第十七章反比例函数单元测试卷--直接打印
人教八年级数学(下)第17章反比例函数单元检测(含答案)
第十七章 反比率函数单元测试题( 时间 90 分钟 满分 100 分)班级 ____________ 姓名 __________________ 座号 ____________ 成绩 ____________一、选择题(每题 4 分,共 24 分)1.以下函数关系式中不是表示反比率函数的是()A . xy=5B . y=5C .y=-3x - 1D . y= 233xx2.若函数 y=( m+1) x m 2 3m 1 是反比率函数,则 m 的值为()A . m=-2B . m=1C . m=2或 m=1D . m=-2 或 -13.知足函数 y=k ( x-1 )和函数 y= k( k ≠0)的图象大概是()x4.在反比率函数 y=-1的图象上有三点( x , y ),( x , y ),( x ,y ),若x112233以下各式正确的选项是()A . y 3>y 1>y 2B . y 3>y 2>y 1C .y 1>y 2>y 3D . y 1 >y 3>y 25.如下图, A 、C 是函数 y= 1的图象上的随意两点,过A 点作xAB ⊥ x 轴于点 B ,过 C?点作 CD ⊥ y 轴于点 D ,记△ AOB 的面积为 S 1,△ COD 的面积为 S 2,则( )A . S 1>S 2B .S 1<S 2C . S 1=S 2D .没法确立6.假如反比率函数 y= k的图象经过点( -4 , -5 ),那么这个函数的分析式为( A . y=-20xxC . y=20xB. y= D.y=- x20x20二、填空题(每题 5 分,共 30 分)x 1>x 2>0>x 3,则)27.已知 y=( a-1 ) x a 2 是反比率函数,则 a=_____.8.在函数 y= 2x 5 +1中自变量 x 的取值范围是 _________.x 39.反比率函数 y= k(k ≠ 0)的图象过点( -2 , 1),则函数的分析式为 ______,在每一象限内xy 随x 的增大而_________ .10.已知函数y= k的图象经过 ( -1 ,3)点,假如点(2,m )?也在这个函数图象上, ?则m=_____.x11.已知反比率函数y=1 2m 的图象上两点 A ( x 1,y 1),B (x 2,y2 ),当x 1〈0〈x 2 时有y 1〈 y 2,x则 m 的取值范围是 ________.12.若点 A ( x 1, y 1), B ( x 2, y 2)在双曲线 y= k( k>0)上,且 x 1>x 2>0 ,则 y 1_______y 2.x三、解答题(共 46 分)13.( 10 分)设函数 y=( m-2) x m 2 5m 5 ,当 m 取何值时,它是反比率函数? ?它的图象位于哪些 象限?求当1≤ x ≤ 2 时函数值 y 的变化范围.214.( 12 分)已知 y=y 1+y 2,y 1 与 x 成正比率, y 2 与 x 成反比率,而且当 x=-1 时, y=-1 ,?当 x=2 时, y=5,求 y 对于 x 的函数关系式.15.( 10 分)水池内储水40m3,设放净全池水的时间为T 小时,每小时放水量为Wm 3,规定放水时间不得超出20 小时,求 T 与 W之间的函数关系式,指出是什么函数,并求W的取值范围.16.( 14 分)如下图,点A、B 在反比率函数y= k的图象上,且点A、 B?的横坐标分别为a、x2a( a>0), AC⊥ x 轴于点 C,且△ AOC的面积为2.( 1)求该反比率函数的分析式.( 2)若点( -a , y1)、( -2a , y2)在该函数的图象上,试比较y1与 y2的大小.( 3)求△ AOB的面积.答案:1.D 2.A 3.B 4.A 5.C 6.C 7.-1 8. x ≥ 5 且 x ≠ 3 9 .y=-2增大 ?10 .-3? ?2x21 . < 13 . m=3,第一、三象限,1 11. m< 12≤ y ≤ 2.2214. y=3x-215 . T=40,反比率函数, W ≥2xW16.( 1) y= 4;( 2) y 1<y 2;( 3) S △AOB =3.x。
数学:第17章《反比例函数》章水平测试(一)(人教版八年级下)
第17章 反比例函数单元水平测试(一)一、选择题(每小题2分,共20分)1.三角形的面积为152cm ,这时底边上的高y cm 与底边x cm 间的函数关系的图象大致是( ).2.双曲线43y x=-经过点(8,a ),则a 的值为( ). A .43- B .16- C .16 D .323-3.如果反比例函数12my x-=的图象在所在的每个象限内y 都是随着x 的增大而减小,那么m 的取值范围是( ).A .m >12 B .m <12 C .m ≤12 D .m ≥124.已知反比例函数xky =的图象经过点(2,6),下列说法正确的是( ).A .当x <0时,y >0B .函数的图象只在第一象限C .y 随着x 的增大而增大D .点(4,-3)不在此函数的图象上 5.若m <-1,则下列函数:(1)(0)my x x=>;(2)1y mx =-+ (3)y mx =(4)(1)y m x =+,其中,y 随着x 的增大而增大的函数是( ).A .(1)、(2)B .(2)、(3)C .(1)、(3)D .(3)、(4)6.如果y =y 1+y 2,其中1y 与x 成正比例,2y 与x -2成反比例,且x =1时,y =-1;x =3时,y =5,那么y 的解析式为( ).A .22--=x x yB .22-+=x x yC .22++=x x yD .22---=x x y 7.点A (-2,1y )与点B (-1,2y )都在反比例函数ky x=的图象上,则1y 和2y 的大小关系是().A .1y >2yB .1y =2yC .1y <2yD .无法确定x A y Ox By O x CyO xDyOxyP 1P 2A 1A 28.函数229(2)mm y m x --=+是反比例函数,则m 的值是( ).A. m =4或m =-2B. m =4C. m =-2D. m =-19. 函数y kx b =+与y k xkb =≠()0的图象可能是( ).A B C D10.如图,△P 1OA 1、△P 2A 1A 2是等腰直角三角形,点P 1、P 2在函数4(0)y x x=>的图象上,斜边OA 1、A 1A 2都在x 轴上,则22OA 等于( ). A .8 B .16 C .32 D .64 二、填空题(每小题3分,共24分)11.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是h =__________,这时h 是a 的__________. 12.已知反比例函数xm y 23-=,当______m 时,其图象的两个分支在第一、三象限内;当______m 时,其图象在每个象限内y 随x 的增大而增大.13.如图,面积为3的矩形OABC 的一个顶点B 在反比例函数xky =的图象上,另三点在坐标轴上,则k = . 14.在反比例函数3y x=的图象上,和x 轴距离为1的点的坐标是 . 15.若反比例函数ky x=,当x =3+2时,y =3-2,则这个反比例函数的图象一定在第 象限.16.如果一次函数b kx y +=的图象经过第二、三、四象限,则反比例函数xkby =的图象位于第 象限内.17.已知函数xay ax y -==4和的图象有两个交点,其中一个交点的横坐标为1,则两个函数图象的交点坐标是 .18.已知一次函数2y x =+与反比例函数ky x=的图象的一个交点为P (a ,b ),且P 到原点的距离是10,则k = . 三、解答题(共56分)19.正比例函数x y 2=与双曲线xky =的一个交点坐标为A (2,m ). (1)求出点A 的坐标;(2)求反比例函数关系式 .20.