概率论二维随机变量及其分布

合集下载

第三章 多维随机变量及其分布 第一节 二维随机变量及其分布函数 概率论课件

第三章 多维随机变量及其分布 第一节 二维随机变量及其分布函数 概率论课件

前面我们介绍了二维随机变量的概 念, 二维随机变量的分布函数及其性质。
二维随机变量也分为离散型和连续型, 下面我们分别讨论它们。
三、二维离散型随机变量 及其概率分布
如果二维随机变量(X,Y)的每个分 量都是离散型随机变量,则称(X,Y)是 二维离散型随机变量.
二维离散型随机变量(X,Y)所有可 能取的值也是有限个或可列无穷个.
求: 二维随机变量(X,Y)的概率分布和其边缘分 布.
解: (X,Y)所有可能取的值是
(0,0),(0,1),(1,0,),(1,1).
P{X=0,Y=0}
=P{第一次取到正品且第二次也取到正品},
利用古典概型,得: P{X=0,Y=0}=(76)/(109)=7/15
同理求得:
P{X=0,Y=1}=(73)/(109)=7/30
第三章
多维随机变量及其分布
一般地,我们称n个随机变量的整体
X=(X1, X2, …,Xn)为n维随机变量或随
机向量. 以下重点讨论二维随机变量.
请注意与一维情形的对照 .
第三章 第一节
二维随机变量及其分布函数
一、二维随机变量
设随机试验E的样本空间是Ω,X=X() 和Y=Y()是定义在Ω上的随机变量, 由它们 构成的向量(X,Y),称为二维随机变量(向量)。
而把F(x,y)称为X和Y的联合分布函数。
注意
X与Y的边缘分布函数,实质上就是一维随 机变量X或Y的分布函数。称其为边缘分布函数 的原因是相对于(X,Y)的联合分布而言的。
同样地,(X,Y)的联合分布函数F(x, y)是相 对于(X,Y)分量X与Y的分布而言的。
求法
FX(x)=P{X≤x}=P{X≤x,Y<∞}=F(x,∞) FY(y)=P{Y≤y}=P{X<∞,Y≤y}=F(∞,y)

《概率论》二维随机变量及其分布函数的定义、基本性质

《概率论》二维随机变量及其分布函数的定义、基本性质

定义3-1 n个随机变量X1,X2,…,X n构成的整体X=(X1,X2,…,X n)称为一个n维随机变量或n维随机向量,X i称为X的第i(i=1,2,…,n)个分量.
定义3-2 设(x,Y)为一个二维随机变量,记
F(x,y)=P{X≤x,Y≤y},-∞<z<+∞,-∞<y<+∞,< p="" style="padding: 0px; list-style: none;">
称二元函数F(x,y)为X与y的联合分布函数或称为(X,Y)的分布函数.
(X,Y)的两个分量X与y各自的分布函数分别称为二维随机变量(X,Y)关于X与关于y的边缘分布函数,记为F X(x)与F Y(y).
边缘分布函数可由联合分布函数来确定,事实上,一元函数
几何上,若把(X,Y)看成平面上随机点的坐标,则分布函数F(x,y)在(x,y)处的函数值就是随机点(X,Y)落在以(x,y)为顶点、位于该点左下方的无穷矩形D内的概率.
分布函数F(x,y)具有下列性质:
(1)F(x,y)是变量x(或y)的不减函数.
(2)0≤F(x,y)≤l,
对任意固定的y,F(-∞,y)=0
对任意固定的x,F(x,-∞)=0;
F(-∞, -∞)=0,F(+∞,+∞)=1. (3)F(x,y)关于x和关于y均右连续,即F(x,y)=F(x+0,y);F(x,y)=F(x,y+0). (4)对任意固定的x1<x2,y1<y2
F(x2 ,y2)-F(x2,yl)-F(xl,y1)+F(x1+yl)≥0.。

概率论与数理统计第四章二维随机变量及其分布

概率论与数理统计第四章二维随机变量及其分布

(4)
fX Y (x
y)
f (x, y) fY ( y)
= ex
fY X ( y
x)
f (x, y) fX (x)
= ey
(5)
f (x, y) exy fX (x) fY ( y)
因此X ,Y相互独立。
二、二维连续型随机变量函数的分布
1.Z=X+Y的分布 设(X,Y)的联合密度函数为f(x,y),则由分布函数的定义知, Z=X+Y的分布函数为:
3. F (x , y) 为连续函数,且在f(x,y)的连续点处,
2F(x, y) f (x, y) xy
一、二维连续型随机变量概念
定义8 称
f X (x)
f (x, y)dy
( x )
为X的边缘密度函数。

fY ( y)
f (x , y)dx
( y )
为Y的边缘密度函数。一、二维连ຫໍສະໝຸດ 型随机变量概念定义9称
fX Y (x
y)
f (x, y) fY ( y)
为在Y=y条件下X的条件概率密
度,称
f (x, y) fY X ( y x) fX (x)
为在X=x条件下Y的条件概率密度.
定理2 设(X,Y)为二维连续型随机变量,则X与Y相互独 立等价于 f (x, y) fX (x) fY ( y)
y)
一、二维随机变量的概念
联合分布函数F(x,y)有如下的性质:
1. 0 F(x , y) 1
2. F(x , y) 关于x、关于y单调不减;
3. F(x , y) 关于x、关于y右连续
4.
lim F(x , y) 0 , lim F(x , y) 1

