平方根与算数平方根——区别与联系
算术平方根与平方根教案
16.若 +ቤተ መጻሕፍቲ ባይዱb-3|=0,则a+b-5=____________.
17.若4x2=9,则x=____________.
18. 的算术平方根为_________. 的平方根是____________
19.(- )2的算术平方根为_____.
教
学
反
思
A.正数B.负数C.0D.非正数
9.一个自然数的算术平方根是n,那么大于这个自然数且与它相邻的自然数是()
A.n+1B.n2+1 C. D. +1
10.若x2=2,则x的准确值是多少?如何表示?请填写下列各空:
(1)∵42=16,∴16的算术平方根是,用符号表示出来为;
(2)∵ ,∴ 的算术平方根是;用符号表示出来为;
20.求下列各数的算术平方根,并用符号表示出来:
(1)(7.1)2;(2)(-3.5)2;(4)2 .
四、课堂小结
同学们这节课我们主要学习了什么内容啊?
这节课我们主要复习了算术平方根与平方根的区别与联系。
五、课后作业
必做:报纸第6期第二版的1-11题
选做:报纸第6期第二版的12题
学生回答教师提问的问题
学生归纳总结平方根与算术平方根的区别与联系
学生口算后抢答
在练习本上动笔计算
找学生说说这节课都学习了什么,学会了什么?
板
书
设
计
平方根与算术平方根的区别与联系
1、联系:
(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种.
(2)存在条件相同:平方根和算术平方根都是只有非负数才有.
平方根与算术平方根的应用
平方根与算术平方根的应用1. 什么是平方根与算术平方根在进行数学计算时,平方根和算术平方根是常常需要用到的。
平方根是指一个数的平方等于这个数的根,例如数值为4的平方根为2。
而算术平方根则是一组数的平均数,例如数值为1、2、3的算术平方根为2。
2. 平方根与算术平方根的应用场景2.1 使用平方根进行计算在数学中,平方根常用于计算各种数值。
例如,我们可以使用平方根来计算直角三角形的斜边长度。
在一个直角三角形中,如果我们知道两条直角边的长度,我们就可以使用勾股定理来计算斜边的长度。
勾股定理表达式为:a^2 + b^2 = c2,其中a、b为两条直角边的长度,c为斜边的长度。
在此公式中,我们可以使用平方根来计算c。
例如,如果a=3、b=4,则c的长度等于sqrt(32+4^2)=5。
另外,在几何形状的计算中,平方根也有着广泛的应用。
例如,在计算三角形的面积时,我们可以使用海龙公式 s(s-a)(s-b)(s-c) 的形式进行计算,其中s为三角形的半周长,a、b、c为三角形的三条边的长度。
在海龙公式中,我们可以使用平方根来计算根号部分的结果。
2.2 使用算术平方根进行估算算术平方根可以用于估算一组数的平均值。
例如,在统计一群人的平均身高时,我们可以使用算术平方根来计算这组身高数据的极差和标准差。
另外,在进行复杂计算时,算术平方根也可以用来估算结果。
例如如何计算 2的平方根+5的平方根?我们可以使用算术平方根进行估算,首先2的平方根约等于1.41,5的平方根约等于2.24,则2的平方根+5的平方根约等于3.65。
3. 小结以上就是平方根和算术平方根的几个应用场景。
虽然这些数学概念看起来比较抽象,但与现实生活中的复杂计算相比,它们还是非常基础的计算方法。
掌握它们可以让我们更好地理解和应用数学。
平方根与算术平方根的区别
平方根和算术平方根的区别(1).定义不同.如果x2 =a,那么x叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.如果x2 =a,并且x≥0,那么x叫做a的算术平方根.一个正数的算术平方根只有一个,非负数的算术平方根一定是非负数.(2)表示方法不同.正数a的平方根,表示为 a.正数a的算术平方根为a.(3)平方根等于本身的数0,算术平方根等于本身的数是0或1.2.平方根和算术平方根的联系.(1)二者有着包含关系:平方根中包含算术平方根,算术平方根是平方根中的非负的那一个.(2)存在条件相同.非负数才有平方根和算术平方根.(3)零的平方根和零的算术平方根都是零.平方根、算术平方根指导老师:锋行天下班级__________ 姓名___________1、64的平方根记作,等于,即 = ;64的算术平方根记作,等于,即 = ;2、25的平方根记作,等于,即 = ;25的算术平方根记作,等于,即 = ;3、36的平方根记作,等于,即 = ;36的算术平方根记作,等于,即 = ;4、16的平方根记作,等于,即 = ;16的算术平方根记作,等于,即 = ;5、15的平方根记作,等于,即 = ;15的算术平方根记作,等于,即 = ;6、9的平方根记作,等于,即 = ;9的算术平方根记作,等于,即 = ;7、4的平方根记作,等于,即 = ;4的算术平方根记作,等于,即 = ;8、2的平方根记作,等于,即 = ;2的算术平方根记作,等于,即 = ;9、1的平方根记作,等于,即 = ;1的算术平方根记作,等于,即 = ;10、0.81的平方根记作,等于,即 = ;0.81的算术平方根记作,等于,即 = ;11、0.64的平方根记作,等于,即 = ;0.64的算术平方根记作,等于,即 = ;12、0.49的平方根记作,等于,即 = ;0.49的算术平方根记作,等于,即 = ;13、0.36的平方根记作,等于,即 = ;0.36的算术平方根记作,等于,即 = ;14、0.25的平方根记作,等于,即 = ;0.25的算术平方根记作,等于,即 = ;15、0.16的平方根记作,等于,即= ;0.16的算术平方根记作,等于,即= ;16、0.09的平方根记作,等于,即= ;0.09的算术平方根记作,等于,即= ;17、0.04的平方根记作,等于,即= ;0.04的算术平方根记作,等于,即= ;18、0.01的平方根记作,等于,即= ;0.01的算术平方根记作,等于,即= ;19、0的平方根记作,等于,即= ;0的算术平方根记作,等于,即= ;20、-1的平方根存在吗?(填“存在”或“不存在”);-4呢?-9?-16?-25?……这是为什么呢?答:原来,所有的数,它们的平方都是,反过来也就是说:比小的数没有平方根,所以我们说:“一个正数有个平方根;0只有个平方根,它是0本身;数没有平方根。
平方根与算术平方根
它们互为相反数
• 0的平方根是—— 0 • 负数的平方根—— 负数没有平方根
3.例题解析 例2 判断下列说法是否正确,并说明理由. (1)49的算术平方根是7; (2)2是4的平方根;
(3)25的平方根是-5;
(4)64的平方根是 8 ;
(5)-16的平方根是-4.
解 : 设长方形纸片的长为3xcm, 宽为2xcm. 根据边长与面积的关系得:
3x 2 x 300 2 6 x 300 2 x 50
由3 50cm.
50
答:不能同意小明的说法.小丽不能用这块正方形 纸片裁出符合要求的长方形纸片.
36 36 36
的值是————
的算术平方根等于______ 的平方根等于______
算术平方根等于其本身的数是————
平方根等于其本身的数是————
小丽想用一块面积为400cm2 正方形纸片,沿着边的方向裁出一块 面积为300cm2的长方形纸片用来绘 画,使它的长与宽之比为3:2。 不知能否裁出来,正在发愁。小明见 了说“别发愁,一定能用一块面积大 的纸片裁出一块面积小的纸片”,你 同意小明的说法吗? 小丽能用这块 纸片裁出符合要求的纸片吗?
