因式分解经典题型(学生用)
初三因式分解题20道
20 道初三因式分解题题目一:x² - 9解析:这是平方差公式的形式,x² - 9 = (x + 3)(x - 3)。
题目二:4x² - 25解析:同样是平方差公式,4x² - 25 = (2x + 5)(2x - 5)。
题目三:x² - 4x + 4解析:完全平方公式,x² - 4x + 4 = (x - 2)²。
题目四:9x² + 6x + 1解析:完全平方公式,9x² + 6x + 1 = (3x + 1)²。
题目五:x² + 5x + 6解析:采用十字相乘法,x² + 5x + 6 = (x + 2)(x + 3)。
题目六:x² - 7x + 12解析:十字相乘法,x² - 7x + 12 = (x - 3)(x - 4)。
题目七:2x² - 5x - 3解析:十字相乘法,2x² - 5x - 3 = (2x + 1)(x - 3)。
题目八:3x² + 4x - 4解析:十字相乘法,3x² + 4x - 4 = (3x - 2)(x + 2)。
题目九:x³ - 27解析:立方差公式,x³ - 27 = (x - 3)(x² + 3x + 9)。
题目十:8x³ + 27解析:立方和公式,8x³ + 27 = (2x + 3)(4x² - 6x + 9)。
题目十一:x² - 6x + 9 - y²解析:先将前三项用完全平方公式变形为(x - 3)²,再用平方差公式,(x - 3)² - y² = (x - 3 + y)(x - 3 - y)。
题目十二:4x² - 12xy + 9y²解析:完全平方公式,4x² - 12xy + 9y² = (2x - 3y)²。
初三数学因式分解50题
初三数学因式分解50题初三数学因式分解是一个非常重要的数学知识点,它是代数运算中的基础内容。
因式分解是将一个多项式表示为若干个不可约的因式的乘积的过程。
因式分解的题目可以涉及到一元二次方程、一元三次方程、多项式等内容。
下面我将为你列举50个初三数学因式分解的题目,并给出详细的解答。
1. 因式分解 2x^2 + 7x + 3。
2. 因式分解 3x^2 12x.3. 因式分解 4x^2 9。
4. 因式分解 x^2 5x + 6。
5. 因式分解 2x^2 11x + 5。
6. 因式分解 3x^2 + 2x 8。
7. 因式分解 4x^2 4x 3。
8. 因式分解 5x^2 12x + 7。
9. 因式分解 6x^2 + 7x 3。
10. 因式分解 x^2 9。
11. 因式分解 2x^2 8x + 8。
12. 因式分解 3x^2 5x 2。
13. 因式分解 4x^2 + 12x + 9。
14. 因式分解 5x^2 3x 2。
15. 因式分解 6x^2 + 5x 6。
16. 因式分解 x^2 4。
17. 因式分解 2x^2 7x + 3。
18. 因式分解 3x^2 + 6x + 3。
19. 因式分解 4x^2 16。
20. 因式分解 5x^2 11x + 6。
21. 因式分解 6x^2 13x + 6。
22. 因式分解 x^2 6x + 9。
23. 因式分解 2x^2 9x + 4。
24. 因式分解 3x^2 10x + 7。
25. 因式分解 4x^2 5x 6。
26. 因式分解 5x^2 + 8x + 3。
27. 因式分解 6x^2 7x 3。
28. 因式分解 x^2 7x + 10。
29. 因式分解 2x^2 3x 2。
30. 因式分解 3x^2 12x + 12。
31. 因式分解 4x^2 9x 5。
32. 因式分解 5x^2 + 2x 3。
33. 因式分解 6x^2 5x 6。
34. 因式分解 x^2 8x + 15。
因式分解练习01(学生版)
因式分解练习011.将下列各式因式分解:(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2;(2)(b﹣a)2+a(a﹣b)+b(b﹣a);(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a);(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d.2.把下列各式因式分解:(1)﹣20a﹣15ax;(2)﹣4a3b3+6a2b﹣2ab;(3)﹣10a2bc+15bc2﹣20ab2C.3.把下列各式分解因式:(1)3x2y﹣6xy(2)5x2y3﹣25x3y2(3)﹣4m3+16m2﹣26m(4)2(a﹣3)2﹣a+3(5)3m(x﹣y)﹣2(y﹣x)2(6)18b(a﹣b)2﹣12(a﹣b)3(7)15x3y2+5x2y﹣20x2y3(8)6x(x+y)﹣4y(x+y)(9)a(x﹣a)+b(a﹣x)﹣c(x﹣a)(10)(m+n)(p+q)﹣(m+n)(p﹣q)4.分解因式①21xy﹣14xz+35x2②15xy+10x2﹣5x③(2a+b)(3a﹣2b)﹣4a(2a+b)④(x﹣2)2﹣x+2⑤a2(x﹣2a)2﹣a(2a﹣x)2⑥15b(2a﹣b)2+25(b﹣2a)3.5.把下列各式分解因式:(1)18a3bc﹣45a2b2c2;(2)﹣20a﹣15ab;(3)18x n+1﹣24x n;(4)(m+n)(x﹣y)﹣(m+n)(x+y);(5)15(a+b)2+3y(b+a);(6)2a(b﹣c)+3(c﹣b).6.把下列各式因式分解:(1)x(a+b)+y(a+b);(2)3a(x﹣y)﹣(x﹣y);(3)6(p+q)2﹣12(q+p);(4)a(m﹣2)+b(2﹣m);(5)2(y﹣x)2+3(x﹣y).7.把下列各式因式分解:(1)x2﹣9y2;(2)﹣64m2+81n2;(3)(2x+y)2﹣(x﹣2y)2;(4)169(a+b)2﹣121(a﹣b)2.8.下列分解因式是否正确?如果不正确,请给出正确结果.(1)﹣x2﹣y2=(x+y)(x﹣y);(2)9﹣25a2=(3+25a)(3+25b);(3)﹣4a2+9b2=(﹣2a+3b)(﹣2a﹣3b).9.把下列各式写成乘积的形式:(1)1﹣x2;(2)4a2+4a+1;(3)4x2﹣8x;(4)2x2y﹣6xy2;(5)1﹣4x2;(6)x2﹣14x+49.10.把下列各式分解因式.(1)﹣12xy+x2+36y2(2)(x2+9y2)2﹣36x2y2(3)(x2﹣1)2﹣6(x2﹣1)+9.11.把下列各式分解因式:(1)4a2+4a+1;(2)1﹣6y+9y2;(3)1+m+;(4)4x2﹣12xy+9y2;(5)++n2;(6)(x+y)2﹣10(x+y)+25;(7)(x﹣y)2+4xy.12.分解因式:(1)﹣2xy﹣x2﹣y2;(2)3ax2+6axy+3ay2;(3)x2﹣3y2;(4)x4﹣81;(6)(x2﹣2y)2﹣(1﹣2y)2.13.分解因式:①(x2+y2)2﹣4x2y2②(x+y)2﹣4(x+y﹣1)③(a2+b2)2﹣4ab(a2+b2)+4a2b2④x4+x2+1.14.分解因式:(1)ax2﹣2ax+a(2)(x﹣1)(x﹣3)+1(3)x2(x﹣y)+(y﹣x)15.把下列各式分解因式:(1)4y2﹣64z2;(2)﹣x2y+8xy2﹣16y3;(3)a2﹣7ab﹣30b2.16.分解因式:(1)a2﹣2a﹣3;(2)xy2﹣x;(3)﹣2x2+4x﹣2;(4)n2(m﹣2)﹣n(2﹣m)17.因式分解:①4x2y2﹣12x2y;②(x2+4)2﹣16x2;③3a3﹣6a2+3a;④x4﹣y4.18.分解因式:(1)﹣m2n+16mn﹣64n;(2)3(a﹣2b)2﹣27b2.19.因式分解:(1)3a2﹣27(2)﹣4a2x2+8ax﹣4(3)9(2a+3b)2﹣4(3a﹣2b)2(4)(x2+1)2﹣2x(x2+1).20.分解因式:(1)16(a﹣b)2﹣9(a+b)2;(2)x2y﹣2xy2+y3;(3)4m2+8m+3;21.分解因式:(1)x2y﹣4xy+4y.(2)9(a+b)2﹣(a﹣b)2.(3)12a2b﹣18ab2﹣24a3b3.(4)4a(x﹣2)2﹣2b(2﹣x)3.(5)a(a﹣2b)(2a﹣3b)﹣2b(2b﹣a)(3b﹣2a)22.将下列各式分解因式:(1)a2+ab+a(2)m2﹣9 (3)x3+6x2+9x(4)a4﹣8a2b2+16b423.因式分解:(1)a4﹣16.(2)x2﹣6xy+9y2.(3)9x2y﹣6xy2+y3 .(4)x2﹣7x+12.24.把下列多项式分解因式(1)﹣5a2+25a(2)x2+4xy+4y2(3)a2﹣5a﹣6(4)3x3﹣12xy225.因式分解:(1)a3﹣a(2)4x2y+4xy2+y3(3)a2﹣b2+4b﹣4(4)(x﹣2)2+x﹣8.26.把下列各个式子因式分解:(1)a2﹣4ab+4b2﹣6a+12b﹣7;(2)16﹣(x2﹣4x+2)2;(3)x2﹣x﹣1;(4)4x4﹣13x2+9.27.分解因式:(1)x2﹣6x﹣7(2)x2+6x﹣7(3)x2﹣8x+7(4)x2+8x+7(5)x2﹣5x+6(6)x2﹣5x﹣6(7)x2+5x﹣6(8)x2+5x+6.28.分解因式(1)8a3b2﹣12ab3c(2)﹣3ma3+6ma2﹣12ma(3)2(x﹣y)2﹣x(x﹣y)(4)3ax2﹣6axy+3ay2(5)p2﹣5p﹣36(6)x5﹣x3(7)(x﹣1)(x﹣2)﹣6(8)a2﹣2ab+b2﹣c229.分解因式(1)20a3x﹣45ay2x(2)1﹣9x2(3)4x2﹣12x+9(4)4x2y2﹣4xy+1(5)p2﹣5p﹣36(6)y2﹣7y+12(7)3﹣6x+3x2(8)﹣a+2a2﹣a3(9)m3﹣m2﹣20m30.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.。
专题06 因式分解五种考法(学生版)
