常用逻辑用语
常用逻辑用语

常用逻辑用语1.充要条件的判断:(1)定义法----正、反方向推理注意区分:“甲是乙的充分条件(甲⇒乙)”与“甲的充分条件是乙(乙⇒甲)”(2)利用集合间的包含关系:例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件。
2.逻辑联结词:⑴且(and) :命题形式 p ∧q ;p q p ∧q p ∨q ⌝p ⑵或(or ): 命题形式 p ∨q ; 真真 真 真 假 ⑶非(not ):命题形式⌝p . 真 假 假 真 假 假 真 假 真 真 假 假 假 假 真 3.四种命题的相互关系4。
四种命题:⑴原命题:若p 则q ; ⑵逆命题:若q 则p ; ⑶否命题:若⌝p 则⌝q ;⑷逆否命题:若⌝q 则⌝p注:原命题与逆否命题等价;逆命题与否命题等价。
5.全称量词与存在量词⑴全称量词-------“所有的”、“任意一个”等,用∀表示; 全称命题p :)(,x p M x ∈∀;全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。
⑵存在量词--------“存在一个”、“至少有一个”等,用∃表示;特称命题p :)(,x p M x ∈∃;特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;一:例题讲解1.命题“若,则”的逆否命题是( ).A . 若,则B . 若,则C . 若,则D . 若,则2.命题:,的否定是( )A .,B .,C .,D .,3.已知命题:"若,则",则原命题、逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A .B .C .D . 4.已知命题:,,则:A . ,B . ,C .,D .,5.设,则“”是“”的( )A . 充分而不必要条件B . 必要而不充分条件C . 充要条件D . 既不充分也不必要条件二、练习题16.如果命题p ∨q 为真命题,p ∧q 为假命题,那么( ) A . 命题p ,q 均为真命题 B . 命题p ,q 均为假命题C . 命题p ,q 有且只有一个为真命题D . 命题p 为真命题,q 为假命题 7.命题:p 若0x <,则()ln 10x +<; q 是p 的逆命题,则( )A . p 真, q 真B . p 真, q 假C . p 假, q 真D . p 假, q 假 8.命题“,则”的逆否命题是( ) A . 若,则 B . 若,则 C . 若,则D . 若,则9.设,,则是成立的A . 必要不充分条件B . 充分不必要条件C . 充分必要条件D . 既不充分也不必要条件10.设命题, ,则命题成立是命题成立的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件 11.设,则“2-x ≥0”是“≤1”的( )A . 充分而不必要条件B . 必要而不充分条件C . 充要条件D . 既不充分也不必要条件 12.已知命题;命题,.则下列命题为真命题的是( ).A .B .C .D .13.设x >0,y ∈R ,则“x >y ”是“x >|y|”的( ) A . 充要条件 B . 充分而不必要条件 C . 必要而不充分条件 D . 既不充分也不必要条件14.条件p:|x+1|>2,条件q:x ≥2,则是的( ) A . 充分不必要条件 B . 必要不充分条件 C . 充要条件 D . 既不充分也不必要条件 15.设:,:,则是的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件三、练习题216.命题“若x=3,则x 2-9x+18=0”的逆命题、否命题与逆否命题中,假命题的个数为( ) A . 0 B . 1 C . 2 D . 3 17.已知命题:,命题:,,则下列说法正确的是( )A . 命题是假命题B . 命题是真命题C . 命题是真命题 D . 命题是假命题18.命题“若0x y +=,则0x =或0y =”的逆否命题是( )A . 若0x y +=,则0x =且0y =B . 若0x y +≠,则0x ≠或0y ≠C . 若0x =或0y =,则0x y +≠D . 