高中数学 (1.2.2 同角三角函数的基本关系)教案 新人教A版必修4
人教版高一数学必修四1.2.2同角三角函数的基本关系(课件)

知识探究(一):基本关系
思考1:如图,设α是一个任意角,它
的终边与单位圆交于点P,那么,正弦
线MP和余弦线OM的长度有什么内在联
系?由此能得到什么结论?
y P
1
MO
x
思考2:上述关系反应了角α的正弦和 余弦之间的内在联系,根据等式的特点, 将它称为平方关系.那么当角α的终边 在坐标轴上时,上述关系成立吗?
y P
P Ox
思考3:设角α的终边与单位圆交于点
P(x,y),根据三角函数定义,有
,
,
,
由此可得sinα,cosα,tanα满足什
么关系?
思考4:上述关系称为商数关系,那么商 数关系成立的条件是多么?
思考5:平方关系和商数关系是反应同一 个角的三角函数之间的两个基本关系, 它们都是恒等式,如何用文字语言描述 这两个关系?
同一个角的正弦、余弦的平方和等于1, 商等于这个角的正切.
知识探究(二):基本变形 思考1:对于平方关系 可作哪些变形?
sin2 cos2 1
思考2:对于商数关系 哪些变形?
可作
思考3:结合平方关系和商数关系, 可得到哪些新的恒等式?
思考4:若已知sinα的值,如何求cosα 和tanα的值?
思考5:若已知tanα的值,如何求sinα 和cosα的值?
理论迁移
例1 求证:
例2 已知
,求
若α是第三象限角,则
若α是第四象限角,则
, 的值.
,
.
,
.
例3 已知tanα=2,求下列各式的值.
(1)
;(2)
5 2
例4 已知 求
, 的值.
小结作业
1.同角三角函数的两个基本关系是对同一个 角而言的,由此可以派生出许多变形公式, 应用中具有灵活、多变的特点.
1.2.2同角三角函数的基本关系说课稿

同角三角函数的基本关系麻城市第五中学数学组曾令洋各位专家、评委:大家下午好!我今天说课的题目是《同角三角函数的基本关系》,内容选自于高中教材新课程人教A版必修4第一章第1.2.2节,本节课内容为一课时。
下面我将从教材分析、学情分析、教法与学法分析、教学过程设计四个方面来阐述我对本节课的分析和设计。
一、教材分析1、教材的地位和作用本节课选自内容选自于高中教材新课程人教A版必修4第一章第1.2.2同角三角函数的基本关系,是在学生学习了任意角和弧度,并且理解了任意角三角函数的定义和三角函数线等知识的基础上,与圆的几何性质建立联系,来研究同角三角函数的基本关系,从而找到了同一个角的不同三角函数间的联系,渗透了数形结合等重要数学思想,培养学生的数学应用能力,为后续的三角函数的图像与性质的学习打下基础。
2、学情分析根据学生已有的知识,在教材“探究”的引导下,利用几何关系中的勾股定理及三角函数的定义,学生容易得出同角三角函数的基本关系,但灵活应用关系解题是学生感到困难的地方,特别是求三角函数值时符号的确定。
3、教学目标分析知识与技能目标:推导并理解同角三角函数的基本关系;已知某角的一个三角函数值,会求它其余的三角函数值;能初步应用同角三角函数的基本关系化简三角函数,证明三角函数恒等式。
过程与方法目标:牢固掌握同角三角函数的基本关系式,并能灵活运用于解题,提高学生分析、解决三角问题的思维能力;灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力。
情感态度价值观目标:通过本节的学习,使同学们加深理解基本关系在本章中的地位,训练三角恒等变形的能力,培养学生良好的学习方法,进一步树立化归的数学思想方法。
重点:同角三角函数的基本关系推导及应用.难点:是同角三角函数基本关系式的几何推导,三角函数值符号的确定。
二、教法与学法分析.结合本节课的教学内容和学生的认知水平,在教法上,我借助多媒体和几何画板软件,采用“启发—合作探究—应用”式教学模式,充分发挥教师的主导作用,让学生真正成为教学活动的主体。
人教a版必修4学案:1.2.2同角三角函数的基本关系(含答案)

1.2.2 同角三角函数的基本关系自主学习知识梳理1.同角三角函数的基本关系式(1)平方关系:____________________.(2)商数关系:____________________.2.同角三角函数基本关系式的变形(1)sin 2α+cos 2α=1的变形公式:sin 2α=__________;cos 2α=__________;(sin α+cos α)2=__________;(sin α-cos α)2=____________;(sin α+cos α)2+(sin α-cos α)2=________;sin α·cos α=____________=____________.(2)tan α=sin αcos α的变形公式:sin α=____________; cos α=____________.自主探究1.利用任意角三角函数的定义推导平方关系.2.已知tan α=2,求下列代数式的值.(1)4sin α-2cos α5cos α+3sin α; (2)14sin 2α+13sin αcos α+12cos 2α.对点讲练知识点一 已知某一个三角函数值,求同角的其余三角函数值例1 已知cos α=-817,求sin α、tan α.回顾归纳 同角三角函数的基本关系式揭示了同角之间的三角函数关系,其最基本的应用是“知一求二”,要注意这个角所在的象限,由此来决定所求的是一解还是两解,同时应体会方程思想的应用.变式训练1 已知tan α=43,且α是第三象限角,求sin α,cos α的值.知识点二 利用同角的三角函数基本关系式化简例2 化简:1cos α1+tan 2α+1+sin α1-sin α-1-sin α1+sin α.回顾归纳 解答此类题目的关键在于公式的灵活运用,切实分析好同角三角函数间的关系.化简过程中常用的方法有:(1)化切为弦,即把非正弦、非余弦的函数都化成正弦、余弦函数,从而减少函数名称,达到化简的目的.(2)对于含有根号的,常把根号下化成完全平方式,然后去根号,达到化简的目的.(3)对于化简含高次的三角函数式,往往借助于因式分解.变式训练2 化简:1-cos 4α-sin 4α1-cos 6α-sin 6α.知识点三 利用同角的三角函数基本关系式证明恒等式例3 求证:cos α1+sin α-sin α1+cos α=2(cos α-sin α)1+sin α+cos α.回顾归纳 证明三角恒等式的实质是清除等式两端的差异,有目的地进行化简.证明三角恒等式的基本原则:由繁到简.常用方法:从左向右证;从右向左证;左、右同时证.常用技巧:切化弦、整体代换.变式训练3 求证:1-2sin 2x cos 2x cos 22x -sin 22x =1-tan 2x 1+tan 2x.1.同角三角函数的基本关系式揭示了“同角不同名”的三角函数的运算规律,它的精髓在“同角”二字上,如sin 22α+cos 22α=1,sin 8αcos 8α=tan 8α等都成立,理由是式子中的角为“同角”.2.已知角α的某一种三角函数值,求角α的其余三角函数值时,要注意公式的合理选择.一般是先选用平方关系,再用商数关系.在应用平方关系求sin α或cos α时,其正负号是由角α所在象限来决定,切不可不加分析,凭想象乱写公式.3.在进行三角函数式的求值时,细心观察题目的特征,灵活、恰当的选用公式,统一角、统一函数、降低次数是三角函数关系式变形的出发点.课时作业一、选择题1.化简sin 2β+cos 4β+sin 2βcos 2β的结果是( )A.14B.12 C .1 D.322.若α为第三象限角,则cos α1-sin 2α+2sin α1-cos 2α的值为( ) A .3 B .-3 C .1 D .-13.若sin α=45,且α是第二象限角,则tan α的值等于( ) A .-43 B.34 C .±34 D .±434.已知tan α=-12,则1+2sin αcos αsin 2α-cos 2α的值是( ) A.13 B .3 C .-13D .-3 5.已知sin α-cos α=-52,则tan α+1tan α的值为( ) A .-4 B .4 C .-8 D .8二、填空题6.已知α是第二象限角,tan α=-12,则cos α=________. 7.已知sin αcos α=18且π4<α<π2,则cos α-sin α= ______________________________________________________________________.8.若sin θ=k +1k -3,cos θ=k -1k -3,且θ的终边不落在坐标轴上,则tan θ的值为________.三、解答题9.证明:(1)1-cos 2αsin α-cos α-sin α+cos αtan 2α-1=sin α+cos α; (2)(2-cos 2α)(2+tan 2α)=(1+2tan 2α)(2-sin 2α).10.已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ和cos θ,θ∈(0,2π) 求:(1)m 的值;(2)方程的两根及此时θ的值.1.2.2 同角三角函数的基本关系答案知识梳理1.(1)sin 2α+cos 2α=1 (2)tan α=sin αcos α (α≠k π+π2,k ∈Z ) 2.(1)1-cos 2α 1-sin 2α 1+2sin αcos α1-2sin αcos α 2 (sin α+cos α)2-121-(sin α-cos α)22(2)cos αtan α sin αtan α自主探究1.解 ∵sin α=y r ,cos α=x r ,tan α=y x,x 2+y 2=r 2, ∴sin 2α+cos 2α=y 2r 2+x 2r 2=x 2+y 2r 2=1 (α∈R ). sin αcos α=y r x r=y x =tan α (α≠k π+π2,k ∈Z ). 2.解 关于sin α、cos α的齐次式,可以通过分子、分母同除以cos α或cos 2α转化为关于tan α的式子后再求值.(1)原式=4tan α-23tan α+5=611. (2)原式=14sin 2α+13sin αcos α+12cos 2αsin 2α+cos 2α=14tan 2α+13tan α+12tan 2α+1=14×4+13×2+125=1330. 对点讲练例1 解 ∵cos α=-817<0且cos α≠-1, ∴α是第二或第三象限的角.(1)如果α是第二象限的角,可以得到sin α=1-cos 2α= 1-⎝⎛⎭⎫-8172=1517. tan α=sin αcos α=1517-817=-158. (2)如果α是第三象限的角,可得到:sin α=-1517,tan α=158. 变式训练1 解 由tan α=sin αcos α=43, 得sin α=43cos α. ① 又sin 2 α+cos 2α=1, ②由①②得169cos 2α+cos 2α=1,即cos 2α=925. 又α是第三象限角,∴cos α=-35,sin α=43cos α=-45. 例2 解 原式=1cos α 1+sin 2αcos 2α+(1+sin α)21-sin 2α -(1-sin α)21-sin 2α =|cos α|cos α+1+sin α|cos α|-1-sin α|cos α|=⎩⎪⎨⎪⎧1+2tan α(α为第一或第四象限角),-1-2tan α(α为第二或第三象限角). 变式训练2 解 原式=(1-cos 4 α)-sin 4 α(1-cos 6 α)-sin 6 α=(1-cos 2α)(1+cos 2α)-sin 4 α(1-cos 2α)(1+cos 2α+cos 4 α)-sin 6 α=sin 2α(1+cos 2α)-sin 4 αsin 2α(1+cos 2α+cos 4 α)-sin 6 α=1+cos 2α-sin 2α1+cos 2α+cos 4 α-sin 4 α=2cos 2α1+cos 2α+(cos 2α+sin 2α)(cos 2α-sin 2α)=2cos 2α1+cos 2α+cos 2α-sin 2α=2cos 2α3cos 2α=23. 例3 证明 左边=cos α(1+cos α)-sin α(1+sin α)(1+sin α)(1+cos α)=cos 2α-sin 2α+cos α-sin α1+sin α+cos α+sin αcos α=(cos α-sin α)(cos α+sin α+1)12(cos α+sin α)2+sin α+cos α+12=2(cos α-sin α)(cos α+sin α+1)(sin α+cos α+1)2=2(cos α-sin α)1+sin α+cos α=右边. ∴原式成立.变式训练3 证明 左边=cos 22x +sin 22x -2sin 2x cos 2x cos 22x -sin 22x=(cos 2x -sin 2x )2(cos 2x -sin 2x )(cos 2x +sin 2x )=cos 2x -sin 2x cos 2x +sin 2x=1-tan 2x 1+tan 2x=右边.∴原等式成立.课时作业1.C [sin 2β+cos 4β+sin 2βcos 2β=sin 2β+cos 2β(cos 2β+sin 2β)=sin 2β+cos 2β=1.]2.B [∵α为第三象限角,cos α<0,sin α<0,∴原式=cos αcos 2α+2sin αsin 2α=cos α-cos α+2sin α-sin α=-3.] 3.A [α为第二象限角,sin α=45,cos α=-35, tan α=-43.] 4.C [1+2sin αcos αsin 2α-cos 2α=(sin α+cos α)·(sin α+cos α)(sin α+cos α)·(sin α-cos α)=sin α+cos αsin α-cos α=tan α+1tan α-1=-12+1-12-1=-13.] 5.C [tan α+1tan α=sin αcos α+cos αsin α=1sin αcos α. ∵sin αcos α=1-(sin α-cos α)22=-18, ∴tan α+1tan α=-8.] 6.-255 解析 由α是第二象限的角且tan α=-12,则⎩⎪⎨⎪⎧sin α=-12cos αsin 2α+cos 2α=1,则⎩⎨⎧ sin α=55cos α=-255.7.-32解析 (cos α-sin α)2=1-2sin αcos α=34,∵π4<α<π2,∴cos α<sin α.∴cos α-sin α=-32.8.34解析 ∵sin 2θ+cos 2θ=⎝ ⎛⎭⎪⎫k +1k -32+⎝ ⎛⎭⎪⎫k -1k -32=1,∴k 2+6k -7=0,∴k 1=1或k 2=-7. 当k =1时,cos θ不符合,舍去.当k =-7时,sin θ=35,cos θ=45,tan θ=34.9.证明 (1)左边=sin 2αsin α-cos α-sin α+cos αsin 2αcos 2α-1=sin 2αsin α-cos α-sin α+cos αsin 2α-cos 2αcos 2α=sin 2αsin α-cos α-cos 2α(sin α+cos α)sin 2α-cos 2α=sin 2αsin α-cos α-cos 2αsin α-cos α=sin 2α-cos 2αsin α-cos α=sin α+cos α=右边.∴原式成立.(2)∵左边=4+2tan 2α-2cos 2α-sin 2α =2+2tan 2α+2sin 2α-sin 2α=2+2tan 2α+sin 2α右边=(1+2tan 2α)(1+cos 2α)=1+2tan 2α+cos 2α+2sin 2α=2+2tan 2α+sin 2α∴左边=右边,原式成立.10.解 (1)由韦达定理知⎩⎨⎧ sin θ+cos θ=3+12①sin θ·cos θ=m2 ②由①式可知1+2sin θcos θ=1+32, ∴sin θcos θ=34,∴m2=34,∴m =32, (2)当m =32时,原方程2x 2-(3+1)x +32=0, ∴x 1=32,x 2=12. ∵θ∈(0,2π)∴⎩⎨⎧ sin θ=32cos θ=12或⎩⎨⎧ sin θ=12cos θ=32. ∴θ=π3或θ=π6.。
高中数学 1.2.2 同角三角函数的基本关系教案 新人教A版必修4