专题06因式分解五种考法【考法一提公因式法因式分解】例题:(2022·湖北武汉·八年级期末)已知a +b =4,ab =3,则a 2b +ab 2=_____.【变式训练】1.(2021·江苏·高邮市车逻镇初级中学一模)因式分解:3x 4﹣9x 2=_______.2.(2022·云南昭通·八年级期末)若m -n =4,mn =3,则22m n mn -=_____.3.(2022·四川泸州·八年级期末)分解因式()()3222x x ---=______.4.(2022·黑龙江鸡西·八年级期末)已知x 2-2x -3=0,则2x 2-4x =_______5.(2022·广东中山·一模)已知251m n -=-,则24105m mn n -+的值是_____________.6.(2022·湖南岳阳·七年级期末)已知35y x -=,则代数式4122020x y -+的值是______________.【考法二公式法因式分解】例题:(2021·重庆巫山·八年级期末)因式分解:ab 2-4a =________;3x 2+12xy +12y 2=_________.【变式训练】1.(2022·北京市三帆中学模拟预测)分解因式:269ma ma m +-=______.2.(2021·福建龙岩·一模)分解因式:322242x x y xy -+-=______.3.(2022·山东·曲阜师范大学附属中学九年级阶段练习)分解因式:−a 3+12a 2b −36ab 2=_______.4.(2022·广东·汕头市龙湖实验中学九年级阶段练习)如果x +y =﹣2,x ﹣y =1,那么代数式2x 2﹣2y 2的值是_____.5.(2022·云南昆明·一模)当23m n =-时,代数式2244m mn n -+=______.6.(2022·江苏·景山中学七年级阶段练习)把下列各式分解因式:(1)25(a +b )2﹣16(a ﹣b )2(2)16x 4﹣8x 2y 2+y 4.7.(2021·贵州黔西·八年级期末)分解因式:(1)223612x y xy xy -+-;(2)481m -.8.(2020·四川遂宁·八年级期末)分解因式:(1)a 3b ﹣2a 2b +ab ;(2)x 2﹣4xy +4y 2﹣1.9.(2022·四川眉山·八年级期末)分解因式:(1)5416a ab -(2)()()()235x y x y y x y +---10.(2022·广东·佛山市南海区里水镇里水初级中学八年级阶段练习)已知a +b =12,ab =﹣38,先因式分解,再求值:a 3b +2a 2b 2+ab 3.【类型三十字相乘法法因式分解】例题:(2021·北京市第四十三中学八年级期中)阅读下列材料:根据多项式的乘法,我们知道,()()225710x x x x --=-+.反过来,就得到2710x x -+的因式分解形式,即2710(2)(5)x x x x -+=--.把这个多项式的二次项系数1分解为11⨯,常数项10分解为(2)(5)-⨯-,先将分解的二次项系数1,1分别写在十字交叉线的左上角和左下角;再把2-,5-分别写在十字交叉线的右上角和右下角,我们发现,把它们交叉相乘,再求代数和,此时正好等于一次项系数7-(如图1).像上面这样,先分解二次项系数,把它们分别写在十字交叉线的左上角和左下角;再分解常数项,把它们分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其正好等于一次项系数,我们把这种借助“十字”方式,将一个二次三项式分解因式的方法,叫做十字相乘法.例如,将二次三项式243x x +-分解因式,它的“十字”如图2:所以,()()243143x x x x +-=+-.请你用十字相乘法将下列多项式分解因式:(1)256x x ++=;(2)2273x x -+=;(3)()222x m x m +--=.【变式训练】1.(2021·山东淄博·二模)因式分解a 2-a -6=_____.2.(2021·山东淄博·一模)分解因式:289x x --=__.3.(2022·湖北·公安县教学研究中心八年级期末)分解因式268x x -+=________.4.(2021·全国·八年级专题练习)分解因式:(1)2314x x +-;(2)2344x x --+;(3)2631105x x +-;5.(2021·全国·八年级专题练习)将下列各式分解因式:(1)261915y y ++;(2)214327x x +-6.(2021·全国·八年级专题练习)将下列各式分解因式:(1)256x x --;(2)21016x x -+;(3)2103x x --7.(2021·浙江·七年级期中)我们知道部分二次三项式可以用十字相乘法进行因式分解,如:262730x x -+2x 5361215--⨯--xx x ∴原式(25)(36)x x =--部分二次四项式也可以用十字相乘法进行因式分解,如:1025820ay y a +--2554258+-⨯+-a y y a∴原式(25)(54)=+-a y 用十字相乘法分解下列各式:(1)22512x x +-(2)6923xy x y -+-(3)2(61)(23)1xy x y -++8.(2022·辽宁葫芦岛·八年级期末)阅读材料:根据多项式乘多项式法则,我们很容易计算:2(2)(3)56x x x x ++=++;2(1)(3)23x x x x -+=+-.而因式分解是与整式乘法方向相反的变形,利用这种关系可得:256(2)(3)x x x x ++=++;223(1)(3)x x x x +-=-+.通过这样的关系我们可以将某些二次项系数是1的二次三项式分解因式.如将式子223x x +-分解因式.这个式子的二次项系数是111=⨯,常数项3(1)3-=-⨯,一次项系数2(1)3=-+,可以用下图十字相乘的形式表示为:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求和,使其等于一次项系数,然后横向书写.这样,我们就可以得到:223(1)(3)x x x x +-=-+.利用这种方法,将下列多项式分解因式:(1)2710x x ++=__________;(2)223x x --=__________;(3)2712y y -+=__________;(4)2718x x +-=__________.【类型四分组分解法因式分解】例题:(2021·黑龙江·兴凯湖农场学校八年级期末)先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x2﹣6x﹣7;(2)分解因式:a2+4ab﹣5b2【变式训练】1.(2022·广东·龙岭初级中学八年级期中)因式分解中拆项法原理:在多项式乘法运算时,经过整理、化简通常将几个同类项合并为一项,或相互抵消为零,在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项(拆项).例:分解因式:x2+4x+3解:把4x分成x和3x,原式就可以分成两组了原式=x2+x+3x+3=x(x+1)+3(x+1)继续提公因式=(x+3)(x+1)请类比上边方法分解因式:x2+5x+6.2.(2022·山东济宁·八年级期末)观察探究性学习小组的甲、乙两名同学进行的因式分解:甲:244x xy x y-+-()()244x xy x y =-+-(分成两组)()()4x x y x y =-+-(直接提公因式)()()4x y x =-+乙:2222a b c bc--+()2222a b c bc =-+-(分成两组)()22a b c =--(直接运用公式)()()a b c a b c =+--+请你在他们解法的启发下,完成下面的因式分解:(1)32236m m m +--(2)229461a b a --+3.(2022·吉林吉林·八年级期末)阅读下列材料:一般地,没有公因式的多项式,当项数为四项或四项以上时,经常把这些项分成若干组,然后各组运用提取公因式法或公式法分别进行分解,之后各组之间再运用提取公因式法或公式法进行分解,这种因式分解的方法叫做分组分解法.如:因式分解:am +bm +an +bn=(am +bm )+(an +bn )=m (a +b )+n (a +b )=(a +b )(m +n ).(1)利用分组分解法分解因式:①3m ﹣3y +am ﹣ay ;②a 2x +a 2y +b 2x +b 2y .(2)因式分解:a 2+2ab +b 2﹣1=(直接写出结果).4.(2021·吉林吉林·八年级期末)阅读下列材料:一般地,没有公因式的多项式,当项数为四项或四项以上时,经常把这些项分成若干组,然后各组运用提取公因式法或公式法分别进行分解,之后各组之间再运用提取公因式法或公式法进行分解,这种因式分解的方法叫做分组分解法.如:因式分解:am bm an bn+++=()()am bm an bn +++=()()m a b n a b +++=(a +b )(m +n )(1)利用分组分解法分解因式:①33m y am ay -+-;②2222a x a y b x b y+++(2)因式分解:2221a ab b ++-=_______(直接写出结果).5.(2021·广东清远·八年级期中)观察“探究性学习”小组的甲、乙两名同学进行的分解因式:甲:x 2+2ax ﹣3a 2=x 2+2ax +a 2﹣a 2﹣3a 2=(x +a )2﹣4a 2(分成两组)=(x +a )2﹣(2a )2=(x +3a )(x ﹣a )(平方差公式)乙:a 2﹣b 2﹣c 2+2bc=a 2﹣(b 2+c 2﹣2bc )(分成两组)=a 2﹣(b ﹣c )2(直接运用公式)=(a +b ﹣c )(a ﹣b +c )(再用平方差公式)请你在他们解法的启发下,把下列各式分解因式:(1)x 2﹣4x +3;(2)x 2-2xy -9+y 2;(3)x 2+2xy +y 2-6x -6y +9.6.(2021·浙江·七年级期中)阅读理解:如何将326xy x y +++进行因式分解呢?小明同学是这样做的:326xy x y +++(3)(26)xy x y =+++(3)2(3)x y y =+++(2)(3)x y =++我们把这种将多项式先分组,分别变形,再进行分解因式的方法叫分组分解法.【尝试应用】借助上述方法因式分解①5420xy x y +++=__________;②8972ab a b +--=__________;③xy ax by ab +++=___________;【拓展提高】若整数x ,y 满足64970xy x y +--=,求x ,y 的值.7.(2021·全国·八年级专题练习)先阅读下列材料,然后回答后面问题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.能分组分解的多项式通常有四项或六项,一般的分组分解有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay)+(bx+by)=a(x+y)+b(x+y)=(x+y)(a+b)如“3+1”分法:2xy+y2﹣1+x2=x2+2xy+y2﹣1=(x+y)2﹣1=(x+y+1)(x+y﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x2﹣y2﹣x﹣y;(2)分解因式:45am2﹣20ax2+20axy﹣5ay2;(3)分解因式:4a2+4a﹣4a2b﹣b﹣4ab+1.【类型五因式分解的应用】例题:(2022·湖北黄冈·八年级开学考试)常用的分解因式的方法有提取公因式法、公式法及十字相乘法.