人教版高中数学版必修四教案 同角的三角函数的基本关系

合集下载

《同角三角函数的基本关系》示范课教学设计【高中数学人教】

《同角三角函数的基本关系》示范课教学设计【高中数学人教】

环节三 同角三角函数的基本关系【新知探究】1.发现规律问题 1 诱导公式一表明,终边相同的角的同一三角函数值相等.而三个三角函数值都是由角的终边与单位圆的交点坐标唯一确定的,所以它们之间一定有内在联系.那么,终边相同的角的三个三角函数之间有什么关系呢?答案:如图1,设P (x ,y )是角α的终边与单位圆的交点.过P 作x 轴的垂线,交x 轴于M ,则△OMP 是直角三角形,而且OP =1.由勾股定理OM ²+MP ²=1.因此x ²+y ²=1。

即同一个角的三个三角函数之间的关系:sin 2α+cos 2α=1 .并且当角α的终边与坐标轴重合时,该公式也成立. 根据三角函数的定义,有:sin tan cos ααα=,2ππ+≠k α,k ∈Z . 即同一个角α的正弦、余弦的平方和等于1,商等于角α的正切.追问 从方程的角度观察同角三角函数关系,你能发现它有什么作用?答案:因为有两个方程,三个未知数sin α,cos α,tan α,所以已知其中一个可以求出另外两个,简称“知一求二”.2.应用规律例1已知sin α=-53,求cos α,tan α的值. 答案:因为sin α<0,sin α≠-1,所以α是第三或第四象限角.由sin 2α+cos 2α=1得cos 2α=1-sin 2α=1-2316()525-=; 如果α是第三象限角,那么cos α<0.于是cos α=164255-=-, 从而sin 353tan ()()cos 544ααα==-⨯-=; 如果α是第四象限角,那么cos α>0.于是cos α=164255=, 从而sin 353tan ()cos 544ααα==-⨯=-. 图1追问 你能对“例1”这种题型总结出它的解题步骤吗?答案:解题步骤如下:第一步,先根据条件判断角所在的象限;第二步,分类讨论确定其中一个三角函数值的符号;第三步,利用基本关系求出其他的三角函数值.例2求证:xx x x cos sin 1sin 1cos +=-. 答案:证法一:由cos x ≠0,知sin x ≠-1,所以1+sin x ≠0,于是左边=22cos (1sin )cos (1sin )cos (1sin )1sin (1sin )(1sin )1sin cos cos x x x x x x x x x x x x++++===-+-=右边. 所以,原式成立.证法二:因为(1-sin x )(1+sin x )=1-sin 2x =cos 2x =cos x cos x ,且1-sin x ≠0,cos x ≠0,所以cos 1sin 1sin cos x x x x +=-. 3.探究延伸问题 2 总结上述研究过程,你能说说我们是从哪些角度入手发现三角函数性质的?你认为还可以从哪些方面入手研究三角函数的性质?答案:借助单位圆,从三角函数的定义出发,我们从三角函数值的符号规律、三角函数的取值规律(相等)入手发现了诱导公式一和同角三角函数的基本关系.自然地,我们还可以进一步研究三角函数取值互为相反数等其他关系的规律.【归纳小结】问题3回顾本单元学习内容,并回答下面问题:(1)本单元知识发生发展过程的基本脉络是怎样的?在上一节的基础上进一步完善本单元的知识结构图?(2)我们是如何发现诱导公式一和同角三角函数的基本关系的?在发现这些性质的过程中,有哪些值得总结的思想方法或经验?答案:(1)基本脉络是:现实背景—获得研究对象—分析对应关系的本质—下定义—研究性质;本单元的知识结构图:(2)三角函数的定义是借助于单位圆来定义的,因此其性质必然与单位圆的几何性质有关,又因为三角函数是一个背景下同时得到三个概念,所以,它们之间一定有某种内在的联系,在此基础上,发现了诱导公式一和同角三角函数的基本关系.。

