(0,π)上的函数f (x )=x +2cos x ,则f (x )的单调递增区间为________.答案0,π6,5π6,π解析f ′(x )=1-2sin x ,x ∈(0,π),令f ′(x )=0,得x =π6或x =5π6,当0<x <π或5π<x <π时,f ′(x )>0,∴f (x )0,π6,5π6,π.感悟提升确定函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;(4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.考点二讨论含参函数的单调性例1已知函数f (x )=12ax 2-(a +1)x +ln x ,a >0,试讨论函数y =f (x )的单调性.解函数f (x )的定义域为(0,+∞),f′(x)=ax-(a+1)+1x=ax2-(a+1)x+1x=(ax-1)(x-1)x.(1)当0<a<1时,1a>1,∴x∈(0,1)f′(x)>0;x f′(x)<0,∴函数f(x)在(0,1)(2)当a=1时,1a=1,∴f′(x)≥0在(0,+∞)上恒成立,∴函数f(x)在(0,+∞)上单调递增;(3)当a>1时,0<1a<1,∴x(1,+∞)时,f′(x)>0;x f′(x)<0,∴函数f(x)(1,+∞).综上,当0<a<1时,函数f(x)在(0,1)减;当a=1时,函数f(x)在(0,+∞)上单调递增;当a>1时,函数f(x)(1,+∞).感悟提升 1.含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.遇二次三项式常考虑二次项系数、对应方程的判别式以及根的大小关系,以此来确定分界点,分情况讨论.2.划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.3.个别导数为0的点不影响所在区间的单调性,如f(x)=x3,f′(x)=3x2≥0(f′(x)=0在x=0时取到),f(x)在R上是增函数.训练1已知f (x )=a (x -ln x )+2x -1x 2,a >0,讨论f (x )的单调性.解f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3=a (x -1)x 3x -2a x +2a (1)当0<a <2时,2a>1,当x (0,1)∪2a,+∞时,f ′(x )>0,当x 1,2a 时,f ′(x )<0.(2)当a =2时,2a =1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )递增.(3)当a >2时,0<2a <1,当x 0,2a ∪(1,+∞)时,f ′(x )>0,当x 2a,1时,f ′(x )<0.综上所述,当0<a <2时,f (x )在(0,1)2a ,+∞内递增,在1,2a 内递减.当a =2时,f (x )在(0,+∞)内递增;当a >2时,f (x )0,2a (1,+∞)2a,1.考点三根据函数单调性求参数值(范围)例2(经典母题)已知x =1是f (x )=2x +bx +ln x 的一个极值点.(1)求函数f (x )的单调递减区间;(2)设函数g (x )=f (x )-3+ax,若函数g (x )在区间[1,2]内单调递增,求实数a 的取值范围.解(1)f (x )=2x +bx+ln x ,定义域为(0,+∞).∴f ′(x )=2-b x 2+1x =2x 2+x -bx2.因为x=1是f(x)=2x+bx+ln x的一个极值点,所以f′(1)=0,即2-b+1=0.解得b=3,经检验,适合题意,所以b=3.所以f′(x)=2x2+x-3x2,令f′(x)<0,得0<x<1.所以函数f(x)的单调递减区间为(0,1).(2)g(x)=f(x)-3+ax=2x+ln x-ax(x>0),g′(x)=2+1x+ax2(x>0).因为函数g(x)在[1,2]上单调递增,所以g′(x)≥0在[1,2]上恒成立,即2+1x+ax2≥0在[1,2]上恒成立,所以a≥-2x2-x在[1,2]上恒成立,所以a≥(-2x2-x)max,x∈[1,2].因为在[1,2]上,(-2x2-x)max=-3,所以a≥-3.所以实数a的取值范围是[-3,+∞).迁移在本例(2)中,若函数g(x)在区间[1,2]上不单调,求实数a的取值范围.解∵函数g(x)在区间[1,2]上不单调,∴g′(x)=0在区间(1,2)内有解,则a=-2x2-x=-+18在(1,2)内有解,易知该函数在(1,2)上是减函数,∴a=-2x2-x的值域为(-10,-3),因此实数a的取值范围为(-10,-3).感悟提升 1.已知函数的单调性,求参数的取值范围,应用条件f′(x)≥0(或f′(x)≤0),x∈(a,b)恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是f′(x)不恒等于0的参数的范围.2.如果能分离参数,则尽可能分离参数后转化为参数值与函数最值之间的关系.3.