(轴心)受压构件正截面承载力计算
轴心受压构件的正截面承载力
轴心受压承载力是正截面受压承载力 的上限。 轴心受压:纵向力通过构件截面形心(重心) 正截面承载力计算。
先讨论轴心受压构件的承载力计算,然后重点讨论单向偏心受压的 偏心受压:纵向力作用线偏离构件轴线或同时作用有轴心压力及弯矩
N
在实际结构中,理想的轴心受压构件是不存在的
由于施工制造误差、荷载位置的偏差、混凝土不 均匀性等原因,往往存在一定的初始偏心距
根据轴向力的平衡,可得短柱破坏时
Ps fc A f s As'
A—柱截面混凝土面积;
As’ fy ’ fc
As’—纵向钢筋截面面积。
Pc
思考题:受压钢筋来说,不宜采用高强钢筋?
0 0 长柱 b 8或 d 7
l
l
长柱在压力N不大的情况下,全截面受压。随着压力的增大,不仅发 生压缩变形,同时长柱中部的横向挠度数值u较大,长柱破坏前,u增
纵向钢筋
纵筋的配筋率
箍筋
R235级和HRB335级,应作成封闭式。直径不小于纵筋最大直径 的1/4,以及不小于8mm,间距S不宜过大
S 15d (钢筋最小直径) S b(短边尺寸)or S 0.8d (圆形) S 400mm
在纵筋搭接范围内或 3%
'
S 10d (钢筋最小直径) 箍筋应加密 S 200mm
普通箍筋柱:配有纵向钢筋和普通箍筋的轴心受压构件 螺旋箍筋柱:配有纵向钢筋和螺旋箍筋的轴心受压构件Fra bibliotek纵筋的作用
(1)协助混凝土受压,减小截面面积; (2)当柱偏心受压时,承担弯矩产生的拉力; (3)减小持续压应力下混凝土收缩和徐变的影响。
Õ Í Æ ¨¸ Ö ¹ ¿ Ö ù
轴心受压构件正截面承载力计算
0 Nd Nu 0.9( fcd Acor kfsd As0 As fsd )
k —— 间接钢筋的影响系数,混凝土强度C50
及以下时,k=2.0;C50-C80取k=2.0-1.7,中 间直线插入取值。
混凝土 强度
k
≤C50 2.0
C55 C60 C65 C70 C75 C80 1.95 1.90 1.85 1.80 1.75 1.70
例题2:圆形截面轴心受压构件,直径为450mm, 计算长度2.25m, 轴向压力设计组合值Nd=2580kN, 纵筋用HRB335级,箍筋用R235级,混凝土强度等 级为C25。I类环境条件,安全等级二级,试进行构 件的配筋设计。
2.25512 1%
0.45
As1%4 4520 15m 902m
A co r45 420 30 119 m3 2m 99
f s d —— 间接钢筋的强度;
Acor —— 构件的核心截面面积;
A s 0 —— 间接钢筋的换算面积,As0
dcor As01
S
;
A s 0 1 —— 单根间接钢筋的截面面积;
S —— 间接钢筋的间距;
轴心受压构件正截面承载力计算
6.2 配有纵向钢筋和螺旋箍筋的轴心受压构件 四、 螺旋箍筋轴压构件正截面承载力计算
轴心受压构件正截面承载力计算
6.1 配有纵向钢筋和普通箍筋的轴心受压构件 五、正截面承载力计算 2.截面设计之二(尺寸未知):
如果尺寸未知,则 先假设一个ρ′,令稳定系数φ=1; 求出截面面积A,取整; 重新计算φ,求As′.
例题略。
轴心受压构件正截面承载力计算
6.1 配有纵向钢筋和普通箍筋的轴心受压构件
主要和构件的长细比有关,长细比越大,稳定 系数 越小。
7.3 正截面受压承载力计算
7.3 正截面受压承载力计算第7.3.1条钢筋混凝土轴心受压构件,当配置的箍筋符合本规范第10.3节的规定时,其正截面受压承载力应符合下列规定(图7.3.1):N≤0.9φ(fc A+f'yA's) (7.3.1)式中N--轴向压力设计值;φ--钢筋混凝土构件的稳定系数,按表7.3.1采用;fc--混凝土轴心抗压强度设计值,按本规范表4.1.4采用;A--构件截面面积;A's--全部纵向钢筋的截面面积。
当纵向钢筋配筋率大于3%时,公式(7.3.1)中的A应改用(A-A's)代替。
钢筋混凝土轴心受压构件的稳定系数表7.3.1图7.3.1:配置箍筋的钢筋混凝土轴心受压构件第7.3.2条钢筋混凝土轴心受压构件,当配置的螺旋式或焊接环式间接钢筋符合本规范第10.3节的规定时,其正截面受压承载力应符合下列规定(图7.3.2):N≤0.9(fc Acor+f'yA's+2αfyA'ss0) (7.3.2-1)A ss0=πdcorAss1/s (7.3.2-2)式中fy--间接钢筋的抗拉强度设计值;Acor--构件的核心截面面积:间接钢筋内表面范围内的混凝土面积;Ass0--螺旋式或焊接环式间接钢筋的换算截面面积;dcor--构件的核心截面直径:间接钢筋内表面之间的距离;Ass1--螺旋式或焊接环式单根间接钢筋的截面面积;s--间接钢筋沿构件轴线方向的间距;α--间接钢筋对混凝土的约束的折减系数:当混凝土强度等级不超过C50时,取1.0,当混凝土强度等级为C80时,取0.85,其间接线性内插法确定。
