新人教版八年级数学《轴对称》单元测试题及答案

合集下载

人教版八年级上册数学《轴对称》单元测试带答案

人教版八年级上册数学《轴对称》单元测试带答案
=150°.
故选D.
【点睛】本题考查了等腰三角形的性质,等边三角形的判定与性质,本题主要利用了等腰三角形两底角相等,要注意整体思想的利用.
8.如图所示是4×5的方格纸,请在其中选取一个白色的方格并涂黑,使图中阴影部分是一个轴对称图形,这样的涂法有( )
A.4种B.3种C.2种D.1种
【答案】B
【解析】
16.如图,AB∥CD,AF=EF,若∠C=62°,则∠A=___度.
17.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC 垂直平分线,点E、N在BC上,则∠EAN=_____.
18.将数轴按如图所示从某一点开始折出一个等边三角形ABC,设点A表示的数为x﹣3,点B表示的数为2x+1,点C表示的数为﹣4,若将△ABC向右滚动,则x的值等于_____,数字2012对应的点将与△ABC的顶点_____重合.
A.90°B.84°C.64°D.58°
【答案】B
【解析】
【分析】
根据线段垂直平分线的性质得到DA=DB,得到∠DAB=∠B=32°,根据角平分线的定义、三角形内角和定理计算即可.
【详解】∵DE垂直平分AB,
∴DA=DB,
∴∠DAB=∠B=32°,
∵AD是∠BAC的平分线,
∴∠DAC=∠DAB=32°,
A. 4种B. 3种C. 2种D. 1种
9.如图,在△ABC中,∠B=32°,∠BAC的平分线AD交BC于点D,若DE垂直平分AB,则∠C的度数为()
A 90°B.84°C.64°D.58°
10.如图,在△ABC中,AC=BC,点D在BC的延长线上,AE∥BD,点ED在AC同侧,若∠CAE=118°,则∠B的大小为()
12.如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A10B10O=()

人教版八年级上册数学《轴对称》单元检测卷含答案

人教版八年级上册数学《轴对称》单元检测卷含答案
A. 的边 的中垂线B. 的平分线所在的直线
C. 的边 上的中线所在的直线D. 的边 上的高所在的直线
【答案】C
【解析】
【分析】
首先判断出 是等腰三角形,AB是底边,然后根据等腰三角形的性质和对称轴的定义判断即可.
【详解】解:∵ , ,
∴ ,
∴ 是等腰三角形,AB是底边,
∴一定为 的对称轴的是 的边 上的中线所在的直线,
18.如图,已知△ABC和△A'B'C'关于直线m对称.
(1)结合图形指出对称点;
(2)若连接AA',直线m与线段AA'有什么关系?
(3)BC与B'C'的交点,AB与A'B'的交点分别与直线m有怎样的关系?若延长AC与A'C',其交点与直线m有怎样的关系?你发现了什么规律?
19.△ABC在平面直角坐标系中的位置如图所示.
故选:C.
【点睛】本题考查了等腰三角形的判定和性质以及对称轴的定义,判断出 是等腰三角形,AB是底边是解题的关键.
【详解】∵DE是AC的垂直平分线,
∴DA=DC,AE=EC,故A正确,
∴DE∥BC,∠A=∠DCE,故B正确,
∴∠ADE=∠CDE=∠DCB,故C正确,
故选D.
【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形中位线定理等知识,解题的关键是熟练运用这些知识解决问题.
8.已知 的周长是 , ,则下列直线一定为 的对称轴的是
(1)请写出这四个图案都具有的两个特征.
特征1:___________
特征2:____________
(2)请在图②中设计一个你心中最美丽的图案,使它也具备你所写出的上述特征

人教版八年级上册数学《轴对称》单元综合检测(附答案)

人教版八年级上册数学《轴对称》单元综合检测(附答案)
详解:由点A(m+3,2)与点B(1,n−1)关于x轴对称,得:
m+3=1,n−1=−2,
解得m=−2,n=−1,
点睛:本题考查了关于x轴对称的点的坐标;容易与关于y轴对称的点的坐标混淆.
A. 16cmB. 20cmC. 24cmD. 26cm
6.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为
A 40海里B. 60海里C. 70海里D. 80海里
7.如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE,若∠A=30°,AB=AC,则∠BDE的度数为()
(2)经过多少秒,△BMN 直角三角形.
一、选择题(本题共12小题,每小题3分,共36分)
1.下列四个交通标志图中为轴对称图形的是( )
A.AB.BC.CD.D
【答案】D
【解析】
解:A、B、C不是轴对称图形,D是轴对称图形.故选D.
2.在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点的坐标是()
【答案】3
【解析】
试题解析:∵等边△ABC中,AB=8,
∴AB=BC=6.
∵AD⊥BC,
故答案为3.
14.已知点A(m+3,2)与点B(1,n-1)关于x轴对称,则m=________,n=________.
【答案】(1).-2(2).-1
【解析】
分析:根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.
A.45B.52.5C.67.5D.75
【答案】C
【解析】
试题分析:根据AB=AC,利用三角形内角和定理求出∠ABC的度数,再利用等腰三角形的性质和三角形内角和定理求出∠DBC=30°,然后即可求出∠BDE的度数:

人教版数学八年级上册《轴对称》单元综合检测题(附答案)

人教版数学八年级上册《轴对称》单元综合检测题(附答案)
【答案】D
【解析】
【分析】
分别利用等边三角形的判定方法分析得出即可.
【详解】A.根据有两个角等于60°的三角形是等边三角形,不合题意,故此选项错误;
B.有一个外角等于120°的等腰三角形,则内角为60°的等腰三角形,此三角形是等边三角形,不合题意,故此选项错误;
C.三个角都相等的三角形,内角一定为60°是等边三角形,不合题意,故此选项错误;
∵AB=AC,∴∠ABC 25°,∴∠EBC=∠EBA+∠ABC=75°.
故选C.
点睛】本题考查了线段的垂直平分线及等腰三角形的判定和性质.线段的垂直平分线上的点到线段的两个端点的距离相等.
8.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )
A 15°B. 30°C. 45°D. 60°
【详解】如图1.
∵DE垂直平分AB,∴AE=BE,∴∠BAC=∠ABE.
∵∠AEB=80°,∴∠BAC=∠ABE=50°.
∵AB=AC,∴∠ABC 65°,∴∠EBC=∠ABC﹣∠ABE=15°.
如图2.
∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠ABE.
∵∠AEB=80°,∴∠BAE=∠EBA=50°,∴∠BAC=130°.
(1)若P为BC边中点,则PE,PF,CD三条线段有何数量关系(写出推理过程)?
(2)若P为线段BC上任意一点,则(1)中关系还成立吗?
(3)若P为直线BC上任意一点,则PE,PF,CD三条线段间有何数量关系(请直接写出).
参考答案
一.选择题(共10小题)
1.下列图形中为轴对称图形的是()
A. B. C. D.
D.边上的高也是这边的中线的三角形,也可能是等腰三角形,符合题意,故此选项正确.

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)一、单选题1.下列倡导节约的图案中,是轴对称图形的是( )A .B .C .D . 2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.下列黑体字中,属于轴对称图形的是( )A .善B .勤C .健D .朴4.如图,在已知的ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ; ②作直线MN 交AB 于点D ,连接CD .若4AC =,10AB =,则ACD 的周长为( )A .8B .9C .10D .145.图1是光的反射规律示意图.其中,PO 是入射光线,OQ 是反射光线,法线KO ⊥MN ,∠POK 是入射角,∠KOQ 是反射角,∠KOQ =∠POK .图2中,光线自点P 射入,经镜面EF 反射后经过的点是( )A .A 点B .B 点C .C 点D .D 点6.如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠AED '=50°,则∠EFC 等于( )A .65°B .110°C .115°D .130°7.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD △的周长为( )A .25B .22C .19D .188.如图,在ABC 中,AB AC =,40A ︒∠=,//CD AB ,则BCD ∠=( )A .40︒B .50︒C .60︒D .70︒9.如图是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东35度方向,B 岛在A 岛的北偏东80度方向,C 岛在B 岛的北偏西55度方向,则A ,B ,C 三岛组成一个( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形10.如图,在等边ABC 中,BC 边上的高6AD =,E 是高AD 上的一个动点,F 是边AB 的中点,在点E 运动的过程中,EB EF +存在最小值,则这个最小值是( )A .5B .6C .7D .811.如图,在△ABC 中,AD 是BC 边上的高,∠BAF =∠CAG =90°,AB =AF ,AC =AG ,连接FG ,交DA 的延长线于点E ,连接BG ,CF , 则下列结论:①BG =CF ;②BG ⊥CF ;③∠EAF =∠ABC ;④EF =EG ,其中正确的有( )A .①②③B .①②④C .①③④D .①②③④ 12.如图,在ABC 中,45,ABC AD BE ∠=︒,分别为,BC AC 边上的高,,AD BE 相交于点F ,连接CF ,则下列结论:①BF AC =;②FCD DAC ∠=∠;③CF AB ⊥;④若2BF EC =,则FDC △周长等于AB 的长.其中正确的有( )A .①②B .①③④C .①③D .②③④二、填空题13.已知△ABC 是等腰三角形.若∠A =40°,则△ABC 的顶角度数是____.14.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是_____.15.如图,△ABC 的边CB 关于CA 的对称线段是CB ',边CA 关于CB 的对称线段是CA ',连结BB ',若点A '落在BB '所在的直线上,∠ABB '=56°,则∠ACB =___度.16.如图,在ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若AFC △是等边三角形,则B ∠=_________°.17.如图,在等边△ABC 中,点E 是边AC 上一点,AD 为BC 边上的中线,AD 、BE 相交于点F ,若∠AEB =100°,则∠AFB 的度数为_____.18.如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边,AC AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;⑤作射线AF .若AF 与PQ 的夹角为α,则α=________°.三、解答题19.已知ABC 的三边长分别为a ,b ,c .(1)若2a =,3b =,求c 的取值范围;(2)在(1)的条件下,若c 为奇数,试判断ABC 的形状,并说明理由.20.如图,在ABC 和ADE 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.(1)当点D 在AC 上时,如图①,线段BD ,CE 有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的ADE 绕点A 顺时针旋转()090αα︒<<︒,如图②,线段BD ,CE 有怎样的数量关系和位置关系?请说明理由.(3)拓展应用:已知等边ABC 和等边ADE 如图③所示,求线段BD 的延长线和线段CE 所夹锐角的度数.21.如图,在四边形ABCD 中,AD BC ∥,E 为CD 的中点,连接AE 、BE ,BE AE ⊥,延长AE 交BC 的延长线于点F .(1)请判断FC 与AD 的数量关系,并说明理由;(2)若AB =6,AD =2,求BC 的长度.22.已知△ABC 和△DEF 为等腰三角形,AB =AC ,DE =DF ,∠BAC =∠EDF ,点E 在AB 上,点F 在射线AC 上.(1)如图1,若∠BAC =60°,点F 与点C 重合,求证:AF =AE +AD ;(2)如图2,若AD =AB ,求证:AF =AE +BC .23.(1)如图1,在等边三角形ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 相交于点O .求证:OA =2DO ;(2)如图2,若点G 是线段AD 上一点,CG 平分∠BCE ,∠BGF =60°,GF 交CE 所在直线于点F .求证:GB =GF .(3)如图3,若点G 是线段OA 上一点(不与点O 重合),连接BG ,在BG 下方作∠BGF =60°边GF 交CE 所在直线于点F .猜想:OG 、OF 、OA 三条线段之间的数量关系,并证明.24.如图,在ABC 中,AD BC ⊥,AD BD =;点F 在AD 上,DF DC =.连接BF 并延长交AC 于E .(1)求证:BF AC =;(2)求证:BE AC ⊥;(3)若AB BC =,BF 与AE 有什么数量关系?请说明理由.25.如图,在Rt ABC 中,9030C A ∠=︒∠=︒,.点D 是AB 中点,点E 为边AC 上一点,连接CD DE ,,以DE 为边在DE 的左侧作等边三角形DEF ,连接BF .△的形状为______;(1)BCD(2)随着点E位置的变化,DBF∠的度数是否变化?并结合图说明你的理由;AC=,请直接写出DE的长.(3)当点F落在边AC上时,若626.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:△ABE≌△CBF;(2)若∠CAE=30°,求∠ACF度数.27.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.28.已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P.(1)求证:△ABE≌△CAD;(2)求∠BPQ的度数;(3)若BQ⊥AD于Q,PQ=6,PE=2,求AD的长。