但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式.后两项可提取公因式.前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2﹣2xy+y2﹣16;(2)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.【变式训练】1.(2022·山东德州·八年级期末)多项式a2+2ab+b2及a2-2ab+b2通过因式分解写成(a+b)2和(a-b)2的形式之后,可以解决较复杂多项式的因式分解及求最值等问题.我们把多项式a2+2ab+b2和a2-2ab+b2做完全平方式.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.例如:分解因式x2+2x-3原式=x2+2x+1-1-3=(x2+2x+1)-4=(x+1)2-22=(x+1+2)(x+1-2)=(x+3)(x-1)(1)用配方法将x2-6x-16分解因式;(2)用配方法将x2+2xy+y2+10x+10y+16分解因式;(3)试说明:x、y取任何实数时,多项式x2+y2+4x-2y+7的值总为正数.2.(2022·山东临沂·八年级期末)第一环节:自主阅读材料常用的分解因式方法有提公因式、公式法等.但有的多项式只用上述方法就无法分解,如22424x y x y -+-,细心观察这个式子会发现前两项符合平方差公式,后两项可提取公因式,分解过程为:22424x y x y -+-()()22424x y x y =-+-……分组()()()2222x y x y x y =-++-……组内分解因式()()222x y x y =-++……整体思想提公因式这种分解因式的方法叫分组分解法.(1)第二环节:利用这种方法解决以下问题:因式分解:22428x y y x --+.(2)第三环节:拓展运用:已知a ,b ,c 为△ABC 的三边,且2222b ab c ac +=+,试判断ABC 的形状并说明理由.3.(2021·福建省福州延安中学八年级期中)(1)将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(a+b)(m+n).①分解因式:ab﹣2a﹣2b+4;②若a,b(a>b)都是正整数且满足ab﹣2a﹣2b﹣4=0,求2a+b的值;(2)若a,b为实数且满足ab﹣a﹣b﹣1=0,整式M=a2+3ab+b2﹣9a-7b,求整式M的最小值.4.(2022·河南洛阳·八年级期末)阅读理解:阅读下列材料:已知二次三项式22x x a ++有一个因式是()2x +,求另一个因式以及a 的值.解:设另一个因式是()2x b +,根据题意,得()()2222x x a x x b ++=++,展开,得()222242x x a x b x b ++=+++,所以412b a b +=⎧⎨=⎩,解得63a b =-⎧⎨=-⎩,所以,另一个因式是()23x -,a 的值是-6.请你仿照以上做法解答下题:已知二次三项式2310x x m ++有一个因式是()4x +,求另一个因式以及m 的值.5.(2022·湖北十堰·八年级期末)阅读理解题:已知二次三项式x 2﹣4x +m 有一个因式是x +3,求另一个因式及m 的值.解:设另一个因式为x +n x 2﹣4x +m =(x +3)(x +n ).即x 2﹣4x +m =x 2+(n +3)x +3n ,比较系数得:343n m n +=-⎧⎨=⎩,解得217m n =-⎧⎨=-⎩.∴另一个因式为x ﹣7,m 的值为﹣21仿照上述方法解答下列问题:(1)已知二次三项式2x 2+3x ﹣k 有一个因式是2x ﹣1,求另一个因式及k 的值;(2)已知2x 2﹣13x +p 有一个因式x ﹣4,则p =.6.(2021·山东·东营市东营区实验中学八年级阶段练习)阅读并解决问题:对于形如222x ax a ++这样的二次三项式,可以用公式法将它分解成2()x a +的形式,但对于二次三项式2223x ax a +-就不能直接运用公式了.此时,我们可以这样来处理:2223x ax a +-()222223x ax a a a =++--22()4x a a =+-(2)(2)x a a x a a =+++-(3)()x a x a =+-像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:2815a a -+;(2)若6a b +=,4ab =,求:①22a b +;②44a b +的值;(3)已知x 是实数,试比较2611x x -+与2610x x -+-的大小,说明理由.7.(2021·河南平顶山·八年级期末)阅读材料:常用的分解因式方法有提公因式、公式法等,但有的多项式只有上述方法就无法分解,如22424x y x y --+,细心观察这个式子会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式,过程为:22424x y x y-+-22(4)(24)x y x y =-+-(2)(2)2(2)x y x y x y =+-+-(2)(22)x y x y =-++这种分解因式的方法叫分组分解法,利用这种方法解决下列问题:(1)分解因式:226939x xy y x y-+-+(2)ABC ∆的三边,,a b c 满足220a b ac bc --+=,判断ABC ∆的形状.8.(2021·山东枣庄·八年级期末)阅读下面的材料:常用的分解因式的方法有提取公因式法,公式法等,但有的多项式只用上述方法无法分解,如:22424x y x y --+,细心观察这个式子,会发现前两项符合平方差公式,后两项可提取公因式,前后两部分分别因式分解后又出现新的公因式,提取公因式就可以完成整个式子的分解因式.具体过程如下:()()()()()()()22224244242222222x y x y x y x y x y x y x y x y x y --+=---=+---=-+-.像这种将一个多项式适当分组后,进行分解因式的方法叫做分组分解法.利用分组分解法解决下面的问题:(1)分解因式:22222x xy y x y -+-+;(2)△ABC 的三边a ,b ,c 满足220a b ac bc --+=,判断△ABC 的形状.9.(2021·山东枣庄·八年级期末)整式乘法与多项式因式分解是既有联系又有区别的两种变形.例如,()a b c d ab ac ad ++=++是单项式乘多项式的法则;把这个法则反过来,得到()ab ac ad a b c d ++=++,这是运用提取公因式法把多项式因式分解.又如222()2a b a ab b ±=±+、22()()a b a b a b +-=-是多项式的乘法公式;把这些公式反过来,得到222)2(a ab b a b ±+=±、22()()a b a b a b -=+-,这是运用公式法把多项式因式分解.有时在进行因式分解时,以上方法不能直接运用,观察甲、乙两名同学的进行的因式分解.甲:244x xy x y-+-2()(44)x xy x y =-+-(分成两组)()4()x x y x y =-+-(分别提公因式)()(4)x y x =-+乙:2222a b c bc--+()2222a b c bc =-+-(分成两组)22()a b c =--(运用公式)()()a b c a b c =+--+请你在他们解法的启发下,完成下面的因式分解问题一:因式分解:(1)32248m m m --+;(2)2229x xy y -+-.问题二:探究对x 、y 定义一种新运算F ,规定:(,)()(3)F x y mx ny x y =+-(其中m ,n 均为非零常数).当22x y ≠时,(,)(,)F x y F y x =对任意有理数x 、y 都成立,试探究m ,n 的数量关系.。
因式分解经典测试题及答案
因式分解经典测试题及答案一、选择题1.将川口-6⑼加2*分解因式,下面是四位同学分解的结果:2K(xa-3ab},2阳(*-3b+l),〃(*白-3。
匕+1),2*t-xa+3ab-l).其中,正确的是()A. B. C. D.【答案】C【解析】【分析】直接找出公因式进而提取得出答案.【详解】2x2a-6xab+2x=2x(xa-3ab+l).故选:C.【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.2.下列各式从左到右的变形中,是因式分解的为().A.,x(£Z-Z?)=ax—bxB.x2-14-y2=(a-1)(jc+1)4-j2C.x1—1=(%+1)(^-1)D.ax+bx-\-c=x{a+b^c【答案】C【解析】【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【详解】解:A、是整式的乘法运算,故选项错误;叭右边不是积的形式,故选项错误;C、k2-1=(x+l)(x-l)7正确;D、等式不成立,故选项错误.故选:C.【点睛】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.3.相多项式4xql再加上一项,使它能分解因式成(a+b)之的形式,以下是四位学生所加的项,其中错误的是()A.2xB.-4nC.4X4D.4x【答案】A【解析】【分析】分别将四个选项中的式子与多项式4M+1结舍,然后判断是否为完全平方式即可得答案.【详解】A 、4炉+1+本,不是完全平方式,不能利用完全平方公式进行因式分解,故符合题意;B 、4M,1-取=僮肥1产,能利用完全平方公式进行因式分解,故不符合题意;C 、4e+lMd=(2x41)、能利用完全平方公式进行因式分解,故不符合题意:D.4x2+l+4x=(2x+l)21能利用完全平方公式进行因式分解,故不符合题意,故选A.【点睛】本题考杳了完全平方式.熟记完全平方式的结构特征是解题的关键.4.下列等式从左到右的变形是因式分解的是()A.2x (x+3)=及+6*B.24xy=我 8产L 1+2册/+1=(x+y)2+1D.x2-y=(x+y)Cx -y)【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符舍题意:C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意:故选D.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.卜列各式中,由等式的左边到右边的变形是因式分解的是(5.