流体力学课件

合集下载

《流体力学入门》课件

《流体力学入门》课件

03
气体压力计利用弹性元 件的变形来测量压力, 适用于测量较低的压力 。
04
流体静压力的计算需要 考虑流体的密度、重力 加速度和作用面积等因 素。
03
流体动力学基础
流体动力学基本概念
01
流体
流体是气体和液体的总称,具有流 动性和不可压缩性。
流线
流线是表示流体运动方向的几何线 条。
03
02
流场
流场是流体运动所占据的空间区域 。
伯努利方程
伯努利方程描述了流体在 封闭管道中流动时,流体 的压力、速度和高度之间 的关系。
连续性方程
连续性方程描述了流体在 流动过程中质量守恒的规 律。
流体流动的阻力与损失
摩擦阻力
摩擦阻力是由于流体与管 壁之间的摩擦而产生的阻 力,通常用达西-韦伯定律 来描述。
局部损失
局部损失是由于流体在管 道中流动时,由于管道形 状、方向变化等原因而产 生的能量损失。
《流体力学入门》 ppt课件
xx年xx月xx日
• 流体力学简介 • 流体静力学基础 • 流体动力学基础 • 流体流动现象与规律 • 流体力学在工程中的应用
目录
01
流体力学简介
流体的定义与特性
总结词
流体的定义与特性是流体力学研究的基础。
详细描述
流体是指在任何微小剪切力作用下都能发生连续变形的物体,具有粘性、压缩性和流动性等特性。
流体动力学还用于解决一些工程问题,例如管 道流动的阻力和传热问题,以及流体动力学的 振动和稳定性问题等。
流体动力学在航空航天、交通运输、能源等领 域也有着重要的应用,例如飞机和汽车的设计 、发动机的工作原理等。
流体流动现象与规律在工程中的应用

流体力学课件(全)

流体力学课件(全)
X 1 p 0 x
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。

流体力学课件PPT课件

流体力学课件PPT课件

注意:恒定流中流线与迹线重合
第27页/共90页
四、流管、流束、元流、总流、过流断面
1.流管
在流场中通过任意不与流线重合的封闭曲线上各 点作流线而构成的管状面。
第28页/共90页
2.流束
流管内所有流线的总和。流束可大可小,视流管 封闭曲线而定。
•元流:流管封闭曲线无限小,故元流又称微元流束。 •总流:流管封闭曲线取在流场边界上,总流即为许
x
y方向:
my
(uy ) dxdydz
y
z方向:
mz
(uz ) dxdydz
z
据质量守恒定律:
第39页/共90页
单位时间内流进、流出控制体的流体质量差之总和
等于控制体内流体因密度发生变化所引起的质量增
量 即
mx
my
mz
t
dxdydz
将 mx、my、mz 代入上式,化简得:
(ux ) (u y ) (uz ) 0
第54页/共90页
1.伯努利方程的物理意义
• z mgz : 单位重量流体所具有的位能。 mg

p
mg
p
/
mg
:
单位重量流体所具有的压能。
•z p :
单位重量流体所具有的势能。

u2 2g
1 2
mu
2
/
mg
:
单位重量流体所具有的动能。
第55页/共90页
• z p u2 : 单位重量流体所具有的机械能。
第8页/共90页
§3-1 描述流体运动的方法
一、拉格朗日方法
1.方法概要
着眼于流体各质点的运动情况,研究各质点 的运动历程,并通过综合所有被研究流体质点的 运动情况来获得整个流体运动的规律。

