第二章 随机变量及其分布
应用数理统计第二章
3、右连续性:F ( x 0) F ( x); 至多可列个间断点.
4、F () lim F ( x) lim P( X x) 0; F () lim F ( x) lim P( X x) 1.
n
称X 服从参数为n, p的二项分布,记X ~ B(n, p).
2、二项分布 B(n, p) 当n 1时即退化为两点分布.
参数n, p对分布的影响.
若P( X k0 ) max P( X k ), 则称k0为最可能出现次数.
k
b(k ; n, p) (n 1) p k 1 . 设0 p 1, b(k; n, p) P( X k ), 则有 b(k 1; n, p) k (1 p)
解 :由性质4得, F () A 1;
x 0 0
故B 1.
又由右连续性得, lim F ( x) A B F (0) 0;
1 e x , x 0; 从而r.v. X 的分布函数为F ( x) 0, x 0.
例2 : 在半径为2的圆内等可能地任意投点,以X 表示投 的点与圆心的距离试求 . X的分布函数.
解 : a 若x 0, 则{X x}是不可能事件, 于是F ( x) 0;
x2 b 若0 x 2, 则F ( x) P{ X x} P{0 X x} ; 4
c 若x 2, 则{X x}是必然事件, 于是F ( x) 1.
0, x 0; 1 2 从而X 的分布函数F ( x) x , 0 x 2; 4 1, x 2.
k 2
第二章随机变量及其分布
第二章 随机变量及其分布第二节 离散随机变量一、选择1 设离散随机变量X 的分布律为:),,3,2,1(,}{ ===k b k X P kλ )(0为,则且λ>b11)D (11)C (1)B (0)A (-=+=+=>b bb λλλλ的任意实数).()0(,11111·,1,11)1(·lim lim 1)1(·1}{111C b b b b S b b S b k X P n n n n n nk kn k kk 所以应选因所以时当于是可知即因为解><+==-<=--=--=====∞→∞→=∞=∞=∑∑∑λλλλλλλλλλλλ二、填空1 如果随机变量X 的分布律如下所示,则=C .X0 1 2 3PC1 C 21 C 31 C 41.12251)(31==∑=C x P x i 得:根据解 2 进行重复独立试验,设每次试验成功的概率为54, 失败的概率为51, 将试验进行到出现一次成功为止, 以X 表示所需试验次数, 则X 的分布律是__ ___ ____.(此时称X 服从参数为p 的几何分布).解:X 的可能取值为1,2,3 ,{}{}.,1~1次成功第次失败第K K K X -==所以X 的分布律为{} 1,2, , 54)51(1=⋅==-K K X P K 三、简答1 一个袋子中有5个球,编号为1,2,3,4,5, 在其中同时取3只, 以X 表示取出的3个球中的最大号码, 试求X 的概率分布.的概率分布是从而,种取法,故只,共有任取中,,个号码可在,另外只球中最大号码是意味着事件种取法,故只,共有中任取,,个号码可在,另外只球中最大号码是意味着事件只有一种取法,所以只球号码分布为只能是取出的事件的可能取值为解X C C X P C X C C X P C X C X P X X 53}5{624,321253},5{103}4{2321243},4{1011}3{,3,2,13},3{.5,4,335242235232335=============X 3 4 5 P101 103 532 一汽车沿一街道行驶, 需要通过三个均设有绿路灯信号的路口, 每个信号灯为红和绿与其他信号为红或绿相互独立, 且红绿两种信号显示时间相等, 以X 表示该汽车首次遇到红灯前已通过的路口个数, 求X 的概率分布.故分布律为于是相互独立,且,遇到红灯个路口首次汽车在第表示设的可能值为由题设知解3321321332132122121132121)()()()(}3{21)()()()(}2{21)()()(}1{21)(}0{,21)()(,,"")3,2,1(,3,2,1,0==================A P A P A P A A A P X P A P A P A P A A A P X P A P A P A A P X P A P X P A P A P A A A i i A X i i iX 0 1 2 3 P21 221 321 321 第三节 超几何分布 二项分布 泊松分布一、选择1 甲在三次射击中至少命中一次的概率为0.936, 则甲在一次射击中命中的概率p =______.(A) 0.3 (B) 0.4 (C) 0.5 (D) 0.6 解: D设=X ”三次射击中命中目标的次数”,则),3(~p B X , 已知936.0)1(1)0(1)1(3=--==-=≥p X P X P , 解之得6.04.01064.0)1(3=⇒=-⇒=-p p p2 设随机变量),3(~),,2(~p b Y p b X , {}{}=≥=≥1,951Y P X P 则若______. 43)A (2917)B ( 2719)(C 97)D ( 解: C二、填空1设离散随机变量X 服从泊松分布,并且已知{}{},21===X P X P{}______4=则=X P .解:232-e 三、简答1.某地区的月降水量X (单位:mm )服从正态分布N(40,24),试求该地区连续10个月降水量都不超过50mm 的概率.9396.09938.010Y P 9938.010B Y mm 50Y 10mm 50109938.0)5.2()44050440P )50P A P mm 50A 10=)==(),(~的月数”,则过=“该地区降水量不超设天贝努利试验,相当做超过个月该地区降水量是否观察(()=(”=“某月降水量不超过解:设==-≤-=≤φx x2 某地区一个月内发生交通事故的次数X 服从参数为λ的泊松分布,即)(~λP X ,据统计资料知,一个月内发生8次交通事故的概率是发生10次交通事故的概率的2.5倍.(1) 求1个月内发生8次、10次交通事故的概率; (2)求1个月内至少发生1次交通事故的概率; (3)求1个月内至少发生2次交通事故的概率;983.001.000248.0}1{}0{1}2{01487.06}1{)3(9975.000248.01}0{1}1{00248.0}0{)2(0413.0!106}10{1033.0!86}8{)1(6,36!105.2!8}10{5.2}8{.,.,2,1,0,!