十字相乘法课件
合集下载
十字相乘法-PPT-课件资料
综合运用 7.分解因式:
综合运用
综合运用
综合运用
(1)请你再选择两个类似的部分试一试, 看看是否符合这一规律; (2)换一个月的月历试一下,是否有同样 的规律? (3)请你利用整式的运算对以上的规律 加以证明.
拓广探索
拓广探索 12.某种产品的原料提价,因而厂家决定对产品进行提价,现有 三种方案: (1)第一次提价p%,第二次提价q%; (2)第一次提价q%,第二次提价p%;
1
p
1
q
q + p = p+q
对于二次三项式的分解因式,借用一个十字叉帮助我们分解因式 ,这种方法叫做十字相乘法.
例题 用十字相乘法分解因式:
1 1 3+ 2+
得换一种拆分方式 现在数是对的, 3 2 符号不对,怎么办呢? 46
4 ≠ -8 6 ≠ -8
归纳
用十字相乘法分解因式的步骤:
1
-2
1
-6
补充题
提示:二次项是负的,可以先提取出来. 答案:-(y+6)(y-2)
补充题 答案:(5x-4y)(x+2y)
补充题 答案:(3x-y)(5x+4y)
整体思想 答案:(a+b-1)(a+b-3)
整体思想 答案:(xy-9)(xy+2)
整体思想
整体思想 答案:(2x-1)(5x+8)
整体思想
(2)(x+9)(x-2)
练习 用十字相乘法分解因式:
(1)(x+7)(x-1)
(2)(x-2)(x-4)
练习 用十字相乘法分解因式:
(1)(x+2)(x-1) (2)(x-5)(x+3)
人教版八年级数学上册《因式分解之十字相乘法》课件
•8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/72021/11/72021/11/72021/11/7
例1.利用十字相乘法分解因式 (1)x2+6x+5;(2)x2-2x-8;(3)-x2-7x+18.
= -(x2+7x - 18)
【点拨x】 方1法技巧:在x分解的2 过程中:(1x)首-先2整理成ax2+bx+c的形式;(2)在 利用十x字相5乘法时,常数x 项是-4正数时,一般x把常9数项分成两个同号相乘的形式,常
数项是负数时,一般把常数项分成两个异号相乘的形式;(3)二次项是负的,一 般把 所有的项先放到负括号里,然后再对括号里的项进行十字相乘法.
【答案】(1)(x+1)(x+5);(2)(x+2)(x-4);(3)-(x-2)(x+9)
x1
x -2
【点拨】使用2十x 字相3 乘法分解二3次x 项系4 数不为1的题目时,需要把二次
项系数和常数项一起分解,交叉相乘,然后相加配成中间的一次项,需
要多次配凑.
【答案】(1)(x+1)(2x+3);(2)(x-2)(3x+4).
指点迷津
1.本小章节考试趋势: 本小章节主要在选择题中考查,是提公因式和套公式方法法的延
续和补充,对于二次三项式因式分解又增添了一方法.
2.注意几点易错知识点
因式分解之十字相乘法
课标引路
学习目标
知识梳理
1.十字相乘法的概念:
利用十字交叉线分解系数,把二次三项式分解因式的方法叫做十字相乘法, 即对二次三项式x2+bx+c若存在p+q=b,p•q=c,则有: x2+bx+c =(x+p)(x+q) 2.十字相乘法的解题技巧与注意事项:
例1.利用十字相乘法分解因式 (1)x2+6x+5;(2)x2-2x-8;(3)-x2-7x+18.
= -(x2+7x - 18)
【点拨x】 方1法技巧:在x分解的2 过程中:(1x)首-先2整理成ax2+bx+c的形式;(2)在 利用十x字相5乘法时,常数x 项是-4正数时,一般x把常9数项分成两个同号相乘的形式,常
数项是负数时,一般把常数项分成两个异号相乘的形式;(3)二次项是负的,一 般把 所有的项先放到负括号里,然后再对括号里的项进行十字相乘法.