流体力学基础讲解PPT课件

流体力学基础讲解PPT课件
措施。
05
流体流动的湍流与噪声
湍流的定义与特性
湍流定义
湍流是一种高度复杂的三维非稳态、带旋转的不规则流动。 在湍流中,流体的各种物理参数,如速度、压力、温度等都 随时间与空间发生随机的变化。
湍流特性
湍流具有随机性、不规则性、非线性和非稳定性等特性。在 湍流中,流体的速度、方向和压力等都随时间和空间发生变 化,形成复杂的涡旋结构。
环境流体流动与环境保护
要点一
环境流体流动
环境中的流体流动对环境保护具有重要影响。例如,大气 中的气流会影响污染物的扩散和迁移,水流会影响水体中 的污染物迁移和沉积等。
要点二
环境保护
通过对环境中的流体流动进行研究和模拟,可以更好地了 解污染物扩散和迁移规律,为环境保护提供科学依据。同 时,通过合理规划和设计流体流动系统,可以有效降低污 染物对环境的影响,保护生态环境。
04
流体流动的能量转换
能量的定义与分类
总结词
能量是物体做功的能力,可以分为机械能、热能、电能等。在流体力学中,主要关注的是机械能中的 动能和势能。
详细描述
能量是物体做功的能力,它有多种表现形式,如机械能、热能、电能等。在流体力学中,我们主要关 注的是机械能,它包括动能和势能两种形式。动能是流体运动所具有的能量,与流体的速度和质量有 关;势能则是由于流体所处位置而具有的能量。
流体流动噪声
流体流动过程中产生的噪声主要包括 机械噪声和流体动力噪声。机械噪声 主要由机械振动和摩擦引起,而流体 动力噪声主要由湍流和流体动力振动 引起。
噪声控制
为了减小流体流动产生的噪声,研究 者们提出了各种噪声控制方法,如改 变管道结构、添加消音器和改变流体 动力特性等。这些方法可以有效降低 流体流动产生的噪声。

流体力学ppt课件-流体动力学

流体力学ppt课件-流体动力学

g
g
2g
水头

z
p
g
v2
2g
总水头, hw 水头损失
第二节 热力学第一定律——能量方程
水头线的绘制
总水头线
hw
对于理想流体,总水
1
v12 2g
2
v22 2g
头线是沿程不变的,
测压管水头线
p2
为一水平直线,对于
g
实际流体,总水头沿 程降低,但测压管水
p1 g
头线沿程有可能降低、
z2
不变或者升高。
z1
v2 A2 e2
u22 2
gz2
p2
v1A1 e1
u12 2
gz1
p1
微元流管即为流线,如果不 可压缩理想流体与外界无热 交换,热力学能为常数,则
u2 gz p 常数
2
这个方程是伯努利于1738年首先提出来的,命名为伯努利 方程。伯努利方程的物理意义是沿流线机械能守恒。
第二节 热力学第一定律——能量方程
皮托在1773年用一根弯成直角的玻璃管,测量了法国塞纳河 的流速。原理如图所示,在液体管道某截面装一个测压管和 一个两端开口弯成直角的玻璃管(皮托管),皮托管一端正 对来流,一端垂直向上,此时皮托管内液柱比测压管内液柱 高h,这是因为流体流到皮托管入口A点受到阻滞,速度降为 零,流体的动能变化为压强势能,形成驻点A,A处的压强称 为总压,与A位于同一流线且在A上游的B点未受测压管的影 响,其压强与A点测压管测得的压强相等,称为静压。
第四章 流体动力学
基本内容
• 雷诺输运公式 • 能量方程 • 动量方程 • 流体力学方程应用
第一节 雷诺输运方程
• 前面解决了流体运动的表示方法,但要在流 体上应用物理定律还有困难.