}{),(~610610682108≈+≈=-=-=≥≈==≈-≈=-=≥≈===≈==≈====⨯====⋯===-------X P X P X P e X P X P X P e e X P e X P e X P e e X P X P k k e k X P P X k λλλλλλλλλλλλ解出即据题意有关键是求出是未知的这里题这是泊松分布的应用问解第五节 随机变量的分布函数一、 填空题1设离散随机变量,216131101~⎪⎪⎭⎫⎝⎛-X 则X 的分布函数为 .⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤--<==++=≤=≥=+=≤=<≤=≤=<≤-=≤=-<1,110,2101,311,0)(1216131}{)(1;216131}{)(1031}{)(01;0}{)(1x x x x x F x X P x F x x X P x F x x X P x F x x X P x F x 当当当当整理,得时,当时,当时,当时,当解二、选择1 设)(1x F 与)(2x F 分别为随机变量1X 与2X 的分布函数,为使)()()(21x bF x aF x F -=是某一变量的分布函数,在下列给定的数值中应取52,53)A (-==b a 32,32)B (==b a 23,21)C (=-=b a 23,21)D (-==b a ).(1)(lim )(lim )(lim ,1)(lim 21A b a x F b x F a x F x F x x x x 故应选即因此有根据分布函数的性质:分析-=-==+∞→+∞→+∞→+∞→2. 设函数⎪⎩⎪⎨⎧≥<≤<=1x , 11x 0 , 2x 0x,0)(x F .则)(x F ______.(A) 是随机变量的分布函数. (B) 不是随机变量的分布函数.(C) 是离散型随机变量的分布函数. (D) 是连续型随机变量的分布函数. 解: A显然)(x F 满足随机变量分布函数的三个条件:(1))(x F 是不减函数 , (2) 1)(,0)(,1)(0=+∞=-∞≤≤F F x F 且 , (3))()0(x F x F =+3. 设⎪⎪⎩⎪⎪⎨⎧≥<<≤=2x, 12x (*) , 4x(*)x,0)(2x F 当(*)取下列何值时,)(x F 是随机变量的分布函数.(A) 0 (B) 0.5 (C) 1.0 (D)1.5解: A 只有A 使)(x F 满足作为随机变量分布函数的三个条件.三.简答1 设随机变量X 的分布函数为x B A x F arctan )(+=,求B A ,的值. 解:由随机变量分布函数的性质.0)(lim =-∞→x F x .1)(lim =+∞→x F x 知.2)2()a r c t a n (lim )(lim 0B A B A x B A x F x x ππ-=-⨯+=+==-∞→-∞→.22)arctan (lim )(lim 1B A B A x B A x F x x ππ+=⨯+=+==+∞→+∞→ 解⎪⎪⎩⎪⎪⎨⎧=+=-1202B A B A ππ得π1,21==B A第六节 连续随机变量的概率密度一、选择1.设()f x 、()F x 分别表示随机变量X 的密度函数和分布函数,下列选项中错误的是( A )(A ) 0()1f x ≤≤ (B ) 0()1F x ≤≤(C )()1f x dx +∞-∞=⎰(D ) '()()f x F x =2.下列函数中,可为随机变量X 的密度函数的是( B )(A ) sin ,0()0,x x f x π≤≤⎧=⎨⎩其它 (B )sin ,0()20,x x f x π⎧≤≤⎪=⎨⎪⎩其它(C ) 3sin ,0()20x x f x π⎧≤≤⎪=⎨⎪⎩,其它(D )()sin ,f x x x =-∞<<+∞ 二、填空1.设连续随机变量X 的分布函数为11()arctan ,2F X x x π=+-∞<<+∞ (1)(11)P X -≤≤= 0.5 , (2)概率密度()f x =21,(1)x x π-∞<<+∞+三、简答题1. 设随机变量X 的概率密度20()0,x Ax e x f x x -⎧>=⎨≤⎩,求:(1)常数A ;(2)概率(1)P X ≥。
第二章 随机变量及其分布 - 浙江大学邮件系统
例:某人骑自行车从学校到火车站, 一路上要经过3个独立的交通灯,设各 灯工作独立,且设各灯为红灯的概率 为p,0<p<1,以X表示首次停车时所通 过的交通灯数,求X的概率分布律。
解:设Ai={第i个灯为红灯},则P(Ai)=p, i=1,2,3 且A1,A2,A3相互独立。
P( X 0) P( A1) p ; P( X 1) P( A1A2 ) (1 p) p ;
例:有一大批产品,其验收方案如下: 先作第一次检验,从中任取10件,经检 验无次品接受这批产品,次品数大于2 拒收;否则作第二次检验,从中任取5 件,仅当5件中无次品便接受这批产品, 设产品的次品率为p.求这批产品能被 接受的概率.
解:设A={接受该批产品}。 设X为第一次得 的次品数,Y为第2次抽得的次品数.
求常数c.
12
解:
1 P{X k}
k 0
k
c
ce
k0 k !
c e
几个重要的离散型随机变量
一、0-1分布
若X的分布律为:
X 01 P qp
随机变量只可能 取0、1 两个值
(p+q=1,p>0,q>0)
则称X服从参数为p的0-1分布,或两点分布.
记为
X ~ 0 1( p) 或 B(1, p)
则X~B(10,p),Y~B(5,p),且{X=i}与{Y=j}独立。
P( A) P(X 0) P(1 X 2且Y=0)
P(X 0) P(1 X 2) P(Y 0)
P(X 0) (P(X 1) P(X 2)) P(Y 0)
(1 p)10 [10 p(1 p)9 45 p2 (1 p)8] (1 p)5
X 解1:) 设P该(社X区10200)人中0有.8X7个60人患病,则 X ~ B(1000, p),其中
概率论与数理统计第二章 随机变量及其分布
15
例4: 甲、乙两名棋手约定进行10盘比赛,以赢的盘数 较多者为胜. 假设每盘棋甲赢的概率都为0.6,乙赢的概 率为0.4,且各盘比赛相互独立,问甲、乙获胜的概率 各为多少? 解 每一盘棋可看作0-1试验. 设X为10盘棋赛中甲赢的 盘数,则 X ~ b(10, 0.6) . 按约定,甲只要赢6盘或6盘 以上即可获胜. 所以
定义:若随机变量X所有可能的取值为x1,x2,…,xi,…,且 X 取这些值的概率为 P(X=xi)= pi , i=1, 2, ... (*)
则称(*)式为离散型随机变量X 的分布律。 分布律的基本性质: (1) 表格形式表示: pi 0, i=1,2,... (2)
i
pi 1
X pk
x1 p1
这里n=500值较大,直接计算比较麻烦. 利用泊松定理作近似计算: n =500, np = 500/365=1.3699>0 ,用 =1.3699 的泊松分布作近似 计算:
(1.3669) 5 1.3669 P{ X 5} e 0.01 5!
