椭圆内接三角形的最大面积问题
与椭圆有关的最值问题
角度类问题典型例题
例题2
已知椭圆C的中心在原点,焦点在x轴上,离心率为$frac{sqrt{3}}{2}$,它的一个顶点恰好是抛物线$x^2 = 8sqrt{2}y$的焦点,过点P(4,0)且不垂直于x轴的直线l与C相交于A、B两点,若直线PA与直线PB的斜率 之积为$- frac{5}{16}$,则直线l的方程为____。
距离类问题典型例题
例题1
已知椭圆$frac{x^2}{4} + frac{y^2}{3} = 1$,点P是椭圆上一点,F₁、F₂是椭圆的 两个焦点,则|PF₁|·|PF₂|的最大值为____。
例题2
过椭圆$frac{x^2}{5} + y^2 = 1$的右焦点作一条斜率为2的直线与椭圆交于A、 B两点,O为坐标原点,则弦AB的长为____。
通过解析几个与椭圆有关的最值问题的典型例题,我们掌握了这类问情况
通过本次课程的学习,我深刻理解了椭圆的标准方程和性质,掌握了在约束条件下求解最值问题的方法,对于典型例 题的解析也有了更深入的认识。
学习方法与效率
在学习过程中,我采用了课前预习、课后复习的方法,同时结合了大量的练习来巩固所学知识。这种学习方法使我能 够高效地吸收和掌握知识。
利用平面几何知识,如相似、勾股定 理等,求出最值;
03
与椭圆相关的最值问题类 型
面积类问题
1 2
椭圆内接矩形面积的最大值
给定椭圆,求其内接矩形面积的最大值。
椭圆内接三角形面积的最大值
给定椭圆,求其内接三角形面积的最大值。
3
椭圆与直线围成的图形面积
给定椭圆和直线,求它们围成的图形面积。
距离类问题
需要注意定义域的限 制。
利用一元二次函数的 性质,如顶点、对称 轴等,求出最值;
《椭圆》方程典型例题20例(含标准答案解析]
《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02,A 为长轴端点时,2=a ,1=b ,椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a ,椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112aa x x x M +=+=,2111a x y M M +=-=,4112===a x y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=. 同理 2545x CF -=. ∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-. 将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=,112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-.所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,;(2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y . 解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y . (2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b ,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49s i n 3s i n34222+--=θθb b b 3421s i n 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b ,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠AQB ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+ay x ay ,将22222y b a a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b cab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅.∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标; (2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+by a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12F PF,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα ∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα, ∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+= ∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=. ∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+b y a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-ba b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。
高等几何习题集[1]2
高等几何习题集习题1.11.证明:任一三角形都有一个内切椭圆,其切点为三边的中点,中心为三角形的重心;同时有一个外接椭圆以三角形的重心为中心。
2.平行于平行四边形ABCD 对角线AC 作一直线与AB 、BC 交于点E 、F ,证明:三角形AED 和CDF 的面积相等。
3.在椭圆的内接三角形的顶点作切线构成外切三角形,证明:如果这两上三角形有两对边平行,则第三对边也平行。
4.过三角形ABC 内任一点P 作DE//BC ,交AB 、AC 于E 、E ,作FG//CA 交BC 、BA 于F 、G ,作HK//AB 交BC 、CA 于H 、K ,证明:=++ABHK CA FG BC DE 常数。
5.设X 、Y 是三角形ABC 的边AB 、CA 上的动点,满足BX :XA=CY :Y A 。
证明:BY 与CX 的交点在一条定直线上。
6.设D 、E 、F 各是三角形ABC 的边BC 、CA 、AB 上的点,且DE//AB ,DF//CA ,证明:CD E BFD AEF S S S ∆∆∆⋅=2。
7.将三角形的每边三等分,将每个分点与三角形的对顶点相连,这六条直线构成一个六边形,证明:此六边形的三双对顶点的连线共点。
8.在三角形ABC 的边BC 、CA 、AB 上取点D 、E 、F 使BD :DC = CE :EA = AF :FB = 1 :n 。
设AD 交BE 于L ,BE 交CF 于K ,CF 交AD 于M ,证明:1122++-=n n n S S ABC LKM )(∆∆ 。
9.设点D 、E 、F 分别位于三角形ABC 的边BC 、CA 、AB 上,且BD :DC=CE :EA=AF :FB ,三线AD 、BE 、CF 构成三角形PQR ,证明:三角形ABC 、DEF 和PQR 具有共同的重心。
10.过椭圆的弦AB 的中点C 任作二弦PQ 和ST ,PS 、QT 分别交AB 于M 、N ,证明:MC=CN 。
解三角形中的最值、范围问题--高考数学【解析版】
专题25 解三角形中的最值、范围问题近几年高考对解三角形问题考查,大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式.与平面几何相结合的问题,要注重几何图形的特点的利用.由于新教材将正弦定理、余弦定理列入平面向量的应用,与平面向量相结合的命题将会出现.另外,“结构不良问题”作为实验,给予考生充分的选择空间,充分考查学生对数学本质的理解,引导中学数学在数学概念与数学方法的教学中,重视培养数学核心素养,克服“机械刷题”现象.同时,也增大了解题的难度.【重点知识回眸】(一) 余弦定理变形应用:变式()()2221cos a b c bc A =+-+在已知,a A 的情况下,配合均值不等式可得到b c +和bc 的最值(二)三角形中的不等关系(1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少(2)在三角形中,边角以及角的三角函数值存在等价关系:sin sin cos cos a b A B A B A B >⇔>⇔>⇒<其中由cos cos A B A B >⇔<利用的是余弦函数单调性,而sin sin A B A B >⇔>仅在一个三角形内有效.(三)解三角形中处理不等关系的几种方法 1.三角形中的最值、范围问题的解题策略和步骤(1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值) (2)利用均值不等式求得最值 (3)①定基本量:根据题意或几何图形厘清三角形中边、角的关系,利用正、余弦定理求出相关的边、角或边角关系,并选择相关的边、角作为基本量,确定基本量的范围.②构建函数:根据正、余弦定理或三角恒等变换将待求范围的变量用关于基本量的函数解析式表示.③求最值:利用基本不等式或函数的单调性等求最值. 2.求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解,已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,b -c <a <b +c ,三角形中大边对大角等.【典型考题解析】热点一 三角形角(函数值)相关的最值(范围)问题【典例1】(2021·山西·祁县中学高三阶段练习(理))在锐角ABC 中,角A ,B ,C 所对的边为a ,b ,c ,若sin a c B =,则tan A 的最大值为( ) A .1 B .32C .43D .54【答案】C【分析】先由正弦定理化简得111tan tan C B+=,结合基本不等式求得tan tan 4B C ≥,再由正切和角公式求解即可.【详解】在ABC 中,sin a c B =,所以sin sin sin A C B =,又()sin sin A B C =+,整理得:sin cos cos sin sin sin B C B C B C +=,又sin sin 0B C ≠,得到111tan tan C B+=,因为角A 、B 、C 为锐角,故tan A 、tan B 、tan C 均为正数, 故112tan tan B C≥整理得tan tan 4B C ≥,当且仅当tan tan 2B C ==时等号成立,此时tan tan tan tan 1tan tan()11tan tan 1tan tan 1tan tan B C B CA B C B C B C B C+⋅=-+=-=-=---⋅,当tan tan B C 取最小值时,1tan tan B C 取最大值,11tan tan B C-取最小值,故111tan tan B C-⋅的最大值为43,即当tan tan 2B C ==时,tan A 的最大值为43.故选:C .【典例2】(2021·河南·高三开学考试(文))ABC 的内角,,A B C 的对边分别为,,a b c ,若sin tan sin sin A A B C =,则cos A 的最小值为________. 【答案】23【分析】先根据题目条件和正弦定理得到2cos a A bc=,结合cos A 的余弦定理表达式,得到,,a b c 的关系,利用此关系求cos A 的最小值.【详解】由条件可知,2sin cos sin sin A A B C=,由正弦定理得2cos a A bc =,由余弦定理得,2222cos 2b c a a A bc bc +-==,化简可得2223a b c =+.所以222222223cos 2333b c b c b c bc A bc bc bc ++-+==≥=,当且仅当b c =时取得等号,cos A 取得最小值23. 故答案为:23【典例3】(2020·浙江·高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 30b A a =. (I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围. 【答案】(I )3B π=;(II )3132⎤+⎥⎝⎦ 【解析】 【分析】(I )方法二:首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定角B 的大小;(II )方法二:结合(Ⅰ)的结论将含有三个角的三角函数式化简为只含有角A 的三角函数式,然后由三角形为锐角三角形确定角A 的取值范围,最后结合三角函数的性质即可求得cos cos cos A B C ++的取值范围. 