如图所示,在平面直角坐标系中,第一象限的角平分线 OM 与反比例函数的图像相交于点M ,已知OM 的长是22. (1)求点M 的坐标;(2)求此反比例函数的关系式.21.如图,A 、B 、C 为反比例函数图像上的三个点,分别从A 、B 、C 向x 轴、y 轴作垂线,构成三个矩形ADOE ,BGOF ,CHOI ,它们的面积分别是1S 、2S 、3S ,试比较1S 、2S 、3S 的大小并说明理由.22.点A 为反比例函数图象上一点,它到原点的距离为13,到y 轴的距离为5,求这个反比例函数的解析式.23.已知1223y y y =-,1y 与x 成正比例,2y 与x 成反比例,当x =1时,y =1;当x =2时,y =5.(1)请写出y 和x 之间的函数关系式; (2)当x =1时,求y 的值.24.已知关于x 的一次函数y =kx +3b 和反比例函数xbk y 52+=的图象都经过点A (1,-2),求一次函数和反比例函数的解析式.25.如图,已知点A (2,a )在反比例函数xy 8=的图象上,(1)求a 的值;(2)如果直线b x y +=34也经过点A ,且与x 轴交于点C ,连接AO ,求△AOC 的面积.26.如图,RtΔABO 的顶点A 是双曲线y =kx 与直线y =x +(k +1)在第四象限的交点,AB⊥x 轴于B,且AOBS △= 32 ,求这两个函数的解析式.Oxy.AC27. 已知反比例函数ky x=与一次函数21y x =-的图象交于点A (a ,b ),且一次函数21y x =-经过点B (1a +,b k +),AE⊥x 轴于E ,AF⊥y 轴于F ,求矩形OFAE 的面积.28.已知反比例函数)0(≠=k xky 和一次函数8+-=x y (1)若一次函数和反比例函数的图象的交于点(4,m ),求m 和k ; (2)k 满足什么条件时,这两个函数图象有两个不同的交点; (3)设(2)中的两个交点A 、B ,试判断∠AOB 是锐角还是钝角?参考答案1.D 2.B 3.B 4.D 5.A 6.B 7.D 8.B 9.A 10.C 11.2s a 、反比例函数 12.>32 、<3213.-3 14.(3,1)和(-3,-1) 15.二、四 16.一、三 17.(1,2)和(-1,-2) 18.4819.(1)A 点坐标是(2,4) (2)反比例函数解析式8y x =. 20.(1)M 点坐标是(2,2) (2)反比例函数解析式4y x=.21.1S =2S =3S 22.反比例函数解析式60y x =或60y x=-. 23.(1)23y x x=-(2)y =1 24.一次函数解析式42y x =-,反比例函数解析式2y x=-. 25.(1)a =4 (2)△AOC 的面积是2.26.设A 点坐标是(x ,y ),∵AOB S △= 32 ,∴12OB AB =32,∴1322x y =,∵A 点在第四象限,∴xy =-3,∴k =-3, ∴反比例函数解析式3y x=-,一次函数解析式2y x =-. 27.将A (a ,b )代入ky x=中,得k ab =,∵一次函数21y x =-经过A (a ,b ),B (1a +,b k +),∴2121a ba b ab-=⎧⎨+=+⎩,∴ab =2,∵AE⊥x 轴,AF⊥y 轴,∴AF=a ,AE =b ,∴矩形OFAE 的面积=ab=2.28.(1)m =4,k =16 (2)当k <0或0<k <16时,两个函数图象有两个不同的交点(3)当k <0时,∠AOB 是是钝角,当0<k <16时,∠AOB 是锐角.。
八年级数学下册第十七章《反比例函数》单元测验题有答案.稿
罗田县20XX 年春季八年级数学单元检测题(二)第十七章《反比例函数》命题人:义水学校 周小玲卷面总分:120分 考试时间:100分钟 总分:__________一、选择题(每题3分,共27分)1. 函数x y =与xy 2=在同一坐标系中图象的交点个数为( ).(A )0 (B )1 (C )2 (D )以上答案都有可能 2.20b +=,点M (a ,b )在反比例函数ky x =的图象上,则反比例函数的 解析式为( )A .2y x=B .1y x=-C .1y x =D .2y x=-3.当x <0时,反比例函数xy 31-= ( ). (A )图象在第二象限内,y 随x 的增大而减小; (B )图象在第二象限内,y 随x 的增大而增大; (C )图象在第三象限内,y 随x 的增大而减小; (D )图象在第三象限内,y 随x 的增大而增大。
4.如图,过反比例函数xy 2009=(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( ).(A )S 1>S 2 (B )S 1=S 2 (C )S 1<S 2 (D )大小关系不能确定 5.已知反比例函数y =2x,下列结论中,不正确...的是( ). (A )图象必经过点(1,2) (B )y 随x 的增大而减少(C )图象在第一、三象限内 (D )若x >1,则y <2 6.函数y=32mx- ,当x<0时,y 随x 的增大而减小,则满足上述条件的正整数m 有( )A. 0个 B 。
1个 C 。
2个 D 。
3个 7、若k <4,A (-3,y 1)、B (-1,y 2)、C (4,y 3)在反比例函数y = 2k -9x的图象上,则y 1,y 2,y 3的大小关系是( )A 、y 1<y 2<y 3B 、y 3<y 2<y 1C 、y 3<y 1<y 2D 、y 2<y 3<y 18、函数x y =1(x ≥0)、xy 42=(x >0)的图象如图,则结论 ①两函数图象的交点A 的坐标为(2,2) ②当x >2时,y 2>y 1③当x =1时,BC=3 ④当x 逐渐增大时,y 1随x 的增大而增大,y 2随x 的增大而减小,其中正确的是( ).A.①②B.①②③C.①③④D.①②③④ 9、已知P 为函数2y x=-的图像上的点,且P则符合条件的P 点的个数为( ) A 、0个 B 、2个 C 、4个 D 、无数个 二、填空题(每题3分,共27分) 10. 函数11y x =+中自变量x 的取值范围是 .已知反比例函数xky =的图象经过点(3,4),则k = ;11. 已知反比例函数xy 2=,当6=y 时,x = .若反比例函数221(1)k k y k x --=-的图象经过二、四象限,则k= _______. 12. 反比例函数xky =的图象过A (-2010,2011)和B (-2011,m )两点,则m= . 13.已知三角形面积为62cm ,一边长为xcm ,这边上的高为ycm ,则y 关于x 得函数关系式是 . 14、如图,反比例函数y =x5的图象与直线y =kx (k >0)相交于A 、B 两点,AC ∥y 轴,BC ∥x 轴,则△ABC 的面积等于_______个面积单位. 15、如图,已知双曲线xky =(x >0)经过矩形OABC 边AB 的中点F ,交BC 于点E ,且四边形OEBF 的面积为6,则k =__________.16、反比例函数xky =的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为______________. 17、如图,A 、B 是反比例函数y =x2的图象上的两点.AC 、BD 都垂直于x 轴,垂足分别为C 、D .AB 的延长线交x 轴于点E .若C 、D 的坐标分别为(1,0)、(4,0),则ΔBDE 的面积与ΔACE 的面积的比值是______________.第14题第15题第16题第17题第18题1=xx 418、边长为4的正方形ABCD 的对称中心是坐标原点O ,AB ∥x 轴,BC ∥y 轴,反比例函数y =x2与y =-x2的图象均与正方形ABCD 的边相交,则图中的阴影部分的面积之和是______________. 三、解答题.(8+8+8+12+8+12+10=66分)19.人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体时是动态的,车速增加,视野变窄.当车速为50km/h 时,视野为80度.如果视野(度)是车速(km/h )的反比例函数,求之间的关系式,并计算当车速为100km/h 时视野的度数.20 .已知一次函数2y x =+与反比例函数ky x=,其中一次函数2y x =+的图象经过点P(k ,5). (1)试确定反比例函数的表达式;(2)若点Q 是上述一次函数与反比例函数图象在第三象限的交点,求点Q 的坐标.21.如图,在长方形ABCD 中,AB=6,BC=8,P 是BC 边上一动点,过D 作DE ⊥AP 于E ,设AP=x ,DE=y ,试求出y 与x 之间的函数关系式,并画出函数图象.22.如图所示是某一蓄水池每小时的排水量V (m 3/h )与排完水池中的水所用的时间t(h)之间的函数关系图象。
