西安交大概率论上机实验报告-西安交通大学概率论实验报告
西安交通大学概率论实验报告-蒙特卡洛法
西安交通大学实验报告课程:概率论与数理统计实验日期:2013/12/22报告日期:2013/12/24专业班级:姓名:学号:实验内容:用蒙特卡洛方法估计积分值要求:(1)针对要估计的积分选择适当的概率分布设计蒙特卡洛方法;(2)利用计算机产生所选分布的随机数以估计积分值;(3)进行重复试验,通过计算样本均值以评价估计的无偏性;通过计算均方误差(针对第1类题)或样本方差(针对第2类题)以评价估计结果的精度。
目的:(1)能通过 MATLAB 或其他数学软件了解随机变量的概率密度、分布函数及其期望、方差、协方差等;(2)熟练使用 MATLAB 对样本进行基本统计,从而获取数据的基本信息;(3)能用 MATLAB 熟练进行样本的一元回归分析。
1用蒙特卡洛方法估计积分2sinx xdxπ⎰,2xe dx+∞⎰和22221x yx ye dxdy++≤⎰⎰的值,并将估计值与真值进行比较。
1)2sinx xdxπ⎰用区间为0-π/2的均匀分布产生;代码如下N=10000;x=unifrnd(0,pi/2,N,1); mean(x.*sin(x)*pi/2)计算出10次的数值计算出精确值:syms x ;int(x.*sin(x),0,pi/2)精确值为1;计算出均值:1.00158计算出均方误差:0.0000637580结论:这是一个计算积分的很好的近似,误差很小。
接下来考虑计算第二个积分:2)考虑2xe dx +∞⎰由对称性可以考虑正态分布N(0,1),代码如下:N=10000;x=normrnd(0,1,N,1)0.5*mean((sqrt(2.*pi)).*exp(-x.^2./2))求出均值为0.88598取0.8860计算出均方误差为:0.000018204说明误差允许范围内,可以用其作为积分的近似。
若考虑用参数为1的指数分布E(1)代码为:N=10000;x=exprnd(1,N,1)mean(exp(-x.^2./2+x))精确值为:0.8862计算出平均值为:1.25164计算出均方误差为:0.13356381和正态分布比相去甚远,效果不如正态分布3)22221x yx ye dxdy++≤⎰⎰利用代码计算出积分:N=10000;x=unifrnd(0,1,N,1) //已经转换为极坐标,r在[0,1]取值,取[0,1]均匀分布2*pi*mean(x.*exp(-x.^2))计算出十个值为:计算出平均值为:1.98397计算出均方误差为:0.000059其值与精确值非常接近,可以作为一个很好的近似第二类题:4) dx e x ⎰102用如下代码计算:N=10000;x=unifrnd(0,1,N,1) //[0,1]上的均匀分布mean(exp(x.^2))计算出平均值为:1.4619计算出标准偏差为:0.003304 ,说明波动性较小计算出均方误差为:0.000010其值与精确值非常接近,可以作为一个很好的近似5)用如下代码计算:N=10000;x=unifrnd(0,2,N,1) //转换为极坐标后取[0,2]的均匀分布4*pi*mean(x./sqrt(1+x.^2))计算出平均值为:7.76363计算出标准偏差为:0.015241,说明波动性较小计算出均方误差为:0.000217其值与精确值非常接近,可以作为一个很好的近似22x y x d y +≤⎰⎰。
西安交通大学《数字逻辑电路》课内实验报告
西安交通大学电子技术实验报告——智力抢答器的设计班级:姓名:学号:日期:2015年6月30日联系电话:一、实验目的电子技术专题实验是对《数字逻辑电路》课程内容的全面、系统的总结、巩固和提高的一项课程实践活动。
通过智力抢答器的设计与分析实验,加强与巩固学对数字逻辑电路设计的基本方法和技巧的掌握,同时熟悉QuartusⅡ软件及实验室多功能学习机硬件平台,并掌握数字逻辑电路测试的基本方法,训练学生的动手能力和思维方法。
通过本实验,一方面提高学生运用数字逻辑电路解决实际问题的能力,另一方面使学生更深入的理解所学知识,将理论与实际问题相结合,为以后的计算机硬件课程的学习奠定良好的基础。
二、系统设计概要1、项目名称————智力抢答器的设计2、系统设计要求在许多比赛活动中,为了准确、公正、直观地判断出第一抢答者,通常设置一台抢答器,通过数显、灯光及音响等多种手段指示出第一抢答者。
同时,还可以设置计分、犯规及奖惩计录等多种功能。
本设计的具体要求是:(1) 设计制作一个可容纳四组参赛者的数字智力抢答器,每组设置一个抢答按钮供抢答者使用。
(2) 电路具有第一抢答信号的鉴别和锁存功能。
(3) 设置计分电路。
(4) 设置犯规电路。
三、系统设计方案1、总体概述根据系统设计要求可知,系统的输入信号有:各组的抢答按钮A、B、C、D,系统清零信号CLR,系统时钟信号CLK,计分复位端RST,加分按钮端ADD,计时预置控制端LDN,计时使能端EN,计时预置数据调整按钮TA、TB;系统的输出信号有:四个组抢答成功与否的指示灯控制信号输出口LEDA、LEDB、LEDC、LEDD,四个组抢答时的计时数码显示控制信号若干,抢答成功组别显示的控制信号若干,各组计分动态显示的控制信号若干。
根据以上的分析,我们可将整个系统分为三个主要模块:抢答鉴别模块QDJB;抢答计时模块JSQ;抢答计分模块JFQ。
对于需显示的信息,需增加或外接译码器YMQ,进行显示译码。
概率论与数理统计上机实验报告
概率论与数理统计上机实验报告实验一【实验目的】熟练掌握 MATLAB 软件的关于概率分布作图的基本操作会进行常用的概率密度函数和分布函数的作图绘画出分布律图形【实验要求】掌握 MATLAB 的画图命令 plot掌握常见分布的概率密度图像和分布函数图像的画法【实验容】2 、设X : U (−1,1)(1 )求概率密度在 0 ,0.2 ,0.4 ,0.6 ,0.8,1 ,1.2 的函数值;(2 )产生 18 个随机数(3 行 6 列)(3 )又已知分布函数F ( x) = 0.45 ,求x(4 )画出X 的分布密度和分布函数图形。