概率论二维随机变量总结

概率论二维随机变量总结

概率论二维随机变量总结二维随机变量是指具有两个随机变量组成的随机向量,用(X, Y)表示。

概率论中研究二维随机变量的分布、期望、方差以及其它统计特性。

1. 二维随机变量的联合分布:联合分布是描述二维随机变量X 和Y的取值情况和对应的概率的函数。

可以通过联合概率密度函数或联合分布函数来表示。

2. 边缘分布:边缘分布是指某个变量的分布,不考虑另一个变量的取值情况。

对于二维随机变量(X, Y),X的边缘分布是通过对所有可能的Y求和或积分得到的函数,Y的边缘分布同理。

3. 条件分布:条件分布是指在已知一个变量的取值情况下,另一个变量的分布情况。

对于二维随机变量(X, Y),给定X的条件下Y的条件分布可以通过联合分布和边缘分布得到,形式为P(Y|X)。

4. 期望和方差:对于二维随机变量(X, Y),期望E(X)表示X的平均取值,E(Y)表示Y的平均取值,方差Var(X)表示X的取值的离散程度,Var(Y)表示Y的取值的离散程度。

5. 协方差和相关系数:协方差描述了X和Y之间的线性相关程度,可以通过公式Cov(X, Y) = E((X - E(X))(Y - E(Y)))计算得到。

相关系数表示X和Y之间的线性相关程度的强度,公式为Corr(X, Y) = Cov(X, Y) / (SD(X) * SD(Y)),其中SD(X)和SD(Y)分别表示X和Y的标准差。

6. 独立性:如果二维随机变量(X, Y)的联合分布可以拆分为X 的边缘分布和Y的边缘分布的乘积形式,即P(X, Y) = P(X) * P(Y),则称X和Y是独立的。

独立性意味着X和Y之间没有任何关联。

7. 协变和不相关性:如果协方差Cov(X, Y)为0,则X和Y是不相关的,不相关性不一定意味着独立性。

如果协方差Cov(X, Y)大于0,则X和Y是正相关的,如果Cov(X, Y)小于0,则X和Y是负相关的。

以上是二维随机变量的一些基本概念和理论,这些知识可以用于分析和解决涉及二维随机变量的问题。

概率论公式大全二维随机变量多项分布与独立同分布

概率论公式大全二维随机变量多项分布与独立同分布

概率论公式大全二维随机变量多项分布与独立同分布概率论是数学中的一个重要分支,它研究随机事件以及其概率性质。

其中,随机变量是概率论中的一个基本概念,它可以用来描述随机现象和随机试验的结果。

本文将介绍概率论中与二维随机变量、多项分布以及独立同分布相关的公式。

一、二维随机变量在概率论中,随机变量可以分为一维和多维两种情况。

一维随机变量描述的是具有一个取值的随机事件,而二维随机变量则描述的是具有两个取值的随机事件。

常见的二维随机变量包括离散型和连续型两种。

1. 离散型二维随机变量离散型二维随机变量的概率分布可以通过联合概率质量函数(Joint Probability Mass Function,简称JPMS)来描述。

对于二维离散型随机变量(X, Y),其概率分布可以用如下公式表示:P(X = x, Y = y) = P(X, Y)其中,P(X = x, Y = y)表示随机变量X取值为x,随机变量Y取值为y的概率,P(X, Y)表示联合概率质量函数。

2. 连续型二维随机变量对于连续型二维随机变量,其概率分布则可以通过联合概率密度函数(Joint Probability Density Function,简称JPDS)来描述。

对于二维连续型随机变量(X, Y),其概率分布可以用如下公式表示:P(a ≤ X ≤ b, c ≤ Y ≤ d) = ∬f(x, y)dxdy其中,f(x, y)表示联合概率密度函数,∬表示对整个平面积分,a、b、c、d为常数。

二、多项分布多项分布是二项分布的推广,它适用于具有多个离散可能结果的试验。

假设有n个独立的试验,每个试验有k种可能的结果,且每种结果出现的概率是固定的。

那么多项分布描述了试验结果中每种可能出现的次数的概率分布。

多项分布的概率质量函数可以表示为:P(X₁ = x₁, X₂ = x₂, ..., Xk = xk) = (n! / (x₁! * x₂! * ... * xk!)) *(p₁^x₁ * p₂^x₂ * ... * pk^xk)其中,n为试验次数,xi表示结果i出现的次数,pi表示结果i出现的概率。