1.2.2 同角三角函数的基本关系整体设计教学分析与三角函数的定义域、符号的确定一样,同角三角函数的基本关系式的推导,紧扣了定义,是按照一切从定义出发的原则进行的,通过对基本关系的推导,应注意学生重视对基本概念学习的良好习惯的形成,学会通过对基本概念的学习,善于钻研,从中不断发掘更深层次的内涵.同角三角函数的基本关系式将“同角”的四种不同的三角函数直接或间接地联系起来,在使用时一要注意“同角”,至于角的表达形式是至关重要的,如sin 24π+cos 24π=1等,二要注意这些关系式都是对于使它们有意义的那些角而言的,如tan α中的α是使得tan α有意义的值,即α≠k π+2,k∈Z . 已知任意角的正弦、余弦、正切中的一个值便可以运用基本关系式求出另外的两个,这是同角三角函数关系式的一个最基本功能,在求值时,根据已知的三角函数值,确定角的终边的位置是关键和必要的,有时由于角的终边的位置不确定,因此解的情况不止一种,解题时产生遗漏的主要原因一是没有确定好或不去确定终边的位置;二是利用平方关系开方时,漏掉了负的平方根.三维目标1.通过三角函数的定义导出同角三角函数基本关系式,并能运用同角三角函数的基本关系式进行三角函数的化简与证明.2.同角三角函数的基本关系式主要有三个方面的应用:(1)求值(知一求二);(2)化简三角函数式;(3)证明三角恒等式.通过本节的学习,学生应明了如何进行三角函数式的化简与三角恒等式的证明.3.通过同角三角函数关系的应用使学生养成探究、分析的习惯,提高三角恒等变形的能力,树立转化与化归的思想方法.重点难点教学重点:课本的三个公式的推导及应用.教学难点:课本的三个公式的推导及应用.课时安排1课时教学过程导入新课思路1.先请学生回忆任意角的三角函数定义,然后引导学生先计算后观察以下各题的结果,并鼓励学生大胆进行猜想,教师点拨学生能否用定义给予证明,由此展开新课.计算下列各式的值:(1)sin 290°+cos 290°;(2)sin 230°+cos 230°;(3) 60cos 60sin ;(4)135cos 135sin . 推进新课新知探究提出问题①在以下两个等式中的角是否都可以是任意角?若不能,角α应受什么影响?图1如图1,以正弦线MP 、余弦线OM 和半径OP 三者的长构成直角三角形,而且OP=1.由勾股定理有OM 2+MP 2=1.因此x 2+y 2=1,即sin 2α+cos 2α=1(等式1).显然,当α的终边与坐标轴重合时,这个公式也成立.根据三角函数的定义,当α≠k π+2π,k∈Z 时,有 aa cos sin =tan α(等式2). 这就是说,同一个角α的正弦、余弦的平方和等于1,商等于角α的正切.②对于同一个角的正弦、余弦、正切,至少应知道其中的几个值才能利用基本关系式求出其他的三角函数的值.活动:问题①先让学生用自己的语言叙述同角三角函数的基本关系,然后教师点拨学生思考这两个公式的用处.同时启发学生注意“同一个角”这个前提条件,及使等式分别有意义的角的取值范围.问题②可让学生展开讨论,点拨学生从方程的角度进行探究,对思考正确的学生给予鼓励,对没有思路的学生教师点拨其思考的方法,最后得出结论“知一求二”.讨论结果:①在上述两个等式中,不是所有的角都可以是任意角,在第一个等式中,α可以是任意角,在第二个等式中α≠k π+2π,k∈Z . ②在上述两个等式中,只要知道其中任意一个,就可以求出其余的两个.知道正弦(余弦),就可以先求出余弦(正弦),用等式1;进而用第二个等式2求出正切.应用示例思路1例1 已知sin α=54,并且α是第二象限的角,求cos α,tan α的值. 活动:同角三角函数的基本关系学生应熟练掌握,先让学生接触比较简单的应用问题,明确和正确地应用同角三角函数关系.可以引导学生观察与题设条件最接近的关系式是sin 2α+cos 2α=1,故cos α的值最容易求得,在求cos α时需要进行开平方运算,因此应根据角α所在的象限确定cos α的符号,在此基础上教师指导学生独立地完成此题.解:因为sin 2α+cos 2α=1,所以cos 2α=1-sin 2α=1-(54)2=259. 又因为α是第二象限角,所以cos α<0.于是cos α=259-=53-, 从而tan α=a a cos sin =54×(35-)=34-.点评:本题是直接应用关系求解三角函数值的问题,属于比较简单和直接的问题,让学生体会关系式的用法.应使学生清楚tan α=34-中的负号来自α是第二象限角,这也是根据商数关系直接运算后的结果,它不同于在选用平方关系式的三角函数符号的确定.例2 已知cos α=178-,求sin α,tan α的值. 活动:教师先引导学生比较例1、例2题设条件的相异处,根据题设条件得出角的终边只能在第二或第三象限.启发学生思考仅有cos α<0是不能确定角α的终边所在的象限,它可能在x 轴的负半轴上(这时cos α=-1).解:因为cos α<0,且cos α≠-1,所以α是第二或第三象限角.如果α是第二象限角,那么sin α=a 2cos -1=2)178(1--=1715, tan α=a a cos sin =1715×(817-)=815-, 如果α是第三象限角,那么sin α=175-,tan α=34-. 点评:在已知角的一个三角函数值但是不知道角所在的象限的时候,应先根据题目条件讨论角的终边所在的象限,分类讨论所有的情况,得出所有的解.思路2例1 已知tan α为非零实数,用tan α表示sin α、cos α.活动:引导学生思考讨论:角的终边在什么位置;能否直接利用基本关系式求出sin α或cos α的值.由tan α≠0,只能确定α的终边不在坐标轴上.关于sin α、cos α、tan α的关系式只有tan α=aa cos sin ,在这个式子中必须知道其中两个三角函数值,才能求出第三个,因此像这类问题的求解,不能一步到位,需要公式的综合应用.其步骤是:先根据条件判断角的终边的位置,讨论出现的所有情况.然后根据讨论的结果,利用基本关系式求解.分情况求出cos α,进而求出sin α.解:因为sin 2α+cos 2α=1,所以sin 2α=1-cos 2α.又因为tan α=a a cos sin ,所以tan 2α=a a 22cos sin =1cos 1cos cos 1222-=-aa a . 于是a 2cos 1=1+tan 2α,cos 2α=a2tan 11+. 由tan α为非零实数,可知角α的终边不在坐标轴上,从而cos α=⎪⎪⎩⎪⎪⎨⎧+-+,,,tan 11,,tan 1122第三象限角为第二当第四象限角为第一当a a、a asin α=cos αtan α=⎪⎪⎩⎪⎪⎨⎧+-+.,tan 1tan ,,,tan 1tan 22第三象限角为第二当第四象限角为第一当、a aa a a 点评:要求学生灵活运用三角函数公式进行变形、化简、求解.需要学生认真细致分析题目的条件,灵活运用公式,需要较高的思维层次.变式训练已知cos α≠0,用cos α表示sin α、tan α.解:本题仿照上题可以比较顺利完成.sin α=⎪⎩⎪⎨⎧---,、a a ,、a ,a 第四象限角为第三当第二象限角为第一当,cos 1cos 122tan α=⎪⎪⎩⎪⎪⎨⎧---.cos cos 1,cos cos 122第四象限角为第三当第二象限角为第一当、a ,,、a αααα例2 求证:.cossin 1sin 1cos x x x +=- 活动:先让学生讨论探究证明方法,教师引导思考方向.教材中介绍了两种证明方法:证法一是从算式一边到另一边的证法,算式右边的非零因式1+sin α,在左边没有出现,可考虑左边式子的分子、分母同乘以1+sinx,再化简;在证法二中可以这样分析,要让算式成立,需证cos 2x=(1+sinx)(1-sinx),即cos 2x=1-sin 2x,也就是sin 2x+cos 2x=1,由平方关系可知这个等式成立,将上述分析过程逆推便可以证得原式成立.证法一:由cosx≠0,知sinx≠1,所以1+si nx≠0,于是左边=右边=+=-+=-+=+-+x x xx x x x x x x x x x cos sin 1sin 1)sin 1(cos sin 1)sin 1(cos )sin 1)(sin 1()sin 1(cos 22 所以原式成立.证法二:因为(1-sinx)(1+sinx)=1-sin 2x=cos 2x=cosxcosx,且1-sinx≠0,cosx≠0,所以.cos sin 1sin 1cos xx x x +=-教师启发学生进一步探究:除了证法一和证法二外你可否还有其他的证明方法.教师和学生一起讨论,由此可探究出证法三.依据“a -b=0⇔a=b”来证明恒等式是常用的证明方法,由学生自己独立完成.证法三:因为0cos )sin 1(cos cos cos )sin 1()sin 1(cos cos )sin 1()sin 1)(sin 1(cos cos cos sin 1sin 1cos 2222=--=---=--+-=+--x x x x x x x x x x x x x x x x x 所以.cos sin 1sin 1cos xx x x +=- 点评:这是一道很有训练价值的经典例题,教师要充分利用好这个题目.从这个例题可以看出,证明一个三角恒等式的方法有很多.证明一个等式,可以从它的任何一边开始,证得它等于另一边;还可以先证得另一个等式成立,从而推出需要证明的等式成立.例3 化简.440sin -12︒活动:引导学生探究:原式结果为cos440°时是不是最简形式,还应怎么办?教师引导学生运用诱导公式一化简为cos 80°,由于cos80°>0,因此︒80cos 2=|cos80°|=cos80°,此题不难,让学生独立完成.解:原式=)80(360sin -12︒+︒=︒80sin -12=︒80sin -12=cos80°.点评:恰当利用平方关系和诱导公式化简三角函数式.提醒学生注意化简后的简单的三角函数式应尽量满足以下几点:(1)所含的三角函数种类最少;(2)能求值(指准确值)的尽量求值;(3)不含特殊角的三角函数值.变式训练化简:︒︒cos402sin40-1答案:cos40°-sin40°.点评:提醒学生注意:1±2sin αcos α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2,这是一个很重要的结论.知能训练课本本节练习.解答:1.sin α=53-,tan α=43. 2.当φ为第二象限角时,sin φ=23,cos φ=21- 当φ为第四象限角时,sin φ=23-,cos φ=21. 3.当θ为第一象限角时,cos θ≈0.94,tan θ≈0.37.当θ为第二象限角时,cos θ≈-0.94,tan θ≈-0.37.4.(1)cos θtan θ=cos θθθcos sin =sin θ; (2)1sin cos sin cos sin 2)cos (sin )cos (sin cos 2sin 211cos 2222222222222=--=-++-=--aa a a a a a a a a a a 5.(1)左=(sin 2α+cos 2α)(sin 2α-cos 2α)=sin 2α-cos 2α=右;(2)左=sin 2α(sin 2α+cos 2α)+cos 2α=sin 2α+cos 2α=1=右.课堂小结由学生回顾本节所学的方法知识:①同角三角函数的基本关系式及成立的条件,②根据一个任意角的正弦、余弦、正切中的一个值求出其余的两个值(可以简称“知一求二”)时要注意这个角的终边所在的位置,从而出现一组或两组或四组(以两组的形式给出).“知一求二”的解题步骤一般为:先确定角的终边位置,再根据基本关系式求值,若已知正弦或余弦,则先用平方关系,再用其他关系求值;若已知正切或余切,则构造方程组求值. 教师和学生一起归纳三角函数式化简与三角恒等式的证明的一般方法及应注意的问题,并让学生总结本节用到的思想方法.作业1.化简(1+tan 2α)cos 2α;2.已知tan α=2,求a a a a cos sin cos sin -+的值. 答案:1.1;2.3.设计感想公式的推导和应用是本节课的重点,也是本节课的难点.公式的应用实际上是求可化为完全平方的三角函数式的“算术平方根”的化简题和证明题,这类问题可按下列情形分别处理:(1)如果这个三角函数式的值的符号可以确定,则可以根据算术平方根的定义直接得到结果;(2)如果这个三角函数式的值的符号不可以确定,则可根据题设条件,经过合理的分类讨论得到结果.三角函数式的化简,体现了由繁到简的最基本的数学解题原则,它不仅需要学生能熟悉和灵活运用所学的三角公式,还需要熟悉和灵活运用这些公式的等价形式,同时,这类问题还具有较强的综合性,对其他非三角知识的灵活运用也具有较高的要求,在教学时要注意进行相关知识的复习.证明恒等式的过程实质上就是分析转化和消去等式两边差异来促成统一的过程,证明时常用的方法一般有以下三种:(1)依据相等关系的传递性,从等式一边开始,证明它等于另一边,证明时一般遵循由繁到简的原则.(2)依据“等于同量的两个量相等”证明左、右两边等于同一个式子.(3)依据等价转化思想,证明与原式等价的另一个式子成立,从而推出原式成立.教材上在运用这一方法时使用的是综合法,初学恒等式的证明时,运用等价转化的方法可以使证明的思路更清楚一些,实际上,使用综合法时不一定要求进行等价转化,只需证明等式成立的充分条件即可(教师知道即可),证明方法中分别运用到了分式的基本性质和算式的基本性质.使学生明白,如果算式中含有正弦、余弦、正切等三角函数,为了便于将算式两边沟通,可通过“切化弦”使两边的三角函数相同.。
1.2.2同角三角函数关系(2015年人教A版数学必修四导学案)

