果蔬采后病害侵染的方式

合集下载

果蔬采后病理

果蔬采后病理

因此,侵染性病害发生必须具有3个基本因素, 即病原物、易感病的寄主和适宜的环境条件。 三者缺一不可,这三个因素称为植物病害的三 角关系。
一、侵染途径: (1)表皮 (2)自然孔道入侵 (3)伤口入侵 (4)生理损伤组织
病害传播途径 (1)水媒 (2)借风、雨、虫传播 (3)接触传播 (4)土壤传播
第七章 果蔬采后病理
教学要求
要求掌握主要病害及防治原理;熟悉病害分类; 了解病害侵染特点
重点内容:主要病害及防治原理。 难点内容:主要病害及防治原理。
新鲜水果、蔬菜采后腐烂是一个全球性的问题。 一般在果蔬贮运过程中约有25%的产片不能利 用,有些甚至达到30%。
引起果蔬腐败变质的主要原因有三个: 1.果蔬组织生理失调或衰老 2.病原微生物侵染 3.的微生物是链格孢属, 灰葡萄属,炭疽菌属,球二孢属,链核盘属, 青霉病,拟茎点霉属,根霉属,小核菌属,以 及欧氏杆菌和假单胞菌细菌。
从分类上来看:主要可以分为真菌和细菌
与果蔬微生物侵染有关的真菌有很多,大约有 25种,但是每种果蔬仅受相对较少的几种真菌 或细菌侵染。且在不同的环境中,果蔬的腐烂 程度也有所不同。

采后生物学

采后生物学

葡萄孢造成水果和蔬菜田间及采后的“灰霉”或
灰色霉腐病,没有一种新鲜果蔬在贮藏期间不被
葡萄孢所侵害。
返回
(三)镰刀菌属(Fusarium) 镰刀菌属在果蔬和观赏植物上引起采后粉红色或
黄色、白色霉变,尤其是根茎类、鳞茎类、块茎类; 而果实类如黄瓜、甜瓜、番茄也常常受害。 (四)地霉属(Geotrichum)
感病植物组织呼吸强度增高的原因有以下
几点:
Байду номын сангаас
(1)感病组织发生解偶联作用,用解偶联剂DNP(二
硝基苯酚)处理健康植物组织,呼吸上升,但氧化
与磷酸化不偶联,无机磷增加,感病植物组织用
DNP处理呼吸变得不敏感。因此,推测感病组织发
生了氧化磷酸化解偶联作用.
返回
(2)感病组织合成过程加强,如蛋白质、核酸、碳 水化合物、芳香族化合物的合成均使ATP消耗增 加,积累ADP和无机磷,必然促进呼吸自动催化 过程。
果蔬采后病理
第一节 果蔬采后的主要寄生病害 第二节 寄主植物的病害生理 第三节 病原酶在病害发生中的作用 第四节 果蔬采后病害侵染的方式
果树和蔬菜在其生长过程中会遇到各种各 样的微生物的危害,但这些微生物大多数不能 侵入活细胞和紧密的植物组织。大约有25种真 菌和细菌有侵染采后果蔬产品的能力。而每一 种水果或蔬菜仅受少数几种真菌和细菌的侵染 。例如指状青霉(Penicillium digitaturn Sate.)可 引起柑桔果实绿霉病,但在苹果和梨果实上不 造成病害,扩展青霉侵害苹果和梨,但不为害 柑桔果实。
3.激活的氧化过程 有利于合成作用和新细 胞的形成,加速被破坏组织的恢复。
次生代谢物质
因病原物的侵染而在植物组织内产生并累积 的,具有抑菌活性的次生代谢物质称为植物保卫素 (phytoalexin)。植物保卫素。属于下列化学物质: (一)酚类(phenolics)

第五章园艺产品采后病害及其防治

第五章园艺产品采后病害及其防治
第五章园艺产品采后病害及其防治
苹果虎皮病(Scald)
第五章园艺产品采后病害及其防治
蒜薹CO2伤害
第五章园艺产品采后病害及其防治
(三)、果蔬的成熟度不适
采收不适时,果蔬过熟或不成熟都会容 易导致生理病害发生。如苹果采收过晚常加 重红玉斑点病及水心病的发生,采收过早虎 皮病发生重,而且因果实成熟度低,表皮蜡 质或角质层末充分形成,水分蒸发快,易萎 蔫,直接影响果品的贮藏质量和时间。
第五章园艺产品采后病害及其防治
(3)、气体调节: 气调能否减轻冷害还没有一致的结论。葡
萄柚、西葫芦、油梨、日本杏、桃、菠萝等在 气调中冷害症状都得以减轻,但黄瓜和柿子椒 则反而加重。 (4)、化学物质处理:
氯化钙,乙氧基喹,苯甲酸,红花油, 矿物油。此外有乙烯和外源多胺处理减轻冷害 症状的报道。
第五章园艺产品采后病害及其防治
某些果蔬的一些化学成分可引起某种 病原菌的感染,另一些化学物质则抑制病 原在寄主体内生长。侵袭的病原可能诱发 寄主产生对病原自身有毒的物质,起到保 护作用。
一些寄主-病原的相互作用促进了发 病过程,而另一些相互关系则阻碍和防止 了这一过程。
第五章园艺产品采后病害及其防治
(一)、病原菌种类
苹果褐腐病 Apple brown rot
(二)、冻害
冻害发生在园艺产品的冰点温度以下, 主要导致细胞结冰破裂,组织损伤,出现萎 焉、色变和死亡。
表现:水泡状、组织透明或半透明。
第五章园艺产品采后病害及其防治
三、其它生理病害
(一)、营养失调 植物营养元素的过多或过少,都会干扰
植物的正常代谢而导致植物发生生理病害。 在果蔬贮藏期由于营养失调而引起的病害, 主要有氮、钙的过多或不足,或氮及钙的比 例不适所造成的。

果品蔬菜采后病虫害

果品蔬菜采后病虫害

2023-11-06CATALOGUE 目录•果品蔬菜采后病虫害概述•常见果品蔬菜采后病虫害类型•果品蔬菜采后病虫害防治技术•案例分析与实践经验分享•前瞻性与未来研究方向01果品蔬菜采后病虫害概述果品蔬菜采后病虫害是指病原微生物在适宜的条件下对果品蔬菜造成损害的生物灾害。