2.2 概率论——二维离散型随机变量及其分布

2.2 概率论——二维离散型随机变量及其分布
1,
x 0或y 0, 0 x 1, y 0或0 y 1, x 0 x 1, y 1
P(X1=1, X2=1) = P(|Y|<1, |Y|<2)= P(|Y|<1) = 0.6826
列表为:
X1 X2 0 1
0
0.0455 0
1
0.2719 0.6826
例5:设二维d.r.v.(X,Y)服从二元两点分布:
Y X
0
1
0
q
0
1
0
p
试求(X,Y)的分布函数。
0, F ( x, y) q,
2.2 二维d.r.v.及其分布
定义 如果随机向量 ( X,Y ) 的全部取值 (向量或点 ) 为有限多个或至多可列个,则称 ( X,Y )为离散型随机向量。
( X,Y )为离散型随机向量
X与Y均为离散型随机变量
记( X ,Y )的取值集合为 E {( xi , y j ), i, j 1,2, } P{ X xi ,Y y j } pij , i, j 1,2,
(1) 确定随机变量 (X, Y) 的所有取值数对. (2) 计算取每个数值对的概率. (3) 列出表格.
对任意的A E
P{( X ,Y ) A} pij
ij
( xi , y j ) A
( X ,Y )的联合分布函数
F(x, y) P{X x,Y y}
pij
xi x y j y
解 (1) X 可能的取值为 1,2,3,Y 可能的取值为2,3,4,
但 ( X ,Y )的取值为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)。
由古典概型公式
P{ X
1,Y
2}

经济数学——概率论与数理统计 3.1 二维随机变量及其分布

经济数学——概率论与数理统计  3.1  二维随机变量及其分布
若(X,Y)的分布律为P{X=xi,Y=yj}=pij, i,j=1,2,… 则(X,Y)的分布函数为
其中和式是对一切满足xi≤x , yj≤y求和。
例 若(X,Y)的分布律如下表,求(X,Y)的分布函数。 Y 0 1 X 0 1/2 0 y 1 解 0 1/2
1
1 x
四、 二维连续型随机变量
1.定义:设(X,Y)的联合分布函数为F(x,y),若存在一非负 函数f(x,y),使得对于任意的实分布
二维随机变量及其分布 第二节 边缘分布 第三节 随机变量的独立性 第四节 二维随机变量函数的分布
第一节 二维随机变量及其分布
一、二维随机变量的定义
1.定义: 随机试验E的样本空间Ω={e},设X1(e), X2(e)为定 义Ω上的随机变量,由它们构成的一个向量(X1,X2)叫做 二维随机变量或二维随机向量。 对于二维随机变量, 需要考虑 ①二维随机变量作为一个整体的概率分布或称联合分布; ②还要研究每个分量的概率分布或称边缘分布; ③并且还要考察各分量之间的联系,比如是否独立等。
利用极坐标计算可得
从而有 Aπ=1,即可得A=1/π。
(2)依题意需求概率
下面我们介绍两个常见的二维分布.
设G是平面上的有界区域,其面积为A.若二 维随机变量( X,Y)具有概率密度
则称(X,Y)在G上服从均匀分布.

向平面上有界区域G上任投一质点,若质点落 在 G内任一小区域 B的概率与小区域的面积成正比, 而与B的形状及位置无关. 则质点的坐标 (X,Y)在G 上服从均匀分布.
0≤F(x,y)≤1。
因为{X≤x1,Y≤y}{X≤x2,Y≤y}. (2). 对于任意固定的y, F(-∞,y)=0;
对于任意固定的x, F(x,-∞)=0;

《概率论与数理统计》课件3-1二维随机变量及其联合分布

《概率论与数理统计》课件3-1二维随机变量及其联合分布
P{a X b} = F(b) − F(a) + P{X = a}
二维随机变量联合分布函数
F(x,y) = P{X x,Y y}
(1) 有界性 0 F(x,y) 1,且有F(− ,y) = lim F(x,y) = 0
x→−
F(x,− ) = lim F(x,y) = 0 F(− ,− ) = lim F(x,y) = 0 ,
1
F(
) 1 F( y) 0 F(x ) 0
F ( , ) A(B )(C ) 1
2
2
F ( , y) A(B )(C arctan y) 0 2
F ( x,
) A( B arctan x) ( C
)0
2
A
F (x, y) y).
1
2
,
B
1
2 (2
C.
2
arctan x)( 2
arctan
(2) P 0 X , 0 Y 1 F( ,1) F(0,1) F( , 0) F(0, 0) .
则〈
l
0,

P 恳1 < X 共 2,3 < Y 共 5}
x > 0, y > 0 其
= F(2,5) − F(1,5) − F(1,3) + F(2,3)
A) V
B) 根
A
B
提交
1 F(x, y) A(B arctan x)(C arctan y).
1
A, B,C 2 P 0 X , 0 Y 1
A.
B.
C.
D.
A
C
B
D
提交
1. F(x, y) P{X x,Y y}.
2.