人教版高一数学必修四1.2.2同角三角函数的基本关系(课件)

人教版高一数学必修四1.2.2同角三角函数的基本关系(课件)

知识探究(一):基本关系
思考1:如图,设α是一个任意角,它
的终边与单位圆交于点P,那么,正弦
线MP和余弦线OM的长度有什么内在联
系?由此能得到什么结论?
y P
1
MO
x
思考2:上述关系反应了角α的正弦和 余弦之间的内在联系,根据等式的特点, 将它称为平方关系.那么当角α的终边 在坐标轴上时,上述关系成立吗?
y P
P Ox
思考3:设角α的终边与单位圆交于点
P(x,y),根据三角函数定义,有



由此可得sinα,cosα,tanα满足什
么关系?
思考4:上述关系称为商数关系,那么商 数关系成立的条件是多么?
思考5:平方关系和商数关系是反应同一 个角的三角函数之间的两个基本关系, 它们都是恒等式,如何用文字语言描述 这两个关系?
同一个角的正弦、余弦的平方和等于1, 商等于这个角的正切.
知识探究(二):基本变形 思考1:对于平方关系 可作哪些变形?
sin2 cos2 1
思考2:对于商数关系 哪些变形?
可作
思考3:结合平方关系和商数关系, 可得到哪些新的恒等式?
思考4:若已知sinα的值,如何求cosα 和tanα的值?
思考5:若已知tanα的值,如何求sinα 和cosα的值?
理论迁移
例1 求证:
例2 已知
,求
若α是第三象限角,则
若α是第四象限角,则
, 的值.

.

.
例3 已知tanα=2,求下列各式的值.
(1)
;(2)
5 2
例4 已知 求
, 的值.
小结作业
1.同角三角函数的两个基本关系是对同一个 角而言的,由此可以派生出许多变形公式, 应用中具有灵活、多变的特点.

高中数学必修四教案:1.2.2同角三角函数的关系(1)

高中数学必修四教案:1.2.2同角三角函数的关系(1)

格一课堂教学方案cos40章节:课时: 2 备课人:陈清二次备课人:精美句子1、善思则能“从无字句处读书”。

读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。

读大海,读出了它气势磅礴的豪情。

读石灰,读出了它粉身碎骨不变色的清白。

2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。

幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。

幸福是“零落成泥碾作尘,只有香如故”的圣洁。

幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。

幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。

幸福是“人生自古谁无死,留取丹心照汗青”的气节。

3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。

4、成功与失败种子,如果害怕埋没,那它永远不能发芽。

鲜花,如果害怕凋谢,那它永远不能开放。

矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。

蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。

航船,如果害怕风浪,那它永远不能到达彼岸。

5、墙角的花,当你孤芳自赏时,天地便小了。

井底的蛙,当你自我欢唱时,视野便窄了。

笼中的鸟,当你安于供养时,自由便没了。

山中的石!当你背靠群峰时,意志就坚了。

水中的萍!当你随波逐流后,根基就没了。

空中的鸟!当你展翅蓝天中,宇宙就大了。

空中的雁!当你离开队伍时,危险就大了。

地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。

朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。

高中数学必修4同角三角函数的基本关系精品教案

高中数学必修4同角三角函数的基本关系精品教案

4-1.2.2同角三角函数的基本关系教学目的:知识目标:1.能根据三角函数的定义导出同角三角函数的基本关系式及它们之间的联系; 2.熟练掌握已知一个角的三角函数值求其它三角函数值的方法。