第三章流体力学ppt课件

第三章流体力学ppt课件

式中z——A点单位重量液体的位能。 又称为位置水头、静力头。
结论:静止液体有压力能和位能,总和不变! ——(能量守恒)
School of Mechanical Engineering
北华大学机械工程学院
ห้องสมุดไป่ตู้ 液压传动
第三章 流体力学
三、压力的表示方法
●绝对压力:包含大气压力。
以绝对零压力作为基准所表示的压力,称为绝对压力。
School of Mechanical Engineering
北华大学机械工程学院
液压传动
第三章 流体力学
2、静压力基本方程式的物理意义
如图所示,液面压力为p0。选择 一基准水平面(OX),距液面深度为 h处A点的压力p, 即 p=p0+ρ gh=p0+ρ g(z0-z) 整理得 P/ρg+z=p0/ρg+z0=常数
北华大学机械工程学院
School of Mechanical Engineering
液压传动
第三章 流体力学
帕斯卡原理应用实例——推力和负载间关系 液压缸截面积为A1、A2;活塞上负载为F1、F2。两缸互相连 通,构成一个密闭容器,按帕斯卡原理,缸内压力到处相等, p1=p2,于是F2=F1 . A2/A1,如果垂直液缸活塞上没负载, 则在略去活塞重量及其它阻力时,不论怎样推动水平液压缸 活塞,不能在液体中形成压力。
School of Mechanical Engineering
北华大学机械工程学院
液压传动
第三章 流体力学
四、帕斯卡原理
由方程式 p=p0+ρ gh
可知:液体中任何一点的压力都包含有液面压力p0, 或者说液体表面的压力p0等值的传递到液体内所有 的地方。这称为帕斯卡原理或静压传递原理。 通常在液压系统的中,由外力所产生的压力p0要比 液体自重所产生的压力大许多倍。即对于液压传动来 说,一般不考虑液体位置高度对于压力的影响——

流体力学课件

流体力学课件
§8 - 1 §8 - 2 粘性流体运动微分方程式 二元平板间粘性流体流动
第九章: 第九章:相似理论
§9 - 1 §9 - 2 §9 - 3 §9 - 4 相似概念 相似理论 方程分析法 因次分析法与定理
第十章:粘性流体一元流动 第十章:
§10-1 1010§10-2 10§10-3 10§10-4 10§10-5 10§10-6 管路计算基本方程式 流体的两种流动状态几判别方法 圆管中的层流运动 湍流流动及其特征 直圆管中的湍流运动 沿程阻力系数
当微矩形面积的数目趋于无限多, 当微矩形面积的数目趋于无限多,相应微 分面积趋向于零时, 分面积趋向于零时,其外边界趋向于这条封闭 曲线C。可以得到: 曲线C。可以得到: C。可以得到 Γ C = 2 ∫∫ ω n d σ = 2 J
在曲面σ上任取微分面积dσ, 在曲面σ上任取微分面积dσ, 法线分量 dσ ω 为ωn, J=ω 则 dJ=ωndσ 为dσ上的旋涡强度 dσ上的旋涡强度 上的 若将d 若将dJ沿σ面积分,则得 面积分, 穿过σ面的旋涡强度: 穿过σ面的旋涡强度:
J =
r
(5(5-2)
∫∫ σ
ω
n

(5 -3 )
Γc =

V s d s (5 -9 ) c
速度环量的计算: 速度环量的计算: 1.若已知速度场,求沿一条开曲线的速度环量 若已知速度场, 若已知速度场 ★ 对于无旋场 ∂ϕ ∂ϕ ∂ϕ Γ AB = ∫ Vx dx + Vy dy + Vz dz = ∫ dx + dy + dz ∂x ∂y ∂z AB AB
@
旋涡运动理论广泛地应用于工程实际, 机翼、 旋涡运动理论广泛地应用于工程实际 机翼、 螺旋桨理论就是以旋涡理论为基础的。 螺旋桨理论就是以旋涡理论为基础的。旋涡与 船体的阻力、振动、噪声等问题密切相关。 船体的阻力、振动、噪声等问题密切相关。 旋涡的产生: 与压力差、 旋涡的产生: 与压力差、质量力和粘性力等 因素有关。 因素有关。 流体流过固体壁面时, 流体流过固体壁面时,除壁面附近粘性影响严 重的一薄层外, 重的一薄层外,其余区域的流动可视为理想流体 的无旋运动。 的无旋运动。

《流体力学》课件

《流体力学》课件

流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。

古时中国有大禹治水疏通江河的传说;秦朝李冰父子带领劳动人民修建的都江堰,至今还在发挥着作用;大约与此同时,古罗马人建成了大规模的供水管道系统等等。

流体力学的萌芽:距今约2200年前,希腊学者阿基米德写的“论浮体”一文,他对静止时的液体力学性质作了第一次科学总结。

建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。

此后千余年间,流体力学没有重大发展。

15世纪,意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。

但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。

流体力学的主要发展:17世纪,力学奠基人牛顿(英)在名著《自然哲学的数学原理》(1687年)中讨论了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。