注:1按公式(7.3.2-1)算得的构件受压承载力设计值不应大于按本规范公式(7.3.1)算得的构件受压承载力设计值的1.5倍;2当遇到下列任意一种情况时,不应计入间接钢筋的影响,而应按本规范第7.3.1条的规定进行计算:1)当l/d>12时;2)当按公式(7.3.2-1)算得的受压承载力小于按本规范公式(7.3.1)算得的受压承载力时;3)当间接钢筋的换算截面面积Ass0小于纵向钢筋的全部截面面积的25%时。
第4章轴心受力构件的承载力计算
柱的长细比较大,柱的极限承载力将受侧向变形所引起的附加弯矩影响而 降低。
第4章 轴心受力构件的承载力计算
1. 受力分析及破坏特征 ⑴受压短柱 第Ⅰ阶段——弹性阶段 轴向压力与截面钢筋和混凝土的应力 基本上呈线性关系
第Ⅱ阶段——弹塑性阶段 混凝土进入明显的非线性阶段,钢筋 的压应力比混凝土的压应力增加得快, 出现应力重分布。
Asso
d cor Ass1
s
计算螺旋筋间距s, 选螺旋箍筋为
12,Assl=113.1mm2
s
d cor Assl
Asso
3.14 450 113.1 69.4mm 2303
取s=60mm,满足s ≤ 80mm(或1/5dcor)
第4章 轴心受力构件的承载力计算
截面验算 一
由混凝土压碎所控制,这一阶段是计算轴心受压构件极限强度的依据。
第4章 轴心受力构件的承载力计算
⑵受压长柱
初始偏心距
附加弯矩和侧向挠度
加大了原来的初始偏心距
构件承载力降低
破坏时,首先在凹侧出现纵向裂缝,随后混凝土被压 碎,纵筋被压屈向外凸出;凸侧混凝土出现垂直于纵 轴方向的横向裂缝,侧向挠度急剧增大,柱子破坏。
第4章 轴心受力构件的承载力计算
2.配有普通箍筋的轴心受压构件正截面承载力计算方法
f c A) N 0.9 ( f y As
N-轴向力设计值;
N
-钢筋混凝土构件的稳定系数;
f y-钢筋抗压强度设计值; fc f y A s
A s-全部纵向受压钢筋的截面面积;
f c-混凝土轴心抗压强度设计值; A -构件截面面积,当纵向配筋率大于0.03时, A改为Ac, Ac =A- A s; 0.9 -可靠度调整系数。 h
轴心受压构件正截面承载力计算
轴心受压构件正截面承载力计算d d 式中 N 轴向力设计值 (包括γ0和ϕ值在内);γd 钢筋混凝土结构的结构系数,见附录3表3; N u 截面极限轴向力;ϕ 钢筋混凝土构件的稳定系数,见表5-2;表5-2 钢筋混凝土轴心受压构件的稳定系数ϕA 构件截面面积(当配筋率%3/>=A A s c f 混凝土的轴心抗压强度设计值(计算现浇混凝土柱时,如截面长边或直径小于300mm 时,则式(5-1)中混凝土强度设计值应乘以系数0.8); y f ' 纵向钢筋的抗压强度设计值;s A ' 全部纵向钢筋的截面面积。
(三)普通箍筋柱正截面承载力计算方法 1.截面设计(1)根据构造要求确定构件截面的形状和尺寸,选定材料的强度等级; (2)确定稳定系数ϕ:利用表5-2 ;稳定系数ϕ值主要与柱的长细比l 0/b 有关,此处b 为矩形截面柱短边尺寸,0l 为柱子的计算长度(与柱两端的约束情况有关,可自表5-1查得,其中l 为构件支点间长度,s 为拱轴线的长度)。
表5-1 受压构件的计算长度l 0(3s()s y c dd u1A f A f N N ''+=≤ϕγγ(4)选择纵向钢筋钢筋混凝土柱内配置的纵向钢筋常用Ⅱ级或Ⅲ级,并应符合下列要求:1)纵向钢筋的根数不得少于4根,每边不得少于2根;直径不应小于12mm ,工程中常用钢筋直径为12~32mm ,宜选用根数较少的粗直径钢筋以形成劲性较好的骨架。
2)在轴向受压时沿截面周边均匀布置;在偏心受压时沿截面短边均匀布置。
3)现浇立柱纵向钢筋的净距不应小于50mm ,同时中距也不应大于350mm 。
在水平位置上浇筑的装配式柱,其净距与梁相同,当偏心受压柱的长边大于或等于600mm 时,应在长边中间设置直径为10~16mm ,间距不大于500mm 的纵向构造钢筋,同时相应地设置联系拉筋。
(5)并验算配筋率ρ:1)当截面尺寸由承载力条件控制时,偏心受压柱的受压钢筋或受拉钢筋的配筋率不应小于0.25%(Ⅰ级钢筋)或0.2%(Ⅱ级、Ⅲ级钢筋);轴心受压柱全部纵向受力钢筋的配筋的配筋率不应小于0.4%。