定义果品蔬菜采后病虫害可分为真菌性病害、细菌性病害、病毒性病害等。

分类定义与分类发生原因果品蔬菜采后病虫害的发生原因主要包括品种抗病性差、环境条件不适宜、栽培管理不当等。

传播途径果品蔬菜采后病虫害主要通过气流、水、昆虫等媒介进行传播。

发生原因与传播途径防治方法果品蔬菜采后病虫害的防治方法主要包括农业防治、物理防治、化学防治等。

意义果品蔬菜采后病虫害的防治对于保障食品安全、提高果品蔬菜的品质和产量、增加农民收入等方面具有重要意义。

防治方法与意义02常见果品蔬菜采后病虫害类型疫病疫病主要发生在湿度较高的地区,它会导致果品蔬菜表面出现大量的白色菌丝,并逐渐扩散,最终导致果品蔬菜全部腐烂。

果品蔬菜病害灰霉病果品蔬菜在采收后容易发生灰霉病,该病主要由真菌引起,导致果品蔬菜出现水渍状病斑,并逐渐扩大,最终引起腐烂和变质。

软腐病软腐病也是一种常见的果品蔬菜病害,主要发生在蔬菜的根茎部位,导致组织软化、腐烂,并散发出恶臭气味。

炭疽病炭疽病主要发生在热带和亚热带地区,它会导致果品蔬菜表面出现许多小斑点,并逐渐扩大,颜色也会逐渐加深,最终导致果品蔬菜变质。

甲壳类害虫甲壳类害虫主要是一些甲壳虫类昆虫,它们会啃食果品蔬菜的叶片、茎和果实,导致植物组织损伤、落花落果和品质下降。

蛾类害虫蛾类害虫是一种常见的果品蔬菜虫害,它们会啃食果品蔬菜的叶片、花和果实,导致植物组织损伤、落花落果和品质下降。

蚜虫类害虫蚜虫类害虫是一种常见的果品蔬菜虫害,它们会聚集在植物的叶片、茎和花上,吸取植物的汁液,导致植物组织损伤、落花落果和品质下降。

果品蔬菜虫害03果品蔬菜采后病虫害防治技术农业防治选择对病虫害抵抗力强的品种,从源头上减少病虫害的发生。

果蔬产品采后病理学

果蔬产品采后病理学
果蔬产品采后病理学
概况
引起果蔬采后主要损失的微生物是链格孢属 (Alternaria)、灰葡萄属(Botrytis)、炭疽菌属 (Colletotrichum)、球二孢属(Diplodia)、链核盘 属(Monilinia)、青霉病(Penicillium)、拟茎点霉 属(Phomopsis)、根霉属(Rhizopus)、小核菌属 (Sclerotinia);以及欧氏杆菌(Erwinia)和假单胞 菌(Pseudomonas)细菌。
二、致病细菌
细菌主要危害蔬菜,可能与蔬菜细胞pH较高有关。 最重要是欧氏杆菌中的一个种:胡萝卜欧氏杆菌 (Erwinia carotovora)使大白菜、辣椒、胡萝卜等蔬菜 发生软腐。另外主要危害菌是假单胞杆菌 (Pseudomonas)和黄单孢杆菌(Xanthomonas)。
三、病原菌的侵染特点
(一)、菌源: 1、田间无症状,但已被侵染的果蔬产品。 2、产品上污染的带菌土壤或病原菌。 3、进入贮藏库的已发病的果蔬产品。 4、广泛分布在贮藏库及工具上的某些腐生菌或弱寄
生菌。
(二)、侵染过程 :一般分接触期、侵入期、潜育期 及发病期。
采前侵染:在采前侵入,成熟和衰老时,本身抗病 性下降,病菌开始扩散。炭疽病、蒂腐病等。
(二)、接合菌亚门:根霉属、毛霉属(Mucor)。 (三)、子囊菌亚门:小丛壳属(Glomerella)、长
嚎壳属(Ceratocystis)、囊孢壳属(Physalospora)、间 座壳属(Diaporthe)和链核盘属。
(四)、半知菌亚门:危害果蔬产品的真菌最 多。灰葡萄属,青霉属,镰刀孢霉属
(Fusarium),链格孢属,拟茎点霉属,炭疽菌 属。另外有曲霉属(Aspergillus)、地霉属 (Geotrichum)、茎点霉属(Phoma)、壳卵孢属 (Sphaeropsis)、球二孢属(Botryodiplodia)、聚 单端孢霉属(Trichothecium)、小核菌属、轮枝 孢属(Verticillium)等。

果蔬采后病理及病害的控制研究现状及发展趋势

果蔬采后病理及病害的控制研究现状及发展趋势

果蔬采后病理及病害的控制研究现状及发展趋势摘要:本文主要对果蔬采后主要病原菌及侵染过程做了介绍,主要介绍了酵母类抗菌剂防病害的生物防治方法,并对微生物种类、拮抗机理及生物防治应用前景进行了介绍。

关键词:采后病理;酵母菌类抗菌剂;病害侵染;微生物防治;1.前言影响食品食用安全性的最主要因素是化学农药残留。

天然植物成分(精油和植物提取物)、生物药剂( 酵母和细菌类拮抗菌)和非选择性生物杀菌剂(碳酸钠、碳酸氢钠、活性氯、山梨酸)等防治果蔬采后病害的技术已越来越受到关注。

本文重点介绍微生物抗菌剂防治果蔬采后病害的一些研究进展。

迄今为止,已从苹果、柑橘、梨、桃、猕猴桃等10余种水果中筛选出几十种拮抗微生物,目前商品化应用的主要有:丁香假单胞杆菌、枯草芽胞杆菌、酵母菌中的季也蒙毕赤酵母菌、哈氏木霉、白粉寄生菌[1~2]。

