26.3(6)二次函数的应用教学设计

合集下载

人教版数学九年级上册26.3《实际问题与二次函数》说课稿

人教版数学九年级上册26.3《实际问题与二次函数》说课稿

人教版数学九年级上册26.3《实际问题与二次函数》说课稿一. 教材分析人教版数学九年级上册26.3《实际问题与二次函数》这一节的内容,是在学生学习了二次函数的图像和性质的基础上进行授课的。

教材通过引入一些实际问题,让学生运用所学的二次函数知识解决这些问题,从而培养学生的解决问题的能力。

教材内容主要包括实际问题与二次函数模型的建立,二次函数模型在实际问题中的应用,以及如何根据实际问题的特点选择合适的二次函数模型。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对于二次函数的图像和性质有一定的了解。

但是,学生在解决实际问题时,往往不知道如何将实际问题转化为二次函数模型,对于如何选择合适的二次函数模型也存在一定的困惑。

因此,在教学过程中,我需要引导学生将实际问题转化为二次函数模型,并教给学生选择合适模型的方法。

三. 说教学目标1.知识与技能目标:使学生能够将实际问题转化为二次函数模型,并能够运用二次函数模型解决实际问题。

2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,使学生认识到数学在实际生活中的重要作用。

四. 说教学重难点1.教学重点:将实际问题转化为二次函数模型,并运用二次函数模型解决实际问题。

2.教学难点:如何根据实际问题的特点选择合适的二次函数模型。

五. 说教学方法与手段在教学过程中,我将采用讲授法、引导发现法、讨论法等多种教学方法。

同时,我会利用多媒体课件、实际问题案例等教学手段,帮助学生更好地理解和掌握二次函数在实际问题中的应用。

六. 说教学过程1.导入:通过引入一些实际问题,激发学生的学习兴趣,引导学生思考如何利用二次函数知识解决这些问题。

2.新课导入:讲解二次函数模型在实际问题中的应用,引导学生学习如何将实际问题转化为二次函数模型。

3.案例分析:分析一些具体的实际问题,引导学生运用二次函数模型解决这些问题。

《二次函数的应用》教学设计

《二次函数的应用》教学设计

《二次函数的应用》教学设计【教学设计】一、教学目标1.知识目标:掌握解决二次函数应用问题的基本方法,了解二次函数在现实生活中的应用。

2.能力目标:能够运用二次函数的知识解决与现实生活相关的问题,培养学生的应用数学思维和解决问题的能力。

3.情感目标:培养学生对数学的兴趣,激发学生的学习热情。

二、教学重点和难点重点:掌握应用二次函数解决实际问题的方法。

难点:运用二次函数解决生活中的实际问题。

三、教学内容1.二次函数的基本知识回顾2.二次函数在现实生活中的应用四、教学步骤与教学过程1.由教师布置一个小组讨论的问题:“在现实生活中,你能举出哪些例子可以用到二次函数?”鼓励学生积极参与,思考多个方面,并将问题记录在小组讨论总结表上。

2.整理讨论总结表,让每个小组派出一名代表将总结结果向全班进行汇报和讨论。

教师逐一帮助学生分析总结的例子是否能用二次函数进行模型建立和求解。

3.在学生了解和感兴趣的基础上,教师从中选取一个例子进行详细讲解,以便让学生深入理解二次函数在实际问题中的应用。

如:发射炮弹问题。

4.给学生展示一个炮弹发射的视频,并引导学生分析视频中炮弹的抛射轨迹。

通过观察和分析,引导学生发现炮弹的抛射轨迹可以用二次函数来描述。

5.示范讲解炮弹抛射问题的建模与求解过程:首先,引入二次函数的标准形式,并解释各个参数的意义;其次,根据问题的条件,列出二次函数的方程;最后,根据解方程的方法,求得抛射物的落地点和飞行时间。

6.将示例问题交给学生进行练习,鼓励学生思考并解答问题。

分析解决问题的方法,并帮助学生找出解决问题的关键步骤,培养学生灵活应用数学知识解决实际问题的能力。

7.针对其他生活例子,鼓励学生展开独立思考,提出二次函数的思考问题,并给予必要的指导。

8.课堂小结:对本节课所学知识进行总结,重点强调二次函数在现实生活中的应用和解决问题的方法。

五、课后作业1.思考二次函数的其他应用,并写一篇小短文进行总结。

2.练习本单元其他相关题目。

九年级数学下册 26.3 实际问题与二次函数(第3课时)说课稿 新人教版

九年级数学下册 26.3 实际问题与二次函数(第3课时)说课稿 新人教版

26.3 实际问题与二次函数尊敬的各位评委、各位老师:大家好!今天,我说课的题目是《实际问题与二次函数》,内容选自人教版九年级数学(下册)第二十六章第三节第3课时。

下面我从数学背景、教学目标、教法学法、教学过程、板书设计、教学评价六个方面来阐述本节课。

一、数学背景(一)教材分析二次函数的应用是在学习了二次函数的概念、图象和性质之后,检验学生应用所学知识解决实际问题能力的一个综合考查。

它既是初中学习一次函数、反比例函数及其应用后的延伸,又为高中乃至以后学习更多的函数打下坚实的理论和思想方法基础,因此,它是初中阶段数与代数的核心。

(二)学情分析学生在前面两节课已经接触到运用二次函数的知识解决函数的最值问题,对二次函数已经有了初步的应用意识。

而且本节课的问题均来自日常生活所见,学生会感到很有兴趣,愿意去探究。

但部分学生对函数的学习还是有一些畏难情绪,如何建立适当的直角坐标系对学生而言比较困难。

(三)教学重点、难点重点:探究建立平面直角坐标系,待定系数法求二次函数解析式,解决实际问题的方法。

难点:如何建立适当的平面直角坐标系。

二、教学目标·知识技能:通过对“抛物线形拱桥”的探究,让学生掌握如何建立适当的直角坐标系,待定系数法求出二次函数的解析式,解决实际问题。

·数学思考:通过对生活中实际问题的探究,体会数学建模的思想,并渗透转化及数形结合的数学思想方法。

·解决问题:通过生活中实际问题的探究,体会数学知识在实际生活中的广泛应用性,进一步认识如何利用二次函数的有关知识解决实际问题。

·情感态度:通过二次函数的有关知识灵活运用于实际生活,让学生亲自体会到学习数学知识的价值,从而提高学生学习数学的兴趣。

三、教法学法·教法:本节课利用多媒体教学平台,从学生感兴趣的实际问题开始,将实际问题“数学化”,建立函数模型。

以问题情境为主线,活动探究为载体,合作交流为形式,培养学生动脑、动手、合作、交流,为学生的终身学习奠定基础。

空中课堂九年级26.3(6)二次函数

空中课堂九年级26.3(6)二次函数

空中课堂九年级26.3(6)二次函数一、教材分析1、教材的地位及作用函数是一种重要的数学思想,是实际生活中数学建模的重要工具,二次函数的教学在初中数学教学中有着重要的地位。