他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。

使流体力学开始成为力学中的一个独立分支。

但是,牛顿还没有建立起流体动力学的理论基础,他提出的许多力学模型和结论同实际情形还有较大的差别。

之后,皮托(法)发明了测量流速的皮托管;达朗贝尔(法)对运动中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利(瑞士)从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。

欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。

流体力学课件 ppt

流体力学课件 ppt

流体阻力计算
利用流体动力学方程,可以计算 流体在管道中流动时的阻力,为 管道设计提供依据。
管道优化设计
通过分析流体动力学方程,可以 对管道设计进行优化,提高流体 输送效率,减少能量损失。
流体动力学方程在流体机械中的应用
泵和压缩机性能分析
流体动力学方程用于分析泵和压缩机的性能 ,预测其流量、扬程、功率等参数,为机械 设计和优化提供依据。
适用于不可压缩的流体。
方程意义
描述了流体压强与密度、重力加速度和深度之间的 关系。
Part
03
流体动力学基础
流体运动的基本概念
01
02
03
流体
流体是气体和液体的总称 ,具有流动性和不可压缩 性。
流场
流场是指流体在其中运动 的区域,可以用空间坐标 和时间描述。
流线
流线是表示流体运动方向 的曲线,在同一时间内, 流线上各点的速度矢量相 等。
能量损失的形式
流体流动的能量损失可以分为沿程损失和局部损失两种形式。沿程损失是指流体在流动过程中克服摩擦阻力而损 失的能量,局部损失是指流体在通过管道或槽道的局部障碍物时损失的能量。
Part
05
流体动力学方程的应用
流体动力学方程在管道流动中的应用
稳态流动和非稳态
流动
流体动力学方程在管道流动中可 用于描述稳态流动和非稳态流动 ,包括流速、压力、密度等参数 的变化规律。
变化的流动。
流体动力学基本方程
1 2
质量守恒方程
表示流体质量随时间变化的规律,即质量守恒原 理。
动量守恒方程
表示流体动量随时间变化的规律,即牛顿第二定 律。
3
能量守恒方程
表示流体能量随时间变化的规律,即热力学第一 定律。

第一章 流体力学基础ppt课件(共105张PPT)

第一章 流体力学基础ppt课件(共105张PPT)


力〔垂直于作用面,记为 ii〕和两个切向 应力〔又称为剪应力,平行于作用面,记为

ij,i j),例如图中与z轴垂直的面上受
到的应力为 zz〔法向)、 zx和 zy〔切
电 向),它们的矢量和为:


件 τ zzix zjy zkz
返回
前页
后页
主题
西
1.1 概述

交 • 3 作用在流体上的力
大 化
子 课 件
返回
前页
后页
主题
西
1.2.3 静力学原理在压力和压力差测量上的应用


大 思索:若U形压差计安装在倾斜管路中,此时读数 R反
化 映了什么?
工 原
理 p1p2
p2
p1 z2
电 子
(0)gR(z2z1)g z1

R

A A’
返回
前页
后页
主题
西 1.2.3 静力学原理在压力和压力差测量上的应用

交 大

2.压差计
化 • (2〕双液柱压差计
p1
p2
工•
原•

电•
子•


又称微差压差计适用于压差较小的场合。
z1
1
z1
密度接近但不互溶的两种指示
液1和2 , 1略小于 2 ;
R
扩p 大1 室p 内2 径与2 U 管1 内g 径之R 比应大于10 。 2
图 1-8 双 液 柱 压 差 计
返回

