高中数学第一单元综合练习1

合集下载

人教版高中数学选修一第一单元《空间向量与立体几何》测试卷(有答案解析)(1)

人教版高中数学选修一第一单元《空间向量与立体几何》测试卷(有答案解析)(1)

一、选择题1.三棱锥O ABC -中,M ,N 分别是AB ,OC 的中点,且OA a =,OB b =,OC c =,用a ,b ,c 表示NM ,则NM 等于( )A .1()2a b c -++ B .1()2a b c +- C .1()2a b c -+D .1()2a b c --+2.在棱长为2的正四面体ABCD 中,点M 满足()1AM xAB yAC x y AD =+-+-,点N 满足()1BN BA BC λλ=+-,当AM 、BN 最短时,AM MN ⋅=( ) A .43-B .43C .13-D .133.如图,平面ABCD ⊥平面ABEF ,四边形ABCD 是正方形,四边形ABEF 是矩形,且AF =12AD =a ,G 是EF 的中点,则GB 与平面AGC 所成角的正弦值为( )A 6B 3C 6D .234.如图,三棱锥S ﹣ABC 中,SA =SB =SC ,∠ABC =90°,AB >BC ,E ,F ,G 分别是AB ,BC ,CA 的中点,记直线SE 与SF 所成的角为α,直线SG 与平面SAB 所成的角为β,平面SEG 与平面SBC 所成的锐二面角为γ,则( )A .α>γ>βB .α>β>γC .γ>α>βD .γ>β>α5.在平行六面体ABCD A B C D ''''-中,若2AC x AB y BC z CC →→→→''=++,则x y z ++=( ) A .52B .2C .32D .1166.在底面为锐角三角形的直三棱柱111ABC A B C -中,D 是棱BC 的中点,记直线1B D 与直线AC 所成角为1θ,直线1B D 与平面111A B C 所成角为2θ,二面角111C A B D --的平面角为3θ,则( ) A .2123,θθθθ<<B .2123 ,θθθθ><C .2123 ,θθθθD .2123 ,θθθθ>>7.如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,13AA =,2AB AC BC ===,则1AA 与平面11AB C 所成角的大小为A .30B .45︒C .60︒D .90︒8.四棱锥P ABCD -中,底面ABCD 为直角梯形,AB AD ⊥,//BC AD ,且2AB BC ==,3AD =,PA ⊥平面ABCD 且2PA =,则PB 与平面PCD 所成角的正弦值为( )A .427B .33C .77D .639.已知1e ,2e 是夹角为60的两个单位向量,则12a e e =+与122b e e =-的夹角是( ) A .60B .120C .30D .9010.如图,平行六面体中1111ABCD A B C D -中,各条棱长均为1,共顶点A 的三条棱两两所成的角为60°,则对角线1BD 的长为( )A .1B .2C .3D .211.我国古代数学名著《九章算术》中记载的“刍甍”(chumeng )是底面为矩形,顶部只有一条棱的五面体.如下图五面体ABCDEF 是一个刍甍,其中四边形ABCD 为矩形,其中8AB =,23AD =,ADE 与BCF △都是等边三角形,且二面角E AD B --与F BC A --相等,则EF 长度的取值范围为( )A .(2,14)B .(2,8)C .(0,12)D .(2,12)12.如图,在菱形ABCD 中,23ABC π∠=,线段AD 、BD 的中点分别为E 、F .现将ABD ∆沿对角线BD 翻折,当二面角A BD C --的余弦值为13时,异面直线BE 与CF 所成角的正弦值是( )A 35B .16C 26D .1513.有下列四个命题:①已知1e 和2e 是两个互相垂直的单位向量,a =21e +32e ,1b ke =-42e ,且a ⊥b ,则实数k =6;②已知正四面体O ﹣ABC 的棱长为1,则(OA OB +)•(CA CB +)=1;③已知A (1,1,0),B (0,3,0),C (2,2,3),则向量AC 在AB 上正投影的数量是55④已知1a e =-223e e +,1b e =-+32e +23e ,c =-31e +72e ({1e ,2e ,3e }为空间向量的一个基底),则向量a ,b ,c 不可能共面. 其中正确命题的个数为( ) A .1个B .2个C .3个D .4个二、填空题14.正四面体ABCD 的棱长为a ,点E 、F 分别是BC 、AD 的中点,则AE AF ⋅的值为_____________.15.a ,b 为空间两条互相垂直的直线,直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以AC 为旋转轴旋转,30ABC ∠=︒,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成45°角; ⑤直线AB 与a 所成角的最大值为60°; ④直线AB 与a 所成角的最小值为30°;其中正确的是___________.(填写所有正确结论的编号)16.如图,四棱锥P ABCD -中,ABCD 是矩形,PA ⊥平面ABCD ,1==PA AB ,2BC =,四棱锥外接球的球心为O ,点E 是棱AD 上的一个动点,给出如下命题:①直线PB 与直线CE 所成的角中最小的角为45︒;②BE 与PC 一定不垂直;③三棱锥E BCO -的体积为定值;④CE PE +的最小值为22__________.(将你认为正确的命题序号都填上)17.已知空间向量(0,1,1),(1,0,1)a b ==,则向量a 与b 的夹角为_____________. 18.在空间直角坐标系中, ()()()2,1,1,3,4,,2,7,1,A B C AB CB 若λ-⊥,则λ=____ 19.在空间直角坐标系O xyz -中,已知(1,0,2)A -,(0,1,1)B -,点,C D 分别在x 轴,y 轴上,且AD BC ⊥,那么CD →的最小值是______.20.如图,在棱长为2的正方体中,点P 在正方体的对角线AB 上,点Q 在正方体的棱CD 上,若P 为动点,Q 为动点,则PQ 的最小值为_____.21.如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上.若二面角1D EC D --的大小为4π,则AE =__________.22.如图,在空间四边形ABCD 中,AC 和BD 为对角线,G 为ABC ∆的重心E 是BD 上一点,3,BE ED =以,,AB AC AD 为基底,则GE =__________.23.如图,在空间四边形OABC 中,M ,N 分别为OA 、BC 的中点,点G 在线段MN 上,且3MG GN =,用向量OA 、OB 、OC 表示向量OG ,设OG x OA y OB z OC =⋅+⋅+⋅,则x 、y 、z 的和为______.24.如图,平行六面体1111ABCD A B C D -的所有棱长均为1,113BAD A AD A AB π∠=∠=∠=,E 为1CC 的中点,则AE 的长度是________.25.已知直线l 的一个方向向量为()2,8,1m =--,平面α的一个法向量为1,,22n t ⎛⎫= ⎪⎝⎭,且//l α,则实数t =______.26.已知向量a =(4,﹣5,12),b =(3,t ,23),若a 与b 的夹角为锐角,则实数t 的取值范围为_____.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用向量的平行四边形法则、三角形法则可得:1()2NM NA NB =+,1()2AN AO AC =+,1()2BN BO BC =+,AC OC OA =-,BC OC OB =-,代入化简即可得出.【详解】 解:1()2NM NA NB =+,1()2AN AO AC =+,1()2BN BO BC =+,AC OC OA =-,BC OC OB =-,∴1111()2222MN AN BN OA OB OC =+=--+111222a b c =--+, ∴111222NM a b c =+-,故选:B . 【点睛】本题考查了向量的平行四边形法则、三角形法则,考查了数形结合方法、推理能力与计算能力,属于中档题.2.A解析:A 【分析】根据题意可知M ∈平面BCD ,N ∈直线AC ,根据题意知,当M 为BCD ∆的中心、N 为线段AC 的中点时,AM 、BN 最短,然后利用MC 、MA 表示MN ,利用空间向量数量积的运算律和定义可求出AM MN ⋅的值. 【详解】由共面向量基本定理和共线向量基本定理可知,M ∈平面BCD ,N ∈直线AC , 当AM 、BN 最短时,AM ⊥平面BCD ,BN AC ⊥, 所以,M 为BCD ∆的中心,N 为AC 的中点,此时,242sin 603MC ==,23MC ∴=AM ⊥平面BCD ,MC ⊂平面BCD ,AM MC ∴⊥,22222326233MA AC MC ⎛⎫∴=-=-= ⎪ ⎪⎝⎭. 又()12MN MC MA =+,()2114223AM MN AM MC AM MA MA ∴⋅=⋅+⋅=-=-. 故选:A. 【点睛】本题考查空间向量数量积的计算,同时也涉及了利用共面向量和共线向量来判断四点共面和三点共线,确定动点的位置是解题的关键,考查计算能力,属于中等题.3.C解析:C 【解析】如图,以A 为原点建立空间直角坐标系,则A(0,0,0),B(0,2a,0),C(0,2a,2a),G(a ,a,0),F(a,0,0),AG =(a ,a,0),AC =(0,2a,2a),BG =(a ,-a ,0),BC =(0,0,2a),设平面AGC 的法向量为n 1=(x 1,y 1,1), 由110{AG n AC n ⋅=⋅=⇒⇒111{1x y ==-⇒n 1=(1,-1,1).sinθ=11BG n BG n ⋅⋅=23a ⨯6. 4.A解析:A 【分析】根据题意可知,G 作SE 的垂线l ,显然l 垂直平面SAB ,故直线SG 与平面SAB 所成的角为β=∠GSE ,同理,平面SEG 与平面SBC 所成的锐二面角为γ=∠FSG ,利用三角函数结合几何性质,得出结论.因为AB ⊥BC ,SA =SB =SC ,所以AB ⊥SE ,所以AB ⊥平面SGE ,AB ⊥SG , 又SG ⊥AC ,所以SG ⊥平面ABC , 过G 作SE 的垂线l ,显然l 垂直平面SAB , 故直线SG 与平面SAB 所成的角为β=∠GSE ,同理,平面SEG 与平面SBC 所成的锐二面角为γ=∠FSG ,由tanγ=tan FG EGSG SGβ>=,得γ>β,γ也是直线SF 与平面SEG 所成的角, 由cosα=cosβ•cosγ<cosγ,则α>γ,所以α>γ>β, 故选:A .【点睛】本题考查了异面直线夹角,线面夹角,二面角,意在考查学生的空间想象能力和计算能力.5.A解析:A 【分析】根据空间向量的线性运算,得出AB BC AC AC CC CC →→→→→→⎛⎫=+=++ ⎪⎭'''⎝,结合题意,即可求出11,2y z ==,从而得出x y z ++的值. 【详解】解:由空间向量的线性运算,得AB BC AC AC CC CC →→→→→→⎛⎫=+=++ ⎪⎭'''⎝, 由题可知,2AC x AB y BC z CC →→→→''=++, 则1,1,21x y z ===,所以11,2y z ==, 151122x y z ∴++=++=.【点睛】本题考查空间向量的基本定理的应用,以及空间向量的线性运算,属于基础题.6.A解析:A 【分析】以A 为坐标原点,建立空间直角坐标系,写出点的坐标,分别求出直线的方向向量以及平面的法向量,通过向量法即可求得各个角度的余弦值,再结合余弦函数的单调性即可判断. 【详解】由题可知,直三棱柱111ABC A B C -的底面为锐角三角形,D 是棱BC 的中点, 设三棱柱111ABC A B C -是棱长为2的正三棱柱,以A 为原点,在平面ABC 中,过A 作AC 的垂线为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,则1(0,0,2)A ,1(3,1,2)B ,(0,2,0)C ,33,02D ⎫⎪⎪⎝⎭,(0,0,0)A , (0,2,0)AC =,131,22B D ⎛⎫=- ⎪ ⎪⎝⎭,11(3,1,0)A B =,因为直线1B D 与直线AC 所成的角为1θ,10,2πθ⎛⎤∈ ⎥⎝⎦,111||cos ||||25θ⋅∴==⋅B D AC B D AC ,因为直线1B D 与平面111A B C 所成的角为2θ,20,2πθ⎡⎤∈⎢⎥⎣⎦, 平面111A B C 的法向量()0,0,1n =,121||sin ||5∣θ⋅∴==⋅B D n B D n ,222cos 155θ⎛⎫∴=-= ⎪⎝⎭,设平面11A B D 的法向量(,,)m a b c =,则11130312022m A Ba b m B D a b c ⎧⋅=+=⎪⎨⋅=-+-=⎪⎩, 取3a =,得33,3,2m ⎛⎫=--⎪⎝⎭, 因为二面角111C A B D --的平面角为3θ, 由图可知,其为锐角,33||2cos ||575749m n m n θ⋅∴===⋅∣,231cos cos cos θθθ>>, 由于cos y θ=在区间(0,)π上单调递减,故231θθθ<<, 则2123,θθθθ<<. 故选:A . 【点睛】本题考查利用向量法研究空间中的线面角以及二面角,属综合基础题.7.A解析:A 【分析】建立空间坐标系,计算1AA 坐标,计算平面11AB C 的法向量,运用空间向量数量积公式,计算夹角即可. 【详解】取AB 的中点D ,连接CD ,以AD 为x 轴,以CD 为y 轴,以1BB 为z 轴,建立空间直角坐标系,可得()1,0,0A ,()11,0,3A ,故()()()11,0,31,0,00,0,3AA =-=,而()()111,0,3,0,3,3B C -,设平面11AB C 的法向量为()=,,m a b c ,根据110,0m AB m AC ⋅=⋅=,解得()3,3,2m =-,111 1,?2|?|m AA cos m AA m AA ==.故1AA 与平面11AB C 所成角的大小为030,故选A . 【点睛】考查了空间向量数量积坐标运算,关键构造空间直角坐标系,难度偏难.8.C解析:C 【分析】以A 为坐标原点建立空间坐标系,进而求得PB 和平面PCD 的法向量,再由向量的数量积即可求得PB 与平面PCD 所成角的正弦值. 【详解】依题意,以A 为坐标原点,分别以,,AB AD AP 为,,x y z 轴建立空间直角坐标系O xyz -,2,3,2AB BC AD PA ====,则()()()()0,0,2,2,0,0,2,2,0,0,3,0P B C D , 从而()()()2,0,2,2,2,2,0,3,2PB PC PD =-=-=- 设平面PCD 的法向量为(),,n a b c =,00n PC n PD ⎧⋅=⎨⋅=⎩,即2220320a b c b c +-=⎧⎨-=⎩,不妨取3c =c=3,则1,2a b ==,所以平面PCD 的一个法向量为()1,2,3n =, 所以PB 与平面PCD 所成角的正弦值 ()22222267sin cos ,22123PB n θ-===+-++, 故选C.【点睛】本题主要考查了线面所成的角, 其中求解平面的法向量是解题的关键,着重考查了推理与计算能力,属于中档试题.9.B解析:B 【分析】利用平面向量的数量积公式先求解a b ⋅,再计算a 与b ,根据数量积夹角公式,即可求解. 【详解】由题意得:()()12122a b e e e e ⋅=+⋅-221122132111222e e e e =-⋅-=-⨯⨯-=-,2222121122()21a e e e e e e a ==+=++==⋅2222112122(2)4?41b b e e e e e e ==-=+-=-=设,a b 夹角为312,cos ,018032a b a bθθθ-⋅===-︒≤≤︒⋅,∴120θ=.故选:B. 【点睛】本题考查利用平面向量的数量积计算向量的夹角问题,难度一般,准确运用向量的数量积公式即可.10.B解析:B 【分析】在平行六面体中1111ABCD A B C D -中,利用空间向量的加法运算得到11BD BA BB BC =++,再根据模的求法,结合各条棱长均为1,共顶点A 的三条棱两两所成的角为60°,由()()2211BD BA BB BC =++222111222BA BB BC BA BB BC BA BB BC =+++⋅+⋅+⋅求解.【详解】在平行六面体中1111ABCD A B C D -中,因为各条棱长均为1,共顶点A 的三条棱两两所成的角为60°,所以111111cos120,11cos6022BA BB BA BC BC BB ⋅=⋅=⨯⨯=-⋅=⨯⨯=, 所以11BD BA BB BC =++, 所以()()2211BD BA BB BC =++,222111222BA BB BC BA BB BC BA BB BC =+++⋅+⋅+⋅,113+22+2222⎛⎫=⨯-⨯⨯= ⎪⎝⎭,所以12BD =,故选:B 【点睛】本题主要考查空间向量的运算以及向量模的求法,还考查了运算求解的能力,属于中档题.11.A解析:A 【分析】求得EF 长度的两个临界位置的长度,由此求得EF 的取值范围. 【详解】由于ADE ∆与BCF ∆都是等边三角形,且边长为23,故高为3.当E AD B --和F BC A --趋向于0时,8332EF →--=,如下图所示.当E AD B --和F BC A --趋向于π时,83314EF →++=,如下图所示.所以EF 的取值范围是()2,14. 故选:A 【点睛】本小题主要考查空间线段长度范围的判断,考查空间想象能力,属于基础题.12.A解析:A 【分析】过E 作EH BD ⊥,交BD 于H 点,设二面角A BD C --的大小为α,设BE 与CF 的夹角为θ,则0,2π⎡⎤θ∈⎢⎥⎣⎦,由向量数量积的运算律得出CF BE CF HE ⋅=⋅,由题意可得出12HE BE =,利用数量积的定义可求出cos ,CF BE <>的值,即可求出cos θ的值,进而利用同角三角函数的平方关系可求出sin θ的值. 【详解】如下图所示,过E 作EH BD ⊥,交BD 于H 点,设BE 与CF 的夹角为θ,则0,2π⎡⎤θ∈⎢⎥⎣⎦, 记二面角A BD C --的大小为α,()CF BE CF BH HE CF HE ⋅=⋅+=⋅, 即()cos CF BE CF HE πα⋅=⋅-,即11cos ,23CF BE CF BE CF BE ⎛⎫⋅<>=⋅⋅- ⎪⎝⎭, 1cos ,6CF BE ∴<>=-,所以1cos 6θ=,即35sin 6θ=,故选:A .【点睛】本题考查异面直线所成角的计算,同时也考查了二面角的定义,涉及利用空间向量数量积的计算,考查计算能力,属于中等题.13.C解析:C 【分析】利用向量的基本概念逐一进行判断,即可得出结论. 【详解】解:①a =21e +32e ,1b ke =-42e ,且a b ⊥,2212121122(23)(4)2()(38)12()2120a b e e ke e k e k e e e k ∴=+-=+--=-=,解得6k =,所以①正确.②()()OA OB CA CB OA CA OA CB OB CA OB CB ++=+++11cos6011cos9011cos9011cos60001=⨯⨯︒+⨯⨯︒+⨯⨯︒+⨯⨯︒++=,所以②正确.③(1,1,3)AC =,(1,2,0)AB =-,向量AC 在AB 上正投影1||(1)20AC AB AB ⨯===-++③正确. ④假设向量a ,b ,c 共面,则a xb yc =+, 所以123123122(32)(37)e e e x e e e y e e -+=-+++-+, 1231232(3)(37)2e e e x y e x y e xe -+=--+++,所以13x y =--,237x y -=+,12x =, 得12x =,12y , 所以向量a ,b ,c 共面,所以④不正确. 即正确的有3个, 故选:C . 【点睛】本题考查向量的基本概念,向量垂直,共面,正投影等,属于中档题.二、填空题14.【分析】结合由数量积定义计算【详解】正四面体中点EF 分别是BCAD 的中点连接则而所以平面又平面所以即所以故答案为:【点睛】关键点点睛:本题考查向量的数量积运算解题时选择用向量的加减数乘运算表示出要计解析:24a【分析】AE AB BE =+,结合AD BC ⊥,由数量积定义计算. 【详解】正四面体ABCD 中,点E 、F 分别是BC 、AD 的中点,连接,AE DE ,则,BC AE BC DE ⊥⊥,而AEDE E =,所以BC ⊥平面ADE ,又AD ⊂平面ADE ,所以AD BC ⊥,即AF BE ⊥,所以21()cos 6024a AE AF AB BE AF AB AF BE AF a a ⋅=+⋅=⋅+⋅=⨯⨯︒=.故答案为:24a.【点睛】关键点点睛:本题考查向量的数量积运算,解题时选择用向量的加减数乘运算表示出要计算的向量,然后由数量积定义计算,是基本方法,实质上也可以应用空间向量基本定理表示向量,把向量的运算转化为空间向量的基底进行运算.15.②④【分析】由题意知abAC三条直线两两相互垂直构建如图所示的长方体|AC|=1|AB|=2斜边AB以直线AC为旋转轴则A点保持不变B点的运动轨迹是以C为圆心为半径的圆以C坐标原点以CD为x轴CB为解析:②④【分析】由题意知,a、b、AC三条直线两两相互垂直,构建如图所示的长方体,|AC|=1,|AB|=2,斜边AB以直线AC为旋转轴,则A点保持不变,B点的运动轨迹是以C为圆心,3为半径的圆,以C坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,利用向量法求出结果.【详解】由题意知,a、b、AC三条直线两两相互垂直,画出图形如图,不妨设图中所示的长方体高为13故|AC |=1,|AB |=2,斜边AB 以直线AC 为旋转轴,则A 点保持不变, B 点的运动轨迹是以C为半径的圆,以C 坐标原点,以CD 为x 轴,CB 为y 轴,CA 为z 轴,建立空间直角坐标系,则D,0,0),A (0,0,1),直线a 的方向单位向量a =(0,1,0),|a |=1, 直线b 的方向单位向量b =(1,0,0),|b |=1,设B 点在运动过程中的坐标中的坐标B ′θθ,0),其中θ为B ′C 与CD 的夹角,[02θπ∈,),∴AB ′在运动过程中的向量,'AB =θθ,﹣1),|'AB |=2, 设'AB 与a 所成夹角为α∈[0,2π], 则)(10cos 23,,θα-⋅=='⋅sin a AB |sin θ|∈[0, ∴α∈[6π,2π],∴③错误,④正确. 设'AB 与b 所成夹角为β∈[0,2π], ()(1100c 323os ,-,,,θθβ-⋅'⋅===''⋅⋅cos sin AB b AB bb AB |cos θ|, 当'AB 与a 夹角为60°时,即α3π=,|sin θ|3πα===, ∵cos 2θ+sin 2θ=1,∴cos β=|cos θ|=,∵β∈[0,2π],∴4πβ=,此时'AB 与b 的夹角为45°,∴②正确,①错误. 故答案为:②④. 【点睛】本题考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,涉及空间向量的知识点,属于中档题.16.①③④【分析】由三垂直可采用以为轴建立空间直角坐标系①中通过异面直线的夹角公式和不等式性质即可判断正确;②中结合向量数量积公式可判断错误;③采用补形法将四棱锥还原为长方体再结合等体积法即可求解三棱锥解析:①③④ 【分析】由,,AB AD AP 三垂直,可采用以,,AB AD AP 为,,x y z 轴建立空间直角坐标系,①中通过异面直线的夹角公式和不等式性质即可判断正确;②中结合向量数量积公式可判断错误;③采用补形法将四棱锥还原为长方体,再结合等体积法即可求解三棱锥E BCO -的体积为定值;④中将平面ABCD 以AD 为轴旋转到平面PAD 内形成平面''AB C D ,结合两点间直线最短即可判断正确 【详解】如图所示:以,,AB AD AP 为,,x y z 轴建立空间直角坐标系,则(0,0,1)P ,()1,0,0B ,(1,2,0)C ,设(0,,0)E y ,[]0,2y ∈,则(1,0,1)BP =-,(1,2,0)CE y =--, 2||2cos ,2||||21(2)BP CE BP CE BP CE y ⋅〈〉==≤⋅⋅+-,当2y =时等号成立, 此时,4BP CE π〈〉=,故直线PB 与直线CE 所成的角中最小的角为45︒,①正确;(1,,0)(1,2,1)21BE PC y y ⋅=-⋅-=-,当12y =时,BE PC ⊥,②错误; 将四棱锥放入对应的长方体中,则球心为体对角线交点, 1111112323226BCE E BCO O BCE AP V V S --==⨯⨯=⨯⨯⨯⨯=△,③正确;如图所示:将平面ABCD 以AD 为轴旋转到平面PAD 内形成平面''AB C D , 则22''2222CE PE C E PE PC +=+≥=+=,当'PEC 共线时等号成立,④正确.故答案为:①③④.【点睛】本题考查向量法在立体几何中的实际应用,合理建系,学会将所求问题有效转化是解决问题的关键,如本题求线线角的最小值转化为求线线夹角的余弦值,求两直线垂直转化为数量积为0,求三棱锥体积的补形法和等体积法,利用旋转将异面直线的距离转化为共面直线的距离,属于中档题17.【分析】根据两向量的夹角余弦公式即可求出两向量的夹角【详解】解:10向量与的夹角为故答案为:【点睛】本题考查空间两向量的夹角大小的应用问题是基础题目 解析:3π【分析】根据两向量的夹角余弦公式,即可求出两向量的夹角. 【详解】 解:(0a =,1,1),(1b =,0,1),∴·1a b =,||2a =,||2b =,cos a ∴<,12||||2a b b a b >===⨯⨯,向量a 与b 的夹角为3π. 故答案为:3π. 【点睛】本题考查空间两向量的夹角大小的应用问题,是基础题目.18.【分析】利用空间向量的结论将垂直的问题转化为向量数量积等于零的问题然后利用向量的数量积坐标运算计算的值即可【详解】又即解得故答案为【点睛】本题主要考查空间向量的应用向量垂直的充分必要条件等知识意在考 解析:3±【分析】利用空间向量的结论将垂直的问题转化为向量数量积等于零的问题,然后利用向量的数量积坐标运算计算λ的值即可. 【详解】()()()2,1,1,3,4,,2,7,1A B C λ-, ∴AB ()1,3,1,λ=+CB ()1,3,1λ=--,又,AB CB ⊥0AB CB ∴⋅=,即()()()1133110λλ⨯+⨯-++-=,解得3λ=±, 故答案为3±. 【点睛】本题主要考查空间向量的应用,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.19.【分析】设0则由知所以由此能求出其最小值【详解】设001-即(当时取最小值)故答案为:【点睛】方法点睛:求最值常用的方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法要根据已知【分析】设(C x ,0,0),(0D ,y ,0),则(1,,2)AD y →=-,(,1,1)BC x →=-,由20AD BC x y →→=--=,知2x y =+.所以||CD →【详解】设(C x ,0,0),(0D ,y ,0),(1A -,0,2),(0B ,1,-1),∴(1,,2)AD y →=-,(,1,1)BC x →=-, AD BC ⊥,∴20AD BC x y →→=--=,即2x y =+.(,,0)CD x y →=-,∴||CD →=2.(当1y =-时取最小值)【点睛】方法点睛:求最值常用的方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法.要根据已知条件灵活选择方法求解. 20.【分析】建立空间直角坐标系利用三点共线设出点P(λλ2﹣λ)0≤λ≤2以及Q(02μ)0≤μ≤2根据两点间的距离公式以及配方法即可求解【详解】建立如图所示空间直角坐标系设P(λλ2﹣λ)Q(02μ)【分析】建立空间直角坐标系,利用,,A B P 三点共线设出点P (λ,λ,2﹣λ),0≤λ≤2,以及Q (0,2,μ),0≤μ≤2,根据两点间的距离公式,以及配方法,即可求解.【详解】建立如图所示空间直角坐标系,设P (λ,λ,2﹣λ),Q (0,2,μ)(0≤λ≤2且0≤μ≤2),可得PQ =∵2(λ﹣1)2≥0,(2﹣λ﹣μ)2≥0,∴2(λ﹣1)2+(2﹣λ﹣μ)2+2≥2,当且仅当λ﹣1=2﹣λ﹣μ=0时,等号成立,此时λ=μ=1,∴当且仅当P 、Q 分别为AB 、CD 的中点时,PQ .故答案为.【点睛】本题考查空间向量法求两点间的距离,将动点用坐标表示是解题的关键,考查配方法求最值,属于中档题.21.【解析】分析:以D 为原点建立空间直角坐标系设再求出平面和平面的法向量利用法向量所成的角表示出二面角的平面角解方程即可得出答案详解:以D 为原点以为轴的正方向建立空间直角坐标系设平面的法向量为由题可知平 解析:23【解析】分析:以D 为原点,建立空间直角坐标系,设(02)AE λλ=≤≤,再求出平面AECD 和平面1D EC 的法向量,利用法向量所成的角表示出二面角的平面角,解方程即可得出答案. 详解:以D 为原点,以DA ,DC ,1DD 为,,x y z 轴的正方向,建立空间直角坐标系,设(02)AE λλ=≤≤,平面1D EC 的法向量为(,,)m x y z =由题可知,1(0,0,1)D ,(0,2,0)C ,(1,,0)E λ,1(0,2,1)DC =-,(1,2,0)CE λ=- 平面AECD 的一个法向量为z 轴,∴可取平面AECD 的法向量为(0,0,1)n = (,,)m x y z =为平面1D EC 的法向量,∴120(2)0m D C y z m CE x y λ⎧⋅=-=⎨⋅=+-=⎩ 令1y =,则(2,1,2)m λ=- 二面角1D EC D --的大小为4π ∴cos 4m n m n π⋅=⋅,即 2222(2)12λ=-++ 解得 23λ=23λ=+ ∴23AE =-故答案为23点睛:空间向量法求二面角(1)如图1,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD 〉.(2)如图2、3,12,n n 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小12,n n θ=(或12,n n π-).22.【解析】由题意连接则故答案为 解析:1131234AB AC AD --+ 【解析】 由题意,连接AE ,则32 43GE AE AG AB BD AM =-=+- 321432AB AD AB AB AC =+--⨯+()(). 1131234AB AC AD =--+ . 故答案为1131234AB AC AD --+. 23.【分析】利用向量的加法公式得出再由得出的值即可得出的和【详解】即故答案为:【点睛】本题主要考查了用空间基底表示向量属于中档题解析:78【分析】 利用向量的加法公式得出111222MN OA OB OC =-++,再由1324OG OM MG OA MN =+=+,得出,,x y z 的值,即可得出,,x y z 的和.【详解】MN MA AB BN =++11111()22222OA OB OA OC OB OA OB OC =+-+-=-++ 13131112424222OG OM MG OA MN OA OA OB OC ⎛⎫∴=+=+=+-++ ⎪⎝⎭813388OA OB OC =++ 133,,888x y z ∴=== 即78x y z ++=故答案为:78【点睛】本题主要考查了用空间基底表示向量,属于中档题. 24.【分析】根据向量的线性运算得出根据向量的数量积运算即可求出结果【详解】解:由题可知所以得故答案为:【点睛】本题考查向量的运算涉及到线性运算和向量的数量积同时考查学生的化归和转化思想【分析】 根据向量的线性运算,得出112AE AB BC CC =++,根据向量的数量积运算,即可求出结果.【详解】 解:由题可知,112AE AB BC CC =++, 所以2211()2AE AB BC CC =++ 222111124AB BC CC AB BC AB CC BC CC =+++⋅+⋅+⋅ 22211112cos60cos60cos604AB BC CC AB BC AB CC BC CC =+++⋅+⋅+⋅ 11111711242224=+++⨯++= 得17AE =.. 【点睛】 本题考查向量的运算,涉及到线性运算和向量的数量积,同时考查学生的化归和转化思想. 25.-1【解析】【分析】由直线的一个方向向量为平面的一个法向量为得到由此能求出的值【详解】∵直线的一个方向向量为平面的一个法向量为∴解得故答案为:【点睛】本题考查实数值的求法考查直线的方向向量平面的法向 解析:-1【解析】【分析】由直线l 的一个方向向量为m ,平面α的一个法向量为n ,//l α,得到 0m n ⋅=,由此能求出t 的值.【详解】∵直线l 的一个方向向量为()2,8,1m =--,平面α的一个法向量为1,,22n t ⎛⎫= ⎪⎝⎭,//l α,∴2420m n t ⋅=--+=,解得1t =-,故答案为:1-.【点睛】本题考查实数值的求法,考查直线的方向向量、平面的法向量等基础知识,考查运算与求解能力,考查化归与转化思想,是基础题.26.(﹣∞4)【分析】由题意利用两个向量的夹角的定义两个向量共线的性质求得实数的取值范围【详解】解:向量若与的夹角为锐角且与不共线即且不成立解得则实数的取值范为故答案为:【点睛】本题主要考查两个向量的夹 解析:(﹣∞,4)【分析】由题意利用两个向量的夹角的定义,两个向量共线的性质,求得实数t 的取值范围.【详解】 解:向量(4a =,5-,12),(3b =,t ,2)3,若a 与b 的夹角为锐角, ∴·0a b >,且a 与b 不共线, 即24351203t ⨯-+⨯>,且2334512t ==- 不成立,解得4t <, 则实数t 的取值范为(,4)-∞,故答案为:(,4)-∞.【点睛】本题主要考查两个向量的夹角,两个向量共线的性质,属于基础题.。