本节内容的教学,在函数的教学中有着承上启下的作用。

它既是对已学一次函数及反比例函数的复习,又是对二次函数知识的延续和深化,为将来二次函数一般情形的教学乃至高中阶段函数的教学打下基础,做好铺垫。

2、教学目标(1)掌握二此函数的概念并能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯。

(2)让学生经历观察、比较、归纳、应用,以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯。

(3)让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。

3、教学的重、难点重点:二次函数的概念和解析式。

难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。

4、学情分析①学生已掌握一次函数,反比例函数的概念,图象的画法,以及它们图象的性质。

②学生个性活泼,积极性高,初步具有对数学问题进行合作探究的意识与能力。

③初三学生程度参差不齐,两极分化已形成。

二、教法学法分析1、教法(关键词:情境、探究、分层)基于本节课内容的特点和初三学生的年龄特征,我以“探究式”体验教学法和“启发式”教学法为主进行教学。

让学生在开放的情境中,在教师的引导启发下,同学的合作帮助下,通过探究发现,让学生经历数学知识的形成和应用过程,加深对数学知识的理解。

教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。

同时考虑到学生的个体差异,在教学的各个环节中进行分层施教。

2、学法(关键词:类比、自主、合作)根据学生的思维特点、认知水平,遵循“教必须以学为立足点”的教育理念,让每一个学生自主参与整堂课的知识构建。

【公开课】《二次函数的应用》教学设计

【公开课】《二次函数的应用》教学设计

《二次函数的应用》教学设计一、教学目标:1、通过数形结合,由二次函数的图象,进一步熟练二次函数解析式的求法;2、能利用二次函数的性质去解决实际问题,初步掌握运用数学知识解决问题的基本方法;3、感知各知识之间的联系,增强学生对二次函数本质的理解,提高学生提出问题及解决问题的能力。

二、教学重点、难点:1、重点:培养学生的问题意识和利用二次函数知识解决综合问题;2、难点:熟练掌握知识之间的关联与转化,提升思维的灵活性与深刻性;三、教学手段:多媒体教学、探究式教学四、教学过程:(一)知识回顾师:前面我们已经学习了二次函数解析式的解法,包括一般式2yax bx c 、顶点式2()y a x h k 、交点式12()()y a x x x x ,对于各类题型,同学们要能够选择恰当的方法,进行解题。

(1)一般式:y ,顶点( ),对称轴是直线x ;当x ,y 最大(小)值 .(2)顶点式:y ,顶点( ),对称轴是直线x ;当x ,y 最大(小)值.它可以对二次函数2(0)y ax a 通过 而得到.(3)交点式:若抛物线与x 轴交于点)0,(1x 、)0,(2x ,则它的解析式还可以写成: y .说明:由于二次函数(或说抛物线)的解析式有一般式、顶点式和交点式这三种表示形式,因此,在求二次函数(或说抛物线)的解析式时,要根据已知条件,设适当的解析式的形式再求解.(二)例题讲解:例1、如图,抛物线232y x bx c 与x 轴交于A (-1,0),B (2,0)两点,与y 轴交于点C . (1)求该抛物线的解析式; (2)若直线yx n 与线段BC 交于点E ,且BE =4EC ,求n 的值.2、已知二次函数2(0)y ax bx c a的图象经过A (﹣1,0)、B (4,0)、C (0,2)三点. (1)求该二次函数的解析式;(2)点D 是该二次函数图象上的一点,且满足∠DBA=∠CAO (O 是坐标原点),求点D 的坐标;xy B A C O3、二次函数2(0)y ax bx c a的图象交x轴于A,B两点,交y轴于点D,点B为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B D、的点Q,使BDQ中BD边上的高为点Q的坐标;若不存在请说明理由.(四)课堂小结1、二次函数解析式的求法;2、二次函数与全等、相似、最大(小)面积、周长等问题结合时,先要对已知和未知条件进行综合分析,用点的坐标和线段长度的联系,从图形中建立二次函数模型,从而解决问题;(五)课后作业《二次函数的应用补充练习(四)》(六)课后反思二次函数与几何知识联系密切,互相渗透,以点的坐标和线段长度的关系为纽带,把二次函数与全等、相似、最大(小)面积、周长等结合起来,解决这类问题时,先要对已知和未知条件进行综合分析,用点的坐标和线段长度的联系,从图形中建立二次函数的模型,从而使问题得到解决。

九年级数学上册《二次函数的应用》教案、教学设计

九年级数学上册《二次函数的应用》教案、教学设计
2.利用多媒体和实物展示,帮助学生形象地理解二次函数的图像与性质。
-通过动画展示二次函数图像的平移、伸缩等变换,使学生直观地感受图像的性质。
3.设计具有梯度的问题,引导学生逐步深入地掌握二次函数的知识。
-从简单的二次函数图像识别,到求解实际问题中的二次函数,逐步提高问题的难度。
4.采用小组合作、讨论交流的学习方式,促进学生之间的思维碰撞,共同解决难题。
5.学会运用二次函数的知识,解决生活中的实际问题,提高数学应用能力。
(二)过程与方法
在本章节的学习过程中,学生将通过以下方法培养数学思维与解决问题的能力:
1.通过小组合作、讨论交流,培养学生的合作意识和团队精神。
2.利用数形结合的方法,引导学生观察、分析二次函数的图像,培养学生直观想象和逻辑推理能力。
5.反思与总结:
-请同学们在作业本上写下本节课的学习心得,包括对二次函数的理解、学习过程中的困惑以及解题方法的总结。
-教师在批改作业时,应及时给予反馈,鼓励学生持续反思,不断提高。
4.通过小组合作,培养学生互相尊重、团结协作的品质,增强集体荣誉感。
5.引导学生认识到数学知识在实际生活中的重要性,培养学生的社会责任感和使命感。
二、学情分析
九年级的学生已经具备了一定的数学基础,掌握了线性方程、不等式等知识,对于函数的概念也有初步的理解。在此基础上,学生对二次函数的学习将面临以下挑战:
-完成课后作业中的基础题,旨在让学生通过实际操作,加深对二次函数图像特征的理解。
2.提高作业:
-选做课本第chapter页的提高题,涉及二次函数在实际问题中的应用,如最值问题、面积计算等,以提升学生解决问题的能力。
-设计一道综合性的应用题,要求学生运用本节课所学知识,结合生活实际,解决实际问题。