果蔬采后病害造成的腐烂损失十分巨大。

据统计报道, 发达国家为l0%~30%, 发展中国家则高达40%~50%。

长期以来防治果蔬采后病害主要依靠化学杀菌剂, 然而, 连续使用化学杀菌剂易使病原真菌产生抗药性, 易造成环境污染, 且危害公众健康。

上世纪80 年代中期开始, 在农作物大田病害生物防治蓬勃发展的带动下, 生物防治果蔬采后病害成为研究热点[3~4]。

果实采后病原性腐败的生物防治技术是近年来国外发展起来的极具前途的绿色防腐技术,主要原理是利用微生物之间的拮抗作用,通过改变果实表面微生态环境,促进病原微生物拮抗菌的繁殖,达到抑制病原微生物生长,减少腐败的目的[1]该技术安全环保性能优越,越来越受到普遍欢迎可以预见,采用生物防治将是今后果蔬防腐保鲜技术的发展方向果蔬采后病害的生物防治因其无毒无害不污染环境,深受人们的重视与欢迎。

2. 果蔬采后主要病原菌及侵染过程2.1主要病原菌引起蔬菜采后腐烂的病原菌主要有真菌、细菌、病毒和原生动物,其中以真菌和细菌性病原菌为主[5~6]。

2.1.1 真菌真菌是最主要和最流行的病原微生物,侵染广,危害大,是造成果菜类在贮藏运输期间损失的重要原因。

采后果蔬文稿

采后果蔬文稿
• 1.发酵作用加强 1.发酵作用加强 • 2.磷酸戊糖途径加强 2.磷酸戊糖途径加强 • 3.末端氧化酶的活性的变化 3.末端氧化酶的活性的变化
• 乙烯生物合成的变化
• 病原菌刺激乙烯释放增加主要
是由于其刺激了ACC的合成,并 是由于其刺激了ACC的合成,并 激活了ACC氧化酶的活性 激活了ACC氧化酶的活性
5.外文文献阅读 5.外文文献阅读
• 题目 • Control of Postharvest Decay of Apple Fruit with Candida saitoana and • •
Induction of Defense Responses 念珠菌(saitoana) 念珠菌(saitoana)引起的苹果果实的采后腐烂的控制和诱导防卫反应 The ability of Candida saitoana to induce systemic resistance in apple fruit against Botrytis cinerea was investigated.
• • • •
• • •
6.读书感悟 6.读书感悟
通过阅读果蔬采后侵染性病害的机制研究以及对 相关外文的阅读有以下感悟: 相关外文的阅读有以下感悟: 1.对相关知识需要加强,这样才能增进对外文阅 1.对相关知识需要加强,这样才能增进对外文阅 读的能力 2.翻译能力锻炼的最好方法是模仿范文翻译,特 2.翻译能力锻炼的最好方法是模仿范文翻译,特 别是专业术语的识记 3.要将书本的理论知识与文献相结合,从中学习 3.要将书本的理论知识与文献相结合,从中学习 人家的研究方法与思路
• 研究的是念珠菌(saitoana)诱导苹果果实对灰霉菌产生系统抵抗力的能力 研究的是念珠菌(saitoana) • In fresh apples, C. saitoana applied 0 or 24 h before inoculation with