【实验方案】熟练运用基本的MATLAB指令【设计程序和结果】1.计算函数值Fx=unifcdf(0, -1,1)Fx=unifcdf(0.2, -1,1)Fx=unifcdf(0.4, -1,1)Fx=unifcdf(0.6, -1,1)Fx=unifcdf(0.8, -1,1)Fx=unifcdf(1.0, -1,1)Fx=unifcdf(1.2, -1,1)结果Fx =0.5000Fx =0.6000Fx =0.7000Fx =0.8000Fx =0.9000Fx =1Fx =12.产生随机数程序:X=unifrnd(-1,1,3,6)结果:X =0.6294 0.8268 -0.4430 0.9298 0.9143 -0.7162 0.8116 0.2647 0.0938 -0.6848 -0.0292 -0.1565 -0.7460 -0.8049 0.9150 0.9412 0.6006 0.83153.求x程序:x=unifinv(0.45, -1,1)结果:x =-0.10004.画图程序:x=-1:0.1:1;px=unifpdf(x, -1,1);fx=unifcdf(x, -1,1);plot(x,px,'+b');hold on;plot(x,fx,'*r');legend('均匀分布函数','均匀分布密度');结果:【小结】运用基本的MATLAB指令可以方便的解决概率论中的相关问题,使数学问题得到简化。
概率论教学实践报告总结(3篇)
第1篇一、前言概率论是数学的一个重要分支,它研究随机现象及其规律。
随着我国教育事业的不断发展,概率论在教学中的地位日益重要。
为了提高教学质量,探索有效的教学策略,我们开展了一系列概率论教学实践活动。
现将本次实践活动的总结如下:二、实践目的1. 提高学生对概率论知识的掌握程度,培养学生的逻辑思维能力。
2. 探索适合我国学生特点的概率论教学方法,提高课堂教学效果。
3. 加强师生互动,培养学生的自主学习能力。
4. 丰富教师的教学经验,提高教师的专业素养。
三、实践内容1. 教学方法改革(1)启发式教学:教师在课堂上注重引导学生思考,通过提问、讨论等方式,激发学生的学习兴趣,提高学生的思维能力。
(2)案例教学:结合实际生活中的例子,让学生理解概率论知识在实际中的应用,提高学生的实践能力。
(3)小组合作学习:将学生分成若干小组,共同完成教学任务,培养学生的团队协作能力。
2. 教学手段创新(1)多媒体教学:利用PPT、视频等多媒体手段,使教学内容更加生动形象,提高学生的学习兴趣。
(2)网络教学:通过在线课程、论坛等网络平台,拓宽学生的学习渠道,提高学生的学习效果。
(3)实验教学:开展概率实验,让学生亲身体验概率现象,加深对概率论知识的理解。
3. 教学评价改革(1)过程性评价:关注学生在学习过程中的表现,如课堂发言、作业完成情况等。
(2)结果性评价:关注学生对知识掌握程度,如期中、期末考试等。
(3)多元评价:结合学生自评、互评、教师评价等多种方式,全面评价学生的学习成果。
四、实践效果1. 学生对概率论知识的掌握程度有了明显提高,课堂参与度显著提升。
2. 学生在解决实际问题时,能够运用概率论知识进行分析,提高了解决问题的能力。
3. 学生在团队协作、自主学习等方面取得了较好成绩,综合素质得到提高。
4. 教师的教学经验得到了丰富,教学水平得到提高。
五、存在问题及改进措施1. 存在问题(1)部分学生对概率论知识缺乏兴趣,学习积极性不高。
西安交通大学数学建模上机实验报告
问题一某大型制药厂销售部门为了找出某种注射药品销量与价钱之间的关系,通过市场调查搜集了过去30个销售周期的销量及销售价钱的数据,如表.按照这些数据至少成立两个数学模型, 作出图形,比较误差。
问题分析:该问题是通过已知的过去30个销售周期的销量及销售价钱的 数据,来寻觅一个最能反映该药销量与价钱之间的函数曲 线。
在数学上归结为最佳曲线拟合问题。
大体思想:曲线拟合问题的提法:已知一组二维数据,即平面上的n 个点),x i i y ( i=1,2,3.....n ,i x 互不相同,寻求一个函数)(f y x =,使)(x f 在某中准则下与所有数据点最为接近,即曲线拟合得最好。
最小二乘法是解决曲线拟合最常常利用的方式.大体思路:1122 ()()()()m m f x a r x a r x a r x =+++令其中rk(x) 是事前选定的一组函数,ak 是待定系数(k=1,2,…,m,m <n), 拟合准则是使n 个点(xi,yi) (i=1,2…,n),与y=f(xi)的距离 的平方和最小,称最小二乘法准则。
一、系数的肯定22111 (,,)[()]n nm ii i i i J a a f x y δ====-∑∑记求m a a ,,1 使得使J 达到最小.0 (1,,)kJ k m a ∂==∂ 取得关于 m a a ,,1 的线性方程组:11111()[()]0 ()[()]0nmi k k i i i k n mm i k k i i i k r x a r x y r x a r x y ====⎧-=⎪⎪⎪⎨⎪⎪-=⎪⎩∑∑∑∑ 1 ,,().m a a f x 解出,即得散点图: 程序: x=[,,,,,,,,,,,,,,,,,,,,,,,,,,,,,]; y=[,,,,,,,,,,,,,,,,,,,,,,,,,,,,,]; plot(x,y,'r.')通过观察,结合实际情形。
西安交通大学概率论上机实验
[公司名称]Matlab 上机实验尾号为7(题号5、8、9、12、16)第五题题目通过血检对某地区的N 个人进行某种疾病普查。
有两套方案:方案一是逐一检查;方案二是分组检查。
那么哪一种方案好?若这种疾病在该地区的发病率为0.1;0.05;0.01,试分析评价结果。
分析方案一需要检验N 次。
方案二:假设检验结果阴性为“正常”、阳性为“患者”,把受检者分为k 个人一组,把这k 个人的血混合在一起进行检验,如果检验结果为阴性,这说明k 个人的血液全为阴性,因而这k 个人总共只要检验一次就够了;如果结果为阳性,要确定k 个人的血液哪些是阳性就需要逐一再检查,因而这k 个人总共需要检查k+1次。
因此方案二在实施时有两种可能性,要和方案一比较,就要求出它的平均值(即平均检验次数)。