【详解】 (I )[方法一]:余弦定理由2sin 3b A a =,得222233sin 4a a A b ==⎝⎭,即22231cos 4a A b -=.结合余弦定222cos 2b c a A bc +-=,∴2222223124b c a a bc b ⎛⎫+--= ⎪⎝⎭,即224442222222242223b c b c a b c b a c a a c ----++=, 即444222222220a b c a c a b b c +++--=, 即44422222222222a b c a c a b b c a c +++--=,即()()22222a c b ac +-=,∵ABC 为锐角三角形,∴2220a c b +->, ∴222a c b ac +-=,所以2221cos 22a c b B ac +-==,又B 为ABC 的一个内角,故3B π=.[方法二]【最优解】:正弦定理边化角由2sin 3b A a =,结合正弦定理可得:32sin sin 3,sin B A A B =∴=ABC 为锐角三角形,故3B π=.(II )[方法一]:余弦定理基本不等式 因为3B π=,并利用余弦定理整理得222b a c ac =+-,即223()ac a c b =+-.结合22a c ac +⎛⎫≤ ⎪⎝⎭,得2a c b +≤. 由临界状态(不妨取2A π=)可知3a cb+= 而ABC 为锐角三角形,所以3a cb+> 由余弦定理得2222221cos cos cos 222b c a a b c A B C bc ab+-+-++=++, 222b a c ac =+-,代入化简得1cos cos cos 12a c A B C b +⎛⎫++=+⎪⎝⎭ 故cos cos cos A B C ++的取值范围是3132⎤+⎥⎝⎦.[方法二]【最优解】:恒等变换三角函数性质 结合(1)的结论有: 12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭131cos cos 22A A A =-+311cos 22A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则3sin 6A π⎤⎛⎫+∈⎥ ⎪⎝⎭⎝⎦,1313sin 622A π⎤+⎛⎫++∈⎥ ⎪⎝⎭⎝⎦. 即cos cos cos A B C ++的取值范围是3132⎤+⎥⎝⎦.【整体点评】(I )的方法一,根据已知条件,利用余弦定理经过较复杂的代数恒等变形求得222a c b ac +-=,运算能力要求较高;方法二则利用正弦定理边化角,运算简洁,是常用的方法,确定为最优解;(II )的三种方法中,方法一涉及到较为复杂的余弦定理代入化简,运算较为麻烦,方法二直接使用三角恒等变形,简洁明快,确定为最优解. 【总结提升】求角(函数值)的最值(范围)问题一般先将边转化为角表示,再根据三角恒等变换及三角形内角和定理转化为一个角的一个三角函数表示,然后求解. 热点二 三角形边(周长)相关的最值(范围)【典例4】(2018·北京·高考真题(文))若ABC 2223)a c b +-,且∠C 为钝角,则∠B =_________;ca的取值范围是_________. 【答案】 60 (2,)+∞ 【解析】 【分析】根据题干结合三角形面积公式及余弦定理可得tan 3B =3B π∠=;再利用()sin sin C A B =+,将问题转化为求函数()f A 的取值范围问题. 【详解】)22231sin 2ABC S a c b ac B ∆=+-=, 22223a c b ac +-∴=cos 3B =sin 3,cos 3B B B π∴∠=,则231sin cos sin sin 311322sin sin sin tan 2A A Ac C a A A A A π⎛⎫⎛⎫---⋅ ⎪ ⎪⎝⎭⎝⎭====+, C ∴∠为钝角,,036B A ππ∠=∴<∠<,)31tan ,3,tan A A ⎛∴∈∈+∞ ⎝⎭,故()2,ca∈+∞.故答案为3π,()2,+∞. 【典例5】(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =________. 31##3-【解析】 【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解.【详解】设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++, 在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++-++-===-+++++++ ()44233211m m ≥=-+⋅+, 当且仅当311m m +=+即31m =时,等号成立, 所以当ACAB取最小值时,31m =. 31.【典例6】(2018·江苏·高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 【答案】9 【解析】 【详解】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得11,1ac a c a c =++=,因此11444(4)()5529,c a c a a c a c a c a c a c+=++=++≥+⋅当且仅当23c a ==时取等号,则4a c +的最小值为9.【典例7】(2020·全国·高考真题(理))ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C . (1)求A ;(2)若BC =3,求ABC 周长的最大值. 【答案】(1)23π;(2)33+ 【解析】 【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)方法一:利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果. 【详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈,23A π∴=. (2)[方法一]【最优解】:余弦+不等式由余弦定理得:2222cos BC AC AB AC AB A =+-⋅229AC AB AC AB =++⋅=, 即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:3AC AB +≤AC AB =时取等号),ABC ∴周长323L AC AB BC =++≤+ABC ∴周长的最大值为33+[方法二]:正弦化角(通性通法) 设,66ππαα=+=-B C ,则66ππα-<<,根据正弦定理可知23sin sin sin a b cA B C===23(sin sin )b c B C +=+23sin sin 66ππαα⎤⎛⎫⎛⎫=++- ⎪ ⎪⎥⎝⎭⎝⎭⎦233α=≤当且仅当0α=,即6B C π==时,等号成立.此时ABC 周长的最大值为33+ [方法三]:余弦与三角换元结合在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .由余弦定理得229b c bc =++,即2213924⎛⎫++= ⎪⎝⎭b c c .令13sin ,20,223b c c θπθθ⎧+=⎪⎛⎫∈⎨ ⎪⎝⎭⎪=⎩,得3sin 3b c θθ+==23236πθ⎛⎫+≤ ⎪⎝⎭6C π=时,max ()23b c +=所以ABC 周长的最大值为323+ 【整体点评】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;方法一:求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值. 方法二采用正弦定理边化角,利用三角函数的范围进行求解最值,如果三角形是锐角三角形或有限制条件的,则采用此法解决.方法三巧妙利用三角换元,实现边化角,进而转化为正弦函数求最值问题.【典例8】(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c+的最小值. 【答案】(1)π6;(2)425. 【解析】 【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos2A BA B=++化成()cos sin A B B +=,再结合π02B <<,即可求出; (2)由(1)知,π2C B =+,π22A B =-,再利用正弦定理以及二倍角公式将222a b c +化成2224cos 5cos B B +-,然后利用基本不等式即可解出. (1) 因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B B A B B B ===++,即()1sin cos cos sin sin cos cos 2B A B A B A BC =-=+=-=, 而π02B <<,所以π6B =;(2)由(1)知,sin cos 0B C =->,所以πππ,022C B <<<<, 而πsin cos sin 2B C C ⎛⎫=-=- ⎪⎝⎭,所以π2C B =+,即有π22A B =-. 所以222222222sin sin cos 21cos sin cos a b A B B Bc C B+++-==()2222222cos11cos 24cos 5285425cos cos B BB BB-+-==+-≥=. 当且仅当22cos B =222a b c +的最小值为425.【规律方法】求边(周长)的最值(范围)问题一般通过三角中的正、余弦定理将边转化为角的三角函数值,再结合角的范围求解,有时也可将角转化为边,利用均值不等式或函数最值求解. 热点三 求三角形面积的最值(范围)【典例9】(2023·山西大同·高三阶段练习)在ABC 中,角,,A B C 的对边分别为,,a b c ,且2cos 2b A a c =+,且2b =,则ABC 面积的最大值为___________. 3133【分析】利用余弦定理进行角化边后,结合基本不等式,三角形面积公式求解.【详解】由余弦定理,2cos 2b A a c =+可化为222222b c a b a c bc +-⋅=+,整理可得2224c a ac b ++==,由余弦定理2221cos 22a cb B ac +-==-,又(0,)B π∈,故23B π=,根据基本不等式22423a c ac ac ac ac =++≥+=,23a c ==取得等号,故133sin 243ABC S ac B ac ==≤,即ABC 面积的最大值为33. 故答案为:33. 【典例10】(2022·全国·高三专题练习)已知A ,B ,C 分别是椭圆22143x y +=上的三个动点,则ABC 面积最大值为_____________. 【答案】92##4.5【分析】作变换'2'3x x y y =⎧⎪⎨=⎪⎩之后椭圆变为圆,方程为224x y '+'=,A B C '''是圆的内接三角形,圆的内接三角形面积最大时为等边三角形,则ABC A B C S bS a'''=,求出A B C S ''',代入即可得出答案. 【详解】作变换'2''3x x y y y =⎧⎪⎨==⎪⎩之后椭圆变为圆,方程为224x y '+'=, A B C '''是圆的内接三角形,设A B C '''的半径为R ,设,,A B C '''所对应边长为,,a b c ''',所以 211sin 2sin 2sin sin 2sin sin sin 22A B C Sa b C R A R B C R A B C ''''''''''==⋅⋅⋅=⋅⋅'' 32sin sin sin 23A B C R ++⎛⎫≤ ⎝''⎪⎭',当且仅当3A B C π===时取等, 因为sin y x =在()0,π上为凸函数,则sin sin sin sin 33A B C A B C ''''+'+≤'++,3332222sin sin sin 3322sin 2sin 3334A B C A B C A B C SR R R R π'''++++⎛⎫'⎛⎫⎛⎫=≤==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭''''',当且仅当3A B C π===时取等, 所以圆的内接三角形面积最大时为等边三角形,因此2333343344A B C S R '''==⨯=,又因为ABC A B C S b S a '''=, ∴393322ABC A B C b SS a'''==⨯=. 故答案为:92.【典例11】(2019·全国·高考真题(理))ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【答案】(1) 3B π=;(2)33(). 