若函数y =f (x )在区间(a ,b )上不单调,则转化为f ′(x )=0在(a ,b )上有解.训练2(1)若函数y =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是()A.13,+∞ B.-∞,13C.13,+∞ D.-∞,13(2)(2022·郑州调研)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是________.答案(1)C(2)(1,2]解析(1)由y =x 3+x 2+mx +1是R 上的单调函数,所以y ′=3x 2+2x +m ≥0恒成立,或y ′=3x 2+2x +m ≤0恒成立,显然y ′=3x 2+2x +m ≥0恒成立,则Δ=4-12m ≤0,所以m ≥13.(2)易知f (x )的定义域为(0,+∞),且f ′(x )=x -9x.又x >0,令f ′(x )=x -9x ≤0,得0<x ≤3.因为函数f (x )在区间[a -1,a +1]上单调递减,a -1>0,a +1≤3,解得1<a ≤2.考点四与导数有关的函数单调性的应用角度1比较大小例3(1)已知函数f (x )=x sin x ,x ∈R ,则π5f (1),f -π3的大小关系为()A.-π3f (1)>π5B.f (1)>-π3π5C.π5f (1)>-π3D.-π3π5>f (1)(2)已知y =f (x )是定义在R 上的奇函数,且当x <0时不等式f (x )+xf ′(x )<0成立,若a =30.3·f (30.3),b =log π3·f (log π3),c =log 319·则a ,b ,c 的大小关系是()A.a >b >cB.c >b >aC.a >c >bD.c >a >b答案(1)A(2)D解析(1)因为f (x )=x sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ),所以函数f (x )是偶函数,所以又当x f ′(x )=sin x +x cos x >0,所以函数f (x )f (1)<f (1)> A.(2)设g (x )=xf (x ),则g ′(x )=f (x )+xf ′(x ),又当x <0时,f (x )+xf ′(x )<0,∴x <0时,g ′(x )<0,g (x )在(-∞,0)上单调递减.由y =f (x )在R 上为奇函数,知g (x )在R 上为偶函数,∴g (x )在(0,+∞)上是增函数,∴c =g (-2)=g (2),又0<log π3<1<30.3<3<2,∴g (log π3)<g (30.3)<g (2),即b <a <c .角度2解不等式例4已知f (x )在R 上是奇函数,且f ′(x )为f (x )的导函数,对任意x ∈R ,均有f (x )>f ′(x )ln 2成立,若f (-2)=2,则不等式f (x )>-2x -1的解集为()A.(-2,+∞)B.(2,+∞)C.(-∞,-2)D.(-∞,2)答案D解析f (x )>f ′(x )ln 2⇔f ′(x )-ln 2·f (x )<0.令g(x)=f(x)2x,则g′(x)=f′(x)-f(x)·ln22x,∴g′(x)<0,则g(x)在(-∞,+∞)上是减函数.由f(-2)=2,且f(x)在R上是奇函数,得f(2)=-2,则g(2)=f(2)22=-12,又f(x)>-2x-1⇔f(x)2x>-12=g(2),即g(x)>g(2),所以x<2.感悟提升 1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小. 2.与抽象函数有关的不等式,要充分挖掘条件关系,恰当构造函数;题目中若存在f(x)与f′(x)的不等关系时,常构造含f(x)与另一函数的积(或商)的函数,与题设形成解题链条,利用导数研究新函数的单调性,从而求解不等式.训练3(1)已知函数f(x)=3x+2cos x.若a=f(32),b=f(2),c=f(log27),则a,b,c的大小关系是()A.a<b<cB.c<b<aC.b<a<cD.b<c<a(2)(2021·西安模拟)函数f(x)的导函数为f′(x),对任意x∈R,都有f′(x)>-f(x)成立,若f(ln2)=12,则满足不等式f(x)>1e x的x的取值范围是()A.(1,+∞)B.(0,1)C.(ln2,+∞)D.(0,ln2)答案(1)D(2)C解析(1)由题意,得f′(x)=3-2sin x.因为-1≤sin x≤1,所以f′(x)>0恒成立,所以函数f(x)是增函数.因为2>1,所以32>3.又log 24<log 27<log 28,即2<log 27<3,所以2<log 27<32,所以f (2)<f (log 27)<f (32),即b <c <a .(2)对任意x ∈R ,都有f ′(x )>-f (x )成立,即f ′(x )+f (x )>0.令g (x )=e x f (x ),则g ′(x )=e x [f ′(x )+f (x )]>0,所以函数g (x )在R 上单调递增.