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)目录第一章集合与常用逻辑用语.1.1 集合的概念1.2 集合间的基本关系1.3集合的基本运算1.4 充分条件与必要条件1.5全称量词与存在量小结复习参考题1第一章集合与常用逻辑用语1.1集合的概念练习1.判断下列元素的全体是否组成集合,并说明理由:(1)与定点A,B等距离的点;【答案解析】:是集合,因为这些点有确定性.(2)高中学生中的游泳能手.【答案解析】:不是,因为是否能手没有客观性,不好确定.2.用符号“∈”或“∉”填空:0___ N; -3___ N; 0.5__Z; √2__z; ⅓__Q; π__R.【答案解析】:根据自然数,整数,有理数,实数的定义即可判断.0是自然数,则0∈N ;-3不是自然数,则-3∉N ; 0.5,√2 不是整数,则0.5∉Z,√2∉Z;⅓是有理数,则⅓∈Q ;π 是无理数,则π∈R故答案为:(1)∈;(2)∉ ;(3)∉ ;(4)∉ ;(5)∈ ;(6)∈3.用适当的方法表示下列集合:(1)由方程x²-9=0的所有实数根组成的集合;【答案解析】:{-3, 3}.(2)一次函数y=x+3与y=-2x+6图象的交点组成的集合;【答案解析】: {(1, 4)}.(3)不等式4x- 5<3的解集.【答案解析】:{x | x<2}.习题1.1一、复习巩固1.用符号“∈”或“∉”填空:(1)设A为所有亚洲国家组成的集合,则中国____ A,美国____A,印度____A,英国____ A;【答案解析】:设A为所有亚洲国家组成的集合,则:中国∈A,美国∉A,印度∈A,英国∉A.(2)若A={x|x²=x},则-1____A;【答案解析】:A={x|x²=x}={0, 1},则-1∉A.(3)若B={x|x²+x-6=0},则3____B;【答案解析】:若B={x|x²+x-6=0}={x|(x+3)(x-2)=0}={-3,2},则3∉B; (4)若C={x∈N|1≤x≤10},则8____C, 9.1____C.【答案解析】:若C={x∈N|1≤x≤10}={1, 2, 3,4,5, 6,7, 8,9,10},则8∈C, 9.1∉C.2.用列举法表示下列集合:(1)大于1且小于6的整数;【答案解析】:大于1且小于6的整数有4个:2,3,4,5,所以集合为{2,3,4,5}.(2) A={x|(x-1)(x +2)=0};【答案解析】:(x- 1)(x+2)=0的解为x=1或x=-2,所以集合为{1, -2}.(3) B={x∈Z|-3<2x-1<3}.【答案解析】:由-3<2x-1<3,得-1<x<2.又因为x∈Z,所以x=0.或x=1,所以集合为{0,1}.二、综合运用3.把下列集合用另一种方法表示出来:(1) {2,4,6,8, 10};【答案解析】:{x |x=2k, k=1, 2, 3, 4, 5}.(2)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数;【答案解析】:{1, 2, 3, 12, 21, 13, 31, 23, 32, 123, 132, 213, 231, 312, 321}.(3) {x∈N|3<x<7};【答案解析】:{4, 5, 6}.(4)中国古代四大发明.【答案解析】:{指南针,活字印刷,造纸术,火药}.4.用适当的方法表示下列集合:(1)二次函数y=x²-4的函数值组成的集合;【答案解析】: {y | y≥-4}.(2)反比例函数y=2/x的自变量组成的集合;【答案解析】:{x | x≠0}.(3)不等式3x≥4- 2x的解集.【答案解析】:{x |x≥4/5}.三、拓广探索5.集合论是德国数学家康托尔于19 世纪末创立的.当时,康托尔在解决涉及无限量研究的数学问题时,越过“数集”限制,提出了一般性的“集合”概念.关于集合论,希尔伯特赞誉其为“数学思想的惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一”,罗素描述其为“可能是这个时代所能夸耀的最伟大的工作”.请你查阅相关资料,用简短的报告阐述你对这些评价的认识.【答案解析】:略.1.2 集合间的基本关系练习1.写出集合{a, b,c}的所有子集.【答案解析】由0个元素构成的子集: ∅;由1个元素构成的子集: {a}, {b}, {c};由2个元素构成的子集: {a, b}, {a,c}, {b, c};由3个元素构成的子集: {a, b, c};综上,可得集合{a,b, c}的所有子集有: 0, {a}, {b}, {c}, {a, b}, {a,c}, {b, c}, {a, b, c}.2.用适当的符号填空:(1) a__ {a,b,c}; (2) 0__ {x|x²=0};(3) B___ {x∈R|x²+1=0}; (4) {0,1}___N(5) {0}___ {x|x²=x}; (6) {2, 1}___{x|x²-3x+2=0}.【答案解析】:(1)∈;(2)=;(3)=;(4)⊆;(5)⊆;(6)=.3.判断下列两个集合之间的关系:(1) A={x|x<0}, B={x|x<l};(2) A={x|x=3k,k∈N},B={x|x=6z,z∈N};(3) A={x∈N₋|x是4与10的公倍数},B={x|x=20m, m∈N₊}.【答案解析】:⫋A B B A A=B习题1.2一、复习巩固1.选用适当的符号填空:(1)若集合A={x|2x-3<3x}, B={x|x≥2},则-4___B,-3___ A, {2}___B,B___ A;【答案解析】:∵集合A= {x|2x-3< 3x}= {x|x>-3},B = {x|x≥2},则∴-4∉B,-3∉A,{2}B,B A.故答案为:∉,∉,,。

高中数学必修1第一单元试卷及答案

高中数学必修1第一单元试卷及答案

高中数学必修1第一单元试卷及答案高一年级数学第一单元质量检测试题参赛试卷一。

填空题(每题5分:共50分)1.集合A= {x|-1≤x≤2}:B={x|x<1}:则A∩(CRB)=()A。

{x|x>1}B。

{x|x≥1}C。

{x|1<x≤2}D。

{x|1≤x≤2}2.集合P={x∈Z|≤x<3},M={x∈R|x²≤9}:则P∩M=()A。

{1,2}B。

{0,1,2}C。

{x|0≤x<3}D。

{x|0≤x≤3}3.若集合A={x|-2<x<1}:B={x|<x<2}:则集合AB=()A。

{x|-1<x<1}B。

{x|-2<x<1}C。

{x|-2<x<2}D。

{x|<x<1}4.已知集合M={1,2,3}:N={2,3,4}:则()A。

M⊆NB。

N⊆MC。

MN={2,3}D。

MN={1,4}5.A={x|x≤1,x∈R}:B={y|y=x²,x∈R}:则A∩B=()A。

{x|-1≤x≤1}B。

{x|x≥0}C。

{x|≤x≤1}D。

∅6.已知A、B均为集合U={1,3,5,7,9}的子集:且A∩B={3}:B∩A={9}:则A=()A。

{1,3}B。

{3,7,9}C。

{3,5,9}D。

{3,9}7.A={x|x≤2,x∈R}:B={x|x≤4,x∈Z}:则A∩B=() A。

(0,2)B。

[0,2]C。

{0,2}D。

{0,1,2}8.已知全集U=R:集合M={x||x-1|≤2}:则CU(M)=() A。

X-1<X<3B。

X-1≤X≤3C。

X3D。

X≤X-1或X≥39.已知全集U=R:集合A={x|x²-2x>0}:则CU(A)=() A。

{x|x≤2}B。

{x|0<x<2}C。

{x|x2}D。

{x|x≤0或x≥2}10.若集合A={-1,1}:B={x|mx=1}:且A∪B=A:则m的值为()A。

2019-2020年高中数学 第一章 单元检测卷(B)新人教A版必修1

2019-2020年高中数学 第一章 单元检测卷(B)新人教A版必修1

2019-2020年高中数学 第一章 单元检测卷(B )新人教A 版必修1一、选择题(本大题共12小题,每小题5分,共60分)1.下列各组对象中不能构成集合的是( )A .北京尼赏文化传播有限公司的全体员工B .xx 年全国经济百强县C .xx 年全国“五一”劳动奖章获得者D .美国NBA 的篮球明星2.能表示直线x +y =2与直线x -y =4的公共点的集合是( )A .x =3,y =-1B .(3,-1)C .{3,-1}D .{(3,-1)}3.设全集U =R ,集合A ={x ||x |≤3},B ={x |x <-2或x >5},那么如图所示的阴影部分所表示的集合为( )A .[-3,5)B .[-2,3]C .[-3,-2)D .(-∞,3]∪[5,+∞)4.设全集U =R ,集合A ={x |0<x <2},B ={x |x >1},则集合A ∩∁U B 等于( )A .{x |1<x <2}B .{x |1≤x <2}C .{x |0<x <1}D .{x |0<x ≤1}5.若集合A 、B 、C 满足A ∩B =A ,B ∪C =C ,则A 与C 之间的关系是( )A .ACB .CAC .A ⊆CD .C ⊆A6.已知f (x )、g (x )为实数函数,且M ={x |f (x )=0},N ={x |g (x )=0},则方程[f (x )]2+[g (x )]2=0的解集是( )A .MB .NC .M ∩ND .M ∪N7.满足M ⊆{a 1,a 2,a 3,a 4}且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( )A .1个B .2个C .3个D .4个8.方程组⎩⎪⎨⎪⎧x -y =-32x +y =6的解集的正确表示方法为( ) A .{1,4} B .{4,1}C .{(1,4)}D .{x =1,y =4}9.已知集合A ={0,2,3},B ={x |x =a ·b ,a ,b ∈A },则集合B 的子集的个数是( )A .4个B .8个C .15个D .16个10.集合M 由正整数的平方组成,即M ={1,4,9,16,25,…},若对某集合中的任意两个元素进行某种运算,运算结果仍在此集合中,则称此集合对该运算是封闭的.M 对下列运算封闭的是( )A .加法B .减法C .乘法D .除法11.设集合M ={x |-1≤x <2},N ={x |x -k ≤0},若M ∩N ≠∅,则k 的取值范围是( )A .(-∞,2]B .[-1,+∞)C .(-1,+∞)D .[-1,2]12.设P 、Q 为两个非空实数集合,定义集合运算:P *Q ={z |z =ab (a +b ),a ∈P ,b ∈Q },若P ={0,1},Q ={2,3},则P *Q 中元素之和是( )A .0B .6C.12二、填空题(13.设集合A={x|-3≤x≤2},B={x|2k-1≤x≤2k+1},且A⊇B,则实数k的取值范围为________.14.定义两个数集A,B之间的距离是|x-y|min(其中x∈A,y∈B).若A={y|y=x2-1,x ∈Z},B={y|y=5x,x∈Z},则数集A,B之间的距离为______________.15.已知集合M={-2,3x2+3x-4,x2+x-4},若2∈M,则满足条件的实数x组成的集合为____________.16.若A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},B⊆A,则实数m的取值范围为________.三、解答题(本大题共6小题,共70分)17.(10分)已知全集U={1,2,3,4,5},集合A={x|x2-5x+q=0,x∈U},求q的值及∁U A. 18.(12分)已知全集U=R,集合M={x|x≤3},N={x|x<1},求M∪N,(∁U M)∩N,(∁U M)∪(∁U N).19.(12分)已知全集U={x∈P|-1≤x≤2},集合A={x|0≤x<2}、集合B={x|-0.1<x≤1}.(1)若P=R,求∁U A中最大元素m与∁U B中最小元素n的差m-n的值;(2)若P=Z,证明:(∁U B)∪A=U.20.(12分)已知全集U={|a-1|,(a-2)(a-1),4,6};(1)若∁U(∁U B)={0,1},求实数a的值;(2)若∁U A={3,4},求实数a的值.21.(12分)设集合A={x∈R|2x-8=0},B={x∈R|x2-2(m+1)x+m2=0}.(1)若m=4,求A∪B;(2)若B⊆A,求实数m的取值范围.22.(12分)已知集合A ={x |ax 2+2x +1=0,a ∈R ,x ∈R }.(1)若A 中只有一个元素,求a 的值,并求出这个元素;(2)若A 中至多只有一个元素,求a 的取值范围.第一章 集 合(B)1.D [根据集合中元素的确定性来判断是否构成集合.因为A 、B 、C 中所给对象都是确定的,从而可以构成集合;而D 中所给对象不确定,原因是没有具体的标准衡量一位美国NBA 球员是否是篮球明星,故不能构成集合.]2.D [选项A 不是集合的表示方法;选项B 代表点的坐标,也不是集合的表示;选项C 是表示了集合,但里面的元素是3和-1,而两条直线的公共点是一个坐标,表示由这样的点构成的集合应把点的坐标放在集合中.]3.B [化简集合A ,得A ={x |-3≤x ≤3},集合B ={x |x <-2或x >5},所以A ∩B ={x |-3≤x <-2},阴影部分为∁A (A ∩B ),即为{x |-2≤x ≤3}.]4.D [因为∁U B ={x |x ≤1},所以A ∩∁U B ={x |0<x ≤1}.]5.C [∵A ∩B =A ,∴A ⊆B ,∵B ∪C =C ,∴B ⊆C ,∴A ⊆C ,故选C.]6.C [若[f (x )]2+[g (x )]2=0,则f (x )=0且g (x )=0,故[f (x )]2+[g (x )]2=0的解集是M ∩N .]7.B 8.C9.A [B ={0,6},子集的个数为22=4个.]10.C [设a 、b 表示任意两个正整数,则a 2、b 2的和不一定属于M ,如12+22=5∉M ;a 2、b 2的差也不一定属于M ,如12-22=-3∉M ;a 2、b 2的商也不一定属于M ,如1222=14∉M ;因为a 、b 表示任意两个正整数,a 2·b 2=(ab )2,ab 为正整数,所以(ab )2属于M ,即a 2、b 2的积属于M .故选C.]11.B12.D [∵P ={0,1},Q ={2,3},a ∈P ,b ∈Q ,故对a ,b 的取值分类讨论.当a =0时,z =0;当a =1,b =2时,z =6;当a =1,b =3时,z =12.综上可知:P *Q ={0,6,12},元素之和为18.]13.[-1,12] 解析 由题意,∴实数k 的取值范围为[-1,12]. 14.0解析 集合A 表示函数y =x 2-1的值域,由于x ∈Z ,所以y 的值为-1,0,3,8,15,24,….集合B 表示函数y =5x 的值域,由于x ∈Z ,所以y 的值为0,5,10,15,….因此15∈A ∩B .所以|x -y |min =|15-15|=0.15.{-3,2}解析 ∵2∈M ,∴3x 2+3x -4=2或x 2+x -4=2,解得x =-2,1,-3,2,经检验知,只有-3和2符合集合中元素的互异性,故所求的集合为{-3,2}.16.[-1,+∞)解析 ∵B ⊆A ,当B =∅时,得2m -1>m +1,∴m >2,当B ≠∅时,解得-1≤m ≤2.综上所述,m 的取值范围为m ≥-1.17.解 设方程x 2-5x +q =0的两根为x 1、x 2,∵x ∈U ,x 1+x 2=5,∴q =x 1x 2=1×4=4或q =x 1·x 2=2×3=6.当q =4时,A ={x |x 2-5x +4=0}={1,4},∴∁U A ={2,3,5};当q =6时,A ={x |x 2-5x +6=0}={2,3},∴∁U A ={1,4,5}.18.解 由题意得M ∪N ={x |x ≤3},∁U M ={x |x >3},∁U N ={x |x ≥1},则(∁U M )∩N ={x |x >3}∩{x |x <1}=∅,(∁U M )∪(∁U N )={x |x >3}∪{x |x ≥1}={x |x ≥1}.19.(1)解 ∁U A ={x |-1≤x <0,或x =2},∴m =2,又∁U B ={x |-1≤x ≤0.1,或1<x ≤2},∴n =-1,∴m -n =2-(-1)=3;(2)证明 ∵P =Z ,∴U ={-1,0,1,2},A ={0,1},B ={0,1},∴∁U B ={-1,2},从而(∁U B )∪A =U .20.解 (1)∵∁U (∁U B )=B ={0,1},且B ⊆U ,∴|a -1|=0,且(a -2)(a -1)=1;或|a -1|=1,且(a -2)(a -1)=0;第一种情况显然不可能,在第二种情况中由|a -1|=1得a =0或a =2,而a =2适合(a -2)(a -1)=0,∴所求a 的值是2;(2)依题意知|a -1|=3,或(a -2)(a -1)=3,若|a -1|=3,则a =4或a =-2;若(a -2)(a -1)=3,则a =3±132, 经检验知a =4时,(4-2)(4-1)=6,与集合中元素的互异性相矛盾,∴所求的a 的值是-2,或3±132. 21.解 (1)当m =4时,A ={x ∈R|2x -8=0}={4},B ={x ∈R|x 2-10x +16=0}={2,8}, ∴A ∪B ={2,4,8}.(2)若B ⊆A ,则B =∅或B =A .当B =∅时,有Δ=[-2(m +1)]2-4m 2=4(2m +1)<0,得m <-12; 当B =A 时,有Δ=[-2(m +1)]2-4m 2=4(2m +1)=0,且--2m +12=4,解得m 不存在. 故实数m 的取值范围为(-∞,-12).22.解 A 中元素x 即为方程ax 2+2x +1=0(a ∈R ,x ∈R)的解.(1)∵A 中只有一个元素,∴ax 2+2x +1=0只有一解.当a =0时,方程为2x +1=0,解得x =-12符合题意; 当a ≠0且Δ=4-4a =0即a =1时,方程的解x 1=x 2=-1,此时A 中也只有一元素-1.综上可得:当a =0时,A 中的元素为-12;当a =1时,A 中的元素为-1. (2)若A 中只有一个元素,由(1)知a =0或a =1,若A 中没有元素,即方程ax 2+2x +1=0无解,解得a >1,综上可得:a >1或a =0或a =1..。

人教版A版高中数学必修第一册 第一章综合测试01试题试卷含答案 答案在前

人教版A版高中数学必修第一册 第一章综合测试01试题试卷含答案 答案在前

第一章综合测试答案解析一、 1.【答案】A【解析】A 显然正确;0不是集合,不能用符号“⊆”,B 错误;∅不是M 中的元素,C 错误;M 为无限集,D 错误. 2.【答案】D【解析】{}=0469B ,,,,B ∴的子集的个数为42=16. 3.【答案】D【解析】对于①,当=4a 为正整数;对于②,当=1x 时,为正整数;对于③,当=1y 时,为正整数,故选D .4.【答案】A【解析】由1231x --<<,得12x <<,即{}|12x x x ∈<<,由30x x -()<,得03x <<,即{}|03x x x ∈<<,{}|12x x <<是{}|03x x <<的真子集,{}|03x x <<不是{}|12x x <<的子集,故选A .5.【答案】D【解析】两个集合的交集其实就是曲线和直线的交点,注意结果是两对有序实数对. 6.【答案】B【解析】{=|=0A B x x 或}1x ≥,A 错误;{}=12A B ,,B 正确;{}{}R =|1=0A B x x B ()< ,C 错误;{}R =|0A B x x ()≠ ,D 错误.7.【答案】B【解析】方法一:11a a ⇒⇒>,1011a a ⇒-⇒)>>,∴甲是乙的充要条件,故选B .方法二:20a a a a ⎧⇔⎨⎩>,>,,1a ∴>,故选B .8.【答案】C【解析】由题意得N M ⊆,由Venn 图(图略)可知选C . 9.【答案】C【解析】由题意知,0=2bx a-为函数2=y ax bx c ++图象的对称轴方程,所以0y 为函数y 的最小值,即对所有的实数x ,都有0y y ≥,因此对任意x ∈R ,0y y ≤是错误的,故选C .10.【答案】D【解析】{}=|1U B x x - > ,{}=|0U A B x x ∴ > .{}=|0U A x x ≤ ,{}=|1U B A x x ∴- ≤ .{=|0U U A B B A x x ∴ ()()> 或}1x -≤.11.【答案】A【解析】一元二次方程2=0x x m ++有实数解1=1404m m ⇔∆-⇔≥≤.当14m <时,14m ≤成立,但14m ≤时,14m <不一定成立.故“14m <”是“一元二次方程2=0x x m ++有实数解”的充分不必要条件.12.【答案】C【解析】A C A B ⊇ ()(),U U A C A B∴⊆ ()() ,∴①为真命题.A C A B ⊆ ()(),U U A C A B∴⊇ ()() ,即U U U U A C A B ⊇ ()() ,∴②为真命题.由Venn 图(图略)可知,③为假命题.故选C . 二、13.【答案】x ∀∈R ,210x +≥【解析】存在量词命题的否定是全称量词命题. 14.【答案】0【解析】依题意得,23=3m m ,所以=0m 或=1m .当=1m 时,违反集合中元素的互异性(舍去). 15.【答案】充分不必要【解析】由=2a 能得到1)(2)0(=a a --,但由1)(2)0(=a a --得到=1a 或=2a ,而不是=2a ,所以=2a 是1)(2)0(=a a --的充分不必要条件. 16.【答案】12【解析】设全集U 为某班30人,集合A 为喜爱篮球运动的15人,集合B 为喜爱乒乓球运动的10人,如图.设所求人数为x ,则108=30x ++,解得=12x . 三、17.【答案】(1)命题的否定:有的正方形不是矩形,假命题(2.5分) (2)命题的否定:不存在实数x ,使31=0x +,假命题.(5分) (3)命题的否定:x ∀∈R ,2220x x ++>,真命题.(7.5分)(4)命题的否定:存在0x ,0y ∈R ,00110x y ++-<,假命题.(10分)18.【答案】(1){=|1U A x x - < 或1x ≥,{=|12U A B x x ∴()≤≤ .(6分) (2){}=|01A B x x <<,{=|0U A Bx x ∴ ()≤ 或}1x ≥.(12分) 19.【答案】①若=A ∅,则2=240p ∆+-()<,解得40p -<<.(4分)②若方程的两个根均为非正实数,则12120=200.10.=x x p p x x ∆⎧⎪+-+⎨⎪⎩≥,()≤,解得≥>(10分) 综上所述,p 的取值范围是{}|4p p ->.(12分) 20.【答案】证明:①充分性:若存在0x ∈R ,使00ay <,则2220004=4b ab b a y ax bx ----() 222000=444b abx a x ay ++-200=240b ax ay +-()>,∴方程=0y 有两个不等实数根.(6分)②必要性:若方程=0y 有两个不等实数根. 则240b ab ->,设0=2bx a-, 则20=22b b ay a a b c a a ⎡⎤-+-+⎢⎥⎣⎦()() 2224==0424b b ac b ac --+<(10分) 由①②知,“方程=0y 有两个不等实根”的充要条件是“存在0x ∈R ,使00ay <”.(12分) 21.【答案】(1)当=2a 时,{}=|17A x x ≤≤,{}=|27AUB x x -≤≤,(3分){R =|1A x x < 或}7x >,{}R =|21A B x x - ()≤< .(6分)(2)=A B A ,A B ∴⊆.①若=A ∅,则123a a -+>,解得4a -<;(8分)②若A ∅≠,则12311212234.a a a a a -+⎧⎪⎪---⎨⎪+⎪⎩≤,≥,解得≤≤≤,(10分)综上可知,a 的取值范围是1|412a a a ⎧⎫--⎨⎬⎩⎭<或≤≤.(12分)22.【答案】设选修甲、乙、丙三门课的同学分别组成集合A ,B ,C ,全班同学组成的集合为U ,则由已知可画出Venn 图如图所示.(2分)选甲、乙而不选丙的有2924=5-(人), 选甲、丙而不选乙的有2824=4-(人), 选乙、丙而不选甲的有2624=2-(人),(6分) 仅选甲的有382454=5---(人), 仅选乙的有352452=4---(人), 仅选丙的有312442=1---(人),(8分)所以至少选一门的人数为24542541=45++++++,(10分) 所以三门均未选的人数为5045=5-.(12分)第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}=|23M x x -<<,则下列结论正确的是( ) A .2.5M ∈ B .0M ⊆C .M ∅∈D .集合M 是有限集2.已知集合{}=023A ,,,{}=|=B x x ab a b A ∈,,,则集合B 的子集的个数是( ) A .4B .8C .15D .163.下列存在量词命题中,真命题的个数是( )①存在一个实数a 为正整数;②存在一个实数x ,使为正整数;③存在一个实数y 为正整数. A .0B .1C .2D .34.已知1231p x --:<<,30q x x -:()<,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.设集合{}2=|=+M x y y x x (,),{}N=|=+16x y y x (,),则M N 等于( ) A .416(,)或412-(,)B .{420,,}412-, C .{412(,),}420-(,)D .{420(,),}412-(,)6.若集合{}=|1A x x ≥,{}=012B ,,,则下列结论正确的是( ) A .{}=|0A B x x ≥B .{}=12A B ,C .{}R =01A B (),D .{}R =|1A B x x()≥7.甲:“1a >”是乙:“a ”的( ) A .既不充分也不必要条件 B .充要条件 C .充分不必要条件D .必要不充分条件8.已知全集*=U N ,集合{}*=|=2M x x n n ∈N ,,{}*=|=4N x x n n ∈N ,,则( )A .=U M NB .=U U M N ()C .=U U M N ()D .=U U M N ()9.已知0a >,函数2=++y ax bx c .若0x 满足关于x 的方程2+b=0ax ,则下列选项中的命题为假命题的是( )A .存在x ∈R ,y y 0≤B .存在x ∈R ,0y y ≥C .对任意x ∈R ,y y 0≤D .对任意x ∈R ,0y y ≥10.已知=U R ,{}=|0A x x >,{}=|1B x x -≤,则U U A B B A ()() 等于( )A .∅B .{}|0x x ≤C .{}|1x x ->D .{|0x x >或}1x -≤11.“14m <”是“一元二次方程2++=0x x m 有实数解”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件12.已知U 为全集,A ,B ,C 是U 的子集,A C A B ⊆ ()(),A C A B ⊇ ()(),则下列命题中,正确的个数是( )①U U A C A B ⊆ ()() ; ②U U U U A C A B ⊇ ()() ;③C B ⊆. A .0B .1C .2D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.命题:“0x ∃∈R ,2+10x <”的否定是________.14.设集合{}2=33A m ,,{}=33B m ,,且=A B ,则实数m 的值是________. 15.若a ∈R ,则“=2a ”是“(1)(2)=0a a --”的________条件.16.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定并判断其真假. (1)所有正方形都是矩形;(2)至少有一个实数0x 使3+1=0x ;(3)0x ∃∈R ,2+2+20x x ≤;(4)任意x ,y ∈R ,+1+10x y -≥.18.(本小题满分12分)设全集=U R ,集合{}=|11A x x -≤<,{}=|02B x x <≤.(1)求U A B () ;(2)求U A B() .19.(本小题满分12分)已知{}2=|+2++1=0A x x p x x ∈Z (),,若{}|0=A x x ∅ >,求p 的取值范围.20.(本小题满分12分)已知2=0y ax bx c a b c a ++∈R (,,,且≠).证明:“方程=0y 有两个不相等的实数根”的充要条件是“存在0x ∈R ,使00ay <”.21.(本小题满分12分)已知集合{}=|12+3A x a x a -≤≤,{}=|24B x x -≤≤,全集=.U R(1)当=2a 时,求A B 和R A B () ;(2)若=A B A ,求实数a 的取值范围.22.(本小题满分12分)某班有学生50人,学校开设了甲、乙、丙三门选修课,选修甲的有38人,选修乙的有35人,选修丙的有31人,兼选甲、乙两门的有29人,兼选甲、丙两门的有28人,兼选乙、丙两门的有26人,甲、乙、丙三门均选的有24人,那么这三门均未选的有多少人?。

高中数学必修一练习题目( 带答案)

高中数学必修一练习题目( 带答案)