算术平方根与平方根的联系
, a的取值范围 a中 , a 的取值范围
算术平方根与平方根的区别
一、书写格式
正数a的算术平方根可以表示用 a 表示; 正数a的负的平方根,可以用符号 a 表示, 正数a的平方根用符号 a 表示.
二、取值
• 正数的算术平方根是——正数 • 0的算术平方根是—— 0 • 负数的算术平方根—— 负数没有算术平方根
第二章平方根、算术平方根和立方根
第二章平方根、算术平方根和立方根知识点汇总1. 平方根、算术平方根和立方根三者的区别与联系( 理清概念方能百战不殆)指数 2 在根号的里面。
2 ( a) 2与a2的关系( 难点)(1) 区别:①意义不同:( a) 2表示非负数 a 的算术平方根的平方;a2表示实数a的平方的算术平方根。
②取值范围不同:( a)2中的a为非负数,即a≥0;a2中的 a 为任意数。
③运算顺序不同:( a)2是先求 a 的算术平方根,再求它的算术平方根的平方;a2是先求 a 的平方,再求平方后的算术平方根。
④写法不同。
在( a) 2中,指数 2 在根号的外面;而在a2中,⑤运算结果不同:(a)2=a(a≥0) ; a =| a|=a,a≥0,-a,a<0.(2) 联系:①在运算时,都有平方和开平方的运算。
②两式运算的结果都是非负数,即 ≥0. ③仅当 a ≥0时,有 ( a )2= a 2 。
3. 立方根的化简公式: 3 a 3 =a ;(3 a )3=a ; 3 a =- 3 a( a ) 2≥ 0, a 21..选择2014·南京) 8 的平方根是( A . 4B .±42. (2014 。
东营 ) 的平方根是( A .±3 B .3 3. 2014?连云港) 计算 A . ﹣3 B . 4.(2014。
厦门) 4 的算术平方根是( A . 16 B .5.下列计算中,正确的是( 典型题精选)C .的结果是(±9 C . C . D .D .9﹣9 D . ﹣2 D . ±2 3 2 6 A.a · a =a B. ( π -3.14 )o =1 C. (13)1) 2C .( ab ) 3 D. 93 6.(2014 年湖北荆门 )下列运算正确的是 A .3﹣1=﹣3 B . =±3 7. 下列说法错误的是( ) A .5是 25 的算术平方根 C .(-4)2 的平方根是- 4 8.如果 x 是 0.01的算术平方根,则 A . 0.000 1 C .0.1 9.下 列说法中,正确的是( ) A. 一个有理数的平 方根有两个,B. 一个有理数的 立方根,不是正数就是负数C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是- 10. 下列各式中,无意义的是( ) x =( B . D . 36 =a b D .a 6 2 ÷a =a A. 32 B .1 是 1 的一个平方根D .0 的平方根与算术平方根都是 )±0.000 1±0.1 它们互为相反数 1, 0,1 B. 3 ( 3)3 C. ( 3)2 D. 10 3 绝对值与算术平方根的非负性)11. 若 a,b 为实数,且满足 |a -2|+ b 2 =0,则 b -a 的值为( )A .2B .0C .- 2D .以上都不对平方与算术平方根的非负性)12.(2014·福州) 若(m-1)2+ n 2 =0,则 m + n 的值是( A .- 1 B . 0 C .1 13. 有一个数值转换器,原理如图所示:当输入的D .2x 错误!未找到引用源。
初中数学人教版 平方根与算术平方根 人教版
0的平方根只有一个,即 0 0
三、平方根与算术平方根的联系与区别
1) 平方根包含算术平方根,算术平方
联
根是平方根中的一个;
系: 2) 平方根和算术平方根都只有非负数才有
3) 0的平方根、算术平方根都是0
1)定义不同: 平方根为 a
区 2)表示方法不同 别: 3)个数不同
儒家的最高境界是“拿得起”,佛家的最高境界是“放得下”,道家的最高境界是“想得开”;所以说,儒释道的最高境界,就是这三句话、九个字。中国历史上还曾有过其他一些“人生境界”说,其中三个最著名的,正好可以与儒释道这三大最高境界对照参悟。 跟儒家学拿得起。儒家是追求入世、讲究做事的,要求奋发进取、勇于担当、意志坚定。概括为三个字,就是“拿得起”。什么是“拿得起”?且看这个“儒”字——左边一个“人”,右边一个“需”,合起来就是“人之所需”。人活世上,有各种精神或生存的需要,满足这些需要就需要去获取。去拿,并且拿到了、拿对了,就是拿得起。
平方根与算术平方根
一、平方根与算术平方根定义
如果一个数的平方等于a,那么这个数 就叫做a的平方根;其中 a称为被开方数 正数a 的正平方根是数a 的算术平方根
表示为 a 读作“根号 a” 正数a 的负平方根表示为 a 读作“负根号a”
a 因此,正数a的平方根可记做
二、性质: 一个正数有两个平方根;它们互为相反数;
2. 求使 x1 x1有意义x
的取值范围. 解:要使式子有意义,必须满足:
x 1 0
x
1
0
解得xx
Байду номын сангаас
1 1
所以,x 的取值范围是. x1
4算术平方根平方根立方根之间区别联系
3.说出下列各式的值:
(1) - 81 9 (4) 3 125 5
(2) (-25)2 25 (5) - 3 0.027 0.3
(3) 25 36
5 (6) - 3 125 5
6
82
不 要 遗 漏 哦!
