广西北部湾九年级数学上册24圆整理与复习课件(新版)新人教版
合集下载
新人教版九年级数学上册 第二十四章 圆 全章课件
等弧:
在同圆或等圆中,能够互相重合的弧 A
叫做等弧.
·O C ·O1 C
2021/7/12
想一想:长度相等的弧是等弧吗?
观察A⌒D和B⌒C是否相等?
2021/7/12
A
B
O
D
C
典例精析
例2 如图.
(
( (( (
( ( ((
(1)请写出以点A为端点的优弧及劣弧;
劣弧:AF,AD, AC, AE.
D
2021/7/12
圆是生活中常见的图形,许多物体都给我们以圆的形象.
2021/7/12
2021/7/12
一石激起千层浪
奥运五环
祥子
2021/7/12
乐在其中 福建土楼 小憩片刻
一 探究圆的概念
问题 观察画圆的过程,你能说出圆是如何画出来的吗? A
圆的旋转定义
在一个平面内,线段OA绕它固定的
一个端点O旋转一周,另一个端点所
优弧:AFE, AFC, ADE, ADC.
F
O
(2)请写出以点A为端点的弦及直径.
弦AF,AB,AC.其中弦AB又是直径.
A
(3)请任选一条弦,写出这条弦所对的弧.
答案不唯一,如:弦AF,它所对的弧是 AF .
B E
C
2021/7/12
要点归纳
1.根据圆的定义,“圆”指的是“圆周”,而不是“圆面”. 2.直径是圆中最长的弦.
r
形成的图形叫做圆.以点O为圆心的
·
O
圆,记作“⊙O”,读作“圆”.
有关概念
固定的端点O叫做圆心,线段OA叫做
半径,一般用r表示.
2021/7/12
确定一个圆的要素 一是圆心,圆心确定其位置;二是半径,半径确定其大小.
人教版九年级上册数学精品教学课件 第24章 圆 第二十四章 小结与复习
二、 圆的基本性质 1. 圆的对称性
圆是轴对称图形,它的任意一条_直__径__所在的直线都是 它的对称轴.圆也是中心对称图形,圆心即为对称中心.
2. 有关圆心角、弧、弦的性质 (1) 在同圆中,如果圆心角相等,那么 它们所对的弧相等,所对的弦也相等;
(2) 在同圆或等圆中,如果两个圆心角、 两条弧和两条弦中有一组量相等,那么
A
O
BP
又∵∠COB = 2∠PCB,∴∠ACO =∠PCB.
∵ AB 是⊙O 的直径,∴∠ACO +∠OCB = 90°.
∴∠PCB +∠OCB = 90°,即 OC⊥CP.
∵ OC 是⊙O 的半径,∴ PC 是⊙O 的切线.
针对训练 7. 如图,点 D 是∠AOB 的平分线 OC 上任
意一点,过 D 作 DE⊥OB 于 E,以 DE 为半径作⊙D.
12. 正多边形的相关概念 (1) 中心:正多边形外接圆和内切圆有公共的圆心,称 其为正多边形的中心. (2) 半径:外接圆的半径叫做正多边形的半径. (3) 边心距:中心到正多边形一边的距离叫做正多边形 的边心距.
(4) 中心角:正多边形每一条边所对的外接圆的圆心角 都相等,叫做正多边形的中心角.
它们所对应的其余各组量都分别相等.
三、与圆有关的位置关系
1. 点与圆的位置关系 判断点与圆的位置关系可由点到圆心的距离 d 与
圆的半径 r 比较得到.
设☉O 的半径是 r,点 P 到圆心的距离为 d ,则有
d<r
点 P 在圆内;[以注转意化]为点点与到圆圆的心位的置距关系离可与
d=r
点 P 在圆上;半径之间的大小关系;反过
S 1 nar 1 Cr. 其中 C 为正 n 边形的周长.