能力目标: 牢固掌握同角三角函数的两个关系式,并能灵活运用于解题,提高学生分析、解决三角的思维能力;教学重点:同角三角函数的基本关系式教学难点:三角函数值的符号的确定,同角三角函数的基本关系式的变式应用 教学过程: 一、复习引入:1.任意角的三角函数定义:设角α是一个任意角,α终边上任意一点(,)P x y ,它与原点的距离为(0)r r ==>,那么:sin y r α=,cos x r α=,tan y xα=, 2.当角α分别在不同的象限时,sin α、cos α、tg α的符号分别是怎样的? 3.背景:如果53sin =A ,A 为第一象限的角,如何求角A 的其它三角函数值; 4.问题:由于α的三角函数都是由x 、y 、r 表示的,则角α的三个三角函数之间有什么关系?二、讲解新课:(一)同角三角函数的基本关系式:(板书课题:同角的三角函数的基本关系)1. 由三角函数的定义,我们可以得到以下关系:(1)商数关系:αααcon sin tan = (2)平方关系:1sin 22=+ααcon 说明:①注意“同角”,至于角的形式无关重要,如22sin 4cos 41αα+=等; ②注意这些关系式都是对于使它们有意义的角而言的,如tan cot 1(,)2k k Z πααα⋅=≠∈; ③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用),如:cos α= 22sin 1cos αα=-, sin cos tan ααα=等。

2.例题分析: 一、求值问题 例1.(1)已知12sin 13α=,并且α是第二象限角,求cos ,tan ,cot ααα. (2)已知4cos 5α=-,求sin ,tan αα. 解:(1)∵22sin cos 1αα+=, ∴2222125cos 1sin 1()()1313αα=-=-= 又∵α是第二象限角, ∴cos 0α<,即有5cos 13α=-,从而sin 12tan cos 5ααα==-, 15cot tan 12αα==-(2)∵22sin cos 1αα+=, ∴222243sin 1cos 1()()55αα=-=--=,又∵4cos 05α=-<, ∴α在第二或三象限角。

高中数学 1.2.2《同角三角函数的基本关系》教案人教版必修4

高中数学 1.2.2《同角三角函数的基本关系》教案人教版必修4

同角三角函数的基本关系
教学目标:
⒈理解同角三角函数的基本关系式,会用解方程组的通法求三角函数值;
2.培养运用数形结合的思想解决有关求值问题;培养学生思维的灵活性及思维的深化;在恒等式证明的教学过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力.
3.通过对同角三角函数的基本关系式的学习,揭示事物间的普遍联系规律,培养辨证唯物主义思想。

教学重点:同角三角函数的基本关系式的推导及应用(求值、化简、恒等式证明)
教学难点:关系式在解题中的灵活运用和对学生思维灵活性的培养.
授课类型:新授课
课时安排:1课时
教具:多媒体、实物投影仪
教学方法:
本节主要涉及到两个公式,均由三角函数定义和勾股定理推出.在教学过程中,要注意引导学生理解每个公式,懂得公式的来龙去脉,并能灵活运用。

要给学生提供展示自己思路的平台,营造自主探究解决问题的环境,把鼓励带进课堂,把方法带进课堂,充分发挥学生的主体作用.
教学过程:。

人教版高中必修4(B版)1.2.3同角三角函数的基本关系教学设计

人教版高中必修4(B版)1.2.3同角三角函数的基本关系教学设计

人教版高中必修4(B版)1.2.3同角三角函数的基本关系教学设计教学目标1.理解同一个角度三角函数之间的相互关系,掌握同角三角函数的基本性质和公式;2.能够通过三角函数的相互关系和性质解决实际问题;3.培养学生对三角函数的逻辑思维能力和应用能力,提高学生的数学素养。

教学内容1.2.3 同角三角函数的基本关系1.三角函数的概念和图像;2.同一个角度的正弦、余弦、正切、余切的相互关系和性质;3.二倍角的公式及其应用;4.定义域、值域及简单的图像变换。

教学重点1.同角三角函数的基本关系和性质;2.二倍角的公式及其应用。

教学难点1.解决实际问题的能力;2.三角函数的逻辑思维能力和应用能力。

教学方法1.通过引导学生进行讨论和实验,激发学生的兴趣和活跃性;2.利用多媒体教具展示图像和动态演示,提高学生的视觉体验;3.设计实际问题,提高学生的思维能力和应用能力;4.在授课过程中,不断引导学生发现问题和解决问题的方法,培养学生的探究精神。