[x+3){x—3)=x2—9A.azb+ab2=ab(a +b}U 【答案】C【解折】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误:B 、没有把一个多项式转化成几个整式积的形式,故B 错误,B.x2+x-5=(x-2)(x+3)+l D.x2+l=x(x+—)工C.把一个多项式转化成了几个整式积的形式,故C正确:D、没有把一个多项式转化成凡个整式积的形式,故D错误;故选:Q【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式. 6.己知2"一y=;,呼=2,则2i4ys一炉了4的值为(}【答案】C【解析】【分析】利用因式分解以及积的乘方的逆用将变形为的产僮可),然后代入相关数值进行计算即可.【详解】丫2x—y=—yxy—2,3J2力-=x3y3(^x V)=(xy)3(2x-y)=2*」38=一,3故选C.【点睛】本题考查了因式分解的应用,代数式求值,涉及了提公因式法,积的乘方的逆用,熟练掌握和灵活运用相关知次是解题的关键.7.若端形的三边长分别为『、8、C,满足标b—瓜%+,r—"=0,则这个三角形是()A.直角•:角形B.等边:角形C.锐角三角形D.等腰三角形【答案】D【解析】【分析】首先将原式变形为(》一e)(1一b)S+b)=O,可以得到8—0=0或o—b=0或4+b二0,进而得到6=c或以二b.从而得出aAB匚的形状.【详解】Y a^-^c+^c-b5=0*a2(b-c^b2(c—b^=O,.,.(6-t:m苏-⑹=0,即(%一力(.一6)(q+6)=0,;*b—c=0或q—b=0或以十6=0(舍去),*\b=c^a=b,...△ABC是等腰三角形.故选: D.【点睛】本题考查了因式分解一提公因式法、平方差公式法在实际问题中的运用,注意掌握因式分解的步骤,分解要彻底.8.下列等式从左边到右边的变形,属于因式分解的是(}A.2ab(a-b)=2a%-2ab*B.x2+l=x{x+—)XC.x2-4x+3={x-2)2-lD.a2-b2={a+b)(a-b)【答案】D【解析】【分析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解{也叫作分解因式).分解因式与整式乘法为相反变形.【详解】解:A.不是因式分解,而是整式的运算B,不是因式分解,等式左边的k是取任意实数,而等式右边的心0二不是因式分解,原式={,—3)(x—1)D.是因式分解.故选D.故答案为:D.【点睛】因式分解没有普遍适用的法则,初中数学教材中主要介绍了提公因式法、公式法,分组分解法、十字相乘法、配方法、待定系数法、拆项法等方法..9.已知实数/b满足等式k=/+u+20,y=a(1b—u),则x、v的大小关系是()A.,工yB.x>yC.x<yD.x>y【答案】D【解析】【分析】判断x、y的大小关系,把N一,进行整理,判断结果的符号可得小v的大小关系.【详解】解:x-y=a~+b2+20-2ab+a~=(扭一6『+/+20,—b尸标≥0,20>0,二x-y>0,二元ay,故选:Q【点睛】本题考查了作差法比较大小、配方法的应用;进行计算比较式子的大小;通常是让两个式子相减,若为正数,则被减数大:反之减数大.10,若实数a、b满足日+b=5『a2b+ab2=-10,则ab的值是()A.-2B.2C.-50D.5。
初中因式分解经典题型(含详细答案)
初中因式分解经典题型(含详细答案) 初中因式分解经典题型精选第一组:基础题1.a²b+2ab+b答案:b(a+1)²2.2a²-4a+2答案:2(a-1)²3.16-8(m-n)+(m-n)²答案:(4-m+n)²4.a²(p-q)-p+q答案:(p-q)(a+1)(a-1)5.a(ab+bc+ac)-abc答案:a²(b+c)第二组:提升题6.(x-y-1)²-(y-x-1)²答案:-4(x-y)7.ab-ab⁄4答案:ab(a+b)(a-b)8.b-14b²+1答案:(b²+4b+1)(b²-4b+1)9.x+x²+2ax+1-a²答案:(x+1+a)(x+1-a)10.a+a+1答案:2(a+1)11、化简表达式x-2y-2xy+xy x + xy - 2y - 2xyx(1+y) - 2y(1+x)x+y)(x-2y)12、展开表达式(ac-bd)²+(bc+ad)²a²c² - 2abcd + b²d² + b²c² + 2abcd + a²d²a²c² + b²c² + a²d² + b²d²a²+b²)(c²+d²)13、化简表达式x²(y-z)+y²(z-x)+z²(x-y)x²y - x²z + y²z - y²x + z²x - z²yx²y - y²x + z²x + y²z - x²z - z²yx-y)(x²+y²-z²)14、化简表达式x²-4ax+8ab-4b²x-2a)² - (2a-4b)²x-2a+2a-4b)(x-2a-2a+4b)x-4b)(x-2a)15、化简表达式xy²+4xz-xz²-4xx(y²-4) - z(x²-4)x-2)(x+z)(y+2z)16、将a(a²-b²)和b(b²-a²)的公因式提取出来,得到(a-b)(a+b)a和(b-a)(b+a)b,再利用立方差公式,化简为(a-b)²(a+b)(a²b²+a+b)。
初中因式分解经典题型(含详细答案)
初中因式分解经典题型精选第一组:基础题1、a²b+2ab+b2、2a²-4a+23、16-8(m-n)+(m-n)²4、a²(p-q)-p+q5、a(ab+bc+ac)-abc【答案】1、a²b+2ab+b=b(a²+2a+1)=b(a+1)²2、2a²-4a+2=2(a²-2a+1)=2(a-1)²3、16-8(m-n)+(m-n)²然后运用完全平方公式=4²-2*4*(m-n)+(m-n)²=[4-(m-n)] ²=(4-m+n) ²4、a²(p-q)-p+q=a²(p-q)-(p-q)=(p-q)(a²-1)=(p-q)(a+1)(a-1)5、a(ab+bc+ac)-abc=a[(ab+bc+ac)-bc]=a(ab+bc+ac-bc)bc与-bc 抵消=a(ab+ac)提取公因式a=a²(b+c)第二组:提升题6、(x-y-1)²-(y- x-1)²7、a3b-ab38、b4-14b²+19、x4+x²+2ax+1﹣a²10、a5+a+1【答案】6、(x-y-1)²-(y- x-1)²用平方差公式=[(x-y-1)+(y-x-1)][(x-y-1)-(y-x-1)]去括号,合并同类项=(-2)(2x-2y)提取2= -4(x-y)7、a3b-ab3提取公因式ab=ab(a²-b²)用平方差公式=ab(a+b)(a-b)8、b4-14b²+1将-14b²拆分为:+2b²-16b²=b4+2b²-16b²+1将-16b²移到最后=b4+2b²+1-16b²将前三项结合在一起=(b4+2b²+1)-16b²=( b²+1)²-(4b)²用平方差公式=[( b²+1)+4b][( b²+1)-4b] =( b²+4b+1)( b²-4b+1)9、x4+x²+2ax+1﹣a²将+x²拆分为:+2x²- x²=x4+2x²- x² +2ax+1﹣a²将x4、+2x²、+1结合,将-x²、+2ax、﹣a²结合=(x4+2x²+1)+(-x²+2ax﹣a²)提取-1=( x²+1)² -(x²-2ax+a²)=( x²+1)²-( x-a)²用平方差公式=[(x²+1)+(x-a)][(x²+1)-(x-a)]=(x²+x-a+1)(x²-x+a+1)10、a5+a+1在式子中添加:-a²+a²=a5 - a²+ a²+a+1将前两项结合,后面三项结合=(a5-a²)+(a²+a+1)提取公因式a²=a²(a3-1)+(a²+a+1)用立方差公式=a²(a-1)(a²+a+1)+(a²+a+1)提取公因式(a²+a+1)=(a²+a+1)[a²(a-1)+1]=(a²+a+1)(a3-a²+1)第三组:进阶题11、x4-2y4-2x3y+xy312、(ac-bd)²+(bc+ad)²13、x²(y-z)+y²(z-x)+z²(x-y)14、x²-4ax+8ab-4b²15、xy² +4xz -xz²-4x【答案】11、x4-2y4-2x3y+xy3x4与xy3结合,-2y4与-2x3y结合=(x4+xy3)+(-2y4-2x3y)x-2y,=x(x3+y3)-2y(x3+y3)提取公因式(x3+y3)=(x3+y3)(x-2y)=(x+y)(x2-xy+y2)(x-2y)12、(ac-bd)²+(bc+ad)²去括号展开= a²c² - 2abcd + b²d²+b²c² +2abcd + a²d²- 2abcd与+2abcd 抵消=a²c² + b²d² +b²c² + a²d²a²c²与b²c²结合,b²d²与a²d²结合=(a²c²+b²c²)+( b²d²+a²d²)c², d ²,=c²(a²+b²)+d²(a²+b²)提取公因式(a²+b²)=(a²+b²)(c²+d²)13、x²(y-z)+y²(z-x)+z²(x-y)=x²(y-z)+y²z -y²x +z²x -z²yy²z与-z²y结合,z²x 与-y²x=x²(y-z)+(y²z -z²y)+(z²x-y²x)提取公因式zy提取公因式=x²(y-z)+ zy(y-z)+x(z²-y²)提取公因式(y-z),=(y-z)(x²+zy)+x(z+y)(z-y)y-z),后一项 +x则变为 -x =(y-z)[(x²+zy)-x(z+y)]=(y-z)(x²+zy-xz-xy)14、x²-4ax+8ab-4b²²与-4b²结合,-4ax与+8ab结合=(x²-4b²)+(-4ax+8ab)-4a=(x+2b)(x-2b)-4a(x-2b)x-2b),=(x-2b)[(x+2b)-4a]=(x-2b)(x+2b-4a)15、xy² +4xz -xz²-4xx,=x(y²+4z -z²-4)=x[y²+(4z -z²-4)]-1,=x[y²-(z²-4z+4)]用完全平方公式进行分解,=x[y²-(z-2)²]=x[y+(z-2))][y-(z-2)]=x(y+z-2)(y-z+2)第四组:经典题16、a6(a²-b²)+b6(b²-a²)17、4m3-31m+1518、a3+5a²+3a-919、x4(1- y)²+2x²(y²-1)+(1+ y)²20、2x4 -x3-6x²- x+ 2【答案】16、a6(a²-b²)+b6(b²-a²)-1=a6(a²-b²)-b6(a²-b²)提取公因式(a²-b²)=(a²-b²)(a6-b6)=(a²-b²)(a²-b²)(a4+a²b²+b4)=(a²-b²)²(a4+a²b²+b4)=(a+b)²(a-b)²(a4+a²b²+b4)17、4m3-31m+15-31m拆分为:-m-30m=4m3-m-30m+15=(4m3-m)+(-30m+15)m-15=m(4m²-1)-15(2m-1)=m(2m+1)(2m-1)-15(2m-1)(2m-1),=(2m-1)[m(2m+1)-15]=(2m-1)(2m²+m-15)=(2m-1)(2m-5)(m+3)18、a3+5a²+3a-93a拆分为:-6a+9a =a3+5a²-6a+9a-9=(a3+5a²-6a)+(9a-9)a9=a(a²+5a-6)+9(a-1)=a(a+6)(a-1)+9(a-1)提取公因式(a-1)=(a-1)[a(a+6)+9]=(a-1)(a²+6a+9)=(a-1)(a+3)²19、x4(1- y)²+2x²(y²-1)+(1+ y)²-1=x4(1- y)² - 2x²(1-y²)+(1+ y)²=[x²(1-y)]² -2x²(1-y)(1+y)+(1+ y)²=(x²-yx²-1- y)²20、2x4 -x3-6x²- x+ 2-x拆分为:3x-4x =2x4 -x3-6x²+3x-4x+ 2=(2x4 -x3)+(-6x²+3x)+(-4x+ 2)=(2x-1)(x3-3x-2)第五组:精选题21、a3+2a2+3a+222、x4-6x²+123、x3+3x+424、2a2b2+2a2c2+2b2c2+a4+b4+c425、a3-3a-226、2x3+3x2-127、a2+3ab+2b2+2a+b-3【答案】21、a3+2a2+3a+23a拆分为:a+2a =a3+2a2+a+2a+2=(a3+2a2+a)+(2a+2)=a(a2+2a+1)+2(a+1)=a(a+1)2+2(a+1)a+1)=(a+1)[a(a+1)+2]=(a+1)(a2+a+2)22、x4-6x²+1-6x2拆分为:-2x2-4x2 =x4-2x²-4x²+1-4x2移到最后=x4-2x²+1-4x²=(x4-2x²+1)-4x²=(x2-1)2-(2x)2=[(x2-1)+2x][(x2-1)-2x] =(x2+2x-1)(x2-2x-1)23、x3+3x+44拆分为:3+1=x3+3x+3+1x3与1结合,3x与3结合=(x3+1) + (3x+3)3=(x+1)(x2-x+1)+3(x+1)x+1)=(x+1)[(x2-x+1)+3]=(x+1)(x2-x+4)24、2a2b2+2a2c2+2b2c2+a4+b4+c4=(a4+b4+2a2b2)+(2a2c2+2b2c2)+c4 =(a2+b2)2+2c2(a2+b2)+c4=[(a2+b2)+c2]2=(a2+b2+c2)225、a3-3a-2-3a拆分为:-a-2a=a3-a-2a-2=(a3-a)+(-2a-2)=a(a2-1)-2(a+1)=a(a+1)(a-1)-2(a+1)a+1)=(a+1)[a(a-1)-2]=(a+1)(a2-a-2)=(a+1)(a+1)(a-2)=(a+1)2(a-2)26、2x3+3x2-13x2拆分为:2x2+x2 =2x3+2x2+x2-1=(2x3+2x2)+(x2-1)=2x2(x+1)+(x+1)(x-1)x+1)=(x+1)[2x2+(x-1)]=(x+1)(2x2+x-1)=(x+1)(2x-1)(x+1)=(x+1)2(2x-1)27、a2+3ab+2b2+2a+b-3=(a2+3ab+2b2)+(2a+b)-3 =(a+b)(a+2b)+(2a+b)-3 =[(a+b)-1][(a+2b)+3] =(a+b-1)(a+2b+3)十字叉乘法故:x2+6x+5=(x+1)(x+5)故:2x2+5x+2=(2x+1)(x+2)故:4x2+5x-3=(2x-1)(2x+3)黄勇权2019-7-14。
初二因式分解经典题35题
初二因式分解经典题35题一、提取公因式法相关(10题)1. 分解因式:6ab + 3ac- 你看这里面每一项都有个3a呢。
就像大家都有个共同的小秘密一样。
那我们就把3a提出来呀,提出来之后就变成3a(2b + c)啦。
2. 分解因式:15x^2y−5xy^2- 哟,这里面5xy是公共的部分哦。
把5xy提出来,就剩下5xy(3x - y)啦,是不是很简单呢?3. 分解因式:4m^3n - 16m^2n^2+8mn^3- 仔细瞧瞧,8mn是都能提出来的。
提出来后就变成8mn(m^2 - 2mn + n^2)啦。
4. 分解因式:−3x^2y+6xy^2−9xy- 这里面−3xy是公因式哦。
把它提出来,就得到−3xy(x - 2y+3)啦。
5. 分解因式:2a(x - y)-3b(x - y)- 看呀,(x - y)是公共的部分呢。
提出来就变成(x - y)(2a - 3b)啦。
6. 分解因式:a(x - y)^2 - b(y - x)^2- 注意哦,(y - x)^2=(x - y)^2。
那这里面(x - y)^2是公因式,提出来就得到(x - y)^2(a - b)啦。
7. 分解因式:x(x - y)+y(y - x)- 先把y(y - x)变成-y(x - y),这样公因式就是(x - y)啦,提出来就是(x - y)(x - y)=(x - y)^2。
8. 分解因式:3a(a - b)+b(b - a)- 把b(b - a)变成-b(a - b),公因式(a - b)提出来,就得到(a - b)(3a - b)啦。
9. 分解因式:2x(x + y)-3(x + y)^2- 公因式是(x + y),提出来就变成(x + y)[2x-3(x + y)]=(x + y)(2x - 3x - 3y)=(x + y)(-x - 3y)=-(x + y)(x + 3y)。
10. 分解因式:5(x - y)^3+10(y - x)^2- 把(y - x)^2变成(x - y)^2,公因式5(x - y)^2提出来,得到5(x - y)^2[(x -y)+2]=5(x - y)^2(x - y + 2)。
因式分解经典例题练习题
因式分解经典例题练习题一、单项式的因式分解1. 将多项式 $2x^3-4x^2+6x$ 进行因式分解。
解析:首先,可以提取出公因式 $2x$,则原多项式可以写成$2x(x^2-2x+3)$。
2. 将多项式 $3a^2b+6a^2bc$ 进行因式分解。
解析:首先,可以提取公因式 $3a^2b$,则原多项式可以写成$3a^2b(1+2c)$。
3. 将多项式 $4x^2+y^2-4xy$ 进行因式分解。
解析:首先,$4x^2-4xy$ 可以因式分解为 $4x(x-y)$。
然后,将多项式 $4x(x-y)+y^2$ 进一步因式分解,得到 $(2x-y)(2x+y)$。
二、二次多项式的因式分解4. 将二次多项式 $3x^2+9x+6$ 进行因式分解。
解析:首先,可以提取公因式 3,得到 $3(x^2+3x+2)$。
然后,将二次多项式 $x^2+3x+2$ 进一步因式分解,得到 $(x+1)(x+2)$。
因此,原多项式可以因式分解为 $3(x+1)(x+2)$。
5. 将二次多项式 $2x^2-5x-3$ 进行因式分解。
解析:根据因式分解的方法,可以得到 $(2x+1)(x-3)$。
三、差的平方公式6. 利用差的平方公式,将 $x^2-16$ 进行因式分解。
解析:差的平方公式可以写为 $a^2-b^2=(a-b)(a+b)$。
因此,可以将 $x^2-16$ 因式分解为 $(x-4)(x+4)$。
7. 利用差的平方公式,将 $4y^2-25$ 进行因式分解。
解析:差的平方公式可以写为 $a^2-b^2=(a-b)(a+b)$。
因此,可以将 $4y^2-25$ 因式分解为 $(2y-5)(2y+5)$。
四、完全平方公式8. 利用完全平方公式,将 $x^2+4x+4$ 进行因式分解。
解析:完全平方公式可以写为 $a^2+2ab+b^2=(a+b)^2$。
因此,可以将 $x^2+4x+4$ 因式分解为 $(x+2)^2$。
因式分解题目100题
因式分解题目100题因式分解是高中数学中的一个重要知识点,也是解决代数式问题的一种重要方法。
因式分解的目的是将一个代数式表示为几个乘积的形式,从而更好地理解和计算。
下面是一些因式分解题目,供大家练习和巩固知识。
1. 将 x^2 - 4x + 4 分解为完全平方公式的形式。
答案:(x - 2)(x - 2) 或 (x - 2)^22. 将 2x^2 + 8x + 6 分解为二次 trinomial 的形式。
答案:2(x + 1)(x + 3)3. 将 3x^2 + 12x + 9 分解为完全平方公式的形式。
答案:3(x + 3)(x + 3) 或 3(x + 3)^24. 将 x^2 + 6x + 9 分解为完全平方公式的形式。
答案:(x + 3)(x + 3) 或 (x + 3)^25. 将 x^2 - 5x - 6 分解为二次 trinomial 的形式。
答案:(x - 6)(x + 1)6. 将 6x^2 + x - 1 分解为二次 trinomial 的形式。
答案:(2x - 1)(3x + 1)7. 将 4x^3 - 16x^2 - 20x 分解为 x 的二次多项式。
答案:4x(x - 5)(x + 1)8. 将 5x^3 + 15x^2 + 10x 分解为 x 的二次多项式。
答案:5x(x^2 + 3x + 2)9. 将 x^4 - 16x^2 分解为 x 的二次多项式。
答案:x^2(x - 4)(x + 4)10. 将 3x^3 + 12x^2 + 9x 分解为 x 的二次多项式。
答案:3x(x + 1)(x + 3)通过练习这些因式分解题目,可以加深对因式分解的理解,掌握因式分解的方法和技巧。
同时,因式分解也是其他数学问题的基础,熟练掌握因式分解可以帮助解决更复杂的数学问题。
因此,在学习数学的过程中,多做因式分解的练习题是非常有益的。
初一因式分解50道题
初一因式分解50道题一、因式分解练习题(30道无解析)1. x^2 - 92. 4x^2 - 163. x^2+6x + 94. 9x^2 - 25y^25. x^3 - 276. 8x^3+17. x^2 - 4x+48. 16x^2 - 8x + 19. x^2y - 4y10. 3x^2 - 1211. x^4 - 112. x^2+5x+613. x^2 - 5x+614. x^2+7x+1015. x^2 - 7x + 1016. 2x^2 - 817. 3x^2 - 27x18. x^3+2x^2+x19. x^3 - 3x^2+2x20. x^2 - xy - 2y^221. x^2+xy - 6y^222. 9x^2 - 12x+423. 1 - 4x^224. x^3 - x^2 - x+125. x^3+x^2 - x - 126. 4x^2 - 4x+127. x^2 - 8x+1628. x^2+10x + 2529. x^3 - 830. 27x^3+8二、因式分解练习题(20道带解析)1. x^2 - 16- 解析:这是一个平方差的形式,a^2 - b^2=(a + b)(a - b),在这里a=x,b = 4,所以x^2-16=(x + 4)(x - 4)。