若0x ≠且0y ≠,则0x y +≠19.若命题“p 或q ”与命题“非p ”都是真命题,则( ) A . 命题p 与命题q 都是真命题 B . 命题p 与命题q 都是假命题 C . 命题p 是真命题,命题q 是假命题 D . 命题p 是假命题,命题q 是真命题 20.已知,都是实数,那么“”是“”的( )A . 充要条件B . 必要不充分条件C . 充分不必要条件D . 既不充分也不必要条件 21.命题“”的否定为( ) A .B .C .D .22.设,则“”是“”的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件 23.“α=”是“sin α=”的( ) A . 充分不必要条件 B . 必要不充分条件 C . 充要条件D . 既不充分也不必要条件24.“0x >”是“()10x x +>”成立的( )A . 充分不必要条件B . 必要不充分条件C . 既不充分也不必要条件D . 充要条件 25.设,是两个不同的平面,是直线且,则“”是“”的( )A . 必要不充分条件B . 充分不必要条件C . 充分必要条件D . 既不充分也不必要条件。
(完整版)常用逻辑用语知识点总结

常用逻辑用语一、命题1、命题的概念在数学中用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2、四种命题及其关系(1)、四种命题(2)、四种命题间的逆否关系(3)、四种命题的真假关系**两个命题互为逆否命题,它们有相同的真假性;*两个命题为互逆命题或互否命题,它们的真假性没有关系.二、充分条件与必要条件1、定义1.如果p⇒q,则p是q的充分条件,q是p的必要条件.2.如果p⇒q,q⇒p,则p是q的充要条件.2、四种条件的判断1.如果“若p则q”为真,记为p q⇒,如果“若p则q”为假,记为p q⇒/.2.若p q⇒,则p是q的充分条件,q是p的必要条件3.判断充要条件方法:(1)定义法:①p是q的充分不必要条件⇔p qp q⇒⎧⎨⇐/⎩②p是q的必要不充分条件⇔p qp q⇒⎧/⎨⇐⎩③p是q的充要条件⇔p qq p⇒⎧⎨⇒⎩④p是q的既不充分也不必要条件⇔p qp q⇒⎧/⎨⇐/⎩(2)集合法:设P={p},Q={q},①若P Q,则p是q的充分不必要条件,q是p的必要不充分条件.②若P=Q,则p是q的充要条件(q也是p的充要条件).③若P Q且Q P,则p是q的既不充分也不必要条件.(3)逆否命题法:①⌝q是⌝p的充分不必要条件⇔p是q的充分不必要条件②⌝q是⌝p的必要不充分条件⇔p是q的充分不必要条件③⌝q是⌝p的充分要条件⇔p是q的充要条件④⌝q是⌝p的既不充分又不必要条件⇔p是q的既不充分又不必要条件三、简单的逻辑联结词(1)命题中的“且”“或”“非”叫做逻辑联结词.①用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.②用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.③对一个命题p全盘否定,就得到一个新命题,记作¬p,读作“非p”或“p的否定”.(2)简单复合命题的真值表:p qp∧q p∨q¬p真真真真假假真假真真真假假真假假假假假真*p∧q:p、q有一假为假,*p∨q:一真为真,*p与¬p:真假相对即一真一假.四、量词1、全称量词与存在量词(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.(3)全称量词用符号“∀”表示;存在量词用符号“∃”表示.2 全称命题与特称命题(1)含有全称量词的命题叫全称命题: “对M中任意一个x,有p(x)成立”可用符号简记为∀x∈M,p(x),读作“对任意x属于M,有p(x)成立”.(2)含有存在量词的命题叫特称命题: “存在M中的一个x0,使p(x0)成立”可用符号简记为∃x0∈M,P(x0),读作“存在M 中的元素x 0,使p (x 0)成立”. 3命题的否定(1) 含有量词命题的否定全称命题p :,()x M p x ∀∈的否定⌝p :(),x M p x ∃∈⌝;全称命题的否定为存在命题 存在命题p :(),x M p x ∃∈的否定⌝p :(),x M p x ∀∈⌝;存在命题的否定为全称命题 其中()p x p (x )是一个关于x 的命题. (2) 含有逻辑连接词命题的否定 “p 或q ”的否定:“ ⌝p 且⌝q ” ; “p 且q ”的否定:“ ⌝p 或⌝q ”(3) “若p 则q “命题的否定:只否定结论特别提醒:命题的“否定”与“否命题”是不同的概念,命题的否定:只否定结论;否命题:全否 对命题p 的否定(即非p )是否定命题p 所作的判断,而“否命题”是 “若⌝p 则⌝q ”。