第十七章 反比例函数单元测试
1y kx =+第十七章 反比例函数测试题一、选择题(每小题4分,共40分)1、下列关系式中,哪个等式表示y 是x 的反比例函数( )A :23y x=B : 2x y =C :12y x=+ D :1y x=-2、反比例函数y=2x的图象位于( )A :第一、二象限B :第一、三象限C :第二、三象限D :第二、四象限 3、函数y=1x与函数y=x 的图象在同一平面直角坐标系内的交点个数是( ).A :1个B :2个C :3个D :0个 4、已知点A (-1,5)在反比例函数(0)k y k x=≠的图象上,则该函数的解析式为( )A :1y x=B :25y x=C :5y x=- D :5y x =5、若反比例函数(0)k y k x=≠经过(-2,3),则这个反比例函数一定经过( )A :(-2,-3)B :(3,2)C :(3,-2)D :(-3,-2)6、某村的粮食总产量为a (a 为常数)吨,设该村的人均粮食产量为y 吨,人口数为x ,则y 与x 之间的函数关系式的大致图像应为( )7、如图,过反比例函数xy 2009=(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( ) A :S 1>S 2 B :S 1=S 2 C :S 1<S 2 D :大小关系不能确定 8、已知反比例函数(0)ky k x=<的图象上有两点1122(,)(,)A x y B x y ,且12x x <则12y y -的值是( ) A :正数 B :负数 C :非正数 D :不能确定 9、若y 与-3x 成反比例,x 与z4成反比例,则y 是z 的( )A :正比例函数B :反比例函数C :一次函数D :不能确定10、函数与k y = )二、填空题(每小题4分,共40分) 11、反比例函数35yx=-中,比例系数k= ;12、如果函数25(2)ky k x -=-是反比例函数,那么k= ;13、如图:在反比例函数(0)k y k x=≠图象上取一点A 分别作AC ⊥x 轴,AB ⊥y 轴,且S 矩形ABOC = 12,那么这个函数解析式为 ; 14、已知函数(0)k y k x=≠,当12x =-时,6y =,则函数的解析式为 ; 15、反比例函数k y x=的图象经过3(,5)2-和(a ,-3),则a= ; 16、已知正比例函数y kx =和反比例函数3yx=的图象都过A (m ,1),则m= ;正比例函数的解析式为 ; 17、函数2yx=-的图象,在每一象限内,y 随x 的增大而 (填“增大”或“减小”);18、如果反比例函数k y x=的图象经过点(-3,-4),那么这个函数的图象应分别分布在 象限;19、已知y -2与x 成反比例,当x=3时,y=1,则y 与x 的函数关系式为 ; 20、反比例函数3k yx+=的图象在二、四象限,则k 的取值范围是 。
八年级下册数学第十七章反比例函数单元测试一(附答案)
八年级下册数学第十七章反比例函数单元测试一(附答案)学校:___________姓名:___________班级:___________考号:___________一、选择题 1.若反比例函数ky x=的图象经过点(3)m m ,,其中0m ≠,则此反比例函数的图象( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第三、四象限 2.若反比例函数xy 4-=的图象经过点(a ,-a )则a 的值为( ) A .2B .-2C .2±D .±23.(2011贵州六盘水,8,3分)若点(-3,y 1)、(-2,y 2)、(1,y 3)在反比例函数xy 2=的图像上,则下列结论正确的是( ) A .y 1> y 2> y 3 B .y 2> y 1> y 3 C .y 3> y 1> y 2 D .y 3> y 2> y 1 4.若A(x 1,y 1),B(x 2,y 2),C(x 3,y 3)是反比例函数y=x3图象上的点,且x 1<x 2 <0<x 3,则y 1、y 2、y 3的大小关系正确的是 ( ) A y 3>y 1>y 2 B y 1>y 2>y 3C y 2>y 1>y 3D y 3>y 2>y 15.已知关于x 的函数y=k (x-1) 和ky x =-(0)k ≠,它们在同一坐标系中的图象大致是( )6.函数x y 2=的图象经过的点是( )A.(2,1)B.(2,-1)C.(2,4)D.(21-,2)7.如图,已知菱形ABCD 的边长为2㎝,︒=∠60A ,点M 从点A 出发,以1㎝/s 的速度向点B 运动,点N 从点A 同时出发,以2㎝/s 的速度经过点D 向点C 运动,当其中一个动点到达端点时,另一个动点也随之停止运动. 则△AMN 的面积y (㎝2) 与点M 运动的时间t (s)的函数的图像大致是( )8.下列各点中,在反比例函数8y x=图象上的是 A .(-1,8)B .(-2,4)C .(1,7)D .(2,4)9.若函数x m y 2+=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是(A )2->m (B )2-<m (C )2>m (D )2<m 10.下列四个点中,有三个点在同一反比例函数xky =的图象上,则不在这个函数图象上的点是 ( )A .(5,1)B .(-1,5)C .(35,3)D .(-3,35-)二、填空题11. 如图,一次函数y=mx 与反比例函数y=x k的图象交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM,若ABM S ∆=3,则k 的值是 .12.如图,点A 在双曲线y=的第一象限的那一支上,AB 垂直于x 轴与点B ,点C 在x 轴正半轴上,且OC=2AB ,点E 在线段AC 上,且AE=3EC ,点D 为OB 的中点,若△ADE 的面积为3,则k 的值为 .yxO12 3yx3yxO12 3(A ) (B )(C ) (D ) yxO12 313.两个反比例函数48,y y x x==-的图象在第一象限,第二象限如图,点P 1、P 2、P 3……P 2012在4y x=的图象上,它们的横坐标分别是有这样规律的一行数列1,3,5,7,9,11,……,过点P 1、P 2、P 3、……、P 2012分别做x 轴的平行线,与8y x=-的图象交点依次是Q 1 、Q 2、Q 3、……、Q 2012,则点Q 2012的横坐标是 .14.如图,直线2-==kx y (k >0)与双曲线xky =在第一象限内的交点面积为R ,与x 轴的交点为P ,与y 轴的交点为Q ;作RM ⊥x 轴于点M ,若△OPQ 与△PRM 的面积是4:1,则=k15.如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345A A A A A 、、、、分别作x 轴的垂线与反比例函数()20y x x=≠的图象相交于点12345P P P P P 、、、、,得直角三角形1112233344455OPA A P A A P A A P A A P A 2、、、、,并设其面积分别为12345S S S S S 、、、、,则5S 的值为 。