【答案】(1)(x+1)(x+5);(2)(x+2)(x-4);(3)-(x-2)(x+9)
x1
x -2
【点拨】使用2十x 字相3 乘法分解二3次x 项系4 数不为1的题目时,需要把二次
项系数和常数项一起分解,交叉相乘,然后相加配成中间的一次项,需
要多次配凑.
【答案】(1)(x+1)(2x+3);(2)(x-2)(3x+4).
指点迷津
1.本小章节考试趋势: 本小章节主要在选择题中考查,是提公因式和套公式方法法的延
续和补充,对于二次三项式因式分解又增添了一方法.
2.注意几点易错知识点
因式分解之十字相乘法
课标引路
学习目标
知识梳理
1.十字相乘法的概念:
利用十字交叉线分解系数,把二次三项式分解因式的方法叫做十字相乘法, 即对二次三项式x2+bx+c若存在p+q=b,p•q=c,则有: x2+bx+c =(x+p)(x+q) 2.十字相乘法的解题技巧与注意事项:
十字相乘ppt课件免费
中等难度实例解析
总结词
中等难度实例涉及稍微复杂的因式分 解和乘法运算。
详细描述
例如,将3x^3 - 9x^2 + 6x分解为(x - 2)(3x^2 - 3x + 2),这个过程需要 更深入的理解因式分解的概念,并掌 握更复杂的乘法运算。
高难度实例解析
总结词
高难度实例涉及复杂的因式分解和乘法运算,需要较高的数学技巧。
教师可设计多样化的练习题目,让学生充分练习 和掌握十字相乘法的技巧,提高解题能力。
教师还应关注学生的反馈和表现,及时给予指导 和帮助,促进学生的学习进步。
THANKS FOR WATCHING
感谢您的观看
总结词
求解一元一次方程
详细描述
最后,我们将交叉相乘的结果相加或相减,得到一元一次方程的解。如果一元一次方程有两个解,则原多项式方 程也有两个解。
04 实例解析
简单实例解析
总结词
简单实例主要涉及基本的因式分解和 乘法运算。
详细描述
例如,将2x^2 - 4x + 2分解为(2x 2)(x - 1),这个过程需要理解因式分解 的概念,并掌握基本的乘法运算。
= b,则这两个数就是方程的两个根。
通过这种方法,我们可以将原方程转化为两个一元一 次方程,从而求解出方程的根。
这种方法的关键在于找到合适的 m 和 n,使得它们满 足上述条件。
Hale Waihona Puke 原理的数学表达如果 ax^2 + bx + c = 0 是我们要解的 一元二次方程,那么我们可以通过以下 步骤找到它的根
对学生的建议
学生应熟练掌握十字相乘法的步骤和技巧,通过多练习来提高自己的解题能力。
在学习过程中,学生应积极思考和探索,尝试不同的方法和思路,以培养自己的数 学思维和创新能力。
十字相乘法课件 ppt课件
PPT课件
13
把下列各式分解因式
(1) x2-4x-5 =(x+1)(x-5) (2) m2+5m-6 =(m+6)(m-1) (3) y2+8y-9 =(y+9)(y-1) (4) a2-12a+36 =(a-6)2 (5) b2-7b-18 =(b+2)(b-9)
PPT课件
14
想一想:
把下列各式分解因式
小结: 由多项式乘法法则
(x+a)(x+b)=x2+(a+b)x+ab
反过来用就得到一个因式分解的方法
∴x2+(a+b)x+ab=(x+a)(x+b) xa
xb
这个方法也称为十字相乘法
PPT课件
16
即:只要一个形如x2+mx+n 的二次三项式的常数项可以 分解成两个有理数相乘,且这 两个有理数的和恰好等于一 次项的系数,这个多项式就能 用十字相乘法分解因式
=(a-6b-6c)2
PPT课件
21
a1a2x2 a1c2 a2c1 x c1c2
a1 x
c1
a2 x
c2
所以原式可以分解为:a1x c1 a2 x c2
PPT课件
22
例 因式分解:2x2-3x-2
解原式=(x-2)(2x+1) x
-2
2x +1
PPT课件
⑶x2 – 3x-4=(x+1)(x-4)
⑷y2 + 2y-8=(y-2)(y+4)
你能找到什么规律吗?