【解析】 【分析】(1)利用正弦定理化简题中等式,得到关于B 的三角方程,最后根据A,B,C 均为三角形内角解得3B π=.(2)根据三角形面积公式1sin 2ABCSac B =⋅,又根据正弦定理和1c =得到ABCS 关于C 的函数,由于ABC 是锐角三角形,所以利用三个内角都小于2π来计算C 的定义域,最后求解()ABCS C 的值域.【详解】 (1)根据题意sin sin 2A C a b A +=,由正弦定理得sin sin sin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sinsin 2A CB +=. 0<B π<,02AC π+<<因为故2A C B +=或者2A C B π++=,而根据题意A B C π++=,故2A CB π++=不成立,所以2A CB +=,又因为A BC π++=,代入得3B π=,所以3B π=.(2)因为ABC 是锐角三角形,由(1)知3B π=,A B C π++=得到23A C π+=, 故022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =, 由三角形面积公式有:222sin()111sin 33sin sin sin 222sin sin ABCC a A Sac B c B c B c C Cπ-=⋅=⋅=⋅22sincos cos sin 3321231333(sin cos )sin 3tan 38tan C CC C C ππππ--= 又因3,tan 62C C ππ<<>331338tan C << 33ABCS <<. 故ABCS的取值范围是33(【典例12】(2021·河北省曲阳县第一高级中学高三阶段练习)在ABC 中,内角,,A B C 的对边分别是,,a b c ,)sin 3cos b C a b C =-.(1)求角B 的大小;(2)若点D 满足=a AD cDC ,且||23BD =ABC 面积的最小值. 【答案】(1)π3B = (2)43【分析】(1)由正弦定理把边化为角,再结合三角恒等变换即可求解;(2)由题意得||||=a DC c AD ,进而利用三角面积可转化1sin ||21||sin 2⋅⋅⋅∠===⋅⋅⋅∠△△BCD ABD BC BD DBC DC S BC S AB AD AB BD ABD ,从而有sin sin ∠=∠DBC ABD ,再由面积公式与基本不等式求解即可(1)因为()sin 3cos b C a b C =-,所以()sin sin 3sin sin cos B C A B C =-. 因为sin sin()sin cos cos sin A B C B C B C =+=+,所以sin sin 3(sin cos cos sin sin cos )3cos sin =+-=B C B C B C B C B C . 因为sin 0C ≠, 所以tan 3B =. 又因为0πB <<, 所以π3B =.(2)因为=a AD cDC , 所以点D 在线段AC 上,且||||=a DC c AD . 因为1sin ||21||sin 2⋅⋅⋅∠===⋅⋅⋅∠△△BCDABDBC BD DBC DC S BC S AB AD AB BD ABD , 所以sin sin ∠=∠DBC ABD , 即BD 为ABC ∠的角平分线. 由(1)得π3B =, 所以π6ABD CBD ∠=∠=. 由ABC ABD BCD S S S =+△△△,得1π1π1πsin sin sin 232626ac a BD c BD =⋅+⋅,即2()4=+≥ac a c ac ,得16≥ac ,当且仅当a c =时,等号成立,11sin 16sin 432323=≥⨯=△ABC S ac ππ.故ABC 面积的最小值为43. 【规律方法】求三角形面积的最值(范围)的两种思路(1)将三角形面积表示为边或角的函数,再根据条件求范围.(2)若已知三角形的一个内角(不妨设为A),及其对边,则可根据余弦定理,利用基本不等式求bc 的最值从而求出三角形面积的最值.【精选精练】一、单选题1.(2022·上海市松江一中高三阶段练习)在ABC 中,a 、b 、c 分别是角A 、B 、C 所对的边,B 是A 、C 的等差中项,则a c +与2b 的大小关系是( )A .2a c b +>B .2a c b +<C .2a c b +≥D .2a c b +≤【答案】D【分析】根据等差中项的性质及内角和的性质求出B ,再由余弦定理及基本不等式计算可得.【详解】解:依题意,在ABC 中B 是A 、C 的等差中项,所以2A+C =B , 又A C B π++=,所以3B π=,由余弦定理2222cos b a c ac B =+-()22222233a c ac a c ac ac a c ac =+-=++-=+-,又22a c ac +⎛⎫≤ ⎪⎝⎭,当且仅当a c =时取等号,所以2332a c ac +⎛⎫-≥- ⎪⎝⎭,所以()()()222213324a c a c ac a c a c +⎛⎫+-≥+-=+ ⎪⎝⎭,即()2214b ac ≥+,即()224b a c ≥+,所以2a c b +≤; 故选:D2.(2022·贵州贵阳·高三开学考试(理))已知ABC 的内角,,A B C 对应的边分别是,,a b c , 内角A 的角平分线交边BC 于D 点, 且 4=AD .若(2)cos cos 0b c A a C ++=, 则ABC 面积的最小值是( ) A .16 B .3C .64 D .643【答案】B【分析】利用正弦定理及诱导公式可得23A π=,然后利用三角形面积公式及基本不等式即得. 【详解】∵(2)cos cos 0b c A a C ++=, ∴2sin cos sin cos sin cos 0B A C A A C ++=, 即()2sin cos sin 2sin cos sin 0B A C A B A B ++=+=, 又()0,B π∈,sin 0B >,∴2cos 10A +=,即1cos 2A =-,又()0,A π∈,∴23A π=, 由题可知ABCABDACDS SS=+,4=AD ,所以1211sin4sin 4sin 232323bc c b πππ=⨯+⨯,即()4bc b c =+, 又()48bc b c bc =+≥,即64bc ≥, 当且仅当b c =取等号,所以1213sin 641632322ABCSbc π=≥⨯⨯=. 故选:B.3.(2022·河南·郑州四中高三阶段练习(理))在等腰ABC 中,AB =AC ,若AC 边上的中线BD 的长为3,则ABC 的面积的最大值是( ) A .6 B .12C .18D .24【答案】A【分析】利用余弦定理得到边长的关系式,然后结合勾股定理和基本不等式即可求得ABC 面积的最大值. 【详解】设2AB AC m ==,2BC n =,由于ADB CDB π∠=-∠,在ABD △和BCD △中应用余弦定理可得:2222949466m m m n m m+-+-=-,整理可得:2292m n =-,结合勾股定理可得ABC 的面积:22222111()2434222S BC AC BC n m n n n =⨯-=⨯⨯-=- 222243(43)62n n n n +-=-≤⨯=,当且仅当22n =时等号成立. 则ABC 面积的最大值为6. 故选:A.4.(2023·全国·高三专题练习)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒ ,∠ABC 的平分线交AC 于点D ,且BD =1,则4a c + 的最小值为( ) A .8 B .9 C .10 D .7【答案】B【分析】根据三角形面积可得到111a c +=,将4a c +变为11(4)()a c a c++,展开后利用基本不等式,即可求得答案.【详解】由题意得111sin120sin 60sin60222ac a c =+ ,即ac a c =+ ,得111a c+=,得 114(4)()a c a c a c +=++45c a a c =++≥425459c aa c⋅+=+=, 当且仅当4c aa c=,即23c a ==时,取等号, 故选:B . 二、多选题5.(2020·全国·高三专题练习)如图,ABC 的内角,,A B C 所对的边分别为),,3cos cos 2sin a b c a C c A b B +=,且3CAB π∠=.若D 是ABC 外一点,1,3DC AD ==,则下列说法中正确的是( )A .ABC 的内角3B π= B .ABC 的内角3C π=C .四边形ABCD 533 D .四边形ABCD 面积无最大值 【答案】AB【分析】根据正弦定理进行边化角求角B ,从而判断选项A ,B 正确;把四边形ABCD 的面积表示成ADC ∠的三角函数,从而根据三角函数求最值 【详解】因为()3cos cos 2sin a C c A b B +=,所以由正弦定理,得()23sin cos sin cos 2sin A C C A B +=,所以()23sin 2sin A C B +=,又因为A B C π++=,所以()sin sin A C B +=,所以23sin 2sin B B = 因为sin 0,B ≠所以3sin 2B =, 又因为3CAB π∠=,所以20,3B π⎛⎫∈ ⎪⎝⎭, 所以3B π=,所以3C A B ππ=--=,因此A ,B 正确;四边形ABCD 面积等于231sin 42ABC ACDS SAC AD DC ADC +=+⋅⋅∠()22312cos sin 42AD DC AD DC ADC AD DC ADC =⨯+-⋅⋅∠+⋅⋅∠ ()31916cos 3sin 42ADC ADC =⨯+-⋅∠+⨯∠ 533sin 23ADC π⎛⎫=+∠- ⎪⎝⎭, 所以当32ADC ππ∠-=即sin 13ADC π⎛⎫∠-= ⎪⎝⎭时,ABCACDSS+取最大值5332+, 所以四边形ABCD 面积的最大值为5332+, 因此C ,D 错误 故选:AB6.(2022·云南·高三阶段练习)如图,在长方体1111ABCD A B C D -中,4AB AD ==,13AA =,点M 满足12A M MA =,点P 在底面ABCD 的边界及其内部运动,且满足4AMP π∠≤,则下列结论正确的是( )A .点P 所在区域面积为4πB .线段1PC 17C .有且仅有一个点P 使得1MP PC ⊥D .四面体11P A CD -的体积取值范围为[6,8]【答案】AD【分析】A 选项,由1MA AP ==时,MP 与底面ABCD 的所成角4πθ=求解判断; B 选项,若PC 取最小值时,则线段1PC 长度最小,由A ,P ,C 三点共线求解判断; C 选项,由点P 与点F 重合,由点P 与点E 重合,利用余弦定理求解判断;,D 选项,由点P 位于AE 上时,此时点P 到平面11A CD 的距离最大,当P与点F 重合时,此时点P 到平面11A CD 的距离最小求解判断. 【详解】如图所示:A 选项,当1MA AP ==时,MP 与底面ABCD 的所成角4πθ=,故点P 所在区域为以A 为圆心,1为半径的圆在正方形ABCD 内部部分(包含边界弧长),即圆的14,面积为211144π⨯=π,A 正确;B 选项,当PC 取最小值时,线段1PC 长度最小,由三角形两边之和大于第三边可知:当A ,P ,C 三点共线时,PC 取得最小值,即min ||421PC =-,则221min (421)34282PC =-+=-,B 错误; C 选项,不妨点P 与点F 重合,此时2221134PC FB BC C C =++=,由余弦定理得:1cos MFC ∠=22211123436022234MF C F C M MF C F +-+-==⋅⨯⨯,则12MFC π∠=,同理可得:12MEC π∠=,故多于一个点P 使得1MP PC ⊥,C 错误;D 选项,当点P 位于AE 上时,此时点P 到平面11A CD 的距离最大,最大距离341255AH ⨯==,此时四面体11P A CD -的体积为11111124583325A CD S AH ⋅=⨯⨯⨯⨯=△,当P 与点F 重合时,此时点P 到平面11A CD 的距离最小,最小距离为FK ,因为BFK BAH ∽△△,所以34FK AH =,所以最小体积为3864⨯=,故四面体11P A CD -的体积取值范围为[]6,8 ,D 正确, 故选:AD . 三、填空题7.(2022·贵州遵义·高三开学考试(文))在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin sin 2B Cb a B +=,2a =△ABC 周长的最大值为________.【答案】32【分析】根据正弦定理,结合三角恒等变换可得3A π=,再根据余弦定理与基本不等式求解周长最大值即可.