2 cos2 1 (2) 1 2 sin 2 a
5、求证: (1) 1 tan
2
1 cos 2
(2) sin cos sin cos
4 4 2 2
课题:1.2.2 同角三角函数关系 班级: 【学习目标】 姓名: 备 注
4 , 且 为第三象限角, 则 sin =_______, tan =________。 5 1 2、已知 sin =- ,则 cos ________,tan =_________。 2
1、 已知 cos -
3、已知 sin =- ( A、- )
3 3 , ∈( ,2 ),则 tan 等于 5 2
1 (0 ) , 则 sin cos ___________ , 5
tan _____。
3 、 已 知 sin cos
60 , 且 , 则 sin __________ , 169 4 2
cos __________。
2
【课堂研讨】 例 1、已知 sin
4 ,且 是第二象限角,求 cos , tan 的值。 5
练习:已知 tan
12 ,求 sin , cos 的值。 5
例 2、已知 tan 2,求下列各式的值: ( 1 )
4 sin 2 cos 3 cos 3 sin
( 2 )
sin 2 2 sin cos 3 cos2
例 3、已知 sin cos
sin cos (1)
4 ,求下列各式的值: 3 sin 3 cos3 sin 4 cos4 (2) (3)
高中数学 第一章 三角函数 1.2.2 同角三角函数的基本关系课件2 新人教A版必修4.ppt

5
55
5
5
3.已知cos α= 1 ,且α是第四象限角,则sin α=( )
2
A . 1
B .3 C .3 D . 1
2
2
2
2
【解析】选C.因为α是第四象限角,所以sin α<0,
所以 sin 1cos21(1)23.
22
6
4.化简:s i n =_______.
tan
【解析】
sin tan
10
10 10
方法二:(cosα+2sinα)2= cos24sincos4sin2
sin2cos2
1 4 ta n 4 ta n 2 1 4 3 4 3 2 4 9
由已知条件得
分子分母同除以cos2α可得关于tanα的方程.
(cos2sin)2 sin2cos2
5,
12
【解析】方法一:因为cosα+2sinα= 5 , 所以cosα=-2sinα 5 , 又因为sin2α+cos2α=1,所以sin2α+(-2sinα- )2=5 1, 整理得5sin2α+4 s5 inα+4=0,( si5 nα+2)2=0,
sin sin
cos.
答案:cos θ cos
7
5.已知tan φ=- 2 ,φ∈( ,π),则sin φ=_____.
2
sin 2 cos 2 1,
【解析】由已知得
sin cos
所以
2,
sin2(sin)2 1, 2
所以sin2φ= 2 ,由φ∈( , π)得sin φ>0,
3
2
限决定的,不可凭空想象.
11
《同角三角函数的基本关系》教学设计