23
例2: 某人进行射击,其命中率为0.02,独立射击400次,试求击 中的次数大于等于2的概率。 解 将每次射击看成是一次贝努里试验,X表示在400次射击中 击的次数,则X~B(400, 0.02)其分布律为
k 0,1
14
(2) 二项分布 设在一次伯努利试验中有两个可能的结果,且有 P(A)=p 。则在 n 重伯努利试验中事件 A发生的次数 X是一个 离散型随机变量,其分布为
P ( X k ) C nk p k q n k
k =0, 1, 2 ,, n
称X 服从参数为n,p的二项分布,记为 X~b(n, p) 对于n次重复一个0-1试验. 随机变量X表示: n次试验中, A发生的次数. 如: 掷一枚硬币100次, 正面出现的次数X服从二项分布. b(100, 1/2) 事件 X~
第二章随机变量及其分布函数
28
例2.2.9 设在时间t分钟内通过某交叉路口的汽车 数服从参数与t成正比的泊松分布. 已知在一分钟内 没有汽车通过的概率为0.2,求在2分钟内多于一辆 车通过的概率.
S={红色、白色} ?
将 S 数量化
非数量 可采用下列方法
X ()
红色 白色
S
1 0R
3
即有 X (红色)=1 , X (白色)=0.
1, 红色, X () 0, 白色.
这样便将非数量的 S={红色,白色} 数量化了.
4
实例2 抛掷骰子,观察出现的点数.
则有
S={1,2,3,4,5,6} 样本点本身就是数量 X () 恒等变换
20
泊松分布是一个非常常用的分布律,它常与 单位时间、单位面积等上的计数过程相联系. 例如一小时内来到某百货公司中顾客数、单位 时间内某电话交换机接到的呼唤次数和布匹 上单位面积的疵点数等随机现象都可以用泊
松分布来描述. 附表 2 给出了不同 值对应的
泊松分布函数的值.
21
泊松分布的取值规律
记 P(k; ) k e ,则
P
1 2
X
5
2
P(X
1 X
2)
P(X 1) P(X 2) 5
9
12
例 2.2.2 一只口袋中有 m 只白球, n m 只黑球.连 续无放回地从这口袋中取球,直到取出黑球为止.设 此时取出了 X 只白球,求 X 的分布律.
解 X 的可能取值为 0,1,2,, m ,且事件{X i}意 味着总共取了 i+1 次球,其中最后一次取的是黑球而 前面 i 次取得都是白球.
或 X ~ Bn, p.
二项分布的背景是伯努利试验:如果每次试验中事 件A发生的概率均为p,则在n重伯努利试验中A发生 的次数服从参数为n,p的二项分布。
随机变量及其分布
• 则称X为连续型随机变量,其中函数f(x)称为X的概率密度函数,简称 概率密度或者密度函数.
• 下面给出概率密度函数f(x)的性质: • (1)f(x)≥0 • (2)由分布函数的性质易得
下一页 返回
• 二、离散型随机变量的分布函数
• 设离散型随机变量X的分布律为:
上一页 下一页 返回
2. 3随机变量的分布函数
• 其中 • 则随机变量X的分布函数仿照例1可得
• 如图2一1所示,F(x)为阶梯函数,分段区间为半闭半开区间,并且右 连续
上一页 返回
2. 4连续型随机变量及其概率密度
• 一、连续型随机变量及其概率分布
上一页 返回
2. 2离散型随机变量及其分布律
• 一、离散型随机变量
• 在某些试验中(例如 2. 1中的例1,例2,例3),随机变量的取值是有 • 限个或者无穷可列个.这一类随机变量通常称为离散型随机变量,下
面我们给出离散型随机变量的精确定义: • 定义1若随机变量X的所有可能取值为x1,x2,…,xn…,并且其 • 对应的概率分别为p1, p2,…,p n,…,即
• 注:实值单值函数指的是每一个。仅存在唯一一个实数X (ω)与之对应, 其中X (ω)是一个关干样本点的函数,值域为实数集.
• 随机变量可以根据它的取值分为离散型随机变量与非离散型随机变量, • 其中非离散型随机变量又可以进一步分为连续型随机变量与混合型随
机变量.在本书中我们主要学习的是离散型与连续型随机变量.
• 则称X为离散型随机变量,并且式(2.均称为随机变量X的概率分布, 又称分布律或分布列.
下一页 返回
第二章随机变量及其概率分布(概率论)
当 x ≥ 1 时,F ( x) = P( X ≤ x) =P( X = 0) + P( X = 1) =1 ⎧0 x < 0
所以 F ( x) = ⎪⎨0.3 0 ≤ x < 1. ⎪⎩1 1 ≤ x
⎧0 x < 0 分布函数为 F ( x) = ⎪⎨0.3 0 ≤ x < 1
⎪⎩1 1 ≤ x
分布函数图形如下
F(x) 1 0.3
x 01
3
例 设X的概率分布律如下,求X的分布函数. X012 P 0.4 0.35 0.25
解
⎧0
x<0
F
(
x)
=
⎪⎪ ⎨
⎪
0.4 0.75
0≤ x<1 1≤ x<2
⎪⎩ 1
x≥2
由此可见
(1)离散型随机变量的分布函数是分段函数,分 段区间是由X的取值点划分成的左闭右开区间; (2)函数值从0到1逐段递增,图形上表现为阶梯 形跳跃递增; (3)函数值跳跃高度是X取值区间中新增加点的 对应概率值.
z 泊松在数学方面贡献很多。最突出的是1837 年在提出泊松分布。
z 除泊松分布外,还有许多数学名词是以他的 名字命名的,如泊松积分、泊松求和公式、 泊松方程、泊松定理。
当一个随机事件,以固定的平均瞬时速率 λ随机独立地出现时,那么这个事件在单 位时间(面积或体积)内出现的次数或个数 就近似地服从泊松分布。
解: 依题意, X可取值 0, 1, 2, 3.