【详解】由正弦定理,sin sin 2B C b a B +=即sin sin sin sin 22A B A B π⎛⎫-= ⎪⎝⎭,又sin 0B ≠,故sin sin 22A A π⎛⎫-= ⎪⎝⎭,即cossin 2AA =. 由二倍角公式有cos2sin cos 222A A A =,因为0,22A π⎛⎫∈ ⎪⎝⎭,故cos 02A ≠,所以1sin 22A =,所以26A π=,即3A π=.由余弦定理22222cos 3b c bc π=+-,结合基本不等式有()()2222332b c b c bc b c +⎛⎫=+-≥+-⨯ ⎪⎝⎭,即()2124b c +≤,()28b c +≤,故22b c +≤,当且仅当2b c ==时取等号. 故△ABC 周长的最大值为a b c ++的最大值为22232+=. 故答案为:328.(2021·江西南昌·高三阶段练习)已知ABC 的内角,,A B C 所对应的边分别为,,a b c ,且满足2224,4c c a b ==+, 则ABC 的面积取得最大值时,cos C =______.【答案】33434-【分析】根据余弦定理结合同角三角函数的关系可得sin C ,进而表达出ABCS ,结合基本不等式求解ABCS的最值,进而求得cos C 即可.【详解】由余弦定理,()222222243cos 222a b a b a b c b C ab ab a+-++-===-,又()0,C π∈,故2222349sin 1cos 122b a b C C a a -⎛⎫=-=--=⎪⎝⎭,故 2222114949sin 2224ABCa b b a b Sab C ab a --===. 又222416a b c +==,故()2222416496425564254420ABCb b b b b b b S----===222564258405b b +-≤=,当且仅当22256425b b =-,即425b =时取等号. 此时2322721642525a =-⨯=,即4175a =. 故ABC 的面积取得最大值时,42333345cos 23441725b C a ⨯=-=-=-⨯. 故答案为:33434-【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方9.(2021·河南·高三开学考试(理))ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若sin tan sin sin A A B C =,则sin A 的最大值为________,此时cos B =________. 【答案】5366【分析】由已知条件结合正余弦定理可得2223b c a +=,再利用余弦定理结合基本不等式可求出cos A 的最小值,从而可求出sin A 的最大值,则可求出cos2B ,再利用二倍角公式可求出cos B . 【详解】由条件可知,2sin cos sin sin AA B C=,由正弦定理得2cos a A bc =,由余弦定理得,2222cos 2b c a a A bc bc+-==,则2223a b c =+. 所以222222223cos 2333b c b c b c bc A bc bc bc ++-+==≥=, 当且仅当b c =时取得等号,cos A 取得最小值23. 因为()0,A π∈, 所以25sin 1cos 3A A =-≤,当且仅当b c =时取得等号, 故sin A 的最大值为53. 此时B C =,所以2cos2cos()cos 3B A A π=-=-=-,所以222cos 13B -=-,因为角B 为锐角, 所以6cos 6B =. 故答案为:53,66 10.(2022·全国·高三专题练习)ABC 的外接圆半径为1,角A B C ,,的对边分别为a b c ,,,若cos cos 3a B b A +=0CA CB ⋅<,则C ∠=________;32a b +的最大值为_________【答案】23π27 【分析】由余弦定理求得c ,由向量数量积可得C 为锐角,再由正弦定理结合外接圆半径可求得C ,用正弦定理把32a b +表示为A 的三角函数,利用两角和与差的正弦公式变形化函数为一个角的一个三角函数形式,然后利用正弦函数性质得最大值.【详解】222222cos cos 322a c b c b a a B b A a b c ac cb+-+-+=⋅+⋅==,又22sin c R C ==,所以3sin 2C =, 0CA CB ⋅<,所以C 是钝角,所以23C π=, 由2sin sin a bA B==得2sin a A =,2sin b B =, 326sin 4sin 6sin 4sin()3a b A B A A π+=+=+-316sin 4(cos sin )4sin 23cos 22A A A A A =+-=+2327(sin cos )77A A =+, 设2cos 7ϕ=,3sin 7ϕ=(ϕ为锐角),则3227sin()a b A ϕ+=+,由23C π=得03A π<<,31sin 27ϕ=>,ϕ为锐角,则62ππϕ<<, 所以2A πϕ=-时,32a b +取得最大值27.故答案为:23π;27. 四、解答题11.(2022·湖北·襄阳五中高三阶段练习)在ABC 中,4tan ,3CAB D ∠=为BC 上一点,32=AD(1)若D 为BC 的中点,32BC =ABC 的面积;(2)若45DAB ∠=︒,求ABC 的面积的最小值. 【答案】(1)9 (2)92【分析】(1)根据中线向量公式可得,b c 关系,结合余弦定理可求452bc =,从而可求面积. (2)根据不同三角形的面积关系可得34355b c bc +=,利用基本不等式可求bc 的最小值,从而可求面积的最小值. (1)因为D 为BC 的中点,所以()12AD AB AC =+, ()222124AD AB AC AB AC ∴=++⋅. 记角,,A B C 的对边分别为,,a b c , 因为4tan 3A =,故A 为锐角,所以43sin ,cos 55CAB CAB ∠∠==, 则221318245c b bc ⎛⎫=++⋅ ⎪⎝⎭. 又由余弦定理得:2231825c b bc =+-⋅两式联立解得:452bc =,所以11454sin 92225ABCS bc CAB ∠==⨯⨯=. (2)445,tan 3DAB A ∠==,()41113tan tan ,sin 475213CAD CAB DAB CAD ∠∠∠∠-∴=-===+, 1132sin 32sin 22ABCCAD BADSSSb CADc DAB ∠∠=+=⋅+⋅ 1sin 2bc CAB ∠=, 即34355b c bc +=, 即34345323,5554b c bc b c bc +=≥⋅≥(当且仅当153,22b c ==时取得最小值)所以114549sin 22452ABCSbc CAB ∠=≥⨯⨯=.12.(2022·广东广州·高三开学考试)在ABC 中,设角A ,B ,C 所对的边分别为a ,b ,c ,且满足()2a b b c +=.(1)求证:2C B =; (2)求4cos a bb B+的最小值. 【答案】(1)证明见解析 (2)43【分析】(1)由已知及余弦定理可推出2cos b a b C =-,利用正弦定理边化角结合两角和差的正弦公式化简可得()sin sin B C B =-,即可证明结论; (2)利用(1)的结论将4cos a b b B +边化角,结合三角恒等变换可得43=4cos cos cos a b B b B B++,由基本不等式可求得答案. (1)证明:在ABC 中,由已知及余弦定理,得()2222cos a b b c a b ab C +==+-,即2cos b a b C =-,由正弦定理,得sin sin 2sin cos B A B C =-,又()πA B C =-+, 故()sin sin 2sin cos sin cos cos sin 2sin cos B B C B C B C B C B C =+-=+-cos sin sin cos B C B C =-()sin C B =-.∵()0sin sin B C B <=-,∴0πC B C <-<<, ∵()πB C B C +-=<,∴B C B =-,故2C B =. (2)由(1)2C B =得()30,πB C B +=∈,∴π0,3B ⎛⎫∈ ⎪⎝⎭,1cos ,12B ⎛⎫∈ ⎪⎝⎭,由(1)()12cos a b C =+,2C B =得()2522cos 1452cos 52cos 2cos cos cos cos B a b C B b B B B B+-+++===334cos 24cos 43cos cos B B B B =+≥⋅=, 当且仅当ππ0,63B ⎛⎫=∈ ⎪⎝⎭时等号成立, 所以当π6B =时,4cos a bb B+的最小值为43.13.(2022·广东·高三开学考试)已知锐角ABC 中,角A 、B 、C 所对边为a 、b 、c ,tan tan 33B C ++=(1)求角A ;(2)若4a =,求b c +的取值范围. 【答案】(1)π3A = (2)(43,8⎤⎦【分析】(1)利用两角和的正切公式及诱导公式计算可得;(2)利用正弦定理将边化角,再转化为关于B 的三角函数,根据B 的取值范围及正弦函数的性质计算可得. (1)解:因为tan tan 33tan tan B C B C++=,所以tan tan 33tan tan B C B C ++=,所以tan tan 3(tan tan 1)B C B C +=-,从而tan tan 31tan tan B CB C +=--, 即tan()3B C +=-,所以tan 3A =,因为(0,π)A ∈,所以π3A =. (2)解:因为4a =,π3A =,由正弦定理,有83sin sin sin 3b c a B C A ===所以83sin 3b B =,83832π833143sin sin cos sin 4cos sin 3333223c C B B B B B ⎛⎫⎛⎫==-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以π43sin 4cos 8sin 6b c B B B ⎛⎫+=+=+ ⎪⎝⎭,又因为ABC 为锐角三角形,所以π022ππ032B B ⎧<<⎪⎪⎨⎪<-<⎪⎩,即ππ62B <<,所以ππ2π363B <+<,所以3πsin 126B ⎛⎫<+≤ ⎪⎝⎭,从而b c +的取值范围为(43,8⎤⎦. 14.(2022·河南·高三开学考试(文))已知,,a b c 分别为ABC 的内角,,A B C 所对的边,且()()sin sin sin sin a c b A C B c B +--+=(1)求角A 的大小;(2)若23a =ABC 面积的最大值.【答案】(1)3π; (2)33.【分析】(1)由正弦定理化角为边,再利用余弦定理及特殊角的三角函数即得;(2)由余弦定理表示出,a b 关系,再由基本不等式得出ab 的最大值,从而可得面积最大值;或利用正弦定理边角互化,然后利用三角恒等变换及三角函数的性质即得. (1)在ABC 中,由题意及正弦定理得()()a c b a c b bc +--+=, 整理得222b c a bc +-=,由余弦定理得2221cos 222b c a bc A bc bc +-===, 因为0A π<<, 所以3A π=;(2)方法一:由(1)知,3A π=,又23a =,所以22122b c bc bc bc bc =+--=,所以12bc ,当且仅当23b c ==时,等号成立, 所以()max 113sin 1233222ABC Sbc A ==⨯⨯=; 方法二:由(1)知,3A π=,又23a =,所以由正弦定理,知234sin sin sin sin3a b c A B C π====, 所以4sin ,4sin b B c C ==, 所以13sin 8sin sin 43sin sin 22ABCSbc A B C B C ==⨯=, 又因为23B C π+=, 所以23143sin sin 43sin sin 43sin cos sin 322B C B B B B B π⎛⎫⎛⎫=-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭31cos223sin222B B ⎛⎫-=+= ⎪ ⎪⎝⎭23sin 236B π⎛⎫-+ ⎪⎝⎭,因为23B C π+=,所以270,23666B B ππππ<<-<-<,所以当262B ππ-=,即3B π=时,ABC 的面积取得最大值,最大值为33.15.(2022·上海·模拟预测)在如图所示的五边形中,620AD BC AB ===,,O 为AB 中点,曲线CMD 上任一点到O 距离相等,角120DAB ABC ∠=∠=︒,P ,Q 关于OM 对称;(1)若点P 与点C 重合,求POB ∠的大小; (2)求五边形MQABP 面积S 的最大值, 【答案】(1)33arcsin 14(2)2874【分析】(1)利用余弦定理求出OC ,再利用正弦定理即可得出答案; (2)根据题意可得,QOMPOMAOQBOPS SSS==,则()2AOQQOMMQABP S SS=+五边形,设QOM POM α∠=∠=,则2AOQ BOP πα∠=∠=-,根据三角形的面积公式结合三角函数的性质即可得出答案.