初二数学几何难题训练题及答案

合集下载

初中数学经典几何难题及答案

初中数学经典几何难题及答案

经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)第1题图第2题图2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)第3题图第4题图4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .经典难题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)B D 2C 2B 2A 2D 1C 1B 1C BDAA 1APC DBAFGCEB O D第1题图第2题图2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)第3题图第4题图4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二)经典难题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)F第1题图第2题图2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)第3题图第4题图4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)经典难题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数.(初二)第1题图第2题图2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)第3题图第4题图4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.第1题图第2题图2、P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.第3题图第4题图4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300, ∠EBA =200,求∠BED 的度数.EDC BAAC BPDAC BPDA PCB FPDE CBACBDA经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF 。

初中数学经典几何难题及答案

初中数学经典几何难题及答案

经典难题(一)之邯郸勺丸创作1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF .(初二)第1题图 第2题图2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)第3题图第4题图4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .经典难题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)AFGCEBODAPC DBD 2C 2B 2A 2D 1C 1B 1C BDAA 1B第1题图 第2题图2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)第4题图4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二)经典难题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)F第2题图2、如图,四边形ABCD 为正方形,DE ∥AC,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA=PF .(初二)第3题图 4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)经典难题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数.(初二)第1题图 第2题图2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)第3题图 第4题图4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.第1题图 第2题图2、P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,而且PA =a ,PB =2a ,PC =3a ,求正方形的边长.第3题图第4题图 4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300, ∠EBA =200,求∠BED 的度数.C BDAFPDE CBAA PCBAC B PDEDCBAACBPD经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF 。

初中数学经典几何难题及答案

初中数学经典几何难题及答案

经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)第1题图第2题图2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)第3题图第4题图4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .经典难题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)ANFE CDM BD 2C 2B 2A 2D 1C 1B 1C BDAA 1APC DBAFGCEB O D第1题图第2题图2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)第3题图第4题图4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二)经典难题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)PCGFBQ ADE· OQPBDEC NM· A·GA O DBECQPNM·AD HEM C BO第1题图第2题图2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)第3题图第4题图4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D . 求证:AB =DC ,BC =AD .(初三)经典难题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数.(初二)第1题图第2题图2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)PADCBAPC BOD BF AECPFE PCBAE DA CBFAFDECBD3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)第3题图第4题图4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.第1题图第2题图2、P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.第3题图第4题图4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300, ∠EBA =200,求∠BED 的度数.EDCBAAC BPDAC BPDAPCBFPDE CBACBDA经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF 。

初中数学经典几何题(附答案)

初中数学经典几何题(附答案)

初中数学经典几何题(附答案)经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.(初二)APCDBAFGCEBOD3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .D 2C 2B 2A 2D 1C 1B 1CBDAA 1ANFE C DMB经典难题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)· ADHE M CBO ·GAO DBECQ PNMPC GFBQADE3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q .求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二)· O QPBD EC N M · A经典难题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .(初二)AF DECBEDACBF3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)经典难题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)DFEPCBAOD BFAEC PAP2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)P ADCBCBDA经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.FPDE CBA APCB ACBPDACBPD4、如图,△ABC中,∠ABC=∠ACB=800,D、E 分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典难题(一)1.如下图做GH⊥AB,连接EO。

初中数学经典几何难题及答案

初中数学经典几何难题及答案

经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A FG CE BO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 BF1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·4、平行四边形ABCD 中,设E、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.APCBACBPDEDCB A A CBPD1.如下图做GH⊥AB,连接EO。

初二数学几何难题训练题及答案

初二数学几何难题训练题及答案

初二数学几何难题训练题及答案1.已知⊙O的直径AB=10cm,点C、D、E、F分别在弧AB 上,若AC=3cm,BE=2cm,CF=4cm,求DE+FA的长度。

解:∠ABC=90°,∠AOC=180°,所以∠AFC=90°。

同理,∠ADE=90°。

又因为△ABC与△AED相似,所以$\frac{DE}{AC}=\frac{AB}{BC} \RightarrowDE=\frac{AB\times AC}{BC}$同理,因为△ABE与△AFC相似,所以$\frac{FA}{BE}=\frac{AB}{BC} \RightarrowFA=\frac{AB\times BE}{BC}$代入已知数据得到$DE=\frac{10\times 3}{7},FA=\frac{10\times 2}{7}$ 所以 DE+FA=4cm。