高中常用逻辑用语

高中常用逻辑用语1. 高中常用逻辑用语啊,那可太重要啦!就像我们走路需要看清路一样,逻辑用语能让我们的思维更清晰呀!比如“如果明天下雨,我就不出门”,这就是一个简单的逻辑关系嘛。
2. 嘿,高中常用逻辑用语,不就是帮我们理清思路的好帮手嘛!就好比在迷宫里找到正确的路线一样。
像“要么选文科,要么选理科”,是不是很直白?3. 哇塞,高中常用逻辑用语真的很神奇呢!它就像一把钥匙,能打开我们思维的大门呀!“所有的三角形内角和都是 180 度”,这就是一个典型例子呀。
4. 高中常用逻辑用语呀,那可是学习中不可或缺的呀!这不就跟我们每天要吃饭一样重要嘛!“只要努力学习,就会取得好成绩”,大家都懂吧?5. 哎呀呀,高中常用逻辑用语,简直就是思维的导航仪呀!就像在海上航行需要指南针一样。
“没有一个人不喜欢美好的事物”,是不是这样?6. 嘿哟,高中常用逻辑用语,可太有意思啦!它就像游戏里的规则,让一切都有条有理呢!比如“只有认真听讲,才能学好知识”。
7. 哇哦,高中常用逻辑用语,那可是相当重要哇!就好像盖房子需要坚实的基础一样。
“有的同学喜欢数学”,这就是一种存在呀。
8. 高中常用逻辑用语,不就是让我们说话做事更有条理嘛!像给混乱的线团找到线头一样。
“若一个数是偶数,则它能被 2 整除”,多清晰呀。
9. 哎呀,高中常用逻辑用语,真是神奇的东西呢!就像魔法棒一样能让我们的思维变得更厉害!“不是正数就是负数”,很简单易懂吧。
10. 高中常用逻辑用语,那绝对是学习的好帮手呀!就跟好朋友一样可靠呢!“只要坚持锻炼,身体就会健康”,这道理多浅显。
我的观点结论就是:高中常用逻辑用语非常重要,能帮助我们更好地理解和表达,一定要好好掌握呀!。
高中数学:常用逻辑用语

常用逻辑用语一、知识框架1.命题定义:用语言、符号或式子表达的、可以判断正误的陈述语句,叫做命题。
其中,判断为真的即为真命题,为假的即为假命题。
2.命题的判断以及命题真假的判断(1)命题的判断:①判断该语句是否是陈述句;②能否判断真假。
(2)命题真假的判断:首先,分清条件与结论,其次,再判断命题真假。
3.一般地,用p 和q 分别表示原命题的条件和结论,用¬p 和¬q 表示p 与q 的否定,即如下:(四种命题的关系)4.充分条件和必要条件 (1)充分条件:如果A 成立,那么B 成立,则条件A 是B 成立的充分条件。
(2)必要条件:如果A 成立,那么B 成立,这时B 是A 的必然结果,则条件B 是A 成立的必要条件。
(3)充要条件:如果A 既是B 成立的充分条件,又是B 成立的必要条件,则A 是B 成立的充要条件,与此同时,B 也一定是A 成立的重要条件,所以此时,A 、B 互为充要条件。
【注意】充分条件与必要条件是完全等价的,是同一逻辑关系“A =>B ”的不同表达方法。
5.逻辑联结词(1)不含逻辑联结词的命题是简单命题,由简单命题和逻辑联结词“或”“且”“非”构成的命题是复合命题,它们有以下几种形式:p 或q (p ∨q );p 且q (p ∧q );非p (¬p )。
(2)逻辑联结词“或”“且”“非”的含义的理解 在集合中学习的“并集”“交集”“补集”与逻辑联结词中的“或”“且”“非”关系十分密切。
6.量词与命题量词名称 常见量词表示符号全称量词 所有、一切、任意、全部、每一个、任给等 ∀存在量词 存在一个、至少有一个、某个、有些、某些等∃命 题 表述形式 原命题 若p 则q 逆命题 若q 则p 否命题 若¬p 则¬q 逆否命题若¬q 则¬p(2)全称命题与特称命题 命题全称命题“()x p M x ,∈∀”特称命题“()00,x p M x ∈∃”定义短语“对所有的”“对任意一个”等,在逻辑中通常叫做全称量词,用符号“∀”表示。
常用逻辑用语

常用逻辑用语知识要点
1、逻辑联结词:
命题.逻辑联结词.