不等式f (x )>1e x 即e xf (x )>1,即g (x )>1.因为f (ln 2)=12,所以g (ln 2)=e ln 2f (ln 2)=2×12=1.故当x >ln 2时,g (x )>g (ln 2)=1,所以不等式g (x )>1的解集为(ln 2,+∞).1.如图是函数y =f (x )的导函数y =f ′(x )的图像,则下列判断正确的是()A.在区间(-2,1)上f (x )单调递增B.在区间(1,3)上f (x )单调递减C.在区间(4,5)上f (x )单调递增D.在区间(3,5)上f (x )单调递增答案C解析在区间(4,5)上f ′(x )>0恒成立,∴f (x )在区间(4,5)上单调递增.2.函数f (x )=ln x -ax (a >0)的单调递增区间为()D.(-∞,a)答案A解析函数f(x)的定义域为(0,+∞),f′(x)=1x-a,令f′(x)=1x-a>0,得0<x<1a,所以f(x)3.函数y=f(x)的图像如图所示,则y=f′(x)的图像可能是()答案D解析由函数f(x)的图像可知,f(x)在(-∞,0)上单调递增,f(x)在(0,+∞)上单调递减,所以在(-∞,0)上,f′(x)>0;在(0,+∞)上,f′(x)<0,选项D满足. 4.(2021·德阳诊断)若函数f(x)=e x(sin x+a)在R上单调递增,则实数a的取值范围为()A.[2,+∞)B.(1,+∞)C.[-1,+∞)D.(2,+∞)答案A解析因为f(x)=e x(sin x+a),所以f′(x)=e x(sin x+a+cos x).要使函数f(x)在R上单调递增,需使f′(x)≥0恒成立,即sin x+a+cos x≥0恒成立,所以a≥-sin x-cos x.因为-sin x-cos x=-2sin所以-2≤-sin x-cos x≤2,所以a≥ 2.5.(2021·江南十校联考)已知函数f(x)=ax2-4ax-ln x,则f(x)在(1,4)上不单调的一个充分不必要条件可以是()A.a>-12B.0<a<116C.a>116或-12<a<0 D.a>116答案D解析f′(x)=2ax-4a-1x=2ax2-4ax-1x,令g(x)=2ax2-4ax-1,则函数g(x)=2ax2-4ax-1的对称轴方程为x=1,若f(x)在(1,4)上不单调,则g(x)在区间(1,4)上有零点.当a=0时,显然不成立;当a≠0>0,(1)=-2a-1<0,(4)=16a-1>0,<0,(1)=-2a-1>0,(4)=16a-1<0,解得a>116或a<-12.∴a>116是f(x)在(1,4)上不单调的一个充分不必要条件.6.已知函数y=f(x+1)是偶函数,当x∈(1,+∞)时,函数f(x)=sin x-x,设a=b=f(3),c=f(0),则a,b,c的大小关系为()A.b<a<cB.c<a<bC.b<c<aD.a<b<c答案A解析由函数y=f(x+1)是偶函数,可得函数f(x)的图像关于直线x=1对称,则a=b=f(3),c=f(0)=f(2),又当x∈(1,+∞)时,f′(x)=cos x-1≤0,所以f(x)=sin x-x在(1,+∞)上为减函数,所以b<a<c,故选A.7.若函数f (x )=ax 3+3x 2-x +1恰好有三个单调区间,则实数a 的取值范围为________.答案(-3,0)∪(0,+∞)解析依题意知,f ′(x )=3ax 2+6x -1有两个不相等的零点,≠0,=36+12a >0,解得a >-3且a ≠0.8.(2022·哈尔滨调研)若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是________.答案1解析f ′(x )=4x -1x =(2x -1)(2x +1)x(x >0),令f ′(x )>0,得x >12;令f ′(x )<0,得0<x <12.-1≥0,-1<12<k +1,解之得1≤k <32.9.设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集是__________________.答案(-∞,-2)∪(0,2)解析令φ(x )=f (x )x,∵当x >0时,f (x )x ′=x ·f ′(x )-f (x )x 2<0,∴φ(x )=f (x )x 在(0,+∞)上为减函数,又f (2)=0,即φ(2)=0,∴在(0,+∞)上,当且仅当0<x <2时,φ(x )>0,此时x 2f (x )>0.又f(x)为奇函数,∴h(x)=x2f(x)也为奇函数,由数形结合知x∈(-∞,-2)时,f(x)>0.故x2f(x)>0的解集为(-∞,-2)∪(0,2).10.已知函数f(x)=ln x+ke x(k为常数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(1)求实数k的值;(2)求函数f(x)的单调区间.解(1)f′(x)=1x-ln x-ke x(x>0).又由题意知f′(1)=1-ke=0,所以k=1.(2)由(1)知,f′(x)=1x-ln x-1e x(x>0).