假设这一地区患病率(即检查结果为阳性的概率)为p ,那么检验结果为阴性的概率为,这时k 个人一组的混合血液是阴性的概率为,是阳性的概率为,则每一组所需的检验次数是一个服从二点分布的一个随机变量,下面的问题是,怎样确定k 的值使得次数最少? 由以上计算结果可以得出:当,即时,方案二就比方案一好,总得检验次数为Y=。
当p=0.1时,用matlab 画出上述函数的图像: for i=1:1:101q p =-k q 1k q -ξ()1(1)11k k kE q k q k kq ξ=⨯++⨯-=+-1kk kq k +-p 11,k k kq q k f f()1k Nk kq k +-⨯k(i)=i;y(i)=(1+k(i)-k(i)*0.9^k(i))/k(i); end plot(k,y)可以看出,当k=4的时候最小,故此时每组人数应该取为4。
同理计算p=0.05和p=0.01时的总平均检验次数,可以得到k 取5和32的时候最小。
假设N=10000时,使用matlab 计算两种方法的平均检验次数。
P=0.1,k=4时,使用下列算式计算 k=4y=(1+k-k*0.9^k)/k*10000得到平均为5939次;P=0.05,k=5时,平均为4262次; P=0.01,k=32时,平均为3063次。
概率论与数理统计应用实验报告
西安交通大学实验报告_______________________________________________________________________________课程:概率论与数理统计应用 实验名称:概率论在实验中的应用 实验日期:2015 年 12 月15 日系 别:电信 专业班级:电信少41姓 名:刘星辰 学号:2120406102_____________________________________________________________________一、实验目的:1. 了解 matlab 在实现数学问题时如何应用;2. 加强对 matlab 的操作能力;3. 对实际问题在概率论中的应用的理解有所加深;4. 将实际问题进行模拟,提高数学建模能力。
二、实验内容:本次试验将解决下面 4 个问题:1. 二项分布的泊松分布与正态分布的逼近;2. 正态分布的数值计算;3. 通过计算机模拟已有分布律进行模拟实验;4. 进行蒲丰投针实验模拟。
三、实验问题分析、解决与思考:1.二项分布的泊松分布与正态分布的逼近设 X ~ B(n ,p) ,其中np=21) 对n=101,…,104,讨论用泊松分布逼近二项分布的误差。
画处逼近的图形2) 对n=101,…,104, 计算 )505(≤<X P ,)9020(≤<X P1)用二项分布计算2)用泊松分布计算3)用正态分布计算比较用泊松分布逼近与正态分布逼近二项分布的优劣。
解:(1)x = -10:0.1:10;y1 = binopdf(x,10,2/10); %此处仅列出n=10时的二项分布语句y2 = poisspdf(x,2); %泊松分布语句plot(x,y1,'r') %做出二项分布图像hold onplot(x,y2,'b') %做出泊松分布图像title('泊松分布逼近二项分布图像')(图中红线为二项分布,蓝线为泊松分布)n=10,很明显地看出拟合效果不太好,红线与蓝线没有完全重合:n=100,放大之后可以看出还是有一部分没有很好地拟合(后为局部图):n=1000,仅仅只有一部分的拟合程度没有很完美(后为局部图):n=10000可以看出,当n ≥ 100时拟合程度较好。
概率论上机实验报告
概率论上机实验报告概率论上机实验报告引言:概率论是数学中的一个重要分支,它研究的是随机现象的规律性。
概率论的应用十分广泛,涵盖了自然科学、社会科学、工程技术等各个领域。
为了更好地理解概率论的基本概念和方法,我们进行了一系列的上机实验,通过实际操作来探索概率事件的发生规律以及概率计算的方法。
实验一:硬币抛掷实验在这个实验中,我们使用了一枚标准的硬币,通过抛掷硬币的方式来研究硬币正反面出现的概率。
我们抛掷了100次硬币,并记录了每次抛掷的结果。
通过统计实验结果,我们可以得出硬币正反面出现的频率。
实验结果显示,硬币正面出现的次数为55次,反面出现的次数为45次。
根据频率的定义,我们可以计算出正面出现的概率为55%。
这个结果与我们的预期相符,说明硬币的正反面出现具有一定的随机性。
实验二:骰子掷掷实验在这个实验中,我们使用了一个六面骰子,通过投掷骰子的方式来研究各个面出现的概率。
我们投掷了100次骰子,并记录了每次投掷的结果。
通过统计实验结果,我们可以得出各个面出现的频率。
实验结果显示,骰子的六个面出现的次数分别为15次、18次、17次、16次、19次和15次。
根据频率的定义,我们可以计算出各个面出现的概率分别为15%、18%、17%、16%、19%和15%。
这个结果表明,在足够多次的投掷中,各个面出现的概率是相等的。
实验三:扑克牌抽取实验在这个实验中,我们使用了一副标准的扑克牌,通过抽取扑克牌的方式来研究各个牌面出现的概率。
我们随机抽取了100张扑克牌,并记录了每次抽取的结果。
通过统计实验结果,我们可以得出各个牌面出现的频率。
实验结果显示,各个牌面出现的次数相差不大,都在10次左右。
根据频率的定义,我们可以计算出各个牌面出现的概率都约为10%。
这个结果说明,在足够多次的抽取中,各个牌面出现的概率是相等的。
实验四:随机数生成实验在这个实验中,我们使用了计算机生成的随机数,通过生成随机数的方式来研究随机数的分布规律。
概率论教学实践报告范文(3篇)
第1篇一、引言概率论作为数学的一个重要分支,是现代科学研究和工程技术领域的基础理论之一。
为了提高学生对概率论的学习兴趣和实际应用能力,我们开展了一系列概率论教学实践活动。
本报告将从教学目标、教学内容、教学方法、教学效果等方面对本次概率论教学实践进行分析与总结。
二、教学目标1. 理解概率论的基本概念和性质,掌握概率论的基本方法。
2. 培养学生运用概率论解决实际问题的能力。
3. 增强学生的逻辑思维能力和创新意识。
4. 提高学生的团队合作和交流能力。