人教A 版·数学单元综合测试单元综合测试一(第一章)时间:120分钟 分值:150分1.集合{1,2,3}的所有真子集的个数为( ) A .3 B .6 C .7 D .82.下列五个写法,其中错误..写法的个数为( ) ①{0}∈{0,2,3};②Ø {0};③{0,1,2}⊆{1,2,0};④0∈Ø;⑤0∩Ø=Ø A .1 B .2 C .3 D .4 C3.使根式x -1与x -2分别有意义的x 的允许值集合依次为M 、F ,则使根式x -1+x -2有意义的x 的允许值集合可表示为( ) A .M ∪F B .M ∩F C .∁M F D .∁F M4.已知M ={x |y =x 2-2},N ={y |y =x 2-2},则M ∩N 等于( ) A .N B .M C .R D .Ø5.函数y =x 2+2x +3(x ≥0)的值域为( ) A .R B .[0,+∞) C .[2,+∞) D .[3,+∞)6.等腰三角形的周长是20,底边长y 是一腰的长x 的函数,则y 等于( ) A .20-2x (0<x ≤10) B .20-2x (0<x <10) C .20-2x (5≤x ≤10) D .20-2x (5<x <10)7.用固定的速度向图1甲形状的瓶子注水,则水面的高度h 和时间t 之间的关系是图1乙中的( )甲乙图18.已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是( ) ①y =f (|x |) ②y =f (-x ) ③y =xf (x ) ④y =f (x )+x A .①③ B .②③ C .①④ D .②④9.已知0≤x ≤32,则函数f (x )=x 2+x +1( )A .有最小值-34,无最大值B .有最小值34,最大值1C .有最小值1,最大值194D .无最小值和最大值10.已知函数f (x )的定义域为[a ,b ],函数y =f (x )的图象如图2甲所示,则函数f (|x |)的图象是图2乙中的( )甲乙图211.若偶函数f (x )在区间(-∞,-1]上是增函数,则( )A .f (-32)<f (-1)<f (2)B .f (-1)<f (-32)<f (2)C .f (2)<f (-1)<f (-32)D .f (2)<f (-32)<f (-1)12.(2009·四川高考)已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )f (x ),则f ⎣⎡⎦⎤f (52)的值是( ) A .0 B.12 C .1 D.52第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.设全集U ={a ,b ,c ,d ,e },A ={a ,c ,d },B ={b ,d ,e },则∁U A ∩∁U B =________. 14.设全集U =R ,A ={x |x ≥1},B ={x |-1≤x <2},则∁U (A ∩B )=________.15.已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上为减函数,求实数a 的取值范围为________.16.若f (x )=(m -1)x 2+6mx +2是偶函数,则f (0)、f (1)、f (-2)从小到大的顺序是__________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)设A ={x |-2≤x ≤5},B ={x |m -1≤x ≤2m +1}, (1)当x ∈N *时,求A 的子集的个数;(2)当x ∈R 且A ∩B =Ø时,求m 的取值范围.18.(12分)已知集合A ={-1,1},B ={x |x 2-2ax +b =0},若B ≠Ø且B ⊆A ,求a ,b 的值.19.(12分)已知函数f (x )=xax +b(a ,b 为常数,且a ≠0),满足f (2)=1,方程f (x )=x 有唯一实数解,求函数f (x )的解析式和f [f (-4)]的值.20.(12分)已知函数f (x )=4x 2-4ax +(a 2-2a +2)在闭区间[0,2]上有最小值3,求实数a 的值.21.(12分)某公司需将一批货物从甲地运到乙地,现有汽车、火车两种运输工具可供选22.(12分)已知f (x )的定义域为(0,+∞),且满足f (2)=1,f (xy )=f (x )+f (y ),又当x 2>x 1>0时,f (x 2)>f (x 1).(1)求f (1)、f (4)、f (8)的值;(2)若有f (x )+f (x -2)≤3成立,求x 的取值范围.单元综合测试二(第二章)时间:120分钟 分值:150分1.计算log 225·log 322·log 59的结果为( ) A .3 B .4 C .5 D .62.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则f (f (2))的值为( ) A .0 B .1 C .2 D .3 C3.如果log 12x >0成立,则x 应满足的条件是( )A .x >12 B.12<x <1C .x <1D .0<x <14.函数f (x )=log 3(2-x )在定义域区间上是( ) A .增函数 B .减函数 C .有时是增函数有时是减函数 D .无法确定其单调5.某种放射性元素,100年后只剩原来的一半,现有这种元素1克,3年后剩下( ) A .0.015克 B .(1-0.5%)3克C .0.925克 D.1000.125克6.函数y =log 2x 与y =log 12x 的图象( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于y =x 对称7.函数y =lg(21-x-1)的图象关于( )A .x 轴对称B .y 轴对称C .原点对称D .y =x 对称8.设a >b >c >1,则下列不等式中不正确的是( ) A .a c >b c B .log a b >log a cC .c a >c bD .log b c <log a c9.已知f (x )=log a (x +1)(a >0且a ≠1),若当x ∈(-1,0)时,f (x )<0,则f (x )是( ) A .增函数 B .减函数 C .常数函数 D .不单调的函数 10.设a =424,b =312,c =6,则a ,b ,c 的大小关系是( ) A .a >b >c B .b <c <a C .b >c >a D .a <b <c11.若方程a x =x +a 有两解,则a 的取值范围为( ) A .(1,+∞) B .(0,1)C .(0,+∞)D .Ø 12.已知f (x )是偶函数,它在(0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( )A .(110,1)B .(0,110)∪(1,+∞)C .(110,10) D .(0,1)∪(0,+∞)第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.若函数f (x )=a x (a >0,且a ≠1)的反函数的图象过点(2,-1),则a =________. 14.方程log 2(x -1)=2-log 2(x +1)的解为________.15.设函数f 1(x )=x 12,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2007)))=________.16.设0≤x ≤2,则函数y =4x -12-3·2x +5的最大值是________,最小值是________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知a =(2+3)-1,b =(2-3)-1,求(a +1)-2+(b +1)-2的值. 18.(12分)已知关于x 的方程4x ·a -(8+2)·2x +42=0有一个根为2,求a 的值和方程其余的根.19.(12分)已知f (x )=2x -12x +1,证明:f (x )在区间(-∞,+∞)上是增函数.20.(12分)已知偶函数f (x )在x ∈[0,+∞)上是增函数,且f (12)=0,求不等式f (log a x )>0(a >0,且a ≠1)的解集.21.(12分)已知函数f (x )对一切实数x ,y 都满足f (x +y )=f (y )+(x +2y +1)x ,且f (1)=0, (1)求f (0)的值; (2)求f (x )的解析式;(3)当x ∈[0,12]时,f (x )+3<2x +a 恒成立,求a 的范围.22.(12分)设函数f (x )=log a (1-ax),其中0<a <1.(1)求证:f (x )是(a ,+∞)上的减函数; (2)解不等式f (x )>1.单元综合测试三(第三章)时间:120分钟 分值:150分1.二次函数f (x )=2x 2+bx -3(b ∈R )的零点个数是( ) A .0 B .1 C .2 D .42.函数y =1+1x的零点是( )A .(-1,0)B .-1C .1D .03.下列给出的四个函数f (x )的图象中能使函数y =f (x )-1没有零点的是( )4.若函数y =f (x )在区间(-2,2)上的图象是连续不断的曲线,且方程f (x )=0在(-2,2)上仅有一个实数根,则f (-1)·f (1)的值( )A .大于0B .小于0C .无法判断D .等于零5.函数f (x )=e x -1x的零点所在的区间是( )A .(0,12)B .(12,1)C .(1,32)D .(32,2)6.方程log 12x =2x -1的实根个数是( )A .0B .1C .2D .无穷多个7.某产品的总成本y (万元)与产量x (台)之间的函数关系式是y =0.1x 2-11x +3000,若每台产品的售价为25万元,则生产者的利润取最大值时,产量x 等于( )A .55台B .120台C .150台D .180台8.已知α是函数f (x )的一个零点,且x 1<α<x 2,则( ) A .f (x 1)f (x 2)>0 B .f (x 1)f (x 2)<0 C .f (x 1)f (x 2)≥0 D .以上答案都不对9.某城市为保护环境,维护水资源,鼓励职工节约用水,作出了如下规定:每月用水不超过8吨,按每吨2元收取水费,每月超过8吨,超过部分加倍收费,某职工某月缴费20元,则该职工这个月实际用水( )A .10吨B .13吨C .11吨D .9吨10.某工厂6年来生产甲种产品的情况是:前3年年产量的增大速度越来越快,后3年年产量保持不变,则该厂6年来生产甲种产品的总产量C 与时间t (年)的函数关系图象为( )11.函数f (x )=|x 2-6x +8|-k 只有两个零点,则( ) A .k =0 B .k >1 C .0≤k <1 D .k >1,或k =0A .(0.6,1.0)B .(1.4,1.8)C .(1.8,2.2)D .(2.6,3.0) 第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.用二分法求方程x 3-2x -5=0在区间(2,4)上的实数根时,取中点x 1=3,则下一个有根区间是__________.14.已知函数f (x )=ax 2-bx +1的零点为-12,13,则a =__________,b =__________.15.以墙为一边,用篱笆围成一长方形的场地,如图1.已知篱笆的总长为定值l ,则这块场地面积y 与场地一边长x 的关系为________.图116.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求?(已知lg2=0.3010,lg3=0.4771)三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知二次函数f (x )的图象过点(0,3),它的图象的对称轴为x =2,且f (x )的两个零点的平方和为10,求f (x )的解析式.18.(12分)求方程x 2+2x =5(x >0)的近似解(精确度0.1). 19.(12分)要挖一个面积为800 m 2的矩形鱼池,并在四周修出宽分别为1 m,2 m 的小路,试求鱼池与路的占地总面积的最小值.20.(12分)某农工贸集团开发的养殖业和养殖加工生产的年利润分别为P 和Q (万元),这两项利润与投入的资金x (万元)的关系是P =x 3,Q =103x ,该集团今年计划对这两项生产共投入资金60万元,其中投入养殖业为x 万元,获得总利润y (万元),写出y 关于x 的函数关系式及其定义域.21.(12分)已知某种产品的数量x (百件)与其成本y (千元)之间的函数关系可以近似用y =ax 2+bx +c(1)(2)已知每件这种产品的销售价为200元,求利润函数p =p (x );(3)据利润函数p =p (x )确定盈亏转折时的产品数量.(即产品数量等于多少时,能扭亏为盈或由盈转亏)22.(12分)某企业常年生产一种出口产品,根据需求预测:进入21世纪以来,前8年在正常情况下,该产品产量将平衡增长.已知2000年为第一年,头4年年产量f (x )(万件)如表所示:x 1 2 3 4 f (x ) 4.00 5.58 7.00 8.44(1)画出2000~(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展变化的函数模型,并求之.(3)2006年(即x =7)因受到某外国对我国该产品反倾销的影响,年产量应减少30%,试根据所建立的函数模型,确定2006年的年产量应该约为多少?单元综合测试四(必修1综合检测)时间:120分钟 分值:150分题号1 2 3 4 5 6 7 8 9 10 11 12 答案1.集合A ={1,2},B ={1,2,3},C ={2,3,4},则(A ∩B )∪C =( ) A .{1,2,3} B .{1,2,4} C .{2,3,4} D .{1,2,3,4}2.如图1所示,U 表示全集,用A ,B 表示阴影部分正确的是( )图1A .A ∪B B .(∁U A )∪(∁U B )C .A ∩BD .(∁U A )∩(∁U B )3.若f (x )=1-2x ,g (1-2x )=1-x 2x 2(x ≠0),则g ⎝⎛⎭⎫12的值为( ) A .1 B .3 C .15 D .304.设函数f (x )=⎩⎨⎧(x +1)2(x <1),4-x -1(x ≥1),则使得f (-1)+f (m -1)=1成立的m 的值为( )A .10B .0,-2C .0,-2,10D .1,-1,115.若x =6是不等式log a (x 2-2x -15)>log a (x +13)的一个解,则该不等式的解集为( ) A .(-4,7) B .(5,7) C .(-4,-3)∪(5,7) D .(-∞,-4)∪(5,+∞)6.若函数f (x )=12x +1,则该函数在(-∞,+∞)上是( )A .单调递减无最小值B .单调递减有最大值C .单调递增无最大值D .单调递增有最大值7.方程(13)x =|log 3x |的解的个数是( )A .0B .1C .2D .3 8.下列各式中,正确的是( )A .(-43)23<(-54)23B .(-45)13<(-56)13C .(12)12>(13)12D .(-32)3>(-43)39.生物学指出:生态系统在输入一个营养级的能量中,大约10%的能量能够流到下一个营养级,在H 1→H 2→H 3这个食物链中,若能使H 3获得10 kJ 的能量,则需H 1提供的能量为( )A .105 kJB .104 kJC .103 kJD .102 kJ10.如图3(1)所示,阴影部分的面积S 是h 的函数(0≤h ≤H ),则该函数的图象是如图3(2)所示的( )图311.函数f (x )在(-1,1)上是奇函数,且在(-1,1)上是减函数,若f (1-m )+f (-m )<0,则m 的取值范围是( )A .(0,12) B .(-1,1)C .(-1,12)D .(-1,0)∪(1,12)12.(2009·山东卷)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧ log 2(1-x ),f (x -1)-f (x -2),x ≤0x >0,则f (2009)的值为( )A .-1B .0C .1D .2第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分) 13.log 2716log 34的值是________.14.若函数y =kx +5kx 2+4kx +3的定义域为R ,则实数k 的取值范围为__________.15.已知全集U ={x |x ∈R },集合A ={x |x ≤1或x ≥3},集合B ={x |k <x <k +1,k ∈R },且(∁U A )∩B =Ø,则实数k 的取值范围是________.16.麋鹿是国家一级保护动物,位于江苏省中部黄海之滨的江苏大丰麋鹿国家级自然保护区成立于1986年,第一年(即1986年)只有麋鹿100头,由于科学的人工培育,这种当初快要灭绝的动物只数y (只)与时间x (年)的关系可近似地由关系式y =a log 2(x +1)给出,则到2016年时,预测麋鹿的只数约为________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)用定义证明:函数g (x )=kx(k <0,k 为常数)在(-∞,0)上为增函数.18.(12分)已知集合P ={x |2≤x ≤5},Q ={x |k +1≤x ≤2k -1},当P ∩Q =Ø时,求实数k 的取值范围.19.(12分)已知f (x )为一次函数,且满足4f (1-x )-2f (x -1)=3x +18,求函数f (x )在[-1,1]上的最大值,并比较f (2007)和f (2008)的大小.20.(12分)已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2.(1)求a,b的值;(2)若b<1,g(x)=f(x)-mx在[2,4]上单调,求m的取值范围.21.(12分)设函数y=f(x),且lg(lg y)=lg3x+lg(3-x).(1)求f(x)的解析式和定义域;(2)求f(x)的值域;(3)讨论f(x)的单调性.22.(12分)已知函数f(x)=lg(4-k·2x)(其中k为实数),(1)求函数f(x)的定义域;(2)若f(x)在(-∞,2]上有意义,试求实数k的取值范围.答案及详细解析单元测试一(第一章)时间:120分钟分值:150分1.集合{1,2,3}的所有真子集的个数为()A.3 B.6C.7 D.8解析:含一个元素的有{1},{2},{3},共3个;含两个元素的有{1,2},{1,3},{2,3},共3个;空集是任何非空集合的真子集,故有7个.答案:C2.下列五个写法,其中错误..写法的个数为()①{0}∈{0,2,3};②Ø {0};③{0,1,2}⊆{1,2,0};④0∈Ø;⑤0∩Ø=ØA.1 B.2C.3 D.4解析:②③正确.答案:C3.使根式x-1与x-2分别有意义的x的允许值集合依次为M、F,则使根式x-1+x-2有意义的x的允许值集合可表示为()A.M∪F B.M∩F C.∁M F D.∁F M解析:根式x-1+x-2有意义,必须x-1与x-2同时有意义才可.答案:B4.已知M={x|y=x2-2},N={y|y=x2-2},则M∩N等于()A.N B.M C.R D.Ø解析:M={x|y=x2-2}=R,N={y|y=x2-2}={y|y≥-2},故M∩N=N.答案:A5.函数y=x2+2x+3(x≥0)的值域为()A.R B.[0,+∞) C.[2,+∞) D.[3,+∞) 解析:y=x2+2x+3=(x+1)2+2,∴函数在区间[0,+∞)上为增函数,故y≥(0+1)2+2=3.答案:D6.等腰三角形的周长是20,底边长y是一腰的长x的函数,则y等于()A.20-2x(0<x≤10) B.20-2x(0<x<10)C.20-2x(5≤x≤10) D.20-2x(5<x<10)解析:C=20=y+2x,由三角形两边之和大于第三边可知2x>y=20-2x,x>5.答案:D7.用固定的速度向图1甲形状的瓶子注水,则水面的高度h和时间t之间的关系是图1乙中的()甲乙图1解析:水面升高的速度由慢逐渐加快. 答案:B8.已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是( ) ①y =f (|x |) ②y =f (-x ) ③y =xf (x ) ④y =f (x )+x A .①③ B .②③ C .①④ D .②④解析:因为y =f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ).①y =f (|x |)为偶函数;②y =f (-x )为奇函数;③令F (x )=xf (x ),所以F (-x )=(-x )f (-x )=(-x )·[-f (x )]=xf (x ).所以F (-x )=F (x ).所以y =xf (x )为偶函数;④令F (x )=f (x )+x ,所以F (-x )=f (-x )+(-x )=-f (x )-x =-[f (x )+x ].所以F (-x )=-F (x ).所以y =f (x )+x 为奇函数.答案:D9.已知0≤x ≤32,则函数f (x )=x 2+x +1( )A .有最小值-34,无最大值B .有最小值34,最大值1C .有最小值1,最大值194 D .无最小值和最大值解析:f (x )=x 2+x +1=(x +12)2+34,画出该函数的图象知,f (x )在区间[0,32]上是增函数,所以f (x )min =f (0)=1,f (x )max =f (32)=194.答案:C10.已知函数f (x )的定义域为[a ,b ],函数y =f (x )的图象如图2甲所示,则函数f (|x |)的图象是图2乙中的( )甲乙图2解析:因为y =f (|x |)是偶函数,所以y =f (|x |)的图象是由y =f (x )把x ≥0的图象保留,再关于y 轴对称得到的.答案:B11.若偶函数f (x )在区间(-∞,-1]上是增函数,则( )A .f (-32)<f (-1)<f (2)B .f (-1)<f (-32)<f (2)C .f (2)<f (-1)<f (-32)D .f (2)<f (-32)<f (-1)解析:由f (x )是偶函数,得f (2)=f (-2),又f (x )在区间(-∞,-1]上是增函数,且-2<-32<-1,则f (2)<f (-32)<f (-1). 答案:D12.(2009·四川高考)已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )f (x ),则f ⎣⎡⎦⎤f (52)的值是( ) A .0 B.12 C .1 D.52解析:令x =-12,则-12f (12)=12f (-12),又∵f (12)=f (-12),∴f (12)=0;令x =12,12f (32)=32f (12),得f (32)=0;令x =32,32f (52)=52f (32),得f (52)=0;而0·f (1)=f (0)=0,∴f ⎣⎡⎦⎤f (52)=f (0)=0,故选A.答案:A第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.设全集U ={a ,b ,c ,d ,e },A ={a ,c ,d },B ={b ,d ,e },则∁U A ∩∁U B =________. 解析:∁U A ∩∁U B =∁U (A ∪B ),而A ∪B ={a ,b ,c ,d ,e }=U . 答案:Ø14.设全集U =R ,A ={x |x ≥1},B ={x |-1≤x <2},则∁U (A ∩B )=________. 解析:A ∩B ={x |1≤x <2},∴∁R (A ∩B )={x |x <1或x ≥2}. 答案:{x |x <1或x ≥2}15.已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上为减函数,求实数a 的取值范围为________.解析:函数f (x )的对称轴为x =1-a ,则由题知:1-a ≥3即a ≤-2. 答案:a ≤-216.若f (x )=(m -1)x 2+6mx +2是偶函数,则f (0)、f (1)、f (-2)从小到大的顺序是__________.解析:∵f (x )=(m -1)x 2+6mx +2是偶函数,∴m =0.∴f (x )=-x 2+2.∴f (0)=2,f (1)=1,f (-2)=-2,∴f (-2)<f (1)<f (0). 答案:f (-2)<f (1)<f (0)三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)设A ={x |-2≤x ≤5},B ={x |m -1≤x ≤2m +1}, (1)当x ∈N *时,求A 的子集的个数;(2)当x ∈R 且A ∩B =Ø时,求m 的取值范围. 解:(1)∵x ∈N *且A ={x |-2≤x ≤5},∴A ={1,2,3,4,5}.故A 的子集个数为25=32个. (2)∵A ∩B =Ø,∴m -1>2m +1或2m +1<-2或m -1>5, ∴m <-2或m >6.18.(12分)已知集合A ={-1,1},B ={x |x 2-2ax +b =0},若B ≠Ø且B ⊆A ,求a ,b 的值.解:(1)当B =A ={-1,1}时,易得a =0,b =-1; (2)当B 含有一个元素时,由Δ=0得a 2=b , 当B ={1}时,由1-2a +b =0,得a =1,b =1当B ={-1}时,由1+2a +b =0,得a =-1,b =1.19.(12分)已知函数f (x )=xax +b(a ,b 为常数,且a ≠0),满足f (2)=1,方程f (x )=x 有唯一实数解,求函数f (x )的解析式和f [f (-4)]的值.解:∵f (x )=xax +b且f (2)=1,∴2=2a +b .又∵方程f (x )=x 有唯一实数解.∴ax 2+(b -1)x =0(a ≠0)有唯一实数解.故(b -1)2-4a ×0=0,即b =1,又上式2a +b =2,可得:a =12,从而f (x )=x 12x +1=2xx +2,∴f (-4)=2×(-4)-4+2=4,f (4)=86=43,即f [f (-4)]=43.20.(12分)已知函数f (x )=4x 2-4ax +(a 2-2a +2)在闭区间[0,2]上有最小值3,求实数a 的值.解:f (x )=4⎝⎛⎭⎫x -a22+2-2a . (1)当a2<0即a <0时,f (x )min =f (0)=a 2-2a +2=3,解得:a =1- 2.(2)0≤a 2≤2即0≤a ≤4时,f (x )min =f ⎝⎛⎭⎫a 2=2-2a =3,解得:a =-12(舍去). (3)a2>2即a >4时,f (x )min =f (2)=a 2-10a +18=3,解得:a =5+10, 综上可知:a 的值为1-2或5+10.21.(12分)某公司需将一批货物从甲地运到乙地,现有汽车、火车两种运输工具可供选解:设甲、乙两地距离为x 千米(x >0),选用汽车、火车运输时的总支出分别为y 1和y 2. 于是y 1=8x +1000+(x50+2)×300=14x +1600,y 2=4x +1800+(x100+4)×300=7x +3000.令y 1-y 2<0得x <200.①当0<x <200时,y 1<y 2,此时应选用汽车;②当x =200时,y 1=y 2,此时选用汽车或火车均可; ③当x >200时,y 1>y 2,此时应选用火车.故当距离小于200千米时,选用汽车较好;当距离等于200千米时,选用汽车或火车均可;当距离大于200千米时,选用火车较好.22.(12分)已知f (x )的定义域为(0,+∞),且满足f (2)=1,f (xy )=f (x )+f (y ),又当x 2>x 1>0时,f (x 2)>f (x 1).(1)求f (1)、f (4)、f (8)的值;(2)若有f (x )+f (x -2)≤3成立,求x 的取值范围.解:(1)f (1)=f (1)+f (1),∴f (1)=0,f (4)=f (2)+f (2)=1+1=2,f (8)=f (2)+f (4)=2+1=3.(2)∵f (x )+f (x -2)≤3,∴f [x (x -2)]≤f (8),又∵对于函数f (x )有x 2>x 1>0时f (x 2)>f (x 1),∴f (x )在(0,+∞)上为增函数.∴⎩⎪⎨⎪⎧x >0x -2>0x (x -2)≤8⇒2<x ≤4.∴x 的取值范围为(2,4].单元综合测试二(第二章)时间:120分钟 分值:150分1.计算log 225·log 322·log 59的结果为( ) A .3 B .4 C .5 D .6解析:原式=lg25lg2·lg22lg3·lg9lg5=2lg5lg2·32lg2lg3·2lg3lg5=6.答案:D2.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则f (f (2))的值为( ) A .0 B .1 C .2 D .3解析:f (2)=log 3(22-1)=1,f (f (2))=2e 1-1=2e 0=2. 答案:C3.如果log 12x >0成立,则x 应满足的条件是( )A .x >12 B.12<x <1C .x <1D .0<x <1 解析:由对数函数的图象可得. 答案:D4.函数f (x )=log 3(2-x )在定义域区间上是( ) A .增函数 B .减函数 C .有时是增函数有时是减函数 D .无法确定其单调解析:由复合函数的单调性可以判断,内外两层单调性相同则为增函数,内外两层的单调性相反则为减函数.答案:B5.某种放射性元素,100年后只剩原来的一半,现有这种元素1克,3年后剩下( ) A .0.015克 B .(1-0.5%)3克C .0.925克 D.1000.125克解析:设该放射性元素满足y =a x (a >0且a ≠1),则有12=a 100得a =(12)1100.可得放射性元素满足y =[(12)1100]x =(12)x 100.当x =3时,y =(12)3100=100(12)3=1000.125.答案:D6.函数y =log 2x 与y =log 12x 的图象( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于y =x 对称 解析:据图象和代入式判定都可以做出判断,故选B. 答案:B7.函数y =lg(21-x-1)的图象关于( )A .x 轴对称B .y 轴对称C .原点对称D .y =x 对称 解析:f (x )=lg(21-x -1)=lg 1+x 1-x ,f (-x )=lg 1-x 1+x =-f (x ),所以y =lg(21-x-1)关于原点对称,故选C.答案:C8.设a >b >c >1,则下列不等式中不正确的是( ) A .a c >b c B .log a b >log a c C .c a >c b D .log b c <log a c解析:y =x c在(0,+∞)上递增,因为a >b ,则a c >b c ;y =log a x 在(0,+∞)上递增,因为b >c ,则log a b >log a c ;y =c x 在(-∞,+∞)上递增,因为a >b ,则c a >c b .故选D.答案:D9.已知f (x )=log a (x +1)(a >0且a ≠1),若当x ∈(-1,0)时,f (x )<0,则f (x )是( ) A .增函数 B .减函数 C .常数函数 D .不单调的函数解析:由于x ∈(-1,0),则x +1∈(0,1),所以a >1.因而f (x )在(-1,+∞)上是增函数. 答案:A10.设a =424,b =312,c =6,则a ,b ,c 的大小关系是( ) A .a >b >c B .b <c <a C .b >c >a D .a <b <c 解析:a =424=12243,b =12124,c =6=1266.∵243<124<66, ∴12243<12124<1266,即a <b <c . 答案:D11.若方程a x =x +a 有两解,则a 的取值范围为( ) A .(1,+∞) B .(0,1) C .(0,+∞) D .Ø解析:分别作出当a >1与0<a <1时的图象. (1)当a >1时,图象如下图1,满足题意.图1 图2(2)当0<a <1时,图象如上图2,不满足题意. 答案:A 12.已知f (x )是偶函数,它在(0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( )A .(110,1)B .(0,110)∪(1,+∞)C .(110,10) D .(0,1)∪(0,+∞)解析:由于f (x )是偶函数且在(0,+∞)上是减函数,所以f (-1)=f (1),且f (x )在(-∞,0)上是增函数,应有⎩⎪⎨⎪⎧x >0,-1<lg x <1,解得110<x <10.答案:C第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.若函数f (x )=a x (a >0,且a ≠1)的反函数的图象过点(2,-1),则a =________.解析:由互为反函数关系知,f (x )过点(-1,2),代入得a -1=2⇒a =12.答案:1214.方程log 2(x -1)=2-log 2(x +1)的解为________.解析:log 2(x -1)=2-log 2(x +1)⇔log 2(x -1)=log 24x +1,即x -1=4x +1,解得x =±5(负值舍去),∴x = 5.答案: 515.设函数f 1(x )=x 12,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2007)))=________.解析:f 1(f 2(f 3(2007)))=f 1(f 2(20072))=f 1((20072)-1)=[(20072)-1]12=2007-1.答案:1200716.设0≤x ≤2,则函数y =4x -12-3·2x +5的最大值是________,最小值是________.解析:设2x =t (1≤t ≤4),则y =12·4x -3·2x +5=12t 2-3t +5=12(t -3)2+12.当t =3时,y min =12;当t =1时,y max =12×4+12=52.答案:52 12三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知a =(2+3)-1,b =(2-3)-1,求(a +1)-2+(b +1)-2的值.解:(a +1)-2+(b +1)-2=(12+3+1)-2+(12-3+1)-2=(3+32+3)-2+(3-32-3)-2=16(7+432+3+7-432-3)=16[(7+43)(2-3)+(7-43)(2+3)]=16×4=23.18.(12分)已知关于x 的方程4x ·a -(8+2)·2x +42=0有一个根为2,求a 的值和方程其余的根.解:将x =2代入方程中, 得42·a -(8+2)·22+42=0,解得a =2. 当a =2时,原方程为 4x ·2-(8+2)2x +42=0, 将此方程变形化为2·(2x )2-(8+2)·2x +42=0. 令2x =y ,得2y 2-(8+2)y +42=0.解得y =4或y =22.当y =4时,即2x=4,解得x =2;当y =22时,2x =22,解得x =-12.综上,a =2,方程其余的根为-12.19.(12分)已知f (x )=2x -12x +1,证明:f (x )在区间(-∞,+∞)上是增函数.证明:设任意x 1,x 2∈(-∞,+∞)且x 1<x 2,则f (x 1)-f (x 2)=2x 1-12x 1+1-2x 2-12x 2+1=(2x 1-1)(2x 2+1)-(2x 2-1)(2x 1+1)(2x 1+1)(2x 2+1)=2x 1-2x 2-(2x 2-2x 1)(2x 1+1)(2x 2+1)=2(2x 1-2x 2)(2x 1+1)(2x 2+1).∵x 1<x 2,∴2x 1<2x 2,即2x 1-2x 2<0.∴f (x 1)<f (x 2).∴f (x )在区间(-∞,+∞)上是增函数.20.(12分)已知偶函数f (x )在x ∈[0,+∞)上是增函数,且f (12)=0,求不等式f (log a x )>0(a >0,且a ≠1)的解集.解:f (x )是偶函数,且f (x )在[0,+∞)上递增,f (12)=0,∴f (x )在(-∞,0)上递减,f (-12)=0,则有log a x >12,或log a x <-12.(1)当a >1时,log a x >12,或log a x <-12,可得x >a ,或0<x <aa ;(2)当0<a <1时,log a x >12,或log a x <-12,可得0<x <a ,或x >aa.综上可知,当a >1时,f (log a x )>0的解集为(0,aa )∪(a ,+∞);当0<a <1时,f (log a x )>0的解集为(0,a )∪(aa,+∞).21.(12分)已知函数f (x )对一切实数x ,y 都满足f (x +y )=f (y )+(x +2y +1)x ,且f (1)=0, (1)求f (0)的值; (2)求f (x )的解析式;(3)当x ∈[0,12]时,f (x )+3<2x +a 恒成立,求a 的范围.解:(1)令x =1,y =0,则f (1)=f (0)+(1+1)×1,∴f (0)=f (1)-2=-2. (2)令y =0,则f (x )=f (0)+(x +1)x ,∴f (x )=x 2+x -2.(3)由f (x )+3<2x +a ,得a >x 2-x +1.设y =x 2-x +1,则y =x 2-x +1在(-∞,12]上是减函数,所以y =x 2-x +1在[0,12]上的范围为34≤y ≤1,从而可得a >1.22.(12分)设函数f (x )=log a (1-ax),其中0<a <1.(1)求证:f (x )是(a ,+∞)上的减函数; (2)解不等式f (x )>1.解:(1)证明:设任意x 1,x 2∈(a ,+∞)且x 1<x 2,则f (x 1)-f (x 2)=log a (1-a x 1)-log a (1-ax 2)=log a 1-a x 11-a x 2=log a 1-a x 2+a x 2-ax 11-a x 2=log a ⎣⎢⎡⎦⎥⎤1+a x 2-a x 11-a x 2=log a (1+ax 1-ax 2x 1x 2-ax 1)=log a [1+a (x 1-x 2)x 1(x 2-a )].∵x 1,x 2∈(a ,+∞)且x 1<x 2,∴x 1-x 2<0,0<a <x 1<x 2,x 2-a >0.∴a (x 1-x 2)x 1(x 2-a )<0,∴1+a (x 1-x 2)x 1(x 2-a )<1,又∵0<a <1,∴log a [1+a (x 1-x 2)x 1(x 2-a )]>0,∴f (x 1)>f (x 2),所以f (x )=log a (1-a x )在(a ,+∞)上为减函数.(2)因为0<a <1,所以f (x )>1⇔log a (1-ax )>log a a ⇔⎩⎨⎧1-ax >0,①1-ax<a .②解不等式①,得x >a 或x <0.解不等式②,得0<x <a 1-a .因为0<a <1,故x <a 1-a ,所以原不等式的解集为{x |a <x <a1-a}.单元综合测试三(第三章)时间:120分钟 分值:150分1.二次函数f (x )=2x 2+bx -3(b ∈R )的零点个数是( ) A .0 B .1 C .2 D .4解析:∵Δ=b 2+4×2×3=b 2+24>0,∴函数图象与x 轴有两个不同的交点,从而函数有2个零点. 答案:C2.函数y =1+1x的零点是( )A .(-1,0)B .-1C .1D .0解析:令1+1x=0,得x =-1,即为函数零点.答案:B3.下列给出的四个函数f (x )的图象中能使函数y =f (x )-1没有零点的是( )解析:把y =f (x )的图象向下平移1个单位后,只有C 图中图象与x 轴无交点. 答案:C4.若函数y =f (x )在区间(-2,2)上的图象是连续不断的曲线,且方程f (x )=0在(-2,2)上仅有一个实数根,则f (-1)·f (1)的值( )A .大于0B .小于0C .无法判断D .等于零解析:由题意不能断定零点在区间(-1,1)内部还是外部. 答案:C5.函数f (x )=e x -1x的零点所在的区间是( )A .(0,12)B .(12,1)C .(1,32)D .(32,2)解析:f (12)=e -2<0, f (1)=e -1>0,∵f (12)·f (1)<0,∴f (x )的零点在区间(12,1)内.答案:B6.方程log 12x =2x -1的实根个数是( )A .0B .1C .2D .无穷多个解析:方程log 12x =2x -1的实根个数只有一个,可以画出f (x )=log 12x 及g (x )=2x -1的图象,两曲线仅一个交点,故应选B.答案:B7.某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=0.1x2-11x+3000,若每台产品的售价为25万元,则生产者的利润取最大值时,产量x等于() A.55台B.120台C.150台D.180台解析:设产量为x台,利润为S万元,则S=25x-y=25x-(0.1x2-11x+3000)=-0.1x2+36x-3000=-0.1(x-180)2+240,则当x=180时,生产者的利润取得最大值.答案:D8.已知α是函数f(x)的一个零点,且x1<α<x2,则()A.f(x1)f(x2)>0 B.f(x1)f(x2)<0C.f(x1)f(x2)≥0 D.以上答案都不对解析:定理的逆定理不成立,故f(x1)f(x2)的值不确定.答案:D9.某城市为保护环境,维护水资源,鼓励职工节约用水,作出了如下规定:每月用水不超过8吨,按每吨2元收取水费,每月超过8吨,超过部分加倍收费,某职工某月缴费20元,则该职工这个月实际用水()A.10吨B.13吨C.11吨D.9吨解析:设该职工该月实际用水为x吨,易知x>8.则水费y=16+2×2(x-8)=4x-16=20,∴x=9.答案:D10.某工厂6年来生产甲种产品的情况是:前3年年产量的增大速度越来越快,后3年年产量保持不变,则该厂6年来生产甲种产品的总产量C与时间t(年)的函数关系图象为()答案:A11.函数f(x)=|x2-6x+8|-k只有两个零点,则()A.k=0 B.k>1C.0≤k<1 D.k>1,或k=0解析:令y1=|x2-6x+8|,y2=k,由题意即要求两函数图象有两交点,利用数形结合思想,作出两函数图象可得选D.答案:DA.(0.6,1.0) B.(1.4,1.8)C.(1.8,2.2) D.(2.6,3.0)解析:设f(x)=2x-x2,由表格观察出x=1.8时,2x>x2,即f(1.8)>0;在x=2.2时,2x<x2,即f(2.2)<0.综上知f(1.8)·f(2.2)<0,所以方程2x=x2的一个根位于区间(1.8,2.2)内.答案:C第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.用二分法求方程x3-2x-5=0在区间(2,4)上的实数根时,取中点x1=3,则下一个有根区间是__________.解析:设f (x )=x 3-2x -5,则f (2)<0,f (3)>0,f (4)>0,有f (2)f (3)<0,则下一个有根区间是(2,3).答案:(2,3)14.已知函数f (x )=ax 2-bx +1的零点为-12,13,则a =__________,b =__________.解析:由韦达定理得-12+13=b a ,且-12×13=1a.解得a =-6,b =1.答案:-6 115.以墙为一边,用篱笆围成一长方形的场地,如图1.已知篱笆的总长为定值l ,则这块场地面积y 与场地一边长x 的关系为________.图1解析:由题意知场地的另一边长为l -2x ,则y =x (l -2x ),且l -2x >0,即0<x <l2.答案:y =x (l -2x )(0<x <l2)16.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求?(已知lg2=0.3010,lg3=0.4771)解析:设过滤n 次才能达到市场要求,则2%(1-13)n ≤0.1%即(23)n ≤0.12,∴n lg 23≤-1-lg2, ∴n ≥7.39,∴n =8. 答案:8三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知二次函数f (x )的图象过点(0,3),它的图象的对称轴为x =2,且f (x )的两个零点的平方和为10,求f (x )的解析式.解:设二次函数f (x )=ax 2+bx +c (a ≠0).由题意知:c =3,-b2a=2.设x 1,x 2是方程ax 2+bx +c =0的两根,则x 21+x 22=10,∴(x 1+x 2)2-2x 1x 2=10,∴(-b a )2-2c a =10,∴16-6a=10,∴a =1.代入-b2a=2中,得b =-4.∴f (x )=x 2-4x +3.18.(12分)求方程x 2+2x =5(x >0)的近似解(精确度0.1). 解:令f (x )=x 2+2x -5(x >0). ∵f (1)=-2,f (2)=3,∴函数f (x )的正零点在区间(1,2)内.取(1,2)中点x 1=1.5,f (1.5)>0.取(1,1.5)中点x 2=1.25,f (1.25)<0. 取(1.25,1.5)中点x 3=1.375,f (1.375)<0.取(1.375,1.5)中点x 4=1.4375,f (1.4375)<0.取(1.4375,1.5). ∵|1.5-1.4375|=0.0625<0.1,∴方程x 2+2x =5(x >0)的近似解为x =1.5(或1.4375). 19.(12分)要挖一个面积为800 m 2的矩形鱼池,并在四周修出宽分别为1 m,2 m 的小路,试求鱼池与路的占地总面积的最小值.解:设所建矩形鱼池的长为x m ,则宽为800xm ,于是鱼池与路的占地面积为y =(x +2)(800x +4)=808+4x +1600x =808+4(x +400x )=808+4[(x -20x )2+40].当x =20x,即x =20时,y 取最小值为968 m 2.答:鱼池与路的占地最小面积是968 m 2.20.(12分)某农工贸集团开发的养殖业和养殖加工生产的年利润分别为P 和Q (万元),这两项利润与投入的资金x (万元)的关系是P =x 3,Q =103x ,该集团今年计划对这两项生产共投入资金60万元,其中投入养殖业为x 万元,获得总利润y (万元),写出y 关于x 的函数关系式及其定义域.解:投入养殖加工生产业为60-x 万元.由题意可得,y =P +Q =x 3+10360-x ,由60-x ≥0得x ≤60,∴0≤x ≤60,即函数的定义域是[0,60].21.(12分)已知某种产品的数量x (百件)与其成本y (千元)之间的函数关系可以近似用y =ax 2+bx +c(1)(2)已知每件这种产品的销售价为200元,求利润函数p =p (x );(3)据利润函数p =p (x )确定盈亏转折时的产品数量.(即产品数量等于多少时,能扭亏为盈或由盈转亏)解:(1)将表格中相关数据代入y =ax 2+bx +c ,得⎩⎪⎨⎪⎧36a +6b +c =104100a +10b +c =160,400a +20b +c =370解得a =12,b =6,c =50.所以y =f (x )=12x 2+6x +50(x ≥0).(2)p =p (x )=-12x 2+14x -50(x ≥0).(3)令p (x )=0,即-12x 2+14x -50=0,解得x =14±46,即x 1=4.2,x 2=23.8,故4.2<x <23.8时,p (x )>0;x <4.2或x >23.8时,p (x )<0, 所以当产品数量为420件时,能扭亏为盈; 当产品数量为2380件时由盈变亏.22.(12分)某企业常年生产一种出口产品,根据需求预测:进入21世纪以来,前8年在正常情况下,该产品产量将平衡增长.已知2000年为第一年,头4年年产量f (x )(万件)如表所示:(1)画出2000~(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展变化的函数模型,并求之.(3)2006年(即x =7)因受到某外国对我国该产品反倾销的影响,年产量应减少30%,试根据所建立的函数模型,确定2006年的年产量应该约为多少?解:图2(1)散点图如图2:(2)设f (x )=ax +b .由已知得⎩⎪⎨⎪⎧a +b =43a +b =7,解得a =32,b =52,∴f (x )=32x +52.检验:f (2)=5.5,|5.58-5.5|=0.08<0.1; f (4)=8.5,|8.44-8.5|=0.06<0.1.∴模型f (x )=32x +52能基本反映产量变化.(3)f (7)=32×7+52=13,由题意知,2006年的年产量约为13×70%=9.1(万件),即2006年的年产量应约为9.1万件.单元综合测试四(必修1综合检测)时间:120分钟 分值:150分题号1 2 3 4 5 6 7 8 9 10 11 12 答案1.集合A ={1,2},B ={1,2,3},C ={2,3,4},则(A ∩B )∪C =( ) A .{1,2,3} B .{1,2,4} C .{2,3,4} D .{1,2,3,4}解析:∵A ∩B ={1,2},∴(A ∩B )∪C ={1,2,3,4}. 答案:D2.如图1所示,U 表示全集,用A ,B 表示阴影部分正确的是( )图1A .A ∪B B .(∁U A )∪(∁U B )C .A ∩BD .(∁U A )∩(∁U B )解析:由集合之间的包含关系及补集的定义易得阴影部分为(∁U A )∩(∁U B ). 答案:D3.若f (x )=1-2x ,g (1-2x )=1-x 2x 2(x ≠0),则g ⎝⎛⎭⎫12的值为( ) A .1 B .3 C .15 D .30解析:g (1-2x )=1-x 2x 2,令12=1-2x ,则x =14,∴g ⎝⎛⎭⎫12=1-116116=15,故选C. 答案:C4.设函数f (x )=⎩⎨⎧(x +1)2(x <1),4-x -1(x ≥1),则使得f (-1)+f (m -1)=1成立的m 的值为( )A .10B .0,-2C .0,-2,10D .1,-1,11解析:因为x <1时,f (x )=(x +1)2,所以f (-1)=0.当m -1<1,即m <2时,f (m -1)=m 2=1,m =±1.当m -1≥1,即m ≥2时,f (m -1)=4-m -2=1,所以m =11.答案:D5.若x =6是不等式log a (x 2-2x -15)>log a (x +13)的一个解,则该不等式的解集为( ) A .(-4,7) B .(5,7) C .(-4,-3)∪(5,7) D .(-∞,-4)∪(5,+∞)解析:将x =6代入不等式,得log a 9>log a 19,所以a ∈(0,1).则⎩⎪⎨⎪⎧x 2-2x -15>0,x +13>0,x 2-2x -15<x +13.解得x ∈(-4,-3)∪(5,7).答案:C6.若函数f (x )=12x +1,则该函数在(-∞,+∞)上是( )A .单调递减无最小值B .单调递减有最大值C .单调递增无最大值D .单调递增有最大值解析:2x+1在(-∞,+∞)上递增,且2x +1>0,∴12x +1在(-∞,+∞)上递减且无最小值. 答案:A7.方程(13)x =|log 3x |的解的个数是( )A .0B .1C .2D .3 解析:图2在平面坐标系中,画出函数y 1=(13)x 和y 2=|log 3x |的图象,如图2所示,可知方程有两个解.答案:C8.下列各式中,正确的是( )A .(-43)23<(-54)23B .(-45)13<(-56)13C .(12)12>(13)12D .(-32)3>(-43)3解析:函数y =x 23在(-∞,0)上是减函数,而-43<-54,∴(-43)23>(-54)23,故A 错;函数y =x 13在(-∞,+∞)上是增函数,而-45>-56,∴(-45)13>(-56)13,故B 错,同理D错.答案:C9.生物学指出:生态系统在输入一个营养级的能量中,大约10%的能量能够流到下一个营养级,在H 1→H 2→H 3这个食物链中,若能使H 3获得10 kJ 的能量,则需H 1提供的能量为( )A .105 kJB .104 kJC .103 kJD .102 kJ解析:H 1⎝⎛⎭⎫1102=10,∴H 1=103. 答案:C10.如图3(1)所示,阴影部分的面积S 是h 的函数(0≤h ≤H ),则该函数的图象是如图3(2)所示的( )图3解析:当h =H2时,对应阴影部分的面积小于整个图形面积的一半,且随着h 的增大,S随之减小,故排除A ,B ,D.答案:C11.函数f (x )在(-1,1)上是奇函数,且在(-1,1)上是减函数,若f (1-m )+f (-m )<0,则m的取值范围是( )A .(0,12) B .(-1,1)C .(-1,12)D .(-1,0)∪(1,12)解析:f (1-m )<-f (-m ),∵f (x )在(-1,1)上是奇函数,∴f (1-m )<f (m ),∴1>1-m >m >-1,解得0<m <12,即m ∈(0,12).答案:A12.(2009·山东卷)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧ log 2(1-x ),f (x -1)-f (x -2),x ≤0x >0,则f (2009)的值为( )A .-1B .0C .1D .2解析:由题意可得:x >0时,f (x )=f (x -1)-f (x -2),从而f (x -1)=f (x -2)-f (x -3). 两式相加得f (x )=-f (x -3),f (x -6)=f [(x -3)-3]=-f (x -3)=f (x ), ∴f (2009)=f (2003)=f (1997)=…=f (5)=f (-1)=log 22=1. 答案:C第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分) 13.log 2716log 34的值是________.解析:log 2716log 34=23log 34log 34=23.答案:2314.若函数y =kx +5kx 2+4kx +3的定义域为R ,则实数k 的取值范围为__________.解析:kx 2+4kx +3恒不为零.若k =0,符合题意,k ≠0,Δ<0,也符合题意.所以0≤k <34.答案:⎩⎨⎧⎭⎬⎫k ⎪⎪0≤k <34 15.已知全集U ={x |x ∈R },集合A ={x |x ≤1或x ≥3},集合B ={x |k <x <k +1,k ∈R },且(∁U A )∩B =Ø,则实数k 的取值范围是________.解析:∁U A ={x |1<x <3},又(∁U A )∩B =Ø, ∴k +1≤1或k ≥3, ∴k ≤0或k ≥3.答案:(-∞,0]∪[3,+∞)16.麋鹿是国家一级保护动物,位于江苏省中部黄海之滨的江苏大丰麋鹿国家级自然保护区成立于1986年,第一年(即1986年)只有麋鹿100头,由于科学的人工培育,这种当初快要灭绝的动物只数y (只)与时间x (年)的关系可近似地由关系式y =a log 2(x +1)给出,则到2016年时,预测麋鹿的只数约为________.解析:当x =1时,y =a log 22=a =100,∴y =100log 2(x +1), ∵2016-1986+1=31,即2016年为第31年, ∴y =100log 2(31+1)=500, ∴2016年麋鹿的只数约为500. 答案:500三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)。