第17章《反比例函数》单元测试题
第17章《反比例函数》单元测试(满分:100分 考试时间:80分钟) 班级___ ______ 姓名___ ______ 座号_______ 总分______一.单项选择题(每小题3分,共36分)题号 123456789101112答案1.下列函数中,y 是x 的反比例函数的是A .21y x = B .x y 31= C .25y x =+ D .35y x=+ 2. 双曲线xy 31=经过点(3,a ),则a 的值为A.9B.91C.3D. 31 3.函数x k y =的图象经过点(-4,6),则下列各点中在xk y =图象上的是 A. (3,8) B.(3,-8) C. (-8,-3) D.(-4,-6)4.已知y 与x 成反比例,且当 x=61,y=2,则y 与x 之间的函数解析式为 A.y=3x B.x y 31= C.31=y x D.x y 3=5.反比例函数xy 4-=的图象位于A.第一.二象限B.第三.四象限C.第一.三象限D.第二.四象限 6.如果反比例函数xky =(k 为常数,k ≠0)在其图象所在的每个象限内,y 随x 的增大而减小,那么它的图象分布在A.第一.二象限B.第一.三象限C.第二.三象限D.第二.四象限 7.如右图,A 为反比例函数xky =图象上一点,AB 垂直x 轴于B 点,若S △AOB =3 则k 的值为yA 、6B 、3C 、23 D 、不能确定8. 反比例函数1k y x-=的图象在每个象限内,y 随x 的增大而增大,则k 的值可为 A .k=1 B .k>1 C .k<1 D .k<09.从家里到学校的距离为S 千米,小明骑车去学校,那么时间t 与速度(平均速度)v 之间的函数关系式是A .v=stB .v=s+tC .t=v s D .v=sv 10.在同一直角坐标平面内,如果直线x k y 1=与双曲线xk y 2=没有交点,那么1k 和2k 的关系一定是A .1k <0,2k >0B .1k >0,2k <0C .1k 、2k 同号D .1k 、2k 异号11. 在同一坐标系中,函数x ky =和3+=kx y的图象大致是A B C D12.已知矩形的面积为10,则它的长y 与宽x 之间的关系用图象大致可表示为二、填空题(每空3分,共18分)13.如果反比例函数xky =(k ≠0)的图象经过点P(-3,1), 那么k=xy Ox y Ox y O xy O A . B . C . D .14.若反比例函数xk y 2+=(k 为常数)的图象在第二.四象限内,则k 的取值范围为 15.若函数满足023=+xy,则y 与x 的函数关系为 16.设有反比例函数xy 2-=,),1(1y -、),1(2y 、),2(3y 为其图象上的点,则321,,y y y 的大小关系为 ;17.请写出图象在第二.四象限的一个反比例函数的解析式: 18. u 与t 成反比,且当u =6时,31=t ,则这个函数解析式为 ; 三、解答题:(共46分)19.(16分)电流I ﹑电阻R ﹑电压U 之间满足关系式U=RI ,当U=220V 时, (1)请你用含有R 的式子表示I ; (2)利用你写出的关系式完成下表 R/Ω 20406080100I/A(3)当R 越来越大时,I 是怎么变化的?当R 越来越小呢? (4)变量I 是R 的函数吗?为什么?20.(8分)已知正比例函数x k y 1=与反比例函数xk y 2=的图象都过A (2,1),求这两个函数的关系式。
八年级数学下册 第十七章 反比例函数单元综合测试(含解析) 新人教版
第十七章反比例函数单元检测(时间:45分钟,满分:100分)一、选择题(每小题3分,共24分)1.下列各点中,在函数y =6x-图象上的是( ). A .(-2,-4) B .(2,3) C .(-1,6) D .1,32⎛⎫- ⎪⎝⎭2.在下图中,反比例函数y =21k x+的图象大致是( ).3.三角形的面积为1时,底y 与该底边上的高x 之间的函数关系的图象是( ).4.如图,点P 在反比例函数y =1x(x >0)的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点P ′.则在第一象限内,经过点P ′的反比例函数图象的解析式是( ).A .y =5x -(x >0) B .y =5x(x >0) C .y =6x -(x >0) D .y =6x(x >0) 5.若近视眼镜的度数y (度)与镜片焦距x (m)成反比例,已知400度近视眼镜镜片的焦距为0.25 m ,则y 与x 的关系式为( ).A .y =400x(x >0) B .y =14x (x >0)C .y =100x (x >0) D .y =1400x (x >0) 6.已知点(-1,y 1),(2,y 2),(3,y 3)在反比例函数y =21k x--的图象上.下列结论中正确的是( ).A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 1>y 2D .y 2>y 3>y 17.如图,反比例函数y =mx的图象与一次函数y =kx +b 的图象交于点M ,N ,已知点M 的坐标为(1,3),点N 的纵坐标为-1,根据图象信息可得关于x 的方程mx=kx +b 的解为( ).A .-3,1B .-3,3C .-1,1D .3,-18.在平面直角坐标系中,直线y =6-x 与函数y =4x(x >0)的图象相交于A ,B 两点,设点A 的坐标为(x 1,y 1),那么长为x 1,宽为y 1的矩形面积和周长分别为( ).A .4,12B .8,12C .4,6D .8,6 二、填空题(每小题4分,共20分)9.已知反比例函数y =kx 的图象经过点(1,-2),则k =__________. 10.如图是反比例函数y =kx(k ≠0)在第二象限内的图象,若图中的矩形OABC 的面积为2,则k =__________.11.如图,反比例函数y =kx的图象位于第一、三象限,其中第一象限内的图象经过点A (1,2),请在第三象限内的图象上找一个你喜欢的点P ,你选择的P 点坐标为__________.12.过反比例函数y =kx(k ≠0)图象上一点A ,分别作x 轴,y 轴的垂线,垂足分别为B ,C ,如果△ABC 的面积为3,则k 的值为__________.13.双曲线y 1、y 2在第一象限的图象如图所示,y 1=4x,过y 1上的任意一点A ,作x 轴的平行线交y 2于B ,交y 轴于C ,若S △AOB =1,则y 2的解析式是__________.三、解答题(共56分)14.(本小题满分10分)如图所示,在平面直角坐标系中,一次函数y =kx +1的图象与反比例函数y =9x的图象在第一象限相交于点A ,过点A 分别作x 轴、y 轴的垂线,垂足分别为点B ,C .如果四边形OBAC 是正方形,求一次函数的关系式.15.(本小题满分10分)由物理知识知道,在力F (N)的作用下,物体会在力F 的方向上发生位移s (m),力F 所做的功W (J)满足:W =Fs .当W 为定值时,F 与s 之间的函数图象如图所示.(1)力F 所做的功是多少?(2)试确定F 与s 之间的函数表达式; (3)当F =4 N 时,s 是多少?16.(本小题满分12分)已知如图中的曲线是反比例函数y =5mx(m 为常数)图象的一支.(1)求常数m 的取值范围;(2)若该函数的图象与正比例函数y =2x 的图象在第一象限的交点为A (2,n ),求点A 的坐标及反比例函数的解析式.17.(本小题满分12分)如图所示,一次函数y =ax +b (a ≠0)的图象与反比例函数y =kx(k ≠0)的图象交于M ,N 两点.(1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x的范围.18.(本小题满分12分)给出下列命题:命题1:点(1,1)是直线y=x与双曲线y=1x的一个交点;命题2:点(2,4)是直线y=2x与双曲线y=8x的一个交点;命题3:点(3,9)是直线y=3x与双曲线y=27x的一个交点;…….