《同角三角函数的基本关系》教学设计一、教学目标 1.知识与技能目标(1)能根据三角函数的几何、代数定义导出同角三角函数的基本关系式;(2)掌握同角三角函数的两个基本关系式,并能够根据一个角的三角函数值,求这个角的其他三角函数值.2.过程与方法目标(1)牢固掌握同角三角函数关系式,并能灵活解题,提高学生分析、解决三角函数的思维能力; (2)探究同角三角函数关系式时,体会数形结合的思想;已知一个角的三角函数值,求这个角的其他三角函数值时,进一步树立分类思想;解题时,注重化归的思想,将新题目化归到已经掌握的知识点上; (3)通过对知识的探究,掌握自主学习的方法,通过学习中的交流,形成合作学习的习惯. 3.情感、态度、价值观目标通过教学,使学生学习运用观察、类比、数形结合、联想、猜测、检验等合情推理方法,提高学生运算能力和逻辑推理能力.二、教学重点和难点教学重点:公式1cos sin 22=α+α和α=ααtan cos sin 的推导及其应用 教学难点:同角三角函数的基本关系式的变式应用三、教学流程 (一) 提问引入1、 提出问题:已知53sin -=α,求αcos 、αtan 的值. 2、 在解题过程中,让学生自己探索同角的三角函数关系.(二)探究新知1. 探究对同角三角函数基本关系(1) 根据学生探究出的结果,得出结论.引导学生注意“正弦的平方”的表示方法是“a 2sin ”,而不是:“2sin a ”,进而得到符号表达式:22sin cos 1αα+=;开方计算时,注意“分类”的思想在象限角正负号问题处理时的应用.(2) 探究正弦、余弦和正切函数三者的关系:αααtan cos sin =. 以上的探究由学生自由完成,可以从图形角度,也可以从定义角度加以探究,让学生体会图形语言与符号语言之间的转换关系,体会两种语言的区别于联系.为了让学生及时熟悉公式,同时为后续学生归纳“同角”作铺垫,要求学生完成以下的课堂练习: (1) =+30cos 30sin 22_______________; (2) =+++)4(cos )4(sin 22ππx x ________________;(3) ︒︒45cos 45sin =_______________(4) =+45cos 30sin 22.(3) 学生交流、讨论,最终在教师的引导下得到上述两个公式中应该注意的问题:①注意“同角”指相同的角,例如:145cos 30sin 22≠+ 、12cos 2sin 22=+αα、12cos 2sin22=+αα;②注意这些关系式都是对于使它们有意义的角而言的,如α=ααtan cos sin 中0cos ≠α,且αtan 需有意义等.(三)架构迁移(1)探究上述两个关系式的等价变形式教师点明:由等价变形式αα22cos 1sin -=已知余弦值可以求正弦值;由等价变形式αα22sin 1cos -=已知余弦值可以求正弦值,学生可能得到:αα2cos 1sin -±=的结论,此时,应该向学生说明:αcos 、αsin 的符号受所在象限的限制,不是无条件的,不同于“由12=x 可以推出1±=x ”这种情形,此情况类似于“⎪⎩⎪⎨⎧<-≥=)0()0(||a a a aa ”而不是“a a ±=||”.等价变形式αααcos tan sin =可以将分式可以化为整式例1 已知锐角α满足3tan =α,求(1)ααααcos 2sin 5cos 4sin +-;(2)αααcos sin 2sin 2+.让学生探究第一小题的解法,注意αsin 、αcos 、αtan 之间的关系的应用,学生的解题方法可能有很多种,注意每种解法后对数学思想方法的归纳.然后让学生尝试解决第二小题.第二小题较第一小题难度有所增加,可以让学生采取合作学习的办法,分小组讨论,探究其解题方法.再与第一小题比较,寻找其可借鉴之处.体会类比、化归思想,化未知为已知. 例2 化简αα22cos )tan 1(+.本例在时间允许的情况下进行,否则放到下节课解决. 若时间允许,则进行强化练习: 练习1:已知54cos -=α,且α为第三象限角,求αsin 、αtan 的值.该题与引例配套. 练习2:已知ααcos 5sin =,求ααααcos 2sin cos sin -+的值.该题与例2配套.(四)反思升华:由学生自己反思:“本节课你有些什么收获?”让学生自己总结本节课所学内容,教师从知识层面和思想方法层面帮助学生整理本节课的小节。
人教版高中数学必修四第一章1-2-2同角三角函数的基本关系式《学案》

班级:__________姓名:__________设计人:__________日期:__________♒♒♒♒♒♒♒课前预习·预习案♒♒♒♒♒♒♒温馨寄语在年轻人的颈项上,没有什么东西能比事业心这颗灿烂的宝珠更迷人的了。
——哈菲兹学习目标1.理解同角三角函数的基本关系.2.会利用同角三角函数的基本关系化简、求值、证明恒等式.学习重点同角三角函数的基本关系式的推导,会利用同角三角函数的基本关系式进行三角函数的化简与证明学习难点会用同角三角函数的基本关系式进行三角函数的化简与证明自主学习同角三角函数的基本关系平方关系: .商的关系:.tanα=预习评价1.已知θ是第一象限角且,则cosθ=.2.化简:= .3.已知3sinα+cosα=0,则t a n = .♒♒♒♒♒♒♒知识拓展·探究案♒♒♒♒♒♒♒合作探究1.同角三角函数基本关系设角是一个任意象限角,点P(x,y)为角α终边上任意一点,它与原点的距离为r(r= >0),那么:,请根据三角函数的定义思考下面问题:(1)从以上三角函数的定义,试计算sin2α+cos2α与的值,并根据你计算的结果,写出sin ,cos ,t a n 之间的关系式.(2)同角三角函数的两个基本关系成立的条件各是什么?2.利用同角三角函数关系可以解决哪些问题?教师点拨对同角三角函数基本关系的三点说明(1)关系式中的角一定是同角,否则公式可能不成立,如sin230°+cos260°≠1.(2)同角不要拘泥于形式,将换成或2α也成立,如.(3)商的关系中要注意公式中的隐含条件,cos ≠0,即交流展示——利用基本关系求值1.已知( )A. B. C. D.2.已知,则等于A. B. C. D.3.______.4.已知是第二象限角,,则变式训练1.(2011·山东省潍坊市月考)已知cos α-sin α=-,则sin αcos α的值为()A. B.± C. D.±2.已知tan α=-2,且<α<π,则cos α+sin α=.交流展示——三角函数式的化简5.若,则sinαcosα=A. B. C. D.6.当角α的终边在直线3x+4y=0上时,sin α+cos α=B. C. D.±7.(2012·聊城测试)已知tan α,是关于x的方程x2-kx+k2-3=0的两个实根,且3π<α<π,则cos α+sin α=.变式训练已知,求(1);(2)的值.交流展示——三角恒等式的证明8.求证:.9.证明:(1-tan4A)cos2A+tan2A=1.变式训练求证:学习小结1.三角函数求值的常用方法若已知tan =m,求其他三角函数值,其方法是解方程组求出sin a和cos a的值.若已知tan =m,求形如的值,其方法是将分子、分母同除以co s a(或cos2a)转化为tan 的代数式,再求值.形如a sin2 +bsin •cos +c•cos2 通常把分母看作1,然后用sin2 +cos2 代换,分子分母同除以cos2 再求解.提醒:在应用平方关系求sin 或cos 时,函数值的正、负是由角的终边所在的象限决定的,切不可不加分析,凭想象乱写结果.2.三角函数式化简的本质及关注点(1)本质:三角函数式化简的本质是一种不指定答案的恒等变形,体现了由繁到简的最基本的数学解题原则.(2)关注点:不仅要熟悉和灵活运用同角三角函数的基本关系式,还要熟悉并灵活应用这些公式的等价变形,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α,sinα=tanα•cosα,cosα= .3.对三角函数式化简的原则(1)使三角函数式的次数尽量低.(2)使式中的项数尽量少.(3)使三角函数的种类尽量少.(4)使式中的分母尽量不含有三角函数.(5)使式中尽量不含有根号和绝对值符号.(6)能求值的要求出具体的值,否则就用三角函数式来表示.4.证明三角恒等式的常用方法证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边,遵循由繁到简的原则.(2)证明左右两边等于同一个式子.(3)证明左边减去右边等于零或左、右两边之比等于1.(4)证明与原式等价的另一个式子成立,从而推出原式成立.当堂检测1.已知A为三角形的一个内角,且,则cos A−sin A的值为A. B. C. D.2.化简(1+tan2α)·cos2α=__________.3.已知在△ABC中,.(1)求sin A·cos A的值.(2)判断△ABC是锐角三角形还是钝角三角形.(3)求tan A的值.知识拓展在中,,求的值.详细答案♒♒♒♒♒♒♒课前预习·预习案♒♒♒♒♒♒♒【自主学习】(1)sin2α+cos2α=1(2)【预习评价】1.2.cos20°3.♒♒♒♒♒♒♒知识拓展·探究案♒♒♒♒♒♒♒【合作探究】1.(1)sin2α+co s2α= + = =1,由以上计算结果可得出以下结论;sin2α+cos2α=1及tanα= .(2)对于平方关系只需同角即可;对于商的关系第一保证是同角,第二保证α≠kπ+ (k∈Z).2.(1)求值:已知一个角的三角函数值,求这个角的其他三角函数的值;(2)化简三角函数式;(3)证明三角恒等式.【交流展示——利用基本关系求值】1.C.【备注】对于与之间的关系,通过平方可以表达出来.2.A,结合可得,所以3.1【解析】本题主要考查同角三角函数基本关系.原式.4.【解析】本题考查同角三角函数基本关系式的应用.利用同角三角函数基本关系式,已知一个角的一个三角函数值可求这个角的其它三角函数值.,又,∴【变式训练】1.A【解析】由已知得(cos α-sin α)2=sin2α+cos2α-2sin αcos α=1-2sin αcos α=,解得sin αcos α=,故选A.2.【解析】本题主要考查了三角函数的概念,意在考查考生对基本概念的理解和应用能力由tan α=-2,得=-2,又sin2α+cos2α=1,且<α<π,解得sin α=,cos α=-,则sin α+cos α==.【交流展示——三角函数式的化简】5.B【解析】由,得,即t a nα.故选B.6.D【解析】在角α的终边上取点P(4t,-3t)(t≠0),则|OP|=5|t|.根据任意角的三角函数的定义,当t>0时,sin α==-,cos α==,sin α+cos α=;当t<0时,sin α==,cos α==-,sin α+cos α=-. 7.-【解析】∵tan α·=k2-3=1,∴k=±2,而3π<α<π,则tan α+=k=2,得tan α=1,则sin α=cos α=-,∴cos α+sin α=-.【变式训练】(1);(2).的一次或二次齐次式,所以可将分子和分母同除以或,然后将代入求解即可.【备注】注意到的应用.【交流展示——三角恒等式的证明】8.证明: 因为1cos sin sin 1cos x x x x+--(1cos )(1cos )sin sin sin (1cos )x x x x x x +--=- 22221cos sin sin sin 0sin (1cos )sin (1cos )x x x xx x x x ---===--,所以1cos sin =sin 1cos x x x x+-. 9.∵左边=·cos 2A+=+=+==1=右边,∴原等式成立. 【变式训练】右边左边.【解析】通过“切割化弦”将右边分子、分母中的正切化为再进行通分求解.【备注】在三角恒等式的证明中化异为同是基本思想,“1”的代换要灵活运用. 【当堂检测】 1.D【解析】由A 为三角形的内角且,可知,,∴cosA −,.故选D. 2.13.(1)由1sin cos 5A A +=,两边平方,得112sin cos 25A A +⋅=,所以12sin cos 25A A ⋅=-. (2)由(1)得12sin cos 025A A ⋅=-<.又0A π<<,所以cos 0A <, 所以A 为钝角.所以ABC ∆是钝角三角形.(3)因为12sin cos 25A A ⋅=-, 所以22449(sin cos )12sin cos 12525A A A A -=-⋅=+=, 又sin 0,cos 0A A ><,所以sin cos 0A A ->,所以7sin cos 5A A -=. 又1sin cos 5A A +=,所以43sin ,cos 55A A ==-. 所以4sin 45tan 3cos 35A A A ===--. 【知识拓展】解:∵,①∴,即,∴.∵,∴,.∴.∵,∴.②①+②,得.①−②,得.∴.【解析】本题主要考查同角三角函数基本关系以及三角形中函数符号的判定。
人教A版高中数学必修4第一章三角函数1.2.2同角三角函数的基本关系导学案