简单命题.复合命题.
构成复合命题的三种形式.
简单命题的真假判断.
复合命题的真假判断
2、四种命题的关系:
原命题.逆命题.否命题.逆否命题.
等价命题.
基本关系
3、全称量词、存在量词
(1) 全称量词:短语“对所有的”,“对任意一个”在逻辑中通常叫做.
(2) 全称命题:含有全称量词的命题,叫做,全称命题“对M中任意一个x,有
p(x)成立”,简记作.
(3)存在量词:短语“存在一个”、“至少有一个”在逻辑中通常叫做.
(4) 特称命题:含有存在量词的命题,叫做,特称命题“在M中存在一个x,使p(x)
成立”,简记作.
(5)命题的否定与否命题:
命题的否定.否命题.
(6)全称命题与特称命题的关系:
全称命题的否定是特称命题;特称命题的否定是全称命题.
4.充分条件与必要条件:
(1)若,则p是q的充分条件
(2)若,则p是q的不充分条件
(3)若,则p是q的必要条件
(4)若,则p是q的不必要条件
(5)若,则p是q的充分不必要条件;
(6)若,则p是q的必要不充分条件
(7)若,则p是q的既充分又必要条件,简称充要条件
(8)若,则p是q的既不充分也不必要条件。
常用逻辑用语

常用逻辑用语常用逻辑用语是指在日常会话中,用来解释、表达思想、推理判断、讨论和争论等,便于交流和发表观点的一系列用语。
它可以帮助辩论者更有系统、清晰地表达思想,从而让听众和准备卷面更易理解书写文章。
一、观点和结论观点是句子中提出的一种主张、主张的看法或立场,其用语可以是肯定或否定的,比如:1.肯定:教育是社会发展的重要因素。
2.否定:在现代社会中,犯罪行为似乎是经济发展最主要的因素。
结论是推理得出的结果,其用语也可以是肯定或否定的,比如:1.肯定:因此,可以得出结论,教育是社会发展的基础。
2.否定:因此,可以得出结论,犯罪行为并不是经济发展的基础。
二、因果关系因果关系是指一个因素导致另一个因素的发生或发展,其一般用语为:1.因为……,所以……2.由于……,因此……例如:因为经济条件良好,所以社会发展较快。
由于教育水平得到了大幅提高,因此犯罪率有所下降。
三、对比对比是用来比较两个或多个事物的不同或相似之处,其用语一般为:1.与……相比,……2.跟……不同,……例如:与传统教育相比,网络教育更加便利。
跟传统教育不同,网络教育的弊端也比较多。
四、递进递进关系是多个观点或事实的排列方式,也是构成论文中的绝佳逻辑结构,常用的用语有:1.除此之外2.此外3.另一方面4.再者5.最后例如:首先,网络教育更加便捷;其次,网络教育费用较低;此外,网络教育拥有丰富的学习资源;再者,网络教育可以更好的满足学习者的需求;最后,网络教育能够更方便、快速地向社会传播知识。
五、总结总结是在文章或论文末尾,总结文章开头所提出的观点,并加上作者个人的观点,用语常有:1.总之2.因此3.表明4.证明例如:总之,教育是社会发展的重要因素,网络教育以其方便快捷,丰富的学习资源,能够更好地满足学习者的需求等特点,在发展中发挥着重要作用,但其弊端也不容忽视。
常用逻辑用语

常用逻辑用语知识点:1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题.若原命题为“若p ,则q ”,则它的逆否命题为“若q ⌝,则p ⌝”. 6、四种命题的真假性:原命题 逆命题 否命题 逆否命题真 真 真 真真 假 假 真假 真 真 真假 假 假 假四种命题的真假性之间的关系:()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件.若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧.当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题. 