(1)请观察上面命题,猜想出命题n(n是正整数);(2)证明你猜想的命题n是正确的.参考答案1. 答案:C2. 答案:D3. 答案:C4. 答案:D5. 答案:C 设y =k x ,将(0.25,400)代入y =kx,得k =100, ∴y =100x(x >0). 6. 答案:B 因为-k 2-1<0,所以反比例函数y =21k x--的图象在第二、四象限,(2,y 2),(3,y 3)在同一象限,y 随x 的增大而增大,即y 2<y 3<0,又y 1>0,所以y 1>y 3>y 2.7. 答案:A 由M (1,3)代入y =mx得,m =3,所以y =3x ,将N 点纵坐标-1代入y =3x,得x =-3. 所以N (-3,-1),根据图象的意义知,方程mx=kx +b 的解就是它们的交点坐标的横坐标,所以方程的解为-3或1.8. 答案:A 因为y =6-x 与函数y =4x的图象相交于A ,B ,则有点A (x 1,y 1)的坐标满足两个关系式y 1=6-x 1,y 1=14x ,且x 1>0,y 1>0. 所以长为x 1,宽为y 1的矩形面积为x 1y 1=4,矩形周长为2(y 1+x 1)=2×6=12,故选A. 9. 答案:-2 10. 答案:-211. 答案:答案不唯一,如(-1,-2) x ,y 满足xy =2且x <0,y <0即可. 12. 答案:6或-6 根据反比例函数的几何意义可得出S △ABC =12|k |,所以|k |=6,则k =±6.13. 答案:y 2=6x y 1=4x,过y 1上的任意一点A ,作x 轴的平行线交y 2于B ,交y 轴于C ,S △AOB =1.∴△CBO 面积为3,∴y 2的解析式是y 2=6x. 14. 解:∵S 正方形OBAC =OB 2=9,∴OB =AB =3, ∴点A 的坐标为(3,3).∵点A 在一次函数y =kx +1的图象上, ∴3k +1=3,解得k =23. ∴一次函数的关系式是y =23x +1. 15. 解:(1)W =Fs =2×7.5=15(J).(2)F =15s. (3)当F =4 N 时,s =15154F ==3.75(m). 16. 解:(1)∵这个反比例函数的图象分布在第一、三象限,∴5-m >0,解得m <5.(2)∵点A (2,n )在正比例函数y =2x 的图象上, ∴n =2×2=4,则A 点的坐标为(2,4). 又∵点A 在反比例函数y =5mx-的图象上, ∴4=52m-,即5-m =8. ∴反比例函数的解析式为y =8x. 17. 分析:(1)利用点N 的坐标可求出反比例函数的表达式,据此求点M 的坐标.由两点M ,N 的坐标可求出一次函数的表达式;(2)反比例函数的值大于一次函数的值表现在图象上,就是双曲线在直线的上方,由此可求出x 的范围.解:(1)把N (-1,-4)代入y =k x 中,得-4=1k -, 所以k =4.反比例函数的表达式为y =4x. 又点M (2,m )在双曲线上,所以m =2,即点M (2,2).把M (2,2),N (-1,-4)代入y =ax +b 中,得22,4.a b m a b +=⎧⎨-+=-⎩解得2,2.a b =⎧⎨=-⎩故一次函数的表达式为y =2x -2.(2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值.18. 解:(1)命题n :点(n ,n 2)是直线y =nx 与双曲线y =3n x的一个交点(n 是正整数).(2)把2,x n y n=⎧⎨=⎩代入y =nx ,左边=n 2,右边=n ·n =n 2, ∵左边=右边,∴点(n ,n 2)在直线上.同理可证:点(n ,n 2)在双曲线上,∴点(n ,n 2)是直线y =nx 与双曲线y =3n x的一个交点,命题正确.。
新人教版初中数学八年级下册第17章反比例函数单元测试
第十七章 反比例函数单元测试题 一、选择题(每小题5分.共25分) 1.下列函数中.y 是x 的反比例函数的是( ) (A)12y x =- (B) 21y x = (C) 11y x =- (D) 11y x =- 2.已知y 与x 成正比例.z 与y 成反比例,那么z 与x 之间的关系是( ) (A)成正比例, (B)成反比例 (c)有可能成正比例,也有可能是反比例 (D)无法确定. 3.如图,函数(1)y k x =+与k y x =在同一坐标系中,图象只能是下图中的( ) 4.三角形的面积为24cm ,底边上的高()y cm 与底边()x cm 之间的函数关系图象大致应为( )5.已知反比例函数(0)ky k x =<的图象上有两点1122(,)(,)A x y B x y ,且12x x <则12y y -的值是( )(A)正数 (B)负数 (C)非正数 (D)不能确定二、填空题(每小题5分,共25分)密封线铜陵第七中学初二( )班姓名:编号:6.某奶粉生产厂要制造一种容积为2升(1升=1立方分米)的圆柱形桶,桶的底面面积S 与桶高h 有怎样的函数关系式 .7.一水桶的下底面积是盖面积的2倍,如果将其底朝下放在桌子上,它对桌面的压强是600Pa ,翻过来放, 对桌面的压强是 .8.设有反比例函数1k y x+=,1122(,)(,)x y x y 为其图象上两点,若12x x <0<,12y y >则k 的取值范围 .9.直线y kx b =+过一、三、四象限,则函数错误!不能通过编辑域代码创建对象。
的图象在 象限,并且在每一个象限内y 随x 的增大而 .10.如图所示是三个反比例函数1k y x =,2k y x =,3k y x=的图象,由此观察1k 、2k 、3k 的大小关系是 (用“<”连接).三、解答下列问题.(第11、12两题各10分,13题14分,14题16分,共50分)11.已知变量y 与()1x +成反比例,且当2x =时,1y =-,求y 和x 之间的函数关系.12.如图.正比例函数(0)y kx k =>与反比例函数k y x=的图象相交于A 、C 两点,过A作x轴的垂线交x轴于B,连 BC,求△ABC的面积13.某空调厂的装配车间计划组装9000台空调:⑴从组装空调开始,每天组装的台数m(单位:台/天)与生产的时间t(单位:天)之间有怎样的函数关系?⑵原计划用2个月时间(每月以30天计算)完成,由于气温提前升高,厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调?14.如图,正方形OABC的面积为9,点O为坐标原点,点B 在函数(0,0)k y k x x =>>的图象上,点(,)P m n 是函数(0,0)k y k x x=>>的图象上任意一点,边点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F ,并设矩形OEPF 和正方形OABC 不重合部分的面积为S.(提示:考虑点P 在点B 的左侧或右侧两种情况)⑴求B 点的坐标和k 的值; ⑵当92S =时,求P 点的坐标; ⑶写出S 关于m 的函数关系式.。
第17章反比例函数单元测试题(含答案)
第17章《反比例函数》单元测试题(满分100分,时间40分钟)班级: __________ 姓名:__________学号: __________一、选择题(每题4分,共24分)1.下列函数中, y 是x 的反比例函数的是( )A 、21x y =B 、52+=x yC 、xy=8D 、53+=x y2. 已知反比例函数)0(≠=k xky 上有一个点(-4,-2),则点( )在此函数图象上。
A 、A(3,4)B 、B(2,4)C 、C(-4,2)D 、D(4,-2)3. 若反比例函数y =xk 3-的图像在每一个象限内,y 随x 的增大而增大,则有( ) A 、 k 0≠ B 、k 3≠ C 、k<3 D 、k>34.设A( 1x ,1y ) B (2x ,2y )是反比例函数xy 5= 图像上的两点, 若1x <2x <0 则1y 与 2y之间的关系是( )。