北师大版高中数学必修1第一单元试卷及答案

北师大版高中数学必修1第一单元试卷及答案

高一年级数学第一单元质量检测试卷一.填空题(每题5分,共50分)1.集合A={}|12x x -≤≤,B={}|1x x <,则()R A C B ⋂=( )A {}|1x x >B {}|1x x ≥C {}|12x x <≤D {}|12x x ≤≤2.集合2{03},{9}P x Z x M x R x =∈≤<=∈≤,则P M I =( )A {1,2}B {0,1,2} C{x|0≤x<3} D {x|0≤x ≤3}3.若集合{}|21A x x =-<<,{}|02B x x =<<,则集合A B =IA .{}|11x x -<<B .{}|21x x -<<C .{}|22x x -<<D .{}|01x x <<4.已知集合M={1,2,3},N={2,3,4},则( )A .M N ⊆B .N M ⊆C .{2,3}M N =D .{1,4}M N =5.若集合{}A=|1x x x R ≤∈,,{}2B=|y y x x R =∈,,则A B ⋂=( ) A.{}|11x x -≤≤ B. {}|0x x ≥ C. {}|01x x ≤≤ D. ∅6.已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3},u ðB ∩A={9},则A=( )A {1,3}B {3,7,9}C {3,5,9}D {3,9}7.已知集合{||2,}A x x x R =≤∈},{|4,}B x x Z =≤∈,则A B ⋂=( )A (0,2)B [0,2]C {0,2}D {0,1,2}8.已知全集U=R ,集合M={x||x-1|≤2},则U C M=( ) A }{13X X -<< B }{13X X -≤≤ C }{13X X X <->或 D }{13X X X ≤-≥或9.已知全集U=R ,集合}{220A x x x =->,则U C A =( )10.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( )A .1B .1-C .1或1-D .1或1-或0.A .{x ∣0≤x ≤2} B.{x ∣0<x<2}C .{x ∣x<0或x>2} D.{x ∣x ≤0或x ≤2}二.填空题(每题5分,共25分)11.用适当的符号填空(1{}()(){}|2,1,2____,|1,0____x x x y y x φ≤=+,(2){}32|_______52+≤+x x ,(3){}31|,_______|0x x x R x x x x ⎧⎫=∈-=⎨⎬⎩⎭ 12.设{}{}34|,|,<>=≤≤==x x x A C b x a x A R U U 或,则___________,__________==b a . 13.某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人.14.若{}{}21,4,,1,A x B x ==且A B B =,则x = .15.设集合A={-1,1,3},B={a +2,2a +4},A ∩B={3},则实数a =________.三.解答题(共75分)16.设{}{}(){}2,|,,,y x ax b A x y x a M a b M =++====求(12分)17.设222{40},{2(1)10}A x x x B x x a x a =+==+++-=,其中x R ∈,如果A B B =,求实数a 的取值范围.(13分)18.集合{}22|190A x x ax a =-+-=,{}2|560B x x x =-+=,{}2|280C x x x =+-=,满足,A B φ≠,,A C φ=求实数a 的值.(12分)19.设U R =,集合{}2|320A x x x =++=,{}2|(1)0B x x m x m =+++=; 若φ=B A C U )(,求m 的值.(12分)20.已知集合}023|{2=+-=x ax x A ,(1)若A 中至多有一个元素,求a 的取值范围;(2)若A 至少有一个元素,求a 的取值范围.(12分)21.已知集合}02|{2≤-+=x x x A ,B={x|2<x+1≤4},设集合}0|{2>++=c bx x x C ,且满足φ=⋂⋃C B A )(,R C B A =⋃⋃)(,求b 、c 的值.(14分)参考答案:1.D 解析:本题考查集合的基本运算,{}{}21|,1|≤≤=⋂≥=x x B C A x X B C R R2.B .解析:P={0,1,2},M=[-3,3],因此P ∩M={0,1,2}3.D .解析:{|21}{|02}{|01}A B x x x x x x =-<<<<=<<I I4.C 解析:由集合的子、交、并集概念易知{2,3}M N =,故选C .5.C 解析:考查集合的性质与交集以及绝对值不等式运算。

(北师大版)高中数学必修第一册 第一章综合测试试卷02及答案

(北师大版)高中数学必修第一册 第一章综合测试试卷02及答案

第一章综合测试一、单选题(每小题5分,共40分)1.已知集合{}{}31A x x x Z B x x x Z =Î=Î<,,>,,则A B =I ( )A .ÆB .){3223--,,,C .{}202-,,D .{}22-,2.命题“()01x x e x "Î+¥+,,≥”的否定是( )A .()01x x e x $Î+¥+,,≥B .()01x x e x "Î+¥+,,<C .()01x x e x $Î+¥+,,<D .()01x x e x "Î-¥+,,≥3.若集合{}0A x x =<,且B A Í,则集合B 可能是( )A .{}1x x ->B .RC .{}23--,D .{}3101--,,,4.若a b c R Î,,且a b >,则下列不等式成立的是( )A .22a b >B .11a b<C .a c b c>D .2211a b c c ++>5.已知a b R Î,,则“20a b +=”是“2ab=-”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.某市原来居民用电价为0.52元/kW h g ,换装分时电表后,峰时段(早上八点到晚上九点)的电价为0.55元/kW h g ,谷时段(晚上九点到次日早上八点)的电价为0.35元/kW h g .对于一个平均每月用电量为200kW h g 的家庭,换装分时电表后,每月节省的电费不少于原来电费的10%,则这个家庭每月在峰时段的平均用电量至多为( )A .110kW hg B .114kW hg C .118kW hg D .120kW hg 7.已知210a +<,则关于x 的不等式22450x ax a -->的解集是( )A .{5x x a <或}x a ->B .{5x x a >或}x a -<C .{}5x a x a -<<D .{}5x a x a -<<8.若102x <<,则函数y = )A .1B .12C .14D .18二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.已知集合[)()25A B a ==+¥,,,.若A B Í,则实数a 的值可能是( )A .3-B .1C .2D .510.下列不等式不一定正确的是( )A .12x x +≥B .222x y xy +≥C .222x y xy+>11.已知2323x y <<,<<,则( )A .2x y +的取值范围为()69,B .2x y -的取值范围为()23,C .x y -的取值范围为()11-,D .xy 的取值范围为()49,12.23520x x +->的充分不必要条件是( )A .132x -<<B .12x -<<C .12x <<D .16x -<<三、填空题(每小题5分,共20分)13.已知集合{}2114M m m =++,,,如果5M Î,那么m =________.14.二次函数()2y ax bx c x R =++Î的部分对应值如表:x3-2-1-01234y64-6-6-4-06则a =________;不等式20ax bx c ++>的解集为________.15.已知{}{}2212210A x x B x x ax a ==-+-<<,<,若A B Í,则a 的取值范围是________.16.若正数a b ,满足1a b +=,则113232a b +++的最小值为________.四、解答题(共70分)17.(10分)判断下列命题是全称量词命题还是存在量词命题.(1)任何一个实数除以1,仍等于这个数;(2)至少有一个整数,它既能被11整除,又能被9整除;(3)()210x R x "Î+,≥;(4)22x R x $Î,<.18.(12分)已知集合{3512A x x B x x ìü=-=íýîþ<≤,<或}2x U R =>,.(1)求()U A B A B U I ,ð;(2)若{}2131C x m x m =-+<≤,且B C U =U ,求m 的取值范围.19.(12分)(1)已知集合{}{2124A a B ==,,,,,且A B B =I ,求实数a 的取值范围;(2)已知:20:40P x q ax -->,>,其中a R Î,若p 是q 的必要不充分条件,求实数a 的取值范围.20.(12分)“绿水青山就是金山银山”.随着经济的发展,我国更加重视对生态环境的保护,起,政府对环保不达标的养鸡场进行限期整改或勒令关闭.一段时间内,鸡蛋的价格起伏较大(不同周价格不同).假设第一周、第二周鸡蛋的价格分别为x 元、y 元(单位:kg );甲、乙两人的购买方式不同:甲每周购买3kg 鸡蛋,乙每周购买10元钱鸡蛋.(1)若810x y ==,,求甲、乙两周购买鸡蛋的平均价格.(2)判断甲、乙两人谁的购买方式更实惠(平均价格低视为实惠),并说明理由.21.(12分)解关于x 的不等式()22340x ax a a R +-Î<.22.(12分)为了缓解市民吃肉难的生活问题,某生猪养殖公司欲将一批猪肉用冷藏汽车从甲地运往相距120千米的乙地,运费为每小时60元,装卸费为1 000元,猪肉在运输途中的损耗费(单位:元)是汽车速度(km /h )值的2倍.(说明:运输的总费用=运费+装卸费+损耗费)(1)若汽车的速度为每小时50千米,试求运输的总费用.(2)为使运输的总费用不超过1 260元,求汽车行驶速度的范围.(3)若要使运输的总费用最小,汽车应以每小时多少千米的速度行驶?第一章综合测试答案解析一、1.【答案】D【解析】选D .因为{}{}321012A x x x Z =Î=--<,,,,,,{}{11B x x x Z x x =Î=>,>或}1x x Z -Î<,,所以{}22A B =-I ,.2.【答案】C【解析】选C .命题为全称量词命题,则命题“()01x x e x "Î+¥+,,≥”的否定是“()01x x e x $Î+¥+,,<”.3.【答案】C【解析】选C .因为23A A -Î-Î,,所以{}23A --Í,.4.【答案】D【解析】选D .选项A :01a b ==-,,符合a b >,但不等式22a b >不成立,故本选项是错误的;选项B :当01a b ==-,符合已知条件,但零没有倒数,故11a b<不成立,故本选项是错误的;选项C :当0c =时,a c b c >不成立,故本选项是错误的;选项D :因为210c +>,所以根据不等式的性质,由a b >能推出2211a bc c ++>.5.【答案】B【解析】选B .220aa b b=-Þ+=,反之不成立.所以“20a b +=”是“2ab=-”成立的必要不充分条件.6.【答案】C【解析】选C .设每月峰时段的平均用电量为kW h x g ,则谷时段的用电量为()200kW h x -g ;根据题意,得:()()()0.520.550.520.352002000.5210%x x -+--´´≥,解得118x ≤.所以这个家庭每月峰时段的平均用电量至多为118kW h g .7.【答案】A【解析】选A .方程22450x ax a --=的两根为5a a -,.因为210a +<,所以12a -<,所以5a a ->.结合二次函数2245y x ax a =--的图象,得原不等式的解集为{5x x a <或}x a ->,故选A .8.【答案】C【解析】选C .因为102x <<,所以2140x ->,所以2211414122224x x +-=´´=,当且仅当2x =x =时等号成立.二、9.【答案】AB【解析】选AB .因为A B Í,所以2a <,结合选项可知,实数a 的值可能是3-和1.10.【答案】BCD【解析】选BCD .因为x 与1x同号,所以112x x x x+=+≥,A 正确;当x y ,异号时,B 不正确;当x y =时,222x y xy +=,C 不正确;当11x y ==-,时,D 不正确.11.【答案】ACD【解析】选ACD .因为2323x y <<,<<,所以49426xy x <<,<<,所以629x y +<<,而32y ---<<,所以12411x y x y ---<<,<<.12.【答案】BC【解析】选BC .由不等式23520x x +->,可得22530x x --<,解得132x -<<,由此可得:选项A ,132x -<<是不等式23520x x +->成立的充要条件;选项B ,102x -<是不等式23520x x +->成立的充分不必要条件;选项C ,12x <<是不等式23520x x +->成立的充分不必要条件;选项D ,16x -<<是不等式23520x x +->成立的必要不充分条件.三、13.【答案】4或1或1-【解析】①当15m +=时,4m =,此时集合{}1520M =,,,符合题意,②当245m +=时,1m =或1-,若1m =,集合{}125M =,,,符合题意,若1m =-,集合{}105M =,,,符合题意,综上所求,m 的值为4或1或1-.14.【答案】1{2x x -<或}3x >【解析】由表知2x =-时03y x ==,时,0y =,所以二次函数2y ax bx c =++可化为()()23y a x x =+-.又因为1x =时,6y =-,所以1a =,图象开口向上,结合二次函数的图象可得不等式20ax bx c ++>的解集为{2x x -<或}3x >.15.【答案】12a ≤≤【解析】方程22210x ax a -+-=的两根为11a a +-,,且11a a +->,所以{}11B x a x a =-+<<.因为A B Í,所以1112a a -ìí+î≤≥,解得12a ≤≤.16.【答案】47【解析】由1a b +=,知()()113232732323232910b a a b a b ab ++++==+++++,又2124a b ab +öæ=ç÷èø≤(当且仅当12a b ==时等号成立),所以499104ab +≤,所以749107ab +≥.四、17.【答案】(1)命题中含有全称量词“任何一个”,故是全称量词命题.(2)命题中含有存在量词“至少有一个”,是存在量词命题.(3)命题中含有全称量词“"”,是全称量词命题.(4)命题中含有存在量词“$”,是存在量词命题.18.【答案】(1)因为集合{3512A x x B x x ìü=-=íýîþ<≤,<或}2x >,所以32A B x x ìü=íýîþU ≤或}2x >,因为{1U R B x x ==,<或}2x >,所以{}U 12B x x =≤≤ð.所以()U 312A B x x ìü=íýîþI ≤≤ð.(2)依题意得:2131211312m m m m -+ìï-íï+î<,<,≥,即2113m m m ìï-ïíïïî>,<,≥所以113m <.19.【答案】(1)由题知B A Í.2=时,4a =,检验当4a =时,{}{}1241612A B ==,,,,,符合题意.4=时,16a =,检验当16a =时,{}{}12425614A B ==,,,,,符合题意.2a =时,0a =或1,检验当0a =时,{}{}124010A B ==,,,,,符合题意.当1a =时,{}1241A =,,,,由于元素的互异性,所以舍去.综上:4a =或16a =或0a =.(2)设{}{}240A x x B x ax ==->,>,因为p 是q 的必要不充分条件,所以B A Þ.①当0a >时,42a>,所以02a <<.②当0a <时,不满足题意.③当0a =时,:40q ->,即B ¹Æ,符合题意.综上:02a ≤<.20.【答案】(1)因为810x y ==,,所以甲两周购买鸡蛋的平均价格为()3831096´+´=元,乙两周购买鸡蛋的平均价格为()208010109810=+元.(2)甲两周购买鸡蛋的平均价格为3362x y x y++=,乙两周购买鸡蛋的平均价格为2021010xyx y x y=++,由(1)知,当810x y ==,时,乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,猜测乙的购买方式更实惠.证法一(比较法):依题意0x y ,>,且x y ¹,因为()()()()22420222x y xy x y x y xy x y x y x y +--+-==+++>,所以22x y xyx y++>,所以乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,即乙的购买方式更实惠.证法二(分析法):依题意0x y ,>,且x y ¹,要证:22x y xyx y++>,只需证:()24x y xy +>只需证:222x y xy +>,只需证:x y ¹(已知).所以乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,即乙的购买方式更实惠.21.【答案】由于()22340x ax a a R +-Î<可化为()()40x a x a -+g <,且方程()()40x a x a -+=的两个根分别是a 和4a -.当4a a =-,即0a =时,不等式的解集为Æ;当4a a ->,即0a >时,解不等式得4a x a -<<;当4a a -<,即0a <时,解不等式得4a x a -<<.综上所述,当0a =时,不等式的解集为Æ;当0a >时,不等式的解集为{}4x a x a -<<;当0a <时,不等式的解集为{}4x a x a -<<.22.【答案】(1)当汽车的速度为每小时50千米时,运输的总费用为:()120601000250124450´++´=元.(2)设汽车行驶的速度为km /h x ,由题意可得:12060100021260x x´++≤,化简得213036000x x -+≤,解得4090x ≤≤,故为使运输的总费用不超过1260元,汽车行驶速度不低于40km /h 时,不高于90km /h .(3)设汽车行驶的速度为km /h x ,则运输的总费用为12072006010002100010001240x x x ´++++=≥,当72002x x=,即60x =时取得等号,故若要使运输的总费用最小,汽车应以每小时60千米的速度行驶.。

新北师大版高中数学必修一第一单元《集合》检测卷(有答案解析)(1)

新北师大版高中数学必修一第一单元《集合》检测卷(有答案解析)(1)