设 Ai ={第i个路口遇红灯}, i=1,2,3
路口3
路口2
P(X=0)= P(A1)=1/2,
路口1
X=该汽车首次停下时通过的路口的个数. 设 Ai={第i个路口遇红灯}, i=1,2,3
概率统计 第二章 随机变量及其分布
引入适当的随机变量描述下列事件: 例1:引入适当的随机变量描述下列事件: 个球随机地放入三个格子中, ①将3个球随机地放入三个格子中,事件 A={有 个空格} B={有 个空格} A={有1个空格},B={有2个空格}, C={全有球 全有球} C={全有球}。 进行5次试验, D={试验成功一次 试验成功一次} ②进行5次试验,事件 D={试验成功一次}, F={试验至少成功一次 试验至少成功一次} G={至多成功 至多成功3 F={试验至少成功一次},G={至多成功3次}
例2
xi ∈( a ,b )
∑
P( X = xi )
设随机变量X的分布律为 设随机变量X
0 1 2 3 4 5 6 0.1 0.15 0.2 0.3 0.12 0.1 0.03
试求: 试求:
P( X ≤ 4), P (2 ≤ X ≤ 5), P ( X ≠ 3)
0.72 0.7
F ( x) = P{ X ≤ x} =
k : xk ≤ x
∑p
k
离散型随机变量的分布函数是阶梯函数, 离散型随机变量的分布函数是阶梯函数 分布函数的跳跃点对应离散型随机变量的 可能取值点,跳跃高度对应随机变量取对应 可能取值点 跳跃高度对应随机变量取对应 值的概率;反之 反之,如果某随机变量的分布函数 值的概率 反之 如果某随机变量的分布函数 是阶梯函数,则该随机变量必为离散型 则该随机变量必为离散型. 是阶梯函数 则该随机变量必为离散型
X
x
易知,对任意实数a, 易知,对任意实数 b (a<b), P {a<X≤b}=P{X≤b}-P{X≤a}= F(b)-F(a) ≤ = ≤ - ≤ = -
P( X > a) = 1 − F (a)
第二章 随机变量及其分布
2. 二项分布的推导过程与说明
3. 举例( 例2,例3,例4 )
C. 泊松分布
1. 定义:如果随机变量X的概率密度如下:
P(X k)
λ k k!
e
λ
,
k =0,1,2,… ( >0) ,
(2.4)
则称X服从参数为 的泊松分布,记作:
X ~ ()
2. 说明
3. 举例
返回目录
§3 随机变量的分布函数
P{X=4}=0.218 P{X=5}=0.175 P{X=6}=0.109 P{X=7}=0.055
P{X=k} < 0.001 , 当 k ≥ 11时
P{ X=8 }=0.022 P{ X=9 }=0.007 P{X=10}=0.02
例3:
某人进行射击,设每次射击的命中率为0.02,独立射 击400次,试求至少击中两次的概率。
解:以p表示每组信号灯禁止汽车通过的概率,
X所有可能取值为0,1,2,3,4。得X的分布律 为:P{X= k}= (1-p)k p , k=0,1,2,3, P{X= 4}= (1-p)4。用表格表示如下:
X
01
2
34
pk
p (1-p) p (1-p)2 p (1-p)3 p (1-p)4
代入p=1/2可得结果,可验证此结果满足分布 律两性质。
• 而有的实验结果与数值无直接关系,我们可 以把它映射为数值来表示,如:硬币抛掷中出 现正面用“0”来表示,出现反面用“1”来表示。
例1:在一袋中装有编号分别为1,2,3的3只球,
在袋中任取一只球,放回,再取一只球,记录它 们的编号。考察两只球的编号之和。则实验的样 本空间S={e}={(i,j)} i,j=1,2,3。 i,j分别为第一,第 二次取到球的号码。 以X表示两球号码之 和,得到样本空间 的每一个样本点e, X都有一值与之对 应,如图2-1。
《概率论与数理统计》第二章 随机变量及其分布
两点分布或(0-1)分布
对于一个随机试验,如果它的样本空间只包含两个
元素,即Ω={ω1,ω2},我们总能在Ω上定义一个服从 (0-1)分布的随机变量
来描述这个随机X试验X的(结)果 。10,,当当
1, 2.
例如,对新生婴儿的性别进行登记,检查产品的质量 是否合格,某车间的电力消耗是否超过负荷以及前面多 次讨论过的“抛硬币”试验等都可以用(0-1)分布的随 机变量来描述。(0-1)分布是经常遇到的一种分布。
设随机变量X只可能取0与1两个值,它的分布律是 P{X=k}=pk(1-p)1-k,k=0,1 (0<p<1), 则称X服从(0-1)分布或两点分布。
(0-1)分布的分布律也可写成
X
0
1
pk
1-p
p
二项分布与伯努利试验
考虑n重伯努里试验中,事件A恰出现k次的概率。 以X表示n重伯努利试验中事件A发生的次数,X是一个 随机变量,我们来求它的分布律。X所有可能取的值为o, 1,2,…,n.由于各次试验是相互独立的,故在n次试 验中,事件A发生k次的概率为
X
x1
x2
…
xn
…
pk
p1
p2
…
pn
…
在离散型随机变量的概率分布中,事件 “X=x1”, “X=x2”....“X=xk”,...构成一个完备事件 组。因此,上述概率分布具有以下两个性质:
(1) pk 0, k 1, 2,L
(2) pk 1
k
满足上两式的任意一组数 pk , k 1, 2,L 都可以成为 离散型随机变量的概率分布。对于集合xk , k 1, 2,L
P{ X
k}
20 k
(0.2)k
概率论与数理统计第二章随机变量及其分布
设随机变量X服从参数为 分布,即 例2.3.1.设随机变量 服从参数为 的0-1分布 即: 设随机变量 服从参数为0.3的 分布 X P 0 1 ,求X的分布函数 求 的分布函数 的分布函数.