1.2.2.同角三角函数的基本关系学习目标.1.能通过三角函数的定义推导出同角三角函数的基本关系式.2.理解同角三角函数的基本关系式.3.能运用同角三角函数的基本关系式进行三角函数式的化简、求值和证明.知识点.同角三角函数的基本关系式 思考1.计算下列式子的值: (1)sin 230°+cos 230°; (2)sin 245°+cos 245°; (3)sin 290°+cos 290°.由此你能得出什么结论?尝试证明它. 答案.3个式子的值均为1.由此可猜想:对于任意角α,有sin 2α+cos 2α=1,下面用三角函数的定义证明:设角α的终边与单位圆的交点为P (x ,y ),则由三角函数的定义,得sin α=y ,cos α=x .∴sin 2α+cos 2α=x 2+y 2=|OP |2=1.思考2.由三角函数的定义知,tan α与sin α和cos α间具有怎样的等量关系?答案.∵tan α=y x ,∴tan α=sin αcos α.梳理.(1)同角三角函数的基本关系式 ①平方关系:sin 2α+cos 2α=1.②商数关系:tan α=sin αcos α (α≠k π+π2,k ∈Z ).(2)同角三角函数基本关系式的变形 ①sin 2α+cos 2α=1的变形公式 sin 2α=1-cos 2α;cos 2α=1-sin 2α. ②tan α=sin αcos α的变形公式sin α=cos αtan α;cos α=sin αtan α.类型一.利用同角三角函数的关系式求值命题角度1.已知角α的某一三角函数值及α所在象限,求角α的其余三角函数值例1.若sin α=-513,且α为第四象限角,则tan α的值为(..)A.125B.-125C.512D.-512 答案.D解析.∵sin α=-513,且α为第四象限角,∴cos α=1213,∴tan α=sin αcos α=-512,故选D.反思与感悟.同角三角函数的关系揭示了同角三角函数之间的基本关系,其常用的用途是“知一求二”,即在sin α,cos α,tan α三个值之间,知道其中一个可以求其余两个.解题时要注意角α的象限,从而判断三角函数值的正负.跟踪训练1.已知tan α=43,且α是第三象限角,求sin α,cos α的值.解.由tan α=sin αcos α=43,得sin α=43cos α.①又sin 2α+cos 2α=1,②由①②得169cos 2α+cos 2α=1,即cos 2α=925.又α是第三象限角,∴cos α=-35,sin α=43cos α=-45.命题角度2.已知角α的某一三角函数值,未给出α所在象限,求角α的其余三角函数值 例2.已知cos α=-817,求sin α,tan α的值.解.∵cos α=-817<0,且cos α≠-1,∴α是第二或第三象限角. (1)当α是第二象限角时,则 sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-8172=1517, tan α=sin αcos α=1517-817=-158.(2)当α是第三象限角时,则sin α=-1-cos 2α=-1517,tan α=158.反思与感悟.利用同角三角函数关系式求值时,若没有给出角α是第几象限角,则应分类讨论,先由已知三角函数的值推出α的终边可能在的象限,再分类求解. 跟踪训练2.已知cos α=-513,求13sin α+5tan α的值. 解.方法一.∵cos α=-513<0,∴α是第二或第三象限角. (1)若α是第二象限角, 则sin α=1-cos 2α =1-(-513)2=1213,tan α=sin αcos α=1213-513=-125,故13sin α+5tan α=13×1213+5×(-125)=0.(2)若α是第三象限角, 则sin α=-1-cos 2α=- 1-(-513)2=-1213,tan α=sin αcos α=-1213-513=125,故13sin α+5tan α=13×(-1213)+5×125=0.综上可知,13sin α+5tan α=0. 方法二.∵tan α=sin αcos α,∴13sin α+5tan α=13sin α(1+513·1cos α)=13sin α[1+513×(-135)]=0.类型二.利用同角三角函数关系化简 例3.已知α是第三象限角,化简: 1+sin α1-sin α-1-sin α1+sin α.解.原式= (1+sin α)(1+sin α)(1+sin α)(1-sin α)-(1-sin α)(1-sin α)(1+sin α)(1-sin α)=(1+sin α)21-sin 2α- (1-sin α)21-sin 2α=1+sin α|cos α|-1-sin α|cos α|.∵α是第三象限角,∴cos α<0.∴原式=1+sin α-cos α-1-sin α-cos α=-2tan α(注意象限、符号).反思与感悟.解答这类题目的关键在于公式的灵活运用,切实分析好同角三角函数间的关系,化简过程中常用的方法有:(1)化切为弦,即把非正弦、余弦的函数都化为正弦、余弦函数,从而减少函数名称,达到化简的目的.(2)对于含有根号的,常把根号下化成完全平方式,然后去根号达到化简的目的.(3)对于化简含高次的三角函数式,往往借助于因式分解,或构造sin 2α+cos 2α=1,以降低函数次数,达到化简的目的.跟踪训练3.化简:(1)cos 36°-1-cos 236°1-2sin 36°cos 36°;(2)1cos 2α1+tan 2α-1+sin α1-sin α(α为第二象限角).解.(1)原式= cos 36°- sin 236°sin 236°+cos 236°-2sin 36°cos 36°=cos 36°-sin 36°(cos 36°-sin 36°)2=cos 36°-sin 36°|cos 36°-sin 36°|=cos 36°-sin 36°cos 36°-sin 36°=1.(2)∵α是第二象限角,∴cos α<0, 则原式=1cos 2α 1+sin 2αcos 2α-(1+sin α)21-sin 2α=1cos 2α cos 2αcos 2α+sin 2α-1+sin α|cos α|=-cos αcos 2α+1+sin αcos α=-1+1+sin αcos α=sin αcos α=tan α. 类型三.利用同角三角函数关系证明例4.求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α.证明.∵右边=tan 2α-sin 2α(tan α-sin α)tan αsin α=tan 2α-tan 2αcos 2α(tan α-sin α)tan αsin α=tan 2α(1-cos 2α)(tan α-sin α)tan αsin α =tan 2αsin 2α(tan α-sin α)tan αsin α=tan αsin αtan α-sin α=左边,∴原等式成立.反思与感悟.证明三角恒等式的过程,实质上是化异为同的过程,证明恒等式常用以下方法:(1)证明一边等于另一边,一般是由繁到简. (2)证明左、右两边等于同一个式子(左、右归一). (3)比较法:即证左边-右边=0或左边右边=1(右边≠0).(4)证明与已知等式等价的另一个式子成立,从而推出原式成立. 跟踪训练4.求证:cos x 1-sin x =1+sin xcos x .证明.方法一.(比较法——作差)∵cos x 1-sin x -1+sin x cos x =cos 2x -(1-sin 2x )(1-sin x )cos x =cos 2x -cos 2x (1-sin x )cos x =0, ∴cos x 1-sin x =1+sin xcos x.方法二.(比较法——作商)∵左右=cos x 1-sin x 1+sin x cos x =cos x ·cos x (1+sin x )(1-sin x )=cos 2x 1-sin 2x =cos 2x cos 2x =1. ∴cos x 1-sin x =1+sin xcos x.方法三.(综合法)∵(1-sin x )(1+sin x )=1-sin 2x =cos 2x =cos x ·cos x , ∴cos x 1-sin x =1+sin xcos x.类型四.齐次式求值问题例5.已知tan α=2,求下列代数式的值.(1)4sin α-2cos α5cos α+3sin α;(2)14sin 2α+13sin αcos α+12cos 2α. 解.(1)原式=4tan α-25+3tan α=611.(2)原式=14sin 2α+13sin αcos α+12cos 2αsin 2α+cos 2α =14tan 2α+13tan α+12tan 2α+1 =14×4+13×2+125=1330. 反思与感悟.(1)关于sin α、cos α的齐次式,可以通过分子、分母同除以cos α或cos 2α转化为关于tan α的式子后再求值.(2)注意(2)式中不含分母,可以视分母为1,灵活地进行“1”的代换,由1=sin 2α+cos 2α代换后,再同除以cos 2α,构造出关于tan α的代数式. 跟踪训练5.已知sin α+cos αsin α-cos α=2,计算下列各式的值.(1)3sin α-cos α2sin α+3cos α; (2)sin 2α-2sin αcos α+1.解.由sin α+cos αsin α-cos α=2,化简,得sin α=3cos α,所以tan α=3.(1)原式=3×3cos α-cos α2×3cos α+3cos α=8cos α9cos α=89.(2)原式=sin 2α-2sin αcos αsin 2α+cos 2α+1 =tan 2α-2tan αtan 2α+1+1=32-2×332+1+1=1310.1.若sin α=45,且α是第二象限角,则tan α的值等于(..)A.-43B.34C.±34D.±43答案.A解析.∵α为第二象限角,sin α=45,∴cos α=-35,tan α=-43.2.已知sin α-cos α=-54,则sin αcos α等于(..)A.74 B.-916 C.-932 D.932答案.C解析.由题得(sin α-cos α)2=2516,即sin 2α+cos 2α-2sin αcos α=2516,又sin 2α+cos 2α=1,∴1-2sin αcos α=2516,∴sin αcos α=-932.故选C.3.化简1-sin23π5的结果是(..) A.cos 3π5B.sin 3π5C.-cos 3π5D.-sin 3π5答案.C 解析.1-sin23π5= cos23π5=|cos 3π5|, ∵π2<3π5<π,∴cos 3π5<0, ∴|cos 3π5|=-cos 3π5,即1-sin23π5=-cos 3π5,故选C. 4.若tan θ=-2,则sin θcos θ= . 答案.-25解析.sin θcos θ=sin θcos θsin 2θ+cos 2θ=tan θtan 2θ+1=-25. 5.已知sin α=15,求cos α,tan α.解.∵sin α=15>0,∴α是第一或第二象限角.当α为第一象限角时,cos α=1-sin 2α =1-125=265, tan α=sin αcos α=612;当α为第二象限角时,cos α=-265,tan α=-612.1.利用同角三角函数的基本关系式,可以由一个角的一个三角函数值,求出这个角的其他三角函数值.2.利用同角三角函数的关系式可以进行三角函数式的化简,结果要求:(1)项数尽量少;(2)次数尽量低;(3)分母、根式中尽量不含三角函数;(4)能求值的尽可能求值.3.在三角函数的变换求值中,已知sin α+cos α,sin αcos α,sin α-cos α中的一个,可以利用方程思想,求出另外两个的值.4.在进行三角函数式的化简或求值时,细心观察题目的特征,灵活、恰当地选用公式,统一角、统一函数、降低次数是三角函数关系式变形的出发点.利用同角三角函数的基本关系主要是统一函数,要掌握“切化弦”和“弦化切”的方法.5.在化简或恒等式证明时,注意方法的灵活运用,常用技巧:(1)“1”的代换;(2)减少三角函数的个数(化切为弦、化弦为切等);(3)多项式运算技巧的应用(如因式分解、整体思想等);(4)对条件或结论的重新整理、变形,以便于应用同角三角函数关系来求解.课时作业一、选择题1.已知cos α=-35,α∈(π2,π),sin β=-1213,β为第三象限角,则sin α·tan β等于(..) A.-4825B.4825 C.13 D.-13答案.B解析.∵cos α=-35,α∈(π2,π),sin β=-1213,β是第三象限角,∴sin α=1-cos 2α=45,cos β=-1-sin 2β=-513,即tan β=125,则sin α·tan β=4825.故选B.2.已知α是第二象限角,tan α=-12,则cos α等于(..)A.-55B.-15C.-255D.-45答案.C解析.∵α是第二象限角,∴cos α<0. 又sin 2α+cos 2α=1,tan α=sin αcos α=-12,∴cos α=-255.3.已知A 是三角形的一个内角,sin A +cos A =23,则这个三角形是(..)A.锐角三角形B.钝角三角形C.直角三角形D.等腰直角三角形答案.B解析.∵sin A +cos A =23,∴1+2sin A cos A =49,∴sin A cos A =-518<0,又∵A ∈(0,π),sin A >0, ∴cos A <0,即A 为钝角.故选B.4.函数y =1-sin 2x cos x +1-cos 2xsin x 的值域是(..)A.{0,2}B.{-2,0}C.{-2,0,2}D.{-2,2}答案.C解析.y =|cos x |cos x +|sin x |sin x .当x 为第一象限角时,y =2;当x 为第三象限角时,y =-2; 当x 为第二、四象限角时,y =0. 5.已知sin α-cos α=-52,则tan α+1tan α的值为(..) A.-4 B.4 C.-8 D.8 答案.C解析.tan α+1tan α=sin αcos α+cos αsin α=1sin αcos α.∵sin αcos α=1-(sin α-cos α)22=-18,∴tan α+1tan α=-8. 6.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ等于(..) A.-43B.54C.-34D.45答案.D解析.sin 2θ+sin θcos θ-2cos 2θ=sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=tan 2θ+tan θ-2tan 2θ+1, 又tan θ=2,故原式=4+2-24+1=45.7.已知cos x sin x -1=12,则1+sin xcos x 等于(..)A.12B.-12C.2D.-2答案.B解析.利用1-sin 2x =cos 2x ,可得1+sin x cos x =-cos x sin x -1=-12.二、填空题8.已知sin α+2cos αcos α=1,则α在第 象限.答案.二或四解析.sin α+2cos αcos α=tan α+2=1,tan α=-1<0,∴α在第二或第四象限.9.已知α∈R ,sin α+2cos α=102,则tan α= . 答案. 3或-13解析.因为sin α+2cos α=102,又sin 2α+cos 2α=1, 联立解得⎩⎪⎨⎪⎧ sin α=-1010,cos α=31010或⎩⎪⎨⎪⎧ sin α=31010,cos α=1010,故tan α=sin αcos α=-13或3. 10.在△ABC 中,2sin A =3cos A ,则角A = .答案.π3解析.由题意知cos A >0,即A 为锐角. 将2sin A =3cos A 两边平方,得2sin 2A =3cos A .∴2cos 2A +3cos A -2=0, 解得cos A =12或cos A =-2(舍去), ∴A =π3. 11.若sin θ=-22,tan θ>0,则cos θ= . 答案.-22 12.已知sin αcos α=18,且π<α<5π4,则cos α-sin α= . 答案.-32解析.因为π<α<5π4, 所以cos α<0,sin α<0.利用三角函数线知,cos α<sin α,cos α-sin α=-(cos α-sin α)2=- 1-2×18=-32. 三、解答题13.已知tan α=-12,求1+2sin αcos αsin 2α-cos 2α的值. 解.原式=(sin α+cos α)2sin 2α-cos 2α=sin α+cos αsin α-cos α=tan α+1tan α-1=-12+1-12-1=-13. 四、探究与拓展14.若sin α+cos α=1,则sin n α+cos n α(n ∈Z )的值为 .答案.1解析.∵sin α+cos α=1,∴(sin α+cos α)2=1,又sin 2α+cos 2α=1,∴sin αcos α=0,∴sin α=0或cos α=0.当sin α=0时,cos α=1,此时有sin n α+cos n α=1;当cos α=0时,sin α=1,也有sin n α+cos n α=1,∴sin n α+cos n α=1.15.已知关于x 的方程2x 2-(3+1)x +2m =0的两根为sin θ和cos θ(θ∈(0,π)),求:(1)m 的值;(2)sin θ1-cot θ+cos θ1-tan θ的值(其中cot θ=1tan θ); (3)方程的两根及此时θ的值.解.(1)由根与系数的关系可知,sin θ+cos θ=3+12,① sin θ·cos θ=m .② 将①式平方得1+2sin θ·cos θ=2+32, 所以sin θ·cos θ=34,代入②得m =34. (2)sin θ1-cot θ+cos θ1-tan θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ=3+12. (3)由(1)得m =34,所以原方程化为2x 2-(3+1)x +32=0,解得x 1=32,x 2=12. 所以⎩⎪⎨⎪⎧sin θ=32,cos θ=12或⎩⎪⎨⎪⎧ sin θ=12,cos θ=32.又因为θ∈(0,π), 所以θ=π3或π6.。
高中数学 第一章 三角函数 1.2.2 同角三角函数的基本关系课后习题 新人教A版必修4-新人教A版