用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨.当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题. 对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题.9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示.含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”.短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示.含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”.10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题. 典型例题例1、已知集合A={x|x 2-3x+2=0},B={x|x 2-mx+2=0},若A 是B 的必要不充分条件,求实数m 范围。
常用逻辑用语

常用逻辑用语一、充分条件与必要条件1.1、命题的定义在数学中,命题是用来判断一件事情的句子。
这些句子用语言、符号或数学式子来表达,并且能够明确地判断为真或假。
数学命题是数学推理和证明的基础,它们构成了数学理论的基石。
注意:命题的明确性和可判断性。
1.2、真命题与假命题真命题:定义:如果一个命题在特定条件下为真,即它所陈述的内容在逻辑上是成立的,那么该命题被称为真命题。
举例说明:如“两直线平行,则它们不会相交”是一个真命题。
假命题:定义:如果一个命题在特定条件下为假,即它所陈述的内容在逻辑上是不成立的,那么该命题被称为假命题。
举例说明:如“所有的质数都是奇数”是一个假命题,因为存在反例(如2是质数但它是偶数)。
1.3、数学命题的一般形式数学命题经常以“若p,则q”的形式出现,其中p被称为命题的条件,q被称为命题的结论。
这种形式是数学推理和证明中常用的结构。
条件(p):命题的前提或假设部分,是推理的起点。
结论(q):在条件成立的情况下,必然为真的部分,是推理的终点。
示例:命题“若一个数是偶数,则它能被2整除”中,“一个数是偶数”是条件p,“它能被2整除”是结论q。
根据整数的性质,这个命题是真命题。
1.4、充分条件和必要条件的背景在探索世界的奥秘时,人们常常需要判断事物之间的因果关系或逻辑关系。
充分条件和必要条件作为逻辑学中的核心概念,为我们提供了一种分析和理解这些关系的工具。
从古代的哲学思考到现代的科学研究,充分条件和必要条件始终扮演着重要角色。
1.5、充分条件和必要条件定义(1)、充分条件定义:如果条件A成立,那么结果B一定成立,即A是B的充分条件。
换句话说,A的发生足以保证B的发生,但B的发生不一定只由A导致。
实例:假设“下雨”是“地面湿润”的充分条件。
当天空下雨时,地面一定会变得湿润;但地面湿润的原因可能还有其他,如洒水、河流泛滥等。
需要着重记忆和理解的地方:充分条件强调的是“足够性”,即A足够导致B,但B的发生不一定仅由A引起。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、命题 1.命题的定义:我们把用语言、符号或式子表达的,可以判断真假的 叫做命题。
其中判断为真的语句叫做 ,判断为假的语句叫做 。
2.命题的结构:在数学中,具有“若p 则q ”这种形式的命题是较为常见的,我们把这种形式的的命题中的p 叫做 ,q 叫做 。
二.四种命题及其相互关系3.四种命题的概念:一般地,用p 和q 分别表示原命题的条件和结论,用p ⌝和q ⌝分别表示p 和q 的否定,于是四种命题的形式就是:原命题:若p 则q ;逆命题: ;否命题: ;逆否命题: 。