i
0.3 0.7
解:(1) 当x<0时,F(x)=P{X≤x}= 时
∑P{X = x }=0 (2)当0≤x<1时,F(x)=P{X≤x}= ∑P{X = x } =P{x=0}=0.3 当 时 (3)当1≤x时,F(x)=P{X≤x}= ∑P{X = x } 当 时
xi ≤x xi ≤x i xi ≤x i
=P{X=0}+P{X=1}=1 F(x) 分布函数图形如下 1 0.3 0 1 x
3.离散型随机变量 的分布函数的性质 离散型随机变量X的分布函数的性质 离散型随机变量 (1)分布函数是分段函数 分段区间是由 的取值点划分成的 分布函数是分段函数,分段区间是由 分布函数是分段函数 分段区间是由X的取值点划分成的 左闭右开区间; 左闭右开区间 (2)函数值从 到1逐段递增 图形上表现为阶梯形跳跃递增 函数值从0到 逐段递增 图形上表现为阶梯形跳跃递增; 逐段递增,图形上表现为阶梯形跳跃递增 函数值从 (3)函数值跳跃高度是 取值区间中新增加点的对应概率值 函数值跳跃高度是x取值区间中新增加点的对应概率值 函数值跳跃高度是 取值区间中新增加点的对应概率值; F(x) (4)分布函数是右连续的 分布函数是右连续的; 分布函数是右连续的 1 (5) P{X=xi}=F(xi)-F(xi-0) 0.3
记为 X~B(n,p)
m P X = m) = Cn pm(1− p)n−m (
m=0,1,2,...,n
随机变量X所服从的分布称为二项分布,n为实验次数 注:(1)随机变量 所服从的分布称为二项分布 为实验次数 随机变量 所服从的分布称为二项分布 为实验次数; (2)该实验模型称为 次独立重复实验模型或 重Bernoulli实验模型 该实验模型称为n次独立重复实验模型或 实验模型; 该实验模型称为 次独立重复实验模型或n重 实验模型 (3)若A和Ac是n重Bernoulli实验的两个对立结果 成功”可以指二 若 和 实验的两个对立结果,“成功 重 实验的两个对立结果 成功” 者中任意一个,p是 成功”的概率 者中任意一个 是“成功”的概率. 例如:一批产品的合格率为 有放回地抽取 有放回地抽取4次 每次一件 每次一件, 例如 一批产品的合格率为0.8,有放回地抽取 次,每次一件 取得合格 一批产品的合格率为 品件数X,以及取得不合格品件数 服从分布为二项分布 品件数 以及取得不合格品件数Y服从分布为二项分布 以及取得不合格品件数 服从分布为二项分布, X对应的实验次数为 对应的实验次数为n=4, “成功”即取得合格品的概率为 成功” 对应的实验次数为 成功 即取得合格品的概率为p=0.8,
第二章随机变量及其分布
若随机变量X的概率分布为
Pn (k ) P( X k)C p (1 p)
k n k
nk
, k 0,1,, n
其中0<p<1,称X服从参数为n和p的二项分布, 记作 X~B(n,p)
例5:一随机数字序列要有多长才能使0至少出 现一次的概率不小于0.9?
泊松分布
若随机变量X的概率分布为
和 2 都是常数, 任意, >0, 其中 2 则称X服从参数为 和 的正态分布. 2 记作 X ~ N ( , )
正态分布 N ( , )的图形特点
2
正态分布的密度曲线是一条关于 对 称的钟形曲线. 特点是“两头小,中间大,左右对称”.
设X~ N ( , ) ,
, x
t2 2
( x )
1 ( x) 2
x
e dt
正态分布与标准正态分布的关系 标准正态分布的重要性在于,任何一个 一般的正态分布都可以通过线性变换转化为 标准正态分布.
F ( x) (
x
)
正态分布的概率计算
( x ) 1 ( x )
5.P( X x) 0
P ( a X b) P ( a X b) P ( a X b) P ( a X b)
例1 :已知连续型随机变量X有概率密度
k x 1 0 x 2 f ( x) 其它 0 求系数k及分布函数F(x),并计算P(0.5<X<3).
2
2
( x)dx
的 2 值,并称之为 关于的双侧分位点。 X
2.3
离散型随机变量函数的分布
例1 已知X的分布列为 X Pk -2 -1 0 1 2 3
概率论与数理统计第2章随机变量及其分布
1 4
)0
(
3 4
)10
C110
(
1 4
)(
3 4
)9
0.756.
(2)因为
P{X
6}
C160
(
1)6 4
(
3 4
)4
0.016
,
即单靠猜测答对 6 道题的可能性是 0.016,概率很小,所
以由实际推断原理可推测,此学生是有答题能力的.
二项分布 b(n, p) 和 (0 1) 分布 b(1, p ) 还有一层密切关
P{X 4} P(A1 A2 ) P(A1)P(A2 ) 0.48 ,
P{X 6} P(A1A2 ) P(A1)P(A2 ) 0.08 , P{X 10} P(A1A2 ) P(A1)P(A2 ) 0.32 , 即 X 的分布律为
X 0 4 6 10
P 0.12 0.48 0.08 0.32
点 e, X 都有一个数与之对应. X 是定义在样本空间 S 上的
一个实值单值函数,它的定义域是样本空间 S ,值域是实数
集合 {0,1,2},使用函数记号将 X写成
0, e TT , X=X (e) 1, e HT 或TH ,
2, e HH.