解下列方程:
1. 9(3 y)2 4
解: (3 y)2 4 9
2 3 y
3
y 3 2
掌 握
若 x 0.4858,则x是 0.236
规 律
已知3 5.25 1.738, 3 52.5 3.744,
则3 5250的值是 17.38
注意算术平方根和立方根的移位规律
8是 64 的平方根
不
64的平方根是 ±8
要 搞
64的值是 8
错 了
64的平方根是 8
64的立方根是 4
1.说出下列各数的平方根和算术平方根:
算术平方根 定义:如果一个正数x的平方等于a,即 x2 =a ,那么这个正数x就叫做a的算术平方
根,记为“ a ”,读作“ 根号 a ”。a叫
做被开方数
规定:0的算术平方根是0,即 0 0
非负数
a ≥0 (a≥0)
算术平方根具有双重非负性
平方根定义
一般的,如果一个数X的平方等于a,即
x2=a那么这个数X叫做a的平方根(也叫
(1)在求立方根时,被开方数越大,开立方的结果 也越大
(2)开立方前被开方数中小数点每向右(或左)移动 三位,开方后立方根中小数点向右(或左)移动一位。
已知 1.7201 1.311, 17.201 4.147,
那么0.0017201的平方根是 0.04147
已知 2.36 1.536, 23.6 4.858,
专题02 平方根重难点题型专训(9大题型+15道拓展培优)(解析版)七年级数学下册-
专题02平方根重难点题型专训(9大题型+15道拓展培优)【题型目录】题型一平方根与算术平方根概念理解题型二求一个数的算术平方根题型三利用算术平方根的非负性解题题型四求算术平方根的整数部分与小数部分题型五与算术平方根有关的规律探索题题型六求一个数的平方根题型七已知一个数的平方根,求这个数题型八利用平方根解方程题型九平方根的应用【知识梳理】知识点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);a,读作“a 的算术平方根”,a 叫做被开方数.特别说明:有意义时,aa ≥0.2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算.a (a≥0)的平方根的符号表达为0)a ≥是a 的算术平方根.知识点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.特别说明:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质0||000a a a a a a >⎧⎪===⎨⎪-<⎩()20a a =≥知识点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.=.=0.25=25=, 2.5250【经典例题一平方根与算术平方根概念理解】【变式训练】平方差公式和完全平方公式,下,【经典例题二求一个数的算术平方根】【变式训练】A.3B.3±C.3【答案】A【分析】本题主要考查了有理数和无理数的识别,根据程序图及算术平方根的计算方法,依次计算即可,理解算术平方根是解题的关键.【点睛】本题主要考查了同类项、代数式求值、算术平方根等知识,熟练掌握相关知识是解题关键.七年级统考期末)我们知道,任意一个有理数与无理数的和为无理数,任意一个不为【经典例题三利用算术平方根的非负性解题】【变式训练】【经典例题四求算术平方根的整数部分与小数部分】【变式训练】8.(2022下·广东珠海·七年级统考期末)如图,用边长为3的两个小正方形拼成一个面积为18的大正方形,则大正方形的边长最接近的整数是()A.4B.5C.6D.7【分析】根据算术平方根的概念结合正方形的性质得出其边长,进而得出答案.【经典例题五与算术平方根有关的规律探索题】【答案】B【分析】根据算术平方根的定义解决此题.【详解】解:由题意得:从0.0625开始,小数点每向右移动两位,对应算术平方根扩大10倍,从0.625开始,小数点每向右移动两位,对应算术平方根扩大10倍,∴可得:6.25的算术平方根为2.5,62.5的算术平方根约为7.91,故选B.【点睛】本题主要考查数字类规律探索,算术平方根,熟练掌握原数和平方根的变化规律是解决本题的关键.【变式训练】【经典例题六求一个数的平方根】n 【变式训练】∴x y+的平方根是2±,±.故答案为:2【点睛】本题考查根式的非负性,以及计算一个数的平方根,能够根据根式的非负性计算出未知数的值是解决本题的关键.【经典例题七已知一个数的平方根,求这个数】【变式训练】的值,再找出关系即可.【详解】(1)解:由题意得,6290a a ++-=,解得1a =,21649m +∴==();(2)当1a =时,2160x -=,216x ∴=,4x ∴=±.【点睛】本题考查平方根的意义及求平方根,关键是要掌握一个正数有两个平方根,互为相反数.【经典例题八利用平方根解方程】【变式训练】1.(2023下·河北石家庄·七年级统考期中)问题:在一块面积为2400cm 的正方形纸片上,沿着边的方向裁出一块面积为2300cm ,且长宽之比为3:2的长方形纸片(不拼接),能裁出吗?对于上述问题的解决,嘉嘉和琪琪进行如下对话:嘉嘉:可是不符合实际情况啊正方形纸片的面积为【经典例题九平方根的应用】【变式训练】1.(2023下·河南郑州·八年级统考期末)电流通过导线时会产生热量,满足2=,其中Q为产生的热量Q I Rt为通电时间(单位:,则乙的面积为【拓展培优】A.2B.【答案】C【分析】本题主要考查算术平方根的定义,准确求出阴影部分的面积是解题的关键.根据割补法求出阴影部分的面积即可得到答案.①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则±【答案】2【分析】本题考查了二元一次方程组的应用,平方根,找准等量关系,列出二元一次方程组是解题的关键.则3757.69的算术平方根为.【答案】61.3【分析】本题考查了求一个数的算术平方根,根据题目所给的方法进行解答即可.;,由于10.(2023上·浙江丽水·七年级统考期中)如图角形和一个阴影小正方形(无缝隙、不重叠)折后得到图2所示的大正方形.(1)若阴影小正方形的边长为1,则图2中大正方形的面积为(2)若图2中大正方形的边长为正整数,则阴影小正方形的边长为【答案】7123或8【分析】(1)根据图1求出四个直角三角形的面积,根据翻折的性质,从而得到图可;(2)设小正方形的面积为x,从而得到图2大正方形的面积,再根据大正方形的边长为正整数,即可得到x的值.【详解】解:(1)∵一个边长为6的正方形被分割成四个完全相同的直角三角形和一个阴影小正方形,阴影小正方形的边长为1,②∵3,2a b ==-,∴a b >,∴()()33228a b ⊕=⊕-=-=-,∵83-<,∴()()()8328313a b a ⊕⊕=-⊕=⨯-+=-.13.(2023上·湖北黄冈·七年级武穴市实验中学校考期中)如图,A 、B 、C 、D 四张卡片分别代表一种运算,例如,5经过A B C D →→→顺序的运算,可列式为:2[(52)3]4⨯-+,8经过运算顺序B D A C →→→运算,可列式为2{[(83)4]2}-+⨯(1)请计算2[(52)3]4⨯-+;(2)列式计算2-经过C D A B →→→顺序的运算结果;(3)若数x 经过B C A D →→→顺序的运算,结果是12.则求初始数字x 是多少?【答案】(1)53(2)13(3)初始数字x 是5或1【分析】(1)根据有理数的运算法则和运算顺序计算即可;(2)根据题意可以列出算式2[(2)4]23-+⨯-,计算即可;(3)根据题意可以得到()223412x -+=,即可求解.【详解】(1)解:2[(52)3]4⨯-+()21034=-+274=+53=;(2)解:由题意得:2[(2)4]23-+⨯-(44)23=+⨯-2。
算术平方根和平方根的区别例题
算术平方根和平方根的区别例题算术平方根和平方根的区别例题一、引言在数学中,我们经常会碰到算术平方根和平方根这两个概念。
但是很多人可能会混淆它们之间的区别。
今天,我们就来深入探讨一下算术平方根和平方根的区别,并通过例题来加深理解。
二、算术平方根和平方根的定义1. 算术平方根的定义算术平方根是指对于一个非负数a,其算术平方根记作√a,即一个非负数b,使得b²=a。
√16=4,因为4²=16。
2. 平方根的定义平方根是指对于一个数x,若存在一个数y,使得y²=x,则y称为x 的平方根。
与算术平方根不同的是,平方根可以是负数。
-3的平方是9,所以-3是9的平方根。
从上面的定义可以看出,算术平方根强调的是非负数的平方根,而平方根包括了正负数的情况。
这也是它们最本质的区别所在。