教学过程一、导入(10分钟)1.展示三角函数的图像,帮助学生理解三角函数的概念;2.提出问题:你知道同一个角度的正弦、余弦、正切、余切之间有什么关系吗?二、学习同角三角函数的基本关系(30分钟)1.分组讨论,探讨同角三角函数之间的相互关系;2.利用多媒体教具展示同角三角函数之间的相互关系的公式和图像变换。

三、二倍角公式的应用(40分钟)1.分组讨论,探讨二倍角公式的意义和应用;2.设计实际问题,引导学生运用二倍角公式解决问题。

四、小结(10分钟)1.回顾同角三角函数的基本关系和二倍角公式的应用;2.指导学生如何巩固和拓展知识。

课后作业1.熟练掌握同角三角函数之间的相互关系和二倍角公式的应用;2.完成课后习题,巩固和拓展知识。

教学资源1.人教版高中数学教材;2.多媒体教具。

总结同角三角函数的基本关系和二倍角公式是高中数学重要的知识点,掌握了这一知识点,不仅能够解决实际问题,还能够提高学生的数学素养和应用能力。

数学《同角三角函数的基本关系》教案

数学《同角三角函数的基本关系》教案

数学《同角三角函数的基本关系》教案教案:同角三角函数的基本关系一、教学目标:1.理解同角三角函数的概念及意义。

2.掌握正弦、余弦和正切函数之间的基本关系。

3.能够在给定角度范围内计算同角三角函数的值。

二、教学重点与难点:1.理解同角三角函数的概念及意义。

2.掌握正弦、余弦和正切函数之间的基本关系。

三、教学准备:1.教材、课件、黑板、粉笔。

2.学生课前复习笔记。

四、教学过程:1.引入(10分钟)教师可通过提问的方式引导学生复习和回忆上节课所学的三角函数概念及性质,例如:“什么是三角函数?它们有什么特点?”2.概念讲解(10分钟)教师介绍同角三角函数的概念和意义,同角三角函数是以角度的大小和方向为自变量,以比值为因变量的一类函数。

其中,正弦函数、余弦函数和正切函数是最常用和基础的三角函数。

通过图示的方式向学生展示正弦函数、余弦函数和正切函数的形象及它们之间的关系。

3.基本关系的推导(15分钟)3.1正弦函数与余弦函数的基本关系:教师指导学生通过绘制各象限内角度相同的锐角三角形,并利用其定义推导出正弦函数和余弦函数的基本关系:sin^2θ + cos^2θ = 13.2正切函数与正弦函数、余弦函数的基本关系:教师指导学生通过绘制直角三角形,利用其定义推导出正切函数、正弦函数和余弦函数的基本关系:tanθ = sinθ / cosθ。

4.同角三角函数的计算及性质(25分钟)4.1计算角度对应的三角函数值:教师引导学生通过练习,掌握计算给定角度对应的正弦、余弦和正切函数值的方法和技巧。

4.2使用同角三角函数的性质:教师讲解同角三角函数的周期性和奇偶性,并指导学生根据这些性质简化计算,例如,sin(180° + θ) = -sinθ,cos(π + θ) = -cosθ,等等。

5.练习与巩固(20分钟)教师提供一系列基础练习题,让学生在课堂上进行计算和解答,以巩固所学的同角三角函数的基本关系和计算方法。

新人教版高中数学必修四《同角三角函数的基本关系》教学设计

新人教版高中数学必修四《同角三角函数的基本关系》教学设计

教学设计一、教学目标1、知识与技能目标(1)能根据三角函数的几何、代数定义导出同角三角函数的基本关系式;(2)掌握同角三角函数的两个基本关系式,并能够根据一个角的三角函数值,求这个角的其他三角函数值。