▪
例2.2 测试灯泡的寿命.
▪
样本空间是 S {t | t 0}.每一个灯泡的实际使用寿命可
(2)若一人答对 6 道题,则推测他是猜对的还是有答 题能力.
解 设 X 表示该学生靠猜测答对的题数,则
X
~
b(10,
1) 4
.
(1) X 的分布律为
P{X
k}
C1k0
(
1)k 4
(
3 4
第2章 随机变量及其分布
, 解 死亡人数 X ~ B(10000 0.005)
40 (1) P{ X 40} C10000 0.005400.9959960 .
k C10000 0.005k 0.99510000 k . (2) P{ X 70} k 0 70
计算相当复杂,下面介绍一个实用的近似公式。
2
2、在有些试验中,试验结果看来与数值无关,但我 们可以引进一个变量来表示它的各种结果.也就是说, 把试验结果数值化. 例1 抛一枚硬币,观察正反面的出现情况. 显然,该试验有两个可能的结果: H , T
我们引入记号:
1, X X (e ) 0,
eH , e T
于是我们就可以用 { X 1}表示出现的是正面, 而用 { X 0} 表示出现的是反面。 X就是一个随机变量。
路口1
路口2
路口3
1 P{ X 0} P( A1 ) . 2
10
路口1
路口2
路口3
1 P{ X 1} P ( A1 A2 ) . 4
路口1
路口2
路口3
1 P{ X 2} P ( A1 A2 A3 ) . 8
11
路口1
路口2
路口3
1 P{ X 3} P ( A1 A2 A3 ) . 8
24
定义
若随机变量X的概率分布为
k! 则称X服从参数为 的泊松分布,记为 X ~ ( ) .
验证规范性:
P{ X k }
k
e , k 0,1,2, , ( 0)
k!
k 0
k
e ,
k! e
k 0
第二章 随机变量及其分布第一节 随机变量及其分布函数讲解
Copyright © 2006 NJUFE
正态分布的概率计算公式:设 ~N (, 2 ),
P( a) (
a
); x2 ) ( x1 );
P( x1 x2 ) (
c P( c) 1 ( ); c c P( c) 2 ( ) ( ); c c P( c) ( ) ( ) 1.
P ( a b) F (b) F ( a )
f ( x)dx;
a
b
若f(x)在x0处连续,则F ( x0 ) f ( x0 )。
连续型随机变量与离散型随机变量的区别: 1) 连续型随机变量没有分布律; 2) 连续型随机变量取个别值的概率为零,即
P( x0 ) 0,x0 (, )。
二、随机变量的分布函数及其基本性质
定义2.2 (教材 p 47)
设
是随机变量,x 是任意实数,称函数 F ( x) P( x), x 为 的分布函数。
对于任意两实数
x1,x2, x1 x2,有
P( x1 x2 ) P( x2 ) P( x1 ) F ( x2 ) F ( x1 )
5. 几何分布 定义2.6( 若离散型随机变量
的分布律为
P( k ) p(1 p)k 1,k 1 , 2, 0 p 1
则称 服从参数为p的几何分布。 第三节、连续型随机变量 一、连续型随机变量的概念 定义2.7(教材 51) 设F(x) 为随机变量 使对一切实数x,都有
pk P( xk ), k 1 , 2,
为 的分布律(概率分布)。
概率论与数理统计-第二章-随机变量及其分布函数ppt课件
表格: X
x1 x2
pk
p1 p2
概率分布图:
1P
xn
pn
0.5
x4 x3
x1
x2
X
.
由概率的性质易知离散型随机变量的分布列
pk
满足下列特征性质:
k 1
① pk 0(k 1,2,) [非负性]
②
pk 1 [规范性]用于确定待定参数
k 1
③ F( x) P( X x) P(X xi ). xi x
1. 2
.
【例2】设随机变量X的分布函数为
aex b, x 0
F(x)
0,
x0
解: 因为 F(x) 在 x=0 点右连续
求: 常数 a 和 b。
所以 lim F ( x) lim (ae x b) a b 0
x0
x0
又因为 F () lim (ae x b) b 1 x
1、两点分布 或(0 - 1)分布
two-point distribution
定义1 设离散型随机变量X的分布列为
X0 1 pk 1 p p
其中 0<p<1
则称 X 服从(0 - 1)分布,记作 X ~(0 - 1)分布
F(x)
(0 - 1)分布的分布函数
0 , x0 F ( x) 1 p, 0 x 1
X = “三次试验中 A 发生的次数”,
{ X 2} A1A2 A3 A1A2 A3 A1A2 A3 P{X 2} P(A1A2 A3 A1A2 A3 A1A2 A3 )
P(A1A2 A3 ) P(A1A2 A3 ) P(A1A2A3 ) P(A1)P(A2)P(A3) P(A1)P(A2)P(A3) P(A1)P(A2 )P(A3 ) C32 p2(1 p)32
第二章随机变量及其分布
3 4
C
4 4
P( X k ) C4k pk ( 1 p )4k k 0,1,2, 3,4
设试验 E 只有两个结果:A和 A,
记: P( A ) p, P( A ) 1 p q ( 0 p 1 )
将 E 独立地重复 n 次,则称这一串重 复的独立试验为 n 重贝努利( Bernoulli )试 验,简称为贝努利( Bernoulli )试验
1、随机变量取那些值或取值的范围???
2、随机变量取这些值或落在某一范围的概 率???
§2.2 离散型随机变量及其分布律
例 有奖储蓄,20万户为一开奖组,设特等 奖20名,奖金4000元;一等奖120名,奖金 400元;二等奖1200名,奖金40元;末等奖 4万名,奖金4元。考察得奖金额 X 。
例有奖储蓄,20万户为一开奖组,设特等奖 20名,奖金4000元;一等奖120名,奖金400 元;二等奖1200名,奖金40元;末等奖4万名, 奖金4元。考察得奖金额 X 。
X ~( )
泊松分布应用:
一本书一页上的印刷错误数 某医院一天内的急诊病人数 某公共汽车站候车的乘客数 母鸡的下蛋数 一平方米内,玻璃上的气泡数
它常与单位时间(单位面积、单位产品) 上的计数过程相联系。
二项分布的Poisson近似
泊松定理
设λ是一个正整数,
pn
,则有:
我们来求X的概率分布。
X表示随机抽查的4个婴儿中男孩的个 数,生男孩的概率为 p.