(1)解:若点P 与点C 重合,连接OC ,10,6,120OB BC BP ABC ===∠=︒,在OBP 中,2222cos 1003660196OC OB BP OB BP OBP =+-⋅∠=++=, 所以14OC =, 因为sin sin BC OCPOB OBP=∠∠,所以36sin 332sin 1414BC OBPPOB OC ⨯⋅∠∠===, 所以33arcsin14POB ∠=;(2)解:连接,,,QA PB OQ OP ,因为曲线CMD 上任一点到O 距离相等, 所以14OP OQ OM OC ====, 因为P ,Q 关于OM 对称, 所以,QOMPOMAOQBOPSSSS==,设QOM POM α∠=∠=,则2AOQ BOP πα∠=∠=-,则()2AOQQOMMQABP S SS=+五边形112sin sin 222OQ OA OQ OM παα⎡⎤⎛⎫=⋅⋅-+⋅ ⎪⎢⎥⎝⎭⎣⎦196sin 140cos αα=+()2874sin αϕ=+,其中5tan 7ϕ=, 当()sin 1αϕ+=时,MQABP S 五边形取得最大值2874, 所以五边形MQABP 面积S 的最大值为2874.16.(2022·广东·广州市真光中学高三开学考试)在平面四边形ABCD 中,30CBD ∠=,4BC =,23BD = (1)若ABD △为等边三角形,求ACD △的面积. (2)若60BAD ∠=,求AC 的最大值. 【答案】(1)3 (2)232+【分析】(1)利用余弦定理求出CD 的长,结合勾股定理可知90BDC ∠=,进而可求得ADC ∠的大小,利用三角形的面积公式可求得ACD △的面积;(2)设()0120ADB αα∠=<<,利用正弦定理可得出AD ,利用余弦定理可得出2AC 关于α的表达式,利用三角恒等变换结合正弦型函数的基本性质可求得AC 的最大值. (1)解:在BCD △中,由余弦定理,得2222cos CD BC BD BC BD CBD =+-⋅⋅∠. 即231612242342CD =+-⨯⨯⨯=,所以2CD =, 所以222BD CD BC +=,因此90BDC ∠=,因为ABD △为等边三角形,所以60ADB ∠=,23AD BD ==,所以150ADC ∠=.所以111sin 2323222ACD S AD CD ADC =⋅⋅⋅∠=⨯⨯⨯=△.(2)解:设()0120ADB αα∠=<<,则120ABD α∠=-, 在ABD △中,由正弦定理得sin sin AD BDABD BAD=∠∠,即()23sin60sin 120AD α=-,所以()4sin 120AD α=-. 在ACD △中,由余弦定理,得2222cos AC AD CD AD CD ADC =+-⋅⋅∠, ()()()224sin 120424sin 1202cos 90AC ααα⎡⎤=-+-⨯-⨯⨯+⎣⎦ 231314cos sin 16cos sin sin 483sin2162222αααααα⎡⎤⎛⎫⎛⎫=++++=+⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 0120α<<,则02240α<<,故当290α=时,即当45α=时,2AC 取到最大值8316+,即AC 的最大值为232+.17.(2023·河北·高三阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4b =,在 ①()(sin sin )(sin sin )b c B C A C a +-=-,②cos2()3cos 1A C B ++= 两个条件中任选一个完成以下问题: (1)求B ;(2)若D 在AC 上,且BD AC ⊥,求BD 的最大值. 【答案】(1)π3B = (2)23【分析】(1)选①,利用正弦定理得到222a c b ac +-=,再利用余弦定理求出π3B =;选②:利用诱导公式和二倍角公式得到1cos 2B =,从而求出π3B =;(2)法一:利用余弦定理得到2216a c ac =+-,利用基本不等式求出16ac ≤,求出面积的最大值,从而求出BD 的最大值;法二:利用正弦定理ABC 外接圆的直径,进而利用正弦定理表示面积,利用三角函数的有界性求出面积最大值,进而求出BD 的最大值. (1)若选①,由正弦定理得,()()()b c b c a c a +-=- 即222b c a ac -=-,即222a c b ac +-= ∴2221cos 222a cb ac B ac ac +-===, ∵(0,π)B ∈,∴π3B =, 若选②,∵cos 2()3cos cos 2(π)3cos cos 23cos 1A C B B B B B ++=-+=+=, ∴22cos 13cos 1B B -+=,即22cos 3cos 20B B +-=, 即cos 2B =-(舍)或1cos 2B =, ∵(0,π)B ∈,∴π3B =, (2)∵BD AC ⊥,BD 为AC 边上的高,当面积最大时,高取得最大值 法一:由余弦定理得,22222162cos b a c ac B a c ac ==+-=+-, 由重要不等式得162ac ac ac ≥-=, 当且仅当a c =时取等, 所以1sin 432ABC S ac B =≤△ 所以AC 边上的高的最大值为432312b = 法二:由正弦定理得ABC 外接圆的直径为832sin 3b R B ==, 利用正弦定理表示面积得:118383sin sin sin sin 2233ABC S ac B A C B ==⋅△ 1838332π1632πsin sin sin sin 2332333A A A A ⎛⎫⎛⎫=⋅⋅⋅-=- ⎪ ⎪⎝⎭⎝⎭。
椭圆中一个三角形面积最大值的探求
椭圆中一个三角形面积最大值的探求作者:罗永高来源:《数学教学通讯(教师阅读)》2009年第10期摘要:求在不同条件下椭圆中三角形面积的最大值是高考的常见题型,本文经过探索,得到了该三角形的三类面积最大值问题及相应的解决方法.关键字:三角形;最大值;设点法已知椭圆上的两个动点与椭圆中心组成一个三角形,探求在不同条件下该三角形面积的最大值,在近几年的高考中频频出现.本文给出该三角形的三类面积最大值问题的求法.问题1已知A,B是椭圆+=1(a>b>0)上的两个动点,c为半焦距,d为原点O到直线AB的距离,则当d∈a,a时,(S△AOB)max=•;当d∈b,a时,(S△AOB)max=;当d∈0,b时,(S△AOB)max=•.证明设直线AB的方程为y=kx+m,?摇则d=.联立y=kx+m,+=1,所以(b2+a2k2)x2+2ka2mx+a2m2-a2b2=0.所以AB==.(1)记直线AB的倾斜角为θ,则1+k2=,b2+a2k2=.即AB=2ab.(2)可以验证当θ=90°时,(2)式也成立.设f(θ)=,令=t,则t∈,. 所以f(θ)=f(t)=-d2t2+t,其中t∈,.因为f(t)的对称轴为t=,所以当当≤≤,即d∈b,a时,[f(t)]max=f=. 所以ABmax=. 所以(S△AOB)max=;当>,即d∈0,b时,[f(t)]max=f=. 所以ABmax=. 所以(S△AOB)max=.从上述的证明过程可以发现,解决问题的关键是(2)式,它揭示了AB与d的函数关系,令AB=l,?摇a2-c2cos2θ=t,t∈[b2,a2],则d2=-t2+t, (3)由(3)式可知,当AB的长度为定值时,同样可求S△AOB的最大值.思考已知A,B是椭圆+=1(a>b>0)上的两个动点,c为半焦距,若直线AB的斜率为定值,求△AOB面积的最大值.问题2 已知A,B是椭圆+=1(a>b>0)上的两个动点,c为半焦距,O为坐标原点,若OA⊥OB,则△AOB面积的最大值为ab.证明设A(ρ1cosα,ρ1sinα),Bρ2cosα+,ρ2sinα+.则ρ==,ρ=,所以S△ABC=ρ1ρ2=.所以当sin2α=0时,(S△AOB)max=ab.从上述证明过程中,容易发现+=+,其几何意义为原点到直线AB的距离为常数.思考已知A,B是椭圆+=1(a>b>0)上的两个动点,c为半焦距,O为坐标原点,若OA⊥OB,求AB的最大值.问题3 已知A,B是椭圆+=1(a>b>0)上的两个动点, O为坐标原点,则△AOB面积的最大值为ab.?摇证明因为S△AOB=•sin∠AOB=,所以S△AOB=•=•.设A(acosα,bsinα),B(acosβ,bsinβ),所以S△AOB=absin(α-β).所以当sin(α-β)=±1时,(S△AOB)max=.思考求椭圆+=1(a>b>0)中内接四边形ABCD面积的最大值.本文针对三个问题,采取了三种不同的解法,充分展示了解析法的特点及其魅力. 特别是问题2和问题3,似乎是难以逾越的问题,但通过不同的设点方法,竟轻松一跃而过,令人拍案叫绝,乐而忘返.。
江苏省扬州高邮市2024届高三下学期第三次强化考试数学试题
江苏省扬州高邮市2024届高三下学期第三次强化考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.执行如图所示的程序框图,若输入的3t =,则输出的i =( )A .9B .31C .15D .63 2.已知函数1()cos 22f x x x π⎛⎫=++ ⎪⎝⎭,,22x ππ⎡⎤∈-⎢⎥⎣⎦,则()f x 的极大值点为( ) A .3π- B .6π- C .6π D .3π 3.直线1y kx =+与抛物线C :24x y =交于A ,B 两点,直线//l AB ,且l 与C 相切,切点为P ,记PAB 的面积为S ,则S AB -的最小值为( )A .94-B .274-C .3227-D .6427- 4.用数学归纳法证明,则当时,左端应在的基础上加上( ) A .B .C .D . 5.已知实数x 、y 满足约束条件103300x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .1-B .2C .7D .86.如图,在底面边长为1,高为2的正四棱柱1111ABCD A B C D -中,点P 是平面1111D C B A 内一点,则三棱锥P BCD -的正视图与侧视图的面积之和为( )A .2B . 3C .4D .5 7.定义在上的函数满足,且为奇函数,则的图象可能是( )A .B .C .D .8.设函数1,2()21,2,1a x f x log x x a =⎧=⎨-+≠>⎩,若函数2()()()g x f x bf x c =++有三个零点123,,x x x ,则122313x x x x x x ++=( )A .12B .11C .6D .39.已知a >b >0,c >1,则下列各式成立的是( )A .sin a >sin bB .c a >c bC .a c <b cD .11c c b a--< 10.5G 网络是一种先进的高频传输技术,我国的5G 技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款5G 手机,现调查得到该款5G 手机上市时间x 和市场占有率y (单位:%)的几组相关对应数据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出y 关于x 的线性回归方程为0.042y x a =+.若用此方程分析并预测该款手机市场占有率的变化趋势,则最早何时该款5G 手机市场占有率能超过0.5%(精确到月)( )A .2020年6月B .2020年7月C .2020年8月D .2020年9月11.已知直线1:240l ax y ++=,2:(1)20l x a y +-+=,则“1a =-”是“12l l ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 12.函数的定义域为( ) A .[,3)∪(3,+∞) B .(-∞,3)∪(3,+∞)C .[,+∞)D .(3,+∞)二、填空题:本题共4小题,每小题5分,共20分。
微专题椭圆中三角形面积最值问题探究
9
-
8# / 16(显-1)
‘3
亍)-—9—
4丿3(9 _ "厂丄,$ =斗■仙■ 4 9
=y 7(9 - TH2)(771 + 3)2,令 f{m}
(m+3)2,f(m)二(m + 3 )2 (6 - 4m)
令=0
(0,三 3 )心)>0,
=I■时,
四、问题的一般形式
2
例4 已知椭圆E:〒+ y2 = 1,直线= kx +
中学数学研究
ቤተ መጻሕፍቲ ባይዱ
2019年第6期
此时"吐间的距离"芳,直线与椭圆联立
方程得
卩=尽 + "*22 lx2 + 4y2 = 4
+ %血皿 +4m*2 -4 = 0.