设h(x)=1x-ln x-1(x>0),则h′(x)=-1x2-1x<0,所以h(x)在(0,+∞)上单调递减.由h(1)=0知,当0<x<1时,h(x)>0,所以f′(x)>0;当x>1时,h(x)<0,所以f′(x)<0.综上f(x)的单调增区间是(0,1),减区间为(1,+∞).11.讨论函数g(x)=(x-a-1)e x-(x-a)2的单调性.解g(x)的定义域为R,g′(x)=(x-a)e x-2(x-a)=(x-a)(e x-2),令g′(x)=0,得x=a或x=ln2,①当a>ln2时,x∈(-∞,ln2)∪(a,+∞)时,f′(x)>0,x∈(ln2,a)时,f′(x)<0;②当a=ln2时,f′(x)≥0恒成立,∴f(x)在R上单调递增;③当a<ln2时,x∈(-∞,a)∪(ln2,+∞)时,f′(x)>0,x∈(a,ln2)时,f′(x)<0,综上,当a>ln2时,f(x)在(-∞,ln2),(a,+∞)上单调递增,在(ln2,a)上单调递减;当a=ln2时,f(x)在R上单调递增;当a<ln2时,f(x)在(-∞,a),(ln2,+∞)上单调递增,在(a,ln2)上单调递减.12.已知a=ln33,b=e-1,c=3ln28,则a,b,c的大小关系为()A.b>c>aB.a>c>bC.a>b>cD.b>a>c答案D解析依题意,得a=ln33=ln33,b=e-1=ln ee,c=3ln28=ln88.令f(x)=ln xx(x>0),则f′(x)=1-ln xx2,易知函数f(x)在(0,e)上单调递增,在(e,+∞)上单调递减.所以f(x)max=f(e)=1e=b,且f(3)>f(8),即a>c,所以b>a>c.13.(2021·成都诊断)已知函数f(x)是定义在R上的偶函数,其导函数为f′(x).若x>0时,f′(x)<2x,则不等式f(2x)-f(x-1)>3x2+2x-1的解集是________.答案1解析令g(x)=f(x)-x2,则g(x)是R上的偶函数.当x>0时,g′(x)=f′(x)-2x<0,则g(x)在(0,+∞)上递减,于是在(-∞,0)上递增.由f(2x)-f(x-1)>3x2+2x-1得f(2x)-(2x)2>f(x-1)-(x-1)2,即g (2x )>g (x -1),于是g (|2x |)>g (|x -1|),则|2x |<|x -1|,解得-1<x <13.14.(2021·全国乙卷)已知函数f (x )=x 3-x 2+ax +1.(1)讨论f (x )的单调性;(2)求曲线y =f (x )过坐标原点的切线与曲线y =f (x )的公共点的坐标.解(1)由题意知f (x )的定义域为R ,f ′(x )=3x 2-2x +a ,对于f ′(x )=0,Δ=(-2)2-4×3a =4(1-3a ).①当a ≥13时,Δ≤0,f ′(x )≥0在R 上恒成立,所以f (x )在R 上单调递增;②当a <13时,令f ′(x )=0,即3x 2-2x +a =0,解得x 1=1-1-3a 3,x 2=1+1-3a 3,令f ′(x )>0,则x <x 1或x >x 2;令f ′(x )<0,则x 1<x <x 2.所以f (x )在(-∞,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增.综上,当a ≥13时,f (x )在R 上单调递增;当a <13时,f (x )∞(1+1-3a 3,+∞)上单调递增,在.(2)记曲线y =f (x )过坐标原点的切线为l ,切点为P (x 0,x 30-x 20+ax 0+1).因为f ′(x 0)=3x 20-2x 0+a ,所以切线l 的方程为y -(x 30-x 20+ax 0+1)=(3x 20-2x 0+a )(x -x 0).由l 过坐标原点,得2x 30-x 20-1=0,解得x 0=1,所以切线l 的方程为y =(1+a )x .=(1+a )x ,=x 3-x 2+ax +1,=1,=1+a=-1,=-1-a .所以曲线y=f(x)过坐标原点的切线与曲线y=f(x)的公共点的坐标为(1,1+a)和(-1,-1-a).。
高考数学一轮总复习第3章导数及其应用第2节导数的应用第5课时利用导数研究函数的零点问题教师用书

第5课时 利用导数研究函数的零点问题考点1 讨论函数的零点个数——综合性(2021·海口模拟)已知函数f(x)=.(1)判断f(x)的单调性,并比较2 0202 021与2 0212 020的大小;(2)若函数g(x)=(x-2)2+x(2f(x)-1),其中≤a≤,判断g(x)的零点的个数,并说明理由.参考数据:ln 2≈0.693.解:(1)函数f(x)=,定义域是(0,+∞),故f′(x)=.令f′(x)>0,解得0<x<e;令f′(x)<0,解得x>e,故f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,则f(2 020)>f(2 021),即>,故2 021ln 2 020>2 020ln 2 021,故ln 2 0202 021>ln 2 0212 020,故2 0202 021>2 0212 020.