轴心受压螺旋式箍筋柱的正截面受压承截力计算
轴心受压螺旋式箍筋柱的正截面受压承截力计算一、承截力计算公式《混凝土规范》规定螺旋式或焊接环式间接钢筋柱的承截力计算公式为:)(9.0''s y sso y cor c A f A f A f N ++≤α (7- 1)式中 α---间接钢筋对承载力的影响系数,当混凝土强度等级小于C 50时,取α=1.0;当混凝土强度等级为C 80时,取α=0.85;当混凝土强度等级在C 50与C 80之间时,按直线内插法确定。
cor A — 构件的核心截面面积。
sso A — 螺旋筋或焊接环筋(也可称为“间接钢筋”)间接钢筋的换算截面面积;s A d A ss cor sso 1π= (7- 2)cor d — 构件的核心直径; A ss1 — 单根间接钢筋的截面面积;s — 沿构件轴线方向间接钢筋的间距; c f — 混凝土轴心抗压设计强度; ',y y f f — 钢筋的抗拉、抗压设计强度;为使间接钢筋外面的混凝土保护层对抵抗脱落有足够的安全,《混凝土规范》规定按式(7-9)算得的构件承载力不应比按式(7-4)算得的大50%。
)(9.0'''s y c A f A f N +≤ϕ (7- 3)二、应用条件凡属下列情况之一者,不考虑间接钢筋的影响而按式(7-4)计算构件的承载力:(1)当o l /d>12时,此时因长细比较大,有可能因纵向弯曲引起螺旋筋不起作用;(2)当按式(7-9)算得受压承载力小于按式(7-4)算得的受压承截力时;(3)当间接钢筋换算截面面积sso A 小于纵筋全部截面面积的25%时,可以认为间接钢筋配置得太少,套箍作用的效果不明显。
三、构件设计已知:轴心压力设计值N ;柱的高度为H ;混凝土强度等级c f ;柱截面直径为d ;柱中纵筋等级(',y y f f );箍筋强度等级(y f )。
求:柱中配筋。
解:1.先按配有普通纵筋和箍筋柱计算。
钢筋混凝土轴心受力构件正截面承载力计算
N≤fyAs
式中
(3-4)
N——轴向拉力组合设计值; fy——钢筋抗拉强度设计值,按附表2-3取用,不大 2 于300N/mm ; As——纵向钢筋的全部截面面积。
3.2.4 构造要求 1.纵向受力钢筋
(1)轴心受拉构件的受力钢筋不得采用绑扎的搭接 接头;
(2)为避免配筋过少引起的脆性破坏,轴心受拉构 件的受拉钢筋不小于0.2%和45ft/fy %中的较大值; (3)受力钢筋沿截面周边均匀对称布置,并宜优先 选择直径较小的钢筋。
§3.2
钢筋混凝土轴心受拉构件正截面承载力计算
3.2.1 受力过程及破坏特征
轴心受拉构件从开始加载到破坏,其受力过程可 分为三个不同的阶段:
1.第I阶段
从开始加载到混凝土开裂前,属于第I阶段,此 时 纵向钢筋和混凝土共同承受拉力 应力与应变大致 成正比,拉力 N与截面平均拉应变ε 之间基本上是线 性关系 如图2-2a中的OA段。
2.第II阶段
混凝土开裂后至纵向钢筋屈服前属于第 II阶段, 首先在截面最薄弱处产生第一条裂缝 随着荷载的增 加,先后在一些截面上出现裂缝、逐渐形成图2-2b中 (II)所示的裂缝分布形式。此时,在裂缝处的混凝土 不再承受拉力,所有拉力均由纵向钢筋来承担。拉 力增加时,纵向钢筋的应变显著增大反映在图2-2a中 的AB段斜率比第二阶段的OA段的斜率要小。 3. 第III阶段
2.钢筋 箍筋直径不小于6mm,间距一般不宜大于200mm (屋架的腹杆不宜超过150mm)。
§3.3
钢筋混凝土轴心受压构件正截面承载力计算
轴心受压构件内配有纵 向钢筋和箍筋。根据箍筋的 配置方式不同,轴心受压构 件可分为配置普通钢筋和配 置间距较密的的螺旋箍筋 (或环式焊接钢筋)两大类(图 2-4) ,后者又称为螺旋式或 焊接环式间接钢筋。
钢筋混凝土轴心受力构件承载力计算
l0
1.0H 1.25H 1.25H 1.5H
5.2.4 设计步骤及实例
5.2.4.1 截面设计
已知轴向力设计值N、 柱的截面A、材料强 度、柱的计算长度 (或实际长度),求 纵向钢筋截面面积 As′
已知轴向力设计值N、 材料强度、构件的计 算长度l0或实际长度, 确定构件的截面尺寸 和纵向受压钢筋的截 面面积As′。
间距不应大于10d,且不应大于
01
200mm;箍筋末端应做成135°弯钩,
且弯钩末端平直段长度不应小于箍筋直
径的10倍;箍筋也可焊成封闭环式。
当柱截面短边尺寸大于400mm,且各
边纵向钢筋多于3根时,或当柱截面短
02
边不大于400mm,但各边纵向钢筋多