答案:4cm。

2.在△ABC中,D、E分别在AB、AC上,DE//BC,已知AB=6cm,AC=9cm,BD:DA=1:2,CE:EA=2:3,求BC的长。

解:因为DE//BC,所以$\frac{BD}{DA}=\frac{CE}{EA}=\frac{DB+BC}{DA+AC}$ 代入已知数据得到$\frac{1}{2}=\frac{2P+BC}{3P+9} \RightarrowBC=\frac{9}{2}$所以BC的长为4.5cm。

答案:4.5cm。

3.在四棱锥ABCD-P中,AB=BC=CD=l,PA=2l,PB=3l,PC=4l,且四棱锥的底面ABCD是个正方形,求四棱锥的体积V。

解:设△PAB与底面平行,交底面为E,△PAD与底面平行,交底面为F。

则有$PE=2l,PF=3l$由于ABCD是个正方形,所以$AE=BF=CF=DF=l$又因为連接PC与數直BD平行,所以$\frac{BD}{PC}=\frac{AE}{AF}$带入已知数据得到$\frac{BD}{4l}=\frac{l}{PF} \RightarrowBD=\frac{l^2}{PF}\times 4l=\frac{16l^3}{9}$所以四棱锥的高为$h=\sqrt{(PA-BD/3)^2-PF^2}=\sqrt{(2l-\frac{16l^3}{3\times 9l^2})^2-9l^2}=(8\sqrt{3}-9)l$ 最后利用公式$V=\frac{1}{3}S\times h$求出四棱锥的体积V,其中S为底面积,S=AB×BC=l²。