一、选择题1.对任意x M ∈,总有2x M ∉M ,若{}0,1,2,3,4,5M ⊆,则满足条件的非空集合M 的个数是( ) A .11B .12C .15D .162.若集合{}2560A x x x =+-=,{}222(1)30B x x m x m =+++-=.若{}1A B ⋂=,求实数m 的值为( ) A .0B .-2C .2D .0或-23.设集合{}21|10P x x ax =++>,{}22|20P x x ax =++>,{}21|0Q x x x b =++>,{}22|20Q x xx b =++>,其中,a b ∈R ,下列说法正确的是( )A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集4.已知集合{}1,2,3,4,5,6U =,集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅.若{}3,4=UAB ,则满足条件的集合A 的个数为( )A .7个B .8个C .15个D .16个 5.已知集合{,}P a b =,{|}Q M M P =⊆,则P 与Q 的关系为( )A .P Q ⊆B .Q P ⊆C .P Q ∈D .P Q ∉6.已知集合123,,A A A 满足: {}*123|19A A A x N x =∈≤≤,且每个集合恰有3个元素,记()1,2,3i A i =中元素的最大值与最小值之和为()1,2,3i M i =,则123M M M ++的最小值为( ) A .21B .24C .27D .307.设集合1{|0}x A x x a-=≥-,集合{}21B x x =->,且B A ⊆,则实数a 的取值范围是 () A .1a ≤B .3a ≤C .13a ≤≤D .3a ≥8.已知0a b >>,全集为R ,集合}2|{ba xb x E +<<=,}|{a x ab x F <<=,}|{ab x b x M ≤<=,则有( )A . E M =(R C F )B .M =(RC E )F C .F E M =D .FE M =9.设集合{}2110P x x ax =++>,{}2220P x x ax =++>,{}210Q x x x b =++>,{}2220Q x x x b =++>,其中a ,b ∈R 下列说法正确的是( ) A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集 B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集 C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集 D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集10.已知集合A ,B 是实数集R 的子集,定义{},A B x x A x B -=∈∉,若集合1113A y y x x ⎧⎫==≤≤⎨⎬⎩⎭,,{}21,12B y y x x ==--≤≤,则B A -=( )A .[]1,1-B .[)1,1-C .[]0,1D .[)0,111.已知集合{}11A x x =-≤≤,{}220B x x x =-≤,则AB =( )A .{}12x x -≤≤B .{}10x x -≤≤C .{}12x x ≤≤D .{}01x x ≤≤12.设{}2|8150A x x x =-+=,{}|10B x ax =-=,若AB B =,求实数a 组成的集合的子集个数有 A .2B .3C .4D .8二、填空题13.全集{U x x =是不大于20的素数},若{}3,5A B ⋂=,{}7,19A B ⋂=,{}2,17A B ⋃=,则集合A =___________.14.已知常数a 是正整数,集合1{|||,}2A x x a a x Z =-<+∈,{|||2,}B x x a x Z =<∈,则集合A B 中所有元素之和为________15.设不等式20x ax b ++≤的解集为[]A m n =,,不等式()()2101x x x ++>-的解集为B ,若()(]213A B A B =-+∞=,,,∪∩,则m n +=__________. 16.设集合{}24,,3A m m m =+中实数m 的取值集合为M ,则R C M =_____.17.已知集合1{}2A =-,,1{}0|B x mx =+>,若A B B ⋃=,则实数m 的取值范围是________.18.设A 、B 是非空集合,定义:{|A B x x AB ⊗=∈且}x A B ∉,已知{|2}2xA x x =<+,{|3}B x x =>-,则A B ⊗=_________19.记[]x 为不大于x 的最大整数,设有集合[]{}{}2|2=|2A x x x B x x =-=<,,则A B =_____.20.若关于x 的不等式2054x ax ≤++≤的解集为A ,且A 只有二个子集,则实数a 的值为_____.三、解答题21.设全集U =R ,集合A ={x |-1<x -m <5},集合1{|24}.2x B x =<< (1)当m =-1时,求();UA B ⋂(2)若A ∪B =A ,求实数m 的取值范围.22.已知集{}28A x x =≤≤,{}26B x x m =≤≤-,{}112C x m x m =-≤≤+,U =R .(1)若()UA B =∅,求m 的取值范围; (2)若BC ≠∅,求m 的取值范围.23.已知集合{()(1)0}M xx t x =-+≤∣,{|21}N x x =|-|<. (1)当2t =时,求M N ⋃; (2)若N M ⊆,求实数t 的取值范围.24.已知全集U =R ,集合{|4A x x =<-或1}x >,{}312B x x =-≤-≤, (1)求AB 、()()U UA B ;(2)若集合{}2121M x k x k =-≤≤+是集合A 的子集,求实数k 的取值范围.25.已知全集为实数集R ,集合2{|},{|log 1}A x y y R B x x =∈=>.(1)求AB ;(2)设1a >,集合{|1},()R C x x a D C B A =<<=,若C D ⊆,求a 的取值范围.26.已知不等式()210x a x a -++≤的解集为A . (1)若2a =,求集合A ;(2)若集合A 是集合{}4|2x x -≤≤的真子集,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题意,0M ∉且1M ∉,且2、4不同时在集合M 中,对集合M 分两种情况讨论:①2M ∉且4M ∉;②2和4有且只有一个在集合M 中,分别列举出符合条件的集合M ,即可得出答案. 【详解】2111==,200==,由题意可知0M ∉且1M ∉,由于242=,所以,2和4不同时在集合M 中.①当2M ∉且4M ∉时,则符合条件的集合M 有:{}3、{}5、{}3,5,共3种; ②若2和4有且只有一个在集合M 中,则符合条件的集合M 有:{}2、{}2,3、{}2,5、{}2,3,5、{}4、{}3,4、{}4,5、{}3,4,5,共8种.综上所述,满足条件的非空集合M 的个数是3811+=. 故选:A. 【点睛】本题考查满足条件的集合个数的求解,列举出满足条件的集合即可,考查分类讨论思想的应用,属于中等题.2.D解析:D 【分析】根据A ∩B ={1}可得出,1∈B ,从而得出1是方程x 2+2(m +1)x +m 2﹣3=0的根,1代入方程即可求出m 的值; 【详解】 A ={﹣6,1}; ∵A ∩B ={1}; ∴1∈B ;即1是方程x 2+2(m +1)x +m 2﹣3=0的根; ∴1+2(m +1)+m 2﹣3=0; ∴m 2+2m =0; ∴m =0或m =﹣2;当m =0时,B ={﹣3,1},满足A ∩B ={1}; 当m =﹣2时,B ={1},满足A ∩B ={1}; ∴m =0或m =﹣2; 故选:D 【点睛】考查交集的定义及运算,元素与集合的关系,描述法、列举法的定义,一元二次方程实根的情况,是基础题.3.B解析:B 【分析】先证得1P 是2P 的子集,然后求得b 使1Q 是2Q 的子集,由此确定正确选项.【详解】对于1P 和2P ,由于210x ax ++>时222110x ax x ax ++=+++>,所以1P 的元素,一定是2P 的元素,故对任意a ,1P 是2P 的子集. 对于1Q 和2Q ,根据判别式有140440b b -<⎧⎨-<⎩,即1b >时,12Q Q R ==,满足1Q 是2Q 的子集,也即存在b ,使得1Q 是2Q 的子集. 故选B. 【点睛】本小题主要考查子集的判断,考查恒成立问题和存在性问题的求解策略,属于基础题.4.C解析:C 【分析】由题意知3、4B ∉,则集合A 的个数等于{}1,2,5,6非空子集的个数,然后利用公式计算出集合{}1,2,5,6非空子集的个数,即可得出结果. 【详解】由题意知3、4B ∉,且集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅, 则AB 为集合{}1,2,5,6的非空子集,因此,满足条件的集合A 的个数为42115-=.故选C. 【点睛】本题考查集合个数的计算,一般利用列举法将符合条件的集合列举出来,也可以转化为集合子集个数来进行计算,考查化归与转化思想的应用,属于中等题.5.C解析:C 【分析】用列举法表示集合Q ,这样就可以选出正确答案. 【详解】{}M P M a ⊆⇒=或{}b 或{},a b 或∅.因此{}{}{}{}{|},,,,Q M M P a b a b =⊆=∅,所以P Q ∈.故选:C 【点睛】本题考查了集合与集合之间的关系,理解本题中集合Q 元素的属性特征是解题的关键.6.C解析:C 【分析】求出{}{}*123|191,2,3,4,5,6,7,8,9A A A x N x =∈≤≤=,由题意列举出集合123,,A A A ,由此能求出123M M M ++的最小值. 【详解】 由题意可知,{}{}*123|191,2,3,4,5,6,7,8,9A A A x N x =∈≤≤=123,,A A A 各有3个元素且不重复,当{}13,4,5A =,{}22,6,7A =,{}31,8,9A =时,123M M M ++取得最小值,此时最小值为12357927+++++=,故选C 【点睛】本题主要考查集合中的元素运算,解题的关键是理解题中满足的条件,属于中档题.7.C解析:C 【解析】 【分析】先求出集合B ,比较a 与1的大小关系,结合B A ⊆,可求出实数a 的取值范围. 【详解】解不等式21x ->,即21x -<-或21x ->,解得1x <或3x >,{1B x x ∴=<或}3x >.①当1a =时,{}1A x x =≠,则B A ⊆成立,符合题意; ②当1a <时,{A x x a =<或}1x ≥,B A ⊄,不符合题意;③当1a >时,{1A x x =≤或}x a >,由B A ⊆,可得出3a ≤,此时13a .综上所述,实数a 的取值范围是13a ≤≤. 故选:C. 【点睛】本题考查集合之间关系的判断,涉及分式、绝对值不等式的解法,解分式不等式一般要转化为整式不等式,有参数时,一般要分类讨论.8.A解析:A 【分析】首先分析得出2a ba b +>>>,根据集合的运算,即可求解. 【详解】由题意,因为0a b >>,结合实数的性质以及基本不等式,可得2a ba b +>>>,可得{|R C F x x =≤}x a ≥,所以(){|R E C F x b x =<≤,即()R M E C F =故选A. 【点睛】本题主要考查了集合的运算,以及基本不等式的应用,其中解答中结合实数的性质和基本不等式求得2a ba b +>>>是解答的关键,着重考查了推理与运算能力,属于基础题. 9.B解析:B 【分析】先证得1P 是2P 的子集,然后求得b 使1Q 是2Q 的子集,由此确定正确选项.【详解】对于1P 和2P ,由于210x ax ++>时222110x ax x ax ++=+++>,所以1P 的元素,一定是2P 的元素,故对任意a ,1P 是2P 的子集;对于1Q 和2Q ,根据判别式有140440b b -<⎧⎨-<⎩,即1b >时,12Q Q R ==,满足1Q 是2Q 的子集,也即存在b ,使得1Q 是2Q 的子集. 故选: B. 【点睛】方法点睛:该题主要考查子集的判断,解题方法如下:(1)利用子集的概念,可以判断出1P 的元素,一定是2P 的元素,得到对任意a ,1P 是2P 的子集;(2)利用R 是R 的子集,结合判别式的符号,存在实数1b >时,有12Q Q R ==,得到结果.10.B解析:B 【分析】先根据题意得{}13A y y =≤≤,{}13B y y =-≤≤,再根据集合运算即可得答案. 【详解】解:根据题意得{}111133A y y x y y x ⎧⎫==≤≤=≤≤⎨⎬⎩⎭,, {}{}21,1213B y y x x y y ==--≤≤=-≤≤,再根据集合的运算得}{11B A y y -=-≤<.故选:B. 【点睛】本题考查集合的运算,函数值域的求解,考查运算能力,是中档题.11.D解析:D 【解析】B ={x ∣x 2−2x ⩽0}={x |0⩽x ⩽2}, 则A ∩B ={x |0⩽x ⩽1}, 本题选择D 选项.12.D解析:D 【分析】先解方程得集合A ,再根据A B B =得B A ⊂,最后根据包含关系求实数a ,即得结果.【详解】{}2|8150{3,5}A x x x =-+==,因为AB B =,所以B A ⊂,因此,{3},{5}B =∅,对应实数a 的值为110,,35,其组成的集合的子集个数有328=,选D. 【点睛】本题考查集合包含关系以及集合子集,考查基本分析求解能力,属中档题.二、填空题13.【分析】本题首先可根据素数的定义得出然后根据题意绘出韦恩图最后根据韦恩图即可得出结果【详解】因为全集是不大于的素数所以因为所以因为所以可绘出韦恩图如图所示:由韦恩图可知故答案为:【点睛】本题考查根据 解析:{}3,5,11,13【分析】本题首先可根据素数的定义得出{}2,3,5,7,11,13,17,19U =,然后根据题意绘出韦恩图,最后根据韦恩图即可得出结果. 【详解】因为全集{U x x =是不大于20的素数},所以{}2,3,5,7,11,13,17,19U =, 因为{}2,17A B ⋃=,所以{}3,5,7,11,13,19AB =,因为{}3,5A B ⋂=,{}7,19A B ⋂=, 所以可绘出韦恩图,如图所示:由韦恩图可知,{}3,5,11,13A =, 故答案为:{}3,5,11,13. 【点睛】本题考查根据集合运算结果求集合,考查素数的定义,素数是指在大于1的自然数中,只能被1和该数本身整除的数,考查韦恩图的应用,能否根据题意绘出韦恩图是解决本题的关键,考查数形结合思想,是中档题.14.【分析】分别求出集合中的元素再求出集合的并集即可求解【详解】由题因为所以则;因为所以则因为常数是正整数所以所以所以中所有元素之和是故答案为:【点睛】本题考查集合的并集考查解含绝对值的不等式 解析:2a【分析】分别求出集合A 、B 中的元素,再求出集合A 、B 的并集,即可求解 【详解】由题,因为12x a a -<+,所以11222x a -<<+,则11|2,22A x x a x Z ⎧⎫=-<<+∈⎨⎬⎩⎭;因为2x a <,所以22a x a -<<,则{}|22,B x a x a x Z =-<<∈, 因为常数a 是正整数, 所以{}0,,,,2A a a =,{}21,,0,,21B a a =-+-,所以{}21,,0,,21,2A B a a a ⋃=-+-,所以AB 中所有元素之和是2a ,故答案为:2a 【点睛】本题考查集合的并集,考查解含绝对值的不等式15.【分析】计算得到根据得到得到答案【详解】则或即故故故答案为:【点睛】本题考查了不等式的解集根据集合的运算结果求参数意在考查学生的综合应用能力 解析:2【分析】计算得到()()2,11,B =--+∞,根据()(]213A B A B =-+∞=,,,∪∩得到[]1,3A =-,得到答案.【详解】()()2101x x x ++>-,则1x >或21x -<<-,即()()2,11,B =--+∞.()(]213A B A B =-+∞=,,,∪∩,故[]1,3A =-,故2m n +=. 故答案为:2. 【点睛】本题考查了不等式的解集,根据集合的运算结果求参数,意在考查学生的综合应用能力.16.【分析】根据集合中的元素的互异性列出不等式组求解【详解】由题:集合则化简得:解得:即所以故答案为:【点睛】此题考查根据集合中元素的互异性求参数的取值范围需要注意不重不漏 解析:{}4,2,0,1,4--【分析】根据集合中的元素的互异性,列出不等式组求解. 【详解】由题:集合{}24,,3A m m m =+,则224343m m m m m m ≠⎧⎪+≠⎨⎪+≠⎩,化简得:()()()441020m m m m m ⎧≠⎪+-≠⎨⎪+≠⎩, 解得:()()()()()(),44,22,00,11,44,m ∈-∞----+∞, 即()()()()()(),44,22,00,11,44,M =-∞----+∞, 所以{}4,2,0,1,4R C M =--. 故答案为:{}4,2,0,1,4--【点睛】此题考查根据集合中元素的互异性求参数的取值范围,需要注意不重不漏.17.【分析】讨论和及确定集合利用列不等式求解【详解】由题意知则当时∵∴解得当时∵∴解得当时也有综上实数m 的取值范围是故答案为:【点睛】本题考查集合的包含关系考查一次不等式解集注意m=0的讨论是易错题解析:1(,1)2- 【分析】讨论0m >和0m <及0m =确定集合B ,利用A B ⊆列不等式求解 【详解】由题意知A B B ⋃=,则A B ⊆, 当0m >时,1{|}B x x m=>-,∵1{}2A =-,, ∴11m-<- 解得01m <<,当0m <时,1{|}B x x m=<-, ∵1{}2A =-,, ∴12m-> 解得102m -<<, 当0m =时也有A B ⊆.综上,实数m 的取值范围是1(,1)2-故答案为:1(,1)2-. 【点睛】本题考查集合的包含关系,考查一次不等式解集,注意m =0的讨论,是易错题 18.【分析】先计算集合A 再根据定义得到答案【详解】或且或故答案为:【点睛】本题考查了集合的新定义问题意在考查学生的理解能力和解决问题的能力解析:(,4)(3,2]-∞---【分析】先计算集合A ,再根据定义得到答案.【详解】{{|2}42x A x x x x =<=<-+或2}x >-,{|3}B x x =>- {|A B x x A B ⊗=∈且{}4x A B x x ∉⋂=<-或}32x -<≤-故答案为:(,4)(3,2]-∞--- 【点睛】本题考查了集合的新定义问题,意在考查学生的理解能力和解决问题的能力. 19.【分析】求即需同时满足A 集合和B 集合的x 的取值范围先根据比较容易得出解集再将B 集合的解集代入A 集合中判断出可以成立的值即可得【详解】当时当时不满足;当时满足;当时不满足;当时满足;即同时满足和的值有解析:{-【分析】求A B 即需同时满足A 集合和B 集合的x 的取值范围,先根据{}{}=|2=|22B x x x x <-<<,比较容易得出解集, 再将B 集合的解集代入A 集合中,判断出可以成立的值,即可得A B【详解】 {}{}=|2=|22B x x x x <-<<当22x -<<时,[]2,1,0,1x =--,当[]2x =-时,[]2200x x x +==⇒=,不满足[]2x =-; 当[]1x =-时,[]2211x x x +==⇒=±,1x =-满足[]1x =-; 当[]0x =时,[]222x x x +==⇒=,不满足[]0x =; 当[]1x =时,[]223x x x +==⇒=x []1x =; 即同时满足[]22x x -=和2x <的x 值有则A B={-故答案为:{- 【点睛】本题考查了集合的计算,和取整函数的理解,针对两个集合求交集的情况,可先对较简单的或者不含参数的集合求解,再代入较复杂的或含参数的集合中去计算.本题属于中等题. 20.【分析】由题得集合A 里只有一个元素所以只有一个解令得到再检验得解【详解】因为集合只有二个子集所以集合A 里只有一个元素由题得只有一个解令令当时不等式(1)的解为不等式(2)解为不等式组的解集为不满足题 解析:2±【分析】由题得集合A 里只有一个元素.所以22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令12=00∆∆=,得到2a a =±=±,再检验得解.【详解】因为集合A 只有二个子集,所以集合A 里只有一个元素.由题得22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令21=200,a a ∆-=∴=±令22=40,2a a ∆-=∴=±.当a =1)的解为R ,不等式(2)解为22x -≤≤组的解集为{|22x x --≤≤,不满足题意;当a =-1)的解为R ,不等式(2)解为x -≤,不等式组的解集为{|x x -≤≤,不满足题意;当2a =时,不等式(1)的解集为R ,不等式(2)的解为1x =-,不等式组的解集为{|1}x x =-,满足题意;当2a =-时,不等式(1)的解集为R ,不等式(2)的解为1x =,不等式组的解集为{|1}x x =,满足题意.故答案为2a =±.【点睛】本题主要考查集合的子集的个数,考查一元二次不等式的解集,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题21.(1)(){|21U AB x x =-<≤-或24}x ≤<;(2)30m -≤≤. 【分析】(1)求出集合B ,再根据集合的运算法则计算.由A B A ⋃=得B A ⊆,根据集合的包含关系得出不等式式,从而可求解.【详解】(1)1m =-时,{|115}{|24}A x x x x =-<+<=-<<,{|12}B x x =-<<, {|1U B x x =≤-或2}x ≥,∴(){|21U AB x x =-<≤-或24}x ≤<; (2)∵A B A ⋃=,∴B A ⊆,又{|15}A x m x m =-<<+,∴1152m m -≤-⎧⎨+≥⎩,解得30m -≤≤. 【点睛】本题考查集合的综合运算,考查集合的包含关系,考查指数函数的性质.解题时注意集合的运算与包含关系:A B A B A =⇔⊆,A B A A B ⋂=⇔⊆.22.(1)2m ≥-;(2)1722m m ⎧⎫≤≤⎨⎬⎩⎭. 【分析】(1)当()U A B =∅,在B A ⊆,然后针对B =∅与B ≠∅分类讨论求解; (2)若B C ≠∅,则B ≠∅,C ≠∅,若B C ≠∅,则只需1612m m m -≤-≤+或2126m m ≤+≤-,然后解出m 的取值范围.【详解】解:(1)∵{}28A x x =≤≤,∴{U |2A x x =<或}8x >, ∵()U A B =∅,则B A ⊆,当B =∅时,62m -<,即4m >,当B ≠∅时,62m -≥,68m -≤,解得24m -≤≤.综上所述:2m ≥-.(2)由题可知,B ≠∅,C ≠∅,62,121,m m m -≥⎧⎨+≥-⎩解得24m -≤≤. 若BC ≠∅时,则只需:1612m m m -≤-≤+或2126m m ≤+≤-, 解得:1722m ≤≤. ∴ 当BC ≠∅,m 的取值范围为1722m m ⎧⎫≤≤⎨⎬⎩⎭. 【点睛】 本题考查集合的运算结果求参数的取值范围问题,难度一般,解答时,因为空集是任何集合的子集,所以解答时注意空集的特殊性.23.(1)[1,3)-(2)[3,)+∞【分析】(1)可得出N ={x |1 <x <3 },t =2时求出集合M ,然后进行并集的运算即可;(2)根据N M ⊆即可得出集合M ={x |-1≤x ≤t },进而可得出t 的取值范围.【详解】(1){|21}N x x =|-|<={13}xx <<∣, 当2t =时,{(2)(1)0}(1,2)M xx x =-+≤=-∣, [)1,3M N ∴⋃=-(2)N M ⊆,∴M ={x |-1≤x ≤t },3t ∴≥,∴实数t 的取值范围[3,)+∞【点睛】本题主要考查了一元二次不等式和绝对值不等式的解法,并集的定义及运算,子集的定义,考查了计算能力,属于基础题.24.(1){}13A B x x ⋂=<≤,()(){1U U A B x x ⋃=≤或3}x >;(2)52k <-或1k >.【分析】(1)先求出B ,U A ,U B ,再求A B ,()()U U A B 即可;(2)先分类讨论①当M φ=时,k 不存在;②当M φ≠时,解得52k <-或1k >,最后写出实数k 的取值范围即可.【详解】解:(1)因为全集U =R ,集合{|4A x x =<-或1}x >,{}312B x x =-≤-≤, 所以{}23B x x =-≤≤,{|41}U x x A =-≤≤,{2U B x x =<-或3}x >,所以{}13A B x x ⋂=<≤,()(){1U U A B x x ⋃=≤或3}x >,(2)因为集合{}2121M x k x k =-≤≤+是集合A 的子集, 所以①当M φ=时,2121k k ,k 不存在;②当M φ≠时,214k +<-或211k ->,解得:52k <-或1k >, 综上所述:实数k 的取值范围是52k <-或1k >. 【点睛】 本题考查集合的运算、根据集合的基本关系求参数范围,是基础题.25.(1){|23}x x <≤; (2)(1,3].【分析】(1)可求出13{|}A x x =≤≤,{|2}Bx x ,进行交集的运算,即可求解; (2)进行并集、并集的运算求出集合D ,根据C D ⊆,且{|1}C x x a =<<,即可求得实数a 的取值范围.【详解】 (1)由1030x x -≥⎧⎨-≥⎩,解得13x ≤≤,即集合13{|}A x x =≤≤, 集合2{|log 1}{|2}B x x x x =>=>,所以{|23}A B x x ⋂=<≤.(2)由(1)可得{|2}R C B x x =≤,所以(){|3}R D C B A x x ==≤, 因为C D ⊆,且{|1},1C x x a a =<<>,所以13a,所以实数a 的取值范围是(1,3].【点睛】本题主要考查了集合的标志,对数函数的单调性,以及集合的交集、并集和补集的运算等知识点的综合应用,着重考查推理与运算能力.26.(1){}|12x x ≤≤;(2)[]4,2.【分析】(1)当2a =时,不等式化为2320x x -+≤,结合一元二次不等式的解法,即可求解; (2)把不等式化为()()10x x a --≤,分类讨论,结合集合的包含关系,即可求解.【详解】(1)由题意,当2a =时,不等式()210x a x a -++≤,即2320x x -+≤, 即()()120x x --≤,解得12x ≤≤,所以集合{}|12A x x =≤≤.(2)由()210x a x a -++≤,可得()()10x x a --≤,当1a <时,不等式()()10x x a --≤的解集为{}|1x a x ≤≤.由集合A 是集合{}4|2x x -≤≤的真子集可得4a ≥-,所以41a -≤<,当1a =时,不等式()()10x x a --≤的解集为{}|1x x =满足题意;当1a >时,不等式()()10x x a --≤的解集为{}|1x x a ≤≤,由集合A 是集合{}4|2x x -≤≤的真子集,可得2a ≤,所以11a <≤,综上可得:42x -≤≤,即实数a 的取值范围为[]4,2-.【点睛】本题主要考查了一元二次不等式的求解及其应用,其中解答中熟记一元二次不等式的解法,结合集合的关系求解是解答的关键,着重考查了推理与运算能力,属于中档试题.。

北师大版高中数学必修1第一单元试卷及答案

北师大版高中数学必修1第一单元试卷及答案

高一年级数学第一单元质量检测试题参赛试卷宝鸡石油中学命题人:万小进(满分150分 时间90分钟)一.填空题(每题5分,共50分)1.集合A={}|12x x -≤≤,B={}|1x x <,则()R A C B ⋂=( )A {}|1x x >B {}|1x x ≥C {}|12x x <≤D {}|12x x ≤≤2.集合2{03},{9}P x Z x M x R x =∈≤<=∈≤,则P M =( )A {1,2}B {0,1,2} C{x|0≤x<3} D {x|0≤x ≤3}3.若集合{}|21A x x =-<<,{}|02B x x =<<,则集合A B =A .{}|11x x -<<B .{}|21x x -<<C .{}|22x x -<<D .{}|01x x <<4.已知集合M={1,2,3},N={2,3,4},则( )A .M N ⊆B .N M ⊆C .{2,3}M N =D .{1,4}M N =5.若集合{}A=|1x x x R ≤∈,,{}2B=|y y x x R =∈,,则A B ⋂=( )A.{}|11x x -≤≤B. {}|0x x ≥C. {}|01x x ≤≤D. ∅6.已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3},u B ∩A={9},则A=( )A {1,3}B {3,7,9}C {3,5,9}D {3,9}7.已知集合{||2,}A x x x R =≤∈},{|4,}B x x Z =≤∈,则A B ⋂=( )A (0,2)B [0,2]C {0,2}D {0,1,2}8.已知全集U=R ,集合M={x||x-1|≤2},则U C M=( ) A }{13X X -<< B }{13X X -≤≤ C }{13X X X <->或 D }{13X X X ≤-≥或9.已知全集U=R ,集合}{220A x x x =->,则U C A =( )10.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( )A .1B .1-C .1或1-D .1或1-或0.A .{x ∣0≤x ≤2} B.{x ∣0<x<2}C .{x ∣x<0或x>2} D.{x ∣x ≤0或x ≤2}二.填空(每题5分,共25分)11.用适当的符号填空(1{}()(){}|2,1,2____,|1,0____x x x y y x φ≤=+,(2){}32|_______52+≤+x x ,(3){}31|,_______|0x x x R x x x x ⎧⎫=∈-=⎨⎬⎩⎭12.设{}{}34|,|,<>=≤≤==x x x A C b x a x A R U U 或则___________,__________==b a .13.某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人.14.若{}{}21,4,,1,A x B x ==且AB B =,则x = . 15.设集合A={-1,1,3},B={a +2,2a +4},A ∩B={3},则实数a =________.三.解答题(共75分)16.设{}{}(){}2,|,,,y x ax b A x y x a M a b M =++====求(12分) 17.设222{40},{2(1)10}A x x x B x x a x a =+==+++-=,其中x R ∈,如果AB B =,求实数a 的取值范围.(13分) 18.集合{}22|190A x x ax a =-+-=,{}2|560B x x x =-+=,{}2|280C x x x =+-=,满足,A B φ≠,,A C φ=求实数a 的值.(12分)19.设U R =,集合{}2|320A x x x =++=,{}2|(1)0B x x m x m =+++=;若φ=B A C U )(,求m 的值.(12分)20.已知集合}023|{2=+-=x ax x A ,(1)若A 中至多有一个元素,求a 的取值范围;(2)若A 至少有一个元素,求a 的取值范围.(12分)21.已知集合}02|{2≤-+=x x x A ,B={x|2<x+1≤4},设集合}0|{2>++=c bx x x C ,且满足φ=⋂⋃C B A )(,R C B A =⋃⋃)(,求b 、c 的值.(14分)参考答案:解析:本题考查集合的基本运算,{}{}21|,1|≤≤=⋂≥=x x B C A x X B C R R.解析:P={0,1,2},M=[-3,3],因此P ∩M={0,1,2}.解析:{|21}{|02}{|01}A B x x x x x x =-<<<<=<<解析:由集合的子、交、并集概念易知{2,3}MN =,故选C . 解析:考查集合的性质与交集以及绝对值不等式运算。

(必考题)高中数学必修一第一单元《集合》测试(包含答案解析)(1)

(必考题)高中数学必修一第一单元《集合》测试(包含答案解析)(1)

一、选择题1.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( ) A .11,03⎧⎫-⎨⎬⎩⎭,B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,2.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( ) A .-3或-1或2 B .-3或-1 C .-3或2D .-1或23.下图中的阴影部分,可用集合符号表示为( )A .()()U U A B ⋂ B .()()U UA BC .()UA BD .()UA B ⋂4.若集合3| 01x A x x -=≥+⎧⎫⎨⎬⎩⎭,{|10}B x ax =+≤,若B A ⊆,则实数a 的取值范围是( ) A .1,13⎡⎫-⎪⎢⎣⎭B .1,13⎛-⎤⎥⎝⎦C .(,1)[0,)-∞-+∞ D .1[,0)(0,1)3-⋃5.定义集合运算{},,A B x x a b a A b B ⊗==⨯∈∈,设{0,1},{3,4,5}A B ==,则集合A B ⊗的真子集个数为( )A .16B .15C .14D .86.已知x ,y 都是非零实数,||||||x y xy z x y xy =++可能的取值组成的集合为A ,则下列判断正确的是( ) A .3A ∈,1A -∉B .3A ∈,1A -∈C .3A ∉,1A -∈D .3A ∉,1A -∉7.记有限集合M 中元素的个数为||M ,且||0∅=,对于非空有限集合A 、B ,下列结论:① 若||||A B ≤,则A B ⊆;② 若||||AB A B =,则A B =;③ 若||0AB =,则A 、B 中至少有个是空集;④ 若AB =∅,则||||||A B A B =+;其中正确结论的个数为( )A .1B .2C .3D .48.已知全集U =R ,集合91A xx ⎧⎫=>⎨⎬⎩⎭和{}44,B x x x Z =-<<∈关系的Venn 图如图所示,则阴影部分所表示集合中的元素共有( )A .3个B .4个C .5个D .无穷多个9.能正确表示集合{}02M x x =∈≤≤R 和集合{}20N x x x =∈-=R 的关系的韦恩图的是( )A .B .C .D .10.下列结论正确的是() A .若a b <且c d <,则ac bd <B .若a b >,则22ac bc >C .若0a ≠,则12a a +≥ D .若0a b <<,集合1|A x x a ⎧⎫==⎨⎬⎩⎭,1|B x x b ⎧⎫==⎨⎬⎩⎭,则A B ⊇11.已知集合{}11A x x =-≤≤,{}220B x x x =-≤,则AB =( )A .{}12x x -≤≤B .{}10x x -≤≤C .{}12x x ≤≤D .{}01x x ≤≤12.已知3(,)|32y M x y x -⎧⎫==⎨⎬-⎩⎭,{(,)|20}N x y ax y a =++=,且M N ⋂=∅,则实数a =( ) A .6-或2-B .6-C .2或6-D .2二、填空题13.设P 为非空实数集满足:对任意给定的x y P ∈、(x y 、可以相同),都有x y P +∈,x y P -∈,xy P ∈,则称P 为幸运集.①集合{2,1,0,1,2}P =--为幸运集;②集合{|2,}P x x n n ==∈Z 为幸运集;③若集合1P 、2P 为幸运集,则12P P 为幸运集;④若集合P 为幸运集,则一定有0P ∈;其中正确结论的序号是________ 14.集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,用列举法表示集合M =________. 15.集合{(,)|||,}A x y y a x x R ==∈,{(,)|,}B x y y x a x R ==+∈,已知集合A B中有且仅有一个元素,则常数a 的取值范围是________ 16.设集合22{2,3,1},{,2,1}M a N a a a =+=++-且{}2MN =,则a 值是_________.17.已知集合(){}22330,,A x x a x a a R x R =+--=∈∈,集合(){}22330,,B x x a x a a a R x R =+-+-=∈∈,若,A B A B ≠⋂≠∅,则A B =_______18.已知集合{}{}2|21,|20x A y y B x x x ==+=--<,则()R C A B =__________.19.记[]x 为不大于x 的最大整数,设有集合[]{}{}2|2=|2A x x x B x x =-=<,,则A B =_____.20.设集合{}1,2,3A =,若B ≠∅,且B A ⊆,记G(B)为B 中元素的最大值和最小值之和,则对所有的B ,G(B)的平均值是_______.三、解答题21.已知集合2212x A x x ⎧+⎫=<⎨⎬-⎩⎭,{}254B x x x =>-,{}1,C x x m m =-<∈R ,(1)求AB ;(2)若()A B C ⋂⊆,求m 的取值范围. 22.已知集合{|1A x x =≤或5}x,集合{|221}B x a x a =-≤≤+(1)若1a =,求A B 和A B ;(2)若记符号{A B x A -=∈且}x B ∉,在图中把表示“集合A B -”的部分用阴影涂黑,并求当1a =时的A B -; (3)若AB B =,求实数a 的取值范围. 23.已知集合{|37},{|210},{|}A x x B x xC x x a =≤≤=<<=<,全集为实数集R . (1)求AB ,()R A B ⋂;(2)若A C ⋂≠∅,求a 的取值范围.24.已知不等式()210x a x a -++≤的解集为A .(1)若2a =,求集合A ;(2)若集合A 是集合{}4|2x x -≤≤的真子集,求实数a 的取值范围.25.已知集合{}|2,12xA y y x ==≤≤,()(){}|20B x x a x a =---≤.(1)若3a =,求A B ;(2)若()R B C A ⊆.求实数a 的取值范围.26.设集合{}2|320A x x x =++=,{}2|2(1)30B x x a x a =++++=.(1)若{1}A B ⋂=-,求实数a 的值; (2)若A B A ⋃=,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】解方程求得集合A ,分别在B =∅和B ≠∅两种情况下,根据包含关系构造方程求得结果. 【详解】由2230x x --=得:1x =-或3x =,即{}1,3A =-; ①当0a =时,B =∅,满足B A ⊆,符合题意; ②当0a ≠时,{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,B A ⊆,11a ∴=-或13a =,解得:1a =-或13a =; 综上所述:实数a 的值构成的集合是11,0,3⎧⎫-⎨⎬⎩⎭. 故选:A . 【点睛】本题考查根据集合的包含关系求解参数值的问题,易错点是忽略子集为空集的情况,造成求解错误.2.C解析:C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项.3.C解析:C 【分析】图中阴影部分是集合A 与集合B 的补集的交集. 【详解】图中阴影部分是集合A 与集合B 的补集的交集,所以图中阴影部分,可以用()UA B 表示. 【点睛】本题考查了用韦恩图表示集合间的关系,考查了学生概念理解,数形结合的能力,属于基础题.4.A解析:A 【分析】先根据分式不等式求解出集合A ,然后对集合B 中参数a 与0的关系作分类讨论,根据子集关系确定出a 的范围. 【详解】因为301x x -≥+,所以()()10310x x x +≠⎧⎨-+≥⎩,所以1x <-或3x ≥,所以{|1A x x =<-或}3x ≥,当0a =时,10≤不成立,所以B =∅,所以B A ⊆满足, 当0a >时,因为10ax +≤,所以1x a≤-, 又因为B A ⊆,所以11-<-a,所以01a <<, 当0a <时,因为10ax +≤,所以1x a≥-, 又因为B A ⊆,所以13a -≥,所以103a -≤<, 综上可知:1,13a ⎡⎫∈-⎪⎢⎣⎭. 故选:A. 【点睛】本题考查分式不等式的求解以及根据集合间的包含关系求解参数范围,难度一般.解分式不等式的方法:将分式不等式先转化为整式不等式,然后根据一元二次不等式的解法或者高次不等式的解法(数轴穿根法)求出解集.5.B解析:B 【分析】根据新定义得到{}{},,0,3,4,5A B x x a b a A b B ⊗==⨯∈∈=,再计算真子集个数得到答案. 【详解】{0,1},{3,4,5}A B ==,{}{},,0,3,4,5A B x x a b a A b B ⊗==⨯∈∈=其真子集个数为:42115-= 故选:B 【点睛】本题考查了集合的新定义问题,真子集问题,意在考查学生的应用能力.6.B解析:B 【分析】分别讨论,x y 的符号,然后对||||||x y xy z x y xy =++进行化简,进而求出集合A ,最后根据集合元素的确定性即可得出答案. 【详解】当0x >,0y >时,1113z =++=; 当0x >,0y <时,1111z =--=-; 当0x <,0y >时,1111z =-+-=-; 当0x <,0y <时,1111z =--+=-. 所以3A ∈,1A -∈. 故选:B. 【点睛】本题考查了对含有绝对值符号的式子的化简,考查了集合元素的特点,考查了分类讨论思想,属于一般难度的题.7.B解析:B 【分析】先阅读题意,取特例{}1A = ,{}2B =,可得①③错误,由集合中元素的互异性可得②④正确. 【详解】解:对于①,取{}1A = ,{}2B =,满足||||A B ≤,但不满足A B ⊆,即①错误;对于②,因为||||A B A B =,由集合中元素的互异性可得A B =,即②正确;对于③,取{}1A = ,{}2B =, 满足||0A B =,但不满足A 、B 中至少有个是空集,即③错误; 对于④,A B =∅,则集合A B 、中无公共元素,则||||||A B A B =+,即④正确;综上可得②④正确,故选B. 【点睛】本题考查了对新定义的理解及集合元素的互异性,重点考查了集合交集、并集的运算,属中档题.8.B解析:B 【分析】先解分式不等式得集合A ,再化简B ,最后根据交集与补集定义得结果. 【详解】 因为91(0,9)A xx ⎧⎫=>=⎨⎬⎩⎭,{}{}44,3,2,1,0,1,2,3B x x x Z =-<<∈=---, 所以阴影部分所表示集合为(){0,1,2,3}U C A B =---,元素共有4个,故选B 【点睛】本题考查分式不等式以及交集与补集定义,考查基本分析求解能力,属基础题.9.B解析:B 【分析】根据题意,{0N =,1},而{|02}M x R x =∈,易得N 是M 的子集,分析选项可得答案. 【详解】{}{}{}200,102N x x x M x x =∈-==⊆=∈≤≤R R ,故选B.【点睛】本题考查集合间关系的判断以及用venn 图表示集合的关系,判断出M 、N 的关系,是解题的关键.10.C解析:C 【分析】通过举例和证明的方式逐个分析选项. 【详解】A :取5,3,6,1a b c d =-==-=,则30,3ac bd ==,则ac bd >,故A 错误;B :取3,1,0a b c ===,则22ac bc =,故B 错误;C:21122a a a a ⎫+=+=+≥成立,故C 正确;D :因为0a b <<,所以11a b>,则A B ,故D 错误;故选:C. 【点睛】本题考查不等关系和等式的判断,难度一般.判断不等关系是否成立,常用的方法有:(1)直接带值验证;(2)利用不等式的性质判断;(3)采用其他证明手段.(如借助平方差、完全平方公式等).11.D解析:D 【解析】B ={x ∣x 2−2x ⩽0}={x |0⩽x ⩽2}, 则A ∩B ={x |0⩽x ⩽1}, 本题选择D 选项.12.A解析:A 【解析】 【分析】先确定集合M,N,再根据M N ⋂=∅确定实数a 的值. 【详解】由题得集合M 表示(32)3y x -=-上除去(2)3,的点集,N 表示恒过(10)-,的直线方程. 根据两集合的交集为空集:M N ⋂=∅.①两直线不平行,则有直线20ax y a ++=过(2)3,,将2x =,代入可得2a =-, ②两直线平行,则有32a-=即6a =-, 综上6a =-或2-, 故选:A . 【点睛】本题主要考查集合的化简和集合的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题13.②④【分析】①取判断;②设判断;③举例判断;④由可以相同判断;【详解】①当所以集合P 不是幸运集故错误;②设则所以集合P 是幸运集故正确;③如集合为幸运集但不为幸运集如时故错误;④因为集合为幸运集则当时解析:②④ 【分析】①取2x y ==判断;②设122,2x k P y k P =∈=∈判断;③举例12{|2,},{|3,}P x x k k Z P x x k k Z ==∈==∈判断;④由x y 、可以相同判断; 【详解】①当2x y ==,4x y P +=∉,所以集合P 不是幸运集,故错误; ②设122,2x k P y k P =∈=∈,则()()1212122,2,2x y k k A x y k k A xy k k A +=+∈-=-∈=⋅∈,所以集合P 是幸运集,故正确;③如集合12{|2,},{|3,}P x x k k Z P x x k k Z ==∈==∈为幸运集,但12P P 不为幸运集,如2,3x y ==时,125x y P P +=∉⋃,故错误;④因为集合P 为幸运集,则x y P -∈,当x y =时,0x y -=,一定有0P ∈,故正确; 故答案为:②④ 【点睛】关键点点睛:读懂新定义的含义,结合“给定的x y P ∈、(x y 、可以相同),都有x y P +∈,x y P -∈,xy P ∈”,灵活运用举例法.14.【分析】由集合且求得得到且结合题意逐个验证即可求解【详解】由题意集合且可得则解得且当时满足题意;当时不满足题意;当时不满足题意;当时满足题意;当时满足题意;当时满足题意;综上可得集合故答案为:【点睛 解析:{1,2,3,4}-【分析】 由集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,求得056a <-≤,得到15a -≤<且a Z ∈,结合题意,逐个验证,即可求解. 【详解】由题意,集合6|5M a a ⎧=∈⎨-⎩N 且}a Z ∈,可得65a∈-N ,则056a <-≤, 解得15a -≤<且a Z ∈,当1a =-时,615(1)=∈--N ,满足题意; 当0a =时,66505=∉-N ,不满足题意; 当1a =时,66514=∉-N ,不满足题意; 当2a =时,6252=∈-N ,满足题意;当3a =时,6353=∈-N ,满足题意; 当4a =时,6654=∈-N ,满足题意; 综上可得,集合M ={1,2,3,4}-. 故答案为:{1,2,3,4}-. 【点睛】本题主要考查了集合的表示方法,以及集合的元素与集合的关系,其中解答中熟记集合的表示方法,以及熟练应用元素与集合的关系,准确判定是解答的关键,着重考查了推理与运算能力,属于基础题.15.【分析】若中有且仅有一个元素则方程有且仅有一个解进而求解即可【详解】由题因为中有且仅有一个元素则方程有且仅有一个解当时则当时则由已知得或或或解得故答案为:【点睛】本题考查由交集结果求参数范围考查分类 解析:[1,1]-【分析】 若AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解,进而求解即可【详解】 由题,因为AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解, 当0x ≥时,ax x a =+,则1a x a =-, 当0x <时,ax x a -=+,则1a x a =-+, 由已知得0101a a a a ⎧≥⎪⎪-⎨⎪-≥⎪+⎩或0101aa a a ⎧<⎪⎪-⎨⎪-<⎪+⎩或101a aa =⎧⎪⎨-<⎪+⎩或011a a a ⎧≥⎪-⎨⎪=-⎩, 解得11a -≤≤, 故答案为:[]1,1- 【点睛】本题考查由交集结果求参数范围,考查分类讨论思想和转化思想16.-2或0【分析】由可得即可得到或分别求解可求出答案【详解】由题意①若解得或当时集合中不符合集合的互异性舍去;当时符合题意②若解得符合题意综上的值是-2或0故答案为:-2或0【点睛】本题考查了交集的性解析:-2或0 【分析】 由{}2MN =,可得{}2N ⊆,即可得到22a a +=或22a +=,分别求解可求出答案.【详解】由题意,{}2N ⊆,①若22a a +=,解得1a =或2a =-,当1a =时,集合M 中,212a +=,不符合集合的互异性,舍去;当2a =-时,{2,3,5},{2,0,1}M N ==-,符合题意.②若22a +=,解得0a =,{2,3,1},{0,2,1}M N ==-,符合题意.综上,a 的值是-2或0.故答案为:-2或0.【点睛】本题考查了交集的性质,考查了集合概念的理解,属于基础题.17.【分析】设公共根是代入两方程作差可得即公共根就是进一步代入原方程求解两集合即可得出答案【详解】两个方程有公共根设公共根为两式相减得:即①若则两个方程都是与矛盾;②则公共根为代入得:即解得:(舍)故答解析:{2,3,1}--【分析】设公共根是b ,代入两方程,作差可得b a =,即公共根就是a ,进一步代入原方程求解两集合,即可得出答案.【详解】A B ⋂≠∅∴两个方程有公共根设公共根为b∴2(23)30b a b a +--=,22(3)30b a b a a +-+-=两式相减得:20ab a -=,即()0a b a -=.①若0a =,则两个方程都是230x x -=,与A B ≠矛盾;②0,a ≠则b a =,∴公共根为a ,代入2(23)30x a x a +--=得:2(23)30a a a a +--= 即220a a -=,解得:0a =(舍),2a ={}2|60{3,2}A x x x ∴=+-==- 2|20{1,2}B x x x{2,3,1}A B ∴⋃=--故答案为:{2,3,1}--【点睛】本题考查了集合并集运算,能够通过,A B A B ≠⋂≠∅解读出两个集合中的方程有公共根,是解题的关键.18.【分析】求函数的值域求得集合解一元二次不等式求得集合由此求得【详解】根据指数函数的性质可知所以有解得即所以故答案为【点睛】本小题主要考查集合交集补集的运算考查指数型函数值域的求法考查一元二次不等式的 解析:(]1,1-【分析】求函数的值域求得集合A ,解一元二次不等式求得集合B ,由此求得()R C A B ⋂.【详解】根据指数函数的性质可知,211x y =+>,所以()1,A =+∞,有()()22210x x x x --=-+<解得12x -<<,即()1,2B =-,所以()R C A B =(]1,1-. 故答案为(]1,1-.【点睛】本小题主要考查集合交集、补集的运算,考查指数型函数值域的求法,考查一元二次不等式的解法,属于基础题.19.【分析】求即需同时满足A 集合和B 集合的x 的取值范围先根据比较容易得出解集再将B 集合的解集代入A 集合中判断出可以成立的值即可得【详解】当时当时不满足;当时满足;当时不满足;当时满足;即同时满足和的值有解析:{-【分析】求A B 即需同时满足A 集合和B 集合的x 的取值范围,先根据{}{}=|2=|22B x x x x <-<<,比较容易得出解集, 再将B 集合的解集代入A 集合中,判断出可以成立的值,即可得A B【详解】 {}{}=|2=|22B x x x x <-<<当22x -<<时,[]2,1,0,1x =--,当[]2x =-时,[]2200x x x +==⇒=,不满足[]2x =-; 当[]1x =-时,[]2211x x x +==⇒=±,1x =-满足[]1x =-;当[]0x =时,[]222x x x +==⇒=,不满足[]0x =;当[]1x =时,[]223x x x +==⇒=x []1x =;即同时满足[]22x x -=和2x <的x 值有则A B ={-故答案为:{- 【点睛】本题考查了集合的计算,和取整函数的理解,针对两个集合求交集的情况,可先对较简单的或者不含参数的集合求解,再代入较复杂的或含参数的集合中去计算.本题属于中等题.20.4【分析】根据题意列出所有可能的集合B 求出相应的求出平均数即可【详解】因为集合若且所以集合B 为:当时当时当时当时当时当时当时则G(B)的平均值是故答案为:【点睛】本题主要考查了集合间的包含关系考查学 解析:4【分析】根据题意列出所有可能的集合B ,求出相应的()G B ,求出平均数即可.【详解】因为集合{}1,2,3A =,若B ≠∅,且B A ⊆所以集合B 为:{}{}{}{}{}{}{}1231,21,32,31,2,3,,,,,,当{}1B =时,()112G B =+=当{}2B =时,()224G B =+=当{}3B =时,()336G B =+=当{}1,2B =时,()123G B =+=当{}1,3B =时,()134G B =+=当{}2,3B =时,()235G B =+=当{}1,2,3B =时,()134G B =+=则G(B)的平均值是246345447++++++= 故答案为:4【点睛】本题主要考查了集合间的包含关系,考查学生分析问题和解决问题的能力,属于中档题. 三、解答题21.(1){}12x x <<;(2)12m ≤≤【分析】(1)解不等式,可求出集合,A B ,进而求出二者的交集即可;(2)结合(1),由()A B C ⋂⊆,可得{}12x x <<⊆{}11x m x m -<<+,进而可列出不等关系,求解即可.【详解】(1)由2212x x +<-,得402x x +<-,等价于()()420x x +-<,解得42x -<<, 所以集合{}42A x x =-<<,由254x x >-,解得1x >或5x <-,所以{1B x x =>或}5x <-,所以A B ={}42x x -<<{1x x >或}5x <-{}12x x =<<.(2)因为()A B C ⋂⊆,所以{}12x x <<⊆{}1,x x m m -<∈R , 即{}12x x <<⊆{}11x m x m -<<+, 所以1112m m -≤⎧⎨+≥⎩,解得12m ≤≤. 综上所述,实数m 的取值范围是12m ≤≤.【点睛】本题考查分式不等式、一元二次不等式的解法,考查集合的交集,考查根据集合的包含关系求参数,考查学生的推理能力与计算求解能力,属于中档题.22.(1){|01}A B x x =≤≤,{|2A B x x =≤或5}x ;(2)阴影图形见解析,{|0A B x x -=≤或5}x ;(3)0a ≤或3a >. 【分析】(1)当1a =时,求得集合B ,根据交集、并集的运算法则,即可求得答案;(2)阴影图形见解析,当1a =时,求得集合B ,根据A B -的定义,即可求得答案; (3)由题意得B A ⊆,分别讨论B =∅和B ≠∅两种情况,根据集合的包含关系,即可求得a 的范围.【详解】(1)当1a =时,02{}|B x x ≤≤=,所以{|01}A B x x =≤≤,{|2A B x x =≤或5}x ;(2)A-B 的部分如图所示:, 当1a =时,{|0A B x x -=≤或5}x; (3)因为A B B =,所以B A ⊆,当B =∅时,221a a ->+,解得3a >,当B ≠∅时,则11221a a a +≤⎧⎨-≤+⎩或225221a a a -≥⎧⎨-≤+⎩, 解得0a ≤或∅,综上:0a ≤或3a >.【点睛】易错点为:根据集合包含关系求参数时,当B A ⊆,且集合B 含有参数时,需要讨论集合B 是否为空集,再进行求解,考查分析理解,计算求值的能力,属中档题. 23.(1){}210A B x x ⋃=<<,()R A B ={}23710x x x <<<<或;(2)3a >.【分析】(1)利用集合交并补的定义进行计算即可;(2)利用A C ⋂≠∅结合数轴,可求得a 的取值范围.【详解】(1)∵{}37A x x =≤≤,{}210B x x =<<, ∴{}210A B x x ⋃=<<.∵{}37A x x =≤≤,∴{|3R C A x x =<或}7x >,∴()R A B ={|3x x <或}7x >{}210x x ⋂<<{}23710x x x =<<<<或. (2)如图所示,当3a >时,A C ⋂≠∅(或用补集思想)3a ∴>.【点睛】本题考查集合的交并补运算,考查利用集合间的关系求参数范围,属于基础题. 24.(1){}|12x x ≤≤;(2)[]4,2.【分析】(1)当2a =时,不等式化为2320x x -+≤,结合一元二次不等式的解法,即可求解; (2)把不等式化为()()10x x a --≤,分类讨论,结合集合的包含关系,即可求解.【详解】(1)由题意,当2a =时,不等式()210x a x a -++≤,即2320x x -+≤, 即()()120x x --≤,解得12x ≤≤,所以集合{}|12A x x =≤≤.(2)由()210x a x a -++≤,可得()()10x x a --≤, 当1a <时,不等式()()10x x a --≤的解集为{}|1x a x ≤≤.由集合A 是集合{}4|2x x -≤≤的真子集可得4a ≥-,所以41a -≤<,当1a =时,不等式()()10x x a --≤的解集为{}|1x x =满足题意;当1a >时,不等式()()10x x a --≤的解集为{}|1x x a ≤≤,由集合A 是集合{}4|2x x -≤≤的真子集,可得2a ≤,所以11a <≤,综上可得:42x -≤≤,即实数a 的取值范围为[]4,2-.【点睛】本题主要考查了一元二次不等式的求解及其应用,其中解答中熟记一元二次不等式的解法,结合集合的关系求解是解答的关键,着重考查了推理与运算能力,属于中档试题. 25.(1)=[3,4]A B ;(2)4a >或0a <【分析】(1)写出集合A ,B 的区间形式,代入数值计算即可;(2)写出集合R C A ,根据边界判断a 的取值范围即可.【详解】集合{}|2,12=[2,4]x A y y x ==≤≤,()(){}|20[,2]B x x a x a a a =---≤=+ (1)若3a =,[3,5]B =,则=[3,4]A B ; (2)(,2)(4,)R C A =-∞+∞,()R B C A ⊆, 因此:4a >或22a +<故:4a >或0a <【点睛】 本题考查了集合的交并补运算,考查了学生的数学运算能力,属于基础题.26.(1)2(2)21a -<≤【分析】(1)先化简{}{}2|3202,1=++==--A x x x ,再由{1}A B ⋂=-,则1B -∈,代入求解.(2)将A B A ⋃=转化为B A ⊆,再分B 是空集和不是空集两种情况讨论求解.【详解】(1)因为{}{}2|3202,1=++==--A x x x 又因为{1}A B ⋂=-所以1B -∈所以()12(1)130++⨯-++=a a解得:2a =(2)因为A B A ⋃=所以B A ⊆当()2[2(1)]430∆=+-+<a a 时 解得21a -<<,B =∅ 成立当()2[2(1)]430∆=+-+=a a 时 解得:2a =-或1a =当2a =-时, {}1B =,不成立,当1a =时,{}2B =-,成立,当()2[2(1)]43>0∆=+-+a a 时 解得:2a <-或>1a ,此时{}2,1==--B A 才成立,而2(a+1)=-332a ⎧⎨+=⎩ ,解得 5=-21a a ⎧⎪⎨⎪=-⎩无解. 综上:实数a 的取值范围21a -<≤【点睛】本题主要考查了集合的基本运算和已知集合关系求参数的问题,还考查了分类讨论的思想和运算求解的能力,属于中档题.。