1.2.2 同角三角函数的基本关系一、A组1.化简sin2β+cos4β+sin2βcos2β的结果是()A. B. C.1 D.解析:原式=sin2β+cos2β(sin2β+cos2β)=sin2β+cos2β=1.答案:C2.(2016·某某某某实验中学检测)已知tan α=2,则sin2α-sin αcos α的值是()A. B.- C.-2 D.2解析:sin2α-sin αcos α==.答案:A3.(2016·某某某某十一中高一期中)(1+tan215°)cos215°的值等于()A. B.1 C.- D.解析:(1+tan215°)cos215°=cos215°=cos215°+sin215°=1.答案:B4.已知α是第四象限角,tan α=-,则sin α=()A. B.- C. D.-解析:∵α是第四象限角,∴sin α<0.由tan α=-,得=-,∴cos α=-sin α.由sin2α+cos2α=1,得sin2α+=1,∴sin2α=1,sin α=±.∵sin α<0,∴sin α=-.答案:D5.若角α的终边落在直线x+y=0上,则的值为()A.2B.-2C.0D.2或-2解析:由题知,α为第二或第四象限角,原式=.当α为第二象限角时,原式=-=0.当α为第四象限角时,原式==0.综上,原式=0.答案:C6.在△ABC中,cos A=,则tan A=.解析:在△ABC中,可得0<A<π.∵cos A=,∴sin A=.∴tan A==2.答案:27.已知sin α=2m,cos α=m+1,则m=.解析:∵sin2α+cos2α=1,∴(2m)2+(m+1)2=4m2+m2+2m+1=1,∴m=0或m=-.答案:0或-8.(2016·某某某某溧水中学月考)若tan2x-sin2x=,则tan2x sin2x=.解析:tan2x sin2x=tan2x(1-cos2x)=tan2x-tan2x cos2x=tan2x-sin2x=.答案:9.若<α<2π,化简:.解:∵<α<2π,∴sin α<0.∴原式====-=-.10.求证:(1)sin4α-cos4α=2sin2α-1;(2)sin θ(1+tan θ)+cos θ.证明:(1)左边=(sin2α+cos2α)(sin2α-cos2α)=sin2α-(1-sin2α)=2sin2α-1=右边,∴原式成立.(2)左边=sin θ+cos θ=sin θ++cos θ+===右边.∴原式成立.二、B组1.锐角α满足sin αcos α=,则tan α的值为()A.2-B.C.2±D.2+解析:将sin αcos α看作分母是1的分式,则sin αcos α=,分子、分母同时除以cos2α(cos α≠0),得,化成整式方程为tan2α-4tan α+1=0,解得tan α=2±,符合要求,故选C.答案:C2.化简的结果为()A.-cos 160°B.cos 160°C. D.解析:原式===|cos 160°|=-cos 160°,故选A.答案:A3.已知sin θ=,cos θ=,其中θ∈,则tan θ的值为()A.-B.C.-或-D.与m的值有关解析:∵sin2θ+cos2θ=1,∴=1,解得m=0或m=8.∵θ∈,∴sin θ≥0,cos θ≤0.当m=0时,sin θ=-,cos θ=,不符合题意;当m=8时,sin θ=,cos θ=-,tan θ=-,故选A.答案:A4.已知cos,0<α<,则sin=.解析:∵sin2+cos2=1,∴sin2=1-.∵0<α<,∴<α+.∴sin.答案:5.导学号08720014若0<α<,则的化简结果是. 解析:由0<α<,得0<,所以0<sin<cos.故原式==cos-sin+sin+cos=2cos.答案:2cos6.(2016·某某某某溧水中学月考)若α∈(π,2π),且sin α+cos α=.(1)求cos2α-cos4α的值;(2)求sin α-cos α的值.解:(1)因为sin α+cos α=,所以(sin α+cos α)2=,即1+2sin αcos α=,所以sin αcos α=-.所以cos2α-cos4α=cos2α(1-cos2α)=cos2αsin2α=(sin αcos α)2=.(2)(sin α-cos α)2=1-2sin αcos α=1-2×,由(1)知sin αcos α=-<0,又α∈(π,2π),所以α∈.所以sin α<0,cos α>0,所以sin α-cos α<0,所以sin α-cos α=-.7.导学号08720015已知关于x的方程2x2-(+1)x+m=0的两根为sin θ和cos θ.求:(1)的值;(2)m的值.解:因为已知方程有两根,所以(1)==sin θ+cos θ=.(2)对①式两边平方,得1+2sin θcos θ=, 所以sin θcos θ=.由②,得,即m=.由③,得m≤,所以m=.。
必修四第一章 三角函数1.2.2

返回导航
第一章 三角函数
[思路分析] tanα=3,即sinα=3cosα,结合sin2α+cos2α=1,解方程组可求 出sinα和cosα;对于(2),注意到分子分母都是sinα与cosα的一次式,可分子分母 同除以cosα化为tanα的表达式;对于(3),如果把分母视作1,进行1的代换,1= sin2α+cos2α然后运用(2)的方法,分子分母同除以cos2α可化为tanα的表达式,也 可以将sinα=3cosα代入sin2α+cos2α=1中求出cos2α,把待求式消去sinα,也化为 cos2α的表达式求解.
数 学 必 修 ④ · 人 教 A 版
返回导航
第一章 三角函数
[解析] (1)tanα=3=csoinsαα>0, ∴α 是第一或第三象限角. 当 α 是第一象限角时,结合 sin2α+cos2α=1,有
sinα=3
10 10
.
cosα=
10 10
当 α 是第三象限角时,结合 sin2α+cos2α=1,有
如 sin23α+cos23α=1 成立,但是 sin2α+cos2β=1 就不一定成立.
(2)sin2α 是(sinα)2 的简写,读作“sinα 的平方”,不能将 sin2α 写成 sinα2,前
者是 α 的正弦的平方,后者是 α2 的正弦,两者是不同的,要弄清它们的区别,并
能正确书写.
数
(3)同角三角函数的基本关系式是针对使三角函数有意义的角而言的,sin2α+
人
教
A
版
返回导航
第一章 三角函数
3.化简 1-sin2440°=____c_o_s_8_0_°_____.
高中数学 人教A版必修4 第1章 1.2.2同角三角函数的基本关系式(二)