二次函数的应用教学设计

二次函数的应用教学设计

二次函数的应用教学设计二次函数的应用教学设计9篇教学设计需要注重教学环节的衔接,确保教学环节之间的内在逻辑性和衔接性。

需要注重教学方法的创新与多样化,充分利用现代信息技术及各种教学资源,运用多种教学策略。

现在随着小编一起往下看看二次函数的应用教学设计,希望你喜欢。

二次函数的应用教学设计(篇1)教学目标(一)教学知识点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系、2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根、3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标、(二)能力训练要求1、经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神、2、通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想、3、通过学生共同观察和讨论,培养大家的合作交流意识、(三)情感与价值观要求1、经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性、2、具有初步的创新精神和实践能力、教学重点1、体会方程与函数之间的联系、2、理解何时方程有两个不等的实根,两个相等的实数和没有实根、3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标、教学难点1、探索方程与函数之间的联系的过程、2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系、教学方法讨论探索法、教具准备投影片二张第一张:(记作§2、8、1A)第二张:(记作§2、8、1B)教学过程Ⅰ、创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系、当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解、二次函数的应用教学设计(篇2)教学目标(一)教学知识点1、能够利用二次函数的图象求一元二次方程的近似根、2、进一步发展估算能力、(二)能力训练要求1、经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验、2、利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想、(三)情感与价值观要求通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力、教学重点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系、2、能够利用二次函数的图象求一元二次方程的近似根、教学难点利用二次函数的图象求一元二次方程的近似根、教学方法学生合作交流学习法、教具准备投影片三张第一张:(记作§2、8、2A)第二张:(记作§2、8、2B)第三张:(记作§2、8、2C)教学过程Ⅰ、创设问题情境,引入新课[师]上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x 轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可、但是在图象上我们很难准确地求出方程的解,所以要进行估算、本节课我们将学习利用二次函数的图象估计一元二次方程的根、二次函数的应用教学设计(篇3)一.学习目标1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。

《二次函数的应用》教学设计

《二次函数的应用》教学设计

《二次函数的应用》教学设计教学设计:二次函数的应用(2)一、教学目标1.理解二次函数在现实生活中的应用。

2.掌握将实际问题转化成二次函数模型的能力。

3.能够解决实际问题,并给出相应的解释。

二、教学内容1.理解二次函数在现实生活中的应用。

a.抛物线的形状和参数意义。

b.坐标轴划分的表示方法。

2.实际问题转化成二次函数模型的能力。

a.确定问题中的自变量、因变量和关系。

b.用实际数据进行模型的构建。

c.利用二次函数的性质和模型求解问题。

3.解决实际问题,并给出相应的解释。

a.利用二次函数模型预测未知数据。

b.利用二次函数图像分析问题。

三、教学过程1.导入新课,复习二次函数的基本概念和性质。

2.引入二次函数在现实生活中的应用,并进行示例分析。

示例:一辆汽车从静止开始行驶,行驶的距离和时间的关系可用二次函数表示。

已知汽车在5秒时行驶了20米,在10秒时行驶了45米,请问汽车在15秒和20秒时行驶了多少米?a.确定自变量和因变量:自变量为时间,因变量为距离。

b.确定关系:汽车行驶的距离和时间之间存在二次函数关系。

c.用已知数据构建二次函数模型:设汽车行驶的距离为y,时间为x,则有二次函数y=ax^2+bx+c。

根据已知数据,在x=5时,y=20;在x=10时,y=45将这两个点代入二次函数模型,可以得到两个方程:20=25a+5b+c45=100a+10b+c解这个方程组,可以得到a=0.5,b=0.5,c=0。

d.利用二次函数模型求解问题:当x=15时,代入二次函数模型,求得y=57.5当x=20时,代入二次函数模型,求得y=90。

e.解释结果:汽车在15秒时行驶了57.5米,在20秒时行驶了90米。

3.练习:学生独立解决类似问题。

示例:一个烟花发射器以一定的角度发射烟花,烟花的高度与时间的关系可用二次函数表示。

已知烟花在1秒时高度为10米,在3秒时高度为30米,请问烟花在5秒和7秒时的高度分别是多少?a.确定自变量和因变量:自变量为时间,因变量为高度。

人教版数学九年级上册26.3《实际问题与二次函数》教学设计

人教版数学九年级上册26.3《实际问题与二次函数》教学设计

人教版数学九年级上册26.3《实际问题与二次函数》教学设计一. 教材分析人教版数学九年级上册26.3《实际问题与二次函数》这一节主要讲述了二次函数在实际问题中的应用。

教材通过引入实际问题,让学生了解二次函数在现实生活中的应用,培养学生的应用意识。

教材内容由浅入深,先介绍了一元二次方程的解法,再引入二次函数的图像和性质,最后运用二次函数解决实际问题。

二. 学情分析九年级的学生已经学习了二次函数的理论知识,对二次函数的图像和性质有一定的了解。

但将二次函数应用于实际问题,可能对学生来说较为抽象。

因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高学生的应用能力。

三. 教学目标1.了解二次函数在实际问题中的应用。

2.培养学生解决实际问题的能力。

3.提高学生的数学思维能力。

四. 教学重难点1.重点:二次函数在实际问题中的应用。

2.难点:将实际问题转化为二次函数问题,并运用二次函数解决实际问题。

五. 教学方法采用问题驱动的教学方法,引导学生通过自主学习、合作交流的方式,将二次函数知识应用于实际问题。

同时,运用案例分析法、讨论法等教学方法,激发学生的学习兴趣,提高学生的解决问题的能力。

六. 教学准备1.准备相关实际问题,用于引导学生思考和讨论。

2.准备多媒体教学设备,用于展示二次函数图像和性质。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过引入实际问题,激发学生的学习兴趣。