4.否命题与命题的否定是不相同的,若p 表示命题,“非p ”叫做命题的否定。
如果原命题是“若p 则q ”,否命题是“若p ⌝,则q ⌝”,而命题的否定是“p 则q ⌝”,即只否定结论。
常用逻辑用语 命题及其关系充分条件与必要条件简单的逻辑连结词全称量词与存在量词5.当一个命题的真假不易判断时,往往可以判断原命题的逆否命题的真假,从而得出原命题的真假。
6.反证法常用于证明如下形式的问题:否定性问题、存在性问题、唯一性问题,至多、至少问题,结论的反面比原结论更具体更易于研究和掌握的问题。
7.常用的正面叙述词语和它的否定词语的关系(如下表): 正面词语 等于(=) 大于(>) 小于(<) 有 是 都是 全是 否定词语 不等于(≠) 不大于(≤) 不小于(≥) 无 不是 不都是 不全是 正面词语 任意的 任意两个 至少有一个 至多有一个 所有的至多有n 个 或 否定词语 某个 某两个 一个也没有 至少有两个 某些 至少有1+n 个 且8.进行充分条件与必要条件的推理判断中要注意以下几点:一是要弄清先后顺序,“A 的充分不必要条件是B ”是指B 能推出A 且A 推不出B ,而“A 是B 的充分不必要条件”则是指A 能推出B 且B 推不出A ;二是要善于举出反例,如果从正面判断或证明一个命题的正确或错误不易进行时,则可以举出反例来说明一个命题是错误的;三是要注意转化,根据命题之间的关系我们可以知道:如果p 是q 的充分不必要条件,那么p ⌝是q ⌝的必要不充分条件;同理,如果p 是q 的必要不充分条件,那么p ⌝是q ⌝的充分不必要条件,如果p 是q 的充要条件,那么p ⌝是q ⌝的充要条件。
9.对逻辑联结词“或”“且”“非”的理解在集合部分中的学习的“并集”“交集”“补集”与逻辑联结词中的“或”“且”“非”关系十分密切,对于理解逻辑联结词“或”“且”“非”很有用处:(1)“或”与日常生活中的用语“或”的意义不同,在日常生活用语中的“或”带有不可兼有的意思,而逻辑用语中的“或”可以同时兼有。
对于逻辑用语“或”的理解我们可以借助于集合中的并集的概念:在A x x B A ∈=|{ 或}B x ∈中的“或”是指 “A x ∈”与“B x ∈”中至少有一个成立,可以是“A x ∈且B x ∉”,也可以是“A x ∉且B x ∈”,也可以是“A x ∈且B x ∈”,逻辑用语中的“或”与并集中的“或”的含义是一样的;(2)对“且”的理解,可以联想到集合中的交集的概念:在A x x B A ∈=|{ 且}B x ∈的“且”是指“A x ∈”、“B x ∈”都要满足的意思,即x 既要属于集合A ,又要属于集合B ;(3)对“非”的理解,可以联想到集合中的补集的概念:“非”有否定的意思,一个命题p 经过使用逻辑联结词“非”构成一个复合命题“非p ”,当p 为真时,非p 为假,当p 为假时,非p 为真。
若将命题p 对应集合P ,则命题非p 就对应着集合P 在全集U 中的补集P C U ;对于非的理解,还可以从字意上来理解,“非”本身就具有否定的意思,如“0.5是非整数”是对命题“0.5是整数”进行否定而得出的新命题。
一般地,写一个命题的否定,往往需要对正面叙述的词语进行否定。
10.由于全称命题的否定变为特称命题,而特称命题的否定变为全称命题,因此,可以通过“举反例”来否定一个全称命题。
五、例题讲解例1.判断下列语句是不是命题,若是,判断出其真假,若不是,说明理由。
(1)矩形难道不是平行四边形吗?(2)垂直于同一条直线的两条直线必平行吗?(3)求证:R x ∈,方程012=++x x 无实根.(4)5>x(5)人类在2020年登上火星.解:(1)是命题,且是真命题。
(2)不是命题,这是疑问句,没有对垂直于同一条直线的两直线是否平行作出判断。
(3)不是命题,是祈使句。