由 A = ( - 8Qm) - 36(4m2 -4) > OnO < m _ &匹m
< 3.由韦达定理知衍+ % = ―g ,光1%2 二
4(m2_~ ,AB = ^3 \ xx -x2
AB = a/1 + ni I Ji -y21 ,</ = 1* 1* ,S^Oab = V
71 + m2*
2
⑷.」心严)[联立 7f+ry,消去“,
2
■x + 4y = 4
得到(m2 + 4)y2 + 2mty + i2 - 4 = 0, A = 4m2f2 -
4)(i2 -4) >0 9 4 > f2,由韦达定理知
若 c <0,令 a = - ctan0,b = c2 sec20,由 abc
圆锥曲线内接三角形的面积公式及其应用
46中学数学研究2021年第1期(上)圆锥曲线内接三角形的面积公式及其应用广西防城港市东兴市东兴中学(538100)吴中伟摘要求三角形面积的方法有很多,但对于无法确定形状的三角形,其面积没有统一的求法•经过推导,发现在参数方程条件下圆锥曲线(圆,椭圆,双曲线与抛物线)的内接三角形的面积都有统一的表达式,并且这些表达式结构非常相似.关键词圆锥曲线;内接三角形;面积表达式求三角形面积的方法有很多,但对于无法确定形状的三角形,其面积没有统一的求法•笔者发现在参数方程条件下圆锥曲线(圆,椭圆,双曲线与抛物线)的内接三角形的面积都有统一的表达式,并且这些表达式结构非常相似.引理在4ABC中,已知一B—(x i,y i),一1—(血,y2),则4ABC的面积S a abc—2|x i y2—血y i|.(x a cos a(a为y—b sin a参数)的三点,它们对应的参数分别为a i,a2,a3,则S a abc——|sin(a2— a i)+sin(a i—a3)+sin(a3— a2)|.证明易知A(a cos a i,b sin a i),B(a cos a2,b sin a2), C(a cos a3,b sin a3),贝V a B—(a(cos a2—cos a i),b(sin a2—sin a i)),一1—(a(cos a3— cos a i),b(sin a3—sin a i)),由引理得,S a abc=2ab(cos a2— cos a i)(sin a3—sin a i)—ab(cos a3— cos a i)(sin a2—sin a i)ab=—cos a2sin a3— cos a2sin a i— cos a i sin a3+cos a i sin a i—(cos a3sin a2— cos a3sin a i S a abc-fx—a sec a,厶定理3已知A,B,C是双曲线|(a为参y—b tan a数)的三点,它们对应的参数分别为a i,a2,a3,则sin(a2—a i)+sin(a i—a3)+sin(a3—a2)cos a i cos a2cos a3x b tan a 同理可证,焦点在y轴的双曲线=(a为参y—a sec a数)的内接三角形的面积表达式与焦点在x轴的双曲线的完全一样.接下来推导在参数方程条件下,抛物线的内接三角形的面积的统一表达式.x—2p t2定理4已知A,B,C是抛物线{(t为参y=2pt数p>0)上的三点,它们对应的参数分别为t i,t2,t3,则S a abc—2p2|(t i—t2)血—t3)(t3—t i)|.特别的,若点C 为坐标原点,则S a abc—2p2|(t i—t2)t i t21证明易知A(2pt f,2pt i),B(2pt2,2pt2),C(2pt|,2pt3),则S a abc=2a B—a1=2p2|(t2—ti)(t3—t1)—(t3一ti)(t2一t1)=2p2(t i一 t2)(t2一t3)(t3一t i).显然,若C为原点,则S a abc—2p2|(t i— t2)t i t2〔.同理可证,其他情形的抛物线的内接三角形的面积表达式与定理4相同.基于以上的结论,本文从—cos a i sin+cos a i sin a i)豊|sin(a2-a i)+sin(a i— a3)+sin(a3-a2)同理可证,焦点在y轴的椭圆的内接三角形的面积表达式与焦点在x轴的椭圆的完全一样.利用类似的方法也易证得以下定理.亠.—x—a+r cos a「厶“定理2对于圆(a为参数),A,B,Cy—b+r sin a是其三点,对应的参数分别为a i,a2,a3,则S a abc r2—|sin(a2— a i)+sin(a i— a3)+sin(a3— a2)|.实例的角度,阐述这些公式在解决圆锥曲线的内接三角形面积问题的作用.例1已知椭圆C1:x+务=1(a>b>0)的左、右焦点为F i、F2,|F i F2—l/l,若圆Q方程(x—/l)l+(y—1尸=1,且圆心Q满足|QF i+|QF2=2a.(I)求椭圆C i的方程;(II)过点P(0,1)的直线l i:y—kx+1交椭圆C1于A、B两点,过P与l i垂直的直线h交圆Q于C、D两点, M为线段CD中点,若4MAB的面积为第1,求k的值.5解(I)略;(II)由(I)可知椭圆的参数方程为2021年第1期(上)中学数学研究47x—2cos ay=sin a(a为参数),与y—kx+1联立得V2sin a—2k cos a+1t i+t2—号,t i t2———.因为点M对应的参数为t—1,所以由定理3,得①S a ABM=8|(t i—t2)(t2—1)(1—t i)|代入sin2a+cos2a—1,整理得(2+4k2)cos2a+4k cos a—1=0.设A(2cos a.sin a i),B(2cos a2,sin a2)贝J-2k cos a i十cos a2=1+2k2联立①1①2得,■,■/2 sin a1十sin a2=1+2k2由①2①3得,|sin(a i-a2)|=|sin a2—sin a i|cos a i—cos a2—1 cos a i cos a2=2+4k2..1-4k2 sin a i sin a2=2+4k2V1+4k21+2k2,_2k/1+4k2=1+2k2,/2•/1+4k21+2k2因为Q(血,1)对应的参数为4,所以由定理1得①2①3S a qab=血 |sin(a i-a2)+sin(a2-寸)+sin(寸-a i)| =/2Lin(a i—a2)+(sin a2—sin a i)(cos a i—cos a2)=8J(t i+t2)2—4t i t2|—t i t2—1+t i+t2=\/(m2+4)(2m-3)2°令f(x)—(m2+4)(2m—3)2,贝」f z(m)—2(2m-3)(4m2-3m+8),33所以f z(m)—0的解为m=2,m e(—x>,2)时,f z(x)<0,322f(x)单调递减;m e$,+x>)时,f z(x)>0,f(x)单调递增;又因为m22,所以f(m)——f⑵—8,故三角形ABM面积的最小值为2/2.x2例3已知点F i是双曲线C:忑-y2—1的左焦点,点M为其右顶点,过点F i的斜率为1的直线交双曲线的左支于A,B两点,求AABM的面积.解由已知可知点F i(-/5,0),M(2,0),直线I ab:x—fx2sec a(a为参数),y—tan a得2sec a—tan a—a/5,即sin a—a/5cos a—2依题意得,sin(a i—a2)与cos a i—cos a2异号,所以①1S a qab—|sin a2-sin a i2W1+4k21+2k2因为M在线代入sin2a+cos2a—1,整理得6cos2a+cos a+3=0.段CD中点,所以MQ丄l2,又因为l i丄l2,所以MQ//l i,所以S a mab—S a qab,从而覚十誓—半,解得k—±/2.此时I2:y—士冷2x+1,圆心Q到^2的距离h=±畔x/2-1+1/<-,成立.例2在平面直角坐标系xOy中,已知抛物线C:x2—设A(2sec a i,tan a i),B(2sec a2,tan02),贝」2/5一"3cos a i+cos a2联立①1①2得,sin a i+sin a2cos a i cos a212①24y,点P是C的准线I上的动点且其横坐标m22,过点P 作C的两条切线,切点分别为A,B.若点M的坐标为(4,4),求三角形ABM面积的最小值.{x—4t(t为参y=4t2数),准线l:y——1,y z—1x.设A(4t i,4t f),B(4t2,4t2),点P(m,—1),则切线PA的方程为:y+1=2t i(x-m),把点A(4t i,4t f)代入上式,得4t f+1=2t i(4t i-m),即4t i-2mt i-1=0.同理可得,4t2-2mt2-1=0,故t i,t2是方程4t2-2mt-1—0的两个解.由根与系数关系得,23,2血I••=3,|s i n a2—sin a i1sin a i sin a2—------6①3^10因为由已知得M对应的参数为0,且sin(a i-a2)与由①①得,|sin(a i-a2)|sin a2—sin a i同号,所以由定理2,|sin(a i—a2)+sin a2+sin(—a i) S a abm—1----------------------------------------------|cos a i cos a22/2/10-丁;丁-竿(2+/5)2参考文献[1]吴中伟•一个三角形面积公式在解析几何中的应用[J].中学数学研究(华南师范大学版),2020(3):40-42.。
解答题:利用“仿射变换”化椭为圆
浅谈仿射变换在解决椭圆问题中的应用一、仿射变换思想方法椭圆)0,0(1:2222>>=+b a b y a x C 中,令a x x =',by y =',,则椭圆方程变为单位圆 1'22=+y x C : ,该变换过程称为仿射变换。
相当于在xoy 与'''y o x 两个坐标系来研究问题,但圆中几何意义明显,便于计算。
但最后要还原到椭圆中去解决问题。
变化前后点的坐标对应变化:),()','(),(bya x y x y x =→ )','(),()','(by ax y x y x =→二、性质1、点线关系不变(1)同素性:在经过变换之后,点仍然是点,线仍然是线 (2)结合性:在经过变换之后,在直线上的点仍然在直线上 (3)原三点共线,后三点也共线;原直线平行,后直线也平行 2、原弦长||AB ,斜率k ,后弦长|''|B A ,22211||k k m AB ++=|''|B A (其中ba m =) 3. 直线与圆锥曲线的位置关系不变(相切、相交)已知直线0:=++C Bx Ax l ,椭圆1:2222=+b y a x C ,讨论直线与椭圆的位置关系。