采后生物学

采后生物学

•Contents:1. Basic characteristic of fresh plant products.2. Losses and quality deterioration in fresh plant products after harvest.3. Factors influence fresh plant products quality.Chapter 0 Introduction•Contents:4. Contents of post-harvest biology and post-harvest physiology.5. Importance of post-harvest Biology in maintaining quality and decreasing loss of post-harvest fresh plant products.Chapter 1 Respiratory Metabolism•Objects:•To know concept and significance of respiration•To familiar with the process of respiratory metabolism•To know factors affecting respiration and the methods of respiration controlChapter 1 Respiratory Metabolism•Contents:•1. Introduction•2. Factors Affecting Respiration• 2.1 Temperature• 2.2 Atmospheric Composition• 2.3 Physical Stress• 2.4 Stage of Development•2.5 Other Factors (Type of plant products, Humidity, Disease or Insect Attack, Plant Growth Regulators, etc.)Chapter 1 Respiratory MetabolismSignificance of Respiration ;Shelf-life and Respiration Rate;Loss of Substrate;Synthesis of New Compounds;Release of Heat Energy ;Meaning of the Respiratoy Quotient (RQ);Measuring the Rate of Respiration ; Biochemistry of Respiration1 IntroductionAll of the commodities covered in this handbook are alive and carry on processes characteristics of all living things. One of the most important of these is respiratory metabolism.The process of respiration involves combing oxygen in the air with organic molecules in the tissue (usually a sugar) to form various intermediate compounds and eventually CO2 and water.The energy produced by the series of reactions comprising respiration can be captured as high energy bonds in compounds used by the cell in subsequent reactions, or lost as heat.The energy and organic molecules produced during respiration are used by other metabolic processes to maintain the health of the commodity.Heat produced during respiration is called vital heat and contributes to the refrigeration load that must be considered in designing storage rooms.In general, the storage life of commodities varies inversely with the rate of respiration.This is because respiration supplies compounds that determine the rate of metabolic processes directly related to quality parameters, e.g., firmness, sugar content, aroma, flavor, etc.Commodities and cultivars with higher rates of respiration tend to have shorter storage-life than those with low rates of respiration.Storage life of broccoli, lettuce, peas, spinach, and sweet corn (all of which have high respiration rates) is short in comparison to that of apples, cranberries, limes, onions, and potatoes - all of which have low respiration rates (Table 1).Table 1. Respiration rates of a range of perishable commoditiesClass Range at (mg CO2 kg-1 h-1)CommoditiesV ery Low < 5 Nuts, datesLow 5 to 10 Apple, citrus, grape,kiwifruit, onion, potatoModerate 10 to 20 Apricot, banana, cherry, peach,nectarine, pear, plum, fig, carrot,cabbage, lettuce, pepper, tomatoHigh 20 to 40 Strawberry, blackberry, bean, lima,avocado, raspberry, cauliflowerV ery High 40 to 60 Artichoke, snap bean,Brussels sprouts, cut flowersExtremely High > 60 Asparagus, broccoli, mushroom,pea, spinach, sweet corn 2 Factors Affecting RespirationRespiration is affected by a wide range of environmental factors that include:light,;chemical stress (e.g., fumigants);radiation stress, water stress, growth regulators, pathogen attack.The most important post-harvest factors are temperature,atmospheric composition,and physical stress.2.1 TemperatureWithout a doubt, the most important factor affecting post-harvest life is temperature.This is because temperature has a profound affect on the rates of biological reactions, e.g., metabolism and respiration.Over the physiological range of most crops, i.e., 0 to 30 °C, increased temperatures cause anexponential rise in respiration.The V an't Hoff Rule states that the velocity of a biological reaction increases 2 to 3-fold for every 10 °C rise in temperature.The temperature quotient for a 10 °C interval is called the Q10.The Q10 can be calculated by dividing the reaction rate at a higher temperature by the rate at a 10 °C lower temperature, i.e., Q10 = R2/R1.The temperature quotient is useful because it allows us to calculate the respiration rates at one temperature from a known rate at another temperature.However, the respiration rate does not follow ideal behavior, and the Q10can vary considerably with temperature.At higher temperatures, the Q10 is usually smaller than at lower temperatures.Typical figures for Q10 are:T emperature Q100 to 10 °C 2.5 to 4.010 to 20 °C 2.0 to 2.520 to 30 °C 1.5 to 2.030 to 40 °C 1.0 to 1.5These typical Q10values allow us to construct a table showing the effect of different temperatures on the rates of respiration or deterioration and relative shelf life of a typical perishable commodity (Table 2).Table 2. Effect of temperature on rate of deteriorationT emperature Assumed Relative velocity Relative(°C) Q10of deterioration shelf-life0 - 1.0 10010 3.0 3.0 3320 2.5 7.5 1330 2.0 15.0 740 1.5 22.5 4This table shows that if a commodity has a mean shelf-life of 13 days at 20 °C it can be stored for as long as 100 days at 0 °C, but will last no more than 4 days at 40 °C.Chilling stressAlthough respiration is normally reduced at low, but non-freezing temperatures, certain commodities, chiefly those originating in the tropics and subtropics, exhibit abnormal respiration when their temperature falls below 10 to 12 °C.Typically the Q10 is much higher at these low temperatures for chilling sensitive crops than it would be for chilling tolerant ones.Chilling stressRespiration may increase dramatically at the chilling temperatures or when the commodity is returned to non-chilling temperatures.This enhanced respiration presumably reflects the cells' efforts to detoxify metabolic intermediates that accumulated during chilling, as well as to repair damage to membranes and other sub-cellular structures.Chilling stressEnhanced respiration is only one of many symptoms that signal the onset of chilling injury.An economically important low temperature phenomenon discussed in more detail in a subsequent chapter.Heat stressAs the temperature rises beyond the physiological range, the rate of increase in respiration falls.It becomes negative as the tissue nears its thermal death point, when metabolism is disorderly and enzyme proteins are denatured (变性).Heat stressMany tissues can tolerate high temperatures for short periods of time (e.g., minutes), and this property is used to advantage in killing surface fungi on some fruits.Continued exposure to high temperatures causes phyto-toxic symptoms, and then complete tissue collapse.Heat stressHowever, conditioning and heat shocks, i.e., short exposure to potentially injurious temperatures, can modify the tissue‟s responses to subsequent harmful stresses.2.2 Atmospheric CompositionAdequate O2 levels are required to maintain aerobic respiration (有氧呼吸).The exact level of O2that reduces respiration while still permitting aerobic respiration varies with commodity.In most crops, O2level around 2 to 3% produces a beneficial reduction in the rate of respiration and other metabolic reactions.Levels as low as 1% improve the storage life of some crops, e.g., apples, but only when the storage temperature is optimal.At higher storage temperatures, the demand for A TP may outstrip(超过) the supply and promote anaerobic respiration (无氧呼吸).The need for adequate O2 should be considered in selecting the various post-harvest handling procedures, such as waxing and other surface coatings, film wrapping, and packaging.Unintentional modification of the atmosphere, e.g., packaging, can result in production of undesirable fermentative products and development of foul odors (异味).Increasing the CO2level around some commodities reduces respiration, delays senescence and retards fungal growth.In low O2 environments, however, increased CO2 levels can promote fermentative metabolism.Some commodities tolerate brief (e.g., a few days at low temperatures) storage in a pure N2 atmosphere, or in very high concentrations of CO2.High CO2 treatmentThe biochemical basis of their ability to withstand these atmospheres is unknown.2.3Physical StressWound respiration (伤呼吸)mechanical injuryinsect attackpathogen infectionchilling injurygas injuryWound-induced ethylene (伤害乙烯)Even mild (轻微的) physical stress can perturb (扰乱) respiration, while physical abuse can cause a substantial rise in respiration that is often associated with increased ethylene evolution.The signal produced by physical stress migrates from the site of injury and induces a wide range of physiological changes in adjacent (临近的), non-wounded tissue.Some of the more important changes include enhanced respiration, ethylene production, phenolic metabolism and wound healing.Wound-induced respiration is often transitory(短暂的), lasting a few hours or days.However, in some tissues wounding stimulates developmental changes, e.g., promote ripening, that result in a prolonged increase in respiration.Ethylene stimulates respiration and stress-induced ethylene may have many physiological effects on commodities besides stimulating respiration.2.4 Stage of DevelopmentRespiration rates vary among and within commodities.Storage organs such as nuts and tubers (坚果和块茎)have low respiration rates.Tissues with vegetative or floral meristems (分生组织) such as asparagus and broccoli have very high respiration rates.As plant organs mature, their rate of respiration typically declines.This means that commodities harvested during active growth, such as many vegetables and immature fruits, have high respiration rates.Mature fruits, dormant buds (休眠芽) and storage organs have relatively low rates.After harvest, the respiration rate typically declines; slowly in non-climacteric fruits(非跃变型果实)and storage organs, rapidly in vegetative tissues (营养组织)and immature fruits.The rapid decline presumably reflects depletion(消耗) of respirable substrates (呼吸底物) that are typically low in such tissues.An important exception to the general decline in respiration following harvest is the rapid and sometimes dramatic rise in respiration during the ripening of climacteric fruit (Fig. 1). climacteric fruit(跃变型果实)non-climacteric fruits(非跃变型果实)Figure1.The climacteric pattern of respiration in ripening fruit2.4 Stage of Developmentclimacteric fruit (跃变型果实)This rise, which has been the subject of intense study for many years, normally consists of four distinct phases:1) pre-climacteric minimum,2) climacteric rise,3) climacteric peak, and4) post-climacteric decline.The division of fruits into climacteric and non-climacteric types has been very useful for post-harvest physiologists.However, some fruits, for example kiwifruit and cucumber, appear to blur the distinction between the groups.Respiratory rises also occur during stress and other developmental stages, but a true climacteric only occurs coincident with fruit ripening.Following is a general classification of fruits according to their respiratory behavior during ripening:Climacteric Fruits Non-Climacteric FruitsApple Papaya Blueberry CitrusApricot Passion fruit Cacao LycheeA vocado Peach Caju LonganBanana Pear Cherry LoquatBiriba Persimmon CucumberBreadfruit PlumGrape Cherimoya Sapote GrapefruitFeijoa Soursop LemonFig Tomato LimeGuava Watermelon OliveJackfruit OrangeKiwifruit PepperMango PineappleMuskmelon StrawberryNectarine TamarilloDifferences between climacteric fruits and non-climacteric fruits1、概念:C a r b o n d i o x i d e p r o d u c t i o n2、呼吸强度大小:3、乙烯产生量大小:4、乙烯合成系统:5、对外源乙烯的反应:(施用时期、乙烯浓度)6、呼吸高峰:7、耐贮性:8、后熟性:Different kinds of agricultural product can not store at the same storage room, especially climacteric fruits and non-climacteric fruits(1)不同的农产品其贮藏的条件。