(4)是开语句,不是命题。
(5)是命题。
但目前无法判断真假。
例2.写出“若2=x 或3=x ,则0652=+-x x ”的逆命题、否命题、逆否命题及命题的否定,并判其真假。
解:逆命题:若0652=+-x x ,则2=x 或3=x ,是真命题;否命题:若2≠x 且3≠x ,则0652≠+-x x ,是真命题;逆否命题:若0652≠+-x x ,则2≠x 且3≠x ,是真命题。
命题的否定:若2=x 或3=x ,则0652≠+-x x ,是假命题。
例3.(06年上海卷)在平面直角坐标系xOy 中,直线l 与抛物线x y 22=相交于A 、B 两点.(1)求证:“如果直线l 过点T (3,0),那么→--OA →--⋅OB =3”是真命题;(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.解:(1)证法一:设过点T(3,0)的直线l 交抛物线y 2=2x 于点A (x 1,y 1)、B (x 2,y 2).①当直线l 的钭率不存在时,直线l 的方程为x =3,此时,直线l 与抛物线相交于点A (3,6)、B(3,-6). ∴OB OA ⋅=3;②当直线l 的钭率存在时,设直线l 的方程为(3)y k x =-,其中0k ≠,由22(3)y x y k x =⎧⎨=-⎩得 2122606ky y k y y --=⇒=- 又 ∵ 22112211,22x y x y ==,∴3)(41212212121=+=+=⋅y y y y y y x x OB OA 综上所述,命题“如果直线l 过点T(3,0),那么OB OA ⋅=3”是真命题。
证法二:设直线l :3+=ty x 代入抛物线y 2=2x 消去x ,得0622=--ty y .设),(11y x A ,),(22y x B ,则t y y 221=+,621-=y y ,从而→--OA →--⋅OB =+++=+)3)(3(212121ty ty y y x x 21y y 21212129)(3y y y y t y y t ++++=3692362=-+⋅+-=t t t ,∴“如果直线l 过点T (3,0),那么→--OA →--⋅OB =3”是真命题。
(2)逆命题是:设直线l 交抛物线y 2=2x 于A 、B 两点,如果OB OA ⋅=3,那么该直线过点T(3,0).该命题是假命题. 例如:取抛物线上的点A(2,2),B(21,1),此时OA OB =3,直线AB 的方程为:2(1)3y x =+,而T(3,0)不在直线AB 上.对于(2)的证明如下:证明:设直线l :b ty x +=代入抛物线y 2=2x 消去x ,得0222=--b ty y .,设),(11y x A ,),(22y x B ,则t y y 221=+,b y y 221-=,∴→--OA →--⋅OB =+++=+))((212121b ty b ty y y x x 21y y 21221212)(y y b y y bt y y t ++++= b b b b t bt bt 2222222-=-+⋅+-=,令322=-b b 得3=b 或1-=b .此时直线l 过点(0,3)或(0,1-),故原命题为假命题。
例4.已知)1,0(,,∈c b a ,求证:b a )1(-,c b )1(-,a c )1(-三式中至少有一个不大于41. 证明:(用反证法)若b a )1(-,c b )1(-,a c )1(-三式中都大于41.则有 23)1()1()1(>-+-+-a c c b b a (*) 而2)1()1(b a b a +-≤-,2)1()1(c b c b +-≤-,2)1()1(a c a c +-≤-,三式相加得23)1()1()1(≤-+-+-a c c b b a ,此与(*)式矛盾,故假设错误,从而原命题成立。