概率论与数理统计§3.1 二维随机变量及其函数;§3.2 二维随机变量的分布

概率论与数理统计§3.1 二维随机变量及其函数;§3.2 二维随机变量的分布

2. 性质
(1) f ( x , y ) 0.
( 2)
f ( x, y ) d x d y F (, ) 1.

( 3) 设 G 是 xoy 平面上的一个区域, 点 ( X ,Y ) 落在 G 内的概率为
P {( X ,Y ) G } f ( x , y ) d x d y .
2F ( x, y) (4) 若 f ( x , y ) 在 ( x , y ) 连续, 则有 f ( x, y) . xy
P X a, Y c P (a X , c Y )
1 F (, c ) F (a, ) F (a, c )
(+,c)
x
例2. 设二维随机变量(X ,Y )的联合分布函数
x y F ( x, y ) A B arctan C arctan 2 2 x , y
F ( x, y)
x yy pij , x
i j
其中和式是对一切满足xi x , y j y 的 i , j 求和.
例如,在例4中
1 1 F (1, 2) P{ X 1, Y 2} p11 p12 0 . 3 3
3.2.3 二维连续型随机变量 1.定义
其中A , B , C 为常数. (1) 确定A , B , C ;
(2) 求P (X > 2).
解 (1) F (, ) A B C 1 2 2 y F (, y ) A B C arctan 0 2 2 x F ( x, ) A B arctan C 0 2 2 1 B ,C , A 2 . 2 2 1 x y (2) F ( x, y ) 2 ( arctan )( arctan ) 2 2 2 2

概率论:二维随机变量的函数的分布

概率论:二维随机变量的函数的分布

( X ,Y ) Z X Y
(1, 2 ) (1,4 ) ( 3, 2 ) ( 3 ,4 )
3 5 5 7
所以
Z X Y P
3
0.18
5
7
0.54
0.28
具有可加性的两个离散分布
设 X ~B (n1, p), Y ~B (n2, p), 且独立, 则 X + Y ~ B ( n1+n2, p) 设 X ~ P (1), Y ~ P (2), 且独立, 则 X + Y ~ P(1+ 2)
证明过程见73页例3.21
三、连续型随机变量函数的分布
问题 已知二维随机变量( X ,Y )的密度函数, g(x,y)为已知的二元函数, 求 Z= g( X ,Y ) 的密度函数. 方法 从求Z 的分布函数出发,将Z 的分布函数 转化为( X ,Y )的事件
连续型随机变量函数的分布主要形式
(1) Z X Y 的分布

卷积计算思路
f Z ( z) f X ( x) fY ( z x)dx


在xoz平面上确定被积函数及其非零区域D;
参照D就z在(-∞,+∞)上进行分段;
对上述各分段中取定的z值,就x从- ∞积分至 +∞,实际只需在非零区域D上一段积分. 注意:上述也是一般参量积分的计算方法。

x2 2
e
( z x)2 2
dx
1 e z 2 t x
2
z 2 z ( x ) 2 4 2
e
dx
1 e 2
z 2 t 2 4
e
dt
1 e 2 z 1 2( 2 ) e ( z ). 2 2

《概率论与数理统计》第3章 二维随机变量及其分布

《概率论与数理统计》第3章 二维随机变量及其分布

23 April 2012
第三章 多维随机变量及其分布
注意点
第32页
(1) X 与Y是独立的其本质是: 任对实数a, b, c, d,有
Pa X b, c Y d Pa X b Pc Y d
(2) X 与Y 是独立的,则g(X)与h(Y)也是独立的.
23 April 2012
0
=A/6
所以, A=6
23 April 2012
第三章 多维随机变量及其分布
第22页
例3.3.2

(X,
Y)

p( x,
y)
6e(2x3y) , 0,
x 0, y 0 其它
试求 P{ X< 2, Y< 1}.
23 April 2012
第三章 多维随机变量及其分布
第23页
y
解: P{ X<2, Y<1} p(x, y)dxdy
3.1.2 联合分布函数
定义3.1.2 (以下仅讨论两维随机变量)
任对实数 x 和 y, 称 F(x, y) = P( X x, Y y)
为(X, Y) 的联合分布函数.
注意:
F(x, y)为(X, Y)落在点(x, y)的左下区域的概率.
23 April 2012
第三章 多维随机变量及其分布
x1 x2 … xi …
23 April 2012
y1 y2 … yj …
p11 p12 … p1j … p21 p22 … p2j … … … ……… pi1 pi2 … pi j … … … ………
第三章 多维随机变量及其分布
第9页
联合分布列的基本性质
(1) pij 0, i, j = 1, 2,… (非负性)