A 、1y <2y <0B 、2y <1y <0C 、1y >2y >0D 、2y >1y >0 5.一次函数y=kx —1 与 反比例函数)0(≠=k xky 的图像的形状大致是( )A B C D6.如图2,双曲线上两点A、B,AP垂直x轴,垂足为P,BD垂直于x 轴,垂足为D。
连接OA、OB,设△AOP 的面积为S 1,△BOD 面积为S 2,则S 1与S 2的大小关系是( )。
A 、S 1=S 2B 、S 1<S 2C 、S 1>S 2D 、无法确定二、填空题(每题4分,共24分) 7.已知反比例函数y=xk的图像经过点(3 ,—2) 则此函数的解析式为____________,当x>0时 y 随x 的增大而____________。
8.写出一个具有性质“在每个象限内y 随x 的增大而减小”的反比例函数的表达式为___________。
9. 某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 .(写出自变量的取值范围)x10.直线b x y +-=5与双曲线xy 2-= 相交于点p (—2 ,m ) ,则 b=____________。
第17章反比例函数单元复习测试(含答案)(人教新课标初二下)doc初中数学
第17章反比例函数单元复习测试(含答案)(人教新课标初二下)doc初中数学第17章反比例函数(时刻:120分钟分数:120分) 得分_______一、选择题〔每题3分,共30分〕1.以下函数,①y=2x,②y=x,③y=x-1,④y=11x是反比例函数的个数有〔〕.A.0个 B.1个 C.2个 D.3个2.反比例函数y=2x的图象位于〔〕A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限3.矩形的面积为10,那么它的长y与宽x之间的关系用图象表示大致为〔〕4.关于x的函数y=k〔x+1〕和y=-kx〔k≠0〕它们在同一坐标系中的大致图象是〔• 〕.5.点〔3,1〕是双曲线y=kx〔k≠0〕上一点,那么以下各点中在该图象上的点是〔〕.A.〔13,-9〕 B.〔3,1〕 C.〔-1,3〕 D.〔6,-12〕6.某气球充满一定质量的气体后,当温度不变时,气球内的气体的气压P〔kPa〕是气体体积V〔m3〕的反比例函数,其图象如下图,当气球内的气压大于140kPa时,•气球将爆炸,为了安全起见,气体体积应〔〕.A.不大于2435m3 B.不小于2435m3 C.不大于2437m3 D.不小于2437m3(第6题) (第7题)7.某闭合电路中,电源电压为定值,电流I〔A〕与电阻R〔Ω〕成反比例,如右图所表示的是该电路中电流I与电阻R之间的函数关系的图象,那么用电阻R表示电流I•的函数解析式为〔〕.A.I=6RB.I=-6RC.I=3RD.I=2R8.函数y=1x与函数y=x的图象在同一平面直角坐标系内的交点个数是〔〕.A.1个 B.2个 C.3个 D.0个9.假设函数y=〔m+2〕|m|-3是反比例函数,那么m的值是〔〕. A.2 B.-2 C.±2 D.×210.点A〔-3,y1〕,B〔-2,y2〕,C〔3,y3〕都在反比例函数y=4x的图象上,那么〔〕.A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3 二、填空题〔每题3分,共27分〕11.一个反比例函数y=kx〔k≠0〕的图象通过点P〔-2,-1〕,那么该反比例函数的解析式是________.12.关于x的一次函数y=kx+1和反比例函数y=6x的图象都通过点〔2,m〕,那么一次函数的解析式是________.13.一批零件300个,一个工人每小时做15个,用关系式表示人数x•与完成任务所需的时刻y之间的函数关系式为________.14.正比例函数y=x与反比例函数y=1x的图象相交于A、C两点,AB⊥x轴于B,CD•⊥x轴于D,如下图,那么四边形ABCD的为_______.(第14题) (第15题) (第19题)15.如图,P 是反比例函数图象在第二象限上的一点,且矩形PEOF 的面积为8,那么反比例函数的表达式是_________. 16.反比例函数y=21039n n x--的图象每一象限内,y 随x 的增大而增大,那么n=_______.17.一次函数y=3x+m 与反比例函数y=3m x -的图象有两个交点,当m=_____时,有一个交点的纵坐标为6. 18.假设一次函数y=x+b 与反比例函数y=kx图象,在第二象限内有两个交点,•那么k______0,b_______0,〔用〝>〞、〝<〞、〝=〞填空〕 19.两个反比例函数y=3x ,y=6x 在第一象限内的图象如下图,点P 1,P 2,P 3……P 2005,在反比例函数y=6x的图象上,它们的横坐标分不是x 1,x 2,x 3,…x 2005,纵坐标分不是1,3,•5•……,•共2005年连续奇数,过点P 1,P 2,P 3,…,P 2005分不作y 轴的平行线与y=3x的图象交点依次是Q 1〔x 1,y 1〕,Q 2〔x 2,y 2〕,Q 3〔x 3,y 3〕,…,Q 2005〔x 2005,y 2005〕,那么y 2005=________. 三、不定项选择题〔每题4分,共8分,错选一项得0分,•对而不全酌情给分〕20.当>0时,两个函数值y ,一个随x 增大而增大,另一个随x 的增大而减小的是〔 •〕.A .y=3x 与y=1x B .y=-3x 与y=1x C .y=-2x+6与y=1x D .y=3x-15与y=-1x21.在y=1x的图象中,阴影部分面积为1的有〔 〕.四、运算题.22.〔8分〕如图,一次函数y=kx+b 〔k ≠0〕的图象与x 轴、y 轴分不交于A 、B•两点,且与反比例函数y=mx〔m ≠0〕的图象在第一象限交于C 点,CD 垂直于x 轴,垂足为D ,•假设OA=OB=OD=1. 〔1〕求点A 、B 、D 的坐标;〔2〕求一次函数和反比例函数的解析式.23.〔10分〕如图,点A〔4,m〕,B〔-1,n〕在反比例函数y=8x的图象上,直线AB•分不与x轴,y轴相交于C、D两点,〔1〕求直线AB的解析式.〔2〕C、D两点坐标.〔3〕S△AOC:S△BOD是多少?24.〔11分〕y=y1-y2,y1x成正比例,y与x成反比例,且当x=1时,y=-14,x=4时,y=3.求〔1〕y与x之间的函数关系式.〔2〕自变量x的取值范畴.〔3〕当x=14时,y的值.25.〔12分〕如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A、B两点.〔1〕利用图中的条件,求反比例函数和一次函数的解析式.〔2〕依照图象写出使一次函数的值大于反比例函数的值的x的取值范畴.26.〔14分〕如图,双曲线y=5x在第一象限的一支上有一点C〔1,5〕,•过点C•的直线y=kx+b〔k>0〕与x轴交于点A〔a,0〕.〔1〕求点A的横坐标a与k的函数关系式〔不写自变量取值范畴〕.〔2〕当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA•的面积.答案:1.B 2.D 3.A 4.A 5.B 6.B 7.A 8.B 9.A 10.D 11.y=2x 12.y=x+1 13.y=20x 14.2 15.y=-8x16.n=-3 17.m=5 18.<,> 19.2004.5 20.A 、B 21.A 、C 、D 22.解:〔1〕∵OA=OB=OD=1,∴点A 、B 、D 的坐标分不为A 〔-1,0〕,B 〔0,1〕,D 〔1,0〕. 〔2〕∵点AB 在一次函数y=kx+b 〔k ≠0〕的图象上,∴01k b b -+=⎧⎨=⎩ 解得11k b =⎧⎨=⎩∴一次函数的解析式为y=x+1,∵点C 在一次函数y=x+1的图象上,•且CD ⊥x 轴, ∴C 点的坐标为〔1,2〕,又∵点C 在反比例函数y=mx〔m ≠0〕的图象上, ∴m=2,•∴反比例函数的解析式为y=2x.23.