初中数学经典几何题及答案

初中数学经典几何题及答案

经典难题(一)之杨若古兰创作1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD=∠PDA =150.求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、B2、C2、D2分别是AA1、BB1、CC1求证:四边形A2B2C2D2是正方形.4、已知:如图,在四边形ABCD 中,AD 是AB 、CD 的中点,AD 、BCF .求证:∠DEN=∠F.经典难题(二)1、已知:△ABC 中,H 心,且OM⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC=600,求证:AH =AO .2、设MN 是圆O 外不断线,过O 作引圆的两条直线,交圆于B 、C 及D 、E AG CEB分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN DE ,设CD 、EB 分别交MN 于P 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC和BC 侧作正方形ACDE 和正方形求证:点P 到边AB 的距离等于1、如图,四边形ABCD 与CD 订交于F .求证:CE =CF .2、如图,四边形直线EC 交DA 求证:AE =AF .3、设P 是正方形平分∠DCE.求证:PA =PF .4、如图,PC 切圆O 线,AE 、AFBC =AD .(初三)经典难题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.(初二)3、设ABCD 为圆内接凸四边形,求证:AB·CD+AD·BC =AC·BD.(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 订交于P ,且AE =CF .求证:∠DPA=∠DPC.(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L<2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.APC B PADCBCBDA FPDE CBAAP C BACBPD3、P为正方形ABCD内的一点,而且PA=a=3a,求正方形的边长.4、如图,△ABC中,∠ABC=∠ACB=800 AB、AC上的点,∠DCA=300,∠EBA=200度数.经典难题(一)答案1.如下图做GH⊥AB,连接EO.因为GOFE ∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF =GOGH=COCD,又CO=EO,所以CD=GF得证.2. 如下图做△DGC使与△ADP全等,可得△PDG为等边△,从而可得△DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150所以∠DCP=300 ,从而得出△PBC是正三角形3.如下图连接BC1和AB1分别找其中点F,E.连接C2F与A2E 并耽误订交于Q点,连接EB2并耽误交C2Q于H点,连接FB2并耽误交A2Q 于G点,由A2E=12A1B1=12B1C1= FB2 ,EB2=12AB=12BC=FC1 ,又∠GFQ+∠Q=900和∠GEB2+∠Q=900,所以∠GEB2=∠GFQ又∠B2FC2=∠A2EB2 ,可得△B2FC2≌△A2EB2 ,所以A2B2=B2C2 ,又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2 ,从而可得∠A2B2 C2=900 ,同理可得其他边垂直且相等,从而得出四边形A2B2C2D2是正方形.4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F.经典难题(二)1.(1)耽误AD到F连BF,做OG⊥AF,又∠F=∠ACB=∠BHD,可得BH=BF,从而可得HD=DF,又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM(2)连接OB,OC,既得∠BOC=1200,从而可得∠BOM=600,所以可得OB=2OM=AH=AO,得证.3.作OF⊥CD,OG⊥BE,连接OP,OA,OF,AF,OG,AG,OQ.因为22ADAC CD FD FD AB AE BE BG BG,由此可得△ADF≌△ABG,从而可得∠AFC=∠AGE. 又因为PFOA 与QGOA 四点共圆,可得∠AFC=∠AOP 和∠AGE=∠AOQ,∠AOP=∠AOQ,从而可得AP=AQ.4.过E,C,F 点分别作AB 所在直线的高EG ,CI ,FH.可得PQ=2EGFH .由△EGA≌△AIC,可得EG=AI ,由△BFH≌△CBI,可得FH=BI.从而可得PQ=2AIBI =2AB ,从而得证.经典难题(三)1.顺时针扭转△ADE,到△ABG,连接CG. 因为∠ABG=∠ADE=900+450=1350从而可得B ,G ,D 在一条直线上,可得△AGB≌△CGB. 推出AE=AG=AC=GC ,可得△AGC 为等边三角形. ∠AGB=300,既得∠EAC=300,从而可得∠A EC=750. 又∠EFC=∠D FA=450+300=750. 可证:CE=CF.2.连接BD 作CH⊥DE,可得四边形CGDH 是正方形.由AC=CE=2GC=2CH ,可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150,又∠FAE=900+450+150=1500,从而可晓得∠F=150,从而得出AE=AF.3.作FG⊥CD,FE⊥BE,可以得出GFEC为正方形.令AB=Y ,BP=X ,CE=Z ,可得PC=Y-X .tan∠BAP=tan∠EPF=XY =ZY X Z,可得YZ=XY-X2+XZ,即Z(Y-X)=X(Y-X) ,既得X=Z ,得出△ABP≌△PEF ,得到PA=PF ,得证.经典难题(四)1.顺时针扭转△ABP 600 ,连接PQ ,则△PBQ是正三角形.可得△PQC是直角三角形.所以∠APB=1500 .2.作过P点平行于AD的直线,并选一点E,使AE∥DC,BE∥PC.可以得出∠ABP=∠ADP=∠AEP,可得:AEBP共圆(一边所对两角相等).可得∠BAP=∠BEP=∠BCP,得证.3.在BD取一点E,使∠BCE=∠ACD,既得△BEC∽△ADC,可得:BE BC =ADAC,即AD•BC=BE•AC,①又∠ACB=∠DCE,可得△ABC∽△DEC,既得AB AC =DEDC,即AB•CD=DE•AC,②由①+②可得: AB•CD+AD•BC=AC(BE+DE)= AC·BD ,得证.4.过D 作AQ⊥AE ,AG⊥CF ,由ADES=2ABCDS =DFC S ,可得:2AE PQ =2AEPQ,由AE=FC.可得DQ=DG ,可得∠DPA=∠DPC(角平分线逆定理).经典难题(五)1.(1)顺时针扭转△BPC 600 ,可得△P BE 为等边三角形.既得PA+PB+PC=AP++PE+EF 要使最小只需AP ,PE ,EF 在一条直线上,即如下图:可得最小L=;(2)过P 点作BC 的平行线交AB,AC 与点D ,F. 因为∠APD>∠ATP=∠ADP,推出AD>AP①又BP+DP >BP ② 和PF+FC>PC ③ 又DF=AF ④由①②③④可得:最大L< 2 ; 由(1)和(2)既得:≤L<2 .2.顺时针扭转△BPC 600 ,可得△PBE 为等边三角形.既得PA+PB+PC=AP+PE+EF 要使最小只需AP ,PE ,EF 在一条直线上,即如下图:可得最小PA+PB+PC=AF. 既得213(1)42= 23=4232= 231)2=1)2=622 .3.顺时针扭转△ABP 900 ,可得如下图: 既得正方形边长L =2222(2)()22a = 522a .4.在AB 上找一点F ,使∠BCF=600 ,连接EF ,DG ,既得△BGC 为等边三角形,可得∠DCF=100 , ∠FCE=200 ,推出△ABE≌△ACF , 得到BE=CF , FG=GE .推出 : △FGE 为等边三角形 ,可得∠AFE=800 , 既得:∠DFG=400① 又BD=BC=BG ,既得∠BGD=800 ,既得∠DGF=400② 推得:DF=DG ,得到:△DFE≌△DGE , 从而推得:∠FED=∠BED=300 .。