人教版九年级数学上册第二十四章 圆的复习课件
点在圆外
d﹥r
●A 点在圆上
d=r
点在圆内
d﹤r
不在同一直线上的三个点确定一个圆。
人教版九年级数学上册第二十四章复习课件
练习
5. 已知:△ABC,AC=12,BC=5, AB=13,则△ABC的外接圆半径为 。
6. 如图,直角坐标系中一条圆弧经过
网格点A,B,C,
其中B点坐标(4,4),
则该圆弧所在圆的
人教版九年级数学上册第二十四章复习课件
圆
复习课件
人教版九年级数学上册第二十四章复习课件
一、知识结构
圆的基 本性质
弧、弦与圆心角 圆周角及其与同弧上圆心角 圆的对称性
圆
与圆有 关的位 置关系
点与圆的位置关系 直线与圆的位置关系 圆与圆的位置关系
圆 切线 的 切 线 切线长
扇形面积,弧长, 圆中的计算
相等;并且这一点和圆心的连线平
分两条切线的夹角.
人教版九年级数学上册第二十四章复习课件
1.与圆有一个公共点的直线。 2.圆心到直线的距离等于圆的半
径的直线是圆的切线。 3.经过半径的外端且垂直于这条
半径的直线是圆的切线。
∟
.
O A
∵OA是半径,OA⊥ l l ∴直线l是⊙O的切线.
人教版九年级数学上册第二十四章复习课件
直线与 圆心与直线 直线 直线与
l
圆的位 的距离d与
置关系
圆的半径r的 关系
名称
圆的交 点个数
d
●r
相离
d﹥r ——
0
相切
d=r
切线
1
相交
d﹤r 割线
2
切线的判定定理 经过半径的外端,并且垂直于
九年级数学上册第24章圆整理与复习课件新版新人教版20180528395
第24章
整理与复习
• 复习目标:
1.复习本章的重点内容,整理本章知识,形成知识 体系. 2.体会利用圆的知识综合解决问题的思路和方法.
知识梳理,体系构建
1.圆是如何定义的?
2.同圆或等圆中的弧、弦、圆心角有什么关系?
垂直于弦的直径有什么性质?一条弧所对的圆周角和它
所对的圆心角有什么关系?
3.点和圆有怎样的位置关系?直线和圆呢?圆和
圆呢?怎样判断这些位置关系?
4.圆的切线有什么性质?如何判断一条直线是圆 的切线? 5.正多边形和圆有什么关系? 6.如何计算弧长、扇形面积、圆锥的侧面积和全 面积?
圆的对称性
圆的有关性质 弧、弦、圆心角之间的关系 同弧上的圆周角和圆心角的关系 点、直线和圆已有的经验开始。——杜威 5、构成我们学习最大障碍的是已知的东西,而不是未知的东西。——贝尔纳 6、学习要注意到细处,不是粗枝大叶的,这样可以逐步学习摸索,找到客观规律。——徐特立 7、学习文学而懒于记诵是不成的,特别是诗。一个高中文科的学生,与其囫囵吞枣或走马观花地读十部诗集,不如仔仔细细地背诵三百首诗。——朱自清 8、一般青年的任务,尤其是共产主义青年团及其他一切组织的任务,可以用一句话来表示,就是要学习。——列宁 9、学习和研究好比爬梯子,要一步一步地往上爬,企图一脚跨上四五步,平地登天,那就必须会摔跤了。——华罗庚 10、儿童的心灵是敏感的,它是为着接受一切好的东西而敞开的。如果教师诱导儿童学习好榜样,鼓励仿效一切好的行为,那末,儿童身上的所有缺点就会没有痛苦和创伤地不觉得难受地逐渐消失。——苏霍姆林斯基 11、学会学习的人,是非常幸福的人。——米南德 12、你们要学习思考,然后再来写作。——布瓦罗14、许多年轻人在学习音乐时学会了爱。——莱杰 15、学习是劳动,是充满思想的劳动。——乌申斯基 16、我们一定要给自己提出这样的任务:第一,学习,第二是学习,第三还是学习。——列宁 17、学习的敌人是自己的满足,要认真学习一点东西,必须从不自满开始。对自己,“学而不厌”,对人家,“诲人不倦”,我们应取这种态度。——毛泽东 18、只要愿意学习,就一定能够学会。——列宁 19、如果学生在学校里学习的结果是使自己什么也不会创造,那他的一生永远是模仿和抄袭。