2、过程与方法目标(1)牢固掌握同角三角函数基本关系式,并能灵活解题,提高学生分析、解决三角函数的思维能力;(2)探究同角三角函数关系式时,体会数形结合的思想:已知一个角的三角函数值,求其他三角函数值时,进一步树立分类思想:解题时,注重化归的思想,将新题目化归到已经掌握的知识点上;(3)通过对知识的探究,掌握自主学习的方法,通过学习中的交流,形成合作学习的习惯。

3、情感、态度、价值观目标通过教学,使学生学习运用观察、类比、数形结合、联想、猜测、检验等合情推理的方法,提高学生的运算能力和逻辑推理能力。

二、教学重点和难点教学重点:公式1cos sin 22=+αα和αααtan cos sin =的推导及其应用 教学重点:同角三角函数的基本关系式的变式应用三、教学流程(一)情境引入“物以类聚,人以群分”研究的“同类”是同一个角的正弦、余弦和正切。

由数形结合,从单位圆中三角函数线长度的内在联系,以及任意角三角函数定义引出同角三角函数的基本关系。

(二)探究新知(1)利用三角函数线,借助勾股定理,得出同角三角函数的两弦之间的关系,即平方关系1cos sin 22=+αα。

(2)探究正弦、余弦、正切之间的关系,即商数关系αααtan cos sin =。

(三)关系式的应用(1)判断题深化对公式的理解(2)例1.已知的值、是第三象限角,求,且ααααtan cos 53-sin =变式1.解答?,其他条件不变,怎么,换成将54-cos 53-sin ==αα 变式2.件怎么下手?是第三象限角”这个条去掉“α(分类讨论数学思想)例2. 的值、,求已知ϕϕϕcos sin 3-tan =(学生板演)例3. 求证:ααααcos sin 1sin -1cos += 学生小组讨论,共同探究尽可能多的证明思路。

(完整版)同角三角函数的基本关系教学设计

(完整版)同角三角函数的基本关系教学设计

同角三角函数的基本关系1.教学目标知识与技能目标:通过观察猜想出两个公式,运用数形结合的思想让学生掌握公式的推导过程,理解同角三角函数的基本关系式,掌握基本关系式在两个方面的应用:1)已知一个角的一个三角函数值能求这个角的其他三角函数值;2)证明简单的三角恒等式。

过程与方法:培养学生观察——猜想——证明的科学思维方式;通过公式的推导过程培养学生用旧知识解决新问题的思想;通过求值、证明来培养学生逻辑推理能力;通过例题与练习提高学生动手能力、分析问题解决问题的能力以及其知识迁移能力。

情感、态度与价值观:经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。

2.教学重点和难点重点:同角三角函数基本关系式的推导及应用。

难点:同角三角函数函数基本关系在解题中的灵活选取及使用公式时由函数值正、负号的选取而导致的角的范围的讨论。

三、学情分析学生刚开始接触三角函数的内容,学习了任意角的三角函数,对这一方面的内容既感到新鲜又感到陌生,很有好奇心,跃跃欲试,学习热情高涨。

四、教法分析与学法分析1.教法分析:采取诱思探究性教学方法,在教学中提出问题,创设情景引导学生主动观察、思考、类比、讨论、总结、证明,让学生做学习的主人,在主动探究中汲取知识,提高能力。

2.学法分析:从学生原有的知识和能力出发,在教师的带领下,通过合作交流,共同探索,逐步解决问题.数学学习必须注重概念、原理、公式、法则的形成过程,突出数学本质。

五、教学过程设计(一)创设情境引入课题()()()________3tan _;__________3cos 3sin ________;3cos 3sin 3________4tan _;__________4cos 4sin ________;4cos 4sin 2________6tan _;__________6cos 6sin _________;6cos 6sin 1.1222222===+===+===+πππππππππππππππ(((,,猜想它们之间的联系观察它们的关系完成填空设计意图:从具体到抽象,引导学生完成抽象与具体之间的相互转换2.思考:问题1:从以上的过程中,你能发现什么一般规律?问题2:你能否用代数式表示这两个规律?设计意图:引导学生用特殊到一般的思维来处理问题,通过观察思考,感知同角三角函数的基本关系。