三、例题分析为了更好地理解算术平方根和平方根的区别,我们来看几个例题:1. 求下列各数的算术平方根和平方根:a) 9b) 16c) -252. 比较下列各对数的算术平方根和平方根的大小:a) 4和-4b) 25和-25c) 36和-36四、解题过程及讨论1. 求下列各数的算术平方根和平方根:a) √9=3,因为3²=9;9的平方根为±3,因为3²=9,(-3)²=9,所以9的平方根为±3。
b) √16=4,因为4²=16;16的平方根为±4。
c) -25的算术平方根不存在,因为算术平方根要求被开方数为非负数;-25的平方根为±5,因为5²=25,(-5)²=25,所以-25的平方根为±5。
2. 比较下列各对数的算术平方根和平方根的大小:a) 4的算术平方根为2,平方根为±2,-4的算术平方根不存在,平方根为±2。
可见,当涉及到正负数的情况时,平方根会比算术平方根多出来一个负数解。
平方根(知识讲解)八年级数学上册基础知识讲与练(北师大版)
专题2.1 平方根(知识讲解)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根. 【要点梳理】【知识点一】算术平方根的定义如果一个正数的平方等于,即,那么这个正数叫做的算术平方根(规定0的算术平方根还是0);的算术平方根”,叫做被开方数.特别说明:0,≥0. 【知识点二】平方根的定义如果,那么叫做的平方根.求一个数的平方根的运算,叫做开平方.平方与开平方互为逆运算. (≥0)的平方根的符号表达为是的算术平方根.【知识点三】平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根; (2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.特别说明:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.【知识点四】平方根的性质【知识点五】平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者x a 2x a =x a a a a a a 2x a =x a a a a 0)a ≥a 0||000aa a a a a >⎧⎪===⎨⎪-<⎩()20aa =≥向左移动1位..【典型例题】类型一、求一个数的平方根1.求下列各数的算术平方根. (1)169; (2)481; (3)0.09; (4)(﹣3)2. 【答案】(1)13; (2)29; (3)0.3; (4)3 【分析】根据算术平方根的定义解答 解:(1)∵132=169,∵169的算术平方根是13, 13; (2)∵(29)2=481, ∵481的算术平方根是29,29; (3)∵0.32=0.09,∵0.09的算术平方根是0.3, =0.3; (4)∵32=9=(﹣3)2,∵(﹣3)2的算术平方根是3, 3.【点拨】此题考查了求一个数的算术平方根,正确理解算术平方根的定义是解题的关键. 【变式】 求下列各数的算术平方根: (1) 0.64 (2) 4981【答案】(1) 0.8; (2)79【分析】根据算术平方根的定义求解即可. 解:(1)因为0.82=0.64,所以0.64的算术平方根是0.8. (2)因为2749()981=,250=25= 2.5=0.25=所以4981的算术平方根是7979. 【点拨】本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.类型二、利用算术平方根非负性求解2.已知223y x x =-+--,求(x +y )2022的值 【答案】1【分析】根据二次根式的性质得到2x =,计算出1x y +=-,从而计算出最终的答案.解:∵3y =∵2020x x -≥⎧⎨-≥⎩得22x x ≥⎧⎨≤⎩∵2x =∵33y ==- ∵202220222022()(23)(1)1x y +=-=-= ∵2022()1x y +=.【点拨】本题考查二次根式、幂运算的性质,解题的关键是熟练掌握二次根式、幂运算的相关知识.举一反三:【变式】 已知实数a 、b 、c |1|a +=(1) 求证:b c =;(2) 求a b c -++的平方根. 【答案】(1)见分析 (2)3±【分析】根据算术平方根的非负性,即可得证;(2)根据(1)的结论,以及非负数之和为0,求得,,a b c 的值,进而求得a b c -++的平方根.(1)证明:0≥0,0,0b c c b -≥-≥,b c ∴=;(2)解:|1|a +=b c =,10a -=,1,4a b ∴=-=, 4c b ∴==,1449a b c ∴-++=++=,9的平方根是3±.【点拨】本题考查了算术平方根的非负性,非负数之和为0,掌握非负数的性质以及算术平方根的非负性是解题的关键.类型三、求算术平方根的整数部分和分数部分3.已知21a-=3,3a﹣b+1的平方根是±4,c是113的整数部分,求a+b+2c 的平方根.【答案】±5【分析】分别根据算术平方根、平方根的意义,无理数的估算求出a、b、c的值,即可求出a+b+2c的值,根据平方根的意义即可求解.解:=3,∵2a﹣1=9,解得:a=5,∵3a﹣b+1的平方根是±4,∵15﹣b+1=16,解得:b=0,∵1011,∵c=10,∵a+b+2c=5+0+2×10=25,∵a+b+2c的平方根为±5.【点拨】本题考查了算术平方根、平方根的意义,无理数的估算,熟知算术平方根、平方根的意义是解题关键.举一反三:【变式】已知a b-1是400【答案】6a的值,进而利用算术平方根的定义得出b 的值,即可得出答案.解:∵a∵a=15,∵b-1是400的算术平方根,∵b-1=20,解得:b=21,6.【点拨】此题主要考查了估计无理数大小以及算术平方根,得出a 的值是解题关键.类型四、算术平方根相关规律问题4.先填写表,通过观察后再回答问题:(1)表格中x = ,y = ;(2)从表格中探究a∵ ;∵8.973=89.73,用含m 的代数式表示b ,则b = ;(3)a 的大小.【答案】(1)0.1,10(2)∵31.6;∵100b m =(3)当0a =a =;当1a =a =;当01a <<a ;当1a >a 【分析】(1)根据算术平方根的性质,即可求解;(2)根据题意可得当a 扩大10010倍,∵≈3.16,即可求解;∵8.973=89.73,即可求解;(3)分四种情况:当0a =时,当1a =时,当01a <<时,当1a >时,即可求解.(1)解:根据题意得:0.1,10x y ====;(2)解:根据题意得:当a 扩大10010倍,,31.6;8.973=89.73, ∵100b m =;(3)当0a =0=a =;当1a =1=a =;当01a <<时,根据a a >;当1a >时,根据a a ;综上所述,当0a =a =;当1a =a ;当01a <<a >;当1a >时,a <.【点拨】本题主要考查了算术平方根,明确题意,准确得到规律是解题的关键. 举一反三:【变式】 细心观察图,认真分析各式,然后解答问题:221+=; 221+=;221+=;⋅⋅⋅⋅⋅⋅(1)请用含n (n 为正整数)的等式表示上述交化规律:______;(2)观察总结得出结论:直角三角形两条直角边与斜边的关系,用一句话概括为:______;(3的长度;(4)若S 表示三角形面积,121OP P S S =△,232OP P S S =△,343OP P S S =△⋅⋅⋅,计算出222212310S S S S +++⋅⋅⋅+的值.【答案】(1)221+=;(2)直角边的平方和等于斜边的平方;(3)见分析;(4)554. 【分析】(1)观察已知各式,归纳总结规律即可得; (2)根据等式和图形即可得;(3)先作5OP 的垂线,再在垂线上截取561P P =,连接6OP ,可得6OP 出点7P ,连接7OP 即为所求;(4)先分别求出123,,S S S 的值,再归纳总结出一般规律得出n S 的值,从而可得10S 的值,然后代入求和即可.解:(1)观察已知各式可得,各式的变化规律为221+=故答案为:221+=;(2)结合等式和图形可得,直角三角形两条直角边与斜边的关系为:直角边的平方和等于斜边的平方故答案为:直角边的平方和等于斜边的平方;(3)先作5OP 的垂线,再在垂线上截取561P P =,连接6OP ,即可得6OP 作点7P ,连接7OP ,则7OP 即为所求,如图所示:(4)121111122OP P S S==⨯⨯==2321122OP P S S ==⨯343112OP P S S==⨯归纳类推得:1112n n n OP P S S +==⨯当10n =时,101110112OP P S S==⨯=则222222221231010()2S S S S +++⋅⋅⋅+=++++ 123104444=++++123104++++=554=. 