八年级数学上册《第十三章轴对称》单元试题(人教版含答案)

八年级数学上册《第十三章轴对称》单元试题(人教版含答案)

第十三章《轴对称》单元练习题一、选择题1.如果一个三角形的外角平分线与这个三角形一边平行,则这个三角形一定是()A.锐角三角形B.等腰三角形C.等边三角形D.等腰直角三角形2.如图,在△ABC中,AB=AC,∠ABC=70°,顶点B在直线DE上,且DE∥AC,则∠CBE等于()A. 40°B. 50°C. 70°D. 80°3.若A(2a﹣b,a+b)关于y轴对称点是A1(3,﹣3),则P(a,b)关于x轴对称点P1的坐标是()A.(﹣2,﹣1)B.(2,﹣1)C.(﹣2,1)D.(2,1)4.如图,在△ABC中,AB=AC=8,BC=5,AB的垂直平分线交AC于D,则△BCD的周长为()A. 13B. 15C. 18D. 215.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ 时,连接PQ交AC于点D,下列结论中不一定正确的是()A.PD=DQB.DE=ACC.AE=CQD.PQ⊥AB6.已知a,b,c是三角形的三边长,如果满足(a﹣b)2++|c2﹣64|=0,则三角形的形状是()A.底和腰不相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形7.以下列各组数据为边长,可以构成等腰三角形的是()A. 2,3,4B. 5,5,10C. 2,2,1D. 1,2,38.要使得△ABC是等腰三角形,则需要满足下列条件中的()A.∠A=50°,∠B=60°B.∠A=50°,∠B=100°C.∠A+∠B=90°D.∠A+∠B=90°二、填空题(9.如图,等边△ABC周长是12,AD是∠BAC的平分线,则BD=.10.如图的4×4的正方形网格中,有A、B、C、D四点,直线a上求一点P,使PA+PB最短,则点P应选点(C或D).11.在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若三角形ABC 的边长为1,AE=2,则CD的长为.12.如图,△ABC与△A′B′C′关于直线l对称,则∠C′的度数为.13.如图,在△ABC中,D为AB上的一点,且DE垂直平分AC,∠B=115°,且∠ACD:∠BCD=5:3,则∠ACB=__________度.14.如图,在△ABC中,AB=AC,BC=8,AD平分∠BAC,则BD=____________.15.如图,△ABC是等边三角形,则∠ABD=度.16.如图将边长为5cm的等边△ABC,沿BC向右平移3cm,得到△DEF,DE交AC于M,则△MEC是三角形,DM=cm.三、解答题17.如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点M.(1)在给出图上画出一个格点△MB1C1,并使它与△ABC全等且A与M是对应点;(2)画出点B关于直线AC的对称点D.19.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(2,3),B(3,1),C(-2,-2).(1)请在图中作出△ABC关于y轴的轴对称图形△A′B′C′(A,B,C的对称点分别是A′,B′,C′),并直接写出A′,B′,C′的坐标.(2)求△A′B′C′的面积.20.如图,已知五边形ABCDE是轴对称图形,点B,E是一对对称点,请用无刻度的直尺画出该图形的对称轴.(保留作图痕迹,不要求写作法)21.在△ABC中,AB=AC,AC上的中线BD把三角形的周长分为24cm和30cm的两个部分,求三角形的三边长.第十三章《轴对称》单元练习题答案解析1.【答案】B【解析】可依据题意线作出简单的图形,结合图形可得∠B=∠A,进而可得其为等腰三角形.解:如图,DC平分∠ACE,且AB∥CD,∴∠ACD=∠DCE,∠A=∠ACD,∠B=∠DCE∴∠B=∠A,∴△ABC为等腰三角形.故选B2.【答案】C【解析】由已知AB=AC,∠ABC=70°,根据等腰三角形的性质,得出∠C的度数,再利用DE∥AC,可得∠CBE=70°,答案可得.解:∵AB=AC(已知),∴∠C=∠ABC=70°(等边对等角),又∵DE∥AC(已知),∴∠CBE=∠C=70°(两直线平行,内错角相等)故选C.3.【答案】C【解析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得方程组,根据解方程组,可得P点坐标,根据关于关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.解:由A(2a﹣b,a+b)关于y轴对称点是A1(3,﹣3),得2a-b=-3,a+b=-3,所以a=-2,b=-1,∴P(﹣2,﹣1).P(a,b)关于x轴对称点P1的坐标是(﹣2,1),故选:C.4.【答案】A【解析】根据线段垂直平分线的性质得出AD=BD,进而得出△BCD的周长为:CD+BD+BC=AC+BC求出即可.解:∵AB=AC=8,BC=5,AB的垂直平分线交AC于D,∴AD=BD,∴△BCD的周长为:CD+BD+BC=AC+BC=8+5=13.故选A.5.【答案】D【解析】过P作PF∥CQ交AC于F,∴∠FPD=∠Q,∵△ABC是等边三角形,∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴AP=PF,∵PA=CQ,∴PF=CQ,在△PFD与△DCQ中,∠FPD=∠Q,∠FDE=∠CDQ,PF=CQ∴△PFD≌△QCD,∴PD=DQ,DF=CE,∴A选项正确,∵AE=EF,∴DE=AC,∴B选项正确,∵PE⊥AC,∠A=60°,∴AE=AP=CQ,∴C选项正确,故选D.6.【答案】B【解析】首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,再根据勾股定理的逆定理判断其形状是直角三角形.解:由(a﹣b)2++|c2﹣64|=0得:a﹣b=0,b﹣8=0,c2﹣64=0,又a,b,c是三角形的三边长,∴a=8,b=8,c=8,所以三角形的形状是等边三角形,故选:B.7.【答案】C【解析】根据三角形的三边关系对以下选项进行一一分析、判断.解:A.∵2≠3≠4,∴本组数据不可以构成等腰三角形;故本选项错误;B.∵5+5=10,∴本组数据不可以构成三角形;故本选项错误;C.∵1+2>2,∴本组数据可以构成等腰三角形;故本选项正确;D.∵1+2=3,∴本组数据不可以构成三角形;故本选项错误.故选C.8.【答案】D【解析】等腰三角形有两个底角相等,根据三角形的内角和是180°,进行判断即可.解:A、若∠A是顶角时,则50°+120°<180°,所以此种情况组不成等腰三角形;若∠B是顶角时,在50°+50°+160°<180°,所以此种情况组不成等腰三角形;总之,本组数据不能使得△ABC是等腰三角形;故本选项错误;B、若∠A是顶角时,则50°+200°>180°,所以此种情况组不成等腰三角形;若∠B是顶角时,在100°+100°>180°,所以此种情况组不成等腰三角形;总之,本组数据不能使得△ABC是等腰三角形;故本选项错误;C、当∠A+∠B=90°时,∠C=90°;但∠A=10°,∠B=80°时,三角形ABC的三个内角没有那两个相等,所以构不成等腰三角形;故本选项错误;D、当∠B是顶角时,则2∠A+∠B=180°,∴∠A+∠B=90°;故本选项正确;故选D.9.【答案】2【解析】根据等边三角形的性质求得BD=CD,并且求得边BC的长度,进而即可求得BD的长.解:∵△ABC是等边三角形,AD是∠BAC的平分线,∴AB=BC=CA,BD=CD,∵等边△ABC周长是12,∴BC=4,∴BD=2.故答案为2.10.【答案】C【解析】首先求得点A关于直线a的对称点A′,连接A′B,即可求得答案.解:如图,点A′是点A关于直线a的对称点,连接A′B,则A′B与直线a的交点,即为点P,此时PA+PB最短,∵A′B与直线a交于点C,∴点P应选C点.故答案为:C.11.【答案】1或3【解析】当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF﹣BC求出CF的长,即可得到CD的长;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=∠EBF=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF+BC求出CF的长,即可得到CD的长.解:当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,可得∠EFB=90°,∵EC=ED,∴F为CD的中点,即CF=DF=12CD,∵△ABC为等边三角形,∴∠ABC=60°,∴∠BEF=30°,∵BE=AB+AE=1+2=3,∴FB=12EB=32,∴CF=FB﹣BC=12,则CD=2CF=1;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,可得∠EFC=90°,∵EC=ED,∴F为CD的中点,即CF=DF=12CD,∵△ABC为等边三角形,∴∠ABC=∠EBF=60°,∴∠BEF=30°,∵BE=AE﹣AB=2﹣1=1,∴FB=12BE=12,∴CF=BC+FB=32,则CD=2CF=3,综上,CD的值为1或3.故答案为:1或3.12.【答案】20°【解析】根据轴对称的性质求出∠A′,再利用三角形的内角和等于180°列式计算即可得解.解:∵△ABC与△A′B′C′关于直线l对称,∴∠A′=∠A=50°,在△A′B′C′中,∠C′=180°﹣∠A′﹣∠B′=180°﹣50°﹣110°=20°.故答案为:20°.13.【答案】40【解析】根据垂直平分线的性质与三角形的全等可以得出∠A=∠ACD,再根据三角形的内角和和角的比计算.解:∵DE垂直平分AC,∴EA=EC,AD=CD,∠ADE=∠CDE=90°∴Rt△ADE≌Rt△CDE∴∠A=∠ACD又∵∠ACD:∠BCD=5:3,∴∠ACD:∠ACB=5:8∴∠A:∠ACB=5:8又∵∠B=115°∴∠A+∠ACB=65°∴∠ACB=(65×8)÷13=40°.14.【答案】4【解析】根据三线合一定理即可求解.解:∵AB=AC,AD平分∠BAC,∴BD=BC=4.故答案是:4.15.【答案】120【解析】根据△ABC是等边三角形,得出∠ABC的度数,进而求出∠ABD的度数即可.解:∵△ABC是等边三角形,∴∠ABC=60°,则∠ABD=120°.故答案为:120.16.【答案】等边 3【解析】本题考查平移的性质,经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等.解:∵AB∥DE,∴∠MEC=∠B,∠CME=∠A,∵△ABC是等边三角形,∴∠MEC=∠EMC=∠ACB,∴△MEC是等边三角形,沿BC向右平移3cm,∴BE=3cm,EC=2cm,∴DM=DE﹣EM=5﹣2=3cm.17.【答案】证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边).【解析】根据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE.18.【答案】解:(1)△MB1C1即为所求;(2)如图所示,点D即为所求点.【解析】(1)把△ABC向右平移,使点A与点M重合即可;(2)画出点B关于直线AC的对称点D即可.19.【答案】解:(1)如图:(2)△A′B′C′的面积=5×5-×5×3-=6.5.【解析】(1)分别作出点A,B,C的对称点A′,B′,C′,然后顺次连接各点即可,根据图形然后直接写出A′,B′,C′的坐标;(2)利用图形的面积的和差关系可计算出△A′B′C′的面积.20.【答案】如图所示,直线AK即为所求的一条对称轴(解答不唯一).【解析】方法不唯一,至少可以有以上两种方法.如左图所示,因为五边形ABCDE是轴对称图形,点B,E是一对对称点,则C,D为一对对称点,故连接BD,CE,可以利用三角形全等说明K即为所求.第二幅图,因为五边形ABCDE是轴对称图形,点B,E是一对对称点,故延长BC,延长ED,则两线的交点必然为对称轴上一点,故连接AK即可.21.【答案】解:设三角形的腰AB=AC=x cm若AB+AD=24cm,则:x+x=24∴x=16三角形的周长为24+30=54(cm)所以三边长分别为16cm,16cm,22cm;若AB+AD=30cm,则:x+x=30∴x=20∵三角形的周长为24+30=54(cm)∴三边长分别为20cm,20cm,14cm;因此,三角形的三边长为16cm,16cm,22cm或20cm,20cm,14cm.【解析】两种情况讨论:当AB+AD=30 cm,BC+DC=24 cm或AB+AD=24 cm,BC+DC=30 cm,所以根据等腰三角形的两腰相等和中线的性质可求得,三边长为16cm,16cm,22cm或20cm,20cm,14cm.。