例5.求关于x 的方程0)12(22=+-+k x k x 的两个实根都大于1的充要条件。
解法一:设方程的两个根为21,x x ,则 ⎪⎩⎪⎨⎧>>≥∆11021x x ⇔⎪⎩⎪⎨⎧>->-≥∆0101021x x ⇔⎪⎩⎪⎨⎧>-->-+-≥∆0)1)(1(0)1()1(02121x x x x ⇔⎪⎩⎪⎨⎧>++->+≥∆01)(20212121x x x x x x解得2-<k ,故所求的充要条件是2-<k .解法二:记=)(x f 22)12(k x k x +-+,故所求的充要条件是:⎪⎩⎪⎨⎧>>--≥∆0)1(12120f k ⎪⎪⎩⎪⎪⎨⎧>+-+-<≥--⇔01212104)12(222k k k k k [解]得2-<k ,故所求的充要条件是2-<k 。
例6.已知数列{n a } 、{n b }、{n c },其中{n a } 、{n b }是等比数列.对于任意正整数n ,n a 、n b 、n c 都成等差数列,且01≠c .试证明:“数列{n c }成等比数列”的充要条件是“数列{n a } 与{n b }公比相等”.证明:充分性 设数列{n a } 与{n b }的公比都是q ,则11-=n n q a a ,11-=n n q b b ,而)(21n n n b a c +=11111)(21--=+=n n q c q b a ,又01≠c ,故{n c }是公比为q 的等比数列.充分性得证.必要性 若数列{n c }是等比数列,设数列{n a } ,{n b },{n c }的公比分别为r q p ,,,则)3()2()1(222212121111111⎪⎩⎪⎨⎧+=+=+=q b p a r c q b p a r c b a c ,由)3()1(⨯得:2212211221221)(4q b q p b a p a r c +++= (4) 将(2)的两边平方得2211122122124q b pq b a p a r c ++= (5)比较(4)(5)两式得pq q p 222=+,故q p =,即数列{n a } 与{n b }公比相等.必要性得证.例7. 设命题1|34:|≤-x p ;命题0)1()12(:2≤+++-a a x a x q ,若p ⌝是q ⌝的必要不充分条件,求实数a 的取值范围.解:设}1|34||{≤-=x x A ,}0)1()12(|{2≤+++-=a a x a x x B ,易知}121|{≤≤=x x A ,}1|{+≤≤=a x a x B .由p ⌝是q ⌝的必要不充分条件,从而p 是q 的充分不必要条件,即B A ≠⊂,⎪⎩⎪⎨⎧≥+≤∴1121a a ,故所求实数a 的取值范围是]21,0[ 例8. 已知集合}53|{><=x x x M 或,}0)8)((|{≤--=x a x x P .(1)求实数a 的取值范围,使它成为}85|{≤<=x x P M 的充要条件;(2)求实数a 的一个值,使它成为}85|{≤<=x x P M 的一个充分但不必要条件;(3)求实数a 的取值范围,使它成为}85|{≤<=x x P M 的一个必要但不充分条件.解:(1)由 }85|{≤<=x x P M ,得53≤≤-a ,因此}85|{≤<=x x P M 的充要条件是}53|{≤≤-a a ;(2)求实数a 的一个值,使它成为}85|{≤<=x x P M 的一个充分但不必要条件,就是在集合}53|{≤≤-a a 中取一个值,如取0=a ,此时必有}85|{≤<=x x P M ;反之,}85|{≤<=x x P M 未必有0=a ,故0=a 是所求的一个充分而不必要条件;(3)求实数a 的取值范围,使它成为}85|{≤<=x x P M 的一个必要但不充分条件就是另求一个集合,故}53|{≤≤-a a 是它的一个真子集。