于4根时,应设置复合箍筋,其布置要
求是使纵向钢筋至少每隔一根位于箍筋
上柱 下柱
露天吊车柱和 栈桥柱
排架方向
1.5H 1.25H 2.0Hu 1.0Hl 2.0Hl
l0 垂直排架方向
有柱间支撑
无柱间支撑
1.2H
1.0H
1.0H
1.2H
1.25Hu 0.8Hl
1.5Hu 1.0Hl
1.0Hl
—
表5.3 框架结构各层柱的计算长度
楼盖类型
现浇楼盖 装配式楼盖
柱的类别
底层柱 其余各层柱
转角处,见图5.5
柱内纵向钢筋搭接长度范围内的箍筋应加密,其 直径不应小于搭接钢筋较大直径的0.25倍。当搭 接钢筋受压时,箍筋间距不应大于10d,且不应 大于200mm;当搭接钢筋受拉时,箍筋间距不 应大于5d,且不应大于100mm,d为纵向钢筋 的最小直径。当受压钢筋直径d>25mm时,尚 应在搭接接头两个端面外100mm范围内各设置 两个箍筋。
轴心受力构件的截面承载力计算
l0/b=8~34
l0与构件两端支承条件有关:
两端铰支 l0= l,
两端固支 l0=0.5 l
一端固支一端铰支 l0=0.7 l
一端固支一端自由 l0=2 l
《规范》采用的ψ值根据长细比l0/b查表3-1
01
03
02
04
05
06
长细比l0/b的取值
实际结构中的端部支承条件并不好确定,《规范对排架柱、框架柱的计算长度做出了具体规定。
当柱截面短边大于400mm、且各边纵筋配置根数超过多于3根时,或当柱截面短边不大于400mm,但各边纵筋配置根数超过多于4根时,应设置复合箍筋。
对截面形状复杂的柱,不得采用具有内折角的箍筋 ?
1
2
3
4
5
四、箍 筋
内折角不应采用
内折角不应采用
复杂截面的箍筋形式
钢筋混凝土构件由两种材料组成,其中混凝土是非匀质材料,钢筋可不对称布置,故对钢筋混凝土构件,只有均匀受压(或受拉)的内合力与纵向外力在同一直线时为轴心受力,其余情况下均为偏心受力。在工程中,严格意义上轴心受压不存在,所谓的轴压构件或多或少的都存在偏心。
从经济、施工及受力性能方面考虑(施工布筋过多会影响混凝土的浇筑质量;配筋率过大易产生粘结裂缝,突然卸荷时混凝土易拉裂),全部纵筋配筋率不宜超过5%。全部纵向钢筋的配筋率按r =(A's+As)/A计算,一侧受压钢筋的配筋率按r '=A's/A计算,其中A为构件全截面面积。
三、纵向钢筋
1
柱中纵向受力钢筋的的直径d不宜小于12mm,且选配钢筋时宜根数少而粗,但对矩形截面根数不得少于4根,圆形截面根数不宜少于8根,不得少于6根,且应沿周边均匀布置。
受压构件正截面承载力典型算例(1)
= 5724.35kN 按公式(55)计算
N u普 = 0.9j( f c A + f y¢As¢ ) = 0.9 ´ 0.928 ´ (14.3 ´196250 + 300 ´ 6872) = 4065.73kN
N u螺 = 5724.35 > Nu普=4065.73 N u螺 / N u普 = 5724.35 / 4065.73 = 1.4 < 1.5
=
40 mm,选用
C40
混凝土和
HRB400
级钢筋,柱的计算长度为
4.5m。
求该柱的截面配筋 As 和As' 。
【解】本例题属于截面设计类
(1)确定基本参数
C40
混凝土
fc
= 19.1N/mm2;HRB400
钢筋
fy
=
f
' y
= 360 N/mm2;a1
= 1.0 ,ξb=0.52
h0 = h - as = 600 - 40 = 560 mm
(1)确定基本参数
C20 混凝土
fc
= 9.6 N/mm2;HRB335
级钢筋
fy
=
f
' y
= 300 N/mm2;a1
= 1.0 ,ξb=0.55
一类环境,c=30mm,取 as
=
a
' s
= 40 mm, h0
=
h - as
=
400 - 40
= 360 mm
(2)大小偏压的判别
e0
=M N
159 ´ 10 6 =N300 ´ 0 3h =1+
1
çæ l0
2
÷ö z
tA第三章钢筋混凝土轴心受力构件正截面承载力计算
m in
As bh
804 250 250
1.2
max且(3%)
主页 目录 上一章
下一章
Nu 0.9( fc A f yAs) 1022 KN N 950 KN
帮助
混凝土结构设计原理
第3 章
3.3
l0 3.5 7 12, 1.0,
b 0.5 dcor d 2c 2d 500 2 25 212 426 mm
Ass 0
dcor Ass1
s
3.14 426 50
113 .1
3025 .74mm 2
Acor
d c or 2
4
3.14 426 2 4