交 大

1.压力计
化 • (2〕U形压力计
pa
工 • 设U形管中指示液液面高度差为RA,1 指• 示液

流体力学基本知识PPT课件

流体力学基本知识PPT课件

可编辑课件
6
一、流体静压强及其特性
表面压强为: p=△p/△ω (1-6)
点压强为: lim p=dp/dω ( Pa) 点压强就是静压强
可编辑课件
7
流体静压强的两个特征:
(1)流体静压强的方向必定沿着作用面的 内法线方向。
(2)任意点的流体静压强只有一个值,它 不因作用面方位的改变而改变。
(1)渐变流:流体运动中流线接近于平行线 的流动称为渐变流。
(2)急变流:流体运动中流线不能视为平行 直线的流动称为急变流。
可编辑课件
15
(五)元流、总流、过流断面、流量与断面 平均流速;
1.元流:流体运动时,在流体中取一微小面
积dω,并在dω面积上各点引出流线并形成
了一股流束称为元流。在元流内的流体不 会流到元流外面;在元流外面的流体亦不
热胀性:流体温度升高体积膨胀的性质。
液体的热胀性很小,在计算中可不考虑(热水循环系 统除外);
气体的热胀性不能忽略。
建筑设备工程中的水、气流体,可以认为是易于流动、
具有粘滞性、不可压缩的流体。
可编辑课件
5
第二节 流体静压强及其分布规律
流体静止是运动中的一种特殊状态。 由于流体静止时不显示其黏滞性,不存在 切向应力,同时认为流体也不能承受拉力, 不存在由于粘滞性所产生运动的力学性质。 因此,流体静力学的中心问题是研究流体 静压强的分布规律。
直(图中未绘出),在轴向投影为零。此铅直圆柱 体处于静止状态,故其轴向力平衡为:
pΔ Δ γh Δ p0Δ ω ω 0
化简后得:
p=p0 +γh
(1-8)
式中 p——静止液体中任意点的压强,kN/m2或kPa;
p0——表面压强,kN/m2或kPa;

《流体力学》PPT课件

《流体力学》PPT课件

h
3
流体力学的基础理论由三部分组成: 一是流体处于平衡状态时,各种作用在流体上的力之间关系
的理论,称为流体静力学; 二是流体处于流动状态时,作用在流体上的力和流动之间关
系的理论,称为流体动力学; 三是气体处于高速流动状态时,气体的运动规律的理论,称
为气体动力学。 工程流体力学的研究范畴是将流体流动作为宏观机械运动进
温度 t (℃)
20 20 20 20 20 20 20 20 20 20 20 20 -257 -195 20
密度
( kg/m3) 998
1026 1149
789 895 1588 1335 1258 678 808 850-958 918
72 1206 13555
相对密度 d
1.00 1.03 1.15 0.79 0.90 1.59 1.34 1.26 0.68 0.81 0.85-0.93 0.92 0.072 1.21 13.58
动 力 黏 度 104
( P a·s) 10.1 10.6 — 11.6 6.5 9.7 —
14900 2.9
19.2 72 —
0.21 2.8
15.6
2021/1/10
h
14
表1-2
在标准大气压和20℃常用气体性质
气体