第五章果蔬采后病理

第五章果蔬采后病理

二、细菌病害
最主要的是欧文氏杆菌属(Erwina),其次 是假单胞杆菌属(Pseudomcn)。欧文氏杆菌侵 染大白菜、甘盘、生莱,萝卜等十字花科蔬菜, 引起软腐病。马铃薯、番茄、甜椒,大葱、洋 葱、胡萝卜、芹菜,莴苣、甜瓜、豆类等也被 侵害。
第二节 寄主植物的病害生理
(一)感病植物组织呼吸强度的变化 受到病原微 生物侵染的植物组织,其呼吸强度增高是一个普遍 反应。
(一)病原酶对寄主组织的侵解作用
病原微生物产生果胶酶是寄主细胞壁降解的 关键因素,其次是半纤维素酶和纤维素酶,蛋白 质分解酶的和磷脂酶资料较少。有关分解角质、 木栓,木质素的病原酶最近才开始报道。内果胶 酶引起细胞壁的中胶层的不溶性果胶解体,导致 组织失去粘性并分离为单个细胞,这过程称为 “侵解”。侵解组织渗透性增高,寄主代谢物可 作为病原生长底物向外扩放,引起细胞死亡。
(三)呼吸作用的变化与寄主的抗病性 早期研究认为植物呼吸与抗病性有关,在病 原侵染和不良环境条件的影响下,呼吸增强,其 生理作用可能是: 1.活泼的氧化系统 能保持代谢过程的氧化 与还原相对平衡,使呼吸底物最终分解成CO2和水 ,不累积氧化不完全的有害代谢产物。 2.激活的氧化系统 有利于分解病原物分泌 的毒素,从而抑制或阻止侵染过程. 3.激活的氧化过程 有利于合成作用和新细 胞的形成,加速被破坏组织的恢复。
次生代谢物质
因病原物的侵染而在植物组织内产生并累积 的,具有抑菌活性的次生代谢物质称为植物保卫素 (phytoalexin)。植物保卫素。属于下列化学物质: (一)酚类(phenolics) 1.简单酚(simple pheno1s)如绿原酸; 2.黄酮类(flavonoid)如根皮素; 3.香豆素(coumarin) (二)多聚乙炔(polyacetylene) (三)异戊二烯(isoprene) 1.萜类(terpeneid)如甘薯酮(impeaniarone) 2.类固醇(steroid)如茄碱(selanin)

果蔬产品采后病害及其防治

果蔬产品采后病害及其防治

柑橘链格孢腐(Alternaria rot of orange)
冷处理后的番木瓜链格孢腐(Alternaria rot of papaya followling chilling)
(2)葡萄孢霉属
特征:病菌在田间时入侵,潜伏期长,且 病菌极耐低温,造成果蔬产品腐烂损失 严重。
症状:灰霉病,侵染组织呈浅褐色,病斑 软化,迅速扩展,上面产生灰褐色的孢 子,有时有黑色的菌核出现。
半知菌亚门
(1)交链孢菌属(Alternaria Nees ex Walls.) (2)葡萄孢霉属 (Botrytis Pers.ex Fr) (3)刺盘孢菌属(Colletotrichum Cords)
盘圆孢菌属(Gloesoporium Desm et Mont) (4)镰刀菌属(Fusarium Link Fr.) (5)地霉属(Geotrichum Link ex Sau. (6)青霉属(Penicillium Link ex Fr.) (7)拟茎点霉属(Phomopsis W)
樱桃褐腐病
油桃褐腐病
采前油桃褐腐病(Brown rot in nectarines before harvest)
Brown rot nest of peaches
指甲伤口处的油桃褐腐病(Brown rot in fingernail wound in nectarine)
桃蒂腐(Stem-end rot of peach)
柑 橘 褐 腐 病
(Citrus fruit brown rot)
番木瓜疫霉蒂腐(Phytophthora stem-end rot of papaya)
马铃薯晚疫病(Late blight of potato) (external)

果蔬采后病害的治理技术.doc

果蔬采后病害的治理技术.doc

果蔬采后病害的治理技术果蔬采后病害的治理技术:“果蔬”采后病害发生的原因是复杂的,采前田间带病、采后机械损伤、温湿度条件及管理不当造成的生理失调等等都是促成发病的因素。

病害的防治措施则与这些因素密切相关。

据调查发现,多数采后病害和田间病害是同一个病原菌。

如果腐病、灰霉病、软腐病、疫病和绵疫病、绵腐病、炭疽病等,发生这些病害的地块收获的“果蔬”往往带有大量病原菌,虽然收获时看不出有病,但很可能病菌已侵入而暂时处于潜伏状态,这种果实采收之后则大量发病。