人教新课标版数学高一- 人教A版必修4教案 同角三角函数的基本关系(1)

人教新课标版数学高一- 人教A版必修4教案   同角三角函数的基本关系(1)
答∵cos α=m,且|m|<1,
∴sin α=± =± .
当α在第一、二象限时,sin α= ,
tan α= ;
当α在第三、四象限时,sin α=- ,
tanα= ;
当α终边在y轴上时,sin α=±1,tan α不存在.
例1已知cos α=- ,求sin α,tan α.
解∵cos α=- <0且cos α≠-1,
∴α是第二或第三象限的角.
(1)如果α是第二象限的角,可以得到
sin α= = = .
tan α= = =- .
(2)如果α是第三象限的角,可得到:sinα=- ,tanα= .




教学内容
教学环节与活动设计
小结同角三角函数的基本关系揭示了同角之间的三角函数关系,其最基本的应用是“知一求二”,要注意这个角所在的象限,由此来决定所求的是一解还是两解,同时应体会方程思想的应用.
即sin2α+cos2α=1,tanα= .
问题2平方关系sin2α+cos2α=1与商数关系tanα= 成立的条件是怎样的?
答平方关系sin2α+cos2α=1对一切α∈R恒成立;
商数关系tanα= 中α是使tanα有意义的值,
即α≠kπ+ ,k∈Z.
探究点二 已知一个角的三角函数值求其余两个三角函数值
答∵ =tan θ=- .∴sin θ=- cos θ.
由 .∴4cos2θ=1,cos2θ= .
当θ为第二象限角时,cos θ=- ,sin θ= ;
当θ为第四象限角时,cos θ= ,sin θ=- .
类型3:如果所给的三角函数值是由字母给出的,且没有确定角在哪个象限,那么就需要进行讨论.

1.2.2同角三角函数的基本关系教案教案(人教A必修4)

1.2.2同角三角函数的基本关系教案教案(人教A必修4)

同角三角函数的基本关系式 ----高一数学组杜雪超
教学目标:
1、知识与技能:理解并掌握同角三角函数的基本关系式,掌握基本关系式在两个方面的应用:1)已知一个角的某一三角函数值能求这个角的其他三角函数值;2)能运用基本关系式求一些三角函数式的值,并从中了解一些三角运算的基本技巧。