二氧化碳
一氧化碳


密度
( kg/m3) 1.205 1.84 1.16
h
1
第一节 流体力学的研究对象和任务

第二节 流体的主要物理性质

第三节 流体的静压强及其分布规律
第四节 流体运动的基本知识
第五节 流动阻力和水头损失
返回

《流体力学》课件

《流体力学》课件

流体力学的应用领域
总结词
流体力学的应用领域与实例
详细描述
流体力学在日常生活、工程技术和科学研究中有广学、石油和天然气工业中的流体输送等。
流体力学的发展历程
总结词
流体力学的发展历程与重要事件
详细描述
流体力学的发展经历了多个阶段,从 早期的水力学研究到近代的流体动力 学和计算流体力学的兴起。历史上, 牛顿、伯努利等科学家对流体力学的 发展做出了重要贡献。
损失计算
根据流体流动的阻力和能量损失,计算流体流动的总损失。
流体流动阻力和能量损失的减小措施
优化管道设计
采用流线型设计,减少流体与 管壁的摩擦。
合理配置局部障碍物
减少不必要的弯头、阀门等, 或优化其设计以减小局部阻力 。
选择合适的管材
选用内壁光滑、摩擦系数小的 管材。
提高流体流速
适当提高流体的流速,可以减 小沿程损失和局部损失。
流体动力学基本方程
连续性方程
表示质量守恒的方程,即单位时间内流出的质量等于单位 时间内流入的质量。
01
动量方程
表示动量守恒的方程,即单位时间内流 出的动量等于单位时间内流入的动量。
02
03
能量方程
表示能量守恒的方程,即单位时间内 流出的能量等于单位时间内流入的能 量。
流体动力学应用实例
航空航天
飞机、火箭、卫星等的设计与制造需要应用 流体动力学知识。
流动方程
描述非牛顿流体的流动规律,包括连续性方程 、动量方程等。
热力学方程
描述非牛顿流体在流动过程中的热力学状态变化。
非牛顿流体的应用实例
食品工业
01
非牛顿流体在食品工业中广泛应用于番茄酱、巧克力、奶昔等
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 在古典“水动力学”的基础上纳维和斯托克斯 在古典“水动力学” 提出了著名的实际粘性流体的基本运动方程——纳 提出了著名的实际粘性流体的基本运动方程 纳 斯托克思方程(N-S方程 。从而为流体力学的长 方程)。 维-斯托克思方程 斯托克思方程 方程 远发展奠定了理论基础。 远发展奠定了理论基础。但由于其所用数学的复杂 性和理想流体模型的局限性, 性和理想流体模型的局限性,不能满意地解决工程 问题,故形成了以实验方法来制定经验公式的“ 问题,故形成了以实验方法来制定经验公式的“实 验流体力学” 但由于有些经验公式缺乏理论基 验流体力学” 。但由于有些经验公式缺乏理论基 使其应用范围狭窄,且无法继续发展。 础,使其应用范围狭窄,且无法继续发展。
机翼升力 人们的直观印象是空气从下面冲击着 鸟的翅膀,把鸟托在空中。 鸟的翅膀,把鸟托在空中。
19世纪初流体力学环流理论彻底改变了人们的传 统观念。
脱体涡量与机翼环量大小相等方向相反
机翼的特殊形状使它不用旋转就能产生 环流,上部流速加快形成吸力,下部流 速减慢形成压力。
测量和计算表明上部吸力的贡献 比下部要大。 比下部要大。
流体力学所研究的基本规律, 流体力学所研究的基本规律,有两大 组成部分: 组成部分:
流体静力学: 1.流体静力学:它研究流体处于静止(或相对平衡) 流体静力学 它研究流体处于静止(或相对平衡) 状态时,作用于流体上的各种力之间的关系。 状态时,作用于流体上的各种力之间的关系。 2.流体动力学:它研究流体在运动状态时,作用于流 流体动力学:它研究流体在运动状态时, 流体动力学 体上的力与运动要素之间的关系, 体上的力与运动要素之间的关系,以及流体的运动特 征与能量转换等,这一部分称为流体动力学。 征与能量转换等,这一部分称为流体动力学。
NACA2412翼型在 度攻角时的压强分布 翼型在7.4度攻角时的压强分布 翼型在