概率论第三章二维随机变量

概率论第三章二维随机变量

取下列数组中的值:(0,0),( :(0,0),(例2 二维离散型随机向量 ( X ,Y ) 取下列数组中的值:(0,0),(-1,1) 1,2),(2,0);且相应的概率依次为 且相应的概率依次为:1/6, (-1,2),(2,0);且相应的概率依次为:1/6, 1/3, 1/12, 5/12. 的联合概率分布 分布. 求X与Y的联合概率分布.
X Y y1
y2

yj

Hale Waihona Puke x1 p11 x 2 p21 ⋮ ⋮ xi pi1 ⋮ ⋮ 联合分布律 联合分布律的性质 (1) p ij ≥
p12 ⋯ p1 j p22 ⋯ p2 j ⋮ ⋮ pi 2 ⋯ pij ⋮ ⋮ 0 ; (2) ∑ ∑
⋯ ⋯ ⋯
p ij = 1
i ≥1 j ≥1
边缘分布 分布律 2. 边缘分布律 二维离散型随机变量的边缘分布律可列于联合分布 二维离散型随机变量的边缘分布律可列于联合分布 可列 的两侧: 表的两侧 Y y y ⋯ y ⋯
型随机变量(X,X, 的分布律,或随机变量X 型随机变量(X,X,)的分布律,或随机变量X与Y的联合 (X,X 分布律 分布律.可记为
, ( X ,Y) ~ pij = P( X = xi ,Y = y j ) (i, j =1,2,⋯ )
二维离散型随机变量的联合分布律可列表如下: 二维离散型随机变量的联合分布律可列表如下 可列表如下
p12 1/ 4 p22 1/ 2 p32 1/ 4 1/ 2 1/ 2 1
3. 求联合分布的步骤与方法 求联合分布的步骤与方法 分布 先画出二向表的表头,并确定X 的取值; (1) 先画出二向表的表头,并确定X与Y的取值; 求联合分布表的中的概率项. (2) 求联合分布表的中的概率项.

概率论与数理统计 二维连续性随机变量及其分布

概率论与数理统计 二维连续性随机变量及其分布
计算公式: 计算公式 cov(X,Y) =E(XY)-E(X)E(Y).
概率论与数理统计
例5 (X,Y)分布律如下,求cov(X,Y) X,Y)
−1 0 2 P +∞ 0.3 0.45 0.25 P 0.55 0.25 0.2 E( X ) = ∑xi pi = 0×0.3+1×0.45 + 2×0.25 = 0.95,
E ( X ) = ∫−∞ xf ( x)dx
+∞
概率论与数理统计
3.随机变量函数的数学期望 (1)X为随机变量,Y=g(X), 离散型: 离散型: E (Y ) = E[ g ( X )] = ∑ g ( xi ) pi
i =1 ∞
连续型: 连续型:E (Y ) = E[ g ( X )] =

]
E{[ X − E ( X )][Y − E (Y )]} D ( X ) D(Y ) Cov( X , Y )
D ( X ) D(Y )
概率论与数理统计
若D (X ) > 0, D (Y ) > 0 ,称
( X − E( X ))(Y − E(Y) cov( X ,Y) E = D( X ) D(Y) D( X ) D(Y)
−∞ −∞
概率论与数理统计
j =1 i =1
解 X 型区域D : 0 ≤ y ≤ x, 0 ≤ x ≤ 1;
y
D
O
x
概率论与数理统计
X 型区域D : 0 ≤ y ≤ x, 0 ≤ x ≤ 1;
概率论与数理统计
1.E (C ) = C 2. E (aX ) = a E (X ) 3.E (X + Y ) = E (X ) + E (Y )

《概率论与数理统计》第一节二维随机变量及其分布

《概率论与数理统计》第一节二维随机变量及其分布

( x,y)
Ae (2 x3 y) ,
0,
x 0, 其它.
y
ห้องสมุดไป่ตู้
0,
求:(1)常数A;(2) (X, Y)的分布函数F(x, y); (3) (X, Y)落在三角形区域D:x0, y0, 2x+3y6内的概率.
解:(1)
f ( x, y)dxdy
Ae (2 x3 y)dxdy
00
A
e2 xdx
0
e3 ydy
0
A 3
e2xdx
0
A 3
(
1 2
e
2
x
)
0
A, 6
A 6
1,
A
6.
(2) ( X ,Y )的分布函数为:
F(x, y)
x
y
f
(u,
v
)dudv
x y 6e(2u3v)dudv,
00
0,
x 0, y 0, 其它.
(1
e2 0,
x
)(1
e3
注: P{x1 X x2 , y1 Y y2 } F( x2,y2 ) F( x1,y2 ) F( x2,y1 ) F( x1,y1 ).
3. 分布函数F(x, y)的性质:
(1)非负规范: 对任意(x, y) R2 , 0 F(x, y) 1, 且
F (, ) lim F ( x, y) 1,F (, ) lim F ( x, y) 0,
XY 0 1
0 0.3 0.3
1 0.3 0.1 若把不放回改为有放回的摸球,则( X ,Y )的分布律为:
XY 0 1
0 0.36 0.24
1 0.24 0.16