初中数学经典几何难题及答案

初中数学经典几何难题及答案

经典难题〔一〕1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .〔初二〕2、已知:如图,P 是正方形ABCD 内一点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.〔初二〕3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.〔初二〕4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A FG CE BO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1F1、已知:△ABC 中,H 为垂心〔各边高线的交点〕,O〔1〕求证:AH =2OM ; 〔2〕假设∠BAC =600,求证:AH =AO .〔初二〕2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB及CD 分别交MN 于P 、Q . 求证:AP =AQ .〔初二〕3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .〔初二〕4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .〔初二〕2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .〔初二〕3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .〔初二〕4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .〔初三〕1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.〔初二〕2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .〔初二〕3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·4、平行四边形ABCD 中,设E、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .〔初二〕1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.APCBACBPDEDA A CBPD⊥AB,连接EO。

初中数学经典几何难题20例及答案

初中数学经典几何难题20例及答案

经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)第1题图第2题图2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)第3题图第4题图4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .经典难题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)ANFE CDMB D 2C 2B 2A 2D 1C 1B 1C BDAA 1APC DBAFGCEB O D第1题图第2题图2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)第3题图第4题图4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二)经典难题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)PCGFBQ ADE· OQPBDEC NM· A·GA O DBECQPNM·AD HEM C BO第1题图第2题图2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)第3题图第4题图4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)经典难题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数.(初二)第1题图第2题图2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)PADCBAPC BO D BF AECPFE PCBAE DA CBFAFDECBD3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)第3题图第4题图4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.第1题图第2题图2、P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.第3题图第4题图4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300, ∠EBA =200,求∠BED 的度数.EDCBAAC BPDAC BPDA PCBFPDE CBACBDA经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF 。

初中数学经典几何难题, 附答案

初中数学经典几何难题, 附答案

初二数学几何经典难题初二数学几何经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .A P C DB A F G CE BO D D 2 C 2B 2 A 2D 1 C 1 B 1CB DA A 1求证:∠DEN =∠F .经典难题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典难题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)经典难题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·4、平行四边形ABCD 中,设E、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC ,求证:≤L<2.2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC0,∠EBA=200,求∠BED的度数.APC BAC BPD AC BPD经典难题(一)1.如下图做GH⊥AB,连接EO。

初二数学几何难题训练题及答案

初二数学几何难题训练题及答案

初二几何难题训练题1,如图矩形对角线、交于O,E F分别是、的中点(1)求证△≌△:(2)若4,8,求的长。

证明:(1)在矩形中,为对角线,∴∴∠∠∠∠∵为中点∴1/21/2∵, ∠∠∴△≌△(2)过F作⊥于M,交于N∵4,8∴4根号5∵1:4 ∴1,3∵为△中位线∴1/24∵四边形为等腰梯形∴2 ∴根号13。