总之,没有流体力学的发展, 总之,没有流体力学的发展, 现代工业和高新技术的发展是不可 能的。 能的。 流体力学在推动社会发展方面做 出过很大贡献, 出过很大贡献,今后仍将在科学与 技术各个领域发挥更大的作用。 技术各个领域发挥更大的作用。
《流体力学与流体机械》 流体力学与流体机械》 课件
热能与动力工程教研室 刘志超
虽然生活在流体环境中, 虽然生活在流体环境中,人们对一些 流体运动却缺乏认识,比如: 流体运动却缺乏认识,比如:
1. 高尔夫球 :表面光滑还是粗糙? 表面光滑还是粗糙? 2. 汽车阻力: 来自前部还是后部? 汽车阻力: 来自前部还是后部? 3. 机翼升力 :来自下部还是上部? 来自下部还是上部?
50~60年代又改进为船型,阻力系数为0.45。
80年代经风洞实验系统研究后,进一步改进为鱼 型,阻力系数为0.3。
后来又出现楔型,阻力系数为0.2。
90年代以后,科研人员研制开发了气动性能更优 良的未来型汽车,阻力系数仅为0.137。
目前在汽车外形设计中, 目前在汽车外形设计中,流体力学性能研究已 占主导地位, 占主导地位,合理的外形使汽车具有更好的动 力学性能和更低的耗油率。 力学性能和更低的耗油率。
问题:按连续介质的概念,流体质点是指: 问题:按连续介质的概念,流体质点是指: A、流体的分子; 流体的分子; 流体内的固体颗粒; B、流体内的固体颗粒; 几何的点; C、几何的点; 几何尺寸同流动空间相比是极小量, D、几何尺寸同流动空间相比是极小量,又含 有大量分子的微元体。 有大量分子的微元体。 答案: 答案:D
关闭窗口
第三节 流体的主要物理性质
密度、容重、 一 、密度、容重、比重和比容 1.密度: 当∆V趋于无限小时: ∆V z
∆V A
ρ = lim
∆V →0
∆M ∆V
o y x
注意:密度是坐标点(x,y,z)和时间t的函数,即 ρ= ρ (x,y,z,t)。
2、容重(重度) 、容重(重度) 容重:指单位体积流体的重量。单位: 容重:指单位体积流体的重量。单位: N/m3 。
连续介质假设: 连续介质假设:把流体视为没有间隙地充满它所占据的整 个空间的一种连续介质, 个空间的一种连续介质,且其所有的物理量都是空间坐标 和时间的连续函数的一种假设模型: 和时间的连续函数的一种假设模型:u =u(t,x,y,z)。 。
流体质点:也称流体微团, 流体质点:也称流体微团,是指尺度大小同一切流动空 间相比微不足道又含有大量分子, 间相比微不足道又含有大量分子,具有一定质量的流体 微元。 微元。
气体的比容或密度,与气体的工况或过程是密切相关的, 气体的比容或密度,与气体的工况或过程是密切相关的, 是由状态方程确定, 是由状态方程确定,完全气体状态方程 Pν=P/ρ=RT ν ρ R为气体常数,空气的 为气体常数, 为气体常数 空气的R=287N·m/kg·k
3 . 从19世纪末起,人们将理论分析方法和实验分析方法 世纪末起, 世纪末起 相结合,以解决实际问题, 相结合,以解决实际问题,同时古典流体力学和实验流体 力学的内容也不断更新变化, 力学的内容也不断更新变化,如提出了相似理论和量纲分 边界层理论和紊流理论等,在此基础上, 析,边界层理论和紊流理论等,在此基础上,最终形成了 理论与实践并重的研究实际流体模型的现代流体力学。在 理论与实践并重的研究实际流体模型的现代流体力学。 20世纪 年代以后,由于计算机的发展与普及,流体力 世纪60年代以后 世纪 年代以后,由于计算机的发展与普及, 学的应用更是日益广泛。 学的应用更是日益广泛。 其他重要的科学家: 其他重要的科学家:李冰 达芬奇
现在的高尔夫球表面有许多窝,在同样大小和重量下, 现在的高尔夫球表面有许多窝,在同样大小和重量下, 飞行距离为光滑球的5倍 飞行距离为光滑球的 倍。
光滑的球和非光滑球对比
汽车发明于19世纪末 世纪末。 汽车阻力 汽车发明于 世纪末。
当时人们认为汽车高速前进时的阻力主要来自车前部 对空气的撞击。 对空气的撞击。
固体
液体