分析三 因为左边分母为 1-sin α,故可将右式分子、分母同 乘 1-sin α.
研一研·问题探究、课堂更高效
1+sin α1-sin α 方法三 右边= cos α1-sin α 1-sin2α cos2α cos α = = = =左边, cos α1-sin α cos α1-sin α 1-sin α
若设 sin α-cos α=t,则 sin α-cos α=
2
.
研一研·问题探究、课堂更高效
1.2.2(二)
探究点一
三角函数式的化简
三角函数式的化简是将三角函数式尽量化为最简单的形式,其
本 课 时 栏 目 开 关
基本要求:尽量减少角的种数,尽量减少三角函数的种数,尽 量化为同角且同名的三角函数等.三角函数式的化简实质上是 一种不指定答案的恒等变形,体现了由繁到简的最基本的数学 解题原则.它不仅要求熟悉和灵活运用所学的三角公式,还需 要熟悉和灵活运用这些公式的等价形式.同时,这类问题还具 有较强的综合性,对其他非三角知识的运用也具有较高的要 求,因此在平常学习时要注意经验的积累. 化简三角函数式时,在题设的要求下,应合理利用有关公式, 常见的化简方法:异次化同次、高次化低次、切化弦、特殊角 的三角函数与特殊值互化等.
研一研·问题探究、课堂更高效
1.2.2(二)
请按照上述标准化简下列三角函数式: 已知 α 是第三象限角,化简:
本 答 课 时 栏 目 = 开 关
1+sin α - 1-sin α
1-sin α . 1+sin α
原式=
1+sin α2 - 1-sin α1+sin α 1-sin α2 cos2α
高中数学第一章三角函数1.2.2同角三角函数的基本关系学案新人教A版必修4

(浙江专版)2017-2018学年高中数学第一章三角函数1.2.2 同角三角函数的基本关系学案新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专版)2017-2018学年高中数学第一章三角函数1.2.2 同角三角函数的基本关系学案新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专版)2017-2018学年高中数学第一章三角函数1.2.2 同角三角函数的基本关系学案新人教A版必修4的全部内容。
1.2.2 同角三角函数的基本关系预习课本P18~20,思考并完成以下问题(1)同角三角函数的基本关系式有哪两种?(2)已知sin α,cos α和tan α其中的一个值,如何求其余两个值?[新知初探]同角三角函数的基本关系式(1)平方关系:sin2α+cos2α=1.(2)商数关系:tan_α=错误!错误!。
这就是说,同一个角α的正弦、余弦的平方和等于1,商等于角α的正切错误!.[点睛] 同角三角函数的基本关系式揭示了“同角不同名”的三角函数的运算规律,这里“同角”有两层含义:一是“角相同",二是对“任意”一个角(在使函数有意义的前提下).关系式成立与角的表达形式无关,如sin23α+cos23α=1。
[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)对任意角α,sin2α3+cos2错误!=1都成立.( )(2)对任意角α,sin 2αcos 2α=tan 2α都成立.()(3)若cos α=0,则sin α=1.()答案:(1)√(2)×(3)×2.已知α∈错误!,sin α=错误!,则cos α=( )A.错误! B.-错误!C.-错误!D.错误!答案:A3.已知cos α=错误!,且α是第四象限角,则sin α=()A.±错误!B.±错误!C.-错误!D.-错误!答案:C4.已知sin α=错误!,α∈错误!,则tan α=________。
1.2.2《同角三角函数的基本关系》说课稿

&1.2.2《同角三角函数的基本关系》 《数学4》必修(P18) 各位评委老师,您们好:今天我要说课的题目是《同角三角函数的基本关系》。
我将从以下四个方面进行说课。
一.教材分析本课是《普通高中课程标准实验教材A 版▪必修4》第一章第二节的内容。
同角三角函数是学生学习了任意角和弧度值,任意角的三角函数后,继续深入学习的内容,是求三角函数值、化简三角函数式、证明三角恒等式的基本工具,是整个三角函数的基础,在教材中起着承上启下的作用。
同时,它体现的数学思想与方法在整个中学数学学习中都有着重要的作用。
所以本节课的重点是同角三角函数基本关系式及在求值中的应用上。
二.教学目标分析1. 知识与技能目标(1)能根据三角函数的几何、代数定义导出同角三角函数的基本关系式;(2)掌握同角三角函数的两个基本关系式(3)能够根据一个角的三角函数值,求这个角的其他三角函数值.2.情感目标通过对知识的探究,让学生掌握自主学习的方法,通过学习中的交流,形成合作学习的习惯,以及良好的表达能力。
三.教学方法分析经过长期的训练,学生已具备了一定的数学建模能力,并能进一步猜想、探讨和证明,这为本节课的学习奠定了良好的思想基础和能力基础,但在探究问题的能力,合作交流的意识等方面还有待加强。
所以本课在探究同角三角函数关系式时,运用合作交流方式,采用观察、类比、数形结合、联想、猜测、检验等合情推理方法,提高学生运算能力、逻辑推理能力以及表达能力。
在已知一个角的三角函数值,求这个角的其他三角函数值时,进一步树立分类思想和化归的思想,将新题目化归到已经掌握的知识点上。
四. 教学过程设计为了达到教学目标,突出重点,突破难点,我设计了以下教学过程。
称为5E 教学法,这是我在一个国际支教组织学习到的方法。
(一)Engage 复习引入( 5分钟) 三角函数的定义是怎样的?:sin ,cos ,tan y x y r r xααα===(x ≠0) 一些特殊角三角函数的计算复习,如sin30,cos30,sin60,cos60,及其平方、商等。
人教版数学必修四:1.2.2同角三角函数关系(学生版)

课题:§1.2.2同角三角函数关系总第____课时班级_______________姓名_______________【学习目标】要求学生能根据三角函数的定义,导出同角三角函数的基本关系,并能正确运用公式进行三角函数式的求值、化简及三角恒等式的证明。
【重点难点】学习重点:同角三角函数关系式的推导学习难点:公式的灵活运用(求值、化简及证明)【学习过程】一、自主学习与交流反馈问题1:已知角α终边上任一点P(x,y),它到原点的距离为r,用x,y,r表示sinα,cosα,tanα,由x,y,r的关系探求同角α的正弦、余弦、正切之间有什么关系?问题2:在同角三角函数的关系中,角α分别有何限制条件?为什么?二、知识建构与应用:1. 同角三角函数之间的基本关系:(1)平方关系_________________;(2)商数关系______________2. 上述关系式如何证明呢?三、例题例1 (1) 已知54sin =α,且α是第二象限角,求ααtan ,cos 的值。
(2) 已知512tan =α,求ααcos ,sin 的值.例2 已知tan α=2 ,求下列各式的值:(1) ααααcos sin cos sin -+ (2)αααα2222cos 3sin 2cos sin 3+-(3)3sin 2α-cos 2α例3 化简tan α1sin 2α -1 ,其中α 是第二象限角。
例4 求证:sin α1+ cos α =1- cos α sin α四、巩固练习1. 已知54cos -=α,且α 为第三象限角,则αsin = ,αtan = 。
2. 化简:(1)ααtan cos = ; (2)αα22sin 211cos 2--= ; (3) 0040cos 40sin 21-= 。
3. (1) 已知21sin -=α,求ααtan ,cos 的值。
(2) 已知2tan =α,求ααcos ,sin 的值。
高中数学_同角三角函数基本关系教学设计学情分析教材分析课后反思