142458
.66mm 2
主页 目录 上一章 下一章 帮助
混凝土结构设计原理
第3 章
3.3
Nu 0.9( fc Acor f yAs 2 f yv Ass0 ) 4118 .58KN
…3-10
Aso—— 间接钢筋的换算截面面积; k —— 间接钢筋影响系数。
混凝土 强度
≤C50
C55 C60 C65 C70 C75 C80
k
2.0 1.95 1.90 1.85 1.80 1.75 1.70
构造要求
间接筋:d≥d纵 /4, ≥6mm ; s≤80mm , ≤dcor /s。
主页 目录 上一章 下一章 帮助
下一章 帮助
混凝土结构设计原理
§3.3 轴心受压构件 3.3.1 概述
配置间距较密 的螺旋箍筋(或 环式焊接钢筋)
有较强的环向 约束,能够提高 构件的承载力和 延性。
第3 章
(P53)
主页 目录 上一章 下一章 帮助
轴心受压构件正截面承载力计算
轴心受压构件正截面承载力计算首先,要计算轴心受压构件的正截面承载力,我们需要了解构件的几何参数,例如截面的尺寸和形状,以及构件的材料特性,如弹性模量和抗压强度等。
下面介绍一种常用的计算方法,即欧拉公式。
欧拉公式适用于细长的杆件,可以计算其承载力。
根据欧拉公式,轴心受压构件的正截面承载力可以表示为:Pcr = (π^2 * E * I) / (Lr)^2其中,Pcr 是构件的临界承载力,E 是构件的弹性模量,I 是构件截面的惯性矩,Lr 是约化长度。
对于不同的构件形状,惯性矩I的计算公式也不同。
以下是一些常见形状的惯性矩计算公式:1.矩形截面:I=(b*h^3)/12,其中b是截面的宽度,h是截面的高度;2.圆形截面:I=π*(d^4)/64,其中d是截面的直径;3.方管截面:I=(b*h^3-(b'*h')^3)/12,其中b是外边框的宽度,h是外边框的高度,b'是内边框的宽度,h'是内边框的高度。
约化长度Lr的计算取决于构件的边界条件。
以下是一些常见边界条件的约化长度计算公式:1.双端固定支承:Lr=L;2.一端固定支承、一端支座支承:Lr=0.7*L;3.双端支座支承:Lr=2*L。
通过使用上述公式,我们可以计算出轴心受压构件的正截面承载力。
需要注意的是,上述公式是基于一些理想化假设和条件下推导得出的,实际工程中还需要考虑一些因素,例如构件的稳定性和局部细部构造等。
因此,在实际设计中,应该根据具体情况综合考虑各种因素,并结合相关的规范和标准进行设计和验证,以确保构件的安全性和可靠性。
总之,轴心受压构件正截面承载力计算是工程设计中的重要环节。
通过合理的参数选择和计算,可以确定构件能够安全承受的最大压力,从而保证结构的安全和可靠性。
一般构造轴心受压构件截面承载力计算
4.1.2截面形式及尺寸 柱截面一般采用方形或矩形,特殊情况下
也可采用圆形或多边形等。 柱截面的尺寸主要根据内力的大小、构件
的长度及构造要求等条件确定。 柱截面尺寸不宜过小,一般现浇钢筋混凝
土柱截面尺寸不宜小于 250mm × 250mm。为 了施工支模方便,柱截面尺寸宜使用整数,800 mm及以下的截面宜以50mm 为模数,800mm 以上的截面宜以100mm 为模数。
; Acor
dc2or
4
d cor——构件的核心直径,按间接钢筋内表面确定;
Asso ——间接钢筋的换算截面面积;Asso
dcor Ass1
s
Ass1 ——单肢箍筋的截面面积。
4.1一般构造要求
4.1.1材料强度等级 为了减小构件的截面尺寸,节省钢材,宜采用
较高强度等级的混凝土。一般柱中采用 C25及以上 等级的混凝土,对于高层建筑的底层柱,必要时可 采用高强度等级的混凝土。
受压钢筋一般采用 HRB335 级、 HRB400 级和 RRB400 级;箍筋一般采用 HPB235 级、 HRB335 级钢筋。
在此加荷实验中,因为钢筋与混凝土之间存在着粘结力, 所以它们的压应变是相等的,当加荷较小时,构件处于弹性 工作阶段,荷载与钢筋和混凝土的应力基本上是线性关系, 随着荷载的增加,混凝土的塑性变形有所发展,混凝土应力 增加得愈来愈慢,而钢筋应力增加要快得多。当短柱破坏时, 一般是纵筋先达到屈服强度,此时混凝土的极限应变为0.002, 也即此时混凝土达到轴心抗压强度,而相应的纵向钢筋应力值 为400N/mm2 ,对于热轧钢筋已达到屈服强度,但对于屈服强 度超过的钢筋,其受压强度设计值只能取400N/mm2 ,因此, 在普通受压构件中采用高强钢筋作为受压钢筋不能充分发挥其 高强度的作用,是不经济的。
第七单元轴心受压构件承载力计算