【点拨】本题考查了算术平方根、勾股定理等知识点,读懂题意,正确归纳类推出一般规律是解题关键.类型五、算术平方根的实际应用5.如图,用两个边长为18cm 的小方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片的长是宽的2倍,且面积为230cm 请说明理由.【答案】不能,理由见分析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为2:1,计算长方形的长与宽进行验证即可.解:不能,∵2+2=36(cm 2), ∵大正方形的边长为6cm ,设截出的长方形的长为2b cm ,宽为b cm , ∵2b 2=30,∵b∵2b =6=,∵不能截得长宽之比为2:1,且面积为30cm 2的长方形纸片.【点拨】本题考查了算术平方根的应用,理解算术平方根的意义是正确解答的关键. 举一反三:【变式】 小强同学用两个小正方形纸片做拼、剪构造大正方形游戏:(他选用的两个小正方形的面积分别为1S 、2S ).(1)如图1,121,1S S ==,拼成的大正方形1111D C B A 边长为___________; 如图2,121,4S S ==,拼成的大正方形2222A B C D 边长为___________; 如图3,121,16S S ==,拼成的大正方形3323A B C D 边长为___________.(2)若将(1)中的图3沿正方形3333A B C D 边的方向剪裁,能否剪出一个面积为14.52且长宽之比为4∵3的长方形?若能,求它的长、宽;若不能,请说明理由;【答案】(2)不能用正方形3333A B C D 纸片裁出符合要求的长方形纸片,理由见分析 【分析】(1)求出所拼成的正方形的面积,再根据算术平方根的定义进行计算即可; (2)根据题意求出其长、宽,再根据算术平方根进行验证即可.(1)解:如图1,当S 1=1,S 2=1,拼成的大正方形A 1B 1C 1D 1的面积为1+1=2,因此其边如图2,当S 1=1,S 2=4,拼成的大正方形A 2B 2C 2D 2的面积为1+4=5如图3,当S 1=1,S 2=16,拼成的大正方形A 3B 3C 3D 3的面积为1+16=17,(2)解:不能,理由如下:设长方形的长为4x ,宽为3x ,则有4x •3x =14.52, 所以x 2=1.21, 即x =1.1(x >0),因此长方形的长为4x =4.4,宽为3x =3.3, 因为(4.4)2=19.36>17,所以不能用正方形A 3B 3C 3D 3剪出一个面积为14.52且长宽之比为4:3的长方形. 【点拨】本题考查算术平方根,理解算术平方根的定义是正确解答的前提.类型六、平方根概念的理解6.已知10﹣3a 的平方根是±1,a ﹣b +2的算术平方根是2,求3a +b 的值. 【答案】10【分析】利用平方根和算术平方根的定义求得a 与b 的值,然后代入3a +b 即可. 解:∵10﹣3a 的平方根是±1,∵()21031a -=±, 解得,a =3,∵a ﹣b +2的算术平方根是 2, ∵222a b -+=, 解得,b =1,∵333110a b +=⨯+=.【点拨】本题考查了平方根和算术平方根的概念,理解掌握概念是解题的关键. 举一反三:【变式】 已知一个正数的两个不相等的平方根是6a +与29a -. (1)求a 的值及这个正数;(2)求关于x 的方程()2280ax --=的解. 【答案】(1)a =1,这个正数是49;(2)8x =± 【分析】(1)由正数的两个平方根互为相反数得到6a ++29a -=0,求解即可得到答案;(2)将a =1代入方程,根据平方根的意义得到答案即可. 解:(1)由题意得6a ++29a -=0,解得a =1,∵这个正数是2(6)49a +=;(2)将a =1代入方程()2280ax --=,得2x -64=0, 解得8x =±.【点拨】此题考查正数平方根的性质,根据平方根的定义解方程,正确理解平方根的性质是解题的关键.类型七、求一个数的平方根7.先用平方根符号表示下列各数,再求值: (1)9(2)1625【答案】(1)记为3±(2)±记为45± 【分析】(1)根据平方根的概念与性质,计算即可; (2)根据平方根的概念与性质,计算即可.(1)解:原式=3=±(2)解:原式45=±【点拨】本题考查平方根的概念与性质,一个数a 的正的平方根,用符号表示,a叫做被开方数,2叫做根指数,a 的负平方根用“表示,根指数是2时,通常略去不写.如“根号a ”,“正、负根号a ”,掌握平方根的概念与性质是解题的关键.举一反三:【变式】 求下列各数的平方根: (1)100; (2)64; (3)4964;(4)1.21.【答案】(1)±10(2)±8(3)78±(4)±1.1【分析】(1)根据2100±=(10)计算即可. (2)根据264±=(8)计算即可.(3)根据2749864±=()计算即可. (4)根据2 1.21±=( 1.1)计算即可.解:(1)∵2100±=(10),∵100的平方根是±10.(2)∵264±=(8),∵64的平方根是±8. (3)∵2749864±=() ∵4964的平方根是78±. (4)∵2 1.21±=( 1.1),∵1.21的平方根是±1.1.【点拨】本题考查了平方根即如果2x a =(a 是非负数),则称x 是a 的平方根,正确理解平方根的意义是解题的关键.类型八、求代数式的平方根8.若2x +的算术平方根是3,求34+x 的平方根.【答案】5±【分析】根据2x +的算术平方根是3,求出x 的值后,代入34+x 中,再求34+x 的平方根.解:∵2x +的算术平方根是3,∵29x +=,∵7x =,∵3425x +=,∵34+x 的平方根为5±.【点拨】本题考查了算数平方根和平方根的应用,解题的关键是:理解算数平方根和平方根的定义,易错点是容易把负的平方根丢掉.举一反三:【变式】k 是64的平方根,求m -n+k 的平方根.【答案】【分析】由互为相反数的两个数的和等于0可得:m+1=0,2-n -0,解得m=-1,n=2;由k 是64的方根,得出k=±8,再代入m 、n 、k 的值求得m -n+k 的值,求其平方根即可.解:0,又,∵m+1=0,2-n-0,∵m=-1,n=2,∵k是64的平方根,∵k=±8;当k=8时,m-n+k=-1-2+8=5,由m-n+k的平方根为当k=-8时,m-n+k=-1-2-8=-11,没有平方根;综合上述可得:m-n+k的平方根为【点拨】考查了非负数的性质和平方根的定义,解题关键掌握几个非负数的和为0时,则这几个非负数都为0.类型九、已知一个数的平方根,求这个数9.一个正数x的两个平方根是3a﹣2与4﹣a,则x是多少?【答案】25【分析】直接利用平方根的性质求解.解:依题意得,3a﹣2+4﹣a=0,∵a=﹣1,∵3a﹣2=﹣5,∵x=25.【点拨】本题考查了平方根的性质,熟练掌握一个正数有两个平方根,它们互为相反数是解题的关键.举一反三:【变式】一个正数x的两个不同的平方根分别是4a﹣1和4﹣a,求a和x的值.【答案】a和x的值分别为﹣1,25【分析】根据一个正数的两个平方根互为相反数,得到4a﹣1+(4﹣a)=0,求出a=﹣1,再根据x=(4a﹣1)2求出x即可.解:∵一个正数的两个平方根互为相反数,∵4a﹣1+(4﹣a)=0,解得a=﹣1,∵x=(4a﹣1)2=(﹣5)2=25.答:a和x的值分别为﹣1,25.【点拨】此题考查了已知一个数的平方根求参数,正确掌握一个正数的两个平方根是一对相反数的性质是解题的关键.类型十、利用平方根解方程10.阅读下列解答过程,在横线上填入恰当内容.解方程:(x-1)2=4解:∵(x-1)2=4(1)∵x-1=2(2)∵x=3(3)上述过程中有没有错误?若有,错在步骤__________(填序号)原因是____________________________________.请写出正确的解答过程.【答案】(2),正数的平方根有两个,它们互为相反数,见分析【分析】根据正数的平方根有两个,它们互为相反数,即可求解.解:上述过程中有错误,错在步骤(2),原因是:正数的平方根有两个,它们互为相反数,正确的解答过程为:解:∵(x-1)2=4∵x-1=±2∵x=3或x=-1故答案为:(2)正数的平方根有两个,它们互为相反数,【点拨】本题考查了根据平方根解方程,掌握正数的平方根有两个,它们互为相反数是解题的关键.