概率论二维随机变量及其分布

概率论二维随机变量及其分布
FX(x) F(x, )
FY(y)
F (, y)
.
二维随机变量的分布函数
P { x 1 x x 2 ,y 1 y y 2 } F ( x 2 ,y 2 ) F ( x 2 ,y 1 ) F ( x 1 ,y 2 ) F ( x 1 ,y 1 ). 若已知 (X,Y)的分布函数F(x,y),则可由F(x,y) 导出 X和 Y各自的分布函数 FX(x)和 FY(y):
(x 2 , y2)
y1
O x1
x2 x
图 2.
二维随机变量的分布函数
P { x 1 x x 2 ,y 1 y y 2 } F ( x 2 ,y 2 ) F ( x 2 ,y 1 )
F ( x 1 ,y 2 ) F ( x 1 ,y .1 ).
二维随机变量的分布函数
P { x 1 x x 2 ,y 1 y y 2 } F ( x 2 ,y 2 ) F ( x 2 ,y 1 ) F ( x 1 ,y 2 ) F ( x 1 ,y 1 ). 若已知 (X,Y)的分布函数F(x,y),则可由F(x,y) 导出 X和 Y各自的分布函数 FX(x)和 FY(y):
(2)F(x,y)关于 x和 y均为单调非减函数,即
.
联合分布函数的性质 注:以上四个等式可从几何上进行说明.
(2)F(x,y)关于 x和 y均为单调非减函数,即 对任意固定的 y, 当 x 2 x 1 ,F ( x 2 ,y ) F ( x ,y 1 ), 对任意固定的 x, 当 y 2 y 1 ,F ( x ,y 2 ) F ( x ,y 1 ); (3)F(x,y)关于 x和 y均为右连续,即 F ( x , y ) F ( x 0 , y ) F ( x , y , ) F ( x , y 0 ).

二维连续型随机变量分布函数及概率的计算

二维连续型随机变量分布函数及概率的计算

二维连续型随机变量分布函数及概率的计算二维连续型随机变量是概率论中一个重要的概念,它描述了两个不同随机变量同时发生的概率分布情况,对于一些实际问题的建模和分析有着重要的应用。

在本文中,我们将介绍二维连续型随机变量的分布函数及概率的计算方法,以及一些相关的概念和定理。

我们来介绍二维连续型随机变量的分布函数。

对于一个二维连续型随机变量(X,Y),它的分布函数F(x,y)定义为:F(x,y) = P(X<=x, Y<=y)P(X<=x, Y<=y)表示两个随机变量X和Y同时小于等于x和y的概率。

对于任意的实数x和y,分布函数F(x,y)满足以下性质:1. F(x,y)是非减函数,即对于任意的x1<=x2和y1<=y2,有F(x1,y1)<=F(x2,y2)。

2. F(x,y)是右连续的,即对于任意的实数x和y,有lim(Δx,Δy→0)F(x+Δx,y+Δy)=F(x,y)。

有了概率密度函数f(x,y),我们就可以计算出二维连续型随机变量的概率。

对于一个实数区间A=[a,b]×[c,d],A内的概率可以表示为:P((X,Y)∈A)=∬(A)f(x,y)dxdy这就是概率密度函数的基本应用之一,通过对概率密度函数进行积分,我们可以计算出不同区域内的概率值。

除了以上的基本概念和计算方法之外,二维连续型随机变量还有一些重要的性质和定理。

最重要的定理之一就是边缘分布的计算方法。

对于一个二维连续型随机变量(X,Y),它的边缘分布分别是X和Y的概率分布。

根据边缘分布的定义,我们可以计算出X和Y的边缘分布函数为:F_X(x)=∫(-∞,x)∫(-∞,∞)f(x,y)dydxF_Y(y)=∫(-∞,∞)∫(-∞,y)f(x,y)dxdy通过这两个公式,我们可以计算出X和Y的边缘分布函数,从而得到它们的概率分布。

边缘分布在实际问题中有着重要的应用,它可以帮助我们对一个二维连续型随机变量进行更深入的分析和研究。

第五章 二维随机变量及其分布

第五章 二维随机变量及其分布
x −∞ −∞

y
p(u, v )dudv .
则称( 则称(X,Y)为二维连续型随机变量,p(x,y)称为 为二维连续型随机变量, (X,Y)的联合密度(函数)。 的联合密度(函数)。 偏导存在的点处有: 注:在F(x,y)偏导存在的点处有: ∂2 p( x, y) = F( x, y). ∂x∂y
1 1 2 + P ( X = 2,Y = 2) = 0 + + = . 3 3 3
2011-11-8 皖西学院 数理系 13
一口袋装有3个球 分别标有数字1,2,2, 个球, 例2 一口袋装有 个球,分别标有数字 从袋中任取一球;放回袋中,再从袋中任取一球。 从袋中任取一球;放回袋中,再从袋中任取一球。
变量分成离散型、连续型及混合型, 变量分成离散型、连续型及混合型,主要研究离 散型和连续型的随机变量。 散型和连续型的随机变量。
2011-11-8 皖西学院 数理系 3
二、二维随机变量的分布函数 定义:设有二维随机变量( X ,Y ), 对∀x, y ∈ R, 称概率 P( X ≤ x,Y ≤ y)为随机变量( X ,Y )的联合分布函数。记 概 率 作:F ( x, y), 即 F ( x, y) = P( X ≤ x,Y ≤ y).
概 率 论 与 数 理 统 计
x1 < x2 ⇒ F ( x1 , y) ≤ F( x2 , y);
y1 < y2 ⇒ F ( x, y1 ) ≤ F ( x, y2 ) .
有界性: 有界性:
0 ≤ F ( x, y) ≤ 1; F (−∞, y) = 0, F ( x, −∞) = 0, F (+∞, +∞) = 1.
xi
M