人教版八年级数学上测第十三章《轴对称》检测题(含答案)

人教版八年级数学上测第十三章《轴对称》检测题(含答案)

人教版八年级数学上测第十三章《轴对称》检测题(含答案)一、选择题(每小题3分,共30分)1. 现实世界中,对称现象无处不在,下列汉字是轴对称图形的是()A. 爱B. 我C. 中D. 华【答案】C.2.点M(1,2)关于x轴对称点的坐标为()A.(-1,2)B.(-1,-2)C.(1,-2)D.(2,-1)【答案】C.3. 如图,△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B度数为()A. 25°B. 30°C. 35°D. 40°【答案】B.4.下列每个网格中均有两个图形,其中一个图形可由另一个轴对称变换得到的是()A. B. C. D.【答案】B.5. 如图,∠MON内有一点P,点P关于OM、ON的对称点分别是G、H,连GH分别交OM、ON于A、B点,若GH=10cm,则△P AB的周长为()A. 5cmB.10cmC. 20cmD.15cm【答案】B. 提示:根据对称性,AG=AP,BH=GP,∴AP+AB+BP=AG+AB+BH=GH=10.6.等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A. 55° ,55°B. 70°,40或70°,55°C.70°,40°D. 55°,55°或70°,40°【答案】D.7. 如图,在正方形ABCD的外侧,作等边△CDE,连接AE交CD于点F,则∠DF A的度数为()A. 45°B. 55°C. 60°D. 75°【答案】D. 提示:∠ADE=90°+60°=150°,∠DAF=∠DEA=15°,则∠DF A=75°.8. 如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长度为()A. 5cmB. 5.4cmC. 2.4cmD. 3cm【答案】C. 提示:作DF⊥BC于F,∵BD平分∠ABC,故设DE=DF=h,由S△ABD+S△CBD=S△ABC,得:12(AB+BC)h=36,代入数值,解得h=2.4,故选C.9. 如图,在△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD=()A.2ba+B.2ba-C. a-b D. b-a【答案】C. 提示:AD=BD=BC=b,CD=AC-AD=a-b.10. 如图OE是等边△AOB的中线,OB=4,C是直线OE上一动点,以AC为边在直线AC下方作等边△ACD,连接ED,下列说法正确的是()A. ED的最小值是2B. ED的最小值是1C. ED有最大值D. ED没有最大值也没有最小值【答案】B. 提示:连BD,则易得△AOC≌△ABD(SAS),∴∠ABD=∠AOC=30°,当∠BDE=90°时,ED最小,此时ED=12BE=1,故选B.二、填空题(每小题3分,共18分)11. 点P(m,n)和点Q(n-1,2m)关于x轴对称,则m+n的值为__________.【答案】13. 提示:m=n-1,2m+n=0,联立解得m=-13,n=23,∴m+n=13.12. 如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC,若DE=1,则BC的长是__________.【答案】3. 提示:由条件得AD=BD,∠CAD=∠BAD,∴∠CAD=∠BAD=∠B=30°,CD=DE=1,BD=2DE=2,∴BC=CD+BD=3.13. 如图,在△ABC中,DE垂直平分AC,若AE=3,△ABD周长为13,则△ABC周长为________.【答案】19. 提示:由题知AC=2AE=6,AD=CD,∴BC=BD+AD,∵AB+BD+AD=13,∴AB+BC=13,∴AB+BC+AC=13+6=19.14. 如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的力向被击出(球可以经过多次反射),那么该球最后将落入的球袋是________.【答案】1号袋. 提示:如图所示.15. 如图,在△ABC中,∠C=46°,将△ABC沿直线l折叠,点C落在点D的位置,则∠1-∠2的度数是___________ .【答案】92°. 提示:由飞镖模型,∠DNC=∠C+∠D+∠DMC,即:180°-∠2=46°+46°+(180°-∠1),∴∠1-∠2=92°.16 .已知A(1,2)、B(7,4),点M、N是x轴上的动点(M在N左边),MN=3,当AM+MN+NB最小时,直接写出点M的坐标为___________.【答案】(2,0). 提示:作点A关于x轴的对称点A′,将点B向左平移3个单位得点B′,连接A′B′,交x轴于点M.三、解答题(共8小题,共72分)17. (8分)如图,已知点M、N和∠AOB,用尺规作图作一点P,使P到点M、N的距离相等,且到∠AOB两边的距离相等.(保留作图痕迹,不写作法)【答案】1.作∠AOB的平分线OC;2.连MN,作MN的垂直平分线EF;则射线OC与直线EF的交点P即为所求.18. (8分)如图,在△ABC中,∠B=30°,∠C=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数;(3)若△DAF的周长为20,求BC的长.【答案】(1)∠BAC=100°;(2)∵DE、FG分别垂直平分AB、AC,∴AD=BD,AF=CF,∴∠BAD=∠B=30°,∠CAF=∠C=50°,∴∠DAF=∠BAC-∠BAD-∠CAF=100°-30°-50°=20°;(3) ∵△DAF的周长为20,∴AD+DF+AF=20,∴BC=BD+DF+CF=AD+DF+AF=20.19. (8分)(1)如图,已知△ABC,请画出△ABC关于y轴对称的△A'B'C'(其中A'、B'、C'分别是A、B、C的对应点);(2)直接写出点A'、B'、C'点的坐标;(3)求△ABC的面积是多少?(4)用无刻度的直尺在y轴上找一点Q,使得QA+QB之和最小.(用虚线表示画图过程)【答案】(1) A'(2,3)、B'(3,1)、C'(-1,-2);(2)S△ABC=5×4-12×1×2-12×3×4-12×3×5=5.5;(3) 连接A′B(或AB′)交y轴于Q,即可.20. (8分)如图,在△ABC中,AB=AC,D是BC边上的一点,DE⊥AB于E,DF⊥AC于F,请添加一个条件,使DE=DF,并说明理由.【答案】添加的条件是:D为BC的中点. 理由如下:方法1:连接AD.∵AB=AC,D为BC中点,∴AD平分∠BAC.又∵DE⊥AB,DF⊥AC,∴DE=DF.方法2:∵AB=AC,∴∠B=∠C.∵D为BC中点,∴BD=CD.在△BDE与△CDF中,∵∠B=∠C,∠BED=∠CFD=90°,BD=CD,∴△BDE≌△CDF(AAS),∴DE=DF.21. (8分)如图,△ABC 是等边三角形,点D 在BC 延长线上,DE ⊥AB 于点E ,交AC 于G ,EF ⊥BC 于点F ,若CD =3AE ,CF =6,求AC 的长. 【答案】设AE =x ,则CD =3x .在等边△ABC 中,∠A =∠B =∠ACB =60°, 又DE ⊥AB ,∴∠D =∠AGE =∠CGD =30°. ∴AG =2AE =2x ,CG =CD =3x , ∴AB =BC =AC =2x +3x =5x . 则BE =5x -x =4x ,又∵EF ⊥BC ,∠B =60°,∴BF =12BE =2x ,∴BC =BF +CF =2x +6.∵BC =AC ,∴2x +6=5x ,∴x =2. ∴AC =5x =10.22. (10分)如图,在△ABC 中,∠ABC =∠ACB ,E 为BC 边上一点,以E 为顶点作∠AEF ,∠AEF 的边交AC 于点F ,使∠AEF =∠B . (1)如果∠ABC =40°,则∠BAC =________; (2)判断∠BAE 与∠CEF 的大小关系,并说明理由;(3)当△AEF 为直角三角形时,求∠AEF 与∠BAE 的数量关系.【答案】(1)100°; …………… 2分 (2)∠BAE =∠CEF ,理由如下: ∵∠AEC 是△ABE 的外角, ∴∠AEF +∠CEF =∠B +∠BAE . 又∵∠AEF =∠B ,∴∠CEF =∠BAE . …………… 5分(3)由(2),设∠CEF =∠BAE =α,设∠AEF =∠B =∠C =β.则∠AFE =∠CEF +∠C =α+β.∵∠AEF =∠B <90°,故分两种情况考虑:1°当∠EAF 为直角时,如图1,由∠AEF +∠AFE =90°,CBAFECBA备用图1CBA备用图2得β+(α+β)=90°,∴α+2β=90°,故有:∠BAE+2∠AEF=90°.2°当∠AFE为直角时,如图2,得α+β=90°,即:∠BAE+∠AEF=90°.综上,当△AEF为直角三角形时,∠BAE+2∠AEF=90°或∠BAE+∠AEF=90°. …………… 10分23. (10分)已知Rt△ABC中,AB=AC,∠ABC=∠ACB=45°,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边在AD的右侧作Rt△ADE,AD=AE,∠ADE=∠AED =45°,连接CE.(1)〖发现问题〗如图1,当点D在边BC上时,①请写出BD和CE之间的数量关系为_____________,位置关系为____________;②求证:CE+CD=BC;(2)尝试探究:如图2,当点D在边BC的延长线上且其他条件不变时,(1)中BC、CE、CD 之间存在的数量关系是否成立? 若成立,请证明;若不成立,请写出新的数量关系(不必证明);(3)拓展延伸:如图3,当点D在CB的延长线上且其他条件不变时,若BC=6,CE=2,求线段CD的长.【答案】(1)①BD=CE,BD⊥CE,…………… 2分②由条件得∠BAC=∠DAE=90°,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE,∠ACE=∠ABD=45°,∴CE+CD=BD+CD=BC. …………… 5分(2) 不成立,此时关系式为BC+CD=CE. …………… 7分提示:同上,证明△BAD≌△CAE(SAS),得BD=CE,即BC+CD=CE.(3) 由条件得∠BAC=∠DAE=90°,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE. ∵BD+BC=CD,∴CD =CE +BC =2+6=8. …………… 10分24. (12分)等腰Rt △ACB 中,∠ACB =90°,AC =BC ,点A 在x 轴正半轴上,C 在y 轴负半轴上.(1)如图1,求证:∠BCO =∠CAO ;(2)如图2,若OA =4,OC =2,M 是AB 与y 轴交点,求△AOM 的面积;(3)如图3,点C (0,2),点Q 、A 均在x 轴上,且S △ACQ =6a (a 为已知数). 分别以AC 、CQ 为腰在第一、第二象限作等腰Rt △CAN 、等腰Rt △QCM ,连接MN 交y 轴于P 点,间:S △MON 是否发生改变?若不变,求出S △MON 的值;若变化,求S △MON 的取值范围.【答案】(1) ∵∠ACB =90°,∴∠BCO +∠ACO =90°. 又∵∠AOC =90°,∴∠CAO +∠ACO =90°. ∴ ∠BCO =∠CAO . …………… 3分(2) 过B 作BD ⊥y 轴于D ,则△BCD ≌△CAO (AAS ), ∴BD =CO =2,CD =AO =4,OD =CD -OC =2,∴B (-2,2). 又∵A (4,0),C (0,-2),由割补法,得S △ABC =4×6-12×2×4-12×2×4-12×2×6=10, 又2142△△BCM ACM S BD S OA ===,∴S △ACM =23S △ABC =203. ∵S △AOC =12×2×4=4,∴S △AOM =S △ACM -S △AOC =203-4=83. (3) 过N 作NE ∥CM 交y 轴于E ,则∠CNE +∠MCN =180°,∵∠MCQ +∠ACN =90°+90°=180°, ∴∠ACQ +∠MCN =180°, ∴∠CNE =∠ACQ . 又∵∠ECN +∠ACO =90°,∠QAC +∠ACO =90°, ∴∠ECN =∠QAC . 在△ECN 和△QAC 中,∵∠CNE =∠ACQ ,CN =AC ,∠ECN =∠QAC , ∴△ECN ≌△QAC (ASA ),∴CE=AQ,EN=QC=MC.又NE∥CM,∴△PEN≌△PCM(ASA),∴PE=PC.∵点C(0,2),S△ACQ=6a,∴AQ=6a.∴CE=AQ=6a,∴CP=PE=3a.∴OP=OC+CP=2+3a.过M作MF⊥y轴于F,过N作NG⊥y轴于G,∵△MCQ为等腰直角三角形,∴△MCF≌△CQO(AAS),∴MF=CO=2,同理,NG=OC=2.则S△MON=S△MOP+S△NOP=12OP·MF+12OP·NG=2OP=6a+4.。