举一反三:【变式】求下列式子中的x:(1)25(x﹣35)2=49;(2)12(x+1)2=32.【答案】(1)x1=2,x2=45(2)x1=7,x2=﹣9【分析】(1)两边同时除以25,再开平方解一元一次方程即可;(2)方程两边同时乘以2,再开平方解一元一次方程即可.(1)解:25(x﹣35)2=49,(x﹣35)2=4925,x﹣35=±75,x ﹣35=75或x ﹣35=﹣75, 解得:x 1=2,x 2=45-; (2)12(x +1)2=32,(x +1)2=32×2,(x +1)2=64,x +1=±8,x +1=8或x +1=﹣8,解得:x 1=7,x 2=﹣9.【点拨】此题考查了利用平方根定义解方程,正确理解并掌握平方根的定义是解题的关键. 类型十一、平方根的应用11.如图∵所示是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀均分成相等的四个小长方形,然后按图∵的方式拼成一个正方形.(1)图∵中阴影部分的正方形的边长等于______________(2)请用两种不同的方法列代数式表示图∵中阴影部分的面积:方法一:________________________________________________方法二:________________________________________________(3)根据(2)直接写出22(),(),m n m n mn -+这三个代数式之间的等量关系.(4)根据(3)中的等量关系,解决如下问题:对于任意的有理数x 和y ,若9,18x y xy +==,求x y -的值.【答案】(1)m n -(2)2()m n -,2()4m n mn +-(3)22()()4m n m n mn -=+-(4)3±【分析】(1)利用小长方形的长减去宽即可得;(2)方法一:根据(1)的结论,直接利用正方形的面积公式即可得;方法二:利用大长方形的面积减去四个小长方形的面积即可得;(3)根据(2)中方法一与方法二求出的面积相等即可得;(4)先利用(3)中的等式求出2()x y -的值,再根据平方根的性质即可得.(1)解:由题意得:小长方形的长为m ,宽为n ,则图∵中阴影部分的正方形的边长等于为m n -,故答案为:m n -.(2)解:方法一:图∵中阴影部分的正方形的边长等于为m n -,则其面积为2()m n -;方法二:图∵中大正方形的边长为m n +,四个小长方形的长均为m ,宽均为n ,则图∵中阴影部分的面积为2()4m n mn +-,故答案为:2()m n -,2()4m n mn +-.(3)解:因为(2)中方法一与方法二求出的面积相等,所以22()()4m n m n mn -=+-.(4)解:9,18x y xy +==,222()()494189x y x y xy ∴-=+-=-⨯=,3x y ∴-=±.【点拨】本题考查了完全平方公式与图形面积、平方根的应用,结合图形,正确发现图∵中阴影面积的两种求解方法是解题关键.举一反三:【变式】 已知|2020|a a -=,求22020a -的值.【答案】2022【分析】根据算术平方根的非负性确定a 的范围,进而化简绝对值,在根据平方根的定义求得代数式的值.解:∵20220a -≥,∵2022a ≥.∵20200a -<,∵原式化简为2020a a -+=,2020=,∵220222020a -=,故220202022a -=.【点拨】本题考查了算术平方根的非负性,化简绝对值,平方根的定义,根据算术平方根的非负性确定a 的范围化简绝对值是解题的关键.。
平方根与算术平方根
平方根与算术平方根1.平方根:如果一个数x 的平方等于a ,即x 2=a ,那么这个x 就叫a 的平方根,表示为±a ,也叫二次方根,3和-3的平方都等于9,由定义可知3和-3都是9的平方根,即9的平方根有两个3和-3,即±=9±3.2.算数平方根: 若一个正数x 的平方等于a ,即x 2=a ,则这个正数x 就叫做a 的算术平方根.记为“a ”读作“根号a ”.这就是算术平方根的定义.特别地规定0的算术平方根是0,即0=0. 9的算术平方根只有一个是3.即39=.3.平方根的性质:一个正数有两个平方根,且它们互为相反数;0有一个平方根是0,负数没有平方根.4.算数平方根的性质:非负数(正数和0)才有算术平方根,负数没有算术平方根. 即用式子表示为a (a ≥0)一定为非负数4.平方根与算术平方根的区别与联系1、联系:(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种.(2)存在条件相同:平方根和算术平方根都是只有非负数才有.(3)0的平方根,算术平方根都是0.2、区别:(1)定义不同:“如果一个数的平方等于a ,这个数就叫做a 的平方根”;“非负数a 的非负平方根叫a 的算术平方根”.(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个.(3)表示法不同:正数a 的平方根表示为±a ,正数a 的算术平方根表示为a .(4)取值范围不同:正数的平方根一正一负,互为相反数;正数的算术平方根只有一个。
练 习1.9的平方根是( )A .3B .-3C .±3D .32.下列说法中正确的是( )A .任何数都有平方根B .一个正数的平方根的平方就是它的本身C .只有正数才有算术平方根D .不是正数没有平方根3.下列各式正确的是( )A .1691=45B .414=221 C .25.0=0.05 D .-49-=-(-7)=7 4.下列说法正确的是( )A.5是25的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.0.01是0.1的算术平方根5.下列各式无意义的是( )A .-5B .25-C .51- D .2)5(- 6.3-2的算术平方根是( ) A .61 B .31C .3D .6 7.(-23)2的平方根是( ) A .±8 B .8 C .-8D .不存在 8.使x -有意义的x 的值是( )A .正数B .负数C .0D .非正数9.一个自然数的算术平方根是n ,那么大于这个自然数且与它相邻的自然数是( )A.n +1B.n 2+1C.12+n D.n +110.若x 2=2,则x 的准确值是多少? 如何表示?请填写下列各空:(1)∵42=16,∴16的算术平方根是 ,用符号表示出来为 ; (2)∵94)32(2=,∴94的算术平方根是 ;用符号表示出来为 ; (3)∵( )2=6,∴6的算术平方根是 .11.若一个数的算术平方根是5,则这个数是_________.12.8116的平方根是____________,(21-)2的算术平方根是____________. 13.y =x x -+-33+2,则x =__________,y =__________.14.一个数的算术平方根是它本身,这个数是______________.15.252-242的平方根是__________,0.04的负的平方根是____________.16.若2-a +|b -3|=0,则a +b -5=____________.17.若4x 2=9,则x =____________.18.81的算术平方根为_________.16的平方根是____________19. (-π)2的算术平方根为_____.20.求下列各数的算术平方根,并用符号表示出来:(1)(7.1)2; (2)(-3.5)2; (4)241.21、求各式的值-01.0 2)5(- 610-22、计算32÷(-3)2+|-61|×(-6)+49.23、求下列各式中x 的值.(1) 25x 2-36=0; (2) (x +1)2-81=0;24、12-x +(y +2)2=0,求x -3+y 3的值.25、 |2a -5|与2+b 互为相反数,求ab 的值.26、已知x ,y 满足x x y 211121-+-=+3,求x y27、请你在数轴上画出表示5的点,并简要说出你的画法.。
探讨平方根、算术平方根、立方根的联系与区别
解:由题意得AC=5.5米, BC=4.5米,∠ABC=90°,
在Rt△ABC中,由勾股定理得:
AB2=AC2-BC2=-4.52=10
AB= 10 米 所以帐篷支撑竿的高是 10 米
做一做:
2、求x的值
3 x 12 363 解: x 12 121
x 1 121
x 1 11 或 x 1 11
平方根包含算术平方根, 算术平方根 是平方根的一种.