例如:抛物线在实际生活中有哪些应用?让学生思考和讨论,引导学生进入本节课的学习。

2.呈现(10分钟)教师通过多媒体展示二次函数的图像和性质,让学生直观地了解二次函数。

同时,教师简要回顾二次函数的一般形式和性质,为解决实际问题打下基础。

3.操练(10分钟)教师提出一个实际问题,让学生尝试运用二次函数解决。

例如:一个抛物线形的长椅,其长度为10米,宽度为4米,求长椅上任意一点到端点的距离。

学生分组讨论,尝试找出解决问题的关键。

《二次函数的应用》教案

《二次函数的应用》教案

《二次函数的应用》教学设计一、教学背景分析:1.教学内容分析:二次函数的知识是七到九年级数学学习的重要内容之一,它的应用是本章的教学重点也是难点。

因为它是从生活实际问题中抽象出的数学知识,又是在解决实际问题时广泛应用的数学工具,因此这部分的教学内容具有重要意义;同时学好二次函数的应用,可又为高中进一步学习各类初等函数作好准备。

而经历从实际问题情景入手,抽象出解决问题的数学模型和相关知识的过程中不仅可以让学生体会数学的价值和建模的意义,更能提高学生应用数学知识解决问题的意识。

2.学生情况分析:本节课的授课对象是九年级的学生。

在此之前,学生已经掌握了求二次函数解析式的方法并理解图象上的点和图象的关系,并且学习了一元一次方程、一元一次不等式、一元二次方程、一次函数的应用,以及初步的二次函数的应用,经历了多次从实际问题抽象出数学知识再运用相关知识解决实际问题的过程;因此他们有解决简单实际问题的基础知识和基本能力。

但是,由于函数知识的抽象性,多数学生在学习时应用函数的意识并不强;同时,他们从实际问题中抽象出数学问题的能力以及利用已有的数学知识去解决的能力也是比较弱的。

二、教学重点:建立适当的坐标系解决实际问题.三、教学难点:正确理解实际问题中的量与坐标系中的点的对应关系.四、教学目标:1.能把实际问题归结为数学知识来解决,并能运用二次函数的知识解决实际问题.2.经历在具体情境中抽象出数学知识的过程,体验解决问题方法的多样性,体会建模思想,渗透转化思想、数形结合思想,提高数学知识的应用意识.3.在运用数学知识解决问题的过程中,体会数学的价值、感受数学的简捷美,并勇于表达自己的看法.五、教学方式:引导发现、合作探究六、教学手段:多媒体、学案七、教学过程:教学环节师生活动设计意图一、情境引入教师用多媒体展示颐和园图片:同学们知道这是哪儿吗?颐和园是目前中国最大、现存最完整的皇家园林。

在颐和园的湖区景点中,有一座非常著名的桥就是——十七孔桥,它是乾隆年间修建的,全长150米,宽8米,全长150米,宽8米;因有十七个桥洞而得名,是圆内最大的一座石桥。

二次函数的应用教案

二次函数的应用教案

二次函数的应用教案教案题目:二次函数的应用教案内容:一、教学目标:1. 了解二次函数的基本定义和一般形式;2. 掌握二次函数的图像、顶点、轴对称、最值等基本概念;3. 理解二次函数在现实生活中的应用。

二、教学重难点:1. 掌握二次函数的图像、顶点、轴对称、最值等基本概念;2. 理解二次函数在现实生活中的应用。

三、教学过程:Step 1:导入新知1. 引导学生回顾二次函数的定义和一般形式;2. 提问:二次函数的图像长什么样?一般的形状是什么样?Step 2:二次函数的图像和基本概念1. 介绍二次函数的图像:开口方向、顶点、轴对称等概念;2. 示意图:绘制二次函数的图像,引导学生观察和描述。

Step 3:二次函数的最值1. 引导学生思考:二次函数的最值在哪些情况下出现?如何求解最值?2. 解答:当二次函数的开口方向向下时,最大值出现;当二次函数的开口方向向上时,最小值出现。

Step 4:二次函数在现实生活中的应用1. 引导学生思考:二次函数在现实生活中的应用有哪些?2. 给出实例:如抛物线的运动轨迹、喷泉的水柱高度随时间的变化等,让学生理解二次函数在实际问题中的应用。