也有的病原菌如根霉在田间不引起病害,只在采后引起腐烂,但这种病原菌在田间也可大量繁殖。

据试验,在西红柿采前5~6周喷杀菌剂,接着在采前18~20天喷第2次,或者在采前每隔2周喷1次杀菌剂,连续处理3次,可以防止田间真菌在死亡或衰老的叶子上繁殖,能有效地控制西红柿采后果腐病的发生。

在青椒收获前喷洒适当的杀菌剂,也可有效地减少采后根霉菌引起的腐烂。

因此采前防病与采后病害的发生密切相关,即使在田间不致病,只在采后为害的病害,收获前减少田间病原菌密度的措施也同样有效。

采前防病应采用各种保证“果蔬”健壮生长的综合栽培措施,包括选择抗病耐藏品种栽培、做好田间卫生管理、选择适当的药剂防治(安全间隔期为7~14天)等。

收获时应选择健康地块采收,而不能从有病地块中挑选没病没伤的果实贮藏,这一点不可忽视。

“果蔬”采后病害中有些病原菌是寄生性较强的,如疫霉菌、炭疽菌等,可直接从果实表皮侵入引起发病。

但更多的病菌是弱寄生性的或腐生性的,需从伤口侵入或产品受到生理伤害(如冷害)时大量发生,例如灰霉和根霉就是由伤口或柔嫩的花瓣侵入的。

由于青椒开过的花瓣容易脱落,所以花端感病较少,大部分腐烂是病菌从果柄切口处侵入造成的。

黄瓜的花瓣常沾附在瓜上,所以黄瓜的灰霉病多发生在花端。

对于这类病害,下述措施有一定的防治效果。

1.尽量减少机械损伤;2.采收时采用锋利的剪刀将果柄处剪成平滑的切口,使其切口尽快形成愈伤组织;3.摘掉凋萎的花瓣。

果蔬采后病害及防治

果蔬采后病害及防治
8
二 .侵染性病害病原种类 1.病原真菌: 引起水果腐烂
引起水果采后腐烂的病原菌主要是-真菌。 引起蔬菜采后腐烂的病原菌主要是-细菌。 大约有25种真菌和细菌与果蔬采后腐烂有关。 常见果蔬的侵染病害及病原菌: 仁果类:青霉病-扩展青霉 核果类:软腐病-匐枝根霉 葡萄 草莓:灰霉病-灰葡萄孢 柑桔类:指状青霉引起柑桔果实绿霉病 蕃茄 辣椒:黑斑病-互隔交链孢
表皮裂纹
马铃薯干腐病 镰刀孢(Fusarium)
表皮或损伤处
香蕉冠腐病 刺盘孢( Colletotrichum )
冠垫
菠萝黑腐病 根串珠菌(Thielaviopsis)
果柄
番茄酸腐病 地霉(Geotrichum)
表皮损伤
马铃薯软腐病 欧氏杆菌(Erwinia)
表皮损伤或皮孔
甜瓜软腐病 根霉(Rhizopus)
0 0 7 14 21 28 35 38 42 49 56 63 70
储藏天数(d)
图4-4 甜瓜在不同防腐措施下的腐坏速率 (张维一等,1985)
A散装甜瓜 B纸箱包装
C紫胶涂被
D综合防腐
22
(四)生物防治 1.使用拮抗菌 如利用枯草杆菌的悬浮液处理桃防治
果生链核盘菌引起的褐腐病效果极佳。 见表P180,7-3水果采后病害生物防治的结抗菌作用方式。
19
2.使用杀菌剂或防腐剂 采收后尽快进行,药物交替使用,避免病原菌产生抗药性。
如防霉灵熏蒸剂(含50%仲丁胺)、(仲丁胺衍生物)、(次氯酸钙制剂)对沾附于水果蔬菜 表面的病菌如炭疽病、灰霉病、果腐病等有良好的抑制作用。 用0.1~2%的硅酸钠(钾)浸泡或喷施。对果蔬采后病害如青霉病、绵霉病、褐腐病、黑 腐病、灰霉病具有明显防治效果;

采后生物学解析ppt课件

采后生物学解析ppt课件
2019 -
返回9
(2)感病组织合成过程加强,如蛋白质、核酸、碳 水化合物、芳香族化合物的合成均使 ATP 消耗增 加,积累 ADP 和无机磷,必然促进呼吸自动催化 过程。 (3)病原物侵染植物组织也是一种机械损伤。 (4)病原物诱导植物组织增加乙烯释放,有些病 原菌如绿青霉也能产生乙烯。受黑根霉侵染的甜 瓜果实的CO2释放与乙烯释放同步增长。 (5)病原物侵染植物组织后,感病植物组织的呼 吸代谢途径发生变化,表现为呼吸的磷酸戊糖途 径增强。
2019 2
作为活的有机体,寄主和病原都具有 彼此相互作用的能力。但是由于高等植物 和微生物细胞的生理差异,它们对某种刺 激物的反应存在很大差异。例如,乙烯加 速许多果实组织衰老,使其对病原微生物 侵袭的抗性降低,而这种激素对多数病原 微生物却没有什么影响。
2019
-
3
某些果蔬的一些化学成分可引起某种 病原菌的感染,另一些化学物质则抑制病 原在寄主体内生长。侵袭的病原可能诱发 寄主产生对病原自身有毒的物质,起到保 护作用。 一些寄主——病原的相互作用促进了发 病过程,而另一些相互关系则阻碍和防止 了这—过程。
2019 12
次生代谢Байду номын сангаас质
因病原物的侵染而在植物组织内产生并累积 的,具有抑菌活性的次生代谢物质称为植物保卫素 (phytoalexin)。植物保卫素。属于下列化学物质: (一)酚类(phenolics) 1.简单酚(simple pheno1s)如绿原酸; 2.黄酮类(flavonoid)如根皮素; 3.香豆素(coumarin) (二)多聚乙炔(polyacetylene) (三)异戊二烯(isoprene) 1.萜类(terpeneid)如甘薯酮(impeaniarone) 2.类固醇(steroid)如茄碱(selanin)