方法:先把常数项拆分成两个有理数相乘,再看这 两个有理数的和是否恰好等于一次项的系数.(不 仅要验证绝对值,更要验证符号)
12.2因式分解的方法(第4课时 十字相乘法)(课件)-七年级数学上册(沪教版2024)
解法:
am+an+bm+bn
=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
=(m+n)(a+b).
观察上述因式分解的过程,解答下列问题:
(1)分解因式:mb-2mc+b2-2bc;
解:原式=(mb-2mc)+(b2-2bc)
=m(b-2c)+b(b-2c)
=(b-2c)(m+b);
(2)△ABC三边a,b,c满足a2-4bc+4ac-ab=0,判
−2
4 2 − 11 − 12.
1
1
−2
6
4 2 − 11 + 12
= + 1 − 12 .
1
1
1
−12
新知探究
如何将 2 + 7 + 12 2 因式分解?
类比二次三项式 2 + 7 + 12的因式分解,同样考虑十字相乘法.
将 2 + 7�� + 12 2 看作关于的二次三项式,它的二次项系数是1,
.
一次项的系数
课本例题
例7
1 2 + 7 + 12;
解 1 2 + 7 + 12
= +3 +4 .
2 2 − 8 + 12;
1
1
3
4
3 2 + 4 − 12;
3 2 + 4 − 12
= −2 +6 .
2 2 − 8 + 12
= −6 −2 .
1
1
−6
如果关于x的二次三项式 2 + + 的常数项q能分解成两个因
数与的积,且一次项系数p又恰好等于a + b,那么 2 + + 就可
十字相乘法最优课件
小结: 由多项式乘法法则
(x+a)(x+b)=x2+(a+b)x+ab
反过来用就得到一个因式分解的方法
∴x2+(a+b)x+ab=(x+a)(x+b)
x x
a
b
这个方法也称为十字相乘法
小结
只要一个形如x2+mx+n的二次三项式的常 数项可以分解成两个有理数相乘,且这两个有理 数的和恰好等于一次项的系数,这个多项式就能 用十字相乘法分解因式。
想一想:
把下列各式分解因式 (1) x2-4xy-5y2 =(x+y)(x-5y) (2) m2+5mn-6n2 =(m-n)(m+6n) (3) y2-8xy+12x2 =(y-2x)(y-6x) 2 2 (4) a -12ab+36b =(a-6b)2
(5)
b2-7bx2-18x4 =(b+2x2)(b-9x2)
二次项系数不是1的二次三项式
例 因式分解:2x2-3x-2 解原式=(x-2)(2x+1)
x 2x
-2
+1
a1a2 x a1c2 a2c1 x c1c2
2
a1 x
c1
a2 x
所以原式可以分解为:a
c2
1 x c1 a2 x c2
因式分解:
6 x 7 xy 5 y
=(m+n-2)(m+n-3)
想一想:
把下列各式分解因式 (3) y2-2y(x-1)-15(x-1)2
=[y+3(x-1)][y-5 (x-1)] =(y+3x-3)(y-5 x+5)
因式分解(十字相乘法) ppt课件
(4). 分解a 2 3ab 2b2的结果为 ( D )
练习二丶把下列各式分解因式:
1. x 4 x 3;
2
2. y 7 y 12;
2
3. m 7 m 18;
2
4. p 5 p 36;
2
ppt课件
因式分解:
2 (1)x +8x+12 2 (3)x +13x+12
2 (2)x -11x-12 2 (4)x -x-12
ppt课件
ppt课件
分解因式: 3x -10x+3 解:原式=(x-3)(3x-1) x
3x -3
2
-1
(-x)+( -9x) =-10x
ppt课件
分解因式: 5x -17x-12 3x² +10x+8
2
ppt课件
1多项式称为字母的二次三项式其中称为二次项为一次项为常数项
因式分解--方法三
十字相乘法
一、整式的有关概念
数与字母乘积,这样的代数式叫单项式。 1、单项式: 单独的一个数或字母也是单项式。
2、单项式的系数: 单项式中的数字因数。