Step 5:综合应用1. 提供实际问题,让学生利用二次函数的知识进行分析和求解;2. 学生进行讨论和解答,并给出解题过程和答案;3. 教师进行点评和总结。

四、教学延伸与巩固1. 提供更多的实际问题,让学生进行思考和解答;2. 练习题:设计一些练习题,让学生巩固和运用所学的知识。

五、教学反思本教案通过引导学生观察和描述二次函数的图像,以及分析二次函数的最值等基本概念,帮助学生理解了二次函数在现实生活中的应用。

通过练习题的实际应用,培养了学生运用二次函数的能力。

但在教学过程中,可以增加一些互动性的环节,提高学生的参与度。

《二次函数的应用》教学设计

《二次函数的应用》教学设计

《二次函数的应用》教学设计教学目标知识与技能:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(或小)值,培养学生解决问题的能力.过程与方法:应用已有的知识,经过自主探索和合作交流尝试解决问题.情感、态度与价值观:在经历和体验数学知识发现的过程中,提高思维品质,在勇于创新的过程中树立学好数学的自信心.重点难点重点:二次函数在最优化问题中的应用.难点:从现实问题中建立二次函数模型,学生较难理解和掌握.教学过程一、问题引入在日常生活、生产和科研中,常常会遇到求什么条件下可使面积最大、利润最大、材料最省、时间最少、效率最高等问题,这类问题称为最优化问题.其中一些问题可以归结为求二次函数的最大值或最小值.如何利用二次函数分析解决这样的问题呢?本节课我们来研究二次函数在实际问题中的应用.做一做:从地面竖直向上抛出一个小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是:h=30t-5t2(0≤t≤6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?我们可以借助函数图象解决这个问题,画出函数h=30t-5t2(0≤t ≤6)的图象,如图所示,可以看出这个函数的图象是一条抛物线的一部分.这条抛物线的顶点是这个函数图象的最高点,也就是说,当t取顶点的横坐标时,这个函数有最大值.因此,当t=-=-=3时,h有最大值=45,也就是说,小球运动的时间是3s时,小球最高,小球运动中的最大高度是45 m.一般地,当a>0(或a<0)时,抛物线y=ax2+bx+c的顶点是最低(或高)点,也就是说,当x=-时,二次函数y=ax2+bx+c有最小(或大)值.二、新课教授问题1.用总长为60 m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少时,场地面积S最大?师生活动:学生积极思考,找到等量关系式,并尝试解答.教师巡视、指导,最后给出解答过程.解:矩形场地的周长是60 m,一边长l,则另一边长为(-l),场地的面积S=l(30-l),即S=-l2+30l(0<l<30).因此,当l=-=-=15(m)时,S有最大值==225(m2).即当l是15 m时,场地面积S最大,最大值是225 m2.问题2.某商品现在的售价是每件60元,每星期可卖出300件,市场调查反映,如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?师生活动:教师分析存在的问题,书写解答过程.分析:调整价格包括涨价和降价两种情况.我们先来看涨价的情况.设每件涨价x元,则每星期售出商品的利润y随之改变.我们先来确定y随x变化的函数关系式,涨价x元时,每星期少卖10x件,实际卖出(300-10x)元.销售额为(60+x)(300-10x)元,买进商品需付40(300-10x)元.因此,所得利润为y=(60+x)(300-10x)-40(300-10x),(0≤x≤30)即y=-10x2+100x+600=-10(x2-10x)+600=-10(x2-10x+25)+850=-10(x-5)2+850(0≤x≤30)所在,在涨价的情况下,涨价5元,即定价65元时,利润最大,最大为850元.思考:在降价的情况下,最大利润是多少?(降价2.5元,即定价57.5元时,利润最大,最大为6 125元.)思考:由上面的讨论及现在的销售情况,你知道如何定价才能使利润最大了吗?(在涨价的情况下,定价65元;在降价的情况下,定价57.5元.) 问题3:图中是抛物线形拱桥,当水面在l时,拱顶离水面2 m,水面宽4 m.若水面下降1 m,水面宽度增加多少?师生活动:学生完成解答.教师分析存在的问题,书写解答过程.分析:我们知道二次函数的图象是抛物线,建立适当的坐标系,就可以求出这条抛物线表示的二次函数.为解题简便,以抛物线的对称轴为y轴建立直角坐标系.可设这条抛物线表示的二次函数为y=ax2.由抛物线经过点(2,-2),可得-2=a×22,解得a=-,这条抛物线表示的二次函数为y=-x2.水面下降1 m,水面所在位置的纵坐标为y=-3,代入上述表达式得x=±.故水面下降1 m,水面宽度增加(2-4)m.让学生回顾解题过程,讨论、交流、归纳解题步骤:(1)先分析问题中的数量关系,列出函数关系式;(2)研究自变量的取值范围;(3)研究所得的函数;(4)检验x的取值是否是自变量的取值范围内,并求相关的值;(5)解决提出的实际问题.学生尝试从前面四道题中找到解题规律.教师补充学生回答中的不足,及时纠正.三、巩固练习1.已知二次函数y=(3+x)(1-2x),当x= 时,函数有最值,为.2.二次函数y=x2-8x+c的最小值为0,那么c的值等于( )A.4B.8C.-4D.163.沿墙用长32 m的竹篱笆围成一个矩形的护栏(三面),怎样围才能使矩形护栏面积最大?最大面积为多少?试画出所得函数的图象.4.某旅社有客房120间,每间客房的日租金为50元,每天都客满,旅社装修后要提高租金,经市场调查,如果一间客房的日租金增加5元,则客房每天出租会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前的日租金总收入增加多少元?5.某产品每件的成本价是120元,试销阶段,每件产品的销售价x (元)与产品的日销售量y(台)之间的函数关系如下表所示:并且日销售量y是每件售价x的一次函数.(1)求y与x之间的函数关系式;(2)为获得最大利润,每件产品的销售价应定为多少元?此时每日销售的利润是多少?四、课堂小结1.得出用二次函数知识解决实际生活中的最值问题的一般步骤:(1)列出二次函数的表达式,并根据自变量的实际意义确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值.2.解题循环图:教学反思本节课充分运用导学提纲,教师提前通过一系列问题的设置引导学生课前预习.在课堂上通过对一系列问题的解决与交流,让学生通过二次函数掌握解决面积最大、利润最大等这一类题的方法,学会用建模的思想去解决和函数有关的应用问题.所以在例题的处理中适当地降低了难度,让学生的思维有一个拓展的空间.在训练的过程中,通过学生的独立思考与小组合作探究相结合,使学生的分析能力、表达能力及思维能力都得到训练和提高.同时也注重对解题方法与解题模式的归纳与总结,并适当地渗透转化、化归、数形结合等数学思想方法.就整节课看,学生的积极性得以充分调动,特别是学困生,在独立思考和小组合作中改变以往的配角地位,也能积极参与到课堂学习活动中.今后继续发扬从学生出发,从学生的需要出发,把问题的难度降低,让学生在能力范围内掌握新知识,等有了足够的热身运动之后再去拓展延伸.。

《二次函数的应用(复习课)》教学设计教学设计

《二次函数的应用(复习课)》教学设计教学设计

《二次函数的应用(复习课)》教学设计一、学生知识状况分析通过中考前的第一轮复习,学生已对二次函数的概念、二次函数的图像及其性质、如何确定二次函数的解析式等问题有了明确的认识.二次函数应用主要分为“何时面积最大”和“利润最大值”两个问题,结合中考考点和学生掌握的实际情况,让学生进一步利用二次函数解决实际问题.二、教学任务分析“何时面积最大”和“何时获得最大利润”这两个问题的数学模型是我们研究的二次函数的难点.二次函数化为顶点式后,很容易求出最大或最小值.而何时获得最大面积或利润就是当自变量取何值时,函数值取最大值的问题.因此本节课中关键的问题就是如何使学生把实际问题转化为数学问题,从而把数学知识运用于实践.即是否能把实际问题表示为二次函数,是否能利用二次函数的知识解决实际问题,并对结果进行解释.教学目标(一)知识与技能1、经历探索商品销售中最大利润,几何图形的面积最大值等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.2、能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.(二)过程与方法经历销售中最大利润问题和几何图形的面积最大值的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力.(三)情感态度与价值观1、体会数学与人类社会的密切联系,了解数学的价值.增进对数学的理解和学好数学的信心.2、通过探索活动,培养学生的探索精神和创新意识;通过相互间合作交流,让所有学生都有所获,共同发展。

培养学生合作探究的学习态度,发挥小组作用,增强集体荣誉感,提高学生运用知识解决实际问题的能力。

教学重点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值教学难点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值,计算准确。