2. 9x^2 - 49- 解析:同样是平方差形式,a = 3x,b=7,根据平方差公式可得9x^2 -49=(3x+7)(3x - 7)。
3. x^2+8x + 16- 解析:这是一个完全平方的形式(a + b)^2=a^2+2ab + b^2,这里a=x,b = 4,因为x^2+8x + 16=(x + 4)^2。
4. 25x^2 - 1- 解析:是平方差形式,a = 5x,b = 1,所以25x^2-1=(5x + 1)(5x - 1)。
5. x^3+27- 解析:这是立方和的形式a^3 + b^3=(a + b)(a^2 - ab + b^2),这里a=x,b = 3,则x^3+27=(x + 3)(x^2 - 3x+9)。
因式分解经典题型(含详细答案)
因式分解经典题型【编著】黄勇权经典题型一:1、x3+2x2-12、4x2+4x-4y2+13、3x+xy-y-34、3x3+5x2-25、3x2y-3xy-6y6、x2-7x-607、3x2-2xy-8y28、x(y-2)-x2(2-y)9、x2+8xy-33y210、(x2+3x)4-8(x2+3x)2+16经典题型一:【答案】1、x32-1将2x2拆分成x2+x2=x3+x2+x2-1=(x3+x2)+(x2-1)=x2(x+1)+(x+1)(x-1)提取公因式(x+1)=(x+1)[x2+(x-1)]=(x+1)(x2+x-1)2、4x2+4x-4y2+1将-4y2与+1 位置互换=4x2+4x+1-4y2=(4x2+4x+1)-4y2=(2x+1)2-4y2=[(2x+1)+2y][(2x+1)-2y]=(2x+2y+1)(2x-2y+1)3、3x+xy-y-3将前两项结合,后两项结合=(3x+xy)+(-y-3)= x(3+y)-(y+3)提取公因式(y+3)=(y+3)(x-1)4、3x3+5x2-2将5x2拆分成3x2+2x2=3x3+3x2+2x2-2=(3x3+3x2)+(2x2-2)=3x2(x+1)+2(x2-1)=3x2(x+1)+2(x+1)(x-1)提取公因式(x+1)=(x+1)[3x2+2(x-1)]=(x+1)(3x2+2x-2)5、3x2y-3xy-6y将-6y拆分成-3y-3y=3x2y-3xy-3y-3y将3x2y与-3y结合,-3xy与-3y结合=(3x2y-3y)+(-3xy-3y)=3y(x2-1)-3y(x+1)=3y(x+1)(x-1)-3y(x+1)提取公因式3y(x+1)=3y(x+1)[(x-1)-1]=3y(x+1)(x-2)6、x2-7x-60用十字叉乘法,将-60拆分成-12与5的乘积X -12X 5=(x-12)(x+5)7、3x2-2xy-8y2【详细讲解十字叉乘法】用十字叉乘法,用逐一罗列(1)3x2只能拆分成3x与x的乘积,(2)-8y2,可拆分成①-8y与y的乘积②8y与-y的乘积③-4y与2y的乘积④4y与-2y的乘积逐一尝试,看哪一组结果是-2xy(1)3X -8yX y3xy-8xy=-5xy(结果不是-2xy,舍去)(2)3X yX -8y-24xy+xy=-23xy(结果不是-2xy,舍去)(3)3X 8yX -y-3xy+8xy=5xy(结果不是-2xy,舍去)(4)3X -yX 8y24xy-xy=23xy(结果不是-2xy,舍去)(5)3X -2yX 4y12xy-2xy=10xy(结果不是-2xy,舍去)(6)3X 4yX -2y-6xy+4xy=-2xy(结果是-2xy,符合题意)(7)3X 2yX -4y-12xy+2xy=-10xy(结果不是-2xy,舍去)(8)3X -4yX 2y6xy-4xy=2xy(结果不是-2xy,舍去)通过逐一尝试,第(6)就是我们要的答案,所以:3x2-2xy-8y2用十字叉乘法,3X 4yX -2y=(3x+4y)(x-2y)8、x(y-2)-x2(2-y)将(2-y)变为-(y-2)= x(y-2)+x2(y-2)提取公因式x(y-2)-2)(1+x)整理一下(y-2)、(1+x)的顺序= x(1+x)(y-2)9、x2+8xy-33y2用十字叉乘法X 11yX -3y=(x+11y)(x-3y)10、(x2+3x)4-8(x2+3x)2+16把(x2+3x)4看着(x2+3x)2看平方,把16 看着4的平方。
初二的因式分解练习题
初二的因式分解练习题题目一:因式分解1. 将下列各式进行因式分解:a) 3x + 9yb) 6x² - 12xc) 5a - 20d) 2m² + 5m + 32. 将下列各式进行因式分解,并求出因式:a) 4x² - 12xy + 9y²b) 2a² - 18ab + 40b²c) 9m² - 36d) 16x² - 25y²题目二:应用问题1. 某活动中,每个学生要穿n条腰带和4件上衣,规定每条腰带价格为x元,每件上衣价格为y元。
写出每个学生需付的金额的表达式,并进行因式分解。
2. 一块长方形草坪的长为x+3,宽为x,若要绕草坪围上一圈宽度为3米的路,求围路的总长度,并进行因式分解。
3. 小明花费了60元购买苹果和橙子,苹果每斤x元,橙子每斤y 元。
已知小明购买了a斤苹果和b斤橙子,写出小明花费的总金额表达式,并进行因式分解。
解答:1. 因式分解:a) 3x + 9y = 3(x + 3y)b) 6x² - 12x = 6x(x - 2)c) 5a - 20 = 5(a - 4)d) 2m² + 5m + 3 = (2m + 3)(m + 1)2. 因式分解:a) 4x² - 12xy + 9y² = (2x - 3y)²b) 2a² - 18ab + 40b² = 2(a - 4b)(a - 5b)c) 9m² - 36 = 9(m - 2)(m + 2)d) 16x² - 25y² = (4x - 5y)(4x + 5y)3. 应用问题:a) 每个学生需付的金额表达式为:nxy + 4xy = xy(n + 4)b) 围路的总长度为:2(x+3) + 2x + 6 = 4x + 12,并进行因式分解为4(x + 3)c) 小明花费的总金额表达式为:ax + by = (a + b)xy,并进行因式分解为xy(a + b)通过上述练习题,初二学生可以巩固和提升因式分解的能力。
初二因式分解题20道
初二因式分解题20道一、提取公因式法1. 分解因式:3x + 6- 解析:先找出各项的公因式,在3x+6中,公因式为3。
所以3x + 6=3(x + 2)。
2. 分解因式:5x^2-10x- 解析:公因式为5x,则5x^2 - 10x = 5x(x - 2)。
3. 分解因式:8x^3y - 12x^2y^2- 解析:公因式为4x^2y,8x^3y-12x^2y^2 = 4x^2y(2x - 3y)。
二、公式法(平方差公式:a^2 - b^2=(a + b)(a - b))4. 分解因式:x^2-9- 解析:x^2-9=x^2 - 3^2,根据平方差公式可得(x + 3)(x - 3)。
5. 分解因式:16y^2 - 25- 解析:16y^2-25=(4y)^2 - 5^2=(4y + 5)(4y - 5)。
6. 分解因式:49x^4 - 16y^4- 解析:49x^4-16y^4=(7x^2)^2-(4y^2)^2=(7x^2 + 4y^2)(7x^2-4y^2),其中7x^2 - 4y^2还可以继续分解为(√(7)x+2y)(√(7)x - 2y),所以49x^4 - 16y^4=(7x^2 +4y^2)(√(7)x + 2y)(√(7)x - 2y)。
三、公式法(完全平方公式:a^2±2ab + b^2=(a± b)^2)7. 分解因式:x^2+6x + 9- 解析:x^2+6x + 9=x^2+2×3x+3^2=(x + 3)^2。
8. 分解因式:4y^2-20y + 25- 解析:4y^2-20y + 25=(2y)^2-2×5×2y + 5^2=(2y - 5)^2。
9. 分解因式:x^2 - 4xy+4y^2- 解析:x^2-4xy + 4y^2=x^2-2×2xy+(2y)^2=(x - 2y)^2。
四、综合运用(先提公因式,再用公式法)10. 分解因式:2x^3 - 8x- 解析:先提公因式2x,得到2x(x^2 - 4),然后x^2 - 4可以用平方差公式继续分解为(x + 2)(x - 2),所以2x^3-8x = 2x(x + 2)(x - 2)。
用因式分解法求解一元二次方程(学生用卷)
2.4用因式分解法求解一元二次方程一、单选题(总分18分,共6题)1.(3分)(2023春•沭阳县月考)方程x(x-1)=0的根是()A.x=0B.x=1C.x1=0,x2=1D.x1=1,x2=-12.(3分)(2020秋•富裕县期末)一元二次方程x2=3x的解为()A.x=0B.x=3C.x=0或x=3D.x=0且x=33.(3分)方程5x2-2x=0的根是().A.B.C.x1=0,D.x1=0,4.(3分)若(x-5)2=3(x-5),则x的值是()A.8B.5C.3或6D.5或85.(3分)一元二次方程x(x-2)=2-x的根是()A.x=-1B.x=0C.x1=1,x2=2D.x1=-1,x2=26.(3分)(天津中考)方程(x+1)2-16=0的两个根为()A.x1=-2,x2=6B.x1=3,x2=-5C.x1=-3,x2=5D.x1=-4,x2=3二、填空题(总分36分,共9题)7.(4分)利用因式分解解一元二次方程的方法叫做__________.这种方法把解一个一元二次方程转化为__________________.8.(4分)方程(x+2)(x-3)=x+2的解是____9.(4分)方程(x+1)(x-2)=2(x-2)的解是__________________.10.(4分)(2023•皇姑区校级开学)方程(x-1)(x+1)=x-1的解是__________.11.(4分)(2022秋•丰都县期末)方程3x2-6x=0的解是__________12.用配方法解一元二次方程x2+6x﹣3=0,原方程可变形为__________13.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是14.(4分)在估算一元二次方程x2+12x﹣15=0的根时,小彬列表如下:x1 1.1 1.2 1.3x2+12x﹣15﹣2﹣0.590.84 2.29由此可估算方程x2+12x﹣15=0的一个根x的范围是.15.(4分)某商店七月份销售自行车50辆,九月份销售72辆,该商店七至九月份自行车销售量的月平均增长率为.三、解答题(总分96分,共7题)16.(24分)用因式分解法解下列方程:(1)x2+10x+25=0;(2)x(x-3)-4(3-x)=0;(3)(x+3)2=2(x+3)(4)16(2x-1)2=25(x-2)2.17.