《同角三角函数的基本关系》教学设计学校:年级:高一授课教师:授课时间:2014年12月学情分析:本章是学生第一次接触三角函数,对新知识有较大兴趣,思维活跃,但基础薄弱,本节是学生全面接触三角函数的开始。
效果分析本节课的教学兼有讲授和提高两种作用,考虑到学生的实际情况,在教学设计上同时考虑了两个层次的学生,教学中也有所侧重。
本节课采用小组讨论,学生互评、自评的教学方式授课。
学生既是学习的被动者也是主动者,既是付出者也是收获者,既提高了做题解题的能力,又提高了讲题、表达的能力,总体收到了良好的教学效果。
教材分析:本节是人教版必修4,1.2.2的内容,是在学习了任意角和弧度制并了解正弦、余弦、正切后进行教学的,同时同角三角函数的基本关系也为之后学习两角的和差公式奠定了基础,有着衔接作用。
课前练习1.点P是角α终边上的一点,且,则b 的值是( )A 3B -3C ±3D 5 2.已知角α的终边过点P,则下列各式中正确的是( )A BC 1tan 2α=- D tan 2α=-3.下列命题中正确的是( )2、sin tan cos ααα= 三、练习 课后小结本节课的教学兼有讲授和提高两种作用,考虑到学生的实际情况,在教学设计上同时考虑了两个层次的学生,教学中也有所侧重,收到了较好的教学效果。
A 角α与2k πα+(k ∈Z )是相等的角B 钝角是第二象限角C 小于90°的角是锐角D 钝角的补角是第一象限角4是角θ终边上的一点,且。
达标练习A 组全员完成1、若3cos ,,sin _________,tan _______5αααα===为第四象限角则。
2、化简:02170sin 1-= 。
3、已知2tan =α,则=-ααααcos sin sin cos 22 。
B 组4、已知α是第三象限角,化简ααααsin 1sin 1sin 1sin 1+---+5、证明下列恒等式: ⑴1cos sin cos 2442+=+θθθ;⑵1cos cos sin sin 2224=++θθθθ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.2 同角三角函数的基本关系整体设计教学分析与三角函数的定义域、符号的确定一样,同角三角函数的基本关系式的推导,紧扣了定义,是按照一切从定义出发的原则进行的,通过对基本关系的推导,应注意学生重视对基本概念学习的良好习惯的形成,学会通过对基本概念的学习,善于钻研,从中不断发掘更深层次的内涵.同角三角函数的基本关系式将“同角”的四种不同的三角函数直接或间接地联系起来,在使用时一要注意“同角”,至于角的表达形式是至关重要的,如sin 24π+cos 24π=1等,二要注意这些关系式都是对于使它们有意义的那些角而言的,如tanα中的α是使得tanα有意义的值,即α≠kπ+2π,k∈Z . 已知任意角的正弦、余弦、正切中的一个值便可以运用基本关系式求出另外的两个,这是同角三角函数关系式的一个最基本功能,在求值时,根据已知的三角函数值,确定角的终边的位置是关键和必要的,有时由于角的终边的位置不确定,因此解的情况不止一种,解题时产生遗漏的主要原因一是没有确定好或不去确定终边的位置;二是利用平方关系开方时,漏掉了负的平方根.三维目标1.通过三角函数的定义导出同角三角函数基本关系式,并能运用同角三角函数的基本关系式进行三角函数的化简与证明.2.同角三角函数的基本关系式主要有三个方面的应用:(1)求值(知一求二);(2)化简三角函数式;(3)证明三角恒等式.通过本节的学习,学生应明了如何进行三角函数式的化简与三角恒等式的证明.3.通过同角三角函数关系的应用使学生养成探究、分析的习惯,提高三角恒等变形的能力,树立转化与化归的思想方法.重点难点教学重点:课本的三个公式的推导及应用.教学难点:课本的三个公式的推导及应用.课时安排1课时教学过程导入新课思路1.先请学生回忆任意角的三角函数定义,然后引导学生先计算后观察以下各题的结果,并鼓励学生大胆进行猜想,教师点拨学生能否用定义给予证明,由此展开新课.计算下列各式的值:(1)sin 290°+cos 290°;(2)sin 230°+cos 230°;(3)οο60cos 60sin ;(4)οο135cos 135sin . 推进新课新知探究提出问题①在以下两个等式中的角是否都可以是任意角?若不能,角α应受什么影响?图1如图1,以正弦线MP 、余弦线OM 和半径OP 三者的长构成直角三角形,而且OP=1.由勾股定理有OM 2+MP 2=1.因此x 2+y 2=1,即sin 2α+cos 2α=1(等式1).显然,当α的终边与坐标轴重合时,这个公式也成立.根据三角函数的定义,当α≠kπ+2π,k∈Z 时,有 aa cos sin =tanα(等式2). 这就是说,同一个角α的正弦、余弦的平方和等于1,商等于角α的正切.②对于同一个角的正弦、余弦、正切,至少应知道其中的几个值才能利用基本关系式求出其他的三角函数的值.活动:问题①先让学生用自己的语言叙述同角三角函数的基本关系,然后教师点拨学生思考这两个公式的用处.同时启发学生注意“同一个角”这个前提条件,及使等式分别有意义的角的取值范围.问题②可让学生展开讨论,点拨学生从方程的角度进行探究,对思考正确的学生给予鼓励,对没有思路的学生教师点拨其思考的方法,最后得出结论“知一求二”.讨论结果:①在上述两个等式中,不是所有的角都可以是任意角,在第一个等式中,α可以是任意角,在第二个等式中α≠kπ+2π,k∈Z . ②在上述两个等式中,只要知道其中任意一个,就可以求出其余的两个.知道正弦(余弦),就可以先求出余弦(正弦),用等式1;进而用第二个等式2求出正切.应用示例思路1例1 已知sinα=54,并且α是第二象限的角,求cosα,tanα的值. 活动:同角三角函数的基本关系学生应熟练掌握,先让学生接触比较简单的应用问题,明确和正确地应用同角三角函数关系.可以引导学生观察与题设条件最接近的关系式是sin 2α+cos 2α=1,故cosα的值最容易求得,在求cosα时需要进行开平方运算,因此应根据角α所在的象限确定cosα的符号,在此基础上教师指导学生独立地完成此题.解:因为sin 2α+cos 2α=1,所以 cos 2α=1-sin 2α=1-(54)2=259. 又因为α是第二象限角,所以cosα<0.于是cosα=259-=53-, 从而tanα=a a cos sin =54×(35-)=34-.点评:本题是直接应用关系求解三角函数值的问题,属于比较简单和直接的问题,让学生体会关系式的用法.应使学生清楚tanα=34-中的负号来自α是第二象限角,这也是根据商数关系直接运算后的结果,它不同于在选用平方关系式的三角函数符号的确定.例2 已知cosα=178-,求sinα,tanα的值. 活动:教师先引导学生比较例1、例2题设条件的相异处,根据题设条件得出角的终边只能在第二或第三象限.启发学生思考仅有cosα<0是不能确定角α的终边所在的象限,它可能在x 轴的负半轴上(这时cosα=-1).解:因为cosα<0,且cosα≠-1,所以α是第二或第三象限角.如果α是第二象限角,那么 sinα=a 2cos -1=2)178(1--=1715, tanα=a a cos sin =1715×(17-)=15-, 如果α是第三象限角 点评:在已知角的一个三角函数值但是不知道角所在的象限的时候,应先根据题目条件讨论角的终边所在的象限例1 已知tanα为非零实数 活动:引导学生思考讨论能否直接利用基本关系式求出sinα或cosα的值.由tanα≠0,只能确定sinα、cosα、tanα的关tanα=aa cos sin ,才能求出第三个,因此像这类问题的求解,不能一步到位,需要公式的综合应用.其步骤是:先根据条件判断角的终边的位置,讨论出现的所有情况.然后根据讨论的结果,利用基本关系式求解.分情况求出cosα,进而求出sinα.解:因为sin 2α+cos 2α=1,所以sin 2α=1-cos 2α.又因为tanα=a a cos sin ,所以tan 2α=a a 22cos sin =1cos 1cos cos 1222-=-aa a . 于是a 2cos 1=1+tan 2α,cos 2α=a2tan 11+. 由tanα为非零实数,可知角α的终边不在坐标轴上,从而c osα=⎪⎪⎩⎪⎪⎨⎧+-+,,,tan 11,,tan 1122第三象限角为第二当第四象限角为第一当a a、a asinα=cosαtanα=⎪⎪⎩⎪⎪⎨⎧+-+.,tan 1tan ,,,tan 1tan 22第三象限角为第二当第四象限角为第一当、a aa a a 点评:要求学生灵活运用三角函数公式进行变形、化简、求解.需要学生认真细致分析题目的条件,灵活运用公式,需要较高的思维层次.变式训练已知cosα≠0,用cosα表示sinα、tanα.解:本题仿照上题可以比较顺利完成. sinα=⎪⎩⎪⎨⎧---,、a a ,、a ,a 第四象限角为第三当第二象限角为第一当,cos 1cos 122 tanα=⎪⎪⎩⎪⎪⎨⎧---.cos cos 1,cos cos 122第四象限角为第三当第二象限角为第一当、a ,,、a αααα 教师引导思考方向.教材中介绍了两种证明方法:证算式右边的非零因式1+sinα,在左边没有出现,可考虑再化简;在证法二中可以这样分析,要让算式成立,需x,也就是sin 2x+cos 2x=1,由平方关系可知这个将上述分析过程逆推便可以证得原式成立.nx≠0,于是 左边=右边=+=-+=-=+-x x xx x x x x x cos sin 1sin 1)sin 1(cos sin 1)sin 1)(sin 1(22 所以原式成立.证法二:因为(1-sinx)(1+sinx)=1-sin 2x=cos 2x=cosxcosx,且1-sinx≠0,cosx≠0,所以.cos sin 1sin 1cos xx x x +=-教师启发学生进一步探究:除了证法一和证法二外你可否还有其他的证明方法.教师和学生一起讨论,由此可探究出证法三.依据“a -b=0⇔a=b”来证明恒等式是常用的证明方法,由学生自己独立完成. 证法三:因为0cos )sin 1(cos cos cos )sin 1()sin 1(cos cos )sin 1()sin 1)(sin 1(cos cos cos sin 1sin 1cos 2222=--=---=--+-=+--x x x x x x x x x x x x x x x x x 所以.cos sin 1sin 1cos xx x x +=- 点评:这是一道很有训练价值的经典例题,教师要充分利用好这个题目.从这个例题可以看出,证明一个三角恒等式的方法有很多.证明一个等式,可以从它的任何一边开始,证得它等于另一边;还可以先证得另一个等式成立,从而推出需要证明的等式成立.例3 化简.440sin -12︒活动:引导学生探究:原式结果为cos440°时是不是最简形式,还应怎么办?教师引导学生运用诱导公式一化简为cos 80°,由于cos80°>0,因此︒80cos 2=|cos80°|=cos80°,此题不难,让学生独立完成.解:原式=)80(360sin -12︒+︒=︒80sin -12=︒80sin -12=cos80°.点评:恰当利用平方关系和诱导公式化简三角函数式.提醒学生注意化简后的简单的三角函数式应尽量满足以下几点:(1)所含的三角函数种类最少;(2)能求值(指准确值)的尽量求值;(3)不含特殊角的三角函数值.变式训练化简:︒︒cos402sin40-1答案:cos40°-sin40°.点评:提醒学生注意:1±2sinαcosα=sin 2α+cos 2α±2sinαcosα=(sinα±cosα)2,这是一个很重要的结论.知能训练3.当θ为第一象限角时,cosθ≈0.94,tanθ≈0.37.当θ为第二象限角时,cosθ≈-0.94,tanθ≈-0.37.4.(1)cosθtanθ=cosθθθcos sin =sinθ; (2)1sin cos sin cos sin 2)cos (sin )cos (sin cos 2sin 211cos 2222222222222=--=-++-=--aa a a a a a a a a a a 5.(1)左=(sin 2α+cos 2α)(sin 2α-cos 2α)=sin 2α-cos 2α=右;(2)左=sin 2α(sin 2α+cos 2α)+cos 2α=sin 2α+cos 2α=1=右.课堂小结由学生回顾本节所学的方法知识:①同角三角函数的基本关系式及成立的条件,②根据一个任意角的正弦、余弦、正切中的一个值求出其余的两个值(可以简称“知一求二”)时要注意这个角的终边所在的位置,从而出现一组或两组或四组(以两组的形式给出).“知一求二”的解题步骤一般为:先确定角的终边位置,再根据基本关系式求值,若已知正弦或余弦,则先用平方关系,再用其他关系求值;若已知正切或余切,则构造方程组求值. 教师和学生一起归纳三角函数式化简与三角恒等式的证明的一般方法及应注意的问题,并让学生总结本节用到的思想方法.作业1.化简(1+tan 2α)cos 2α;2.已知tanα=2,求aa a a cos sin cos sin -+的值. 答案:1.1;2.3.设计感想公式的推导和应用是本节课的重点,也是本节课的难点.公式的应用实际上是求可化为完全平方的三角函数式的“算术平方根”的化简题和证明题,这类问题可按下列情形分别处理:(1)如果这个三角函数式的值的符号可以确定,则可以根据算术平方根的定义直接得到结果;(2)如果这个三角函数式的值的符号不可以确定,则可根据题设条件,经过合理的分类讨论得到结果.三角函数式的化简,体现了由繁到简的最基本的数学解题原则,它不仅需要学生能熟悉和灵活运用所学的三角公式,还需要熟悉和灵活运用这些公式的等价形式,同时,这类问题还具有较强的综合性,对其他非三角知识的灵活运用也具有较高的要求,在教学时要注意进行相关知识的复习.证明恒等式的过程实质上就是分析转化和消去等式两边差异来促成统一的过程,证明时常用的方法一般有以下三种:(1)依据相等关系的传递性,从等式一边开始,证明它等于另一边,证明时一般遵循由繁到简的原则.(2)依据“等于同量的两个量相等”证明左、右两边等于同一个式子.(3)依据等价转化思想,证明与原式等价的另一个式子成立,从而推出原式成立.教材上在运用这一方法时使用的是综合法,初学恒等式的证明时,运用等价转化的方法可以使证明的思路更清楚一些,实际上,使用综合法时不一定要求进行等价转化,只需证明等式成立的充分条件即可(教师知道即可),证明方法中分别运用到了分式的基本性质和算式的基本性质.使学生明白,如果算式中含有正弦、余弦、正切等三角函数,为了便于将算式两边沟通,可通过“切化弦”使两边的三角函数相同.。