——列夫· 托尔斯泰 20、对所学知识内容的兴趣可能成为学习动机。——赞科夫 21、游手好闲地学习,并不比学习游手好闲好。——约翰· 贝勒斯 22、读史使人明智,读诗使人灵秀,数学使人周密,自然哲学使人精邃,伦理学使人庄重,逻辑学使人善辩。——培根 23、我们在我们的劳动过程中学习思考,劳动的结果,我们认识了世界的奥妙,于是我们就真正来改变生活了。——高尔基 24、我们要振作精神,下苦功学习。下苦功,三个字,一个叫下,一个叫苦,一个叫功,一定要振作精神,下苦功。——毛泽东 25、我学习了一生,现在我还在学习,而将来,只要我还有精力,我还要学习下去。——别林斯基 13、在寻求真理的长河中,唯有学习,不断地学习,勤奋地学习,有创造性地学习,才能越重山跨峻岭。——华罗庚52、若不给自己设限,则人生中就没有限制你发挥的藩篱。 53、希望是厄运的忠实的姐妹。 54、辛勤的蜜蜂永没有时间悲哀。 55、领导的速度决定团队的效率。 56、成功与不成功之间有时距离很短只要后者再向前几步。 57、任何的限制,都是从自己的内心开始的。 58、伟人所达到并保持着的高处,并不是一飞就到的,而是他们在同伴誉就很难挽回。 59、不要说你不会做!你是个人你就会做! 60、生活本没有导演,但我们每个人都像演员一样,为了合乎剧情而认真地表演着。 61、所谓英雄,其实是指那些无论在什么环境下都能够生存下去的人。 62、一切的一切,都是自己咎由自取。原来爱的太深,心有坠落的感觉。 63、命运不是一个机遇的问题,而是一个选择问题;它不是我们要等待的东西,而是我们要实现的东西。 64、每一个发奋努力的背后,必有加倍的赏赐。 65、再冷的石头,坐上三年也会暖。 66、淡了,散了,累了,原来的那个你呢? 67、我们的目的是什么?是胜利!不惜一切代价争取胜利! 68、一遇挫折就灰心丧气的人,永远是个失败者。而一向努力奋斗,坚韧不拔的人会走向成功。 69、在真实的生命里,每桩伟业都由信心开始,并由信心跨出第一步。 70、平凡的脚步也可以走完伟大的行程。 71、胜利,是属于最坚韧的人。 72、因害怕失败而不敢放手一搏,永远不会成功。 73、只要路是对的,就不怕路远。 74、驾驭命运的舵是奋斗。不抱有一丝幻想,不放弃一点机会,不停止一日努力。3、上帝助自助者。 24、凡事要三思,但比三思更重要的是三思而行。 25、如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希望为哨兵。 26、没有退路的时候,正是潜力发挥最大的时候。 27、没有糟糕的事情,只有糟糕的心情。 28、不为外撼,不以物移,而后可以任天下之大事。 29、打开你的手机,收到我的祝福,忘掉所有烦恼,你会幸福每秒,对着镜子笑笑,从此开心到老,想想明天美好,相信自己最好。 30、不屈不挠的奋斗是取得胜利的唯一道路。 31、生活中若没有朋友,就像生活中没有阳光一样。 32、任何业绩的质变,都来自于量变的积累。 33、空想会想出很多绝妙的主意,但却办不成任何事情。 34、不大可能的事也许今天实现,根本不可能的事也许明天会实现。 35、再长的路,一步步也能走完,再短的路,不迈开双脚也无法到达。 36、失败者任其失败,成功者创造成功。 37、世上没有绝望的处境,只有对处境绝望的人。 38、天助自助者,你要你就能。 39、我自信,故我成功;我行,我一定能行。 40、每个人都有潜在的能量,只是很容易:被习惯所掩盖,被时间所迷离,被惰性所消磨。 41、从现在开始,不要未语泪先流。 75、自己选择的路,跪着也要走完。
人教版数学九年级上册第24章圆章末复习课件(39张PPT)
半圆(或直径) 所对的圆周角是直角; 90°的圆周角所对的
C
· O
C2
C1
C3
A
·O
B
弦是直径.