三、教学内容1. 概率论的基本概念:样本空间、事件、概率、条件概率、独立性等。
2. 概率论的基本方法:古典概型、几何概型、条件概率计算、全概率公式、贝叶斯公式等。
3. 概率论在实际问题中的应用:随机实验、随机变量、大数定律、中心极限定理等。
四、教学方法1. 案例教学法:通过具体案例,引导学生理解概率论的基本概念和方法。
2. 讨论法:组织学生围绕某一问题进行讨论,培养学生的逻辑思维能力和创新意识。
3. 实践教学:开展实验、调查、竞赛等活动,提高学生的实际应用能力。
4. 多媒体教学:利用多媒体技术,丰富教学内容,提高教学效果。
五、教学过程1. 导入新课:通过实际案例引入概率论的基本概念,激发学生的学习兴趣。
2. 讲解基本概念:详细讲解概率论的基本概念和方法,使学生掌握相关理论知识。
3. 案例分析:结合实际案例,引导学生运用概率论解决实际问题。
4. 小组讨论:组织学生围绕某一问题进行讨论,培养学生的团队合作和交流能力。
5. 实践教学:开展实验、调查、竞赛等活动,提高学生的实际应用能力。
6. 总结与反思:对本次教学进行总结,提出改进措施。
六、教学效果1. 学生对概率论的基本概念和方法有了较深入的理解。
2. 学生的实际应用能力得到提高,能够运用概率论解决实际问题。
3. 学生的逻辑思维能力和创新意识得到培养。
4. 学生的团队合作和交流能力得到提升。
七、教学反思1. 教学内容应更加贴近实际,提高学生的学习兴趣。
概率论与随机过程上机实验报告
概率论与随机过程上机实验报告题目一题目对二项分布事件的概率的精确计算与用泊松分布和中心极限定理的近似计算进行对比。
P变化n固定,进行比较n固定,p变化进行比较。
源代码运行结果黑星代表二项分布,蓝色是泊松分布绿线是中心极限定理小结n变化从50开始到150,中心极限定理的计算方法更加接近二项分布的精确计算,泊松分布于精确计算差距稍微增大但保持原有的变化趋势。
p改变时,p=0.5时取最大值,仍然是中心极限定理比泊松分布更加接近二项分布精确计算。
第二题题目对正态总体参数的区间估计,进行验证及区间长度的变化情况(注:对一个参数,验证一种情形即可)。
(a)样本容量固定,置信度变化;(b)置信度固定,样本容量变化。
源程序运行结果小结可以看出来,当样本容量不断增加时,区间估计的精度越来越高;同时,当置信度不断提高时,区间估计的精度也越来越高。
第三题题目自己选一个总体,验证样本k阶矩的观察值随样本容量的增大与总体k阶矩接近程度(对k=1,2进行验证)源代码运行结果小结使用自由度为10的卡方分布作为研究总体,取样本容量大小从1到10000。
图像表明,,随着样本容量的增加,样本观测值的一阶原点矩和二阶原点矩都越来越接近于总体的一二阶原点矩,即10和120。
第五题题目自己设计一种情形,当样本至少为多少时,产品的合格率才能符合给定的合格率源程序运行结果小结观察可知,卡方分布产生的500个随机数的统计直方图的形状与真实卡方分布曲线形状基本拟合。
个人感想之前大一在进行数学建模的时候通常要用到数理统计的相关知识,但由于没有系统的学习过,始终是一知半解。
经过一学期对概率论与随机过程的学习,掌握了很多统计学上的观点以及方法,这对之后的工作或是科研都有着很大的作用。
经过这次的上机实验,也能让我们从编程的角度更深入的理解一些方法在实践中的用法,受益匪浅。
最后,感谢老师一学期的辛勤教学,也希望老师之后身体健康工作顺利。
西安交通大学数学实验报告模板
成绩 西安交通大学实验报告课 程________概率论与数理统计__________________ 实验日期___2016.12.11________________________专业班号_物理51_____________________ 姓 名 _____________李淏淼_____________学 号_________2150900015_________________一、 实验问题1某大米生产厂将产品包装成1000克一袋出售,在众多因素的影响下包装封口后一袋的重量是随机变量,设其服从正态分布N(m ,),其中σ已知,m 可以在包装时调整,出厂检验时精确地称量每袋重量,多余1000克的仍按1000克一袋出售,因而厂家吃亏;不足1000克的直接报废,这样厂方损失更大,问如何调整m 的值使得厂方损失最小?二、 问题分析(涉及的理论知识、数学建模与求解的方法等)设定x 为产品包装后的重量,依题意x 为一随机变量,且服从正态分布N ,概率密度函数为f (x )当成品重量M 给定后,记:P 为x 大于等于M 的概率P ’为x 小于M 的概率故而有: P +P’=1分析题意可知,厂方损失Y 由两部分组成:(1)x≥L 时,多余部分,重量为(x -L );(2)x<L 时,整袋报废,重量为x ;Y =()()()MM x M f x dx xf x dx ∞-∞-+⎰⎰=m -MP生产N 袋大米报废总量为Nm -NMP成品袋数为NP则成品中,平均每袋损失的重量为J=mN MPN m M PN P-=- 求J 的最小值即可三、 程序设计1. 在MATLAB 中建立文件Jmin.m function J=Jmin(m)J=m/(1-normcdf( (1000-m),0,1));2. 在Matlab 的Medit 窗口建立文件figer.mfor m=1000:0.001:1020J=Jmin(m);plot(m,J)hold onend可得出函数图像根据图像,可知函数在该区间存在最小值3.在Matlab的Medit建立文件zuixiaozhi.mmin=1100;minm=0;for m=1000:0.001:1010J=Jmin(m);if J<=minmin=J;minm=m;endendminm,min运行程序得出结果为四、问题求解结果与结论m的值为1003.5时,厂方损失最小五、问题的进一步拓展与实验m的值为1003.5时,平均每袋的损失为多少?六、实验问题2设(X, Y)的联合分布律为求X与Y的协方差及相关系数。
西安交通大学概率论上机实验报告
西安交通大学一、试验目的概率论部分1.了解matlab软件的基本命令与操作;2.熟悉matlab用于描述性统计的基本菜单操作及命令;3.会用matlab求密度函数值、分布函数值、随机变量分布的上下侧分位数。