X=0 X =1 X =2 X =3 X =4
p0 ( 1 p )4
p4 ( 1 p )44
p1( 1 p )41
p3 ( 1 p )43
概率论第二章
将 p = 0.5 代入,得
1 0 X ~ 0 .5 0.25 2 0.125 3 0 .0625 0 .0625 4
下面,重点介绍三种离散型随机变量的概率分 布。 (一)0-1分布 分布 若X 的分布律为 k 1− k P { X = k } = p (1 − p ) , k = 0 ,1 或者 0 1 X p pk 1− p 则称随机变量 X 服从参数为 的0-1分布 参数为p的 分布. 参数为 如果试验的结果只有两个:成功与失败,并且成 功的概率为p,则成功的次数 X 服从参数为p的0-1 分布。
P{ X ≥ 2} = 1 − P{ X = 0} − P{ X = 1}
P{ X ≥ 2} = 1 − P{ X = 0} − P{ X = 1}
= 1 − (0.99) − 20(0.01)(0.99) = 0.0169 设A为“四个人中至少有一个人来不及维修”这 一事件,则有
20 19
P( A) ≥ P{ X ≥ 2} = 0.0169
P{ X ≥ 2} = 1 − P{ X = 0} − P{ X = 1}
= 1 − (0.98)
400
− 400(0.02)(0.98)
399
直接计算上式比较麻烦,为此需要一个近似计算 公式。我们先引入一个重要的分布。
(三) 泊松分布 三 泊松分布(Poisson Distribution) 如果随机变量 X 的分布律为:
例6 社会上定期发行某种奖券,中奖率为p.某人 每次购买一张奖券,如果没有中奖则下次继续购买1 张,直至中奖为止.求该人购买次数的分布律. 解 设该人购买的次数为X ,则X的可能取值为
1, 2 , L .
{X = 1} 表示第一次购买就中奖,其概率为p.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
解:按 第一 种方法 。 。 以X记“ 第一 人维护 的20台 中同 一时刻 发生故 障的 台数” 以A ( i =1,2,3,4) 表 示事 件“第人 i 维护的 台 20 中发 生故障 不能 i 及时维 修” ,则知 80台中 发生 故障不 能及 时维 修的概 率为 :
而X ∼ b ( 20, 0.01) , 故有:
(p+q=1)
* n重贝努利试验:设试验E只有两个可能的结果: A, A 重贝努利试验:设试验E只有两个可能的结果: p(A)=p,0<p<1,将E独立地重复进行n次,则称这一串重复 独立地重复进行n 则称这一串重复 , 的独立试验为n重贝努利试验。 独立试验为n重贝努利试验 试验为 在相同条件下 重复进行
12
有一大批产品,其验收方案如下:先作第一次检验, 例:有一大批产品,其验收方案如下:先作第一次检验, 从中任取10件 经检验无次品接受这批产品,次品数大于2 从中任取10件,经检验无次品接受这批产品,次品数大于2拒 10 否则作第二次检验,从中任取5 仅当5 收;否则作第二次检验,从中任取5件,仅当5件中无次品便 接受这批产品,设产品的次品率为p 接受这批产品,设产品的次品率为p. 求这批产品能被接受的概率L(p). 求这批产品能被接受的概率 . 为第一次抽得的次品数, 为第二次抽得的次品数 为第二次抽得的次品数; 解:设X为第一次抽得的次品数,Y为第二次抽得的次品数; 为第一次抽得的次品数 (10,p) (5,p) 则X~b(10, ),Y~b(5, ), ~ (10, ~ (5, P( A|1 ≤ X ≤ 2) X=i} Y=j}独立。A={接受该批} ={接受该批 且{X=i}与{Y=j}独立。A={接受该批}。 = P(Y = 0|1≤ X ≤ 2)
2 ) P( X ≥ 1) = 1 − P( X = 0) = 1 − (1 − p) n (
同时可知: 同时可知: lim P ( X ≥ 1) = 1
n →∞
上式的意义为: 较小, 充分大, 上式的意义为:若p较小,p≠0,只要 充分大,至 较小 ,只要n充分大 少有一次命中的概率很大。 小概率事件” 少有一次命中的概率很大。即“小概率事件”在 大量试验中“至少有一次发生”几乎是必然的。 大量试验中“至少有一次发生”几乎是必然的。
即每次试验结果 互不影响
6
例:
独立重复地抛n次硬币,每次只有两个可能的结果: 1. 独立重复地抛n次硬币,每次只有两个可能的结果: 正面,反面, 正面,反面, P (出现正面 ) = 1 2 2.将一颗骰子抛n 2.将一颗骰子抛n次,设A={得到1点},则每次试验 将一颗骰子抛 A={得到1 得到 只有两个结果: 只有两个结果:A, A, P A = 1 6
推导:设Ai={ 第i次A发生 },先设n=3
P( X = 0) = P( A1 A 2 A3 ) = (1 − p)3
1 P ( X = 1) = P( A1 A 2 A3 U A1 A 2 A3 U A1 A 2 A3 ) = C3 p1 (1 − p)3−1
P( X = 2) = P( A1 A 2 A3 U A1 A 2 A3 U A1 A 2 A3 ) = C32 p 2 (1 − p)3− 2
P ( X = 3) = P( A1 A 2 A3 ) = p 3
k 一般 P( X = k) = Cn pk (1− p)n−k , k = 0,1,2,L, n
8