(2)因为g(x)=(x2-4x+4)+2ln x-x,所以g′(x)=ax+-2a-1=.令g′(x)=0,解得x=2或x=,①当a=时,则g′(x)=≥0,g(x)在(0,+∞)上单调递增,且g(2)=2ln 2-2<0,g(6)=2ln 6-2>0,故g(2)g(6)<0,故存在x0∈(2,6),使得g(x0)=0,故g(x)在(0,+∞)上只有1个零点;②当<a<时,则<2,则g(x)在上单调递增,在上单调递减,在(2,+∞)上单调递增,故g(x)在(0,+∞)上有极小值g(2),g(2)=2ln 2-2<0,有极大值g=2a--2ln a-2,且g(2)=2ln 2-2<0,g(6)=8a+2ln 6-6>2ln 6-2>0,故g(2)g(6)<0,故存在x1∈(2,6),使得g(x1)=0,故g(x)在(2,+∞)上只有1个零点,另一方面令h(a)=g=2a--2ln a-2,h′(a)=2+-=2>0,所以h(a)在上单调递增,所以h(a)<h=e--2-2ln <0,则g<0,故g(x)在上没有零点.综上:当≤a≤时,g(x)只有1个零点.已知函数f(x)=x-(e为自然常数).(1)若f(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)设a∈R,讨论函数g(x)=x-ln x-f(x)的零点个数.解:(1)f(x)=x-,则f′(x)=.因为f(x)在(0,+∞)上单调递增,所以f′(x)≥0在(0,+∞)上恒成立.记φ(x)=e x+ax-a,则φ(x)≥0在(0,+∞)上恒成立,φ′(x)=e x+a.当a≥-1时,φ′(x)=e x+a>1+a≥0,即φ(x)在(0,+∞)上单调递增,所以φ(x)>φ(0)=1-a≥0,所以-1≤a≤1;当a<-1时,令φ′(x)=e x+a=0,解得x=ln(-a).当0<x<ln(-a)时,φ′(x)<0,φ(x)在(0,ln(-a))上单调递减;当x>ln(-a)时,φ′(x)>0,φ(x)在(ln(-a),+∞)上单调递增,所以φ(x)≥φ(ln(-a))=-2a+a ln(-a)≥0,解得-e2≤a<-1.综上可得,实数a的取值范围是[-e2,1].(2)g(x)=x-ln x-f(x)=-ln x(x>0),令g(x)=0,得a=(x>0).令h(x)=,则h′(x)=,当x∈(0,1]时,ln x≤0,x-1≤0,所以h′(x)≥0,h(x)单调递增;当x∈(1,+∞)时,h′(x)>0,h(x)单调递增.所以h(x)在(0,+∞)单调递增,又h(x)=∈R,a∈R,所以y=a与h(x)=的图象只有一个交点,所以a∈R,g(x)只有唯一一个零点.考点2 由函数的零点个数求参数的范围——综合性(2022·湖南模拟)已知函数f(x)=x3+3a(x+1)(a∈R).(1)讨论f(x)的单调性;(2)若函数g(x)=f(x)-x ln x-3a在上有两个不同的零点,求a的取值范围.解:(1)f′(x)=3x2+3a.①当a≥0时,f′(x)≥0,f(x)在R上单调递增;②当a<0时,令f′(x)>0,解得x<-或x>,令f′(x)<0,解得-<x<,所以f(x)在(-∞,-),(,+∞)上单调递增,在(-,)上单调递减.综上,当a≥0时,f(x)在R上单调递增;当a<0时,f(x)在(-∞,-),(,+∞)上单调递增,在(-,)上单调递减.(2)g(x)=x3+3ax-x ln x,依题意,x3+3ax-x ln x=0在上有两个不同的解,即3a=ln x-x2在上有两个不同的解.设h(x)=ln x-x2,x∈,则h′(x)=-2x=.当x∈时,h′(x)≥0,h(x)单调递增;当x∈时,h′(x)<0,h(x)单调递减,所以h(x)max=h=-ln 2-,且h=-ln 2-,h(2)=ln 2-4,h>h(2),所以-ln 2-≤3a<-ln 2-,所以-ln 2-≤a<-ln 2-,即实数a的取值范围为.已知函数f(x)=x2+ax+1-,a∈R.(1)若f(x)在(0,1)上单调递减,求a的取值范围;(2)设函数g(x)=f(x)-x-a-1,若g(x)在(1,+∞)上无零点,求整数a的最小值.解:(1)由题知f′(x)=2x+a+≤0在(0,1)上恒成立,即a≤-2x恒成立.令h(x)=-2x,则h′(x)=-2=-2>0,所以h(x)在(0,1)上单调递增,所以a≤h(x)min=h(0)=1.故a的取值范围是(-∞,1].(2)由已知x>1,假设g(x)=0⇔-a=x+,记φ(x)=x+,则φ′(x)=1+.令φ′(x)>0,解得x>1+,所以φ(x)在(1,1+)上单调递减,在(1+,+∞)上单调递增,φ(1+)=1++=1+=1+∈(2,3),由题知-a=φ(x)在(1,+∞)内无解,故-a<φ(1+)<3,所以a>-φ(1+),所以整数a的最小值为-2.考点3 函数极值点的偏移问题——综合性(2021·新高考全国Ⅰ卷)已知函数f(x)=x(1-ln x).