2,如图,在直角梯形中,∥,∠90°,2,对角线⊥,垂足为F,过点F 作∥,交于点E,4.(1)求证:四边形是等腰梯形;(2)求的长.(1)证明:过点D作⊥,∵∥,∠90°,∴四边形为矩形.∴.∵2,∴.∵⊥,∴.∴∠∠.∵∥,与交于点D,即与不平行,∴四边形是等腰梯形.(2)解:∵∥,∴△∽△.∴=1 2 .∵4,∴8.∵⊥,∠90°,在△与△中,∵∠∠90°,∴∠∠90°,∵∠∠90°,∴∠∠,∴△∽△,即,∴2•.∴4 2 .∴4 2 .3,如图,用三个全等的菱形、、拼成平行四边形,连接与、分别交于P、Q,(1)若6,求线段的长;(2)观察图形,是否有三角形与△全等?并证明你的结论解:(1)∵菱形、、是全等菱形∴6,∥∴33×6=18,∠∠D,∠∠∴△∽△∴∴•6 18 ×6=2;(2)∵菱形、、是全等的菱形∴∴∴∵∥∴∠1=∠2∵∥∴∠3=∠4∴△≌△.4、已知点在三角形的边所在的直线上,且,,、分别交边所在的直线于点H,G1 如果点E。

F在边上,那么,请证明这个结论2 如果点E在上,点F在的延长线上,那么线段,,的长度关系是什么?3 如果点E在的反向延长线上,点F在的延长线上,那么线段,,的长度关系是什么?4 请你就1,2,3的结论,选择一种情况给予证明解:(1)∵∥∥,∴∠∠∠A,△∽△∽△.∴∴又∵,∴∴.∴.(2)线段、、的长度的关系为:.证明(2):过点E作∥交于P,∵∥,∴四边形为平行四边形.∴.∵∥∥,∴∠∠A,∠∠∠.又∵,∴△≌△.∴.∴.即.5,如图是一个常见铁夹的侧面示意图,,表示铁夹的两个面,C是轴,⊥于点D,已知15,24,10,我们知道铁夹的侧面是轴对称图形,请求出A、B两点间的距离.解:连接,同时连接并延长交于E,因为夹子是轴对称图形,故是对称轴,∴⊥,,∴△∽△,∴ =∵²²²∴=26,∴ =15,∵2 ∴=30().(8分)答:两点间的距离为30.6,如图,在平行四边形中,过点B作⊥,垂足为E,连接,F为上一点,且∠∠C,(1)求证:△∽△ ;(2)若5,3,∠30°,求的长解:(1)∵四边形是平行四边形∴∥,∥∴∠∠,∠∠180° 且∠∠180°又∵∠∠C ∴∠∠∵∠∠,∠∠∴△∽△(2)∵∠30°,且∥,⊥∴△为△,且∠30° 又∵4∴3分之8倍根号37,如图与相交于为线段的中点与相交于点G,若15,求之长。

初中数学经典几何难题及答案

初中数学经典几何难题及答案

1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CDMN于E 、F . 求证:∠DEN =∠F .1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)APC DB A FG CEBOD D 2C 2B 2 A 2D 1C 1B 1CBDA A 1F3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.FPDE CBA APCB ACBPDA CBPD4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA 00,求∠BED的度数.经典难题(一)1.如下图做GH⊥AB,连接EO。