〔1〕y=2x-6;〔2〕C 〔3,0〕,D 〔0,-6〕;〔3〕S △AOC :S △BOD =1:1.24.〔1〕216x 提示:设y=k -22k x ,再代入求k 1,k 2的值. 〔2〕自变量x 取值范畴是x>0.〔3〕当x=14时,2=255.25.解:〔1〕由图中条件可知,双曲线通过点A 〔2,1〕∴1=2m,∴m=2,∴反比例函数的解析式为y=2x .又点B 也在双曲线上,∴n=21-=-2,∴点B 的坐标为〔-1,-2〕.∵直线y=kx+b 通过点A 、B . ∴122k b k b =+⎧⎨-=-+⎩ 解得11k b =⎧⎨=-⎩ ∴一次函数的解析式为y=x-1.〔2〕依照图象可知,一次函数的图象在反比例函数的图象的上方时,•一次函数的值大于反比例函数的值,即x>2或-1<x<0.26.解:〔1〕∵点C 〔1,5〕在直线y=-kx+b 上,∴5=-k+b ,又∵点A〔a,0〕也在直线y=-kx+b上,∴-ak+b=0,∴b=ak将b=ak代入5=-k+a中得5=-k+ak,∴a=5k+1.〔2〕由于D点是反比例函数的图象与直线的交点∴599yy k ak⎧=⎪⎨⎪=-+⎩∵ak=5+k,∴y=-8k+5 ③将①代入③得:59=-8k+5,∴k=59,a=10.∴A〔10,0〕,又知〔1,5〕,∴S△COA=12×10×5=25.。
第17章反比例函数单元测试卷.docx
第十七章《反比例函数》单元测试卷B (满分120分)姓名:_________ 座号:__________ 成绩:___________一、选择题(每小题4分,共32分)k1、若反比例函数y 的图象经过点(一3, 2),则£的值为()、xA、-6B、6C、-5D、5122、不在函数y =—图像上的点是xA、(2,6)B、(-2, -6)C、(3,4)D、(-3,4)3、已知反比例函数y = -,下列结论不正确的是x •…A、图象经过点(1,1)B、图象在第一、三象限C^当x>l时,Ovyvl D、当兀<0时,y随着兀的增大而增大k k4、函数y=2x+l与函数y=-的图象相交于点(2,m),则下列各点不在函数y=-的图象上的是X兀()(-2-5) B、(扌,4) C. (-1,10) D、(5,2)B、2D、4二、填空题(每小题4分,共24分)9、反比例函数y二乂在第二象限内的图彖,如右图所示,则k二_______Xy tQ10、若点(4,加)在反比例函数y = —(x^0)的图象上,则m的值11>如图6,反比例函数y =-的图象位于第一、三象限,其中第一象V限内的图彖经过点A(1, 2),请在第三象限内的图象上找一个你喜欢的点只你选择的"点坐标1— //712、_____________________________________________________________ 已知反比例函数y二——的图象如图,则m的取值范围是_________________x213、_____________________________________________________________ 已知反比例函数y =—,当一4^—1吋,y的最大值是________________________________________ .x14、有一个可以改变体积的密闭容器内装有一定质量的二氧化碳, 当改变容器的体积时,气体的密度也会随之改变,密度。
新人教版九年级数学下册第十七章《反比例函数》单元检测题(含答案)-
第十七章反比例函数单元检测题(时间90分钟,满分100分)一、耐心填一填:(每题4分,共24分)1.若函数y=kx中,当x=2时,y=-3,则函数解析式是_______.2.函数y=kx-1的图象分布在第一、三象限内,则k的取值范围是_______.3.若关于x、y的函数y=5x25k 是反比例函数,则k=________.4.反比例函数y=-34x的比例系数k=_____,•若点(-3,a)•在它的图象上,则a=___.5.若y是x的反比例函数,x是z的正比例函数,则y是z的______函数.6.设函数y=-2x与y=-x+1的图象交于A、B•两点,•O•为坐标原点,•则△AOB•面积为_____.二、精心选一选(每题4分,共28分)7.若反比例函数y=kx的图象过点(-2,1),则k等于()A.-2 B.2 C.- D.8.若反比例函数y=-2x的图象经过点(a,-a),则a为()A.2 B.-2 C.±2 D.±29.若函数y=-kx的图象在第二、四象限,则()A.k>0 B.k<0 C.k=0 D.k为任何实数10.若函数y=kx(k≠0)图象在第二、四象限内,则点(k,-1-k)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.若函数y=kx的图象过点(1,-2),则直线y=kx+1不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.函数y=k(x-1)与y=-kx在同一直角坐标系内的图象大致是()13.A、B两城间的距离为15千米,一人行路的平均速度每小时不少于3千米,也不多于5千米,则表示此人由A到B的行路速度x(千米/小时)与所用时间y(小时)•的关系y=15x的函数图象是()三、问答题(14题10分,15、16题12分,17题4分,共48分)14.(本题10分)某工程队原定每天修路50米,10天可将这一路段全部修好.(1)该路段多长?(2)如果使每天修路的长度达到y (米),那么所需时间x (天)将如何变化?(3)写出y 与x 的函数关系式,并画出图象;(4)如果准备在5天内将路修好,那么每天至少修路多少米?(5)工程队为了保证施工质量,每天修路不得超过80米,•那么最少多长时间能把路修好?15.(本题12分)已知函数y=2x 与y=8x 在第一象限的交点为A ,直线y=43x+b 经过点A•并交x 轴于点B ,求点B 的坐标.16.(本题12分)某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺了若干块木块,构筑成一条临时近道.木 板对地面的压强()Pa p 是木板面积()2m S 的反比例函数,其图象如下图所示.(1)请直接写出这一函数表达式和自变量取值范围;(2)当木板面积为20.2m 时,压强是多少?(3)如果要求压强不超过6000Pa ,木板的面积至少要多大?17.(本题14分)已知关于x 的一次函数y=mx+3n 和反比例函数y=25m n x+的图象都过点(1,-2),求: (1)一次函数和反比例函数的解析式;(2)两个函数图象的另一个交点的坐标.0 200 40600 ()1.5400A , /Pa p 2/m S 4 3 2.5 2 1.5 1参考答案1.y=-6x 2.k>0 3.k ±2 4.-34 14 5.反比例 6.327.A 8.C 9.•A •10.B 11.C 12.A 13.D14.(1)500 (2)x 随y 的增大而减小(3)y=500x,图略 (•4)100米 (5)x=50025804=,最小7天 15.直线y=43x+43,B (-1,0) 16.(1)()6000p S S=>(解析式与自变量取值范围各1分). (2)当0.2S =时,60030000.2p ==. 即压强是3000Pa .(3)由题意知,6006000S ≤,0.1S ∴≥. 即木板面积至少要有20.1m . 17.(1)y=4x-6,y=-2x(2)交点坐标为(12,-4)。
(精校版)第十七章《反比例函数》单元测试题(含答案)
C.y=— 4 x
D.y= 1 2x
6.如果 y 是 m 的反比例函数,m 是 x 的反比例函数,那么 y 是 x 的( )
A.反比例函数 B.正比例函数 C.一次函数 D.反比例或正比例
7.如图,某个反比例函数的图象经过点 P,则它的解析式为( )
A.y= 1 (x>0) x
y P1
-1 O
x
B.y=— 1 (x>0) C.y= 1 (x〈0) D.y=— 1 (x〈0)
所以有 0.8= k
.