2、过程与方法:培养学生观察——猜想——证明的科学思维方式;通过求值以及公式的变形使用来培养学生逻辑推理能力;通过例题与练习提高学生分析问题解和解决问题的能力。

3、情感、态度与价值观:经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。

教学重点:掌握同角三角函数的基本关系式并能灵活运用于解题。

教学难点:关系式在解题中的灵活运用和对学生思维灵活性的培养。

授课类型:新授课
教具:黑板、多媒体、实物投影仪
教学过程:。

高中数学必修4(人教A版)教案—1.2.2同角的三角函数的基本关系

高中数学必修4(人教A版)教案—1.2.2同角的三角函数的基本关系

1. 2.2同角的三角函数的基本关系一、教学目标:⒈掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义;2 通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性;3 注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,注意培养学生思维的灵活性及思维的深化;在恒等式证明的教学过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力.二、教学重、难点重点:公式1cos sin 22=+αα及αααtan cos sin =的推导及运用:(1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式.难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式. 三、学法与教学用具利用三角函数线的定义, 推导同角三角函数的基本关系式: 1cos sin 22=+αα及αααtan cos sin =,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等. 教学用具:圆规、三角板、投影 四、教学过程 【创设情境】与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.【探究新知】 探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一 下同一个角不同三角函数之间的关系吗?如图:以正弦线MP ,余弦线OM 和半径OP 三者的长构成直角三角形,而且1OP =.由勾股定理由221MP OM +=,因此221x y +=,即22sin cos 1αα+=.根据三角函数的定义,当()2a k k Z ππ≠+∈时,有sin tan cos ααα=.这就是说,同一个角α的正弦、余弦的平方等于1,商等于角α的正切.【例题讲评】例1化简:ο440sin 12-解:原式οοοοο80cos 80cos 80sin 1)80360(sin 1222==-=+-=例2 已知αααααsin 1sin 1sin 1sin 1+---+是第三象限角,化简解:)sin 1)(sin 1()sin 1)(sin 1()sin 1)(sin 1()sin 1)(sin 1(αααααααα-+----+++=原式 |cos |sin 1|cos |sin 1sin 1)sin 1(sin 1)sin 1(2222αααααααα--+=----+=0cos <∴αα是第三象限角,Θ αααααtan 2cos sin 1cos sin 1-=----+=∴原式 (注意象限、符号) 例3求证:ααααcos sin 1sin 1cos +=- 分析:思路1.把左边分子分母同乘以x cos ,再利用公式变形;思路2:把左边分子、分母同乘以(1+sinx )先满足右式分子的要求;思路3:用作差法,不管分母,只需将分子转化为零;思路4:用作商法,但先要确定一边不为零;思路5:利用公分母将原式的左边和右边转化为同一种形式的结果;思路6:由乘积式转化为比例式;思路7:用综合法.证法1:左边==+=⋅--=-⋅xxx x x x x x x cos sin 1cos )sin 1(sin 1cos )sin 1(cos cos 2右边, ∴原等式成立证法2:左边=)sin 1)(sin 1(cos )sin 1(x x xx -+⋅+=xx x 2sin 1cos )sin 1(-⋅+ x x x 2cos cos )sin 1(⋅+===+xxcos sin 1右边 证法3:∵0cos )sin 1(cos cos cos )sin 1()sin 1(cos cos sin 1sin 1cos 2222=⋅--=⋅---=+--xx x x x x x x x x x x , ∴xxx x cos sin 1sin 1cos +=- 证法4:∵cosx ≠0,∴1+sinx ≠0,∴xxcos sin 1+≠0,∴x x x xcos sin 1sin 1cos +-=()()x x x sin 1sin 1cos 2-+=x x 22sin 1cos -=1,∴xxx x cos sin 1sin 1cos +=-.,cos )sin 1(cos )sin 1(cos sin 1sin 1sin 1cos sin 1,cos )sin 1(cos cos cos sin 1cos :5222xx xx x x x x x x xx xx x x x -=--=--⋅+=⋅-=⋅-=右边左边证法∴左边=右边 ∴原等式成立.例4已知方程0)13(22=++-m x x 的两根分别是θθcos sin ,,求的值。

人教版高中数学必修4学案 3.1 同角三角函数的基本关系式

人教版高中数学必修4学案 3.1 同角三角函数的基本关系式
33
授课
时间
第周星期第节
课型
新授课
主备课人
数学教研组
学习
目标
利用同角三角函数的基本关系式进行三角函数式的化简与证明,进一步理解同角三角函数的基本关系式的特征与应用.
重点难点
重点:利用同角三角函数的基本关系式进行三角函数式的化简与证明.
难点:利用同角三角函数的基本关系式进行三角函数式的化简与证明.
学习
过程
与方

自主学习
1.复习回顾:
1同角三角函数的基本关系式:
2由角的一个三角函数值求其它三角函数值的方法和步骤:
③如果 = ,且 是第四象限角,那么 =.
2.新知探究:
(1)求证:ຫໍສະໝຸດ (2)化简:(3)化简:精讲互动
1、利用同角三角函数的基本关系式对三角函数式化简和证明的方法和步骤:
2、常用的公式和结论:
达标训练
1、课本练习1、2;
2、求证:
3、若 , =; =;
=; =.
4、已知 ,求下列各式的值:
(1) ;(2)
作业
布置
课本习题3—1 A组3、5、6
学习小结/教学
反思