由a x x =',byy =',仿射变换后,直线0:=++C Bx Ax l 变为0:'=++C Bbx Aax l 。
(此结论可以作为公式背下,提高平时做题的速度)椭圆变为1'22=+y x C : ,由直线与圆的位置关系易得答案。
例1 已知直线03=-+y x ,椭圆1422=+y x ,则直线与椭圆的位置关系是( ) A.相交 B.相切 C. 相离 D. 相切或相交解:由2'x x =,y y ='仿射变换后,直线03=-+y x ,椭圆1422=+y x 分别变为直线03''2=-+y x 、椭圆1''22=+y x ,而直线03''2=-+y x 到圆1''22=+y x 的距离15312|3|22>=+-=d ,所以直线和圆相离,由于仿射变换直线与圆锥曲线的位置关系不变,所以原直线和椭圆相离。
《椭圆》方程典型例题20例(含标准答案)
《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=,4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=. 同理 2545x CF -=.∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 ()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-.将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=, 112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-. 所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,; (2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y . 解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y . (2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49sin 3sin 34222+--=θθb b b 3421sin 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠A Q B ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+a y x ay ,将22222y ba a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b c ab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅. ∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九 例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF ∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12FPF ,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα,∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=. ∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-ba b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。
椭圆内接三角形最大面积的一种探求
椭圆内接三角形最大面积的一种探求
作者:姚海
来源:《中学教学参考·理科版》2012年第02期
所以△ABC 的面积最大值为12ab•∣u∣
这里u是关于三个变量α、β、γ的函数,求其最值不易.
再次探究:这三个变量α、β、γ之间有何关系?
回到原题,要求三角形△ABC面积的最大值,设想A、B两点确定,C点在何处?
将直线AB进行平移,移至与椭圆相切处,切点应该就是C点(离线段AB较远的切点),此时C点距离AB最远, △ABC的面积最大,
也就是说过C点的切线应该与AB 平行.
设β-γ=x,γ-α=y, ∴x+y=β-α,
则 x,y∈(-且x,y≠0.
∵---α),
∴-
由③,④得
⑤
⑥
由⑤式得:
或者y=-其中k∈Z.
(ⅰ)若∈Z,
将代入⑥式,
得
因为x∈(-且x≠0,
得,即
,;
,,
其中k∈Z.
代入-,
得u=332或u=-332.
(ⅱ) 若y=-∈Z,代入(6)式,
得
∴∈Z,不符合y∈(-且y≠0的要求.
综合(ⅰ)(ⅱ),得∣u∣=332,
△∣u∣=334ab.
【解题回顾】
注意到△∣---α)∣若a=b呢?则椭圆变成圆,半径为a.
此时三角形面积是△∣---α)∣,
而圆内接三角形最大面积为 2 ,
即∣---α)∣的最大值为332.
所以椭圆内接三角形最大面积为334ab.
参考文献
陈元照---α)最值的一种求法.中学数学教学,2006(1).
(责任编辑金铃)。
圆的内接三角形的面积-定义说明解析
圆的内接三角形的面积-概述说明以及解释1.引言1.1 概述概述部分的内容:圆的内接三角形是指一个三角形的三个顶点都位于同一个圆的圆周上,而且三角形的三条边都与圆的圆周相切。
在数学中,这种特殊的三角形具有一些独特的性质和特点。
本文将探讨圆的内接三角形的面积计算方法,并深入研究其特性与规律。
这些知识对于几何学和计算数学具有重要的意义,并在实际生活中的各个领域得到广泛的应用。
在接下来的章节中,我们将首先介绍圆的内接三角形的定义,包括它的构成要素和几何特性。
然后,我们将详细讨论计算内接三角形的面积的方法,包括直接计算和间接计算两种常见的方法。
最后,我们将总结内接三角形的特性,并探讨其在实际问题中的应用和进一步研究的展望。
通过深入研究圆的内接三角形的面积计算方法和特性,我们将更好地理解这一几何形状的本质和规律,并能够应用于实际问题的解决中。
我希望本文能够为读者提供有益的知识和启发,并促进对圆的内接三角形领域的深入探索和研究。
1.2 文章结构本文将按照以下结构进行阐述圆的内接三角形的面积问题:1. 引言:介绍圆的内接三角形及其面积的问题背景和重要性。
2. 正文:详细讨论圆的内接三角形的定义、特性和计算面积的方法。
2.1 圆的内接三角形的定义:解释什么是圆的内接三角形,以及如何确定一个内接三角形。
2.2 内接三角形的特性:系统介绍内接三角形的特点,包括边长关系、角度关系等。
2.3 计算内接三角形的面积的方法:提供几种计算内接三角形的面积的方法,如海伦公式、利用三角函数等。
3. 结论:对前文中讨论的内接三角形的特性进行总结,并探讨结论和应用。
3.1 总结内接三角形的特性:回顾内接三角形的特性,强调其中的关键点。
3.2 结论和应用:总结内接三角形的面积问题,并讨论该问题在实际生活中的应用和意义。
3.3 对进一步研究的展望:展望关于内接三角形及其面积的研究方向,指出可能的拓展和深入研究的问题。
通过以上结构,本文将系统地介绍圆的内接三角形的面积问题,并为读者提供全面的信息和计算方法,希望能够帮助读者更好地理解和应用这一概念。
椭圆内接直角三角形斜边恒过定点
椭圆内接直角三角形斜边恒过定点《探索椭圆内接直角三角形斜边恒过定点的奇妙之旅》嘿,你知道吗?数学里有好多超级神奇的东西呢。
今天我就想和你讲讲椭圆内接直角三角形斜边恒过定点这件事儿。
我呀,最开始接触椭圆的时候,就觉得这椭圆像个压扁了的圆,圆溜溜的可有意思了。
那时候我就在想,椭圆里能有啥特别的呢?直到老师讲到椭圆内接直角三角形这个事儿,我就被深深吸引住了。
我们先来说说椭圆是啥样的吧。
椭圆就像一个长长的、扁扁的圈。
你可以想象一下,把一个圆使劲儿地从两边挤,它就变成椭圆啦。
椭圆有好多特性呢,它有长轴、短轴,还有焦点。
就好像一个神秘的宝藏,到处都藏着秘密等待我们去发现。
那椭圆内接直角三角形是怎么回事呢?就是在这个椭圆里面,有一个三角形,这个三角形的三个顶点都在椭圆上,而且有一个角是直角呢。
这就像在一个特别的小岛上,三角形的三个点就像三个小房子,而且这三个小房子之间还存在着直角这样特殊的关系。
那这个斜边恒过定点是啥意思呢?这可就更有趣啦。
不管这个直角三角形在椭圆里怎么变,只要它的三个顶点在椭圆上,而且有一个直角,那这个直角三角形的斜边就像被一根看不见的线牵着一样,总是会经过一个固定的点。
这就好比有一群小蚂蚁在椭圆这个大操场上乱跑,只要它们组成的三角形满足条件,那连接两个小蚂蚁的那条斜边就一定会经过操场的某个特定角落。
我和我的小伙伴们在探究这个问题的时候,那可热闹啦。
我的同桌小明就说:“这怎么可能呢?三角形在椭圆里动来动去的,斜边咋就能一直过一个点呢?”我就说:“嘿,你可别小瞧了数学的神奇。
你看,我们之前学的好多东西,一开始看起来不也很不可思议吗?”另一个小伙伴小红也加入进来,她说:“那我们怎么才能找到这个定点呢?”这时候我们的数学小天才小刚站出来了,他说:“我们可以先从特殊情况入手呀,就像我们以前解决其他数学问题一样。
”于是我们就开始研究特殊的椭圆内接直角三角形。
比如说,当椭圆的长轴和短轴上刚好有三角形的顶点的时候。
(完整word版)椭圆内接三角形的最大面积
椭圆内接三角形的最大面积最早接触到这个题目时是在一节数学课上,当时有一道特殊情况的问题:给定一点以及其切线,在椭圆上找到一条与切线平行的弦,使得弦的端点与该定点确定的三角形面积最大。
讲完该题后,胡远东老师于是提出了椭圆内接三角形的最大面积的问题。
循着上题的思路,我得到了关于这道题的解法。
解法如下:首先我们在椭圆上任意找两相异点A 、B ,连接AB在椭圆上找一点C 使得C 处的切线l 斜率等于k AB ,存在两点C ,选择使面积较大的一个C ,这样以AB 为一边的三角形中,三角形ABC 面积最大。