数理统计部分1.熟悉matlab进行参数估计、假设检验的基本命令与操作.2.掌握用matlab生成点估计量值的模拟方法3.会用matlab进行总体数学期望和方差的区间估计。
4.会用matlab进行单个、两个正态总体均值的假设检验。
5.会用matlab进行单个、两个正态总体方差的假设检验。
二、试验问题实验五、随机变量综合试验实验内容1. 产生(6),(10),F(6,10)和t(6)四种随机数,并画出相应的频率直方图;2. 在同一张图中画出了N(0,1)和t(6)随机数频率直方图,比较它们的异同;3. 写出计算上述四种分布的分布函数值和相应上侧分位点命令.实验七、对统计中参数估计进行计算机模拟验证实验内容:1.产生服从给定分布的随机数,模拟密度函数或概率分布;2.对分布包含的参数进行点估计,比较估计值与真值的误差;3. 对分布包含的参数进行区间估计,行区间估计,可信度。
三、实验源程序及结果实验5源程序:% 清空内存,清空输出屏幕clc;clear;% 首先是指数分布n = normpdf(-2::14,6);% 绘制频率直方图plot(-2::14,n,'color','r','linewidth',2);ylabel('概率密度');title('正态分布概率密度');% t分布h1 = figure;t = tpdf(-3::3,6);plot(-3::3,t,'color','g','linewidth',2);ylabel('对应频率');title('t分布频率密度');% F分布h2 = figure;f = fpdf(0::10,6,10);plot(0::10,f,'color','k','linewidth',2); ylabel('对应频率');title('F分布频率直方图');% 卡方分布h3 = figure;ka = chi2pdf(0::15,6);plot(0::15,ka,'color','y','linewidth',2); ylabel('对应频率');title('卡方分布频率直方图');% 再来绘图h4 = subplot(2,1,1);y1=normpdf(-10::10,0,1);plot(-10::10,y1,'color','b','linewidth',2); title('N(0,1)');h5 = subplot(2,1,2);t1 = tpdf(-10::10,6);plot(-10::10,t1,'color','r','linewidth',2);%上侧分位数norminv,0,1)tinv,6)chi2inv,6)finv,6,10)运行结果:正态分布T分布F分布N(0,1)和t(6)随机数频率直方图四种分布的分布函数值和相应上侧分位点实验7源程序:% 以正太分布为例% 清空内存,清空输出屏幕clc;clear;y=normrnd(10,1,10000,1);ymin=min(y);ymax=max(y);x=linspace(ymin,ymax,80);yy=hist(y,x);yy=yy/10000;bar(x,yy);grid;xlabel('(a)¸概率密度分布直方图 ');phat=mle(y,'distribution','norm','alpha',%对分布函数参数进行区间估计,并估计区间的可信度 [mu,sigma,m_ci,s_si]=normfit(y,运行结果:正态分布概率密度分布直方图得到估计参数m =σ =由上可知估计的m = ,而实际是 10。
概率论教学实践报告(3篇)
第1篇一、引言概率论是数学的一个重要分支,它研究随机现象及其规律。
在当今社会,概率论的应用日益广泛,如金融、保险、工程、医学等领域。
为了培养学生的逻辑思维能力和解决实际问题的能力,我们将概率论纳入教学计划。
本文将对概率论教学实践进行总结和分析,以期为后续教学提供参考。
二、教学目标1. 理解概率论的基本概念,如随机事件、样本空间、概率、条件概率、独立事件等。
2. 掌握概率论的基本定理,如加法公式、乘法公式、全概率公式、贝叶斯公式等。
3. 能够运用概率论解决实际问题,如随机试验、随机变量、分布函数、数字特征等。
4. 培养学生的逻辑思维能力和严谨的数学素养。
三、教学内容与方法1. 教学内容(1)概率论的基本概念:随机事件、样本空间、概率、条件概率、独立事件等。
(2)概率论的基本定理:加法公式、乘法公式、全概率公式、贝叶斯公式等。
(3)随机变量及其分布:离散型随机变量、连续型随机变量、分布函数、数字特征等。
(4)随机变量的函数、随机变量的极限定理等。
2. 教学方法(1)讲授法:系统讲解概率论的基本概念、定理和性质,帮助学生建立知识体系。
(2)讨论法:引导学生探讨概率论在实际问题中的应用,提高学生的实际操作能力。
(3)案例分析法:结合实际案例,帮助学生理解概率论的应用。
(4)互动式教学:通过课堂提问、小组讨论等形式,激发学生的学习兴趣。
四、教学实践过程1. 课堂讲授在课堂讲授过程中,注重讲解概率论的基本概念、定理和性质,使学生对概率论有一个清晰的认识。
同时,结合实际案例,帮助学生理解概率论的应用。
2. 课堂讨论在课堂讨论环节,鼓励学生积极参与,提出自己的观点和疑问。
教师针对学生的讨论进行引导和总结,帮助学生掌握概率论的核心知识。
3. 作业布置与批改布置适量的作业,帮助学生巩固课堂所学知识。
对学生的作业进行批改,及时指出学生的错误,帮助学生改正。
4. 课后辅导针对学生的疑难问题,进行课后辅导,帮助学生解决学习过程中的困惑。
西安交大概率论上机实验报告
概率论上机实验报告班级:姓名:学号:一、实验目的1)熟悉Matlab中概率统计部分的常见命令与应用。
2)掌握运用Matlab解决概率问题的方法。