(北师大版2019课标)高中数学必修第一册 第一章综合测试(含答案)

(北师大版2019课标)高中数学必修第一册 第一章综合测试(含答案)

第一章综合测试第Ⅰ卷(选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}{}12323A B ==,,,,,则( ) A .A B =B .AB =∅C .AB D .B A2.已知全集U =R ,集合{}{}010M x x N x x ==<≤,≤,则()U M N =( )A .{}01x x ≤<B .{}01x x <≤C .{}01x x ≤≤D .{}1x x <3.已知集合{}{}211M a P a ==--,,,,若MP 有三个元素,则MP =( )A .{}01,B .{}01-,C .{}0D .{}1-4.命题“200x x x ∀+≥,≥”的否定是( ) A .200x x x ∃+<,<B .200x x x ∃+≥,≤C .200x x x ∃+≥,<D .200x x x ∃+<,≥ 5.已知010a b -<,<<,则( ) A .0a ab -<<B .0a ab ->>C .2a ab ab >>D .2ab a ab >>6.已知集合{}212002x A x x x B xx ⎧⎫+=+-=⎨⎬-⎩⎭≤,≥,则()A B =R ( )A .()12-,B .()11-,C .(]12-,D .(]11-,7.“关于x 的不等式220x ax a -+>的解集为R ”的一个必要不充分条件是( )A .01a <<B .103a << C .01a ≤≤D .103a a <或>8.若正数a b ,满足121a b +=,则2b a+的最小值为( )A .B .C .8D .9二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,选对但不全的得3分,有选错的得0分) 9.有下列命题中,真命题有( ) A .*x ∃∈N ,使x 为29的约数 B .220x x x ∀∈++R ,> C .存在锐角sin 1.5a α=,D .已知{}{}23A a a n B b b m ====,,则对于任意的*n m ∈N ,,都有AB =∅10.已知110a b<<,下列结论中正确的是 ( )A .a b <B .a b ab +<C .a b >D .2ab b <11.如下图,二次函数()20y ax bx c a =++≠的图像与x 轴交于A B ,两点,与y 轴交于C 点,且对称轴为1x =,点B 坐标为()10-,,则下面结论中正确的是( )A .20a b +=B .420a b c -+<C .240b ac ->D .当0y <时,1x -<或4x >12.设P 是一个数集,且至少含有两个元素.若对任意的a b P ∈,,都有aa b a b ab P b+-∈,,,(除数0b ≠),则称P 是一个数域.则关于数域的理解正确的是( ) A .有理数集Q 是一个数域 B .整数集是数域C .若有理数集M ⊆Q ,则数集M 必为数域D .数域必为无限集第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.不等式2680x x -+->的解集为________.14.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正常数).公司决定从原有员工中分流()*0100x x x ∈N <<,人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2%x .若要保证产品A 的年产值不减少,则最多能分流的人数是________. 15.若()11102a b a b +=>,>,则41a b ++的最小值为________. 16.已知非空集合A B ,满足下列四个条件: ①{}1234567A B =,,,,,,; ②AB =∅;③A 中的元素个数不是A 中的元素; ④B 中的元素个数不是B 中的元素.(1)若集合A 中只有1个元素,则A =________;(2)若两个集合A 和B 按顺序组成的集合对()A B ,叫作有序集合对,则有序集合对()A B ,的个数是________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知全集为实数集R ,集合{}{}1721A x x B x m x m ==-+≤≤,<<. (1)若5m =,求()A B A B R ,;(2)若A B A =,求m 的取值范围.18.(本小题满分12分)已知不等式()21460a x x --+>的解集为{}31x x -<<.(1)求a 的值;(2)若不等式230ax mx ++≥的解集为R ,求实数m 的取值范围.19.(本小题满分12分)已知2340P x x --:≤;2269q x x m -+-:≤0,若p 是q 的充分条件,求m 的取值范围.20.(本小题满分12分)为了保护环境,某工厂在政府部门的鼓励下进行技术改进:把二氧化碳转化为某种化工产品,经测算,该处理成本y (单位:万元)与处理量x (单位:吨)之间的函数关系可近似表示为[]24016003050y x x x =-+∈,,,已知每处理一吨二氧化碳可获得价值20万元的某种化工产品.(1)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少?21.(本小题满分12分)若集合{}2280A x x x =+-<,{}13B x x =+>,{}22210C x x mx m m =-+-∈R <,.(1)若A C =∅,求实数m 的取值范围.(2)若()A B C ⊆,求实数m 的取值范围.22.(本小题满分12分)已知正实数a b ,满足1a b +=,求2211a b a b ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭的最小值.第一章综合测试答案解析一、 1.【答案】D【解析】由真子集的概念,知B A ,故选D .2.【答案】B【解析】{}(){}001U U N x x M N x x ==∵>,∴<≤.故选B .3.【答案】C【解析】由题意知2a a =-,解得0a =或1a =-.①当0a =时,{}{}{}1010101M P M P ==-=-,,,,,,,满足条件,此时{}0M P =;②当1a =-时,21a =,与集合M 中元素的互异性矛盾,舍去,故选C .4.【答案】C【解析】“200x x x ∀+≥,≥”的否定是“200x x x ∃+≥,<”. 5.【答案】B【解析】201000a b ab a ab -∵<,<<,∴>,<<,故A ,C ,D 都不正确,正确答案为B . 6.【答案】D【解析】由220x x +-≤,得[]2121x A -=-≤≤,∴,.由102x x +-≥,得1x -≤或2x >,(]()12B =-∞-+∞∴,,.则(]12B =-R,,()(]11A B =-R ∴,.故选D . 7.【答案】C【解析】因为关于x 的不等式220x ax a -+>的解集为R ,所以函数()22f x x ax a =-+的图象始终落在x轴的上方,即2440a a ∆=-<,解得01a <<,因为要找其必要不充分条件,从而得到()01,是对应集合的真子集,故选C . 8.【答案】D【解析】00a b ∵>,>,且121b b +=,则2212252549b b a ab a a b ab ⎛⎫⎛⎫+=++=+++= ⎪⎪⎝⎭⎝⎭≥,当且仅当22ab ab =即133a b ==,时取等号,故选D . 二、9.【答案】AB【解析】A 中命题为真命题.当1x =时,x 为29的约数成立;B 中命题是真命题.22172024x x x ⎛⎫++=++ ⎪⎝⎭>恒成立;C 中命题为假命题.根据锐角三角函数的定义可知,对于锐角α,总有0sin 1a <<;D 中命题为假命题.易知66A B ∈∈,,故A B ≠∅.10.【答案】BD【解析】因为110a b<<,所以0b a <<,故A 错误;因为0b a <<,所以00a b ab +<,>,所以a b ab +<,故B 正确;因为0b a <<,所以a b >不成立,故C 错误;()2ab b b a b -=-,因为0b a <<,所以0a b ->,即()20ab b b a b -=-<,所以2ab b <成立,故D 正确.故选BD .11.【答案】ABC【解析】∵二次函数()20y ax bx c a =++≠图象的对称轴为112bx a==,∴-,得20a b +=,故A 正确;当2x =-时,420y a b c =-+<,故B 正确;该函数图象与x 轴有两个交点,则240b ac ->,故C 正确;∵二次函数()20y ax bx c c =++≠的图象的对称轴为1x =,点B 的坐标为()10-,,∴点A 的坐标为()30,,∴当0y <时,1x -<或3x >,故D 错误,故选ABC.12.【答案】AD【解析】若a b ∈Q ,,则a b +∈Q ,a b -∈Q ,ab ∈Q ,()0ab b∈≠Q ,所以有理数Q 是一个数域,故A正确;因为1122∈∈∉Z Z Z ,,,所以整数集不是数域,B 不正确;令数集{}2M =Q,则1M M ∈,但1M ,所以C 不正确;根据定义,如果()0a b b ≠,在数域中,那么2a b a b a kb +++,,…,(k k 为整数),…都在数域中,故数域必为无限集,D 正确.故选AD . 三、13.【答案】()24,(或写成{}24x x <<) 【解析】原不等式等价于2680x x -+<,即()()240x x --<,得24x <<. 14.【答案】16【解析】由题意,分流前每年创造的产值为100t (万元),分流x 人后,每年创造的产值为()()1001 1.2%x x t -+,由()()01001001 1.2%100x x x t t ⎧⎪⎨-+⎪⎩<<≥,解得5003x <≤.因为*x ∈N ,所以x 的最大值为16.15.【答案】19 【解析】由1112a b +=,得221a b+=, ()228241418211119a b a b a b a b b a a ⎛⎫++=+++=+++++= ⎪⎝⎭≥.当且仅当82a bb a=,即36a b ==,时,41a b ++取得最小值19. 16.【答案】(1){}6 (2)32【解析】(1)若集合A 中只有1个元素,则集合B 中有6个元素,所以6B ∉,故{}6A =.(2)当集合A 中有1个元素时,{}6A =,{}123457B =,,,,,,此时有序集合对()A B ,有1个;当集合A 中有2个元素时,5B ∉,2A ∉,此时有序集合对()A B ,有5个;当集合A 中有3个元素时,4B ∉,3A ∉,此时有序集合对()A B ,有10个;当集合A 中有4个元素时,3A ∉,4A ∉,此时有序集合对()A B ,有10个;当集合A 中有5个元素时,2B ∉,5A ∉,此时有序集合对()A B ,有5个;当集合A 中有6个元素时,{}123457A =,,,,,,{}6B =,此时有序集合对()A B ,有1个.综上,可知有序集合对()A B ,的个数是1510105132+++++=.四、17.【答案】解:(1){}595m B x x ==-∵,∴<<,又{}17A x x =≤≤,{}97A B x x =-∴<≤.又{}17A x x x =R<,或>,(){}91A B x x =-R ∴<<.(2)AB A A B =⊆∵,∴,2117m m -+⎧⎨⎩<∴>,即07m m ⎧⎨⎩>>,解得7m >.m ∴的取值范围是{}7m m >.18.【答案】解(1)由已知,10a -<,且方程()21460a x x --+=的两根为31-,, 有4311631aa⎧=-+⎪⎪-⎨⎪=-⎪-⎩,解得3a =.(2)不等式2330x mx ++≥的解集为R , 则24330m ∆=-⨯⨯≤,解得66m -≤≤,实数m 的取值范围为[]66-,. 19.【答案】解:由2340x x --≤,解得14x -≤≤, 由22690x x m -+-≤,可得()()330x m x m ⎡-+⎤⎡--⎤⎣⎦⎣⎦≤,① 当0m =时,①式的解集为{}3x x =;当0m <时,①式的解集为{}33x m x m +-≤≤; 当0m >时,①式的解集为{}33x m x m -+≤≤;当p 是q 的充分条件,则集合{}14x x -≤≤是①式解集在的子集.可得03134m m m ⎧⎪+-⎨⎪-⎩<≤≥或03134m m m ⎧⎪--⎨⎪+⎩>≤≥, 解得4m -≤或4m ≥.故m 的取值范围是(][)44-∞-+∞,,. 20.【答案】解:(1)当[]3050x ∈,时,设该工厂获利为S 万元, 则()()222040160030700S x x x x =--+=---,所以当[]3050x ∈,时,S 的最大值为700-,因此该工厂不会获利,国家至少需要补贴700万元,该工厂才不会亏损. (2)由题知,二氧化碳的平均处理成本[]1600403050x P x x y x=+-∈,,,当[]3050x ∈,时,1600404040P x x x x=+--=≥, 当且仅当1600x x=,即40x =时等号成立,所以当处理最为40吨时,每吨的平均处理成本最少. 21.【答案】解:(1)由已知可得{}42A x x =-<<,{}51B x x x =-<或>,{}11C x m x m =-+<<.若A C =∅,则12m -≥或14m +-≤, 解得3m ≥或5m -≤.所以实数m 的取值范围为{}53m m m -≤或≥. (2)结合(1)可得{}12A B x x =<<.若()AB C ⊆,即{}{}1211x x x m x m ⊆-+<<<<,则1112m m -⎧⎨+⎩≤≥, 解得12m ≤≤.所以实数m 的取值范围为{}12m m ≤≤.22.【答案】解:()()()22222222222222211114111421411214a b a b a b a b a b a b ab a b a b ab a b ⎛⎫⎛⎫+++=++++ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎡⎤=+++=+-++ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎛⎫=-++ ⎪⎝⎭,由1a b +=,得2124a b ab +⎛⎫= ⎪⎝⎭≤(当且仅当12a b ==时等号成立), 所以1112122ab --=≥,且22116a b≥,所以()2211125116422a b a b ⎛⎫⎛⎫+++⨯++= ⎪ ⎪⎝⎭⎝⎭≥,所以2211a b a b ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭的最小值为252.。

北师大版高中数学必修一第一单元《集合》检测卷(含答案解析)(1)

北师大版高中数学必修一第一单元《集合》检测卷(含答案解析)(1)