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且b ln a-a ln b=a-b,证明:2<+<e.(1)解:函数f(x)的定义域为(0,+∞),又f′(x)=1-ln x-1=-ln x,当x∈(0,1)时,f′(x)>0,当x∈(1,+∞)时,f′(x)<0,故f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)证明:因为b ln a-a ln b=a-b,故b(ln a+1)=a(ln b+1),即=,故f =f .设=x1,=x2,由(1)可知不妨设0<x1<1,x2>1.因为x∈(0,1)时,f(x)=x(1-ln x)>0,x∈(e,+∞)时,f(x)=x(1-ln x)<0,故1<x2<e.先证:x1+x2>2,若x2≥2,x1+x2>2必成立.若x2<2,要证x1+x2>2,即证x1>2-x2,而0<2-x2<1,故即证f(x1)>f(2-x2),即证f(x2)>f(2-x2),其中1<x2<2.设g(x)=f(x)-f(2-x),1<x<2,则g′(x)=f′(x)+f′(2-x)=-ln x-ln(2-x)=-ln[x(2-x)].因为1<x<2,故0<x(2-x)<1,故-ln x(2-x)>0,所以g′(x)>0,故g(x)在(1,2)上单调递增,所以g(x)>g(1)=0,故f(x)>f(2-x),即f(x2)>f(2-x2)成立,所以x1+x2>2成立,综上,x1+x2>2成立.设x2=tx1,则t>1,结合=,=x1,=x2,可得x1(1-ln x1)=x2(1-ln x2),即1-ln x1=t(1-ln t-ln x1),故ln x1=,要证x1+x2<e,即证(t+1)x1<e,即证ln (t+1)+ln x1<1,即证ln (t+1)+<1,即证(t-1)ln (t+1)-t ln t<0.令S(t)=(t-1)ln (t+1)-t ln t,t>1,则S′(t)=ln (t+1)+-1-ln t=ln -.先证明一个不等式:ln(x+1)≤x.设u(x)=ln(x+1)-x,则u′(x)=-1=,当-1<x<0时,u′(x)>0;当x>0时,u′(x)<0,故u(x)在(-1,0)上为增函数,在(0,+∞)上为减函数,故u(x)ma x=u(0)=0,故ln(x+1)≤x成立.由上述不等式可得当t>1时,ln ≤<,故S′(t)<0恒成立,故S(t)在(1,+∞)上为减函数,故S(t)<S(1)=0,故(t-1)ln (t+1)-t ln t<0成立,即x1+x2<e成立.综上所述,2<+<e.对称化构造是解决极值点偏移问题的方法,该方法可分为以下三步:已知函数f(x)=ln x-ax有两个零点x1,x2(x1<x2).(1)求实数a的取值范围;(2)求证:x1·x2>e2.(1)解:f′(x)=-a=(x>0),①若a≤0,则f′(x)>0,不符合题意.②若a>0,令f′(x)=0,解得x=.当x∈时,f′(x)>0;当x∈时,f′(x)<0.由题意知f(x)有两个零点的必要条件为f(x)=ln x-ax的极大值f=ln -1>0,解得0<a<.显然e∈,f(e)=1-a e<0,∈,f=2ln-.设t=>e,g(t)=2ln t-t,g′(t)=-1<0,所以g(t)在(e,+∞)上单调递减,g(t)<g(e)=2-e<0,即f <0.所以实数a的取值范围为.(2)证明:因为f(1)=-a<0,所以1<x1<<x2.构造函数H(x)=f-f=ln -ln -2ax,0<x<.H′(x)=+-2a=>0,所以H(x)在上单调递增,故H(x)>H(0)=0,即f >f.由1<x1<<x2,知-x1>,故f(x2)=f(x1)=f <f=f.因为f(x)在上单调递减,所以x2>-x1,即x1+x2>.故ln (x1x2)=ln x1+ln x2=a(x1+x2)>2,即x1·x2>e2.拓展考点 隐零点求解问题已知函数f(x)=ax2-ax-x ln x,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e-2<f(x0)<2-2.(1)解:f(x)的定义域为(0,+∞),设g(x)=ax-a-ln x,则f(x)=xg(x),f(x)≥0等价于g(x)≥0.因为g(1)=0,g(x)≥0,故g′(1)=0,而g′(x)=a-,g′(1)=a-1=0,得a=1.若a=1,则g′(x)=1-.当0<x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增,所以x=1是g(x)的极小值点,故g(x)≥g(1)=0.综上,a=1.(2)证明:由(1)知f(x)=x2-x-x ln x,f′(x)=2x-2-ln x(x>0).设h(x)=2x-2-ln x,h′(x)=2-.当x∈时,h′(x)<0;当x∈时,h′(x)>0,所以h(x)在上单调递减,在上单调递增.又h(e-2)>0,h<0,h(1)=0,所以h(x)在上有唯一零点x0,在上有唯一零点1,且当x∈(0,x0)时,h(x)>0;当x∈(x0,1)时,h(x)<0;当x∈(1,+∞)时,h(x)>0.