初二数学几何难题练习题含答案

初二数学几何难题练习题含答案

初二数学几何难题练习题含答案1. 题目:已知直角三角形ABC中,AB = 6cm,BC = 8cm。

求AC 的长度。

解析:根据直角三角形的勾股定理,可得AC^2 = AB^2 + BC^2。

代入数值计算可得AC = √(6^2 + 8^2) = √(36 + 64) = √100 = 10cm。

答案:AC的长度为10cm。

2. 题目:四边形ABCD是一个矩形,AB = 5cm,BC = 8cm。

如果∠CBD = 90°,求AD的长度。

解析:由于ABCD是一个矩形,所以AD = BC = 8cm。

答案:AD的长度为8cm。

3. 题目:在平面直角坐标系中,点A(3, 4)和点B(7, 2)分别为直角三角形ABC的两个顶点,求直角三角形ABC的斜边长。

解析:利用两点间距离公式,设A(x1, y1)和B(x2, y2),则AB的长度为√[(x2 - x1)^2 + (y2 - y1)^2]。

代入数值计算可得AB = √[(7 - 3)^2 + (2 - 4)^2] = √[16 + 4] = √20 ≈ 4.47。

答案:直角三角形ABC的斜边长约为4.47。

4. 题目:已知平行四边形ABCD的边长分别为AB = 6cm,BC =8cm。

如果∠BCD = 120°,求对角线AC的长度。

解析:根据平行四边形的性质,对角线互相平分。

因此,对角线AC的长度等于边长DC的长度。

由已知信息可得DC = BC = 8cm。

答案:对角线AC的长度为8cm。

5. 题目:已知等腰梯形ABCD,AB || CD,AB = 6cm,CD = 10cm,AD = 5cm。

求BD的长度。

解析:由等腰梯形的性质可知,AB和CD的中点M处于同一条水平线上。

连接AM和CM,得到直角三角形AMC。

利用勾股定理可得AC的长度为√[(AD + CD)^2 - (2AB)^2] = √[(5 + 10)^2 - (2 * 6)^2] = √225 - 144 = √81 = 9。

初二数学几何难题训练题及答案

初二数学几何难题训练题及答案

初二几何难题训练题1,如图矩形对角线、交于O,E F分别是、的中点〔1〕求证△≌△:〔2〕假设4,8,求的长。

证明:〔1〕在矩形中,为对角线,∴∴∠∠∠∠∵为中点∴1/21/2∵, ∠∠∴△≌△〔2〕过F作⊥于M,交于N∵4,8∴4根号5∵1:4 ∴1,3∵为△中位线∴1/24∵四边形为等腰梯形∴2 ∴根号13。

2,如图,在直角梯形中,∥,∠90°,2,对角线⊥,垂足为F,过点F作∥,交于点E,4.〔1〕求证:四边形是等腰梯形;〔2〕求的长.(1)证明:过点D作⊥,∵∥,∠90°,∴四边形为矩形.∴.∵2,∴.∵⊥,∴.∴∠∠.∵∥,及交于点D,即及不平行,∴四边形是等腰梯形.(2)解:∵∥,∴△∽△.∴ =1 2 .∵4,∴8.∵⊥,∠90°,在△及△中,∵∠∠90°,∴∠∠90°,∵∠∠90°,∴∠∠,∴△∽△,即,∴2•.∴4 2 .∴4 2 .3,如图,用三个全等的菱形、、拼成平行四边形,连接及、分别交于P、Q,〔1〕假设6,求线段的长;〔2〕视察图形,是否有三角形及△全等?并证明你的结论解:〔1〕∵菱形、、是全等菱形∴6,∥∴33×6=18,∠∠D,∠∠∴△∽△∴∴•6 18 ×6=2;〔2〕∵菱形、、是全等的菱形∴∴∴∵∥∴∠1=∠2∵∥∴∠3=∠4∴△≌△.4、点在三角形的边所在的直线上,且,,、分别交边所在的直线于点H,G1 假如点E。

F在边上,那么,请证明这个结论2 假如点E在上,点F在的延长线上,那么线段,,的长度关系是什么?3 假如点E在的反向延长线上,点F在的延长线上,那么线段,,的长度关系是什么?4 请你就1,2,3的结论,选择一种状况赐予证明解:〔1〕∵∥∥,∴∠∠∠A,△∽△∽△.∴∴又∵,∴∴.∴.〔2〕线段、、的长度的关系为:.证明〔2〕:过点E作∥交于P,∵∥,∴为.∴.∵∥∥,∴∠∠A,∠∠∠.又∵,∴△≌△.∴.∴.即.5,如图是一个常见铁夹的侧面示意图,,表示铁夹的两个面,C是轴,⊥于点D,15,24,10,我们知道铁夹的侧面是轴对称图形,恳求出A、B两点间的间隔.解:连接,同时连接并延长交于E,因为夹子是轴对称图形,故是对称轴,∴⊥,,∴△∽△,∴ =∵²²²∴ =26,∴ =15,∵2 ∴ =30〔〕.〔8分〕答:两点间的间隔为30.6,如图,在平行四边形中,过点B作⊥,垂足为E,连接,F为上一点,且∠∠C,〔1〕求证:△∽△ ;〔2〕假设5,3,∠30°,求的长解:〔1〕∵四边形是平行四边形∴∥,∥∴∠∠,∠∠180° 且∠∠180°又∵∠∠C ∴∠∠∵∠∠,∠∠∴△∽△〔2〕∵∠30°,且∥,⊥∴△为△,且∠30° 又∵4∴3分之8倍根号37,如图及相交于为线段的中点及相交于点G,假设15,求之长。