(12分)用恰当的方法解方程:(1)x2-6x-11==0(2)2(x-3)=x2-9;18.(14分)根据多项式的乘法与因式分解的关系,可得x2-x-6=(x+2)(x-3),右边的两个一次式的系数有关系,左边上、下两数积是原式左边二次项的系数,右边上、下两数积是原式左边常数项,交叉相乘积之和是原式左边一次项的系数.这种分解二次三项式的方法叫“十字相乘法”.请同学们认真观察、分析理解后,解答下列问题.(1)解方程:①x2+4x+3=0;②x2+5x-6=0.(2)填空:①分解因式:2x2-5x+2=(2x-__)(x-__);②解方程:3x2+x-2=0,左边分解因式,得(x+1)(3x-2)=0,∴______=0;________=0∴x1=____,x2=____.19.(8分)(2023秋•青岛月考)(1)解一元二次方程:x2-2x-8=0;(2)已知一元二次方程x2-ax+1=0的两实数根相等,求a的值.20.(20分)(2023•滕州市校级开学)计算:(1)2(x-1)2=18;(2)x2-4x-3=0(配方法);(3)2x2-2x+1=0;(4)x(2x-5)=4x-10.21.(6分)(2021秋•海淀区校级期末)解方程:x2-2x=2(x+1).22.(12分)“十一黄金周”期间,晋华旅行社推出了“三晋文化游”项目的团购活动,收费标准如下:若总人数不超过25人,每人收费1000元;若总人数超过25人,每增加1人,每人收费降低20元,(但每人收费不低于700元),设有x 人参加这一旅游项目的团购活动.(1)当x=35时,每人的费用为元;(2)某社区居民组团参加该活动,共支付旅游费用27000元,求该社区共有多少人参加此次“三晋文化游”?。
专题 因式分解的应用(和拼图有关)(学生版)
专题32因式分解的应用(和拼图有关)1.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:可用图1来解释(a+b)2=a2+2ab+b2.(1)请你写出图2所表示的代数恒等式;(2)试在图3的方框中画出一个几何图形,使它的面积等于a2+4ab+3b2.2.我们已经知道,乘法公式可以用一些硬纸片拼成的图形面积来解释其正确性,实际上还有很多代数恒等式也可用这种形式说明其正确性.例如图1可以用来解释:2a(a+b)=2a2+2ab.(1)试写出图2所表示的代数恒等式:;(2)试在图3的方框内画出一个平面图形,使它的面积能表示:(2a+b)(a+2b)=2a2+5ab+2b2.3.阅读材料并回答问题:我们已经知道,完全平方公式,平方差公式可以用几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2.(1)请写出图③可以解释的代数等式:____________________________;(2)在下面虚线框中用图①中的基本图形若干块,拼成一个长方形(每种至少用一次,卡片之间不能有缝隙或重叠),使拼出的长方形面积为3a2+7ab+2b2,并写出这个长方形的长和宽是________________________.4.如图,有足够多的边长为a的小正方形(A类)、长为a宽为b的长方形(B类)以及边长为b的大正方形(C类),发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2(1)取图①中的若干个(三种图形都要取到)拼成一个长方形,使其面积为(2a+b)(a+2b),在虚框中画出图形,并根据图形回答(2a+b)(a+2b)=_____________(2)若取其中的若干个(三种图形都要取到)拼成一个长方形,使其面积为a2+5ab+6b2.根据你画的长方形,可得到恒等式_____________(3)如图③,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个矩形的两边长(x>y),观察图案,指出以下正确的关系式___________填写选项).A.xy=224m n-B.x+y=m C.x2-y2=m·n D.x2+y2=222m n+5.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图(1)可以用来解释()2222a ab b a b ++=+,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.如图(2),将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m 的大正方形,两块是边长都为n 的小正方形,五块是长为m ,宽为n 的全等小长方形,且m n >.(以上长度单位:cm )(1)观察图形,可以发现代数式22252m mn n ++可以分解因式为_________(2)若每块小长方形的面积为210cm ,四个正方形的面积和为258,cm 试求图中所有裁剪线(虚线部分)长之和.6.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图A 可以用来解释a 2+2ab +b 2=(a+b)2.现有足够多的正方形卡片1号,2号和长方形卡片3号,如图C .(1)根据图B 完成因式分解:222a ab +=;(2)现有1号卡片1张、2号卡片4张,3号卡片4张.在不重叠的情况下可以紧密地拼成一个大正方形,则这个大正方形的边长为;(3)现要拼出一个面积为()(3)a b a b ++的长方形,则需要1号卡片张,2号卡片张,3号卡片张.(4)比较图A 中的两个正方形面积之和1S 与两个长方形面积之和2S 的大小关系,并说明理由.(1)图B可以解释的代数恒等式是;(2)现有足够多的正方形和矩形卡片,如图C:①若要拼出一个面积为(3a+b)(a+2b)的矩形,则需要1号卡片张,2号卡片张,3号卡片张;②试画出一个用若干张1号卡片、2号卡片和3号卡片拼成的矩形,使该矩形的面积为6a2+7ab+2b2,并利用你画的图形面积对6a2+7ab+2b2进行因式分解.(1)图B 可以解释的代数恒等式是;(2)现有足够多的正方形和矩形卡片(如图C ),试画出..一个用若干张1号卡片、2号卡片和3号卡片拼成的矩形(每两块纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图的痕迹),使该矩形的面积为2223a ab b ++,并利用你所画的图形面积对2223a ab b ++进行因式分解.9.数形结合是解决数学问题的一种重要思想方法,借助此方法可将抽象的数学知识变得直观且具有可操作性,从而帮助我们解决问题.初中数学中有一些代数恒等式可以用一些卡片拼成的图形面积来解释.某同学在学习的过程中动手剪了如图①所示的正方形与长方形纸片若干张.(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②),根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是;(2)如果要拼成一个长为(a+2b),宽为(a+b)的大长方形,则需要2号卡片张,3号卡片张;(3)当他拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式22a ab b++分解因式,其结果是;32(4)请你依照该同学的方法,在指定位置画出拼图并利用拼图分解因式22++=.56a ab b10.阅读下列材料,并解答问题.面积与代数恒等式通过学习,我们知道可以用图1的面积来解释公式()2222a b a ab b +=++,人们经常称作用面积解释代数恒等式实际上还有一些代数恒等式也可以用这种形式表示,如可用图2表示()()22a b a b a b +-=-.请根据阅读材料,解答下列问题:(1)请写出图3所表示的代数恒等式:;(2)试画一个几何图形,使它的面积表示:()()2222252a b a b a ab b ++=++;(3)请仿照上述方法另写一个含有a ,b 的代数恒等式,并画出与它对应的几何图形.11.利用图形面积可以解释代数恒等式的正确性,如图1可以验证一个代数恒等式(a +b )2=(a ﹣b )2+4ab .(1)如图2,用若干张A ,B ,C 的卡片拼成一个长方形面积为(2a +b )(a +b ),那么需要A ,B ,C 卡片各多少张?(2)如果用1张A ,5张B ,6张C 拼成一个长方形,那么这个长方形的边长分别是和.12.如图,有足够多的边长为a 的小正方形(A 类),长为b 、宽为a 的长方形(B 类)及边长为b 的大正方形(C 类).发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式,比如图②可以解释为()()22232a b a b a ab b ++=++.(1)取图①中的若干个(三种材料都要取到)拼成一个长方形,使其面积为()()22a b a b ++,画出图形,并根据图形回答:()()22a b a b ++=______________.(2)若取其中的若干个(三种材料都要取到)拼成一个长方形,使其面积为2256a ab b ++,①你画的图中需C 类卡片___________张;②可将多项式2256a ab b ++分解因式为_______________;(3)如图③,大正方形的边长为m ,小正方形的边长为n .若用,x y 表示四个相同的长方形的两边长()x y >,观察图形并判断下列关系式:①224m n xy -=;②x y m +=;③22x y mn +=;④22222m n x y -+=,其中正确的是____________.13.一天小明和小丽玩纸片拼图游戏,他们发现利用图1中的三种类型的纸片可以拼出一些图形来解释某些等式,例如,由图2,我们可以得到22(2)()32a b a b a ab b ++=++.(1)由图3可以解释的等式是_________;(2)用边长为a 的正方形卡片1张,边长分别为a ,b 的长方形卡片6张,边长为b 的正方形卡片9张,用这16张卡片拼成一个正方形,则这个正方形的边长为_________;(3)小丽用5个长为b ,宽为a 的长方形按照图4方式不重叠地放在大长方形ABCD 内,大长方形中未被覆盖的两个部分,设左上角的面积为S 1,右下角的面积为S 2,当BC 的长变化时,S 2﹣S 1的值始终保持不变,求a 与b 的数量关系.14.【数学实验】如图,有足够多的边长为a 的小正方形(A 类)、长为a 宽为b 的长方形(B 类)以及边长为b 的大正方形(C 类),发现利用图①中的三种材料各若干个可以拼出一些长方形来解释某些等式.例如图②可以解释为:(a +2b )(a +b )=a 2+3ab +2b 2.