例: 设有80台同类型设备, 设有80台同类型设备,各台工作是相互独 80台同类型设备 立的,发生故障的概率都是0.01 0.01, 立的,发生故障的概率都是0.01,且一台设备 的故障能有一个人处理。 的故障能有一个人处理。 考虑两种配备维修工人的方法, 考虑两种配备维修工人的方法, 其一是由4个人维护,每人负责20 20台 其一是由4个人维护,每人负责20台; 其二是由3个人共同维护80 80台 其二是由3个人共同维护80台。 试比较这两种方法在设备发生故障时不能及时 维修的概率的大小。 维修的概率的大小。
(1)
P( X ≥ 2) = 1 − P( X = 0) − P( X = 1) = 1 − e
(1 + 4.5) = 0.9389
( 2)
P( X = 2) = 0.1198 P ( X = 2 | X ≥ 2) = P ( X ≥ 2)
14
二 分布 泊 分 有 项 与 松 布 以下 似 式 近 公 :
10
某人骑了自行车从学校到火车站, 例:某人骑了自行车从学校到火车站,一路上 要经过3个独立的交通灯, 要经过3个独立的交通灯,设各灯工作独 且设各灯为红灯的概率为p 0<p<1, 立,且设各灯为红灯的概率为p,0<p<1, 表示一路上遇到红灯的次数。 以Y表示一路上遇到红灯的次数。 (1)求 的概率分布律; (1)求Y的概率分布律; (2)求恰好遇到 次红灯的概率。 求恰好遇到2 (2)求恰好遇到2次红灯的概率。 解:这是三重贝努利试验 Y ~ b(3, p)
P ( X = k ) = P( A1 A2 ⋅⋅⋅ Ak −1 Ak ) = (1 − p ) k −1 p, k = 1, 2, ⋅⋅⋅
亦称X为服从参数 的几何分布。 亦称 为服从参数p的几何分布。 为服从参数
5
三个主要的离散型随机变量
0-1(p) 分布 二项分布
X p 0 q 1 p
样本空间中只 有两个样本点
k P ( X = k ) = Cn p k (1 − p ) n − k , = 0,⋅⋅⋅,n k 1,
并称X服从参数为 的二项分布, 并称 服从参数为n ,p的二项分布,记 X ~ b(n, p) 服从参数为 的二项分布
k 注: = ( p + q) = ∑Cn pk qn−k 其中q =1− p 1 n k =0 n
第二章 随机变量及其分布
关键词:
随机变量 概率分布函数 离散型随机变量 连续型随机变量 随机变量的函数常见的两类试验结果: 常见的两类试验结果:
降雨量;候车人数; 示数的——降雨量;候车人数;发生交通事故的次数… 明天天气( );化验结果 阳性,阴性) 化验结果( 示性的——明天天气(晴,多云…);化验结果(阳性,阴性)…
3
例:某人骑自行车从学校到火车站,一路上要经 某人骑自行车从学校到火车站, 个独立的交通灯,设各灯工作独立, 过3个独立的交通灯,设各灯工作独立,且设 各灯为红灯的概率为p, 各灯为红灯的概率为 ,0<p<1,以X表示首次 1 停车时所通过的交通灯数, 的概率分布律。 停车时所通过的交通灯数,求X的概率分布律。 的概率分布律 解: ={第 个灯为红灯 个灯为红灯} 设Ai={第i个灯为红灯},则P(Ai)= ,i=1,2,3 ( )=p, =1,2,3 相互独立。 且A1,A2,A3相互独立。
( ) ( 0.01) ( 0.99 )
k
20 − k
= 0.0169
按第二种方法。以Y记 台中同一时刻发生故障的台数, 80 80 故 台中发生故障而不能及时维修的概率为:
k P {Y ≥ 4} = 1 − ∑ ( C80 ) ( 0.01) ( 0.99 ) 3 k k =0 80 − k
= 0.0087
X P
x1 p1 x2 p2
… …
xi pi
… …
pi ≥ 0, ∑ pi = 1
i =1
∞
样本空间S={ X=x1,X=x2,…,X=xn,… } 由于样本点两两不相容 ∞ ∞
1 = P(S) = ∑P( X = xi ) = ∑ pi
i=1 i=1
# 概率分布
写出可能取值-- --即写出了样本点 1、写出可能取值--即写出了样本点 写出相应的概率-- --即写出了每一个样本点出现的概率 2、写出相应的概率--即写出了每一个样本点出现的概率
中心问题: * 中心问题:将试验结果数量化
s e x
--为 上的单值函数, X=f(e)--为S上的单值函数,X为实数
定义:随试验结果而变的量X为 * 定义:随试验结果而变的量 为随机变量
*
常见的两类随机变量
离散型的 连续型的
2
§2
离散型随机变量及其分布
定义: 定义:取值可数的随机变量为离散量 离散量的概率分布(分布律) 离散量的概率分布(分布律)
P( X = 0) = P( A1 ) = p ;
P ( X = 1) = P ( A1 A2 ) = (1 − p ) p ;
P ( X = 2) = P ( A1 A2 A 3 ) = (1 − p ) 2 p ;
P ( X = 3) = P ( A1 A2 A 3 ) = (1 − p ) 3 ;
X p 0 p 1 p(1-p) 2 3
注意: = 0) , ( X =1) , ( X = 2) (X
( X = 3) 为S的一个划分
4
(1-p)2p (1-p)3
从生产线上随机抽产品进行检测, 例:从生产线上随机抽产品进行检测,设产品 的次品率为p 0<p<1, 的次品率为p,0<p<1,若查到一只次品就 得停机检修,设停机时已检测到X只产品, 得停机检修,设停机时已检测到X只产品, 试写出X的概率分布律。 试写出X的概率分布律。 ={第 次抽到正品} i=1,2,… 解:设Ai={第i次抽到正品},i=1,2,… 相互独立。 则A1,A2,…相互独立。
当 >10, p < 0.1 , n 时
k Cn pk
(1− p)
n−k
e−λλk , 其 λ = np ≈ 中 k !
13
泊松分布(Poisson分布) 泊松分布(Poisson分布) (Poisson分布 若随机变量X 若随机变量X的概率分布律为 e−λλk