长细比:杆件的计算长度与杆件截面的回转 半径之比。
矩形截面长细比 L0/b≤30, L0/h≤25。
一. 构造要求
3.纵向钢筋 (1)作用:
①帮助混凝土承压(以减少截面尺寸); ②抵抗偶然因素所产生的拉力;(承受可能存
c. 根据计算值及构造要求选择并布置进行钢筋。
二. 计算内容
截面设计:情况二
若截面尺寸未知,
步骤:a、可先假定配筋率 0,.8并% ~ 设1.5%;
1
b、则可将
代入As' 公 式A(7-2)得:
0 N d 0 .9 0fc dA fs 'dA
则
A 0Nd
fcd
f
' sd
c、结合构造要求选择截面尺寸(边长取整)。
三、正截面承载力计算
螺旋箍筋柱的正截面抗压承载力是由核心混凝土、纵向钢 筋、螺旋式或焊接环式箍筋三部分的承载力组成,其正截面 承载力可按下式计算:
0 N d N u 0 .9 (fc d A c o r k fs d A s 0 fs 'd A s ')
三、正截面承载力计算
0 N d N u 0 .9 (fc d A c o r k fs d A s 0 fs 'd A s ')
在的弯矩) ③增加构件的延性,防止构件的突然脆性破坏; (2)布置:尽可能选用直径较粗的钢筋,一般不小12mm 矩形柱中的纵向钢筋应在截面周边均匀对称布 置,且不少于4根。 纵向受力钢筋的净距不应小于50mm且不大于 350mm。
一. 构造要求
3.纵向钢筋
以免造成施工困难和不经济。
轴心受拉构件正截面承载力计算公式
轴心受拉构件正截面承载力计算公式一、国内常用的正截面承载力计算公式如下:1.根据构件的材料及截面形状,选择适用的公式进行计算。
a.矩形截面承载力公式截面承载力= 0.6× f_ck × A_s + 0.4× f_y × (A - A_s)其中,f_ck为混凝土强度设计值,A_s为钢筋面积,f_y为钢筋抗拉强度设计值,A为截面总面积。
b.圆形截面承载力公式截面承载力= 0.45× f_ck × A_s + 0.45× f_y × (A - A_s)其中,f_ck为混凝土强度设计值,A_s为钢筋面积,f_y为钢筋抗拉强度设计值,A为截面总面积。
2.根据截面的受力状况进行计算。
a.单轴受力情况下,任意方向上的截面承载力公式为:截面承载力=φ×A_s×f_y其中,φ为弯曲效应系数,取值为0.93.在特殊情况下,比如钢筋屈服前的截面、钢筋屈服后的截面、局部失稳等,需要按相应的规范进行计算。
二、使用公式计算正截面承载力时需要注意以下几点:1.首先要确定构件的受力状况,根据不同的情况选择适用的公式进行计算。
2. 材料参数要严格按照规范要求进行取值,包括混凝土强度设计值f_ck、钢筋抗拉强度设计值f_y等。
3.截面承载力的计算结果是一个近似值,实际工程中需要根据安全系数选取合适的截面尺寸。
4.如果构件具有多个截面,需要分别计算每个截面的承载力,并取其最小值作为构件的正截面承载力。
综上所述,正截面承载力的计算公式是根据构件的受力状况、材料参数以及截面形状等因素来确定的。
在实际设计中,需要严格按照规范要求进行计算,并根据实际工程情况进行合理的选取。
这样才能确保结构的安全可靠。
受拉构件的承载力计算—轴心受拉构件
E'c=0.5Ec
c= ftk,
又 s E c
s = 2Eftk
故开裂轴力:
Ncr = Ac ftk + 2Eftk As
(3)混凝土开裂后: 混凝土退出工作,应力全部由钢筋承担,钢筋应力急剧增加。 配筋率增大,裂缝间距减小,最大裂缝宽度减小,反之亦然, 当然裂缝间距及裂缝宽度也和钢筋直径有关。
(4)破坏阶段: 受拉钢筋屈服,整个截面裂缝全部裂通。
Nu= fyAs
2.轴心受拉构件承载力计算
N Nu= fyAs
N ––– 轴向拉力的设计值; N u ––– 轴向受拉构件的极限承载力; As ––– 纵向受拉钢筋截面面积; fy ––– 钢筋抗拉设计强度值. 注意 : 轴心受拉构件的钢筋用量并不是由强度要求确定的, 裂缝宽度验算对纵筋用量起决定作用。
轴心受拉构件正截面承载力计算 (建筑规范)
1.轴心受拉构件受力特点
(1)混凝土开裂前:
N Ncr
•钢筋与混凝土共同承担拉力
cftk
s = c c = Ec c s = Es s
sAs
2Eftk
s
Es Ec
c
E c
其时: •混凝土应力等于其开裂强度,并且进入了塑性发展阶段, 其变形模量降低为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)破坏特征 1)螺旋筋或焊接环筋在约束 核心混凝土的横向变形时产生 拉应力,当它达到抗拉屈服强 度时,就不再能有效地约束混 凝土的横向变形,构件破坏。 2)螺旋筋或焊接环筋外的混 凝土保护层在螺旋筋或焊接环 筋受到较大拉应力时就开裂, 故在计算时不考虑此部分混凝 土。