人教版数学八年级上册《轴对称》单元检测题含答案

人教版数学八年级上册《轴对称》单元检测题含答案
A. B. C. D.
二、填空题(共6小题,总分18分)
13.点 关于x轴对称的点N的坐标是______.
14.如图,在△ABC中,DM垂直平分AC,交BC于点D,连接AD,若∠C=28°,AB=BD,则∠B的度数为_____度.
15.如图,在△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于点E,BD=4,△ABE的周长为14,则△ABC的周长为_____.
12.如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A10B10O=( )
A. B. C. D.
【答案】B
【解析】
【分析】
根据等腰三角形两底角相等用α表示出∠A2B2O,依此类推即可得到结论.
4.如图,直线m∥n,点A在直线m上,点B、C在直线n上,AB=CB,∠1=70°,则∠BAC等于( )
A.40°B.55°C.70°D.110°
【答案】C
【解析】
试题解析:∵m∥n,

∵AB=BC,

故选C.
点睛:平行线的性质:两直线平行,内错角相等.
5.如图,已知DE∥BC,AB=AC,∠1=125°,则∠C的度数是( )
【解析】
试题分析:①2是腰长时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,
②2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长=2+4+4=10,
综上所述,它的周长是10.故选C.
考点:1.等腰三角形的性质;2.三角形三边关系;3.分类讨论.
7.如图,在四边形ABCD中,AC,BD为对角线,AB=BC=AC=BD,则∠ADC的大小为()

人教版八年级上册数学第13章 轴对称 单元练习卷(配套练习附答案)

人教版八年级上册数学第13章 轴对称 单元练习卷(配套练习附答案)
【答案】C
【解析】
【分析】
首先要进行分析题意,“等腰三角形的一个内角”没明确是顶角还是底角,所以要分两种情况进行讨论.
【详解】本题可分两种情况:
①当70°角为底角时,顶角为180°−2×70°=40°;
②70°角为等腰三角形的顶角;
因此这个等腰三角形的顶角为40°或70°.
故选C
【点睛】考查等腰三角形的性质,注意分类讨论,不要漏解.
∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,
∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC,
∵BC=9cm,∴MN=3cm.
故答案为3cm.
考点:1.线段垂直平分线的性质;2.等腰三角形的性质;
【点睛】考查等边三角形 性质,熟练掌握等边三角形的性质是解题的关键.
4.等腰三角形的周长为16,其一边长为6,则另两边为_____.
【答案】6和4或5和5.
【解析】
当腰是6时,则另两边是4,6,且4+6>6,满足三边关系定理;
当底边是6时,另两边长是5,5,5+5>6,满足三边关系定理.
故该等腰三角形的另两边为6和4或5和5.
A. B. C. D. 7
【答案】A
【解析】
【分析】
根据轴对称性质可得出PM=MQ,PN=RN,因此先求出QN的长度,然后根据QR=QN+NR进一步计算即可.
【详解】由轴对称性质可得:PM=MQ=2.5cm,PN=RN=3cm,
∴QN=MN−MQ=1.5cm,
∴QR=QN+RN=4.5cm,

人教版八年级上册数学《轴对称》单元测试附答案

人教版八年级上册数学《轴对称》单元测试附答案
人教版数学八年级上学期
《轴对称》单元测试
(时间:120分钟 满分:150分)
一、选择题(共7小题,满分35分,每小题5分)
1.下列体育运动标志中,从图案看不是轴对称图形的有( )个.
A.4B.3C.2D.1
2.在平面直角坐标系中,点(1,1)关于y轴对称的点的坐标是
A (-1,-1)B. (1,-1)C. (-1,1)D. (1,1)
A. 3个B. 4个C. 5个D. 6个
【答案】C
【解析】
【分析】
解答此题首先找到△ABC的对称轴,EH、GC、AD,BF等都可以是它的对称轴,然后依据对称找出相应的三角形即可.
【详解】解:如图所示:
与△ABC成轴对称且以格点为顶点三角形由△ABG、△CDF、△AEF、△DBH,△BCG共5个,
故选C.
【点睛】本题主要考查轴对称的性质;找着对称轴后画图是正确解答本题的关键.
6.△ABC中,AD是中线,点D到AB,AC的距离相等,则△ABC一定是( )
A. 直角三角形B. 等腰三角形
C. 等边三角形D. 等腰直角三角形
【答案】B
【解析】
【分析】
由AD是△ABC的中线,可得 ,再由D到AB,AC的距离相等可得AB=AC,即可得证.
【详解】∵AD是中线,
∴ ,再由
∵D到AB,AC的距离相等,
∴AB=AC,
∴△ABC一定是等腰三角形,
故选B.
【点睛】本题考查了中线的性质及等腰三角形的判定,解题的关键是知道三角形的中线把三角形分成面积相等的两部分
7.如图,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分线交于E,D是AE延长线上一点,且∠BDC=120°.下列结论:①∠BEC=120°;②DB=DE;③∠BDE=2∠BCE;其中正确结论的个数为( )

人教版八年级上册数学《轴对称》单元测试题带答案

人教版八年级上册数学《轴对称》单元测试题带答案
17.如图,点P关于OA、OB的对称点分别为C、D,连结CD,交OA于M,交OB于N,若△PMN的周长=8厘米,则CD为_______厘米
18.如图所示,在直角坐标系内,线段AB垂直于y轴,垂足为B,且AB=2,如果将线段AB沿y轴翻折,点A落在点C处,那么点C的横坐标是__________.
19.如图所示,已知△ABC关于直线y=1对称,点C到AB的距离为2,AB长为6,则点A,B的坐标分别为____.
【答案】C
【解析】
【分析】
根据各选项提供的已知条件结合等腰三角形的性质及轴对称图形的性质进行判断
【详解】解:根据轴对称图形的性质可知:A、B、D正确,C应改为等腰三角形底边上的高、中线及这边所对角的平分线重合,故错误.故选C.
【点睛】本题考查了等腰三角形的性质和轴对称以及轴对称图形的一些性质.需注意等腰三角形的三线合一的位置.
【详解】解:具有轴对称性的汉字:甲,日等字.
故答案是:甲、由、中、田、日等(答案不唯一).
【点睛】此题为开放性试题,能够根据轴对称图形的概念,写出左右对称或上下对称的汉字均可.
12.已知点M(x,y)与点N(﹣2,﹣3)关于x轴对称,则x+y=_____.
【答案】1
【解析】
【详解】根据题意,得x=-2,y=3.
A.垂线B.平行线
C.垂直平分线D.过中点的直线
4.如图所示,在△ABC中,AB=AC,∠ABC=70°,顶点B在直线DE上,且DE∥AC,则∠CBE等于( )
A.40°
B.50°
C 70°
D.80°
5.下列命题中,不正确的是( )
A.关于某条直线对称的两个三角形全等
B.若两个图形关于直线对称,则对称轴是对应点连线的垂直平分线

数学八年级上册《轴对称》单元测试题(附答案)

数学八年级上册《轴对称》单元测试题(附答案)
A.3B.4C.8D.9
[答案]C
[解析]
[详解]试题解析:设A D=x,∵△A B C是等边三角形,∴∠A=∠B=∠C=60°,∵DE⊥A C于点E,EF⊥B C于点F,FG⊥A B,∴∠A DF=∠DEB=∠EFC=90°,∴BF=2x,∴B D=x,CF=12﹣2x,∴CE=2CF=24﹣4x,∴AE=12﹣CE=4x﹣12,∴A D=2AE=8x﹣24,∵A D+B D=A B,∴x+8x﹣24=12,∴x=4,∴B D=4.A D=A B-B D=12-4=8,故选C.
7.已知点P(5,-2)与点Q关于y轴对称,则Q点的坐标为()
A.(-5,2)B.(-5,-2)C.(5,2)D.(5,-2)
[答案]B
[解析]
[分析]
平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出Q的对称点的坐标.
A. 3B. 4C. 8D. 9
7.已知点P(5,-2)与点Q关于y轴对称,则Q点的坐标为()
A. (-5,2)B. (-5,-2)C. (5,2)D. (5,-2)
8.如图,在锐角△A B C中,A B=4 ,∠B A C=45°,∠B A C的平分线交B C于点D,M、N分别是A D和A B上的动点,则BM+MN的最小值是()
人教版八年级上册《轴对称》单元测试卷
(时间:120分钟 满分:150分)
一、单选题(共10题;共28分)
1.下列交通标志是轴对称图形的是( )
A. B. C. D.
2.下面的图形中,既是轴对称图形又是中心对称图形的是()
A. B. C. D.
3.如图所示是4×5的方格纸,请在其中选取一个白色的方格并涂黑,使图中阴影部分是一个轴对称图形,这样的涂法有( )

新人教版八年级数学《轴对称》单元测试题及答案

新人教版八年级数学《轴对称》单元测试题及答案

第十二章《轴对称》测试题班级:姓名成绩:一、选择题(每题3分,共30分)1.如图,下列图形中,轴对称图形的个数是()A.1 B.2 C.3 D.42.下列图形中对称轴最多的是()A.圆B.正方形C.等腰三角形D.长方形3. 等腰三角形有两条边长为4cm和9cm,则该三角形的周长是()A.17cm B.22cm C.17cm或22cm D.18cm4. 小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是()A、21:10B、10:21C、10:51D、12:015.下列说法中,正确的是()A.关于某直线对称的两个三角形是全等三角形B.全等三角形是关于某直线对称的C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D.有一条公共边变得两个全等三角形关于公共边所在的直线对称6. 、已知直角三角形中30°角所对的直角边为2cm,则斜边的长为().A.2cm B.4cm C.6cm D.8cm7.已知等腰三角形的一个外角等于100°,则它的顶角是()A.80°B.20°C.80°或20°D.不能确定8. 点M(1,2)关于x轴对称的点的坐标为().A.(-1,-2) B.(-1,2) C.(1,-2) D.(2,-1)9.如图,在已知△ABC中,AB=AC, BD=DC,则下列结论中错误的是()A.∠BAC=∠BB.∠1=∠2C.AD⊥BCD.∠B=∠C10.到△ABC的三个顶点距离相等到的点是( )A.三条中线的交点B.三条角平分线的交点C.三条高线的交点 D 三条边的垂直平分线的交点二、填空题(每题4分,共36分)1. 已知点A (x ,-4)及点B (3,y )关于y 轴对称,则x +y 的值为_______.2.如果点P (4,-5)和点Q(a ,b)关于y 轴对称,则a =_____,b=____。

3.点(-2,1)点关于x 轴对称的点坐标为_ _;关于y 轴对称的点坐标为_ _。

数学八年级上册《轴对称》单元综合测试题(含答案)