因为f′(x)=h(x),所以x=x0是f(x)的唯一极大值点.由f′(x0)=0得ln x0=2(x0-1),故f(x0)=x0(1-x0).由x0∈得f(x0)<.因为x=x0是f(x)在(0,1)上的最大值点,由e-1∈(0,1),f′(e-1)≠0得f(x0)>f(e-1)=e-2,所以e-2<f(x0)<2-2.设函数f(x)=e x-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)·f′(x)+x+1>0,求k的最大值.解:(1)当a≤0时,f(x)的单调递增区间是(-∞,+∞),无单调递减区间;当a>0时,函数f(x)的单调递减区间是(-∞,ln a),单调递增区间是(ln a,+∞).(解答过程略)(2)由题设可得(x-k)(e x-1)+x+1>0,即k<x+(x>0)恒成立.令g(x)=+x(x>0),得g′(x)=+1=(x>0).由(1)的结论可知,函数h(x)=e x-x-2(x>0)是增函数.又因为h(1)<0,h(2)>0,所以函数h(x)的唯一零点α∈(1,2)(该零点就是h(x)的隐零点),且eα=α+2.当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0,所以g(x)min=g(α)=+α.又eα=α+2且α∈(1,2),则g(x)min=g(α)=1+α∈(2,3),所以k的最大值为2.1.按导函数零点能否精确求解可以把零点分为两类:1.已知函数f(x)=e x-a-eln(e x+a),若关于x的不等式f(x)≥0恒成立,求实数a的取值范围.解:由函数f(x)=e x-a-eln(e x+a),求得定义域为,对函数求导可得:f′(x)=e x-,则存在一个x0,使得f′(x0)=0,且-<x<x0时,f′(x)<0,x>x0时,f′(x)>0,则f(x)≥f(x0)=e x0-a-eln(e x0+a)=-a-e·ln e=e x0+-2e-a=e x0+a+-2e-2a.因为e x0+a+≥2e,所以f(x0)≥2e-2e-2a=-2a≥0,则a≤0,所以实数a的取值范围为(-∞,0].2.已知函数f(x)=.(1)求函数f(x)的零点及单调区间;(2)求证:曲线y=存在斜率为6的切线,且切点的纵坐标y0<-1.(1)解:函数f(x)的零点为e.函数f(x)的单调递增区间为(e,+∞),单调递减区间为(0,e).(解答过程略)(2)证明:要证曲线y=存在斜率为6的切线,即证y′==6有解,等价于1-ln x-6x2=0在x>0时有解.构造辅助函数g(x)=1-ln x-6x2(x>0),g′(x)=--12x<0,函数g(x)在(0,+∞)上单调递减,且g(1)=-5<0,g=1+ln 2->0,所以∃x0∈,使得g(x0)=1-ln x0-6x=0.即证明曲线y=存在斜率为6的切线.设切点坐标为,则y===-6x0,x0∈.令h(x)=-6x,x∈,由h(x)在区间上单调递减,则h(x)<h=-1,.所以y0<-1求证:x1x2>e2(e为自然对数的底数).[四字程序]思路参考:转化为证明ln x1+ln x2>2,根据x1,x2是方程f′(x)=0的根建立等量关系.令t=,将ln x1+ln x2变形为关于t的函数,将ln x1+ln x2>2转化为关于t的不等式进行证明.证明:欲证x1x2>e2,需证ln x1+ln x2>2.若f(x)有两个极值点x1,x2,则函数f′(x)有两个零点.又f′(x)=ln x-mx(x>0),所以x1,x2是方程f′(x)=0的两个不等实根.于是,有解得m=.另一方面,由得ln x2-ln x1=m(x2-x1),从而得=,于是,ln x1+ln x2==.又0<x1<x2,设t=,则t>1.因此,ln x1+ln x2=,t>1.要证ln x1+ln x2>2,即证>2,t>1.即当t>1时,有ln t>.设函数h(t)=ln t-,t>1,则h′(t)=-=≥0,所以,h(t)为(1,+∞)上的增函数.又h(1)=0,因此,h(t)>h(1)=0.于是,当t>1时,有ln t>.所以ln x1+ln x2>2成立,即x1x2>e2.思路参考:将证明x1x2>e2转化为证明x1>.依据x1,x2是方程f′(x)=0的两个不等实根,构造函数g(x)=,结合函数g(x)的单调性,只需证明g(x2)=g(x1)<g.证明:由x1,x2是方程f′(x)=0的两个不等实根,且f′(x)=ln x-mx(x>0),所以mx1=ln x1,mx2=ln x2.令g(x)=,g(x1)=g(x2),由于g′(x)=,因此,g(x)在(0,e)上单调递增,在(e,+∞)上单调递减.又x1<x2,所以0<x1<e<x2.令h(x)=g(x)-g(x∈(0,e)),h′(x)=>0,故h(x)在(0,e)上单调递增,故h(x)<h(e)=0,即g(x)<g.令x=x1,则g(x2)=g(x1)<g.因为x2,∈(e,+∞),g(x)在(e,+∞)上单调递减,所以x2>,即x1x2>e2.