二、实验内容和步骤1.常见分布的概率密度及分布函数1)二项分布源码为:1.x=0:1:100;2.y1=binopdf(x,100,1/2); %求概率密度3.y2=binocdf(x,100,1/2); %求分布函数4.subplot(1,2,1)5.plot(x,y1)6.title('二项分布概率密度')7.subplot(1,2,2)8.plot(x,y2)9.title('二项分布分布函数')所得图形为:2)几何分布源码为:1.x=0:1:100;2.y1=geopdf(x,; %求概率密度3.y2=geocdf(x,; %求分布函数4.subplot(1,2,1)5.plot(x,y1)6.title('几何分布概率密度')7.subplot(1,2,2)8.plot(x,y2)9.title('几何分布分布函数')所得图形为:3)泊松分布源码为:1.x=0:1:100;2.y1=poisspdf(x,10); %求概率密度3.y2=poisscdf(x,10); %求分布函数4.subplot(1,2,1)5.plot(x,y1)6.title('泊松分布概率密度')7.subplot(1,2,2)8.plot(x,y2)9.title('泊松分布分布函数')所得图形为:4)均匀分布源码为:1.x=0:1:100;2.y1=unifpdf(x,0,100) %求概率密度3.y2=unifcdf(x,0,100); %求分布函数4.subplot(1,2,1)5.plot(x,y1)6.title('均匀分布概率密度')7.subplot(1,2,2)8.plot(x,y2)9.title('均匀分布分布函数')所得图形为:5)指数分布源码为:1.x=0:1:100;2.y1=exppdf(x,10); %求概率密度3.y2=expcdf(x,10); %求分布函数4.subplot(1,2,1)5.plot(y1)6.title('指数分布概率密度')7.subplot(1,2,2)8.plot(y2)9.title('指数分布分布函数')所得图形为:6)正态分布源码为:1.x=-10::10;2.y1=normpdf(x,0,1); %求概率密度3.y2=normcdf(x,0,1); %求分布函数4.subplot(1,2,1)5.plot(y1)6.title('正态分布分布概率密度')7.subplot(1,2,2)8.plot(y2)9.title('正态分布分布函数')所得图形为:7)卡方分布源码为:1.x=0::100;2.y1=chi2pdf(x,10); %求概率密度3.y2=chi2cdf(x,10); %求分布函数4.subplot(1,2,1)5.plot(y1)6.title('卡方分布分布概率密度')7.subplot(1,2,2)8.plot(y2)9.title('卡方分布分布函数')所得图形为:8)对数正态分布源码为:1.x=0::100;2.y1=lognpdf(x,2,1); %求概率密度3.y2=logncdf(x,2,1); %求分布函数4.subplot(1,2,1)5.plot(y1)6.title('对数正态分布分布概率密度')7.subplot(1,2,2)8.plot(y2)9.title('对数正态分布分布函数')所得图形为:9)F分布源码为:1.x=0::10;2.y1=fpdf(x,10,10); %求概率密度3.y2=fcdf(x,10,10); %求分布函数4.subplot(1,2,1)5.plot(y1)6.title('F分布分布概率密度')7.subplot(1,2,2)8.plot(y2)9.title('F分布分布函数')所得图形为:10)t分布源码为:1.x=-10::10;2.y1=tpdf(x,10); %求概率密度3.y2=tcdf(x,10); %求分布函数4.subplot(1,2,1)5.plot(y1)6.title('T分布分布概率密度')7.subplot(1,2,2)8.plot(y2)9.title('T分布分布函数')所得图形为:2.掷均匀硬币n次,检验正面出现的频率逼近1/21)思路:编写一个程序,验证随着n的增大,正面出现的频率越来越接近1/2。
概率论上机实验报告【范本模板】
《概率论与数理统计应用》实验报告班级:学号:姓名:实验目的:a.熟悉MATLAB的在概率计算方面的操作;b.掌握绘制常见分布的概率密度及分布函数图形等命令; c.会用MABLAB求解关于概率论与数理统计的实际应用题d.提高数据分析的能力实验题目与解答:1。
二项分布的泊松分布与正态分布的逼近设X ~B(n,p),其中np=21) 对n=101,…,105,讨论用泊松分布逼近二项分布的误差. 画处逼近的图形2) 对n=101,…,105, 计算 )505(≤<X P ,)9020(≤<X P 1)用二项分布计算 2)用泊松分布计算 3)用正态分布计算比较用泊松分布逼近与正态分布逼近二项分布的优劣。
问题分析:查询MATLAB 函数库可知泊松分布概率密度函数为(),poissdpf k lambda ,泊松分布概率函数为(),poisscpf k lambda .其中(k)(k,)!(k,)!k ifloor i poisspdf e k poisscdf e i λλλλλλ--===∑同时,二项分布概率密度函数为(),,binopdf x n p ,二项分布概率分布函数为(),,binocdf x n p 。
其中()()()()()()()()()0,1,,n 0,1,,n 0,,,,1n x x xn i i i n binopdf x n p p q I x x n binocdf x n p p p I i i --=⎛⎫= ⎪⎝⎭⎛⎫=- ⎪⎝⎭∑正态分布概率分布函数为(),,normcdf x μσ,其中()()222,,x normcdf x μσμσ--=利用,poissdpf binopdf 这两个函数,即可画出泊松分布和二项分布的概率密度曲线,设置变量Er 表示在每一点处,poissdpf binopdf 概率密度差值的绝对值,对Er 求平均值Aver ,并计算方差Var 。
西安交大概率论与数理统计实验报告
西安交大概率论与数理统计实验报告——蒙特卡洛算法计算积分姓名:学号:班级一、实验目的(1)能通过 MATLAB 或其他数学软件了解随机变量的概率密度、分布函数及其期望、方差、协方差等;(2)熟练使用 MATLAB 对样本进行基本统计,从而获取数据的基本信息;(3)能用 MATLAB 熟练进行样本的一元回归分析。