A B
举一反三
1.如图,BC是⊙O的直径,A,D是⊙O上的两点,连接AB,
AD,BD.若∠ADB = 70°,则∠ABC的度数是( A )
A.20°
B.70°
C.30°
D.90°
2.如图,点C是⊙O的劣弧AB上一点,∠AOB=96°,则
第24章 圆 章末复习
R·九年级上册
复习目标
(1)梳理全章知识点,能画出它的知识结构框图. (2)总结解题方法,提升解题能力.
知识框架
圆的有关性质
圆
点、直线和圆 的位置关系
正多边形和圆
弧长和扇形面积
圆的对称性
弧、弦、圆心角之间的关系 同弧上的圆周角和圆心角的关系
点和圆的位置关系 三角形的外接圆
直线和圆的位置关系 切线 三角形的内切圆
知识梳理
确定圆的两个要素:圆心、半径
AB是⊙O的__弦____,CD是⊙O的__直__径__,
C
直径是最长的弦
圆上任意两点之间的部分叫做___弧___,
小于半圆的叫_劣__弧___,如: A⌒D 大于半圆的叫_优__弧___,如:C⌒BA
·O
E
A
B
D
在同圆或等圆中的弧、弦、圆心角有什么关系?
在同圆或等圆中, 相等的圆心角所对的弧相等, 所对的弦相等,所对的弦的弦心距也相等.
∠ACB的度数为( C )
A.192
B.120°
C.132°
D.150°
点、线、圆和圆的位置关系
九年级数学上册第二十四章圆复习课件(新版)新人教版
A
D
O
N
∴AC是∠BCD的角平分线,
∴ON=OM,
B
M
C
∴ CD与⊙O相切.
(2)解: ∵正方形ABCD的边长为1,AC= 2 . 设
A
D
⊙O的半径为r,则OC= 2 .r又易知△OMC是等腰
O
直角三角形, ∴OC=
2r
因此有 2 r 2r ,解得 r 2 2 .
B
M
C
方法总结 (1)证切线时添加辅助线的解题方法有两种: ①有公共点,
圆,它们是同心圆。又知圆环的面积= π(R2-
O
r2)=πAE2=9π.
B
2cm. A
C O
E 方法归纳 有直径,通常构造直径所对的圆周角,将问题转化到 直角三角形中解决.
配套训练 (多解题题)如图,AB是⊙O的直径,弦BC=2,F是弦BC
的中点, ∠ABC=60 °.若动点E以2cm/s的速度从A点出发沿着A→B
→A的方向运动,设运动时间为t(s)
(0<t<3)连接EF,当t=1或
连半径,证垂直; ②无公共点,作垂直,证半径;有切线时添加辅助
线的解题方法是:见切点,连半径,得垂直;
(2)设了未知数,通常利用勾股定理建立方程.
配套训练(多解题)如图,直线AB,Hale Waihona Puke D相交于点O, ∠AOD=30 °,
半径为1cm的⊙P的圆心在射线OA上,且与点O的距离为6cm,如果
⊙P以1cm/s的速度沿由A向B的方向移动,那么 4或8 秒钟后⊙P与
第二十四章
九年级数学上(RJ) 教学课件
圆
复习课
知识网络
专题复习
课堂小结
相关主题