果蔬产品贮运中常见病害及其防治

果蔬产品贮运中常见病害及其防治

果蔬产品贮运中常见病害及其防治果蔬贮运过程中常常会发生病变腐烂现象,造成储藏损失,病害发生的种类概括起来可分为2大类:一是由于贮运环境条件不适宜引起的生理病害如冷害、冻害、气体伤害和药害等;二是由于病原菌侵染引起的侵染性病害此外还有由于挤压、撞击等外部机械力及虫害造成的机械损伤。

其中尤以侵染性病害造成的损失最为严重,而生理病害和机械损伤更易加剧侵染性病害的发生和发展,因此均应尽量避免。

第一节果蔬产品贮运常见病害一、生理伤害(一)低温伤害低温通常对果蔬贮运是有利的,但不适宜的低温则会造成低温伤害。

低温伤害包括冻害和冷害。

冻结对任何水果蔬菜都有害,解冻后果蔬很快就会腐烂。

但在高寒地区利用零下低温储藏一些耐寒性蔬菜,如芹菜、香菜、大葱等,使之长期保持冻结状态,也是一种有效的保鲜手段,但要避免忽冻忽化。

冷害不同于冻害,是由0℃以上的不适低温而非冻结温度造成的生理障碍。

冷害的常见症状是果面上出现凹陷斑点、水渍状病斑、萎蔫、果皮、果肉或种子变褐,不能正常后熟,果蔬风味变劣,出现异味甚至臭味,加速腐烂。

不同果蔬冷害症状有所区别。

冷害症状通常是果蔬处于低温下出现的,但有时在低温下症状并不明显,移到常温后呼吸反常,很快腐烂。

冷害临界温度以下的温度可分为高、中、低3档,储藏在高档温度下的果蔬,生理伤害轻,所以症状也轻;低档温度下生理伤害最重,但症状因温度很低而表现慢甚至受到抑制,所以看起来也较轻,但转入常温后则会发生爆发性的变化;中档温度介于2种情况之间,所以在储藏中就显得较其他2个温度档次严重,如黄瓜在4-5℃的低温下储藏腐烂,最快、最重,在7-9℃的黄瓜基本无冷害症状,而1-2℃的黄瓜表面,看起来很正常,但移至室温则几个小时就出现腐烂症状,货架期非常短。

一般原产于热带、亚热带地区的水果,蔬菜及地下根茎类蔬菜对低温比较敏感,如香蕉、芒果、青椒、绿熟西红柿、黄瓜、茄子、西瓜、冬、瓜、豆角、姜、甘薯等,储藏适温一般都在7℃甚至更高,而叶菜类则对0℃以上的低温不敏感。

果蔬采后病害的发生与防治研究

果蔬采后病害的发生与防治研究

果蔬采后病害的发生与防治研究果蔬是我们日常生活中不可或缺的一部分,它们富含维生素和营养物质,对于维持我们身体的健康起到了重要的作用。

然而,随着时间的推移,我们经常会发现果蔬采后容易出现病害,正是因为这些病害的存在,导致我们在购买和摄入果蔬时要更加谨慎。

下面,我将探讨果蔬采后病害的发生原因以及防治研究的重要性。

首先,果蔬采后的病害主要是由微生物引起的。

水果和蔬菜表面都存在着各种各样的微生物,比如细菌、霉菌和酵母菌等。

这些微生物在水果和蔬菜采摘后,由于外界环境的影响稍有不慎就会感染果蔬,导致它们变得腐烂或出现其他病害症状。

尤其是在高温潮湿的环境中,微生物的繁殖速度更加迅猛,进一步加剧了果蔬病害的发生。

其次,果蔬采后病害的发生还与果蔬自身的特点有关。

例如,一些水果和蔬菜在内部含有一定的水分和糖分,这为微生物的生长提供了良好的营养环境。

此外,一些果蔬在采摘后会自身分泌乙烯气体,乙烯气体促进了果蔬的成熟和衰老过程,从而也增加了果蔬病害发生的概率。

再者,一些果蔬在采摘后容易受到外界机械伤害,破皮后微生物更容易进入内部,引发病害。

针对果蔬采后病害的发生,防治研究显得尤为重要。

防治研究可以帮助我们找到一些有效的措施来减少果蔬采后的病害发生,从而保证果蔬的质量和延长其保鲜期。

目前,已经有一些防治研究成果被应用于果蔬的采后处理中。

首先,采后处理中的冷链环境非常关键。

低温可以延缓果蔬的新陈代谢和微生物的繁殖速度,从而减少果蔬采后的病害发生。

因此,在果蔬采摘后,保持适宜的低温环境是非常重要的。

同时,湿度的控制也是防治果蔬病害的一个重要环节。

过高的湿度会促进果蔬表面的微生物繁殖,而过低的湿度则会导致果蔬失水和干燥。

因此,保持适宜的湿度也是防治果蔬采后病害的关键。

其次,采后处理中的消毒措施也是非常重要的。

消毒可以有效地杀灭果蔬表面的微生物,从而减少病害的发生。

目前,一些消毒剂被广泛应用于果蔬采后处理中,如漂白粉、二氧化氯等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