一、选择题1.已知集合302x A xx ⎧⎫+⎪⎪=⎨⎬-⎪⎪⎩⎭,{}B y y m =<,若A B ⊆,则实数m 的取值范围为( ) A .()2∞+, B .[)2∞+,C .()3∞-+,D .[)3∞-+,2.如图所示的韦恩图中,A 、B 是非空集合,定义*A B 表示阴影部分的集合,若x ,y ∈R ,2{|4}{|3,0}x A x y x x B y y x ==-==>,则A *B 为( )A .{|04}x x <≤B .{|01x x ≤≤或4}x >C .{|01x x ≤≤或2}x ≥D .{|01x x ≤≤或2}x >3.已知{}22(,)1,,A x y x y x Z y Z =+≤∈∈,{}(,)3,3,,B x y x y x Z y Z =≤≤∈∈.定义集合{}12121122(,)(,),(,),A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕的元素个数n 满足( ) A .77n = B .49n ≤C .64n =D .81n ≥4.下列各式中,正确的是( )A .{}22x x ⊆≤B .{32x x ∈>且}1x <C .{}{}41,21,x x k k Z x x k k Z =±∈≠=+∈D .{}{}31,32,x x k k Z x x k k Z =+∈==-∈ 5.已知集合{}2|230A x x x =--<,集合{}1|21x B x +=>,则C B A =( )A .[3,)+∞B .(3,)+∞C .(,1][3,)-∞-⋃+∞D .(,1)(3,)-∞-+∞6.已知集合2{|120}A x x x =--≤, {|211}B x m x m =-<<+.且A B B =,则实数m 的取值范围为 ( ) A .[-1,2)B .[-1,3]C .[-2,+∞)D .[-1,+∞)7.已知集合{}|02A x x =<<,集合{}|11B x x =-<<,集合{}|10C x mx =+>,若()A B C ⊆,则实数m 的取值范围为( )A .{}|21m m -≤≤B .1|12m m ⎧⎫-≤≤⎨⎬⎩⎭C .1|12m m ⎧⎫-≤≤⎨⎬⎩⎭D .11|24m m ⎧⎫-≤≤⎨⎬⎩⎭8.对于集合A 和B ,令{,,},A B x x a b a A b B +==+∈∈如果{2,},S x x k k Z ==∈{}|21,T x x k x Z ==+∈,则S T +=( )A .整数集ZB .SC .TD .{41,}x x k k Z =+∈9.设U 为全集,()UB A B =,则A B 为( )A .AB .BC .UBD .∅10.设全集为R ,集合{}2log 1A x x =<,{B x y ==,则()RAB =( )A .{}02x x <<B .{}01x x <<C .{}11x x -<<D .{}12x x -<<11.若集合2{||31|2},{|0},1x A x x B x x -=-≥=≤-则()R C A B =( )A .1[,2]3-B .∅C .1(,)(1,2]3-∞-⋃ D .1,1(1,2]3⎛⎫-⋃ ⎪⎝⎭12.已知集合{}11A x x =-≤≤,{}220B x x x =-≤,则AB =( )A .{}12x x -≤≤B .{}10x x -≤≤C .{}12x x ≤≤D .{}01x x ≤≤二、填空题13.已知集合2|05x A x x -⎧⎫=<⎨⎬+⎩⎭,{}2230,B x x x x R =--≥∈,则A B =_________. 14.在①AB A =,②A B ⋂≠∅,③R BC A ⊆这三个条件中任选一个,补充在下面问题中,若问题中的实数a 存在,求a 的取值范围;若不存在,说明理由.问题:已知集合{}20,,log (1)1,1x a A xx R B x x x R x -⎧⎫=<∈=-≤∈⎨⎬+⎩⎭∣∣,是否存在实数a ,使得___________?15.已知集合:A ={x |x 2=1},B ={x |ax =1},且A ∩B =B ,则实数a 的取值集合为______.16.集合1{}2|Ax x ≤=<,{|}B x x a =<,若A B B ⋃=,则a 的取值范围是_______.17.已知{}A x x =>,{|(3)(3)0}B x x x x =-+>,则AB =________18.若关于x 的方程2210ax x ++=的解集有唯一子集 ,则实数a 的取值范围是_____. 19.不等式31x x a-≥+的解集为M ,若2M -∉,则实数a 的取值范围为________. 20.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n +k | n ∈Z},k =0,1,2,3,4.给出如下四个结论:①2 014∈[4]; ②-3∈[3]; ③Z =[0]∪[1]∪[2]∪[3]∪[4];④整数a ,b 属于同一“类”的充要条件是“a -b ∈[0]”.其中,正确的结论是________.三、解答题21.设全集U =R ,集合A ={x |-1<x -m <5},集合1{|24}.2x B x =<< (1)当m =-1时,求();UA B ⋂(2)若A ∪B =A ,求实数m 的取值范围. 22.已知集合4231a A a a ⎧⎫-=≤⎨⎬+⎩⎭,{}12B a a =+≤,{3}C x m x m =-<≤+(1)求AB ;(2)若()C AC ⊆,求m 的取值范围.23.已知集合{}43A x x =-≤≤,集合{}121B x m x m =-≤≤+. (1)若B A ⊆,求实数m 的取值范围;(2)若不存在实数x 使x A ∈,x B ∈同时成立,求实数m 的取值范围. 24.已知集合{|14}A x x =<<,集合{|21}B x m x m =<<- (1)当1m =-时,求A B ,()R A B ⋂;(2)若AB =∅,求实数m 的取值范围.25.已知集合{}123A x a x a =-<<+,{}24B x x =-≤≤ (1)2a =时,求AB ;(2)若x A ∈是x B ∈的充分条件,求实数a 的取值范围.26.已知集合{}|2,12xA y y x ==≤≤,()(){}|20B x x a x a =---≤. (1)若3a =,求AB ;(2)若()R B C A ⊆.求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】求出集合A ,由A B ⊆,结合数轴,可得实数m 的取值范围. 【详解】解不等式302x x +≤-,得32x -≤<,[)3,2A ∴=-. A B ⊆,可得2m ≥.故选:B . 【点睛】本题考查集合间的关系,属于基础题.2.B解析:B 【分析】弄清新定义的集合与我们所学知识的联系:所求的集合是指将A B ⋃除去A B ⋂后剩余的元素所构成的集合.再利用函数的定义域、值域的思想确定出集合A ,B ,代入可得答案. 【详解】依据定义,*A B 就是指将A B ⋃除去A B ⋂后剩余的元素所构成的集合;对于集合A ,求的是函数y 解得:{|04}A x x =≤≤;对于集合B ,求的是函数3(0)xy x =>的值域,解得{}1B y y =;依据定义,借助数轴得:*{|01A B x x =≤≤或4}x >. 故选:B . 【点睛】本小题考查数形结合的思想,考查集合交并运算的知识,借助数轴保证集合运算的准确性,属于中档题.3.A解析:A 【分析】先理解题意,然后分①当11x =±,10y =时,②当10x =,11y =±时, ③当10x =,10y =时,三种情况讨论即可. 【详解】解:由{}22(,)1,,A x y x y x Z y Z =+≤∈∈,{}(,)3,3,,B x y x y x Z y Z =≤≤∈∈, ①当11x =±,10y =时, 124,3,2,1,0,1,2,3,4x x +=----,123,2,1,0,1,2,3y y +=---,此时A B ⊕的元素个数为9763⨯=个,②当10x =,11y =±时, 123,2,1,0,1,2,3x x +=---,124,3,2,1,0,1,2,3,4y y +=----,这种情况和第①种情况除124,4y y +=-外均相同,故新增7214⨯=个, ③当10x =,10y =时, 123,2,1,0,1,2,3x x +=---,123,2,1,0,1,2,3y y +=---,这种情况与前面重复,新增0个,综合①②③可得:A B ⊕的元素个数为6314077++=个, 故选:A. 【点睛】本题考查了元素与集合关系的判断,重点考查了计数原理的应用,属中档题.4.D解析:D 【分析】根据元素与集合的关系,集合与集合的关系即可求解. 【详解】因为2与集合{}2x x ≤的关系是属于或者不属于,故A 选项错误; 因为{2x x >且}1x <是空集,3不是集合中的元素,故B 选项错误;因为集合{}{}41,,21,x x k k Z x x k k Z =±∈=+∈都表示奇数构成的集合,相等,故C 选项错误;因为集合{}{}31,,32,x x k k Z x x k k Z =+∈=-∈都表示被3整数余1的整数构成的集合,故D 选项正确. 【点睛】本题主要考查了集合的描述法,元素与集合的关系,集合与集合的关系,属于中档题.5.A解析:A 【分析】首先解得集合A ,B ,再根据补集的定义求解即可. 【详解】 解:{}2|230{|13}A x x x x x =--<=-<<,{}1|21{|1}x B x x x +=>=>-,{}C |3[3,)B A x x ∴=≥=+∞,故选A .【点睛】本题考查一元二次不等式的解法,指数不等式的解法以及补集的运算,属于基础题.6.D解析:D 【分析】 先求出集合A ,由A B B =,即B A ⊆,再分B φ=和B φ≠两种情况进行求解.【详解】由2120x x --≤,得34x -≤≤. 即[3,4]A =-.由A B B =,即B A ⊆.当B φ=时,满足条件,则211m m -≥+解得2m ≥.当B φ≠时,要使得B A ⊆,则12121314m m m m +>-⎧⎪-≥-⎨⎪+≤⎩.解得:12m -≤<.综上满足条件的m 的范围是:1m ≥-. 故选:D. 【点睛】本题主要考查集合的包含关系的判断及应用,以及集合关系中的参数范围问题,考查分类讨论思想,属于中档题.7.B解析:B 【分析】求出A ∪B ={x |﹣1<x <2},利用集合C ={x |mx +1>0},(A ∪B )⊆C ,分类讨论,可得结论. 【详解】由题意,A ∪B ={x |﹣1<x <2}, ∵集合C ={x |mx +1>0},(A ∪B )⊆C ,①m <0,x 1m -<,∴1m -≥2,∴m 12≥-,∴12-≤m <0; ②m =0时,C =R,成立;③m >0,x 1m ->,∴1m-≤-1,∴m ≤1,∴0<m ≤1, 综上所述,12-≤m ≤1, 故选:B . 【点睛】此题考查了并集及其运算,以及集合间的包含关系,考查分类讨论的数学思想,属于中档题.8.C解析:C 【分析】由题意分别找到集合S ,T 中的一个元素,然后结合题中定义的运算确定S T +的值即可. 【详解】由题意设集合S 中的元素为:2,k k Z ∈,集合T 中的元素为:21,m m Z +∈, 则S T +中的元素为:()22121k m k m ++=++, 举出可知集合S T T +=.【点睛】本题主要考查集合的表示方法,集合的运算法则等知识,意在考查学生的转化能力和计算求解能力.9.D解析:D 【分析】根据题意作出“韦恩图”,得出集合A 与集合B 没有公共元素,即可求解. 【详解】由题意,集合U 为全集,()UBA B =,如图所示,可得集合A 与集合B 没有公共元素,即A B =∅,故选D.【点睛】本题主要考查了集合的运算及应用,其中解答中根据题设条件,作出韦恩图确定两集合的关系是解答的关键,着重考查了推理与论证能力,属于基础题.10.B解析:B 【解析】 【分析】解出集合A 、B ,再利用补集和交集的定义可得出集合()RA B .【详解】由2log 1x <,02x <<,{}02A x x ∴=<<.由210x -≥,得1x ≤-或1x ≥,则{}11B x x x =≤-≥或,{}11R B x x ∴=-<<, 因此,(){}01A B x x ⋂=<<R ,故选:B. 【点睛】本题考查交集和补集的混合运算,同时也考查了对数不等式以及函数定义域的求解,考查计算能力,属于中等题.11.D解析:D 【分析】解绝对值不等式求得集合A ,解分式不等式求得集合B ,求得集合A 的补集,然后求此补集和集合B 的并集,由此得出正确选项.由|31|2x -≥得312x -≤-或312x -≥,解得13x ≤-或1x ≥,故1,13R C A ⎛⎫=- ⎪⎝⎭.由201x x -≤-得()()12010x x x ⎧--≤⎨-≠⎩,解得12x <≤,所以()R C A B =1,1(1,2]3⎛⎫-⋃ ⎪⎝⎭.故选:D. 【点睛】本小题主要考查绝对值不等式的解法,考查分式不等式的解法,考查集合补集、并集的计算,属于基础题.12.D解析:D 【解析】B ={x ∣x 2−2x ⩽0}={x |0⩽x ⩽2}, 则A ∩B ={x |0⩽x ⩽1}, 本题选择D 选项.二、填空题13.【分析】分别根据分式不等式和一元二次不等式的解法求出集合和再根据交集的定义求出【详解】∵集合∴故答案为【点睛】本题考查集合的交集的运算解题时要认真审题注意分式不等式和一元二次不等式的合理运用是基础题解析:(]5,1--. 【分析】分别根据分式不等式和一元二次不等式的解法求出集合A 和B ,再根据交集的定义求出A B ⋂.【详解】 ∵集合2{|0}{|52}5x A x x x x -=<=-<<+, 2{|230}{|13}B x x x x R x x x =--≥∈=≤-≥,或,∴{|51}A B x x ⋂=-<≤-,故答案为(]5,1--. 【点睛】本题考查集合的交集的运算,解题时要认真审题,注意分式不等式和一元二次不等式的合理运用,是基础题.14.答案见解析【分析】求得集合化简集合分三种情况讨论得到集合;再分别得若选择①若选择②若选择③时实数a 的取值范围【详解】当时;当时;当时若选择①则当时要使则所以当时满足题意当时不满足题意所以选择①则实数解析:答案见解析 【分析】求得集合[1,1)B =-,化简集合{()(1)0,}A xx a x x R =-+<∈∣,分1a >-,1a =-,1a <-三种情况讨论得到集合A ;再分别得若选择①,若选择②,若选择③时,实数a的取值范围. 【详解】{}2log (1)1,R [1,1)B x x x =-≤∈=-∣,0,{()(1)0,}1x a A x x R x x a x x R x -⎧⎫=<∈=-+<∈⎨⎬+⎩⎭∣∣,当1a >-时,(1,)A a =-; 当1a =-时,A =∅; 当1a <-时,(,1)A a =- 若选择①AB A =,则A B ⊆,当1a >-时,要使(1,)[1,1)a -⊆-,则1a ≤,所以11a -<≤ 当1a =-时,A =∅,满足题意 当1a <-时,(,1)A a =-不满足题意 所以选择①,则实数a 的取值范围是[-1,1] 若选择②A B ⋂≠∅,当1a >-时,(1,),[1,1)A a B =-=-,满足题意; 当1a =-时,A =∅,不满足题意;当1a <-时,(,1),[1,1)A a B =-=-,不满足题意 所以选择②,则实数a 的取值范围是(1,)-+∞. 若选择③RB A ⊆,当1a >-时,(1,),(,1][,)RA a A a =-=-∞-⋃+∞,而[1,1)B =-,不满足题意当1a =-时,,R RA A =∅=,而[1,1)B =-,满足题意当1a <-时,(,1),(,][1,)RA a A a =-=-∞⋃-+∞,而[1,1)B =-,满足题意.所以选择③,则实数a 的取值范围是(,1]-∞-,综上得:若选择①,则实数a 的取值范围是[-1,1];若选择②,则实数a 的取值范围是(1,)-+∞;若选择③,则实数a 的取值范围是(,1]-∞-.【点睛】本题考查集合间的包含关系,集合间的运算,属于中档题.15.{-101}【分析】由已知得B ⊆A 从而B=∅或B={-1}或B={1}进而或=-1或由此能求出实数a 的取值集合【详解】∵A={x|x2=1}={-11}A∩B=B ∴B ⊆A ∴B=∅或B={-1}或B=解析:{-1,0,1}【分析】由已知得B ⊆A ,从而B=∅或B={-1},或B={1},进而0a =,或1a =-1或11a=,由此能求出实数a 的取值集合. 【详解】∵A={x|x 2=1}={-1,1}, A∩B=B ,∴B ⊆A , ∴B=∅或B={-1},或B={1}, ∴0a =,或1a =-1或11a=, 解得a=0或a=-1或a=1. ∴实数a 的取值集合为{-1,0,1}. 故答案为:{-1,0,1}. 【点睛】本题考查集合的求法,是基础题,解题时要认真审题,注意交集的性质的合理运用.16.【分析】根据可知A 为B 的子集利用数轴求解即可【详解】根据题意作图如下:由图可知实数的取值范围为【点睛】本题考查利用集合的并运算求参数的取值范围;数轴的合理运用是求解本题的关键;属于中档题常考题型 解析:2a >【分析】根据A B B ⋃=,可知A 为B 的子集,利用数轴求解即可. 【详解】 根据题意,作图如下:由图可知,实数a 的取值范围为2a >. 【点睛】本题考查利用集合的并运算求参数的取值范围;数轴的合理运用是求解本题的关键;属于中档题、常考题型.17.【分析】先分别求解集合中元素的所满足的不等式再由交集的定义求解即可【详解】由题因为解得则因为解得或则或所以故答案为:【点睛】本题考查集合的交集运算考查含根式的不等式的运算考查解高次不等式 解析:{|30}-<<x x【分析】先分别求解集合中元素的所满足的不等式,再由交集的定义求解即可 【详解】由题,因为20x x >-≥⎪⎩,解得1x <,则{}|1A x x =<, 因为()()330x x x -+>,解得30x -<<或3x >,则{|30B x x =-<<或}3x >, 所以{}|30A B x x ⋂=-<<,故答案为:{|30}-<<x x【点睛】本题考查集合的交集运算,考查含根式的不等式的运算,考查解高次不等式18.【分析】由题意知关于的方程无实数解可得出由此可解出实数的取值范围【详解】由题意知关于的方程无实数解当时原方程为解得不合乎题意;当时则有解得综上所述实数的取值范围是故答案为:【点睛】本题考查利用集合的 解析:()1,+∞【分析】由题意知,关于x 的方程2210ax x ++=无实数解,可得出00a ≠⎧⎨∆<⎩,由此可解出实数a 的取值范围.【详解】由题意知,关于x 的方程2210ax x ++=无实数解.当0a =时,原方程为210x +=,解得12x =-,不合乎题意; 当0a ≠时,则有440a ∆=-<,解得1a >.综上所述,实数a 的取值范围是()1,+∞.故答案为:()1,+∞.【点睛】本题考查利用集合的子集个数求参数,将问题转化为方程无实解是解题的关键,考查分类讨论思想的应用,属于中等题.19.【分析】由题意可知实数满足或解出即可得出实数的取值范围【详解】由题意可知实数满足或解不等式即即解得或因此实数的取值范围是故答案为【点睛】本题考查利用元素与集合的关系求参数解题的关键在于将问题转化为不 解析:()[),32,-∞-⋃+∞【分析】由题意可知,实数a 满足2312a --<-+或20a -+=,解出即可得出实数a 的取值范围. 【详解】由题意可知,实数a 满足2312a--<-+或20a -+=.解不等式2312a --<-+,即5102a +>-,即302a a +>-,解得3a <-或2a >. 因此,实数a 的取值范围是()[),32,-∞-⋃+∞.故答案为()[),32,-∞-⋃+∞.【点睛】本题考查利用元素与集合的关系求参数,解题的关键在于将问题转化为不等式进行求解,考查化归与转化思想的应用,属于中等题.20.①③④【分析】对各个选项分别进行分析利用类的定义直接求解【详解】在①中∵2014÷5=402…4∴2014∈4故①正确;在②中∵﹣3=5×(﹣1)+2∴﹣3∉3故②错误;在③中∵整数集中的数被5除的解析:①③④【分析】对各个选项分别进行分析,利用类的定义直接求解.【详解】在①中,∵2014÷5=402…4,∴2014∈[4],故①正确;在②中,∵﹣3=5×(﹣1)+2,∴﹣3∉[3],故②错误;在③中,∵整数集中的数被5除的数可以且只可以分成五类,∴Z =[0]∪[1]∪[2]∪[3]∪[4],故③正确;在④中,∵2015÷5=403,2010÷5=402,∴2015与2010属于同一个“类”[0],故④正确.故答案为①③④.【点睛】本题为同余的性质的考查,具有一定的创新,关键是对题中“类”的题解,属基础题.三、解答题21.(1)(){|21U AB x x =-<≤-或24}x ≤<;(2)30m -≤≤. 【分析】(1)求出集合B ,再根据集合的运算法则计算.由A B A ⋃=得B A ⊆,根据集合的包含关系得出不等式式,从而可求解.【详解】(1)1m =-时,{|115}{|24}A x x x x =-<+<=-<<,{|12}B x x =-<<, {|1U B x x =≤-或2}x ≥,∴(){|21U AB x x =-<≤-或24}x ≤<; (2)∵A B A ⋃=,∴B A ⊆,又{|15}A x m x m =-<<+,∴1152m m -≤-⎧⎨+≥⎩,解得30m -≤≤.【点睛】本题考查集合的综合运算,考查集合的包含关系,考查指数函数的性质.解题时注意集合的运算与包含关系:A B A B A =⇔⊆,A B A A B ⋂=⇔⊆.22.(1)(1,1]A B ⋂=-;(2)1m .【分析】(1)先利用分式不等式的解法和绝对值不等式的解法化简集合A ,B ,再利用交集运算求解.(2)根据()C AC ⊆,得到C A ⊆,然后分C =∅和C ≠∅两种情况讨论求解. 【详解】(1)因为集合423(1,5]1a A aa ⎧⎫-=≤=-⎨⎬+⎩⎭,{}12[3,1]B a a =+≤=-, 所以(1,1]A B ⋂=-.(2)因为()C A C ⊆,所以C A ⊆,①当3m m -≥+即32m ≤-时,C =∅,符合题意, ②当3m m -<+即32m >-时,则135m m -≥-⎧⎨+≤⎩, 解得132m -<≤, 综上:1m【点睛】 本题主要考查集合的基本运算和集合的基本关系的应用以及分式不等式和绝对值不等式的解法,还考查了分类讨论思想和运算求解的能力,属于中档题.23.(1)1m ;(2)2m <-或4m >.【分析】(1)分B =∅和B ≠∅两种情况讨论,结合B A ⊆可得出关于实数m 的不等式组,由此可解得实数m 的取值范围;(2)由题意可得AB =∅,分B =∅和B ≠∅两种情况讨论,结合已知条件可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.【详解】(1)当121m m ->+,即2m <-时,B A =∅⊆,故2m <-符合题意; 当B ≠∅且B A ⊆时,有12114213m m m m -≤+⎧⎪-≥-⎨⎪+≤⎩,解得21m -≤≤.综上可知,m 的取值范围是1m ;(2)因为不存在实数x 使得x A ∈且x B ∈,所以AB =∅.当B =∅时,有2m <-;当B ≠∅且A B =∅时,有12113m m m -≤+⎧⎨->⎩或121214m m m -≤+⎧⎨+<-⎩,解得4m >. 故实数m 的取值范围是2m <-或4m >.【点睛】易错点点睛:在利用集合的包含关系以及集合运算求参数时,不能忽略对含参数的集合为空集的情况的讨论,从而导致解题不完整.24.(1){|24}A B x x ⋃=-<<,()=R A B {|21}x x -<≤;(2)0m ≥. 【分析】(1)当1m =-时,求集合B ,再求集合的交并补集;(2)讨论B =∅ 和B ≠∅两种情况讨论当AB =∅时,求参数的取值范围. 【详解】(1)1m =-时,{|22}Bx x ,{|24}A B x x ⋃=-<<, {1R A x x =≤或4}x ≥,{|21}R A B x x ⋂=-<≤() (2)由A B =∅,当B =∅时,21m m ,解得:13m ≥ 当B ≠∅时,2111m m m <-⎧⎨-≤⎩,解得:103m ≤< 或2124m m m <-⎧⎨≥⎩,无解 综上可得:0m ≥【点睛】易错点睛:根据集合的运算结果求参数或是根据集合的包含关系求参数时,容易忽略空集的情况,这一点需注意.25.(1){}|27A B x x ⋃=-≤<;(2)()1,41,2⎡⎤-∞-⋃-⎢⎥⎣⎦. 【分析】(1)把2a =代入A 确定出A ,求出AB 即可; (2)由x A ∈是x B ∈成立的充分条件,得到A 为B 的子集,分A 为空集与A 不为空集两种情况求出a 的范围即可.【详解】(1)当2a =时,{}17A x x =<<,则{}|27A B x x ⋃=-≤<;(2)x A ∈是x B ∈成立的充分条件,A B ∴⊆,①若A =∅,则123a a ->+,解得4a ;②若A ≠∅,由A B ⊆得到,12312234a a a a -+⎧⎪--⎨⎪+⎩解得:112a -, 综上:a 的取值范围是()1,41,2⎡⎤-∞-⋃-⎢⎥⎣⎦. 【点睛】本题考查了交、并、补集的混合运算,考查充分必要条件的应用,熟练掌握运算法则是解本题的关键,属于中档题.26.(1)=[3,4]AB ; (2)4a >或0a < 【分析】(1)写出集合A ,B 的区间形式,代入数值计算即可;(2)写出集合R C A ,根据边界判断a 的取值范围即可.【详解】集合{}|2,12=[2,4]x A y y x ==≤≤,()(){}|20[,2]B x x a x a a a =---≤=+ (1)若3a =,[3,5]B =,则=[3,4]AB ; (2)(,2)(4,)R C A =-∞+∞,()R B C A ⊆, 因此:4a >或22a +<故:4a >或0a <【点睛】 本题考查了集合的交并补运算,考查了学生的数学运算能力,属于基础题.。

高中数学必修第一册 第一章综合测试含答案

高中数学必修第一册 第一章综合测试含答案

第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集{0,1,2,3,4,5}U =,集合{1,2,3,5}A =,{2,4}B =,则()uA B = ð()A .{0,2,4}B .{4}C .{1,2,4}D .{0,2,3,4}2.已知集合{0,2,3}A =,{|,,}B x x a b a b A ==⋅∈,则集合B 的子集的个数是()A .4B .8C .15D .163.如果甲是乙的必要不充分条件,乙是丙的充要条件,丙是丁的必要不充分条件,则丁是甲的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件4.设a ,b ∈R ,集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=()A .1B .1-C .2D .2-5.若集合{0,1,2}M =,{(,)|210210,,}N x y x y x y x y M =-+--∈且,则N 中元素的个数为()A .9B .6C .4D .26.命题:q x ∀∈R ,3210x x -+的否定是()A .32,10x x x ∃∈-+RB .32,10x x x ∃∈-+RC .32,10x x x ∃∈-+R >D .32,10x x x ∀∈-+R >7.已知p 是r 的充分条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件;③r 是q 的必要条件;④p ⌝是s ⌝的必要条件;⑤r 是s 的充分条件.则正确命题的序号是()A .①④⑤B .①②④C .②③⑤D .②④⑤8.已知集合{}2|0M x x x =->,{|1}N x x =,则M N = ()A .[1,)+∞B .(1,)+∞C .∅D .(,0)(1,)-∞+∞ 9.设集合{|0}M x x m =-,{}2|(1)1,N y y x x ==--∈R .若M N =∅ ,则实数m 的取值范围是()A .[1,)-+∞B .(1,)-+∞C .(,1]-∞-D .(,1)-∞-10.已知全集U R =,集合{|(2)0}A x x x =+<,{|||1}B x x =≤,则如图所示的阴影部分表示的集合是()A .(2,1)-B .[1,0)[1,2)-C .(2,1)[0,1]--D .[0,1]11.设条件p :关于x 的方程()221210m x mx -+-=的两根一个小于0,一个大于1,若p 是q 的必要不充分条件,则条件q 可设为()A .(1,1)m ∈-B .(0,1)m ∈C .(1,0)m ∈-D .(2,1)m ∈-12.关于x 的方程2210ax x ++=至少有一个负根的充要条件是()A .01a B .1a <C .1a D .01a <或0a <二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.已知非空集合M 满足:{1,2,3,4,5}M ⊆,且若x M ∈,则6x M -∈.则满足条件的集合M 有__________个.14.设全集S 有两个子集A ,B ,若sA x x B ∈⇒∈ð,则x A ∈是x sB ∈ð的条件是__________.15.关于x 的不等式2043x ax x +++的解集为(3,1)(2,)--+∞ 的充要条件是__________.16.已知集合{|||1}A x x a =-,{}2|540B x x x =-+,若A B =∅ ,则实数a 的取值范围是__________.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合{|(2)[(31)]0}A x x x a =--+<,()22|01x a B x x a ⎧⎫-⎪⎪=⎨⎬-+⎪⎪⎩⎭<.(1)当2a =时,求A B ⋂;(2)求使B A ⊆的实数a 的取值范围.18.(本小题满分12分)若{|68,,}A x x a b a b ==+∈Z ,{|2,}B x x m m ==∈Z ,求证:A B =.19.(本小题满分12分)已知命题p :方程2220a x ax +-=在区间[1,1]-上有解;命题q :只有一个实数x 满足不等式2220x ax a ++≤.若命题“p 或q ”是假命题,求实数a 的取值范围.20.(本小题满分12分)已知{}2|320A x x x =++≥,{}2|410,B x mx x m m =-+-∈R >,若 0A B = ,且A B A = ,求实数m 的取值范围.21.(本小题满分12分)已知{}2:|10p A x x ax =++≤,{}2:|320q B x x x =-+≤,若p 是q 的充分不必要条件,求实数a 的取值范围.22.(本小题满分12分)已知集合{}2|8200P x x x =--≤,{||1|}S x x m =-.(1)若()P S P ⊆ ,求实数m 的取值范围.(2)是否存在实数m ,使“x P ∈”是“x S ∈”的充要条件?若存在,求出m 的取值范围;若不存在,请说明理由.第一单元测试答案解析一、1.【答案】A【解析】由题意得uA {0,4}=ð,又{2,4}B =,所以(){0,2,4}uA B = ð,故选A .2.【答案】D【解析】∵{0,4,6,9}B =,∴B 的子集的个数为4216=.3.【答案】A【解析】因为丁⇒丙⇔乙⇒甲,故丁⇒甲(传递性).4.【答案】C【解析】∵集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,又0a ≠∵,0a b +=∴,即a b =-,1ba=-∴,1b =.2b a -=∴,故选C .5.【答案】C【解析】N ∵为点集,x M ∈,y M ∈,∴由x ,y 组成的点有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2).其中满足210x y -+≥且210x y --≤的仅有(0,0),(0,1),(1,1),(2,1)四个元素.6.【答案】C【解析】原命题的否定是“32,10x x x ∃∈-+R >”.7.【答案】B【解析】由已知有p r ⇒,q r ⇒,r s ⇒,s q ⇒,由此得g s ⇒且s q ⇒,r q ⇒且q r ⇒,所以①正确,③不正确.又p q ⇒,所以②正确.④等价于p s ⇒,正确.r s ⇒且s r ⇒,⑤不正确.故选B .8.【答案】B【解析】由20x x ->得0x <或1x >,∵(1,)M N =+∞ .故选B .9.【答案】D【解析】由已知得(,]M m =-∞,[1,)N =-+∞,∵M N =∅ ,1m ∴-<,故选D .10.【答案】C【解析】由已知得{|20}A x x =-<<,{|11}B x x =-≤≤,所以(2,1]A B =- ,[1,0)A B =- ,所以阴影部分表示的集合为()(2,1)[0,1]A B A B =--⋃ ð,故选C .11.【答案】C【解析】构造函数()22121y m x mx =-+-,则0x =时,1y =-,函数的图像开口向上,由1x =时21210m m -+-<得2m >或0m <,又p 是q 的必要不充分条件,所以p ⇒q ,q p ⇒,故选C .12.【答案】C【解析】若0∆=,则440a -=,1a =,满足条件,当0∆>时,4401a a -⇒><.所以1a ≤.二、13.【答案】7【解析】列举如下:{1,5}M =,{2,4}M =,{3}M =,{1,3,5)M =,{2,3,4}M =,{1,2,4,5}M =,{1,2,3,4,5}M =,共7个.14.【答案】必要不充分【解析】由已知得S A B ⊆ð,两边取补集,有()S S SA B ⊇痧,即S A B ⊇ð,所以S x B x A ∈⇒∈ð,反之,不一定成立,故x ∈A 是S x B ∈ð的必要不充分条件.15.【答案】2a =-【解析】令2430x x ++=,得3x =-或1x =-,∴可猜想20a +=,即2a =-.代入原不等式得22043x x x -++>,解得(3,1)(2,)x ∈--+∞ .故2a =-.16.【答案】(2,3)【解析】由题意得{|11}A x a x a =-+≤≤,{|14}B x x x 或,A B =∅ ,1114a a ->⎧⎨+<⎩∴,23a ∴<<.三、17.【答案】(1)∵当2a =时,{|27}A x x =<<,{|45}B x x =<<,{|45}A B x x = ∴<<(2)由已知得{}2|21B x a x a =+<<,当13a <时,{|312}A x a x =+<<,要使B A ⊆,必须满足2231,12,a a a +⎧⎨+⎩此时1a =-;当13a =时,A =∅,使B A ⊆的a 不存在;当13a >时,(2,31)A a =+,要使B A ⊆,必须满足2222,131,12,a a a a a ⎧⎪++⎨⎪+≠⎩此时13a <.综上可知,使B A ⊆的实数a 的取值范围为(1,3]{1}- .18.【答案】证明:①设t A ∈,则存在,a b ∈Ζ,使得682(34)t a b a b =+=+.34a b +∈Z ∵t B ∈∴,t B ∴∈即A B ⊆.②设t B ∈,则存在m ∈Z ,使得26(5)84t m m m ==⨯-+⨯.0a =∴t A∈∴5m -∈Z ∵,4m ∈Z ,,即B A ⊆.由①②知A B =.19.【答案】由2220a x ax +-=,得(2)(1)0ax ax +-=,显然0a ≠,2x a =-∴或1x a=.[1,1]x ∈-∵,故21a ≤或11a,||1a ∴.“只有一个实数x 满足2220x ax a ++≤”即抛物线222y x ax a =++与x 轴只有一个交点,2480a a ∆=-=∴,或2a =,∴命题“p 或q ”为真命题时“||1a ≥或0a =”.∵命题“p 或q ”为假命题,∴实数a 的取值范围为{|10 01}a a a -<<或<<.20.【答案】A B A = ∵,B A ⊆∴,又A B =∅ ,B =∅∴{}2|410,B x mx x m m =-+-∈R ∵>,∴对一切x ∈R ,使得2410mx x m -+-≤恒成立,于是有0,164(1)0,m m m ⎧⎨--⎩<≤解得12m∴实数m 的取值范围是117|2m m ⎧-⎪⎨⎬⎪⎪⎩⎭21.【答案】{}2|320{|12}B x x x x x =∈-+=R ,p ∵是q 的充分不必要条件,p q ⇒∴,q ⇒p ,即A 是B 的真子集,可A =∅或方程210x ax ++=的两根在区间[1,2]内,210a ∆=-∴<或0,12,2110,4210,a a a ∆⎧⎪⎪-⎪⎨⎪++⎪++⎪⎩解得22a -<.22.【答案】由28200x x --≤,得210x -,所以{|210P x x =-≤≤.由|1|x m -≤,得11m x m -+.所以{|11}S x m x m =-+≤≤.(1)要使()P S P ⊆ ,则S P ⊆①若S =∅,则0m <;②若S ≠∅,则0,12,110,m m m ⎧⎪--⎨⎪+⎩解得03m .综合①②可知,实数m 的取值范围为(,3]-∞.(2)由“x P ∈”是“x S ∈”的充要条件,知S P =,则12,110,m m -=-⎧⎨+=⎩此方程组无解,所以这样的实数m 不存在.。

人教A版新课标高中数学必修4第一章《三角函数》综合练习题(含答案)

人教A版新课标高中数学必修4第一章《三角函数》综合练习题(含答案)

第一章《三角函数》综合练习一、选择题1.已知角α的终边经过点0p (-3,-4),则)2cos(απ+的值为( )A.54-B.53C.54D.53-2.半径为πcm ,圆心角为120︒所对的弧长为()A .3πcmB .23πcmC .23πcm D .223πcm 3.函数12sin[()]34y x π=+的周期、振幅、初相分别是( )A .3π,2-,4πB .3π,2,12πC .6π,2,12πD .6π,2,4π4.sin y x =的图象上各点纵坐标不变,横坐标变为原来的12,然后把图象沿x 轴向右平移3π个单位,则表达式为( ) A .1sin()26y x π=-B .2sin(2)3y x π=-C .sin(2)3y x π=-D .1sin()23y x π=-5.已知函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数图像( )A .关于直线x =π4对称B .关于点(π3,0)对称C .关于点(π4,0)对称D .关于直线x =π3对称6.如图,曲线对应的函数是 ( ) A .y=|sin x | B .y=sin|x |C .y=-sin|x |D .y=-|sin x |7.函数y=cos 2x –3cosx+2的最小值是()A .2B .0C .41 D .68.函数y =3sin ⎝⎛⎭⎪⎫-2x -π6(x ∈[0,π])的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤0,5π12B.⎣⎢⎡⎦⎥⎤π6,2π3C.⎣⎢⎡⎦⎥⎤π6,11π12D.⎣⎢⎡⎦⎥⎤2π3,11π12 9.已知函数sin()y A x B ωϕ=++的一部分图象如右图所示,如果0,0,||2A πωϕ>><,则( )A.4=AB.1ω=C.6πϕ= D.4=B10.已知1cos()63πα+=-,则sin()3πα-的值为()A .13B .13-C .233D .233-11.已知α、β是第二象限的角,且βαcos cos >,则 ( )A.βα<;B.βαsin sin >;C.βαtan tan >;D.以上都不对12.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( )A. 1B.22C. 0D.22-二、填空题13.函数x x f cos 21)(-=的定义域是______________ 14.若sin α+cos αsin α-cos α=2,则sin αcos α的值是_____________.15、函数])32,6[)(6cos(πππ∈+=x x y 的值域是 . 16.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,则k 的取值范围是__________.三、解答题17.已知α是第二象限角,sin()tan()()sin()cos(2)tan()f πααπαπαπαα---=+--.(1)化简()f α; (2)若31sin()23πα-=-,求()f α的值.18.已知tan 3α=,求下列各式的值: (1)4sin cos 3sin 5cos αααα-+ ;(2)212sin cos cos ααα+.19.(1)画出函数y =sin ⎪⎭⎫ ⎝⎛6π - 2x 在一个周期的函数图像;(2)求出函数的对称中心和对称轴方程.20.已知y =a -b cos3x (b >0)的最大值为32,最小值为-12.(1)判断其奇偶性.(2)求函数y =-4a sin(3bx )的周期、最大值,并求取得最大值时的x ;21.已知函数45)62sin(21++=πx y (1)求函数的单调递增区间; (2)写出y=sinx 图象如何变换到15sin(2)264y x π=++的图象第一章《三角函数》综合练习答案一、选择题1-5 CDCBB 6-10 CBBCA 11-12 BB 二、填空题13、5[2,2],33k k k Z ππππ++∈14、31015、1[]216、13k << 17. 解析:(1)sin (tan )1()sin cos (tan )cos f ααααααα-==---;(2)若31sin()23πα-=-,则有1cos 3α=-,所以()f α=3。

最新北师大版高中数学必修一第一单元《集合》测试题(有答案解析)(1)

最新北师大版高中数学必修一第一单元《集合》测试题(有答案解析)(1)