实际问题与二次函数教案设计

实际问题与二次函数教案设计

§26.3实际问题与二次函数教学设计一、教材分析:本章的主要内容有二次函数的概念、二次函数的图象、二次函数的性质和二次函数的应用。

函数是数学的核心概念,也是初中数学的基本概念,函数不仅仅可以看成变量之间的依赖关系,同时,函数的思想方法将贯穿整个数学学习过程。

学生在学习了正比例函数、一次函数和反比例函数之后学习二次函数,这是对函数及其应用知识学习的深化和提高,是学生学习函数知识的过程中的一个重要环节,起到承上启下的作用,为学生进入高中后进一步学习函数知识奠定基础。

本章的内容在日常生活和生产实际中有着广泛的应用,是培养学生数学建模和数学思想的重要素材。

二、教学目标知识 与 技 能(1)能够从实际问题中抽象出二次函数,并运用二次函数的知识解决实际问题;(2)用已有知识综合运用来解决实际问题,加深对二次函数的认识,体会数学与实际的联系;(3)通过数学建模思想、转化思想、函数思想、数形结合思想的综合运用,提高学生的数学能力。

过 程 与 方 法(1)经历探索具体问题中数量关系和变化规律的过程,进一步体验如何从实际问题中抽象出数学模型;(2)注意二次函数和一元二次方程、不等式的联系和互相转化,以及其在实际问题中的综合运用,重视对知识综合能力的培养;(3)经历观察、推理、交流等过程,获得研究问题与合作交流的方法与经验。

情 感 态 度与价值 观(1)结合实际问题研究二次函数,让学生感受其实际意义,激发学生的学习兴趣,让学生在实际应用中逐步深化对二次函数的理解和认识;(2)设置丰富的实践机会,引导学生自主学习,对解决问题的基本策略进行反思,培养学生形成良好的数学思维习惯;(3)通过同学之间的合作交流,让学生积累和总结经验。

三、教学重难点1.教学重点:理解数学建模的基本思想,能从实际问题中抽象出其二次函数的数学模型; 回顾并掌握二次函数最值的求法,在应用,在应用基本结论的同时掌握配方法;利用二次函数的图像解决实际问题。

二次函数的应用教学设计

二次函数的应用教学设计

二次函数的应用教学设计教学目标1、知识与技能:学会把一些简单的实际生活中的二次函数问题抽象转化为数学问题,并能应用二次函数的相关性质解决问题,能进一步熟练掌握二次函数解析式的各种求法。

2、过程与方法:(1)以学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型,并进行解释与应用的过程,进而使学生获得对数学理解的同时,培养学生分析问题和解决问题的能力。

(2)通过小组合作探索,获得一些研究问题与合作交流的方法与经验。

3、情感态度与价值观:体验函数知识的实际应用价值,感受数学与人类生活的密切联系,从实践动手当中,让学生产生对数学的兴趣,从而培养学生观察和推理能力,体验主动探究的成功快乐。

重点和难点重点:理解实际问题中的问题背景,弄清问题中相关量的关系,建立适当的数学模型,并把实际问题转化为数学问题。

难点:如何把实际问题抽象转化为数学问题。

教学用具:多媒体教学过程:一、引入练习:1、已知一次函数23+=x y ,当x = 时,1-=y 。

【设计意图】利用简单的一次函数,学生体验“已知函数值求自变量取值”的方法,为下面的练习做铺垫。

2、已知二次函数322--=x x y ,当1=x 时,y = ;当x = 时,5=y 。

【设计意图】在上一题基础上解决二次函数中的问题,由此总结二次函数与一元二次方程之间的关系。

(学生独立完成,体验二次函数与一元二次方程的联系,得出结论:)二.分组展示,探索新知问题 1: 如图新乡市和谐公园要修建一喷泉,水流由中间喷出,在四个方向沿形状相同的抛物线落下.已知喷头所在点A 距地面1.25米, 水流路线最高处点B 距地面2.25米,且距喷头A 点的水平距离为1米.如果不计其它因素,那么喷头A 点距地面小孔点C 的水平距离为多少米时,才能使喷出的水流恰好落入孔内?`探索过程:c bx ax y ++=2一元二次方程 m c bx ax =++2二次函数 y=m(1)分组展示预习成果由课代表和小组长课前检查学案的完成情况,汇总解题方法,分小组展示,课上派代表讲解.在讲解过程中其他同学可提出质疑,教师做最后点评.着重引导学生思考如何将实际问题转化为数学问题,建立的坐标系不同是否会影响实际问题的最后结果;鼓励学生在存在一题多解现象时积极尝试,力争寻求最佳方法.(2)分组讨论归纳总结运用二次函数的知识解决实际问题的一般步骤:实际问题二次函数建立平面直角坐标系利用图像和性质解决实际问题求出解析式确定点的坐标设计意图:1.通过解决此问题,能使学生初步掌握运用二次函数的知识解决实际问题的一般步骤,渗透理论联系实际的辩证唯物主义思想.2.通过分组展示、学生自评、生生互评、教师点评的评价方式为学生搭建展示自我的平台,充分尊重学生的主体地位.通过丰富多彩的集体讨论、小组活动,以合作学习促进自主探究.三.综合应用,巩固提高问题2:在一场NBA比赛中,一名球员在关键时刻投出一球,已知球出手时离地面高米,与篮圈中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,已知篮球运行的轨迹为抛物线,篮圈中心距离地面3.19米.(1)此球能否投中?(2)在球出手角度和力度都不变的情况下,如何才能使球正中篮圈中心?探索过程:(1)对于第一问,由课代表安排小组代表运用展台展示并讲解预习成果,着重分析如何判断球是否能投进.学生容易说出在求出函数解析时后,求当x=7时y的值与3.19比较;教师引导说出也可以通过求当y=3.19时x的值与7比较,进而提升为实质是判断坐标为(7,3.19)的点是否在函数图像上.(2)对于第二问,教师首先引导学生理解“球出手的角度和力度不变”的含义,即函数解析式的a不变,将问题转化为抛物线平移的问题;然后将学生分为两大组,在独立思考的基础上小组合作探究,组间PK.在将数学问题的答案回归到实际问题时,注意合理取舍.设计意图:1.此问题是教学的一个难点,通过学生讲解、教师引导、小组合作探究等方式分散难点.2.数学来源于生活又服务于生活.通过学生所熟知的投篮实例,让学生体会到数学与生活的密切联系,提升学生用数学的意识.四.归纳总结,知识升华在学生讨论归纳的基础上,做课堂小结:1.这堂课学习了什么内容,解决了什么问题?还有哪些疑惑?2.运用二次函数的知识解决实际问题的一般步骤:实际问题二次函数建立平面直角坐标系利用图像和性质解决实际问题求出解析式确定点的坐标3.函数思想、数形结合思想都是很重要的数学思想,运用这些思想可以解决生活中的有关实际问题!设计意图:通过归纳总结,使学生所学知识条理化,系统化,构成知识网络,帮助学生全面理解和掌握所学知识.。