(完整版)初中数学经典几何题及答案

(完整版)初中数学经典几何题及答案

经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .经典难题(二)A P C DB A FG CE BO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1F1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典难 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEFB 、D .求证:AB =DC ,BC =AD .(初三)经典难1、已知:△ABC 是正三角形,P求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二) 经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.经典难题(一)1.如下图做GH ⊥AB,连接EO 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二几何难题训练题
1,如图矩形ABCD对角线AC、BD交于O,E F分别是OA、OB的中点
(1)求证△ADE≌△BCF:(2)若AD=4cm,AB=8cm,求CF的长。

证明:(1)在矩形ABCD中,AC,BD为对角线,
∴AO=OD=OB=OC ∴∠DAO=∠ADO=∠CBO=∠BCO
∵E,F为OA,OB中点∴AE=BF=1/2AO=1/2OB
∵AD=BC, ∠DAO=∠CBO,AE=BF ∴△ADE≌△BCF
(2)过F作MN⊥DC于M,交AB于N
∵AD=4cm,AB=8cm∴BD=4根号5
∵BF:BD=NF:MN=1:4 ∴NF=1,MF=3
∵EF为△AOB中位线∴EF=1/2AB=4cm
∵四边形DCFE为等腰梯形∴MC=2cm ∴FC=根号13cm。

2,如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF∥AB,交AD于点E,CF=4cm.
(1)求证:四边形ABFE是等腰梯形;
(2)求AE的长.
(1)证明:过点D作DM⊥AB,
∵DC∥AB,∠CBA=90°,∴四边形BCDM为矩形.∴DC=MB.
∵AB=2DC,∴AM=MB=DC.
∵DM⊥AB,∴AD=BD.∴∠DAB=∠DBA.
∵EF∥AB,AE与BF交于点D,即AE与FB不平行,∴四边形ABFE是等腰梯形.
(2)解:∵DC∥AB,∴△DCF∽△BAF.∴CD AB =CF AF =1 2 .
∵CF=4cm,∴AF=8cm.
∵AC⊥BD,∠ABC=90°,在△ABF与△BCF中,
∵∠ABC=∠BFC=90°,∴∠FAB+∠ABF=90°,
∵∠FBC+∠ABF=90°,∴∠FAB=∠FBC,∴△ABF∽△BCF,
即BF CF =AF BF ,∴BF2=CF?AF.∴BF=4 2 cm.∴AE=BF=4 2 cm.
3,如图,用三个全等的菱形ABGH、BCFG、CDEF拼成平行四边形ADEH,连接AE与BG、CF 分别交于P、Q,
(1)若AB=6,求线段BP的长;
(2)观察图形,是否有三角形与△ACQ全等?并证明你的结论
解:(1)∵菱形ABGH、BCFG、CDEF是全等菱形
∴BC=CD=DE=AB=6,BG∥DE
∴AD=3AB=3×6=18,∠ABG=∠D,∠APB=∠AED
∴△ABP∽△ADE
∴BP DE =AB AD∴BP=AB AD ?DE=6 18 ×6=2;
(2)∵菱形ABGH、BCFG、CDEF是全等的菱形∴AB=BC=EF=FG∴AB+BC=EF+FG
∴AC=EG∵AD∥HE∴∠1=∠2∵BG∥CF∴∠3=∠4∴△EGP≌△ACQ.
4、已知点E,F在三角形ABC的边AB所在的直线上,且AE=BF,FH//EG//AC,FH、EC分别交边BC所在的直线于点H,G
1 如果点E。