其次,在膜脂固化以后,使得结合在膜上 的酶系统受到破坏(如前面提到的乙烯形成酶), 酶活性下降,原来在膜上结合的酶系统与膜外 游离的酶系统之间的平衡被打破,破坏了原有 的协调作用,于是积累一些有毒的中间产物 (如乙醛、乙醇等)。 第三,因线粒体膜受到破坏,影响呼吸链 电子传递,出现氧化磷酸化解偶联作用。
第一节 果蔬的冷害
冷 (chilling injury) 又称寒害,是指0℃以上,
10℃以下的低温对植物所
造成的伤害。
返回
一、冷害症状及对冷害的敏感性
一些原产于热带或亚热带的植物(香蕉、芒果 、红薯),由于系统发育处于高温多湿的气候环境中 ,形成对低温有很敏感的特性,在生长过程中遇到零 上低温,则发生冷害,损失巨大。起源于亚热带植物 (黄瓜、茄子、蚕豆)的果实、蔬菜或贮藏器官 ( 如 甘薯的块根 ) ,在过低温度下贮藏也会引起冷害。某 些原产于温带的果蔬(桃、苹果、马铃薯),受害程 度较轻,苹果中的一些品种,贮藏不当,同样会遭受 冷害。 一般果蔬产品在冷害温度下贮藏,并不立即表现 出冷害症状,只有将这些在低温下贮藏的产品转移至 20一25℃较温暖的环境中,二、三天后冷害症状才会 被发展和察觉出来。
改变贮藏环境的气体成分,可以减少冷害 的发生。
对于某些果蔬商品用低浓度 0 2 ,和高浓度 CO2 进行气凋贮藏,能有效地减轻冷害,如油梨、 葡萄柚、青梅、黄秋葵、番木瓜,桃、菠萝和 小西葫芦等。但气调贮藏也有加重冷害的报道: 如黄瓜、石刁柏和灯笼辣椒等。为此,气调贮 藏能否减轻冷害的发生,受果蔬种类、 O2 和 C02 浓度、处理时间和贮藏温度等因素决定。
黄瓜组织切片不同温度下细胞膜透性变化图
二、对细胞器的影响
0℃以上低温对冷害敏感的热带和亚热带植物 的细胞器如叶绿体、核糖体等,都有不同程度的影 响.
在电子显微镜下观察,受冷害的茄子,在 1 ℃ 下贮藏 4 天,表皮出现凹陷症状之前,已可看到薄 壁细胞内线粒体膨胀,部分液泡膜退化。 有人对新疆哈密瓜亚细胞结构作了系统观察, 认为冷害低温首先引起哈密瓜表皮和皮层细胞脱水, 促使细胞扁平化,造成表皮下陷。
对于某些果蔬商品,贮藏期间提高相对湿度, 可以减轻冷害。
据研究将黄瓜和辣椒贮藏在相对湿度接近100% 的环境中,在0℃下果实表皮出现的冷害陷斑,较在 相对湿度为90%的为少。有人将辣椒在0℃及相对湿 度为88%-90%中贮藏12天,有67%出现陷斑;而在 同样时间和温度下,贮藏在相对湿度为96%-98%, 只有33%出现陷斑。显然,对这类蔬菜说来,调节 贮藏湿度接近100%,冷害减少,而低湿则促进冷害 症状的出现。
第五章 园艺产品采后病理及生理失

果蔬贮藏期间的冷害和冻害
果蔬的冷害 冷害过程中的生理生化变化 减轻果蔬冷害的措施 果蔬冻害
香蕉冻害图
低温可以明显抑制采后果蔬的呼吸作用、抑 制微生物的生长。因此采用低温贮藏果实和蔬菜, 对保持新鲜果蔬的风味、品质,控制成熟、衰老 和延长贮藏期是十分有效的。但不适当的低温, 则会使采后的果蔬产品受到不同程度的伤害、出 现各种生理失调,严重时会造成细胞和组织死亡, 品质败坏,失去商品价值。 低温对植物的为害,按低温程度和受害情况 可分为冷害(零上低温)和冻害低温两种。
返回
第二节 冷害过程中的 生理生化变化
喜温植物在零上 低温条件下,生理生 化方面出现如图化:
返回
一、对生物膜的影响
首先是损伤生物膜。一些对冷害敏感的植物, 由于膜脂中不饱和脂肪酸含量较少,膜的液化程度 较差,在低温下膜的物理性状发生改变,膜脂从一 个富有柔性的液晶态转变为固性的凝胶态(液晶态是 正常代谢和抗冷植物膜脂的物理状态),使得膜相发 生改变。与膜脂相变的同时:膜的功能也发生了变 化,在冷害温度下膜收缩,膜体出现龟裂,破损, 破坏了膜的选择透性,引起细胞内的物质外渗。一 般认为这种透性的增加,是低温对生物膜伤害的标 志之一。
梨果冷害图
二、影响冷害的因素
影响果蔬冷害因素很多,归纳起来不外乎受果 蔬产品的内在因素和外界环境因素决定
内在因素 外界环境因素
受强寒流袭击 永春万亩枇杷受冷害
(一)内在因素
包括果蔬的种类、品种、原产地、成熟度、 组织的生理状况和化学组成,采收期等因素 前面已经提及果蔬原产地不同,种类、品种 和成熟度不同,对冷害的敏感性是不相同的。植 物对冷害的敏感性受基因决定,冷害敏感植物安 全贮藏的临界温度,状有:外表受到损伤,出现斑点, 表皮凹陷,失色或组织出现水渍状,果肉、维管束 或种子内部褐变,组织裂开,果实不能完熟,或衰 老进程加快,抵抗力减弱,易遭病菌侵害,容易腐 烂,成分发生变化 ( 特别是香味和风味发生变化 ) , 种子丧失发芽力等。这些因冷害而出现的变化,会 大大地缩短果实、蔬菜的贮藏寿命,严重影 响商品价值。
三、不正常的呼吸反应
植物遭受冷害以后,常出现不正常的呼吸反应。例 如黄瓜,食荚菜豆、甘薯,番茄等冷害敏感蔬菜,遭受 冷害后常出现较高的呼吸强度。黄瓜贮藏在临界温度以 上,呼吸速率逐步下降,这是黄瓜正常呼吸类型的表现。
(二)外界环境因素
包括温度、相对湿度、光照,大气成 分、栽培管理条件等因素。 在环境因素中,影响冷害的主要因素 是温度。在导致发生冷害的温度下,温度高 低和持续时间的长短乃是果蔬产品是否受害 和受害程度的决定因素。
在诱发冷害温度的范围内,温度越低,或低温持续时间越 长,则冷害受害程度越严重。但对某些水果说来,温度与冷害 的关系,又不完全同于上述规律,如葡萄柚在稍低于最适宜温 度下却比在较低的温度下更快地显现冷害症状。据报道葡萄柚 在0℃或10℃下贮藏4-6个星期后极少出现冷害症状,而在0℃ 与10 ℃之间的中间温度,则常会出现严重的表皮凹陷斑纹。 又如广东甜橙在1-3℃或常温(平均温度为15℃ )下贮藏45个月,由于低温伤害而出现的褐斑,较之中间温度(如4-6℃ 或7-9℃)少得多。在较低温度下,一定时间内之所以出现冷害 症状较少、较轻的原因,有人认为低温可能抑制了果品的代谢 活动,因而使冷害症状发展缓慢。
相关文档
最新文档