螺旋箍筋柱破坏情况
2.适用条件和强度提高原理 12(短柱) ; (1)适用条件:①l0 / d ②尺寸受到限制。 注意:螺旋箍筋柱不如普遍箍筋柱经济,一般不宜采用。 根据图7-8 所示螺旋箍筋柱截面 受力图式,由平衡条件可得到
150mm或15倍箍筋直径(取较大者)范围,则应设置复合箍 筋。
a)、b)S内设3根纵向受力钢筋
c)S内设2根纵向 受力钢筋
复合箍筋的布置
7.2 螺旋箍筋轴心受压构件
1.受力分析及破坏特征 (1)受力分析 螺旋箍筋或焊接圆环箍筋能约束混凝土在轴向压力作用 下所产生的侧向变形,对混凝土产生间接的被动侧向压力,
d cor As 01
S
As 01
As 0 S d cor
将式(2)代入式(1),则可得到
2
2 f s As 01 2 f s As 0 S 2 f s As 0 f s As 0 f s As 0 2 2 d cor S d cor S d cor 2 Acor d cor d cor 2 4
态、承载力计算;
2.配有纵向钢筋和螺旋箍筋的轴心受压构件的破坏形 态、承载力计算; 3.稳定系数的概念及其影响因素; 4.核心混凝土强度分析及强度计算;
5.普通箍筋柱、螺旋箍筋柱的配筋特点和构造要求。
7.1 普通箍筋轴心受压构件
1.钢筋混凝土轴心受压柱的分类
普通箍筋柱:配有纵筋 和箍筋的柱 (图7-1a)。 螺旋箍筋柱:配有纵筋 和螺旋筋或焊接环筋的 柱,(图7-1b)。 其中:纵筋帮助受压、承 担弯矩、防止脆性破坏。 螺旋筋提高构件的强 度和延性。
认为此时混凝土达到了抗压强度设计值f cd,相应的纵筋
' 应力值f sd Es' s' 2.0 105 0.0020 400N / mm 2,对于
HRB400级、HRB335级、R235级和KL400级热轧钢筋已 达到屈服强度。
根据轴向力平衡,就可求得短柱破坏时的轴向压力
' Ps f cd A f sd As'
' ' N N 0 . 9 f A kf A f A 公式适用条件: 0 d u cd cor sd s 0 sd s
(1)螺旋筋不能提高强度过多,否则会导致混凝土保护 层剥落,即满足: ' N螺 1.5N普 1.35 ( fcd A f sd As' ) (2)当遇到下列任意一种情况时,不考虑螺旋箍筋的作用, 而按式(7-6)计算轴心受压构件的承载力。 l0 l0 ①当构件长细比 48,圆形截面 12 r d 由于长细比影响较大,螺旋箍筋不能发挥其作用;
I A
2 1Ec 1 ' f cd f sd ' 2
影响因素:
长细比、柱的初始挠度、竖向力的偏心有关, 混凝土强度等级、钢筋强度等级及配筋率对其 影响较小。
短柱:=1.0
长柱: … l0/r (或l0/b) 查附表10得。
l0 ––– 构件的计算长度,与构件端部的支承条件有关。
稳定系数 定义:考虑构件长细比增大的附加效应使构件承载力降低 的计算系数。 计算: =pl / ps
pl
2 EI
l0
2
(欧拉公式)也即长柱失 稳破坏时的临界承载力
As ps f cd A f sd
(短柱压坏时的轴心力 )
E 1Ec
l0 / r
截面回转半径 r
(2)长柱破坏——失稳破坏 破坏特征:首先在凹侧出现纵向裂缝,随 后混凝土被压碎,纵筋被压屈向外凸出;凸侧 混凝土出现横向裂缝,侧向挠度不断增加,柱 子破坏时表现为“材料破坏”和“失稳破坏” 。 承载能力要小于同截面、配筋、材料的短
柱。 承载能力 式中:
P l P s
Ps ——短柱破坏时的轴心压力; Pl ——相同截面、配筋和材料的长柱失稳时的轴心压力; ——轴心受压柱的稳定系数。
l——构件支点间的长度。 两端铰支 一端固定,一端铰支 两端固定
1.0l
0.7l
0.5l
实际结构按 规范规定取值
一端固定,一端自由
2.0l
3.正截面承载力计算 《公路桥规》规定配有纵向受力钢筋和普通箍筋的轴心受 压构件正截面承载力计算式为
' 0 Nd Nu 0.9 fcd A f sd As'
承载能力
短柱破坏形貌
Ps
' fcd A f sd As'
试验表明: 素混凝土短柱达到最大压应力值时的压应变值约为 0.0015~0.0020;
而钢筋混凝土短柱达到应力峰值时的压应变值一般在 0.0025~0.0035之间。
主要原因:纵向钢筋起到了调整混凝土应力的作用, 使混凝土的塑性性质得到了较好的发挥,改善了混凝土 受压破坏的脆性性质。