一、选择题1.已知集合{}2,,M m m a b a b Q ==+∈,则下列四个元素中属于M 的元素的个数是( )①12π+;②1162+;③22+;④2323-++A .4B .3C .2D .12.已知x ,y 都是非零实数,||||||x y xy z x y xy =++可能的取值组成的集合为A ,则下列判断正确的是( ) A .3A ∈,1A -∉B .3A ∈,1A -∈C .3A ∉,1A -∈D .3A ∉,1A -∉3.记有限集合M 中元素的个数为||M ,且||0∅=,对于非空有限集合A 、B ,下列结论:① 若||||A B ≤,则A B ⊆;② 若||||AB A B =,则A B =;③ 若||0A B =,则A 、B 中至少有个是空集;④ 若AB =∅,则||||||A B A B =+;其中正确结论的个数为( ) A .1B .2C .3D .44.如图所示的韦恩图中,A 、B 是非空集合,定义*A B 表示阴影部分的集合,若x ,y ∈R ,2{|4}{|3,0}x A x y x x B y y x ==-==>,则A *B 为( )A .{|04}x x <≤B .{|01x x ≤≤或4}x >C .{|01x x ≤≤或2}x ≥D .{|01x x ≤≤或2}x >5.集合{}2|6,y y x x ∈=-+∈N N 的真子集的个数是( ) A .9B .8C .7D .616.已知集合{}2,xA y y x R ==∈,{}148x B x -=≤,则A B =( )A .5(,)2-∞ B .5[0,]2C .7(0,]2D .5(0,]27.设U 为全集,()UB A B =,则A B 为( )A .AB .BC .UB D .∅8.若集合2{||31|2},{|0},1x A x x B x x -=-≥=≤-则()R C A B =( )A .1[,2]3-B .∅C .1(,)(1,2]3-∞-⋃ D .1,1(1,2]3⎛⎫-⋃ ⎪⎝⎭9.设所有被4除余数为()0,1,2,3k k =的整数组成的集合为k A ,即{}4,k A x x n k n Z ==+∈,则下列结论中错误的是( )A .02020A ∈B .3a b A +∈,则1a A ∈,2b A ∈C .31A -∈D .k a A ∈,k b A ∈,则0a b A -∈10.下列结论正确的是() A .若a b <且c d <,则ac bd <B .若a b >,则22ac bc >C .若0a ≠,则12a a +≥ D .若0a b <<,集合1|A x x a ⎧⎫==⎨⎬⎩⎭,1|B x x b ⎧⎫==⎨⎬⎩⎭,则A B ⊇11.集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值 范围是( ) A .{}a |0a 6≤≤ B .{}|24a a a ≤≥或C .{}|06a a a ≤≥或D .{}|24a a ≤≤12.从含有3个元素的集合{},,a b c 的所有子集中任取一个,所取得子集是含有2个元素的集合的概率( ) A .310B .112C .4564D .38二、填空题13.非空集合G 关于运算⊕满足:①对任意,a b G ∈,都有a b G +∈;②存在e G ∈使得对于一切a G ∈都有a e e a a ⊕=⊕=,则称G 是关于运算⊕的融洽集,现有下列集合与运算:①G 是非负整数集,⊕:实数的加法;②G 是偶数集,⊕:实数的乘法;③G 是所有二次三项式构成的集合,⊕:多项式的乘法;④{},G x x a a b Q ==+∈,⊕:实数的乘法;其中属于融洽集的是________(请填写编号)14.定义有限数集A 中的最大元素与最小元素之差为A 的“长度”,如:集合1{1,2,4}A =的“长度”为3,集合{}23A =的“长度”为0.已知集合{1,2,3,4,5,6}U =,则U 的所有非空子集的“长度”之和为_________.15.对于任意集合X 与Y ,定义:①{|X Y x x X -=∈且}x Y ∉;②()X Y X Y ∆=-()Y X -,(X Y ∆称为X 与Y 的对称差).已知{}{}221,R =90A y y x x B x x ==-∈-≤,,则A B ∆=_________.16.设,,x y z 都是非零实数,则可用列举法将x y z xy xyz x y z xy xyz++++的所有可能值组成的集合表示为________.17.设全集{|35}U x x =-≤≤,集合1{|||1},{|0}2A x xB x x =≤=>+,则()UC A B ⋂=_____________.18.设A 、B 是非空集合,定义:{|A B x x AB ⊗=∈且}x A B ∉,已知{|2}2xA x x =<+,{|3}B x x =>-,则A B ⊗=_________ 19.任意两个正整数x 、y ,定义某种运算⊗:()()x y x y x y x y x y +⎧⊗=⎨⨯⎩与奇偶相同与奇偶不同,则集合{(,)|6,,}M x y x y x y =⊗=∈*N 中元素的个数是________20.若集合{}|121A x m x m =+<≤-,{}|25B x x =-≤<,若()()R R C A C B ⊇,则m 的取值范围是_____________.三、解答题21.设集合{}{}222280,430A x x x B x x ax a =+-<=-+= (1)若x A ∈是x B ∈的必要条件,求实数a 的取值范围;(2)是否存在实数a ,使A B ϕ⋂≠成立?若存在,求出实数a 的取值范围;若不存在,请说明理由.22.已知集合2A {x |x x 20}=--≥,集合()22{|1210,}B x mxmx m R =-+-<∈()1当m 2=时,求集合R A 和集合B ;()2若集合B Z ⋂为单元素集,求实数m 的取值集合;()3若集合()A B Z ⋂⋂的元素个数为()*n n N ∈个,求实数m 的取值集合23.已知集合{|02}A x x =≤≤,{|32}B x a x a =≤≤-. (1)若()UA B R ⋃=,求a 的取值范围; (2)若AB B ≠,求a 的取值范围.24.设集合{}240A x x =-=,(){}222150B x x a x a =+++-=.(1)若{}2AB =-,求实数a 的值;(2)若A B A ⋃=,求实数a 的取值范围.25.已知函数2()lg(231)f x x x =-+的定义域为集合A ,函数()2(],,2x g x x =∈-∞的值域为集合B ,集合22{|430}(0)C x x mx m m =-+≤>. (1)求A ∪B ; (2)若()C AB ⊆,求实数m 的取值范围.26.已知集合{1,2,3}A =,2{|(1)0,}B x x a x a x R =-++=∈,若A B A ⋃=,求实数a ;【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】①②③都可以写成m a =+,a b 是否是有理数,④计算.【详解】①当1a +=+时,可得1,a b π==,这与,a b Q ∈矛盾,3==3a ∴+=,可得3,1a b == ,都是有理数,所以正确,2122==-,12a ∴+=-,可得11,2a b ==-,都是有理数,所以正确,④2426=+=而(22222a a b +=++,,a b Q ∈,(2a ∴+是无理数,不是集合M 中的元素,只有②③是集合M 的元素. 故选:C 【点睛】本题考查元素与集合的关系,意在考查转化与化归的思想,计算能力,属于基础题型.2.B解析:B 【分析】分别讨论,x y 的符号,然后对||||||x y xy z x y xy =++进行化简,进而求出集合A ,最后根据集合元素的确定性即可得出答案.【详解】当0x >,0y >时,1113z =++=; 当0x >,0y <时,1111z =--=-; 当0x <,0y >时,1111z =-+-=-; 当0x <,0y <时,1111z =--+=-. 所以3A ∈,1A -∈. 故选:B. 【点睛】本题考查了对含有绝对值符号的式子的化简,考查了集合元素的特点,考查了分类讨论思想,属于一般难度的题.3.B解析:B 【分析】先阅读题意,取特例{}1A = ,{}2B =,可得①③错误,由集合中元素的互异性可得②④正确. 【详解】解:对于①,取{}1A = ,{}2B =,满足||||A B ≤,但不满足A B ⊆,即①错误; 对于②,因为||||AB A B =,由集合中元素的互异性可得A B =,即②正确;对于③,取{}1A = ,{}2B =, 满足||0A B =,但不满足A 、B 中至少有个是空集,即③错误; 对于④,A B =∅,则集合A B 、中无公共元素,则||||||A B A B =+,即④正确;综上可得②④正确,故选B. 【点睛】本题考查了对新定义的理解及集合元素的互异性,重点考查了集合交集、并集的运算,属中档题.4.B解析:B 【分析】弄清新定义的集合与我们所学知识的联系:所求的集合是指将A B ⋃除去A B ⋂后剩余的元素所构成的集合.再利用函数的定义域、值域的思想确定出集合A ,B ,代入可得答案. 【详解】依据定义,*A B 就是指将A B ⋃除去A B ⋂后剩余的元素所构成的集合;对于集合A ,求的是函数y 解得:{|04}A x x =≤≤;对于集合B ,求的是函数3(0)xy x =>的值域,解得{}1B y y =;依据定义,借助数轴得:*{|01A B x x =≤≤或4}x >. 故选:B . 【点睛】本小题考查数形结合的思想,考查集合交并运算的知识,借助数轴保证集合运算的准确性,属于中档题.5.C解析:C 【分析】根据条件求解,x y 的范围,结合,x N y N ∈∈,得到集合为{2,5,6},利用集合真子集个数的公式即得解. 【详解】由于260y N y x ∈∴=-+≥x ≤≤,又,x N ∈0,1,2x ∴=6,5,2y ∴=,即集合{}2|6,{2,5,6}y y x x ∈=-+∈=N N故真子集的个数为:3217-= 故选:C 【点睛】本题考查了集合真子集的个数,考查了学生综合分析,数学运算的能力,属于中档题.6.D解析:D 【分析】根据指数函数的值域可得集合A ,解指数函数的不等式可得集合B ,再进行交集运算即可. 【详解】∵{}()2,0,xA y y x R ==∈=+∞,由148x -≤,即22322x -≤,解得52x ≤,即5,2B ⎛⎤=-∞ ⎥⎝⎦, ∴5(0,]2A B ⋂=, 故选:D. 【点睛】本题主要考查了指数函数的值域,指数类型不等式的解法,集合间交集的运算,属于基础题.7.D解析:D 【分析】根据题意作出“韦恩图”,得出集合A 与集合B 没有公共元素,即可求解.由题意,集合U 为全集,()UBA B =,如图所示,可得集合A 与集合B 没有公共元素,即A B =∅,故选D.【点睛】本题主要考查了集合的运算及应用,其中解答中根据题设条件,作出韦恩图确定两集合的关系是解答的关键,着重考查了推理与论证能力,属于基础题.8.D解析:D 【分析】解绝对值不等式求得集合A ,解分式不等式求得集合B ,求得集合A 的补集,然后求此补集和集合B 的并集,由此得出正确选项. 【详解】由|31|2x -≥得312x -≤-或312x -≥,解得13x ≤-或1x ≥,故1,13R C A ⎛⎫=- ⎪⎝⎭.由201x x -≤-得()()12010x x x ⎧--≤⎨-≠⎩,解得12x <≤,所以()R C A B =1,1(1,2]3⎛⎫-⋃ ⎪⎝⎭.故选:D. 【点睛】本小题主要考查绝对值不等式的解法,考查分式不等式的解法,考查集合补集、并集的计算,属于基础题.9.B解析:B 【分析】首先根据题意,利用k A 的意义,再根据选项判断. 【详解】A.202045050=⨯+,所以02020A ∈,正确;B.若3a b A +∈,则12,a A b A ∈∈,或21,a A b A ∈∈或03,a A b A ∈∈或30,a A b A ∈∈,故B 不正确;C.()1413-=⨯-+,所以31A -∈,故C 正确;D.4a n k =+,4b m k =+,,m n Z ∈,则()40,a b n m -=-+()n m Z -∈,故0a b A -∈,故D 正确.【点睛】关键点点睛:本题考查集合新定义,关键是理解k A 的意义,再将选项中的数写出k A 中的形式,就容易判断选项了.10.C解析:C 【分析】通过举例和证明的方式逐个分析选项. 【详解】A :取5,3,6,1a b c d =-==-=,则30,3ac bd ==,则ac bd >,故A 错误;B :取3,1,0a b c ===,则22ac bc =,故B 错误;C:21122a a a a ⎫+=+=+≥⎝成立,故C 正确;D :因为0a b <<,所以11a b>,则A B ,故D 错误;故选:C. 【点睛】本题考查不等关系和等式的判断,难度一般.判断不等关系是否成立,常用的方法有:(1)直接带值验证;(2)利用不等式的性质判断;(3)采用其他证明手段.(如借助平方差、完全平方公式等).11.C解析:C 【解析】|x-a|<1,∴a-1<x<a+1,∵A∩B=∅. ∴a-1≥5或a+1≤1,即a≤0或a≥6.故选C.12.D解析:D 【分析】含有3个元素的集合{},,a b c 共有子集个数328=,含有2个元素的子集有3个,根据古典概型即可计算. 【详解】因为含有3个元素的集合{},,a b c 共有子集个数328=,含有2个元素的子集有3个, 所以38P =,故选D. 【点睛】本题主要考查了集合子集的概念,古典概型,属于中档题.二、填空题13.①④【分析】逐一验证每个选项是否满足融洽集的两个条件若两个都满足是融洽集有一个不满足则不是融洽集【详解】①对于任意的两非负整数仍为非负整数所以取及任意的非负整数则因此是非负整数集:实数的加法是融洽集解析:①④ 【分析】逐一验证每个选项是否满足“融洽集”的两个条件,若两个都满足,是“融洽集”,有一个不满足,则不是“融洽集”. 【详解】①对于任意的两非负整数,,a b a b +仍为非负整数, 所以a b G +∈,取0e =及任意的非负整数a , 则00a a a +=+=,因此G 是非负整数集,⊕:实数的加法是“融洽集”;②对于任意的偶数a ,不存在e G ∈, 使得a e e a a ⊕=⊕=成立, 所以②的G 不是“融洽集”; ③对于{G二次三项式},若任意,a b G ∈时,则,a b 其积就不是二次三项式,故G 不是“融洽集”;④{},G x x a a b Q ==+∈,设1,x a a b Q =+∈,212,,(,x c c d Q x x a c b d a c b d Q =+∈+=+++++∈,所以12x x G +∈;取1e =,任意,11a G a a a ∈⨯=⨯=, 所以④中的G 是“融洽集”. 故答案为:①④. 【点睛】本题考查对新定义的理解,以及对有关知识的掌握情况,关键是看所给的数集是否满足“融洽集”的两个条件,属于中档题.14.201【分析】根据集合长度的定义可将集合的非空子集分六类分别计算可求出答案【详解】集合有6个元素非空子集有个①集合长度为0的子集有:;②集合长度为1的子集有:;③集合长度为2的子集有:;④集合长度为解析:201 【分析】根据集合“长度”的定义,可将集合U 的非空子集分六类,分别计算可求出答案. 【详解】集合U 有6个元素,非空子集有62163-=个,①集合“长度”为0的子集有:{}{}{}{}{}{}1,2,3,4,5,6;②集合“长度”为1的子集有:{}{}{}{}{}1,2,2,3,3,4,4,5,5,6; ③集合“长度”为2的子集有:{}{}{}{}1,3,2,4,3,5,4,6,{}{}{}{}1,2,3,2,3,4,3,4,5,4,5,6;④集合“长度”为3的子集有:{}{}{}1,4,2,5,3,6,{}{}{}1,2,4,1,3,4,2,3,5,{}{}{}2,4,5,3,4,6,3,5,6,{}{}1,2,3,4,2,3,4,5,{}3,4,5,6;⑤集合“长度”为4的子集有:{}{}1,5,2,6,{}{}{}1,2,5,1,3,5,1,4,5,{}{}{}2,3,6,2,4,6,2,5,6,{}{}{}1,2,3,5,1,2,4,5,1,3,4,5,{}{}{}2,3,4,6,2,3,5,6,2,4,5,6,{}2,3,4,5,6,{}1,2,3,4,5;⑥集合“长度”为5的子集有:{}1,6,{}1,2,6,{}1,3,6,{}1,4,6,{}1,5,6,{}1,2,3,6,{}1,2,4,6,{}1,2,5,6,{}1,3,4,6,{}1,3,5,6,{}1,4,5,6{1,3,4,5,6},{1,2,4,5,6},{1,2,3,5,6},{1,2,3,4,6},{1,2,3,4,56},.U 的所有非空子集的“长度”之和为061528312416516201⨯+⨯+⨯+⨯+⨯+⨯=. 故答案为:201. 【点睛】本题考查新定义,要求读懂题意并结合已有知识、能力进行理解,根据新定义进行计算、推理、迁移,新定义问题要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情境的变化,通过思考,合理进行思想方法的迁移.15.【分析】先求出AB 再求得解【详解】由题得所以所以=故答案为:【点睛】本题主要考查新定义的理解和应用考查集合的并集运算意在考查学生对这些知识的理解掌握水平解析:)()-3,13⎡⋃+∞⎣,【分析】先求出A,B,,A B B A --,再求A B ∆得解. 【详解】由题得[1,)A =-+∞,[3,3]B =-, 所以(3,),B A [3,1)A B -=+∞-=--,所以A B ∆=()()A B B A -⋃-=)()3,13⎡-⋃+∞⎣,. 故答案为:)()3,13⎡-⋃+∞⎣,【点睛】本题主要考查新定义的理解和应用,考查集合的并集运算,意在考查学生对这些知识的理解掌握水平.16.【分析】由题意分类讨论实数xyz 的符号列表求解所给式子的值然后确定其值组成的集合即可【详解】分类讨论xyz 的符号列表求值如下:x y z计算结果 大于零 大于零 大于零 1 1 1 1 解析:{}5,1,1,3--【分析】由题意分类讨论实数x ,y ,z 的符号列表求解所给式子的值,然后确定其值组成的集合即可. 【详解】分类讨论x ,y ,z 的符号列表求值如下:据此可得:x y z xy xyz++++的所有可能值组成的集合表示为{}5,1,1,3--. 故答案为:{}5,1,1,3--. 【点睛】本题主要考查分类讨论的数学思想,集合中元素的互异性等知识,意在考查学生的转化能力和计算求解能力.17.【分析】解绝对值不等式求得集合然后求得其补集解分式不等式求得集合由此求得【详解】由解得所以由解得所以故填:【点睛】本小题主要考查集合交集和补集的概念和运算考查绝对值不等式和分式不等式的解法属于基础题 解析:(2,1)(1,5]--【分析】解绝对值不等式求得集合A ,然后求得其补集.解分式不等式求得集合B ,由此求得()U C A B ⋂.【详解】由1x ≤解得11x -≤≤,所以[)(]3,11,5U C A =--⋃.由102x >+解得2x >-,所以()U C A B ⋂(2,1)(1,5]=--.故填:(2,1)(1,5]--.【点睛】本小题主要考查集合交集和补集的概念和运算,考查绝对值不等式和分式不等式的解法,属于基础题.18.【分析】先计算集合A 再根据定义得到答案【详解】或且或故答案为:【点睛】本题考查了集合的新定义问题意在考查学生的理解能力和解决问题的能力解析:(,4)(3,2]-∞---【分析】先计算集合A ,再根据定义得到答案. 【详解】{{|2}42xA x x x x =<=<-+或2}x >-,{|3}B x x =>- {|A B x x A B ⊗=∈且{}4x A B x x ∉⋂=<-或}32x -<≤-故答案为:(,4)(3,2]-∞---【点睛】本题考查了集合的新定义问题,意在考查学生的理解能力和解决问题的能力.19.【分析】根据正整数的奇偶讨论的不同取值情况:若一奇一偶则取;若都是奇数或都是偶数则取列举出所有可能即可【详解】集合若一奇一偶则取此时所有个数为此时共有4个;若都是偶数则取此时所有个数为此时共有2个; 解析:9【分析】根据正整数的奇偶,讨论x y 、的不同取值情况:若一奇一偶,则取6xy =;若都是奇数或都是偶数,则取6x y +=,列举出所有可能即可. 【详解】集合{(,)|6,,}M x y x y x y =⊗=∈*N 若x y 、一奇一偶,则取6xy =,此时所有个数为16x y =⎧⎨=⎩,23x y =⎧⎨=⎩,32x y =⎧⎨=⎩,61x y =⎧⎨=⎩,此时(),x y 共有4个;若x y 、都是偶数,则取6x y +=,此时所有个数为24x y =⎧⎨=⎩,42x y =⎧⎨=⎩,此时共(),x y 有2个; 若x y 、都是奇数,则取6x y +=,此时所有个数为15x y =⎧⎨=⎩,33x y =⎧⎨=⎩, 51x y =⎧⎨=⎩此时(),x y 共有3个;综上可知,满足条件的元素共有9个. 故答案为:9【点睛】本题考查了新定义运算与集合的综合应用,注意分析题意并正确理解新定义是解决此类问题的关键,属于中档题.20.【分析】由进行反推可分为集合和集合两种情况进行分类讨论【详解】由进行反推若则解得成立由可知集合因应满足解得综上所述故答案为:【点睛】本题考查根据集合的补集与包含关系求解参数问题是中档题型在处理此类题 解析:(),3-∞【分析】由()()R R C A C B ⊇进行反推,可分为集合A =∅,和集合A ≠∅两种情况进行分类讨论 【详解】由()()R R C A C B ⊇进行反推,若A =∅,则121m m +≥-,解得2m ≤,成立 由A ≠∅可知,集合{}|121UA x x m x m =≤+>-或,{}|25UB x x x =<-≥或因()()R R C A C B ⊇,应满足12215211m m m m +≥-⎧⎪-<⎨⎪->+⎩,解得()2,3m ∈综上所述,(),3m ∈-∞ 故答案为:(),3-∞ 【点睛】本题考查根据集合的补集与包含关系求解参数问题,是中档题型,在处理此类题型中,易错点为忽略端点处等号取不取得到的问题,解题时要特别仔细三、解答题21.(1)4233a -<<;(2)存在,42a -<<. 【分析】(1)x A ∈是x B ∈的必要条件可转化为B A ⊆,建立不等式求解即可; (2)假设A B ⋂≠∅,建立不等关系,有解则存在,无解则不存在. 【详解】{}42A x x =-<<,()(){}30B x x a x a =--=(1)由已知得:B A ⊆42432a a -<<⎧∴⎨-<<⎩4233a ⇒-<<,即实数a 的取值范围4233a -<<, (2)假设存在a 满足条件,则42a -<<或432a -<<,42a ∴-<<即存在42a -<<使A B ⋂≠∅. 【点睛】本题主要考查了根据集合的包含关系求参数的取值范围,考查了必要条件,属于中档题. 22.(1)RA {x |1x 2}=-<<,1{|3B x x =<或1}x >;(2){}0;(3)211 1.32m m -<<-<<或【分析】(1)m =2时,化简集合A ,B ,即可得集合∁R A 和集合B ;(2)集合B ∩Z 为单元素集,所以集合B 中有且只有一个整数,而0∈B ,所以抛物线y =(1﹣m 2)x 2+2mx ﹣1的开口向上,且与x 轴的两个交点都在[﹣1,1]内,据此列式可得m =0;(3)因为A =(﹣∞,﹣1)∪(2,+∞),(A ∩B )∩Z 中由n 个元素,所以1﹣m 2>0,即﹣1<m <1;A ∩B 中至少有3或﹣2中的一个,由此列式可得. 【详解】集合A ={x |x 2﹣x ﹣2≥0}={x |x ≥2或x ≤﹣1},集合{x |(1﹣m 2)x 2+2mx ﹣1<0,m ∈R}={x |[(1+m )x ﹣1][(1﹣m )x +1]<0} (1)当m =2时,集合∁R A ={x |﹣1<x <2}; 集合1{|3B x x =<或1}x > ; (2)因为集合B ∩Z 为单元素集,且0∈B , 所以,解得m =0,当m =0时,经验证,满足题意. 故实数m 的取值集合为{0}(3)集合(A ∩B )∩Z 的元素个数为n (n ∈N *)个,A ∩B 中至少有3或﹣2中的一个, 所以令f (x )=(1﹣m 2)x 2+2mx ﹣1, 依题意有或,解得﹣1<m <﹣或<m <1∴ 【点睛】本题考查了交、并、补集的混合运算.属难题. 23.(1)1,2⎛⎤-∞ ⎥⎝⎦;(2)1,2a ⎡⎫+∞⎢⎣∈⎪⎭.【分析】 (1)先计算UA ,再利用数轴即可列出不等式组,解不等式组即可.(2)先求出A B B =时a 的取值范围,再求其补集即可.【详解】(1)∵{}|02A x x =≤≤,∴{|0UA x x =<或}2x >,若()UA B R ⋃=,则320322a aa a -≥⎧⎪⎨⎪-≥⎩,即12a ≤∴实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦.(2)若AB B =,则B A ⊆.当B =∅时,则32-<a a 得1,a >当B ≠∅时,若B A ⊆则0322a a ≥⎧⎨-≤⎩,得1,12a ⎡⎤∈⎢⎥⎣⎦,综上故a 的取值范围为1,2a ⎡⎫+∞⎢⎣∈⎪⎭,故A B B ≠时的范围为1,2⎡⎫+∞⎪⎢⎣⎭的补集,即1,.2⎛⎫-∞⎪⎝⎭ 【点睛】本题主要考查了集合的交并补运算,属于中档题. 24.(1)5;(2){3a a ≤-或}1a =-. 【分析】(1)求得集合A ,由题意可得2B ∈,可求得a 的值,再验证{}2A B =-是否满足,由此可求得实数a 的值;(2)由题意可得B A ⊆,分B =∅、{}2B =-、{}2B =、2,2B四种情况讨论,求得实数a 的值,并检验A B ⊆是否成立,由此可求得实数a 的取值范围. 【详解】 (1){}{}2402,2A x x =-==-,因为{}2A B =-,所以2B -∈,所以()244150a a -++-=,整理得2450a a --=,解得1a =-或5a =.当1a =-时,{}{}2402,2B x x =-==-,不满足{}2AB =-;当5a =时,{}{}2122002,10B x xx =++==--,满足{}2A B =-;故5a =;(2)由题意,知{}2,2A =-,由A B A ⋃=,得B A ⊆.①当集合B =∅时,关于x 的方程()222150x a x a +++-=没有实数根,所以()()2241458240a a a ∆=+--=+<,即30a +<,解得3a <-;②当集合{}2B =-时,()242145a a ⎧-=-+⎨=-⎩,无解;③当集合{}2B =时,()242145a a ⎧=-+⎨=-⎩,解得3a =-,④当2,2B时,21054a a +=⎧⎨-=-⎩,解得1a =-综上,可知实数a 的取值范围为{3a a ≤-或}1a =-. 【点睛】本题考查交集的计算,同时也考查了利用集合的包含关系求参数,考查分类讨论思想的应用与运算求解能力,属于中等题. 25.(1)R (2)106m <≤或413m ≤≤【分析】(1)求出集合A ,B ,根据集合的并集运算即可; (2){|3},C x m x m =<<1{|02A B x x ⋂=<<或14}x <≤,利用()C A B ⊆,列出不等式组,求出实数m 的取值范围. 【详解】由2()lg(231)f x x x =-+可得:22310x x -+>, 所以1{|2A x x =<或1}x >, 因为()2(],,2x g x x =∈-∞, 所以{|04}B x x =<, 所以AB R =.(2){|3}C x m x m =<<,1{|02A B x x ⋂=<<或14}x <≤, 因为()C AB ⊆,所以0132mm <⎧⎪⎨≤⎪⎩或134m m ≤⎧⎨≤⎩, 解得106m <≤或413m ≤≤,故实数m 的取值范围106m <≤或413m ≤≤.【点睛】本题考查并集、交集、子集定义等基础知识,考查运算求解能力,属于中档题. 26.1a =或2或3 【分析】由A B A ⋃=可得B A ⊆,分别讨论B =∅与B ≠∅的情况,进而求解即可 【详解】由A B A ⋃=可得B A ⊆,若B =∅,则()2140a a ∆=+-<,解得a ∈∅; 若B ≠∅,则()()10x a x --=,解得1x a =,21x =, ①当1a =,则{}1B =,符合题意; ②当2a =,则{}1,2B =,符合题意; ③当3a =,则{}1,3B =,符合题意; 综上,1a =或2或3 【点睛】本题考查已知集合的包含关系求参数,考查分类讨论思想。

高一数学必修一第一单元综合练习及解答人教版

高一数学必修一第一单元综合练习及解答人教版

⾼⼀数学必修⼀第⼀单元综合练习及解答⼈教版【模拟试题】集合⼀. 单选题:1.(89全)如果U={a , b , c , d , e},M={a , c , d},N={b , d , e},其中U 是全集,那么)()(N C M C U U ?等于()A. φB. {d}C. {a , c}D. {b , e}2.(96全)已知全集*=N U ,集合},2|{*∈==N n n x x A ,},4|{*∈==N n n x x B ,则()A. B A U ?=B. B A C U U ?=)(C. )(B C A U U ?=D. )()(B C A C U U U ?=3.(90全⽂)设全集},|),{(R y x y x U ∈=,集合}123|),{(=--=x y y x M ,}1|),{(+≠=x y y x N ,那么)()(N C M C U U ?等于()A. φB. )}3,2{(C. )3,2(D. }1|),{(+=x y y x4.(96上)已知集合}2|),{(=+=y x y x M ,}4|),{(=-=y x y x N ,那么集合N M ?为()C. }1,3{-D.U 的3个⼦集,则},13|{Z n n x x Q ∈-==,A. Q P b a ?∈+B. Q P b a ?∈+C. )()(Q C P C b a I I ?∈+D. I b a ?+7. 已知}023|{2<+-=x x x A ,}|{a x x B <=,且B A ?,则实数a 的取值范围是()A. ),2[∞+B. ]1,(-∞C. ),1[∞+D. ]2,(-∞8. 若集合},3,1{x A =,}1,{2x B =,并且},3,1{x B A =?,则满⾜条件的实数x 的个数有()A. 1B. 2C. 3D. 49. 已知}5,53,2{2+-=a a M ,}3,106,1{2+-=a a N ,且}3,2{=?N M ,则a 的值是()A. 1或2B. 2或4C. 2D. 110. 下⾯六个关系式:① }{a ?φ,② }{a a ?,③ }{}{a a ?,④ },{}{b a a ∈,⑤ },,{c b a a ∈,⑥ },{b a ∈φ,正确的是()A. ①②③④B. ③⑤⑥C. ①④⑤D. ①③⑤⼆. 填空题:11.(99上海)已知集合}2|{<-=a x x A ,}1212|{<+-=x x x B 且B A ?,则实数a 的取值范围是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一单元综合练习
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。

1.若集合M={}x|x £2 ,N={}2|30x x x -= ,则M N= ( )
A . {}3
B .{}0
C .{}0,2
D .{}0,3
2.图中阴影部分所表示的集合是( )
A.B ∩[ðU (A ∪C)]
B.(A ∪B) ∪(B ∪C)
C.(A ∪C)∩(ðU B)
D.[ðU (A ∩C)]∪B
3.下列各组函数中,表示同一函数的是
( ) A .1,x y y x ==
B
.y y ==C . |x|x x |x|y ,y =
= D .
2||,y x y == 4.f(x )=x 2+2(a-1)x+2在区间(],4- 上递减,则a 的取值范围是 ( )
A .[)3,-+
B . (],3-?
C . (],5-
D .[)3,+
5
.设函数92y x =
-的定义域为 ( ) A .{x |12x ,x ? 且} B .{x | x <2,且x ≠-2}
C .{x |x ≠2}
D .{x |x <-1, 且x ≠-2}
6.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车距离A 地的距离x 表示为时间t (小时)的函数表达式是
( ) A .x =60t B .x =60t +50t
C .x =600251505035t,(t .)t,(t .)ì#ïïíï->ïî
D .x =60025150253515050353565t,(t .),(.t .)(t .),(.t .)
ì#ïïï< íïï--< ïïî
7.已知g (x )=1-2x, ,f [g (x )]=2
2
10x (x )x -¹,则f (21)等于 ( ) A .1
B .3
C .15
D .30 8.函数
91x
+是( )
A .奇函数
B .偶函数
C .既是奇函数又是偶函数
D .非奇非偶数
9.定义在R 上的偶函数)(x f ,满足1f (x )f (x )+=-,且在区间[1,0]-上递增,则( )
A
.32f ()f f ()<<
B
.23f ()f ()f << C
.32f ()f ()f << D
.23f f ()f ()<<
10.已知函数f (x )是R 上的增函数,A (0,-1),B (3,1)是其图象上的两点, 那么|f (x +1)|<1的解集的补集是 ( )
A .( -1,2)
B . (1,4)
C .()[),14,-?+
D . (][),12,-?+
二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11.设集合A={32x x
-#},B={x 2121k x k -#+},且A ÊB ,则实数k 的取值范围是 . 12.f(x)=21020x ,x x,x ìï+ ïíï->ïî
若f (x )=10,则x= . 13.若函数 f (x )=(k -2)x 2+(k -1)x +3是偶函数,则f (x )的递减区间是 .
14.函数)(x f 在R
上为奇函数,且10f (x ),x =>,则当0x <,f (x )= .
三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分).
15.(12分)已知,全集U={x |-5≤x ≤3},
A={x |-5≤x <-1},B={x |-1≤x <1},求ðU A ,
ðU B ,(ðU A)∩(ðU B),(ðU A)∪(ðU B),
ðU (A ∩B),ðU (A ∪B),并指出其中相等的集合.
16.(12分)求函数[]21351
x y ,x ,x -=
+的最值。

17.(12分)已知f (x
)=33x x
-ìïïíï+ïî(,1)(1,)x x ? ? ,求f [f (0)]的值.
18.(12分)如图,用长为1的铁丝弯成下部为矩形,上部为半圆形的框
架,若半圆半径为x ,求此框架围成的面积y 与x 的函数式y =f (x ),
并写出它的定义域.
19.(14分)已知函数)(x f ,)(x g 同时满足:g(x y )g(x )g(y )f (x )f (y )-=+;11f ()-=-,00f ()=,11f ()=,求)2(),1(),0(g g g 的值.
20.(14分)指出函数1f (x )x x
=+
在(][),1,1,0-?-上的单调性,并证明之.
参考答案
一、BACBA DCBA D
二、11.{112k k -#}; 12.-3 ;13.[0,+¥); 14
.1y =-;
三、15. 解: C U A={x |-1≤x ≤3};C U B={x |-5≤x <-1或1≤x ≤3};
(C U A)∩(C U B)= {x |1≤x ≤3};(C U A)∪(C U B)= {x |-5≤x ≤3}=U ;
C U (A ∩B)=U ;C U (A ∪B)= {x |1≤x ≤3}.
相等集合有(C U A)∩(C U B)= C U (A ∪B);(C U A)∪(C U B)= C U (A ∩B).
16. 解:可证得211
x y x -=
+在[]35x ,Î是增函数, 当x=3时,y 取最小值14
; 当x =5时,y 取最大值32。

17.解: ∵ 0Î(-1,¥), ∴f (0)=32,又 32>1,
∴ f (32)=(32)3+(32)-3=2+21=25,即f [f (0)]=2
5. 18.解:AB=2x , CD =p x ,于是AD=122x x p --, 因此,y =2x ·122x x p -- +2
2
x p , 即y =-242
x lx p ++. 由201202x x x p ì>ïïïí--ï>ïïî
,得0<x <12,p + 函数的定义域为(0,12
p +). 19.解:令x y =得:220f (x )g (y )g()+=. 再令0x =,即得001g(),=. 若00g()=,令
1x y ==时,得10f ()=不合题意,故01g()=;0111111g()g()g()g()f ()f ()=-=+,
即2111g ()=+,所以10g()=;那么10101010g ()g ()g ()g ()f ()f ()-=-=+=,
21111111g()g[()]g()g()f ()f ()=--=-+-=-
20.解:任取x 1,x 2Î(]1,-? 且x 1<x 2 212121212112
11()()11x x x x f x f x x x x x x x 骣骣鼢珑鼢+-+珑鼢珑鼢-桫桫==--- 由x 1<x 2£-1知x 1x 2>1, ∴12
110x x ->, 即21f (x )f (x )>
∴f(x)在(]1,-?上是增函数;当1£x 1< x 2<0时,有0< x 1x 2<1,得12110x x -< ∴12f (x )f (x )>∴f(x)在[)10,-上是减函数. 再利用奇偶性,给出[)1,0-单调性,证明略.。

相关文档
最新文档