二、实验要求(1)针对要估计的积分选择适当的概率分布设计蒙特卡洛方法;(2)利用计算机产生所选分布的随机数以估计积分值;(3)进行重复试验,通过计算样本均值以评价估计的无偏性;通过计算均方误差(针对第1类题)或样本方差(针对第2类题)以评价估计结果的精度。
三、实验原理1. 蒙特卡洛法的思想简述当我们所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。
有一个例子我们可以比较直观地了解蒙特卡洛方法:假设我们要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如,积分)的复杂程度是成正比的。
蒙特卡洛方法是如下计算的:假想有一袋豆子,把豆子均匀地朝这个图形上撒,然后数这个图形之中有多少颗豆子,这个豆子的数目就是图形的面积。
当豆子越小,撒的越多的时候,结果就越精确。
在这里我们要假定豆子都在一个平面上,相互之间没有重叠。
2. 蒙特卡洛法与积分通常蒙特卡洛方法通过构造符合一定规则的随机数来解决数学上的各种问题。
对于那些由于计算过于复杂而难以得到解析解或者根本没有解析解的问题,蒙特卡洛方法是一种有效的求出数值解的方法。
一般蒙特卡洛方法在数学中最常见的应用就是蒙特卡洛积分。
非权重蒙特卡洛积分,也称确定性抽样,是对被积函数变量区间进行随机均匀抽样,然后对被抽样点的函数值求平均,从而可以得到函数积分的近似值。
此种方法的正确性是基于概率论的中心极限定理。
3. 本实验原理简述在本实验中,我们主要是计算积分值与误差比较。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计上机实验报告一、实验内容使用MATLAB 软件进行验证性实验,掌握用MATLAB 实现概率统计中的常见计算。
本次实验包括了对二维随机变量,各种分布函数及其图像以及频率直方图的考察。
1、列出常见分布的概率密度及分布函数的命令,并操作。
2、掷硬币150次,其中正面出现的概率为0.5,这150次中正面出现的次数记为X ,(1) 试计算45=X 的概率和45≤X 的概率;(2) 绘制分布函数图形和概率分布律图形。
3、用Matlab 软件生成服从二项分布的随机数,并验证泊松定理。
4、设22221),(y x e y x f +-=π是一个二维随机变量的联合概率密度函数,画出这一函数的联合概率密度图像。
5、来自某个总体的样本观察值如下,计算样本的样本均值、样本方差、画出频率直方图。
A=[16 25 19 20 25 33 24 23 20 24 25 17 15 21 22 26 15 23 2220 14 16 11 14 28 18 13 27 31 25 24 16 19 23 26 17 14 30 21 18 16 18 19 20 22 19 22 18 26 26 13 21 13 11 19 23 18 24 28 13 11 25 15 17 18 22 16 13 12 13 11 09 15 18 21 15 12 17 13 14 12 16 10 08 23 18 11 16 28 13 21 22 12 08 15 21 18 16 16 19 28 19 12 14 19 28 28 28 13 21 28 19 11 15 18 24 18 16 28 19 15 13 22 14 16 24 20 28 18 18 28 14 13 28 29 24 28 14 18 18 18 08 21 16 24 32 16 28 19 15 18 18 10 12 16 26 18 19 33 08 11 18 27 23 11 22 22 13 28 14 22 18 26 18 16 32 27 25 24 17 17 28 33 16 20 28 32 19 23 18 28 15 24 28 29 16 17 19 18] 6. 利用Matlab 软件模拟高尔顿板钉试验。
7. 自己选择一个与以上问题不同类型的概率有关的建模题目,并解决。
二、实验目的1.要求能够利用MATLAB 进行统计量的运算。
2.要求能够使用常见分布函数及其概率密度的命令语句。
3.要求能够利用MATLAB 计算某随机变量的概率。
4.要求能够利用MATLAB 绘制频率直方分布图。
三、试验任务及结果1.列出常见分布的概率密度及分布函数的命令,并操作。
二项分布Y~B(100,0.4)x=0:100;y=binocdf(x,100,0.4);plot (x, y);均匀分布 U(0,5)x=0:1:5;y=unifpdf(x,0,5);plot (x, y,'LineWidth',3);指数分布 Y~exp(3)x=0:20;y=exppdf(x,3);plot (x, y);正态分布X~N(0,1) x=-10:10;y=normpdf(x,0,1); plot (x, y);泊松分布X~P(3)x=0:10;y=poisscdf(x,3); plot (x, y);卡方( )分布x=0:100;y=chi2pdf(x,1); plot (x, y);2、 掷硬币150次,其中正面出现的概率为0.5,这150次中正面出现的次数记为X ,试计算45=X 的概率和45≤X 的概率;绘制分布函数图形和概率分布律图形。
binopdf(45,150,0.5) binocdf(45,150,0.5) x=0:1:150;y1=binopdf(x,150,0.5); y2=binocdf(x,150,0.5); subplot(1,2,1); plot(x,y1);subplot(1,2,2); plot(x,y2);其中y1,y2的值即为概率, 可以插入y1,y2以显示数值。
运行结果:3、 用Matlab 软件生成服从二项分布的随机数,并验证泊松定理。