只有非负数才有平方根和算术平方根.
2.平方根、算术平方根、立方根的联系:
0的平方根是0 0的算术平方根是0 0的立方根是0
区别 1. 定义不同:
一般地,如果一个正数 x 的平方等于a,即 x2=a,那么这个正数 x 就叫做 a 的算术平方根.
一般地,如果一个数x 的平方等于a,即 x2=a, 那么这个数x 叫做a 的平方根(也叫做二次方根).
6.等于它本身的数不同:
算术平方根等于它本身的数是0、1 平方根等于它本身的数是0 立方根等于它本身的数是0、1、-1
7.探索发现的公式不同:
灵活运用公式:
a2 | a|
( a)2 a
, 3
3a a
3 a3 a, 3 a 3 a;
解决问题:
1、如图,从帐篷支撑竿AB的顶部A向地面拉一根绳子 AC固定帐篷.若绳子的长度为5.5米,地面固定点C到帐 篷支撑竿底部B的距离是4.5米,则帐篷支撑竿的高是多
北师大版数学八年级上册
探讨算术平方根、平方根、 立方根的联系与区别
问题引入:
1、如图,从帐篷支撑竿AB的顶部A向地面拉一 根绳子AC固定帐篷.若绳子的长度为5.5米,地 面固定点C到帐篷支撑竿底部B的距离是4.5米,
则帐篷支撑竿的高是多少米?
平方根、算术平方根的联系与区别
平方根、算术平方根指导老师:王海班级__________ 姓名___________1、64的平方根记作,等于,即 = ;64的算术平方根记作,等于,即 = ;2、25的平方根记作,等于,即 = ;25的算术平方根记作,等于,即 = ;3、36的平方根记作,等于,即 = ;36的算术平方根记作,等于,即 = ;4、16的平方根记作,等于,即 = ;16的算术平方根记作,等于,即 = ;5、15的平方根记作,等于,即 = ;15的算术平方根记作,等于,即 = ;6、9的平方根记作,等于,即 = ;9的算术平方根记作,等于,即 = ;7、4的平方根记作,等于,即 = ;4的算术平方根记作,等于,即 = ;8、2的平方根记作,等于,即 = ;2的算术平方根记作,等于,即 = ;9、1的平方根记作,等于,即 = ;1的算术平方根记作,等于,即 = ;10、0.81的平方根记作,等于,即 = ;0.81的算术平方根记作,等于,即 = ;11、0.64的平方根记作,等于,即 = ;0.64的算术平方根记作,等于,即 = ;12、0.49的平方根记作,等于,即 = ;0.49的算术平方根记作,等于,即 = ;13、0.36的平方根记作,等于,即 = ;0.36的算术平方根记作,等于,即 = ;14、0.25的平方根记作,等于,即 = ;0.25的算术平方根记作,等于,即 = ;15、0.16的平方根记作,等于,即 = ;0.16的算术平方根记作,等于,即 = ;16、0.09的平方根记作,等于,即 = ;0.09的算术平方根记作,等于,即 = ;17、0.04的平方根记作,等于,即 = ;0.04的算术平方根记作,等于,即 = ;18、0.01的平方根记作,等于,即 = ;0.01的算术平方根记作,等于,即 = ;19、0的平方根记作,等于,即 = ;0的算术平方根记作,等于,即 = ;20、 -1的平方根存在吗?(填“存在”或“不存在”);-4呢?-9?-16?-25?……这是为什么呢?答:原来,所有的数,它们的平方都是,反过来也就是说:比小的数没有平方根,所以我们说:“一个正数有个平方根;0只有个平方根,它是0本身;数没有平方根。
算术平方根和平方根
算术平方根 定义:一般地,如果一个正数x的平方等于 a,即x2=a,那么这个正数x就叫做a的算术 平方根,记作 a ,读作“根号a”。
特别地,我们规定:0的算术平方根是0, 即 0 0
特别注意的几点
1. 负数没有算术平方根
2. 当式子 a 有意义时,a一定表示一个非 负数。
3. 算术平方根是它本身的数只有0和1
相反数练习题
已知2a-1与-a+2是m的平方根,求m的值。
解:根据题意,可分为
常用数
11 121
2
需识记
2 1.414 3 1.732 5 2.236
12 144
2
13 169
2
14 196
2
15 225
2
练习题
• 1、求下列各数的平方根
• 121
23
1 2 4
64 9
9 4 16
106
106
81
6
2
练习题
• ① ② ③ ④ ⑤ 2、下列说法中正确的是() 1的平方根是1 1是1的平方根 -1的平方根是-1 0的平方根是0 只有正数才有平方根
4. 算术平方根 a 是一个非负数
平方根
• 定义:一般地,如果一个数x的平方等于 a,即x2=a,那么这个数x就叫做a的平方根 (也叫做二次方根)。
一个正数有两个平方根; 0只有一个平方根; 负数没有平方根。
平方根
• 正数a有两个平方根,一个是a的算术平方根,
• 另一个是 a ,他们互为相反数,这两个平方 • 根合起来可以记作
练习题
• 3、求下列各数的值
2
49 121
64
平方根算术平方根二次根式的区别
平方根算术平方根二次根式的区别平方根、算术平方根和二次根式,听起来好像很复杂,但其实它们就像是数学世界里的三位小伙伴,各有各的性格,互相之间的关系也挺有意思的。
平方根嘛,简单来说就是一个数乘以它自己可以得到的结果,比如说,4的平方根就是2,因为2乘2等于4。
再比如,9的平方根就是3,3乘3等于9。
这就好比我们在生活中找钥匙,钥匙一插就能开门,平方根就能帮你找到那个“密钥”。
算术平方根,这个词听起来好像很高大上,但其实它就是平方根的一个特定情况。
算术平方根专门指非负的那一部分,换句话说,算术平方根只考虑正数和零,不包括负数。
这样说可能有点抽象,咱们用个例子吧,比如16的算术平方根就是4,因为4是正数,而4虽然也能乘以自己得到16,但它不在算术平方根的范畴内。
就像你在逛街时,不会去买那些不合适的鞋子,对吧?算术平方根就是要找适合的那双。
然后再聊聊二次根式,这玩意儿就更有趣了。
二次根式指的就是包含平方根的那些表达式,比如说√(x+1)或√(2y3)。
这里面其实暗藏着很多故事。
想象一下,这就像是做一道美味的菜,菜里有各种材料,平方根就是那些重要的调味品。
它让整个表达式更加丰富,也更具吸引力。
二次根式就像是我们生活中各种复杂的情况,简单的数和复杂的数可以结合在一起,产生新的可能性。
二次根式在我们解决方程的时候也扮演了重要角色。
比如,某个方程的解可能涉及平方根,那你就得用到二次根式。
这就像在玩解谜游戏,你得一步一步地探索,最终找到出口。
就算你在过程中遇到麻烦,也没关系,数学就是个不断尝试的过程,失败也是成功之母,谁没犯过错呢?有些人可能会问,这三者到底有什么用呢?咱们生活中随处可见的都能用到,比如建筑、物理、工程等等。
你看看那些高楼大厦,设计师在计算的时候就得用到平方根和算术平方根。
想象一下,一栋大楼的设计师,手里拿着图纸,脑子里转着各种公式,简直就是个数学魔法师!所以,理解这些概念,能让我们更好地应对实际生活中的各种挑战。
算术平方根、平方根、立方根之间区别联系
解方程:
(1)(x-1)3 125 (4)2(7 x 2)3 125 0
(2)23x 12 8
3
(5) 4x2 25
(3)(x 2)2 3 (6)9x2 49 0
填空题
1.当x X〈时0,.52x-1没有平方根 2.一个正数x的两个平方根分别是a+1和a-3,则
平方根
立方根
表示方法
a 的取值
正数
性
0
质
负数
开 方 是本身
a ≠ a
a≥ 0
a≥ 0
3a a 是任何数
正数(一个) 互为相反数(两个) 正数(一个)
0
0
0
没有
没有
负数(一个)
求一个数的平方根 求一个数的立方根 的运算叫开平方 的运算叫开立方
0,1
0
0,1,-1
a
a2 a = 0
a
2 a a
a= 1 ,x=
4
3.若 x 2 2,则2x 5的平方根———±——3———
4.化简(a 1)(2 a 1)=——a——-1————
(3 )2
π-3
————————
已知 x y 4 x 2y 5 0,求x,y的值
问题:90的整数部分是什么?小 数部分是什么?