固体:既能承受压力,也能承受拉力,抵抗拉伸变形。 固体:既能承受压力,也能承受拉力,抵抗拉伸变形。 流体:只能承受压力,一般不能承受拉力, 流体:只能承受压力,一般不能承受拉力,抵抗拉伸 变形。 变形。 液体和气体的共同点: 液体和气体的共同点: 两者均具有易流动性,即在任何微小切应力作用下都会发 两者均具有易流动性, 生变形或流动,故二者统称为流体。 生变形或流动,故二者统称为流体。
因此早期的汽车后部是陡峭的,称为箱型车, 因此早期的汽车后部是陡峭的,称为箱型车,阻力系 很大, 数CD很大,约0.8 很大
实际上,汽车阻力主要取决于后部形成的尾流。 实际上,汽车阻力主要取决于后部形成的尾流。
20世纪 年代起,人们开始运用流体力学原理,改 世纪30年代起,人们开始运用流体力学原理, 世纪 年代起 进了汽车的尾部形状,出现了甲壳虫型, 进了汽车的尾部形状,出现了甲壳虫型,阻力系数 下降至0.6。 下降至 。
此后, 此后,流体力学的发展主要经历了三个阶段:
1.伯努利所提出的液体运动的能量估计及欧拉 所提出的液体运动的能量估计及欧拉 所提出的液体运动的解析方法, 所提出的液体运动的解析方法,为研究液体运 动的规律奠定了理论基础, 动的规律奠定了理论基础,从而在此基础上形 成了一门属于数学的古典“水动力学” 成了一门属于数学的古典“水动力学”(或古 流体力学” 典“流体力学”)。
目前,根据流体力学在各个工程领域的应用,流体 目前,根据流体力学在各个工程领域的应用, 力学可分为以下四类: 力学可分为以下四类: 水利类流体力学:面向水工、水动、海洋等; 水利类流体力学:面向水工、水动、海洋等; 机械类流体力学:面向机械、冶金、化工、 机械类流体力学:面向机械、冶金、化工、水机 等; 土木类流体力学:面向市政、工民建、道桥、 土木类流体力学:面向市政、工民建、道桥、城市防 洪等。 洪等。 大气类流体力学:飞机、飞行器外行的设计, 大气类流体力学:飞机、飞行器外行的设计,天气预 环境污染预报等。 报,环境污染预报等。
二、连续介质假设 1.连续介质假设的提出 微观:流体是由大量做无规则运动的分子组成的, 微观:流体是由大量做无规则运动的分子组成的,分子 之间存在空隙,但在标准状况下, 之间存在空隙,但在标准状况下,1cm3液体中含有 液体中含有 3×10(22)个左右的分子,相邻分子间的距离约为 个左右的分子, × 个左右的分子 3.1×10(-8)cm。1cm3气体中含有 3.1×10(-8)cm。1cm3气体中含有2.7×10(19)个左右的 气体中含有2.7×10(19)个左右的 分子,相邻分子间的距离约为3.2× 分子,相邻分子间的距离约为 ×10(-7)cm 宏观:考虑宏观特性, 宏观:考虑宏观特性,在流动空间和时间上所采用 的一切特征尺度和特征时间都比分子距离和分子碰 撞时间大的多。 撞时间大的多。
2.连续介质假设的意义 2.连续介质假设的意义 排除了分子运动的复杂性。 排除了分子运动的复杂性。 表征流体性质和运动特性的物理量和力学 量为时间和空间的连续函数, 量为时间和空间的连续函数,可用数学中连续 函数这一有力手段来分析和解决流体力学问题。 函数这一有力手段来分析和解决流体力学问题。 练习题
第一章 绪论
第一节 流体力学的概念与发展简史 第二节 流体的概念及连续介质假设 第三节 流体的主要物理性质 第四节 流体的分类
第一节 流体力学的概念与发展简史 一、流体力学的概念
流体力学是力学的一个独立分支,是 流体力学是力学的一个独立分支, 一门研究流体的平衡和流体机械运动规 律及其实际应用的技术科学。 律及其实际应用的技术科学。
γ = lim
∆V →0
∆G ∆V
均质流体内部各点处的容重均相等: 均质流体内部各点处的容重均相等:
γ =G/ V =ρg
水的容重常用值: 水的容重常用值: γ =9800 N/m3
3、气体的比容 、 比容:指单位气体质量所具有的体积。 比容:指单位气体质量所具有的体积。 ν=1/ρ ρ ( m3/kg) )
相关文档
最新文档