8二维随机变量

8二维随机变量

概率论与数理统计北京大学第2版数学系信息与计算科学教研室GCG@第三章二维随机变量第一节二维随机变量及其分布第二节随机变量独立性第一节二维随机变量及其分布在随机现象中,试验结果有时要用几个随机变量来描述。

如在打靶时,命中点的位置是由一对r .v (两个坐标)来确定的.研究钢成分,需要同时指出它的含碳量、含硫量、含磷量等,要研究它们之间的联系,就应当同时考虑若干个随机变量(即多维随机变量)及其取值规律---多维分布。

本章着重介绍二维情况,至于多维情况可由二维类似推得。

一般地,设E是一个随机试验,它的样本空间是S,再设X和Y是定义在S上两个随机变量。

由它们构成的一个二维向量(X,Y)叫做二维随机向量或二维随机变量。

二维随机变量(X,Y)的性质不仅与X及Y有关, 而且还依赖于这两个随机变量的相互关系。

因此,逐个地研究X和Y的性质是不够的,还需将(X,Y)作为一个整体来进行研究。

若二维随机变量(X ,Y )所有可能取的值是有限对或无限可列对,则称(X ,Y )是二维离散型随机变量。

设二维离散型随机变量(X ,Y )所有可能取的值为),2,1,(),( =j i y x j i ),2,1,(,},{ ====j i p y Y x X P ij j i 记则称上述一系列等式为二维离散型随机变量(X ,Y )的概率分布律,或随机变量X 和Y 的联合概率分布律。

显然有:,0≥ij p .1=∑∑ijij p 第一节二维离散型随机变量(一)联合概率分布随机变量X 和Y 的联合概率分布律也可用表格表示j y y y 21YXj p p p x 112111jp p p x 222212ij i i i p p p x 21例1:袋中装有5只白球,2只红球,现从袋中随机抽取1球,观察颜色后放回,再从袋中随机抽取1球,如果定义下列随机变量:;第一次取得红球第一次取得白球⎩⎨⎧=01X ;第二次取得红球第二次取得白球⎩⎨⎧=01Y 试写出(X ,Y )的联合分布律。

概率论5章

概率论5章

F ( x, y) A[ B arctanx][C arctany]
求常数A,B,C.
解: F ( , ) A[ B
F ( , y ) A[ B

2
][C

2
]1

2
][ C arctan y ] 0
F ( x, ) A[ B arctan x ][ C
x y
f ( x, y)dxdy
dx 8e
x 0 ( 2 x 4 y ) x dy 2e 2 x (e 4 y ) |0 dx 0
= 0 =