算术平方根平方根立方根表示方法负数正数一个没有互为相反数两个没有正数一个负数一个求一个数的平方根的运算叫开平方求一个数的立方根的运算叫开立方是本身011在求立方根时被开方数越大开立方的结果也越大2开立方前被开方数中小数点每向右或左移动三位开方后立方根中小数点向右或左移动一位
算术平方根 定义:如果一个正数x的平方等于a,即 x2 =a ,那么这个正数x就叫做a的算术平方
第二章平方根、算术平方根和立方根
第二章平方根、算术平方根和立方根知识点汇总1. 平方根、算术平方根和立方根三者的区别与联系( 理清概念方能百战不殆)指数 2 在根号的里面。
2 ( a) 2与a2的关系( 难点)(1) 区别:①意义不同:( a) 2表示非负数 a 的算术平方根的平方;a2表示实数a的平方的算术平方根。
②取值范围不同:( a)2中的a为非负数,即a≥0;a2中的 a 为任意数。
③运算顺序不同:( a)2是先求 a 的算术平方根,再求它的算术平方根的平方;a2是先求 a 的平方,再求平方后的算术平方根。
④写法不同。
在( a) 2中,指数 2 在根号的外面;而在a2中,⑤运算结果不同:(a)2=a(a≥0) ; a =| a|=a,a≥0,-a,a<0.(2) 联系:①在运算时,都有平方和开平方的运算。
②两式运算的结果都是非负数,即 ≥0. ③仅当 a ≥0时,有 ( a )2= a 2 。
3. 立方根的化简公式: 3 a 3 =a ;(3 a )3=a ; 3 a =- 3 a( a ) 2≥ 0, a 21..选择2014·南京) 8 的平方根是( A . 4B .±42. (2014 。
东营 ) 的平方根是( A .±3 B .3 3. 2014?连云港) 计算 A . ﹣3 B . 4.(2014。
厦门) 4 的算术平方根是( A . 16 B .5.下列计算中,正确的是( 典型题精选)C .的结果是(±9 C . C . D .D .9﹣9 D . ﹣2 D . ±2 3 2 6 A.a · a =a B. ( π -3.14 )o =1 C. (13)1) 2C .( ab ) 3 D. 93 6.(2014 年湖北荆门 )下列运算正确的是 A .3﹣1=﹣3 B . =±3 7. 下列说法错误的是( ) A .5是 25 的算术平方根 C .(-4)2 的平方根是- 4 8.如果 x 是 0.01的算术平方根,则 A . 0.000 1 C .0.1 9.下 列说法中,正确的是( ) A. 一个有理数的平 方根有两个,B. 一个有理数的 立方根,不是正数就是负数C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是- 10. 下列各式中,无意义的是( ) x =( B . D . 36 =a b D .a 6 2 ÷a =a A. 32 B .1 是 1 的一个平方根D .0 的平方根与算术平方根都是 )±0.000 1±0.1 它们互为相反数 1, 0,1 B. 3 ( 3)3 C. ( 3)2 D. 10 3 绝对值与算术平方根的非负性)11. 若 a,b 为实数,且满足 |a -2|+ b 2 =0,则 b -a 的值为( )A .2B .0C .- 2D .以上都不对平方与算术平方根的非负性)12.(2014·福州) 若(m-1)2+ n 2 =0,则 m + n 的值是( A .- 1 B . 0 C .1 13. 有一个数值转换器,原理如图所示:当输入的D .2x 错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:
x 25
2
解:
x 81 0
2 2
x 25 x 5
x 81 x 81 x 9
2.小明房间的面积为10.8米2,房间地面恰好由 120块相同的正方形地砖铺成,每块地砖的边长是 多少?
解:设每块地砖的边长为a米。
答:每块地砖的边长为0.3米。
在实际问题 中,利用平方 根的知识去解 决问题时,一 定要注意未知 数的实际意义!
0的平方根也是0 没有平方根 开平方
负 数
求法 表 示
被开方 数a的取 值范围
Hale Waihona Puke a,其中a是被开方数 ,2是根指数(省略)
a≥0
a≥0
例题解析
1、求下列各式的X。
本题实际是利用了平 方根的定义解方程,为 我们后续学习开平方法 解一元二次方程内容奠 定了基础!
(1) x 25
2
(2) x 81 0
负数没有算术平方根.
平方根的概念及性质
一般地,如果一个数的平方等于a,那么这个数 叫做a的平方根,也叫做a的二次方根。
即:a的平方根表示为± 其中a叫做被开方数。
a (读做“正、负根号a” )
练一练:口算下列各数的平方根: 正数有正负两个平方根,它们互为相反数; 性质 (1)9 (2)1.21 (3) 0 (4) -3 0的平方根是0;
负数没有平方根.
归纳总结:平方根和算术平方根的异同点。
算术平方根
定 义
如果一个正数的平方等于a,那么 这个正数就叫a的算术平方根。
平方根
如果一个数的平方等于a,那么 这个数就叫a的平方根。
性 质
正 有一个算术平方根并且还是正 有两个平方根,它们互为相 反数 数 数 0
0的算术平方根是0 没有算术平方根 开平方 2是根指数(省略) ,其中a是被开方数, a
归纳总结
(1)算数平方根的概念及性质; (2)平方根的概念及性质; (3)平方根与算数平方根的区别与联系; (4)利用平方根与算数平方根的知识解决实际问题.
要想成绩进步快,作业 改错不耍赖;多做题目少贪 玩,归纳总结形成网;
要想成绩涨得高,天天
去与老师磨,一有时间就往
办公室跑。
平方根与算数平方根 —区别与联系
算术平方根的概念及性质
2 一般地,如果一个正数 x的平方等于a,即 x a ,那么这 个正数x就叫做a的算术平方根,记为 a (其中a 0,a 0) 0的算术平方根是0.
练一练:口算下列各数的算术平方根: 正数和零都有一个算术平方根 ; 性质 (1)16 (2)1.44 (3) 0 (4) -3