思路参考:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞),推出=e t1-t2.将证明x1x2>e2转化为证明t1+t2>2,引入变量k=t1-t2<0构建函数进行证明.证明:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞).由得⇒=e t1-t2.设k=t1-t2<0,则t1=,t2=.欲证x1x2>e2,需证ln x1+ln x2>2.即只需证明t1+t2>2,即>2⇔k(1+e k)<2(e k-1)⇔k(1+e k)-2(e k-1)<0.设g(k)=k(1+e k)-2(e k-1)(k<0),则g′(k)=k e k-e k+1.令m(k)=k e k-e k+1,则m′(k)=k e k<0,故g′(k)在(-∞,0)上单调递减,故g′(k)>g′(0)=0,故g(k)在(-∞,0)上单调递增,因此g(k)<g(0)=0,命题得证.思路参考:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞),推出=e t1-t2.将证明x1x2>e2转化为证明t1+t2>2,引入变量=k∈(0,1)构建函数进行证明.证明:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞).由得⇒=e t1-t2.设=k∈(0,1),则t1=,t2=.欲证x1x2>e2,需证ln x1+ln x2>2,即只需证明t1+t2>2,即>2⇔ln k<⇔ln k-<0.设g(k)=ln k-(k∈(0,1)),g′(k)=>0,故g(k)在(0,1)上单调递增,因此g(k)<g(1)=0,命题得证.1.本题考查应用导数研究极值点偏移问题,基本解题方法是把双变量的等式或不等式转化为一元变量问题求解,途径都是构造一元函数.2.基于课程标准,解答本题一般需要具有良好的转化与化归能力、运算求解能力、逻辑思维能力.本题的解答体现了逻辑推理、数学运算的核心素养.3.基于高考数学评价体系,本题涉及函数与方程、不等式、导数的计算与应用等知识,渗透着函数与方程、转化与化归、分类讨论等思想方法,有一定的综合性,属于能力题,在提升学生思维的灵活性、创造性等数学素养中起到了积极的作用.已知函数f(x)=x ln x-2ax2+x,a∈R.(1)若f(x)在(0,+∞)内单调递减,求实数a的取值范围;(2)若函数f(x)有两个极值点分别为x1,x2,证明:x1+x2>.(1)解:f′(x)=ln x+2-4ax.因为f(x)在(0,+∞)内单调递减,所以f′(x)=ln x+2-4ax≤0在(0,+∞)内恒成立,即4a≥+在(0,+∞)内恒成立.令g(x)=+,则g′(x)=.所以,当0<x<时,g′(x)>0,即g(x)在内单调递增;当x>时,g′(x)<0,即g(x)在内单调递减.所以g(x)的最大值为g=e,所以实数a的取值范围是.(2)证明:若函数f(x)有两个极值点分别为x1,x2,则f′(x)=ln x+2-4ax=0在(0,+∞)内有两个不等根x1,x2.由(1),知0<a<.由两式相减,得ln x1-ln x2=4a(x1-x2).不妨设0<x1<x2,则<1,所以要证明x1+x2>,只需证明<,即证明>ln x1-ln x2,亦即证明>ln.令函数h(x)=-ln x,0<x<1,所以h′(x)=<0,即函数h(x)在(0,1)内单调递减.所以当x∈(0,1)时,有h(x)>h(1)=0,所以>ln x,即不等式>ln成立.综上,x1+x2>,命题得证.。
高考数学一轮复习第3章一元函数的导数及其应用2利用导数研究函数的单调性课件新人教版

π
π
-π,, 0,
____________.
2
2
由题意可知 f'(x)=sin x+xcos x-sin x=xcos x.
令 f'(x)=xcos x>0,解得其在区间(-π,π)内的解集为
即 f(x)的单调递增区间为
π
-π,- 2
,
π
0, 2
.
π
-π,2
∪
π
0,
2
,
解题心得利用导数讨论函数单调性或求单调区间的方法
等,都需要考虑函数的单调性,所以也是高考必考知识.应用时,要注意函数
的定义域优先,准确求导变形,转化为导函数在某区间上的符号问题.常用
到分类讨论和数形结合的思想,对数学运算核心素养有一定的要求.
内
容
索
引
01
第一环节
必备知识落实
02
第二环节
关键能力形成
03
第三环节
学科素养提升
第一环节
必备知识落实
【知识筛查】
(2)若函数f(x)在区间[1,2]上为单调函数,求a的取值范围.
解 (1)若a=1,则f(x)=3x-2x2+ln x的定义域为(0,+∞),
1
-42 +3+1
故 f'(x)= -4x+3=
=
-(4+1)(-1)
(x>0).
当x∈(0,1)时,f'(x)>0,即函数f(x)=3x-2x2+ln x单调递增;
1
2
7
7
即 g(x)在区间[1,4]上单调递增,g(x)max=g(4)= − =- ,即 a≥- .