数学八年级上册《轴对称》单元综合测试题(含答案)
故答案为100°.
[点睛]此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.
12.如图所示,分别作出点P关于OA,OB的对称点P1、P2,连接P1,P2,分别交OA、OB于点M、N,若P1P2=5Cm,则△PMN的周长为______________.
[答案]5
A -4031B. -1C. 1D. 4031
3.如图,已知△A B C,按以下步骤作图:①分别以B,C为圆心,以大于 B C的长为半径作弧,两弧相交于两点M,N;②作直线MN交A B于点D,连接CD.若C D=A C,∠A=50°,则∠A C B的度数为( )
A. 90°B. 95°C. 105°D. 110°
∴A=2016,B=-2015,
∴A+B=2016-2015=1,
故选C.
[点睛]此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.
3.如图,已知△A B C,按以下步骤作图:①分别以B,C为圆心,以大于 B C的长为半径作弧,两弧相交于两点M,N;②作直线MN交A B于点D,连接CD.若C D=A C,∠A=50°,则∠A C B的度数为( )
A. 4B. 5C. 6D. 7
[答案]C
[解析]
试题分析:根据对称图形的性质可得:PM= M,PN= N,
则△PMN的周长=PM+MN+PN= M+MN+ N= =6.
考点:对称的性质
7.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的△A DH中( )
[详解]解:关于y轴对称的点的坐标特征是纵坐标不变,横坐标互为相反数,

人教版数学八年级上册《轴对称》单元综合测试(含答案)

人教版数学八年级上册《轴对称》单元综合测试(含答案)
6.如图, , , 点在 的垂直平分线上,若 ,则
A.4B.6C.8D.10
【答案】C
【解析】
【分析】
根据 点在 的垂直平分线上得到AB=BD,所以∠D=∠BAD,所以∠ABC=30°,在△ABC中求出BD.
【详解】∠D=15°,B点在AD的垂直平分线上,则△ABD是等腰三角形,AB=BD,∠DAB=15°,∠ABC=30°.由于∠ACD=90°,则∠CAB=60°.AC=4,则AB=8.所以BD=8.
18.等腰三角形一腰上 高与另一腰的夹角为30度,则它的底角的度数为____
19.已知 、 ,点 在 轴上,若 是等腰三角形,则满足这样条件的 有________个.
三、解答题(共5小题,共58分)
20.如图,在等边三角形 中, 是 的中点,延长 到点 ,使 , .
求 的长;
(2) 吗?为什么?
21.如图,点 是等边 内一点, , .将 绕点 逆时针旋转 得 ,连接 .
8.下列说法错误的是()
A. 关于某直线对称的两个图形一定能够重合
B. 长方形是轴对称图形
C. 两个全等的三角形一定关于某直线对称
D. 轴对称图形的对称轴至少有一条
9.若等腰三角形的顶角为 ,则它一腰上的高与底边的夹角等于()
A. B. C. D.
10.如图是小明在平面镜里看到的电子钟示数,这时的实际时间是()
故选A
【点睛】本题考察轴对称图形的对称点的相关知识点,要牢固掌握对称轴相关性质,合理的与题目相结合.
8.下列说法错误的是()
A.关于某直线对称的两个图形一定能够重合
B.长方形是轴对称图形
C.两个全等的三角形一定关于某直线对称
D.轴对称图形的对称轴至少有一条

人教版八年级上册数学轴对称测试卷(含答案)

人教版八年级上册数学轴对称测试卷(含答案)

人教版八年级上册数学第十三章轴对称单元测试卷(时间:90分钟 满分:100分)一、单选题(共15题,共计45分)1、已知Rt △ABC 中,∠ABC=90°,点D 是BC 中点,分别过B 、C 为圆心,大于线段BC 长为半径作弧,两弧交于点P ,作直线PD 交AC 于点E ,连接BE ,则下列结论中不正确的是( )A.ED ⊥BCB.BE 平分∠AEDC.E 为△ABC 的外接圆圆心D.ED= AB2、下列说法,正确的是( )A.等腰三角形的高、中线、角平分线互相重合B.到三角形二个顶点距离相等的点是三边垂直平分线的交点C.三角形一边上的中线将三角形分成周长相等的两个三角形D.两边分别相等的两个直角三角形全等3、下列图形中,是轴对称图形,但不是中心对称图形的是( )A. B. C. D.4、下图中是中心对称图形而不是轴对称图形的共有( )A.1个B.2个C. 4个姓名 班级___________ 座位号………………………装…………订…………线…………内…………不…………要…………答…………题………………………5、下列图案中,是轴对称图形的是()A. B. C. D.6、下列图形中,是轴对称图形的是()A. B. C. D.7、下列手机软件图标中,是轴对称图形的是( )A. B. C. D.8、已知等腰三角形两边长为3和7,则周长为()A.13B.17C.13或17D.119、如图,在中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,面积为10,则BM+MD长度的最小值为()A. B.3 C.4 D.510、如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A.1个B.2个C.3个D.4个11、如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°12、等腰三角形的一个角是50°,它的底角的度数是()A.65°B.50°C.65°或50°D.不能确定13、如图,在△ABC中,∠C=90o,∠A=30o,分别以A、B两点为圆心,大于AB为半径画弧,两弧交于M、N两点,直线MN交AC于点D,交AB于点E,若CD=2,则AC的长度为( )A.9B.6C.D.14、如图,在Rt△ABC中,BC=3,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM,ON上滑动.下列结论:①若C、O两点关于AB对称,则OA=3 ;②若AB平分CO,则AB⊥CO;③C,O两点间的最大距离是6;④斜边AB的中点D运动的路径长是π,其中正确的有()A.①②B.③④C.②③④D.①③④15、等腰三角形的两条边长分别为3和4,则其周长等于()A.10B.11C.10或11D.不确定二、填空题(共10题,共计30分)16、如图,∠A=15°,∠C=90°,DE垂直平分AB交AC于E,若BC=4cm,则AC=________cm.17、如图,AB是⊙O的直径,AB=10,∠A=40°,点D为弧BC的中点,点P是直径AB上的一个动点,PC+PD的最小值为________.18、点A(-3,2)关于y轴对称的点的坐标为________.19、已知点A(a,3)与点B(2,b)关于x轴对称,则a+b=________.20、已知点关于轴的对称点为,则________.21、如图,在河对岸有一等腰三角形场地EFG,FG=EG , 为了估测场地的大小,在笔直的河岸上依次取点C,D,B,A,使点E,G,D在同一直线上,在D观测F 后,发现,测得CD=12米,DB=6米,AB=12米,则FG=________米.22、如图,在△ABC中,∠ABC平分线交AC于点E,过E作DE平行BC,交AB于点D,DB=5,则线段DE=________.23、如图,在△ABC中,AB=AC=10cm,BC=8cm,AB的垂直平分线交AB于点M,交AC于点N,在直线MN上存在一点P,使P、B、C三点构成的△PBC的周长最小,则△PBC的周长最小值为________.24、如图,等边三角形OAB的边长为2,P是线段OA上任意一点(不含端点O,A),过O、P两点的抛物线和过A,P两点的抛物线的顶点分别在OB,AB上,则这两个二次函数的最大值之和等于________.25、如图,在平面直角坐标系中,△AA1C1是边长为1的等边三角形,点C1在y轴的正半轴上,以AA2=2为边长画等边△AA2C2;以AA3=4为边长画等边△AA3C3,…,按此规律继续画等边三角形,则点A n的坐标为________.三、解答题(共5题,共计25分)26、如图所示,△ABC和△AEF为等边三角形,点E在△ABC内部,且E到点A,B,C的距离分别为3,4,5,求∠AEB的度数.27、在等腰△ABC中,三条边分别是a,b,c,其中b=5.若关于x的一元二次方程x2+(a+2)x﹣=0有两个相等的实数根,求△ABC的周长.28、在△ABC中,AB=AC,∠BAC=α(0°<α<60°),分别以AB、BC为边作等边三角形ABE和等边三角形BCD,连结CE,如图1所示.(1)直接写出∠ABD的大小(用含α的式子表示);(2)判断DC与CE的位置关系,并加以证明;(3)在(2)的条件下,连结DE,如图2,若∠DEC=45°,求α的值.29、如图,AB是半圆O的直径,D是半圆上的一点,∠DOB=75°,DC交BA延长线于E,交半圆于C,且CE=AO,求∠E的度数.30、如图是建有平面直角坐标系的正方形网格,请按下列要求操作:(1)画△ABC,使A,B,C三点的坐标分别为(3,1),(4,﹣1),(2,﹣2);(2)画△A′B′C′,使△A′B′C′与△ABC关于y轴对称,连接AA′,BB′.并指出四边形AA′B′B是何种特殊的四边形?参考答案一、单选题(共15题,共计45分)1、B2、B3、D4、B5、B6、B7、B8、B9、D10、C11、A12、C13、B14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

初二轴对称l单元测试题及答案

初二轴对称l单元测试题及答案

初二轴对称l单元测试题及答案初二轴对称单元测试题及答案一、选择题(每题2分,共10分)1. 下列图形中,不是轴对称图形的是:A. 等边三角形B. 正方形C. 圆D. 五角星2. 如果一个图形关于某条直线对称,那么这条直线称为该图形的:A. 对称轴B. 对称线C. 反射线D. 镜像线3. 一个图形的轴对称变换不改变图形的:A. 形状B. 大小C. 颜色D. 位置4. 根据轴对称的性质,下列说法正确的是:A. 对称轴两侧的图形形状相同B. 对称轴两侧的图形颜色相同C. 对称轴两侧的图形大小相同D. 对称轴两侧的图形位置相同5. 在平面直角坐标系中,如果一个点关于y轴对称,那么它的对称点的坐标是:A. (-x, y)B. (x, -y)C. (y, x)D. (-y, x)二、填空题(每题2分,共10分)6. 若一个图形关于直线x=1对称,则该图形的对称轴是________。

7. 等腰三角形的底边中点与顶点的连线是该三角形的________。

8. 在平面直角坐标系中,点(3,4)关于x轴对称的点的坐标是________。

9. 轴对称图形的对称轴是图形的________。

10. 如果一个图形的对称轴是y=2,那么该图形在对称轴上的所有点的y坐标都是________。

三、简答题(每题5分,共15分)11. 描述如何判断一个图形是否为轴对称图形。

12. 解释轴对称图形的对称轴的确定方法。

13. 给出一个实际生活中轴对称的应用例子,并解释其工作原理。

四、作图题(每题5分,共10分)14. 给定一个三角形ABC,A(-1,2),B(2,4),C(3,-1),请画出三角形ABC关于直线x=1的对称图形。

15. 在平面直角坐标系中,画出点(2,3)关于y轴的对称点。

五、计算题(每题5分,共15分)16. 已知点P(-2,3),求点P关于直线y=x的对称点P'的坐标。

17. 已知点Q(4,-1),求点Q关于原点的对称点Q'的坐标。

新人教版初中数学八年级数学上册第三单元《轴对称》测试卷(含答案解析)

新人教版初中数学八年级数学上册第三单元《轴对称》测试卷(含答案解析)