二次函数的应用教学设计

二次函数的应用教学设计

二次函数的应用教学设计教学设计:二次函数的应用一、教学目标1.理解二次函数。

2.学会应用二次函数解决实际问题。

3.培养学生的问题解决能力和实际应用能力。

二、教学内容1.二次函数的定义和性质。

2.二次函数中的参数对图像的影响。

3.实际问题中的二次函数应用。

三、教学过程1.引入新知识(10分钟)教师通过提问和讨论引发学生对二次函数的兴趣,例如:什么是二次函数?二次函数的图像有什么特点?二次函数在实际中有哪些应用?通过学生回答的问题逐步进入新知识。

2.二次函数的定义和性质(30分钟)教师通过讲解二次函数的定义和性质,如二次函数的标准式、顶点式、轴对称性等,通过具体的例子让学生理解并掌握二次函数的常用形式。

3.二次函数中的参数对图像的影响(30分钟)教师通过更换二次函数中的参数,让学生观察和描述二次函数图像的变化。

例如,通过改变二次函数中a的值,观察二次函数图像的开口方向和大小;通过改变二次函数中h和k的值,观察二次函数图像的平移和顶点的变化等。

4.实际问题中的二次函数应用(40分钟)教师通过讲解一些实际问题,例如:抛物线抛物线模型、汽车行驶模型、建筑物抛物线模型等。

通过这些实际问题的解答,引导学生将问题转化为二次函数的应用,培养学生的实际问题解决能力。

五、课堂讨论和练习(30分钟)教师提出一些相关问题,让学生通过讨论和解答来巩固和拓展所学内容。

教师可以提供一些练习题,让学生进行实践和巩固。

六、作业布置(5分钟)教师布置相关作业,例如解答一些实际问题,或通过给出一些二次函数的参数,让学生画出对应的图像等。

七、教学反思通过这样的教学设计,学生能够在实际问题中应用二次函数,并解决相关的实际问题。

这样的教学设计既能提高学生的数学能力,又能培养学生的问题解决能力和实际应用能力。

数学下册第26章二次函数26.3实践与探索第1课时二次函数与实际问题教案(新版)华东师大版

数学下册第26章二次函数26.3实践与探索第1课时二次函数与实际问题教案(新版)华东师大版

26.3 实践与探索 第1课时 二次函数与实际问题【知识与技能】会结合二次函数的图象分析问题、解决问题,在运用中体会二次函数的实际意义. 【过程与方法】通过对实际问题的分析,使学生掌握如何利用二次函数解决实际问题. 【情感态度】在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质求实际问题中的最大或最小值.【教学重点】会根据不同的条件,利用待定系数法求二次函数的函数关系式. 【教学难点】在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质求生活中的实际问题.一、情境导入,初步认识在现实生活中,我们常常会遇到与二次函数及其图象有关的问题,如拱桥跨度、拱高计算等,利用二次函数的有关知识研究和解决这些问题,具有很现实的意义.本节课,请同学们共同研究,尝试解决以下几个问题.【教学说明】 使学生明白二次函数的重要性. 二、思考探究,获取新知 问题1:(P 26,问题1)让学生讨论、交流,如何将文学语言转化为数学语言,得出问题(1)就是求函数y =-x 2+2x +45最大值,问题(2)就是求图中B 点的横坐标;【教学说明】 学生解答,教师巡视指导;让一两位同学板书,教师讲评. 问题2:(P 27.问题2) 解:以AB 的垂直平分线为y 轴,以过点O 的y 轴的垂线为x 轴,建立直角坐标系.这时,涵洞的横截面所成抛物线的顶点在原点,对称轴为y 轴,开口向下,所以可设它的函数关系式为:y =a x 2,(a <0),(1),因为AB 与y 轴相交于C 点,所以CB =AB 2mm 2,所以:a =-154,因此,函数关系式是y =-154x 2m ,设FD =x 1m (x 1>0),则点D 坐标为(x 1,-1.5).因为点D 的坐标在抛物线上,将它的坐标代人(2),得-1.5=-154x 12,x 12=25,x 1=±105,x 1=-105不符合假设,舍去,所以x 1=105.ED =2FD =2×x 1=2×105=2510≈25×3.162≈1.26(m ),所以涵洞ED 是2510m ,会超过1m .三、运用新知,深化理解1.如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20米,如果水位上升3米,则水面CD 的宽是10米.(1)建立如图所示的直角坐标系,求此抛物线的解析式; (2)当水位在正常水位时,有一艘宽为6米的货船经过这里,船舱上有高出水面3.6米的长方体货物(货物与货船同宽).问:此船能否顺利通过这座拱桥?解:(1)设抛物线解析式为y =a x 2设点B(10,n),点D(5,n +3),由题意:⎩⎪⎨⎪⎧n =100a n +3=25a,解得⎩⎪⎨⎪⎧n =-4a =-125,∴y =-125x 2.(2)方法一:当x =3时,y =-125×9,∵-925-(-4)>3.6,∴在正常水位时,此船能顺利通过这座拱桥.方法二:当y =3.6-4=-25时,-25=-125x 2,∴x =±10,∵||±10>3∴在正常水位时,此船能顺利通过这座拱桥.2.某公司生产的某种产品,它的成本是2元,售价是3元,年销售量为100万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x (十万元)时,产品的年销售量将是原销售量的倍,且是的二次函数,它们的关系如下表:x (十万元)0 1 2 … y1…(1)求y 与x (2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x (十万元)的函数关系式;(3)如果投入的年广告费为10~30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?解:(1)设二次函数关系式为y =a x 2+b x +c.由表中数据,得⎩⎪⎨⎪⎧c =1a +b +c =1.54a +2b +c =1.8.解得⎩⎪⎨⎪⎧a =-110b =35c =1,所以所求二次函数关系式为y =-110x 2+35x +1(2)根据题意,得S =10y ×(3-2)-x =-x 2+5x +10.(3)S =-x 2+5x +10=-(x -52)2+654.由于1≤x ≤3,所以当1≤x ≤2.5时,S 随x 的增大而增大.【教学说明】 通过练习的过程,前后呼应,巩固已学知识,并让学生体会二次函数是解决实际问题的一类重要数学模型.四、师生互动,课堂小结先小组内交流收获感想,再以小组为单位派代表进行总结.教师作以补充.1.布置作业:教材P 28“练习”2.完成同步练习册中本课时的练习.在本课教学中,应关注学生能否将实际问题表示为函数模型;是否能运用二次函数知识解决实际问题并对结果进行合理解释;课堂中学生是否在教师引导下进行了独立思考和积极讨论.并注意整个教学过程中给予学生适当的评价和鼓励.。