binornd(2000,0.04,1,20) x=0:1:200;y1=binopdf(x,200,0.4); y2=binopdf(x,2000,0.04); y3=binopdf(x,20000,0.004); y4=poisspdf(x,80); subplot(1,3,1);plot(x,y1,'^r');hold onplot(x,y4,'.');subplot(1,3,2);plot(x,y2,'^r');hold onplot(x,y4,'.');subplot(1,3,3);plot(x,y3,'^r');hold onplot(x,y4,'.');运行结果:ans =83 89 84 93 81 101 87 79 84 81 97 81 66 84 81 70 88 65 82 794、设f(x,y)=12πe−x2+y22是一个二维随机变量的联合概率密度函数,画出这一函数的联合概率密度图像。
x=-4:0.1:4;y=-4:0.1:4;[xb,yb]=meshgrid(x,y);zb=exp(-0.5*(xb.^2+yb.^2))/(2*pi);mesh(xb,yb,zb)运行结果:5、来自某个总体的样本观察值如下,计算样本的样本均值、样本方差、画出频率直方图。
A=[16 25 19 20 25 33 24 23 20 24 25 17 15 21 22 26 15 23 2220 14 16 11 14 28 18 13 27 31 25 24 16 19 23 26 17 14 30 2118 16 18 19 20 22 19 22 18 26 26 13 21 13 11 19 23 18 24 2813 11 25 15 17 18 22 16 13 12 13 11 09 15 18 21 15 12 17 1314 12 16 10 08 23 18 11 16 28 13 21 22 12 08 15 21 18 16 1619 28 19 12 14 19 28 28 28 13 21 28 19 11 15 18 24 18 16 2819 15 13 22 14 16 24 20 28 18 18 28 14 13 28 29 24 28 14 1818 18 08 21 16 24 32 16 28 19 15 18 18 10 12 16 26 18 19 3308 11 18 27 23 11 22 22 13 28 14 22 18 26 18 16 32 27 25 2417 17 28 33 16 20 28 32 19 23 18 28 15 24 28 29 16 17 19 18]A=[16 25 19 20 25 33 24 23 20 24 25 17 15 21 22 26 15 23 22 20 14 16 11 14 28 18 13 27 31 25 24 16 19 23 26 17 14 30 21 18 16 18 19 20 22 19 22 18 26 26 13 21 13 11 19 23 18 24 28 13 11 25 15 17 18 22 16 13 12 13 11 09 15 18 21 15 12 17 13 14 12 16 10 08 23 18 11 16 28 13 21 22 12 08 15 21 18 16 16 19 28 19 12 14 19 28 28 28 13 21 28 19 11 15 18 24 18 16 28 19 15 13 22 14 16 24 20 28 18 18 28 14 13 28 29 24 28 14 18 18 18 0821 16 24 32 16 28 19 15 18 18 10 12 16 26 18 19 33 08 11 18 27 23 11 2222 13 28 14 22 18 26 18 16 32 27 25 24 17 17 28 33 16 20 28 32 19 23 18 28 15 24 28 29 16 17 19 18];[n,x]=hist(A,15)hist(A,15);mean=mean(A)var=var(A)运行结果:n =5 10 18 9 27 31 14 14 17 10 12 22 2 2 6x =8.8333 10.5000 12.1667 13.8333 15.5000 17.1667 18.8333 20.5000 22.1667 23.8333 25.5000 27.1667 28.8333 30.5000 32.1667mean =19.5176var =34.40256.利用Matlab软件模拟高尔顿板钉试验。
m=500;n=6;y0=3;w=10000;v=1000;ballnum=zeros(1,n+1);p=0.5;q=1-p;for i=n+1:-1:1x(i,1)=0.5*(n-i+1);y(i,1)=(n-i+1)+y0;for j=2:ix(i,j)=x(i,1)+(j-1)*1;y(i,j)=y(i,1);endendmm=moviein(m);for i=1:ms=rand(1,w);xi=x(1,1);yi=y(1,1);k=1;l=1;for j=1:nplot(x(1:n,:),y(1:n,:),'o',x(n+1,:),y(n+1,:),'.-')axis([-2 n+2 0 y0+n+1]),hold onk=k+1;if s(j)>pl=l;elsel=l+1;endxt=x(k,l);yt=y(k,l);h=plot([xi,xt],[yi,yt]);axis([-2 n+2 0 y0+n+1])xi=xt;yi=yt;endballnum(l)=ballnum(l)+1;ballnum1=3*ballnum./m;bar((0:n),ballnum1);axis([-2 n+2 0 y0+n+1])mm(i)=getframe;hold offEnd运行结果:7.自选题目为比较甲乙两种型号子弹的枪口速度,随机抽取甲种信号子弹10发,得枪口速度平均值500(m/s),标准差1.10(m/s ),随机抽取乙种型号子弹20发,得枪口速度平均值496(m/s ),标准差1.20(m/s ),根据生产过程可假设两总体都近似服从正态分布,且方差相等,求两总体均值差的置信水平为0.95的置信区间。