一、选择题1.如图,在等腰三角形ABC 中,,36,AB AC A D =∠=是AC 的中点,ED AC ⊥交AB 于点E ,已知6,2AC DE ==,则BC 的长为( )A .13B .32C .40D .202.以下尺规作图中,点D 为线段BC 边上一点,一定能得到线段AD BD =的是( )A .B .C .D .3.如图,在ABC 中,90C ∠=︒,30B ∠=︒,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D .则下列说法中正确的个数是( )①AD 是BAC ∠的平分线;②60ADC ∠=︒;③点D 在AB 的中垂线上;④:2:5DAC ABC S S =△△A .1B .2C .3D .4 4.在等腰ABC ∆中,80A ∠=︒,则B 的度数不可能是( )A .80︒B .60︒C .50︒D .20︒5.若a ,b 为等腰ABC 的两边,且满足350a b -+-=,则ABC 的周长为( ) A .11B .13C .11或13D .9或156.如图,在Rt ABC ∆中, 90,30,ACB A CD ︒︒∠=∠=是斜边AB 上的高,2BD =,那么AD 的长为( )A .2B .4C .6D .87.定义:等腰三角形的一个底角与其顶角的度数的比值()1k k >称为这个等腰三角形的“优美比”.若在等腰三角形ABC 中,36,A ∠=︒则它的优美比k 为( ) A .32B .2C .52D .38.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( ) A .()2,2 B .(2,1)-C .()2,1-D .(2,1)-- 9.等腰三角形的一个内角是50度,它的一腰上的高与底边的夹角是( )度A .25或60B .40或60C .25或40D .4010.三个等边三角形的摆放位置如图所示,若12100︒∠+∠=,则3∠的度数为( )A .80︒B .70︒C .45︒D .30︒11.若海岛N 位于海岛M 北偏东30°的方向上,则从海岛N 出发到海岛M 的航线可能是( )A .B .C .D .12.已知等边△ABC 的边长为6,D 是AB 上的动点,过D 作DE ⊥AC 于点E ,过E 作EF ⊥BC 于点F ,过F 作FG ⊥AB 于点G .当G 与D 重合时,AD 的长是( )A .1B .2C .3D .4二、填空题13.平面直角坐标系xOy 中,先作出点P (2,3)-关于y 轴的对称点,再将该对称点先向下平移1个单位,再向左平移2个单位得到点P 1,称为完成一次图形变换,再将点P 1进行同样的图形变换得到点P 2,以此类推,则点P 2020的坐标为___________.14.平面直角坐标系中,已知A (8,0),△AOP 为等腰三角形,且△AOP 的面积为16,则满足条件的P 点个数是______.15.如图,△ABC ≌△ADE ,点D 落在BC 上,且∠BAD =70°,则∠EDC =_____°.16.如图,等腰ABC 的周长为36,底边上的高12AD =,则ABD △的周长为________.17.如图,在ABC 中,22A ∠=︒,D 为AB 边中点,E 为AC 边上一点,将ADE 沿着DE 翻折,得到A DE ',连接A B '.当A B A D ''=时,A EC '∠的度数为______.18.如图,在Rt ABC △中.AC BC ⊥,若5AC =,12BC =,13AB =,将Rt ABC △折叠,使得点C 恰好落在AB 边上的点E 处,折痕为AD ,点P 为AD 上一动点,则PEB △的周长最小值为___.19.如图,在ABC 中,AB=AC ,40A ∠=,CD //AB ,则BCD ∠的度数是______°.20.如图,点D 是ABC ∠内一点,点E 在射线BA 上,且15DBE BDE ∠=∠=︒,//DE BC ,过点D 作DF BC ⊥,垂足为点F ,若BE a =,则DF =___________(用含a 的式子表示).三、解答题21.如图,ABC 是边长为10的等边三角形,现有两点P 、Q 沿如图所示的方向分别从点A 、点B 同时出发,沿ABC 的边运动,已知点P 的速度为每秒1个单位长度,点Q 的运度为每秒2个单位长度,当点P 第一次到达B 点时,P 、Q 同时停止运动. (1)点P 、Q 运动几秒后,可得到等边三角形APQ ? (2)点P 、Q 运动几秒后,P 、Q 两点重合?(3)当点P 、Q 在BC 边上运动时,能否得到以PQ 为底边的等腰APQ ?如存在,请求出此时P 、Q 运动的时间.22.已知45MAN ∠=︒,点B 为射线AN 上一定点,点C 为射线AM 上一动点(不与点A 重合),点D 在线段BC 的延长线上,且CD CB =.过点D 作DE AM ⊥于点E .(1)当点C 运动到如图1的位置时,点E 恰好与点C 重合,此时AC 与DE 的数量关系是 ;(2)当点C 运动到如图2的位置时,依题意补全图形,并证明:2AC AE DE =+; (3)在点C 运动的过程中,点E 能否在射线AM 的反向延长线上?若能,直接用等式表示线段AC ,AE ,DE 之间的数量关系;若不能,请说明理由. 23.(1)如图1,О是等边ABC 内一点,连接OA OB OC 、、,且3,4,5,OA OB OC ===BAO BCD ≅△△,连接OD .①OBD ∠= __度;(答案直接填写在横线上) ②OD =_ __﹔(答案直接填写在横线上) ③求BDC ∠的度数.(2)如图2所示,О是等腰直角()90ABC ABC ∠=︒△内一点,连接OA OB OC 、、,BAO BCD ≅△△,连接OD .当OA OB OC 、、满足什么条件时,90ODC ∠=.请给出证明.24.如图,在ABC 中,AB AC =,D 为AC 的中点,DE AB ⊥于点E ,DF BC⊥于点F ,且DE DF =,连接BD ,点G 在BC 的延长线上,且CD CG =. (1)求证:ABC 是等边三角形; (2)若2CG =,求BC 的长.25.如图:已知ABC 中AB AC =:(1)尺规作图:过A 点作//AE BC (不写作法,保留作图痕迹); (2)求证:AE 是ABC 的一个外角角平分线.26.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,ABC 的顶点均在格点上,点A 的坐标是(3,1)--.(1)将ABC 关于x 轴对称得到111A B C △,画出111A B C △,并写出点1B 的坐标; (2)把111A B C △平移,使点B 平移到2(3,4)B ,请作出111A B C △平移后的222A B C △,并写出2A 的坐标;(3)已知ABC 中有一点(,)D a b ,求222A B C △中的对应点2D 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AE=CE,然后根据等边对等角可得∠ECD=∠A,再根据三角形内角和等于180°求出∠B=72°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BEC=72°,然后根据等角对等边的性质和勾股定理解答.【详解】解:∵D是AC的中点,ED AC⊥交AB于点E,∴ED垂直平分AC,∴AE=CE,∴∠ECD=∠A,∵∠A=36°,∴∠ECD=36°,∵AB=AC,∠A=36°,∴∠B=12(180°-36°)=72°,∵∠ECD=∠A=36°,∴∠BEC=∠ECD+∠A=36°+36°=72°,∴∠B=∠BEC,∴BC=CE,∵AE=CE,ED⊥AC,∴CD=12AC=3,在Rt△CED中,∴故选A.【点睛】本题考查了等腰三角形三线合一的性质,勾股定理,线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角以及等角对等边的性质,熟练掌握有关性质是解题的关键.2.D解析:D【分析】点D到点A、点B的距离相等可知点D在线段AB的垂直平分线上,据此可得答案.【详解】解:∵点D到点A、点B的距离AD=BD,∴点D在线段AB的垂直平分线上,故选择:D.【点睛】本题主要考查作图−复杂作图,解题的关键是掌握线段中垂线的性质与尺规作图.3.C解析:C 【分析】根据题意作图可知:AD 是BAC ∠的平分线,由此判断①正确;先求得∠BAC=60︒,由AD 是BAC ∠的平分线,求得∠CAD=∠BAD=30B ∠=︒,即可得到60ADC ∠=︒,判断②正确;过点D 作DE ⊥AB 于E ,根据∠BAD=30B ∠=︒,证得△ABD 是等腰三角形,得到AE=BE ,即可判断③正确;证明Rt △ACD ≌Rt △AED ,得到S △ACD =S △AED ,根据等底同高得到S △AED =S △BED ,即可得到:1:3DACABCSS=,判断④错误.【详解】解:由题意得:AD 是BAC ∠的平分线,故①正确; ∵90C ∠=︒,30B ∠=︒, ∴∠BAC=60︒,∵AD 是BAC ∠的平分线, ∴∠CAD=∠BAD=30B ∠=︒, ∴60ADC ∠=︒,故②正确; 过点D 作DE ⊥AB 于E , ∵∠BAD=30B ∠=︒, ∴AD=BD ,∴△ABD 是等腰三角形, ∴AE=BE ,∴点D 在AB 的中垂线上,故③正确; ∵AD 是BAC ∠的平分线,DC ⊥AC ,DE ⊥AB , ∴CD=DE ,∠C=∠AED=90︒, 又∵AD=AD , ∴Rt △ACD ≌Rt △AED , ∴S △ACD =S △AED , ∵AE=BE ,DE ⊥AB , ∴S △AED =S △BED , ∴:1:3DACABCSS=,故④错误;故选:C ..【点睛】此题考查角平分线的作图方法及性质应用,全等三角形的判定及性质,线段垂直平分线的判定,等腰三角形的判定及性质,三角形内角和定理,熟练掌握各部分知识并综合应用是解题的关键.4.B解析:B【分析】分∠A是顶角和底角两种情况分类讨论求得∠B的度数,即可得到答案.【详解】当∠A是顶角时,则∠B=(180°-∠A)÷2=(180°-80°)÷2=50°,当∠B是顶角时,则∠A是底角,∴∠B=180°-80°-80°=20°,当∠C是顶角时,则∠A和∠B都是底角,∴∠B=∠A=80°,综上所述:∠B的度数为:50°或20°或80°.观察各选项可知∠B不可能是60°.故选B.【点睛】本题主要考查等腰三角形的性质,掌握分类讨论思想方法,是解题的关键.5.C解析:C【分析】根据非负数的意义列出关于a、b的方程并求出a、b的值,再根据b是腰长和底边长两种情况讨论求解.【详解】解:根据题意得a-3=0,b-5=0,解得a=3,b=5,(1)若3是腰长,则三角形的三边长为:3、3、5,能组成三角形,周长为:3+3+5=11;(2)若3是底边长,则三角形的三边长为:3、5、5,能组成三角形,周长为3+5+5=13.故选:C.【点睛】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形作出判断.6.C解析:C【分析】根据∠ACB=90°,∠A=30°,CD是斜边AB上的高,利用互余关系求∠BCD=30°,DB=2,可求BC,在Rt△ABC中,再利用含30°的直角三角形的性质求AB,再用线段的差求AD.【详解】解:Rt△ABC中,∵∠ACB=90°,∠A=30°,∴∠B=90°-∠A=90°-30°=60°,CD是斜边AB上的高,∴∠CDB=90°,∴∠BCD=90°-∠B=30°,∴BC=2BD=4,同理,AB=2BC=8,AD=AB-BD=8-2=6,故选:C.【点睛】本题考查了含30°的直角三角形的性质,准确运用在直角三角形中,30°角所对直角边等于斜边的一半是解题关键.7.B解析:B【分析】由已知可以写出∠B和∠C,再根据三角形内角和定理可以得解.【详解】解:由已知可得:∠B=∠C=k∠A=(36k)°,由三角形内角和定理可得:2×36k+36=180,∴k=2,故选B.【点睛】本题考查等腰三角形的应用,熟练掌握等腰三角形的性质、三角形内角和定理及方程思想的应用是解题关键.8.C解析:C【分析】根据点A,点A'坐标可得点A,点A'关于y轴对称,即可求点B'坐标.【详解】解:∵将线段AB沿坐标轴翻折后,点A(1,3)的对应点A′的坐标为(-1,3),∴线段AB沿y轴翻折,∴点B关于y轴对称点B'坐标为(-2,1)故选:C.【点睛】本题考查了翻折变换,坐标与图形变化,熟练掌握关于y轴对称的两点纵坐标相等,横坐标互为相反数是关键.9.C解析:C【分析】当顶角为50°时和底角为50°两种情况进行求解.【详解】当顶角为50°时,底角为:(180°−50°)÷2=65°.此时它的一条腰上的高与底边的夹角为:90°−65°=25°.当底角为50°时,此时它的一条腰上的高与底边的夹角为:90°−50°=40°.故选:C.【点睛】本题考查等腰三角形的性质,等腰三角形中两个底角相等.同时考查了分类讨论的思想.10.A解析:A【分析】由平角的性质可得∠3+∠6+60°=180°,∠2+∠4+60°=180°,∠1+∠5+60°=180°,可得∠1+∠2+∠3+∠4+∠5+∠6=540°−180°,将∠1+∠2=100°代入可求解.【详解】∵∠3+∠6+60°=180°,∠2+∠4+60°=180°,∠1+∠5+60°=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=540°−180°=360°,∵∠4+∠5+∠6=180°,∴∠1+∠2+∠3=360°-180°=180°,∴∠3=180°−(∠1+∠2)=80°,故选:A.【点睛】本题考查了等边三角形的性质,平角的性质,三角形内角和定理,熟练运用这些性质进行推理是本题的关键.11.D解析:D【分析】根据题意画出图形,再利用“上北下南”求出方向角即可.【详解】解:如图:∵海岛N位于海岛M的北偏东30°方向上,∴海岛N在海岛M上方,故排除A、B选项,根据直角三角形中30°角所对的边等于斜边的一半,排除选项C,故选D.【点睛】本题考查了方向角,解题的关键是熟练掌握方向角的概念.12.D解析:D【分析】设BD=x,根据等边三角形的性质得到∠A=∠B=∠C=60°,由垂直的定义得到∠BDF=∠DEA=∠EFC=90°,依次表示出BF、CF、CD、AE、AD,然后根据AD+BD=AB列方程即可求出x的值.【详解】解:如图,设BD=x,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵DE⊥AC于点E,EF⊥BC于点F,FG⊥AB,∴∠BDF=∠DEA=∠EFC=90°,∴∠BFD=∠ADE=∠CEF=30°,∴BF=2x,∴CF=6-2x,∴CE=2CF=12-4x,∴AE=6-CE=4x-6,∴AD=2AE=8x-12,∵AD+BD=AB,∴8x-12+x=6,∴x=2,∴AD=8x-12=16-12=4.故选:D.【点睛】本题考查了等边三角形的性质,含30°角的直角三角形的性质,熟练掌握等边三角形的性质是解题的关键.二、填空题13.【分析】按程序先作y轴对称求出点坐标横坐标-2纵坐标-1完成一次图形变换求出P变换后的坐标找出几次变换后规律奇次变换点的横坐标x=0偶次变换点的横坐标x=-2纵坐标变一次下移一个单位【详解】解:完成--解析:(2,2017)【分析】按程序先作y轴对称,求出点坐标,横坐标-2,纵坐标-1,完成一次图形变换求出P变换后的坐标,找出几次变换后规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.【详解】-关于y轴的对称点(2,3),横坐标2-2=0,纵坐标3-解:完成1次图形变换,点P (2,3)1=2,P1(0,2),完成2次图形变换,点P1(0,2)关于y轴的对称点(0,2),横坐标0-2=-2,纵坐标2-1=1,P2(-2,1),完成3次图形变换,点P2(-2,1)关于y轴的对称点(2,1),横坐标3-3=0,纵坐标1-1=0,P3(0,0),完成4次图形变换,点P3(0,0)关于y轴的对称点(0,0),横坐标0-2=-2,纵坐标0-1=-1,P4(-2,-1),……,完成2020次图形变换,点P2019(0,3-2019)关于y轴的对称点(0,-2016),横坐标0-2=-2,纵坐标-2016-1=-2017,P2020(-2,-2017).故答案为:(-2,-2017).【点睛】本题考查图形规律探索问题,掌握图形程序变换的轴对称性质和平移特征,关键是找到变换规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.14.10【分析】使△AOP为等腰三角形只需分两种情况考虑:OA当底边或OA 当腰当OA是底边时有2个点;当OA是腰时有8个点即可得出答案【详解】∵A(80)∴OA=8设△AOP的边OA上的高是h则×8×h解析:10【分析】使△AOP为等腰三角形,只需分两种情况考虑:OA当底边或OA当腰.当OA是底边时,有2个点;当OA是腰时,有8个点,即可得出答案.【详解】∵A(8,0),∴OA=8,设△AOP的边OA上的高是h,则12×8×h=16,解得:h=4,在x轴的两侧作直线a和直线b都和x轴平行,且到x轴的距离都等于4,如图:①以A为圆心,以8为半径画弧,交直线a和直线b分别有两个点,即共4个点符合,②以O为圆心,以8为半径画弧,交直线a和直线b分别有两个点,即共4个点符合,③作AO的垂直平分线分别交直线a、b于一点,即共2个点符合,其中,没有重复的点,∴4+4+1+1=10.故选:B.【点睛】本题主要考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.15.70【分析】根据全等三角形的性质可得对应角和对应边相等再根据等腰三角形的性质即可解答【详解】解:∵△ABC≌△ADE∴AB=AD∠B=∠ADE ∴∠ADB =∠B ∵∠BAD =70°∴∠B =∠ADB=(1解析:70【分析】根据全等三角形的性质可得对应角和对应边相等,再根据等腰三角形的性质,即可解答.【详解】解:∵△ABC ≌△ADE ,∴AB =AD ,∠B =∠ADE ,∴∠ADB =∠B ,∵∠BAD =70°,∴∠B =∠ADB =(180°-70°)÷2=55°,∴∠EDC =180°-2×55°=70°.故答案是:70.【点睛】本题考查了全等三角形的性质,等腰三角形的性质以及平角的定义,熟记性质并准确识图是解题的关键.16.30【分析】根据等腰三角形的性质可求得AB+BD=18再结合AD=12即可求得的周长【详解】∵△ABC 为等腰三角形AD 为底边上的高∴AB=ACBD=DC ∵△ABC 的周长等于36∴AB+BD+DC+A解析:30【分析】根据等腰三角形的性质可求得AB+BD=18,再结合AD=12,即可求得ABD △的周长.【详解】∵△ABC 为等腰三角形,AD 为底边上的高,∴AB=AC ,BD=DC ,∵△ABC 的周长等于36,∴AB+BD+DC+AC=36,即AB+BD=18,∵AD=12,∴△ABD 的周长等于=AD+BD+AB=12+18=30.故答案为:30.【点睛】本题考查等腰三角形的性质.掌握等腰三角形三线合一(底边上的中线、底边上的高线,顶角的平分线重合)是解题关键.17.【分析】根据折叠的性质可得根据及折叠的性质可得为等边三角形再根据三角形的外角性质求解即可【详解】在中将沿着翻折交于点得到如图;∴∴∵为边中点∴为等边三角形∴∴∵即∴故答案为:【点睛】本题考查了全等三 解析:16【分析】根据折叠的性质可得AED A ED '≅,根据A B A D ''=及折叠的性质可得A BD '为等边三角形,再根据三角形的外角性质求解即可【详解】在ABC 中,22A ∠=︒,将ADE 沿着DE 翻折,A D '交AC 于点F ,得到A DE ',如图;∴AED A ED '≅ ∴1=,222AD A D AB EA D A ''===∠∠, ∵A B A D ''=,D 为AB 边中点,∴A B A D DB ''==,A BD '为等边三角形, ∴=60A DB '∠,∴60A AFD +=∠∠,∵=AFD EA D A EC ''+∠∠∠即()60A EA D A EC ''++=∠∠∠∴=16A EC '∠.故答案为:16【点睛】本题考查了全等三角形的性质,等边三角形的性质,三角形外角的性质等知识点,解题的关键是根据折叠找到对应的边角关系18.【分析】根据由沿AD 对称得到进而表示出最后求周长即可【详解】由沿AD 对称得到则E 与C 关于直线AD 对称∴如图连接由题意得∴当P 在BC 边上即D 点时取得最小值12∴周长为最小值为故答案为:20【点睛】本题 解析:【分析】根据ADE ∆由ACD ∆沿AD 对称,得到AE AC =,进而表示出PB PE PB PC BC ,最后求PEB ∆周长即可.【详解】ADE ∆由ACD ∆沿AD 对称得到,则E 与C 关于直线AD 对称,5AE AC ==,∴1358BE AB AE =-=-=,如图,连接PC ,由题意得PC PE =,∴12PB PE PB PC BC ,当P 在BC 边上,即D 点时取得最小值12,∴PEB ∆周长为PE PB BE ,最小值为12820+=.故答案为:20.【点睛】本题考查了三角形折叠问题,正确读懂题意是解本题的关键.19.110【分析】根据等腰三角形的性质求出∠B=70º再根据平行线的性质求出的度数【详解】解:∵AB=AC ∴∠B=∠ACB==70º∵//∴+∠B=180º∴=110º故答案为:110【点睛】本题考查了解析:110【分析】根据等腰三角形的性质,求出∠B=70º,再根据平行线的性质,求出BCD ∠的度数.【详解】解:∵AB=AC ,40A ∠=,∴∠B=∠ACB=180402︒-︒=70º, ∵CD //AB , ∴BCD ∠+∠B=180º,∴BCD ∠=110º,故答案为:110.【点睛】本题考查了等腰三角形的性质和平行线的性质,熟练运用已知条件,准确推理计算,是解决这类题的关键.20.【分析】作DH ⊥AB 根据直角三角形的性质求出DH 根据平行线的性质角平分线的性质解答【详解】解:作DH ⊥AB 于H ∵∴∠DEH=∠DBE+∠BDE=30°∴DH=∵DE ∥BC ∴∠DBF=∠BDE ∴∠DB 解析:12a 【分析】作DH ⊥AB ,根据直角三角形的性质求出DH ,根据平行线的性质,角平分线的性质解答.【详解】解:作DH ⊥AB 于H ,∵15DBE BDE ∠=∠=︒∴∠DEH=∠DBE+∠BDE=30°,DE BE a ==∴DH=11=22DE a , ∵DE ∥BC ,∴∠DBF=∠BDE , ∴∠DBF=∠DBH ,又DF ⊥BC ,DH ⊥AB ,∴DF=DH=12a , 故答案为:12a . 【点睛】本题考查的是角平分线的性质,直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.三、解答题21.(1)点P 、Q 运动103秒后,可得到等边三角形APQ ;(2)点P 、Q 运动10秒后,P 、Q 两点重合;(3)当点P 、Q 在BC 边上运动时,能得到以PQ 为底边的等腰三角形,此时P 、Q 运动的时间为403秒. 【分析】(1)设点P 、Q 运动t 秒后,可得到等边三角形APQ ,利用,AP AQ = 列方程,解方程可得答案;(2)设点P 、Q 运动x 秒后,P 、Q 两点重合,由追及问题中的相等关系:Q 的运动路程等于P 的运动路程加上相距的路程,列方程,解方程即可得到答案;(3)当点P 、Q 在BC 边上运动时,可以得到以PQ 为底边的等腰三角形.先证明:ACP △≌ABQ △,可得CP BQ =,再列方程,解方程并检验即可得到答案.【详解】解:(1)设点P 、Q 运动t 秒后,可得到等边三角形APQ ,如图①,AP t =,102AQ AB BQ t =-=-,∵三角形APQ 是等边三角形,,AP AQ ∴=∴102t t =-,解得103t =, ∴点P 、Q 运动103秒后,可得到等边三角形APQ .(2)设点P 、Q 运动x 秒后,P 、Q 两点重合,102x x +=,解得:10x =.∴点P 、Q 运动10秒后,P 、Q 两点重合.(3)当点P 、Q 在BC 边上运动时,可以得到以PQ为底边的等腰三角形.理由如下: 由(2)知10秒时P 、Q 两点重合,恰好在C 处,如图②,假设APQ 是等腰三角形,∴AP AQ =,∴APQ AQP ∠=∠,∴APC AQB ∠=∠,∵ACB △是等边三角形,∴C B ∠=∠,在ACP △和ABQ △中,,,,AC AB C B APC AQB =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴ACP △≌ABQ △, ∴CP BQ =,设当点P 、Q 在BC 边上运动时,P 、Q 运动的时间y 秒时,APQ 是等腰三角形, 由题意得:10CP y =-,302QB y =-,∴ 10302y y -=-,解得:403y =, P 的最长运动时间为2020,1s = Q 从B A C B →→→的最长时间为30=152s , 由403<15, ∴ 403y =符合题意, ∴当点P 、Q 在BC 边上运动时,能得到以PQ 为底边的等腰三角形,此时P 、Q 运动的时间为403秒. 【点睛】 本题考查的是三角形全等的判定与性质,等腰三角形的判定与性质,等边三角形的判定与性质,动点问题,掌握以上知识是解题的关键.22.(1)AC DE =;(2)补全图形见解析,证明见解析;(3)能,2.AC AE DE +=【分析】(1)先证明AC 是BD 的垂直平分线,可得:45ABD ADB ∠=∠=︒,可得:90DAB ∠=︒,可得45CAD CDA ∠=∠=︒,从而可得结论; (2)如图,过B 作BG AM ⊥于G ,证明:,BCG DCE ≌ 可得,,BG DE CG CE == 再证明:,AG BG DE == 从而可得()22,AC DE CE =+ ()2,AE DE DE CE +=+ 于是可得结论;(3)如图,过B 作BG AM ⊥于G ,同(2)理可得:(),BCG DCE AAS ≌AG BG =,可得,,CG CE BG DE == ,AG BG DE == 再证明2,AG AC AE =+从而可得结论.【详解】解:(1)当,E C 重合时,点D 在线段BC 的延长线上,CD CB =,DE AM ⊥,AC ∴是BD 的垂直平分线,,AB AD ∴=,ABD ADB ∴∠=∠45MAN ∠=︒,45ABD ∴∠=︒,45ABD ADB ∴∠=∠=︒,90DAB ∴∠=︒,45CAD CDA ∴∠=∠=︒,.AE DE ∴=故答案:.AE DE =(2)补全图形如图所示,过B 作BG AM ⊥于G ,DE AM ⊥,90DEC BGC ∴∠=∠=︒,,,BC DC BCG DCE =∠=∠(),BCG DCE AAS ∴≌,,BG DE CG CE ∴==45,MAN BG AM ∴∠=︒⊥,45GAB GBA ∴∠=∠=︒,,AG BG DE ∴==()()222,AC AG CG DE CE ∴=+=+()2,AE DE AG CG CE DE DE CE +=+++=+2.AC AE DE ∴=+(3)点E 能在射线AM 的反向延长线上,如图,过B 作BG AM ⊥于G ,同理可得:(),BCG DCE AAS ≌AG BG =,,,CG CE BG DE ∴==,AG BG DE ∴==2,AG AC CG AC CE AC AC AE AC AE ∴=+=+=++=+2.AC AE DE ∴+=【点睛】本题考查的是线段的垂直平分线的定义及性质,等腰三角形的判定,三角形全等的判定与性质,掌握以上知识是解题的关键.23.(1)①60︒;②4;③150︒;(2)2222OA OB OC +=,证明见解析.【分析】(1)①由BAO BCD ≅△△得到,BO BD ABO CBD =∠=∠,继而证明ABC OBD ∠=∠即可解题;②由BAO BCD ≅△△得到BO BD =,结合①结论60OBD ∠=︒,可证明OBD 是等边三角形,即可解题;③根据BAO BCD ≅△△得到=AO CD ,在ODC △中根据三角形三边关系即勾股定理的逆定理,可证明ODC △为直角三角形,继而得到90ODC ∠=,再结合OBD 是等边三角形即可解得60OBD ∠=︒据此解题即可;(2)由,BAO BCD ≅可得90,,OBD ABC BO BD CD AO ∠=∠=︒==,可证明OBD 为等腰直角三角形,根据等腰直角三角形边的关系可得OD =,最后根据直角三角形三边满足勾股定理解题即可.【详解】解:(1)①BAO BCD ≅,BO BD ABO CBD ∴=∠=∠ABO OBC CBD OBC ∴∠+∠=∠+∠即ABC OBD ∠=∠60ABC OBD ∴∠=∠=︒故答案为:60︒;②BAO BCD ≅BO BD ∴=,由①得60OBD ∠=︒OBD ∴△是等边三角形,4OD OB BD ∴===故答案为:4;③BAO BCD ≅AO CD ∴=4,3,5OD DC OC ===222OD DC OC ∴+=ODC ∴为直角三角形90ODC ∴∠= OBD △为等边三角形60BDO ∴∠=︒90+60=150BDC ODC BDO ∴∠=∠+∠=︒︒;(2)当2222OA OB OC +=时,90ODC ∠=︒.理由如下:,BAO BCD ≅90,,OBD ABC BO BD CD AO ∴∠=∠=︒==,OBD ∴△为等腰直角三角形,2OD OB ∴=,当222CD OD OC +=时,OCD 为直角三角形,90ODC ∠=︒2222OA OB OC ∴+=,当OA OB OC 、、满足2222OA OB OC +=时,90ODC ∠=︒.【点睛】本题考查勾股定理及其逆定理、全等三角形的性质、等边三角形的判定、等腰直角三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.24.(1)见解析 (2)4【分析】(1)只要证明Rt △ADE ≌Rt △CDF ,推出∠A=∠C ,推出BA=BC ,又AB=AC ,即可推出AB=BC=AC ;(2)证明BD 是等边三角形的∠ABC 的平分线,得∠DBC =30゜,再利用直角三角形的性质求解即可.【详解】解:(1)证明:∵DE ⊥AB ,DF ⊥BC ,垂足分别为点E ,F ,∴∠AED=∠CFD=90°,∵D 为AC 的中点,∴AD=DC ,在Rt △ADE 和Rt △CDF 中,AD DC DE DF⎧⎨⎩==, ∴Rt △ADE ≌Rt △CDF ,∴∠A=∠C ,∴BA=BC ,∵AB=AC ,∴AB=BC=AC ,∴△ABC 是等边三角形.(2)∵DE ⊥AB ,DF ⊥BC ,且DE DF =,∴BD 平分ABC ∠,∵ABC 是等边三角形,∴60ABC ACB ∠=∠=︒,∴BD AC ⊥,30CBD ∠=︒,∴2BC CD =, ∵CD CG =,2CG =∴24BC CG ==.【点睛】本题考查全等三角形的判定和性质、等边三角形的判定和性质、直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题.25.(1)见解析;(2)见解析.【分析】(1)作∠CAE=∠C 即可;(2)延长BA ,根据两直线平行,同位角相等,有∠EAF=∠B ,由(1)可知∠CAE=∠C ,再根据AB=AC ,可得∠B=∠C ,等量替换之后即可得证.【详解】(1)射线AE 为所求;(2)证明:如图所示,延长BA ,∵//AE BC ,∴∠EAF=∠B ,∠CAE=∠C ,∵AB=AC ,∴∠B=∠C ,∴∠EAF=∠CAE ,∴AE 是ABC 的一个外角角平分线.【点睛】本题考查了平行线的性质和判定,等腰三角形的性质和角平分线的判定等知识,掌握相关知识是解题的关键.26.(1)图见解析,点B1的坐标为(-2,4);(2)图见解析,A2的坐标为(2,1);(3)D2的坐标为(a+5,-b).【分析】(1)分别作出点A、B、C关于x轴对称得到的对应点,再顺次连接可得;B,可得平移方式为向右平移5个单位,分别作出△A1B1C1(2)根据B1(-2,4)和2(3,4)向右平移5个单位所得对应点,再顺次连接可得;D的坐标.(3)根据图形的变换方式即可得出D点的变换方式,从而可得点2【详解】解:(1)如图所示,△A1B1C1即为所求,点B1的坐标为(-2,4);(2)如图所示,△A2B2C2即为所求,A2的坐标为(2,1);(3)△A2B2C2中的对应点D2的坐标为(a+5,-b).【点睛】本题考查坐标与图形变换—轴对称和平移.理解点的变换和对应图形变换的关系是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《轴对称》测试题
座号: 成绩:
一、选择题(每题2分,共20分)
1.如图,下列图案是我国几家银行的标志,其中是轴对称图形的有( )
A.1个
B.2个
C.3个
D.4个
2.下列图形中对称轴最多的是( )
A.圆
B.正方形
C.等腰三角形
D.长方形
3.下列图形中不一定为轴对称图形的是( )
A.等腰三角形
B.正五角星
C.梯形
D.长方形
4.下列图形:①角;②两相交直角;③圆;④正方形。