a)普通箍筋柱 b)螺旋箍筋柱 图7-1 两种钢筋混凝土轴心受压构件
纵向钢筋作用: 帮助混凝土承担压力,防止混凝土出现 突然的脆性破坏,并承受由于荷载的偏 心而引起的弯矩。 箍 筋 作 用: 与纵筋组成空间骨架,减少纵筋的计算 长度因而避免纵筋过早的压屈而降低柱 的承载力
2.受力分析和破坏特征
Nu f cc Acor f s' As'
式中: Acor ——核心混凝土面积;
图7-8 螺旋箍筋柱受力计算图式
(2)强度提高原理 螺旋箍筋对其核心混凝土的约束作用,使混凝土抗压强 度提高,根据圆柱体三向受压试验结果,约束混凝土的轴心抗 压强度近似表达式:
f cc f c k 2
式中 fcc ——处于三向压应力作用下核心混凝土的抗压强度; fc ——混凝土轴心抗压强度; σ2 ——为作用于核心混凝土的径向压应力值。
螺旋箍筋柱破坏,螺旋箍筋达到了屈服强度,它对核心混 凝土提供了最后的侧压应力 2 。现取螺旋箍筋间距S范围内, 沿螺旋箍筋的直径切开成脱离体(图7-9),由隔离体的平衡条 件可得到
从而提高混凝土的抗压强度和变形能力。
箍筋则产生环向拉力。当箍筋外部的混凝土被压坏并剥 落后,箍筋以内即核心部分的混凝土仍能继续承受荷载,当 箍筋达到抗拉屈服强度而失去约束砼侧向变形的能力时,核 心砼才会被压碎而导致整个构件破坏。
轴心受压柱的轴力——应变曲线
螺旋箍筋柱具有很好的延性,在承载力不降低情况下, 其变形能力比普通箍筋柱提高很多。
(4)箍筋
●箍筋直径:应不小于纵向钢筋直径的1/4,且不小于8mm; ●箍筋间距:不应大于纵向钢筋直径的15倍,且不大于
构件截面的较小尺寸(圆形截面用0.8倍直径),并不大于 400mm;当纵向钢筋截面积超过混凝土计算截面积的3%时, 箍筋的间距应不大于纵向钢筋直径的10倍,且不大于200mm。
●复合箍筋:沿箍筋设置的纵向钢筋离角筋间距大于
A ––– 毛截面面积,当 > 0.03时,改用混凝土截面净面积
An A A
种情况。
' s
普通箍筋柱的正截面承载力计算分截面设计和截面复核两
(1)截面设计
已知截面尺寸,计算长度l0,混凝土轴心抗压强度和钢筋 抗压强度设计值,轴向压力组合设计值,求纵向钢筋所需面积。
1 0 Nd A ' ( f cd A) f sd 0.9
②N螺旋 <N 普通,因为螺旋箍筋柱的承载力不会小于 普通箍筋柱的承载力; ③当As 0 0.25 As' 时,螺旋钢筋配置得太少,起不到
ห้องสมุดไป่ตู้螺旋钢筋径向约束的作用。
4.构造要求 (1)螺旋箍筋柱的纵向钢筋应沿圆周均匀分布,其截面
积应不小于箍筋圈内核心截面积的0.5%。常用的配筋率在
0.8%~ 1.2%之间。 (2)构件核心截面积应不小于构件整个截面面积的2/3。 (3)螺旋箍筋的直径不应小于纵向钢筋直径的1/4,且不 小于8mm,一般采用(8~12)mm。为了保证螺旋箍筋的作用, 螺旋箍筋的间距S 应满足: ●S 应不大于核心直径 dcor的1/5 ; ●S 应不大于80mm,且不应小于40mm,以便施工。
2 dcor S 2 f s As 01
整理后为 2 f s As 01 2
(1)
d cor S
现将间距为S的螺旋箍筋,按钢筋体积相等的原则换算成纵 向钢筋的面积,称为螺旋箍筋柱的间接钢筋换算截面面 积 As 0 ,即
d cor As 01 As 0 S
整理后得
As 0
(2)
由此可得到
k ' f s As 0 f cc f c 2 Acor
3.承载力计算 螺旋箍筋柱正截面承载力的计算式并应满足
' 0 Nd Nu 0.9 fcd Acor kfsd As0 f sd As'
★★螺旋筋仅能间接地提高强度,对柱的稳定性问题毫无
帮助,因此长柱和中长柱应按普通箍筋柱计算,不考虑螺 旋筋作用。
学习目标
5.掌握不对称配筋矩形截面偏心受压构件的截面设 计和截面复核方法。 6.掌握对称配筋矩形截面偏心受压构件的截面设计 和截面复核方法。
7.了解工字形和T形截面偏心受压构件正截面承载力
计算方法。 8.理解受压构件的构造要求。
本章重点 1.普通箍筋轴心受压柱和螺旋箍筋轴心受压柱的截面设计及 截面复核方法。 2.矩形截面大偏心受压构件的截面设计及截面复核方法。
' s
按构造要求选择并布置钢筋。 (2)截面复核 已知截面尺寸,计算长度l0,全部纵向钢筋的截面面积, 混凝土轴心抗压强度和钢筋抗压强度设计值,轴向力组合设计 值,求截面承载力。 首先检查纵向钢筋及箍筋布置是否符合构造要求。然后计 算正截面承载力,判断其是否满足要求。