二次函数应用的教案

二次函数应用的教案

二次函数应用的教案教案标题:二次函数应用的教案教案目标:1. 理解二次函数的基本概念和特性;2. 掌握二次函数的图像、顶点、轴对称性等相关知识;3. 学会运用二次函数解决实际问题。

教案步骤:1. 引入二次函数的概念(10分钟)a. 提问引导学生思考:你们对二次函数有什么了解?b. 解释二次函数的定义和一般形式:y = ax^2 + bx + c,其中a、b、c为常数。

2. 讲解二次函数的图像和特性(15分钟)a. 展示二次函数的图像,并解释图像的特点。

b. 解释二次函数的顶点、轴对称性等概念,并通过图像进行说明。

3. 演示二次函数的应用(20分钟)a. 提供一些实际问题,如抛物线运动、最值问题等,让学生尝试用二次函数解决。

b. 引导学生分析问题,建立数学模型,并用二次函数解答。

4. 学生练习与巩固(15分钟)a. 给学生分发练习题,让他们在课堂上独立完成。

b. 随堂检查学生的练习,解答学生疑问。

5. 拓展应用与实践(10分钟)a. 鼓励学生在日常生活中寻找更多二次函数的应用场景,并分享给全班。

b. 提供一些拓展问题,让学生进行思考和探究。

6. 总结与反思(10分钟)a. 小结二次函数的基本概念和特性。

b. 让学生回顾本节课所学内容,并提出疑问或反思。

教案评估:1. 课堂参与度:观察学生在课堂上的积极参与程度。

2. 练习题表现:评估学生在练习题上的完成情况和准确性。

3. 拓展问题回答:评估学生对于拓展问题的回答和思考能力。

教案扩展:1. 可以引入二次函数的标准形式,让学生了解不同形式之间的转换关系。

2. 可以进一步讲解二次函数的根与因式分解的关系,帮助学生更好地理解二次函数的解法。

3. 可以引导学生进行二次函数应用的实践活动,如设计抛物线运动的实验等。

教案注意事项:1. 在讲解二次函数的图像时,使用具体的例子进行说明,以帮助学生更好地理解。

2. 在演示二次函数应用时,尽量选择与学生生活经验相关的问题,增加学习的实用性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

26.3(6)二次函数的应用
教学目标:
1.能运用二次函数的知识解决简单的实际问题.
2.通过研究二次函数的图像和直观性质以及解决实际问题的过程中,进一步领会数形结合以及数学建模的数学思想.
教学重点及难点:
二次函数知识在解决简单实际问题中的运用.
教学过程:
一、复习旧知
问(1)二次函数的定义域是什么?
(2)抛物线)0(2≠++=a c bx ax y 的图像特征如何?
(3)
二、例题讲解:
例1:用100厘米长的铁丝围成一个矩形,设矩形的一边长为x 厘米,面积为y 平方厘米.
(1)试写出y 关于x 的函数解析式及定义域.
(2)求矩形的一边长x 为多少厘米时,矩形面积y 最大,并求这个最大面积.
练习1:在一块等腰直角三角形铁皮上截一块矩形铁皮. 如图,已有的铁皮是等腰直角三角形ABC ,它的底边AB 长20厘米,要截得的矩形EFGD 的边FG 在AB 上,顶点E 、D 分别在边CA 、
CB 上,设EF 的长为x 厘米,矩形EFGD 的面积为y 平方厘米.
(1)试写出y 关于x 的函数解析式及定义域.
(2)当EF 的长为多少时,所截得的矩形的面积最大?
适时小结:
(1)在实际问题中函数关系的建立,要找到变量间的等量关系;
(2)要根据实际问题找到函数定义域;
(3)求二次函数的最大值(最小值)就是要找到函数图像上的最高点(最低点)
. G F E D C B
A
例2:在一场足球比赛中,一球员从球门正前方10米处起脚射门,当球飞行的水平距离为6米时达到最高点,此时球高为3米.
(1)如图建立直角坐标系,当球飞行的路线为一抛物线时,求此抛物线的解析式.
(2)已知球门高为2.44米,问此球能否射中球门(不计其它情况).
练习1:一位运动员推铅球,铅球运行时离地面的高度y (米)是关于运行
时间x (秒)的二次函数.已知铅球刚出手时离地面的高度为3
5米;铅球
出手后,经过4秒到达地面3米的高度,经过10秒落到地面.如图建立
平面直角坐标系,求这个二次函数的解析式和定义域.
练习2:某班在篮球场上练习3分投篮,已知篮筐离地面高3米,篮筐离3
分线的水平距离为6米,体育老师站在篮筐正前方3分线处投篮,球出手高
度为2米,已知球的运行轨迹成抛物线形,正好投中,若前方没有障碍,他
以相同的方向和力量投球,则他和球的落地水平距离为8米,以水平力作为
x 轴,以篮筐所在的直线为y 轴建立直角坐标系,求该同学投球的抛物线的
函数关系式.(2)如果一个小朋友投球出手的高度为1.4米,他以相同的抛
物线投球,则他应后退多少米才能投中。

例3:广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y (米)关于水珠与喷头的水平距离x (米)的函数解析式是)40(62
32≤≤+-=x x x y (1)当水珠的高度达到最大时,水珠与喷头的水平距离为多少?最大的高度是多少?
(2)画出y 关于x 的函数图像,并利用图像验证(1)所得的结果
适时小结:
(1)在实际问题中,二次函数的定义域是部分实数,相应地它的图像是抛物线的一部分.
(2)求二次函数的最大或最小值,就是找到函数图像的最高点和或最低点.
三、练习: 《练习部分》P64
四、小结:
这节课你学习了什么?你有何收获?
五、作业:。

相关文档
最新文档