其中轴对称图形有( )
A.4个
B.3个
C.2个
D.1个
5.下列说法中,正确的是( )
A.关于某直线对称的两个三角形是全等三角形
B.全等三角形是关于某直线对称的
C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧
D.有一条公共边变得两个全等三角形关于公共边所在的直线对称
6.下列说法正确的是( )
A.等腰三角形的高、中线、角平分线互相重合
B.顶角相等的两个等腰三角形全等
C.等腰三角形一边不可一是另一边的二倍
D.等腰三角形的两个底角相等
7.已知等腰三角形的一个外角等于100°,则它的顶角是( )
A.80°
B.20°
C.80°或20°
D.不能确定 8.△ABC 中,AB=AC ,外角∠CAD=100°,则∠B 的度数( )
A.80°
B.50°
C.40°
D.30° 9.如图,在已知△ABC 中,AB=AC , BD=DC ,则下列结论中错误的是( )
A.∠BAC=∠B
B.∠1=∠2
C.AD ⊥BC
D.∠B=∠C
10.到△ABC 的三个顶点距离相等到的点是( ) A.三条中线的交点 B.三条角平分线的交点
C.三条高线的交点 D 三条边的垂直平分线的交点
二、填空题(每题2分,共20分)
1.△ABC 中,AB=AC ,∠A=∠C ,则∠B=_____
2.如果点P (4,-5)和点Q(a ,b)关于y 轴对称,则a =_____,b=____。