0
2e
2 x
(1 e
4 y
)dx 2e
0

2 x
dx 2e6 x dx
0

F ( , y ) lim F ( x, y ) 0
x
§5.1 二维随机变量及分布函数
二、联合分布函数 性质 ⑤ 随机点(X,Y)落在矩形区域
{( x, y) | x1 X x2 , y1 Y y2}
的概率
y y2
y1 0 x1 x2 x
P( x1 X x2 , y1 Y y2 ) F ( x2 , y2 ) F (x2 , y1 ) F (x1, y2 ) F (x1, y1 )
y0 0 y0 0
x
§5.4 边缘分布
一、边缘分布函数 1.边缘分布 设F(x,y)为二维随机变量(X,Y)的联合分布函数,称
P(X≤x)=P(X≤x,Y<+≦)
x , y
其中 -≦<μ1<+≦, -≦<μ2<+≦,σ1>0,σ2>0 ,|ρ|<1,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O x1
x2 x
F ( x2 , y2 ) F ( x2 , y1 )
F ( x1, y2 ) F ( x1, y1 ).
图 2.
二维随机变量的分布函数
P{ x1 x x2 , y1 y y2 } F ( x2 , y2 ) F ( x2 , y1 )
F ( x1, y2 ) F ( x1, y1 ).
计规律,即多维随机变量的分布. 由于从二维推广到多维一般无实质性的困难,故我们
二维随机变量 由于从二维推广到多维一般无实质性的困难,故我们
二维随机变量 由于从二维推广到多维一般无实质性的困难,故我们 重点讨论二维随机变量.
定义 设随机试验的样本空间为 S, 而 X X (e),Y Y (e)
二维随机变量的分布函数
记为
F ( x, y) P{( X x) (Y y)} P{X x,Y y}
称为二维随机变量 ( X ,Y ) 的分布函数或称为随
二维随机变量的分布函数
记为
F ( x, y) P{( X x) (Y y)} P{X x,Y y}
称为二维随机变量 ( X ,Y ) 的分布函数或称为随机 变量 X 和 Y 的联合分布函数. 若将二维随机变量 ( X ,Y ) 视为平面上随机点的坐
二维随机变量的分布函数
P{ x1 x x2 , y1 y y2 } F ( x2 , y2 ) F ( x2 , y1 ) F ( x1, y2 ) F ( x1, y1 ). 若已知 ( X ,Y )的分布函数F ( x, y), 则可由F ( x, y) 导出 X 和 Y 各自的分布函数 FX ( x) 和 FY ( y) :
一、二维随机变量 在实际应用中,有些随机现象需要同时用两个或以 上的随机变量来描述. 例如,研究某地区学龄前儿童
前儿童的发育情况时,就要同时抽查儿童的身高 X 、 体重Y , 这里,X 和 Y 是定义在同一样本空间
S {某地区的全部学龄前儿童}
上的两个随机变量. 在这种情况下,我们不但要研究 多个随机变量各自的统计规律,而且还要研究它们之 间的统计相依关系,因而需考察它们的联合取值的统
F(x, y) P{X x,Y y}
就是随机点 ( X ,Y ) 落入区域
{(t, s) | t x, s y}
的概率(如图1).
由概率的加法法则,随机点( X ,Y ) 落入矩形域
{ x1 x x2 , y1 y y2 }
y
y2
( x2 , y2 )
的概率
y1
P{ x1 x x2 , y1 y y2 }
FX ( x) F( x,)
FY ( y)
F(, y)
二维随机变量的分布函数
P{ x1 x x2 , y1 y y2 } F ( x2 , y2 ) F ( x2 , y1 ) F ( x1, y2 ) F ( x1, y1 ). 若已知 ( X ,Y )的分布函数F ( x, y), 则可由F ( x, y) 导出 X 和 Y 各自的分布函数 FX ( x) 和 FY ( y) :
注:以上四个等式可从几何上进行说明.
(2)F ( x, y) 关于 x 和 y 均为单调非减函数,即
联合分布函数的性质 注:以上四个等式可从几何上进行说明.
(2)F ( x, y) 关于 x 和 y 均为单调非减函数,即 对任意固定的 y, 当 x2 x1, F( x2 , y) F( x, y1), 对任意固定的 x, 当 y2 y1, F( x, y2 ) F( x, y1); (3)F ( x, y) 关于 x 和 y 均为右连续,即 F ( x, y) F ( x 0, y), F ( x, y) F ( x, y 0).
(1) 0 F ( x, y) 1, 且 对任意固定的 y, F (, y) 0,
y
(x, y)
O
x
对任意固定的 x, F ( x,) 0,
F (,) 0, F (,) 1;
注:以上四个等式可从几何上进行说明.
(2)F ( x, y) 关于 x 和 y 均为单调非减函数,即
联合分布函数的性质
是定义在 S 上的两个随机变量,称( X ,Y )为定义在 S
上的二维随机变量或二维随机向量.
注: 一般地,称 n 个随机变量的整体 X ( X1, X2 , , Xn )为 n 维随机变量或随机向量.

二、二维随机变量的分布函数
二维随机变量 ( X ,Y )的性质不仅与 X 及 Y 有关,
而且还依赖于这两个随机变量的相互关系, 故需
标,则分布函数
F(x, y) P{X x,Y y} 就是随机点 ( X ,Y ) 落入区域
{(t, s) | t x, s y}
二维随机变量的分布函数
F(x, y) P{X 入区域
{(t, s) | t x, s y}
二维随机变量的分布函数
FX ( x) F ( x,) FY ( y) F (, y) 分别称 FX ( x)和 FY ( y) 为F ( x, y)关于 X 和Y 的
边缘分布函数. 联合分布函数的性质

联合分布函数的性质
随机变量 ( X ,Y )的联合分布函数
F ( x, y) P{ X x,Y y}.
联合分布函数的性质:
FX ( x) P{X x} P{X x,Y } F( x,)
FY ( y) P{Y y} P{X ,Y y} F(, y)
二维随机变量的分布函数
P{ x1 x x2 , y1 y y2 } F ( x2 , y2 ) F ( x2 , y1 ) F ( x1, y2 ) F ( x1, y1 ). 若已知 ( X ,Y )的分布函数F ( x, y), 则可由F ( x, y) 导出 X 和 Y 各自的分布函数 FX ( x) 和 FY ( y) :
将 ( X ,Y ) 作为一个整体进行研究. 与一维情况类
似, 我们也借助“分布函数”来研究二维随机变量.
定义 设 ( X ,Y ) 是二维随机变量,对任意实数 x, y,
二元函数
记为
F ( x, y) P{( X x) (Y y)} P{X x,Y y}
称为二维随机变量 ( X ,Y ) 的分布函数或称为随
相关文档
最新文档