F在边AB上,那么EG+FH=AC,请证明这个结论
2 如果点E在AB上,点F在AB的延长线上,那么线段EG,FH,AC的长度关系是什么?
3 如果点E在AB的反向延长线上,点F在AB的延长线上,那么线段EG,FH,AC的长度关系是什么?
4 请你就1,2,3的结论,选择一种情况给予证明
解:(1)∵FH∥EG∥AC,∴∠BFH=∠BEG=∠A,△BFH∽△BEG∽△BAC.
∴BF/FH=BE/EG=BA/AC∴BF+BE/FH+EG=BA/AC又∵BF=EA,∴EA+BE/FH+EG=AB/AC∴
AB/FH+EG=AB/AC.∴AC=FH+EG.
(2)线段EG、FH、AC的长度的关系为:EG+FH=AC.
证明(2):过点E作EP∥BC交AC于P,
∵EG∥AC,∴EPCG为.∴EG=PC.∵HF∥EG∥AC,
∴∠F=∠A,∠FBH=∠ABC=∠AEP.又∵AE=BF,∴△BHF≌△EPA.
∴HF=AP.∴AC=PC+AP=EG+HF.即EG+FH=AC.
5,如图是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CD⊥OA于点D,已知DA=15mm,DO=24mm,DC=10mm,我们知道铁夹的侧面是轴对称图形,请求出A、B两点间的距离.
解:连接AB,同时连接OC并延长交AB于E,
因为夹子是轴对称图形,故OE是对称轴,
∴OE⊥AB,AE=BE,∴Rt△OCD∽Rt△OAE,∴OC:OA = CD:AE
∵OC2=OD2+CD2 ∴OC =26,∴AE= =15,∵AB=2AE ∴ AB =30(mm).(8分)
答:AB两点间的距离为30mm.
6,如图,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上一点,且
∠BFE=∠C,(1)求证:△ABF∽△EAD ;(2)若AB=5,AD=3,∠BAE=30°,求BF的长解:(1)∵四边形ABCD是平行四边形∴AB∥CD,AD∥BC
∴∠BAE=∠AED,∠D+∠C=180°且∠BFE+∠AFB=180°
又∵∠BFE=∠C ∴∠D=∠AFB∵∠BAE=∠AED,∠D=∠AFB
∴△ABF∽△EAD
(2)∵∠BAE=30°,且AB∥CD,BE⊥CD
∴△ABEA为Rt△,且∠BAE=30°又∵AB=4
∴AE=3分之8倍根号3
7,如图,AB与CD相交于E,AE=EB,CE=ED,D为线段FB的中点,GF与AB相交于点G,若
CF=15cm,求GF之长。

解∵CE=DE BE=AE ,∴△ACE≌△BDE ∴∠ACE=∠BDE
∵∠BDE+∠FDE=180°∴∠FDE+∠ACE=180°∴AC∥FB
∴△AGC∽△BGF∵D是FB中点DB=AC
∴AC:FB=1:2 ∴CG:GF=1:2 ;
设GF为x 则CG为15-X
GF=CF/3C×2=10cm
9,如图,已知直角梯形ABCD中,AD∥BC,∠B=90°,AB=12cm,BC=8cm,DC=13cm,动点P沿A→D→C线路以2cm/秒的速度向C运动,动点Q沿B→C线路以1cm/秒的速度向C运动.P、Q两点分别从A、B同时出发,当其中一点到达C点时,另一点也随之停止.设运动时间为t秒,△PQB的面积为ycm2.
(1)求AD的长及t的取值范围;
(2)当1.5≤t≤t0(t0为(1)中t的最大值)时,求y关于t的函数关系式;
(3)请具体描述:在动点P、Q的运动过程中,△PQB的面积随着t的变化而变化的规律.。

相关文档
最新文档