3.点(-2,1)点关于x 轴对称的点坐标为___;关于y 轴对称的点坐标为__。

4.等腰三角形中的一个角等于100°,则另外两个内角的度数分别为___。

5.已知△ABC 中∠ACB=90°,CD ⊥AB 于点D ,∠A=30°,BC=2cm ,则AD=___ __
6.Rt △ABC 中,CD 是斜边AB 上的高,∠B=30°,AD=2cm ,则AB 的长度是______cm 。

7.已知等腰三角形中的一边长为5,另一边长为9,则它的周长为___。

8. 如下图,点D 在AC 上,点E 在AB 上,且AB=AC ,BC=BD ,AD=DE=BE ,则∠A=___
9.如图,DE 是△ABC 中AC 边的垂直平分线,若BC=8cm ,AB=10cm ,则△ABD 的周长为_____。

10.如图,△ABC 是等边三角形,CD 是∠ACB 的平分线,过点D 作BC 的平行线交AC 于点E ,已知△ABC 的边长为a ,则EC 的边长是____。

三、解答题(共60分)
1.如图,AC 和BD 相交于点O ,且AB//DC ,OC=OD ,求证:OA=OB 。

2.如图,点D 、E 在△ABC 的边BC 上,AD=AE ,AB=AC ,证明BD=EC 。

3.如图,点D 、E 在△ABC 的边BC 上,AD=AE ,BD=EC ,证明AB=AC 。

B C 10题图A
C D
9题图B
4题图B
C
A
B
B C F
4.在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD.求△ABC 各角的度数.
四、作图题(保留作图痕迹)
(1)作线段AB 的中垂线EF (5分)
(2)作∠AOB 的角平分线OC (5分)
(3)要在公路MN 上修一个车站P ,使得P 向A ,B 两个地方的距离和最小,请在图中画出P
A
B O
的位置。

(10分)
M
A
B
N
答案;一、1、C 2、A 3、C 4、A 5、A 6、D 7、C 8、B 9、A 10 D
二、1、60°
2、-4_-5
3、(-2,-1)(2,1)
4、40°40°
5、3cm
6、8
7、19或2
8、45°
9、18
100.5a
三、1、证明:∵OC=OD
∴∠D=∠C(等边对等角)
∵AB//DC
∴∠B =∠D,∠A =∠C(两直线平行,内错角相等)
∴∠A =∠B
∴OA=OB
2、证明:过点A,作AF⊥BC。

∵AD=AE ,AF⊥BC
∴DF=EF(三线合一)
∵AB=AC,AF⊥BC
∴BF=CF(三线合一)
∴BF- DF =CF- EF 即BD=EC
3、证明:∵AD=AE
∴∠ADC =∠AEB(等边对等角)
∴∠ADB =∠AEC(等角的补角相等)
在△ABD和△ACE中
AD=AE
∠ADB =∠AE
BD=EC
∴△ABD≌△ACE(SAS)
∴AB=AC
4、参照课本50页例1。

相关文档
最新文档