高中数学 1.2.2《同角三角函数的基本关系式2》教案人教版必修4

高中数学 1.2.2《同角三角函数的基本关系式2》教案人教版必修4

1.2.2同角三角函数的基本关系式
一、
教学目标
知识目标:
1、利用单位圆推导出sin 2α+cos 2
α=1和tan α=αα
cos sin ,并让学生在推导过
程中体会数形结合的思想的应用
2、能让学生学会利用同角三角函数关系式求值、化简、证明 能力目标:
培养学生用数学的思想方法分析和解决数学问题的能力并发展学生的推理能力和运算能力 3、情感目标:
通过关系式的推导和应用让学生自己发现:世界万物之间内在联系 二、
教学重点难点
重点:同角三角函数基本关系式的推导及其应用
难点:关系式在解题中的灵活运用和对学生进行思维灵活性的培养 三、
教学方法
本节课采用启发探究教学的方法,通过设置问题引导学生导出公式,近而应用,在应用中注意学生的书写及选择公式是否恰当,通过例题和习题的解决和处理深化对公式的理解记忆及应用的灵活性 四、 教学过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.2同角三角函数的基本关系
一、教学目标:
1、知识与技能
(1) 使学生掌握同角三角函数的基本关系;(2)已知某角的一个三角函数值,求它的其余各三角函数值;(3)利用同角三角函数关系式化简三角函数式;(4)利用同角三角函数关系式证明三角恒等式;(5)牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;(6)灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力,进一步树立化归思想方法;(7)掌握恒等式证明的一般方法.
2、过程与方法
由圆的几何性质出发,利用三角函数线,探究同一个角的不同三角函数之间的关系;学习已知一个三角函数值,求它的其余各三角函数值;利用同角三角函数关系式化简三角函数式;利用同角三角函数关系式证明三角恒等式等.通过例题讲解,总结方法.通过做练习,巩固所学知识.
3、情态与价值
通过本节的学习,牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;进一步树立化归思想方法和证明三角恒等式的一般方法.
二、教学重、难点
重点:公式1cos sin 22=+αα及αα
αtan cos sin =的推导及运用:(1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式.
难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式.
三、学法与教学用具
利用三角函数线的定义, 推导同角三角函数的基本关系式: 1cos sin 22=+αα及αα
αtan cos sin =,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等. 教学用具:圆规、三角板、投影
四、教学设想
【创设情境】
与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.
【探究新知】 1. 探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何
性质出发,讨论一 下同一个角不同三角函数之间的关系吗?
如图:以正弦线MP ,余弦线OM 和半径OP 三者的长构成直角三角形,
而且1OP =.由勾股定理由221MP OM +=,因此22
1x y +=,即22sin cos 1αα+=.
根据三角函数的定义,当()2a k k Z ππ≠+∈时,有
sin tan cos ααα
=. 这就是说,同一个角α的正弦、余弦的平方等于1,商等于角α的正切. 2. 例题讲评
例6.已知3sin 5
α=-,求cos ,tan αα的值. sin ,cos ,tan ααα三者知一求二,熟练掌握.
3. 巩固练习23P 页第1,2,3题
4.例题讲评
例7.求证: cos 1sin 1sin cos x x
x
x +=-. 通过本例题,总结证明一个三角恒等式的方法步骤.
5.巩固练习23P 页第4,5题
6.学习小结 (1)同角三角函数的关系式的前提是“同角”,因此1cos sin 22≠+βα,γ
βαcos sin tan ≠. (2)利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论.
五、评价设计
(1) 作业:习题1.2A 组第10,13题.
(2) 熟练掌握记忆同角三角函数的关系式,试将关系式变形等,得到其他几个常用的关 系式;注意三角恒等式的证明方法与步骤.。

相关文档
最新文档