平移AB ,可以找到一个更大的三角形A ’B ’C ,如果我们证明每一个这样的三角形A ’B ’C 面积相等,那么这样的三角形A ’B ’C 的面积都是最大面积。
反过来,若固定一个C 点,作其切线l ,在椭圆上找一平行于l 的弦ABC ,使之面积最大。
那么,这样的三角形ABC 与上述三角形A ’B ’C 一一对应,所以只需证明每一个三角形ABC 面积相等。
证明:设椭圆的方程为 12222=+b y a x (a>b>0),C 点坐标为(x 0,y 0)。
12222=+b y a x两边对x 求导,0'2222=+y b y a x ,所以y ’=ya xb 22- 所以0202y a x b k k l AB -== 设AB 方程为y=m x y a x b +-0202则 y=m x y a x b +-0202 (1) 12222=+by a x(2) 1220220=+by a x (3) (1)(2)联立得0)(222200222022042022=-+-+b m a x y m x b x y a x b y b a 又因为2002202*21**121)(AB AB ABC k y m y a x b a k m S +-+-∆+=∆而)(2)]([4)(44))((44))((44)(442222200220222220420224222042022202202222042022204202222042222022042022202204b m a m x y b y b m a m x b y b m b a m x b y b m x b y a b m x b y b m x b y b a m x b b m a y a x b y b a y m x b --=--=--=-+-=-+-=-⎪⎪⎭⎫ ⎝⎛+-=∆204202422022042022*y b y a b a y a x b y b a a ==+=所以2202222200*20*002202)(22)(b b m y b m a m x y a b m y a y m y a x b m S ---=-∆=-+-∆= 30002220222022222202)()1(⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=--=----=m b y b m b y b b a b b b m y m b y b a b b m y b m a m b y a 令300)(⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=m b y b m b y b m h ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--=⎥⎦⎤⎢⎣⎡---⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=m b y b m b y b b y m b y b m b y b m b y b b y m b y b b y m b y b m b y b b y m h 020000200002030022333)(' 令h ‘(m )=0,则02y b m =(重根舍)或022y b m -=(此时可验证h ‘‘(022y b -)<0) ∴当022y b m -=有h (m )=h (m )max 此时S (m )=S (m )max =ab b b b a 4332323=⎪⎭⎫ ⎝⎛ 即每一个三角形ABC 面积相等。
椭圆内接等腰三角形面积最大值
椭圆内接等腰三角形面积最大值在数学中,椭圆是一种特殊的曲线,具有许多有趣的性质。
而等腰三角形是指具有两个边相等的三角形。
那么,问题来了,如何在椭圆内找到一个等腰三角形,使其面积达到最大值呢?要解决这个问题,我们首先需要了解椭圆和等腰三角形的性质。
椭圆是由一个固定点F(焦点)和到该点的距离之和为常数的点构成的集合。
等腰三角形则是指具有两个边相等的三角形,通常以底边和两腰边的长度表示。
根据椭圆的性质,我们知道椭圆的离心率小于1。
而等腰三角形的面积可以通过底边的长度和高的长度来计算。
因此,我们可以设想在椭圆内部,以焦点F为底边的等腰三角形,通过调整等腰三角形的高度,来使其面积达到最大值。
为了简化问题,我们可以将椭圆的长轴和短轴长度分别设为2a和2b,焦点F的坐标为(c,0)。
根据椭圆的性质,我们知道椭圆上任意一点P的坐标可以表示为(x,y),满足以下条件:PF + PF' = 2a,其中PF'为焦点F'到点P的距离。
根据上述条件,我们可以得到以下方程:(1) x^2 + y^2 = a^2(2) (x-c)^2 + y^2 = a^2通过解这两个方程,我们可以得到点P的坐标(x,y)。
然后,我们可以计算出等腰三角形的底边长度(即焦点F到点P的距离),并根据等腰三角形的面积公式S=1/2 * 底边 * 高度,计算出等腰三角形的面积。
为了找到等腰三角形的面积最大值,我们可以通过改变椭圆的参数来优化等腰三角形的位置。
例如,改变椭圆的长轴和短轴长度,或者改变焦点F的位置。
通过不断调整这些参数,我们可以找到使等腰三角形面积达到最大值的最佳解。
总结起来,要找到椭圆内接等腰三角形的最大面积,我们需要通过调整椭圆的参数(如长轴和短轴长度、焦点的位置等)来优化等腰三角形的位置。
通过解方程和计算面积,我们可以找到使等腰三角形面积最大的最佳解。
当然,这只是一个简化的解释,实际上解决这个问题可能需要更复杂的数学推导和计算。
椭圆最值问题三角形面积
我们要找出一个给定椭圆内三角形面积的最大和最小值。
首先,我们需要理解椭圆和三角形的基本性质,然后使用数学模型帮助我们解决这个问题。
假设椭圆的长轴为 a,短轴为 b。
三角形的三个顶点分别为 A(x1, y1), B(x2, y2) 和 C(x3, y3)。
根据题目,我们知道三角形的三个顶点都在椭圆上,所以:1) x1^2/a^2 + y1^2/b^2 = 12) x2^2/a^2 + y2^2/b^2 = 13) x3^2/a^2 + y3^2/b^2 = 1三角形的面积 S 可以用以下公式表示:S = 0.5 × |AB| × |AC| × sin(∠BAC)其中 |AB| 和 |AC| 是AB和AC的长度,∠BAC是角BAC的度数。
我们的目标是找到 S 的最大和最小值。
为了找到三角形面积的最大和最小值,我们需要解决以下优化问题:最大面积:maximize S约束条件:1) x1^2/a^2 + y1^2/b^2 = 12) x2^2/a^2 + y2^2/b^2 = 13) x3^2/a^2 + y3^2/b^2 = 14) x1, y1, x2, y2, x3, y3 >= 05) |x1 - x2| >= |y1 - y2|6) |x1 - x3| >= |y1 - y3|7) |x2 - x3| >= |y2 - y3|最小面积:minimize S约束条件:1) x1^2/a^2 + y1^2/b^2 = 12) x2^2/a^2 + y2^2/b^2 = 13) x3^2/a^2 + y3^2/b^2 = 14) x1, y1, x2, y2, x3, y3 >= 05) |x1 - x2| <= |y1 - y2|6) |x1 - x3| <= |y1 - y3|7) |x2 - x3| <= |y2 - y3|。
椭圆内接定边长三角形的面积最大值
椭圆内接定边长三角形的面积最大值
舒阳春
【期刊名称】《武汉冶金科技大学学报》
【年(卷),期】1998(021)004
【摘要】利用数学分析结合解析几何的方法,解决了椭圆接定边长三角形的面积最大值的问题,对于不同的定长给出了达到最大面积的计算公式和达到最大面积时三角形的具体坐标位置。
【总页数】4页(P463-466)
【作者】舒阳春
【作者单位】武汉冶金科技大学工商学系
【正文语种】中文
【中图分类】O182.1
【相关文献】
1.椭圆的两类内接三角形面积的最大值 [J], 胡彦然;黄晓庆
2.以问题为导向,实施有效探究——以椭圆内接三角形面积最大值的探究为例 [J],
3.三角形内接矩形的面积最大值问题 [J], 陈济涛
4.椭圆内接多边形面积最大值的实验研究 [J], 吴文广
5.抛物线内接三角形面积的最大值问题的解法探究 [J], 汤列
因版权原因,仅展示原文概要,查看原文内容请购买。
圆均匀压缩或伸长变为椭圆反之椭圆变为圆
探求椭圆与圆的内在联系 拓深椭圆概念的理解应用摘 要 本文通过挖掘椭圆与圆的概念以及方程形式之间的区别与联系,从圆入手,运用类比联想和投影转化的方法,揭示了椭圆与圆之间的内在联系,进一步拓深了椭圆概念的理解和应用。
关键词 椭圆 圆 方程 平行投影椭圆与圆之间存在着许多相互联系之处,当我们在研究椭圆问题时,若能挖掘椭圆与圆之间的内在联系,对我们加深椭圆问题的理解无疑是有好处的,本文就此问题作些探讨,以供参考。
1、概念判别(1)定义在平面上,到一个定点O 的距离等于定长R 的点的轨迹是圆,O 是圆心,R 是半径。
在平面上,到两个定点1F 、2F 距离之和等于常数(大于||21F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
(2)联系在平面上,取一条定长细绳,把它的两端都固定在图板的同一点处,套上铅笔,拉紧绳子移动笔尖,这时笔尖(动点)画出的轨迹是一个圆。
如果把细绳的两端拉开一段距离,分别固定在图板的两点处(如图1),这时画出的轨迹就是椭圆。
在讲解椭圆概念时,从学生比较熟悉的圆的概念出发,通过动态演示,对两点分离时所得图形的探究性学习,很自然地得出椭圆的概念,便于学生对概念的理解和掌握。
2、方程形式(1)标准方程圆方程:22020)()(R y y x x =-+-,其中),(00y x 为圆心,R 为半径。
椭圆方程:)0(1)()(220220>>=-+-b a by y ax x ,其中),(00y x 为椭圆中心,b a ,分别为椭圆的长短半轴长。
联系:在椭圆方程中,若取b a =,方程即为圆方程形式;两类方程都可转化为)0(022≠=++++AB E Dy Cx By Ax 的一般形式。
(2)参数方程圆方程:)2,0[,sin cos 00πααα∈⎩⎨⎧+=+=R y y R x x ,α为参数。
椭圆方程:)2,0[,sin cos 00πααα∈⎩⎨⎧+=+=b y y a x x ,α为参数。