3、单项式的次数: 单项式中所有的字母的指数和。 4、多项式: 几个单项式的和叫多项式。 5、多项式的项:组成多项式中的单项式叫多项式的项 6、多项式的次数: 多项式中次数最高的项的次数叫做这个多项式的次数。 7、整式:单项式与多项式统称整式。
(2)x2 -5x+6
ppt课件
例2. 分解因式 (1)x2-7x-60
(2)x2+14x-72
ppt课件
x (a b)x ab
2
x px q
用十字相乘法解一元二次方程课件
分析解一元二次方程时应注意的问题
方程的转化
在解一元二次方程时,需要注意将方 程转化为标准形式,即 ax^2+bx+c=0 的形式。
数值的精确度
符号问题
在解一元二次方程时,需要注意符号 问题,因为一元二次方程可能有实数 解、虚数解或无解,需要根据判别式 的值来判断。
在计算过程中,需要注意数值的精确 度,以避免因为计算错误而导致解的 不准确。
根据找到的两个数$p$和$q$, 将一元二次方程化为两个一次方
程:$(x-p)(x-q)=0$。
解出这两个一次方程得到一元二 次方程的解:$x_1=p, x_2=q$。
验证解的正确性:将解代入原方 程进行验证,确保满足原方程。
实例一
总结词
详细描述
实例二
总结词 详细描述
实例三
总结词
挑战性题目
VS
十字相乘法的定 义
十字相乘法的步 骤
01
02
第二步
第三步
03 第四步
十字相乘法的应用范个数,使其和为一次项系数,乘积为常数项
寻找两个数$p$和$q$,满足$p+q=b$且$pq=c/a$。
这两个数可以通过试验、观察或使用数学工具(如因式分解表)来找到。
写出解并验证
用十字相乘法解一元二次方程课件
• 如何使用十字相乘法解一元二次 • 实例解析
一元二次方程的定 义 01 02
一元二次方程的一般形式
特殊情况:当b=0时,方程退化为一 元一次方程;当a=0时,方程变为线 性方程。
一元二次方程的解的概念
解一元二次方程就是找到满足方程的未知数的值。 解一元二次方程的方法有多种,如因式分解法、配方法、公式法和十字相乘法等。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2y
2
2y 8 0
2、因式分解 (1)3x2+7x+2 (2)5x2-17x-12
----十字相乘法
学习目标
1、掌握十字相乘法分解因式 的方法;
2、会快速而准确地对形如
2 x +px+q的二次三项式进行因
式分解。
自学指导
1、自学课本121页阅读与思考,
并完成121页最下面的练习。 2、小组讨论解题方法,并确定一 名中心发言人上台展示,并讲解解
答过程。
小组展示
1x 2 7 x 10
2x
2
2x 83yLeabharlann 2 7 y 12
4x
2
7 x 18
巩固练习
用十字相乘法进行因式分解。 2 x
-6 + - 5x +
巩固练习
(1)x2+5x+6 =(x+2)(x+3)
(3)x2-5x-6 =(x+1)(x-6)
(2)x2-5x+6 =(x-2)(x-3)
(4)x2+5x-6 =(x-1)(x+6)
注意事项
对二次三项式x2+px+q进行因式分 解的符号规律:
当常数项为正时,两因数同号,且符号
与一次项的符号相同; 当常数项为负时,两因数异号,且绝对
值较大的因数与一次项的符号相同.
巩固练习
请在下列因式分解中添上适当的符号。
(1)x2+8x+12=(x + 2)(x + 6) (2)m2-3m+2=(m - 1)(m - 2)
温故知新
1、我们已经学过哪几种因式分解 的方法?
(1)提公因式法;
(2)公式法:平方差公式和完全平 方公式。
2、用以上学过的方法能否将下列 多项式分解因式?请试一试。
1x 2 7 x 10
2x2 2x 8
3y 2 7 y 12
4x2 7x 18
因 式 分 解
(3)x2-x-12=(x + 3)(x - 4)
(4)y2+6y-16=(y - 2)(y + 8)
课堂小结
1、十字相乘法适用于二次三项式的因 式分解,但并非所有二次三项式都适 用。 2、因式分解首先考虑提公因式法,其
次是公式法,都不行时再考虑十字相
乘法。
拓展延伸
1、解方程
1x
2
3x 4 0