【初步运用】(1)仿照例子,图③可以解释为:;(2)取图①中的若干个(三种图形都要取到)拼成一个长方形,使它的边长分别为(2a +3b )、(a +5b ),不画图形,试通过计算说明需要C 类卡片多少张;【拓展运用】若取其中的若干个(三种图形都要取到)拼成一个长方形,使它的面积为2a 2+5ab +3b 2,通过操作你会发现拼成的长方形的长宽分别是,将2a 2+5ab +3b 2改写成几个整式积的形式为.15.阅读材料并解答问题:我们已经知道,完全平方公式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,例如22(2)()23a b a b a ab b ++=++就可以用如下的图形面积来表示.(1)试画出一个几何图形,使它的面积能表示:22()(3)43a b a b a ab b ++=++;(2)请仿照上述方法另写出一个含有a ,b 的代数恒等式(要求不同于上述多项式),并画出与之对应的几何图形.16.数学课上,我们知道可以用图形的面积来解释一些代数恒等式,如图1可以解释完全平方公式:()2222a b a ab b +=++.(1)如图2(图中各小长方形大小均相等),请用两种不同的方法求图2中阴影部分的面积(不化简):方法1:S =阴影_________________;方法2∶S =阴影_________________.(2)由(1)中两种不同的方法,你能得到怎样的等式?(3)①已知()216+=m n ,3mn =,请利用(2)中的等式,求m n -的值.②已知()2213m n +=,()225m n -=,请利用(2)中的等式,求mn 的值.17.阅读理解:数形结合作为一种数学思想方法,应用可分为两种情形:第一种情形是“以数解形”,借助于数(式)的计算来说明图形的某些性质;第二种情形是“以形助数”,借助图形的直观性来说明数(式)之间数量关系.本学期学习的整式乘法法则,可借助图形的面积,分别从整体..、局部..来计算同一个图形的面积来构建等式,进而解释、验证整式乘法法则.解决问题:如图1,利用A 、B 、C 三种纸片各若干,可以拼出一些图形来解释某些等式,比如图2可以解释等式22()(2)23a b a b a ab b ++=++.(1)图3可以解释等式:;(2)观察图4,请你写出2()a b +、2()a b -和ab 之间的数量关系是;(3)利用5张B 种纸片拼成如图5的大长方形,记长方形ABCD 的面积与长方形EFGH 的面积差为S .①若CD =7时,试用含a 、b 的代数式表示S ;②设CD =x ,且当x 取不同数值时,S 永远为定值,求a 与b 之间的数量关系.18.【知识生成】我们已经知道,多项式的乘法可以利用图形的面积进行解释.例如利用图1的面积可以得到()2222a b a ab b +=++,基于此,请解答下列问题:(1)请你写出图2所表示的一个等式:________.(2)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张宽、长分别为a 、b 的长方形纸片拼出一个面积为()()22a b a b ++长方形,则x y z ++=________.【知识迁移】(3)事实上,通过计算几何图形的体积也可以表示一些等式,图4表示的是一个边长为x 的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中因式分解的常用方法(例题详解)
因式分解公式:
一、提公因式法.
如多项式),(c b a m cm bm am ++=++
其中m 叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式. 二、运用公式法. 运用公式法,即用
)
)((,)(2),
)((223322222b ab a b a b a b a b ab a b a b a b a +±=±±=+±-+=-
写出结果. 三、分组分解法.
(一)分组后能直接提公因式
例1、分解因式:bn bm an am +++
例2、分解因式:bx by ay ax -+-5102
练习:分解因式1、bc ac ab a -+-2
2、1+--y x xy
(二)分组后能直接运用公式
例3、分解因式:ay ax y x ++-2
2
例4、分解因式:2
222c b ab a -+-
练习:分解因式3、y y x x 3922--- 4、yz z y x 22
22---
综合练习:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-2
2
(3)181696222-+-++a a y xy x (4)a b b ab a 491262
2-++-
(5)922
34-+-a a a (6)y b x b y a x a 222244+--
(7)222y yz xz xy x ++-- (8)12222
2++-+-ab b b a a
(9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+
(11)abc b a c c a b c b a 2)()()(222++++++ (12)abc c b a 33
33-++
四、十字相乘法.
(一)二次项系数为1的二次三项式
直接利用公式——))(()(2
q x p x pq x q p x ++=+++进行分解。
特点:(1)二次项系数是1;
(2)常数项是两个数的乘积;
(3)一次项系数是常数项的两因数的和。
例5、分解因式:652
++x x 例6、分解因式:672
+-x x
练习5、分解因式(1)24142++x x (2)36152+-a a (3)542
-+x x
练习6、分解因式(1)22-+x x (2)1522--y y (3)24102
--x x
(二)二次项系数不为1的二次三项式——c bx ax ++2
条件:(1)21a a a = 1a 1c
(2)21c c c = 2a 2c (3)1221c a c a b += 1221c a c a b += 分解结果:c bx ax ++2
=))((2211c x a c x a ++
例7、分解因式:101132
+-x x
练习7、分解因式:(1)6752-+x x (2)2732
+-x x
(3)317102
+-x x (4)101162++-y y
(三)二次项系数为1的齐次多项式
例8、分解因式:2
21288b ab a --
练习8、分解因式(1)2223y xy x +- (2)2286n mn m +-(3)2
26b ab a --
(四)二次项系数不为1的齐次多项式
例9、2
2
672y xy x +- 例10、232
2
+-xy y x
练习9、分解因式:(1)224715y xy x -+ (2)862
2+-ax x a
综合练习10、(1)1783
6--x x (2)22151112y xy x --
(3)10)(3)(2-+-+y x y x (4)344)(2
+--+b a b a
(5)222265x y x y x -- (6)263442
2++-+-n m n mn m
(7)3424422---++y x y xy x (8)2
222)(10)(23)(5b a b a b a ---++
(9)10364422-++--y y x xy x (10)2
222)(2)(11)(12y x y x y x -+-++
思考:分解因式:abc x c b a abcx +++)(2
222
例11、分解因式:291032
2
-++--y x y xy x
练习11、分解因式(1)56422-++-y x y x (2)6722
2-+--+y x y xy x
(3)61362
2-++-+y x y xy x (4)36355622-++-+b a b ab a
六、双十字相乘法。
定义:双十字相乘法用于对F Ey Dx Cy Bxy Ax +++++2
2
型多项式的分解因式。
条件:(1)21a a A =,21c c C =,21f f F =
(2)B c a c a =+1221,E f c f c =+1221,D f a f a =+1221 即: 1a 1c 1f
2a 2c 2f
B c a c a =+1221,E f c f c =+1221,D f a f a =+1221 则=+++++F Ey Dx Cy Bxy Ax 2
2))((222111f c x a f y c x a ++++
例12、分解因式(1)291032
2
-++--y x y xy x
(2)61362
2
-++-+y x y xy x
练习12、分解因式(1)67222-+--+y x y xy x (2)2
2227376z yz xz y xy x -+---
例13、分解因式(1)2005)12005(20052
2
---x x (2)2
)6)(3)(2)(1(x x x x x +++++
练习13、分解因式(1))(4)(2
2222y x xy y xy x +-++
(2)90)384)(23(22+++++x x x x (3)2
22222)3(4)5()1(+-+++a a a
例14、分解因式(1)2622
34+---x x x x
观察:此多项式的特点——是关于x 的降幂排列,每一项的次数依次少1,并且系数成“轴对称”。
这种多项式属于“等距离多项式”。
练习14、(1)6736762
34+--+x x x x (2))(2122234x x x x x +++++
八、添项、拆项、配方法。
例15、分解因式(1)432
3
+-x x
练习15、分解因式(1)893
+-x x (2)4224)1()1()1(-+-++x x x
(3)1724+-x x (4)2
2412a ax x x -+++
(5)444)(y x y x +++ (6)4
44222222222c b a c b c a b a ---++
九、待定系数法。
例16、分解因式61362
2
-++-+y x y xy x
例17、(1)当m 为何值时,多项式652
2-++-y mx y x 能分解因式,并分解此多项式。
(2)如果82
3
+++bx ax x 有两个因式为1+x 和2+x ,求b a +的值。
练习17、(1)分解因式291032
2-++--y x y xy x
(2)分解因式675232
2+++++y x y xy x
(3)已知:p y x y xy x +-+--146322
2能分解成两个一次因式之积,求常数p 并且分解因式。
(4)k 为何值时,25322
2+-++-y x ky xy x 能分解成两个一次因式的乘积,并分解此多项式。