0.65 0.4
∴k=0.2,∴y= 0.2 = 1 =1. x 0.4 5x 2
即 y 与 x 之间的函数关系式为 y= 1 . 5x 2
(2)把 x=0。6 代入 y= 1 中,得 y= 1 =1。
5x 2
5 0.6 2
所以本年度的用电量为 1+1=2(亿度).
-1-
(直打版)第十七章《反比例函数》单元测试题(含答案)-(word 版可编辑修改)
第十七章《反比例函数》单元测试题
(检测时间:100 分钟 满分:120 分)
班级:________ 姓名:_________ 得分:_______
一、选择题(3 分×10 分=30 分)
1.在下列函数表达式中,x 均表示自变量:①y=- 2 ,②y= x ,③y=-x-1 ,④xy=2,
x
x
x
y y k1
y k3 x
x
y k2
O
x x
y A C
O BD x
(第 7 题)
(第 8 题)
-2-
(第 9 题)
(直打版)第十七章《反比例函数》单元测试题(含答案)-(word 版可编辑修改)
八年级数学第十七章反比例函数单元测试卷
指阳中学八年级数学反比例函数》单元测试卷班级: 姓名: 成绩:一、选择题(每小题3分.共30分)1、下列函数中,是反比例函数的是( )A 、()11=-y xB 、11+=x yC 、21xy = D 、x y 31=2、下列关系中,两个量之间为反比例函数关系的是( )A 、正方形的面积S 与边长a 的关系B 、正方形的周长L 与边长a 的关系C 、长方形的长为a ,宽为20,其面积S 与a 的关系D 、长方形的面积为40,长为a ,宽为b ,a 与b 之间的关系3、在同一直角坐标系中,函数x y 3=与y 1-=的图象大致是( )4、反比例函数xm y 32+=,当x >0时,y 随x 的增大而增大,那么m的取值范围是( )A 、m >23- B、m <23- C 、m >23 D 、m <235、若反比例函数xky =的图象经过点(-1,2),则这个函数的图象一定经过点( )A 、(2,-1)B 、⎪⎭⎫ ⎝⎛-2,21C 、(-2,-1)D 、⎪⎭⎫⎝⎛2,216、设()()2211,,,y x B y x A 是反比例函数xy 2-=图象上和两点,若1x <2x <0则1y 与2y 之间的关系是( )A 、2y <1y <0B 、1y <2y <0C 、2y >1y >0D 、1y >2y >07、当x <0时,反比例函数xy 31-= ( )A 、图象在第二象限内,y 随x 的增大而减小;B 、图象在第二象限内,y 随x 的增大而增大;C 、图象在第三象限内,y 随x 的增大而减小;D 、图象在第三象限内,y 随x 的增大而增大。
8、函数k kx y +=与xky =在同一坐标系中的图象如图所示,则k 的取值范围为( )A 、k >0B 、k <0C 、-1<k <0D 、k <-1 9、(电压=电流×电阻)当电压为220伏时,通过电路的电流I(安培)与电路中电阻R (欧姆)之间的函数关系为(A 、R I 220=B 、R I 220=C 、220RI = D 、R I =22010、某乡的粮食总产量为a 吨,设该乡平均每人占有粮食为y 吨,人口数为x 人,y 与x 的函数关系的图象为二、填空题(每小题3分,共30分)1、在函数xky =中,当2=x 时,3-=y 。
反比例函数单元测试题及答案新
第十七章反比例函数单元检测题一、选择题(每题3分,共30分)一、以下函数中 y 是x 的反比例函数的是( )A21x y =B xy=8C 52+=x yD 53+=x y二、反比例函数y =xn 5+图象通过点(2,3),那么n 的值是( ).A 、-2B 、-1C 、0D 、1 3、函数与在同一平面直角坐标系中的图像可能是( )。
4、、假设点A(x 1,1)、B(x 2,2)、C(x 3,-3)在双曲线上,那么( )A 、x 1>x 2>x 3B 、x 1>x 3>x 2C 、x 3>x 2>x 1D 、x 3>x 1>x 2 5、如图4,A 、C 是函数y= 的图象上任意两点,过点A 作y 轴的垂线,垂足为B ,过点C 作y 轴的垂线,垂足为D ,记Rt ΔAOB 的面积为S 1, Rt △COD 的面积为S 2,那么( )图4 A 、S 1>S 2; B 、S 1<S 2; C 、S 1 =S 2; D 、S 1和S 2的大小关系不能确信6、在反比例函数1k y x-=的图象的每一条曲线上,y x 都随的增大而增大,那么k 的值能够是( )A .1-B .0C .1D .27、如图2,正比例函数y=x 与反比例y=的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD ⊥x 轴于D ,那么四边形ABCD 的面积为( )A 、1B 、C 、2D 、8、已知反比例函数y =xm21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,那么m 的取值范围是( ).ABC y xODA 、m <0B 、m >0C 、m <21 D 、m >21 九、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk知足( ). A 、当x >0时,y >0 B 、在每一个象限内,y 随x 的增大而减小 C 、图象散布在第一、三象限 D 、图象散布在第二、四象限10、假设反比例函数 的图象通过点(a ,-a ),那么a 的值为( )A 、2;B 、±2;C 、-2;D 、±4 二、填空题(每题4分,共40分)11、已知正比例函数y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图象有一个交点的坐标为(-2,-1),那么它的另一个交点的坐标是 . 1二、函数22)2(--=ax a y 是反比例函数,那么a 的值是13、正比例函数5y x =-的图象与反比例函数(0)ky k x=≠的图象相交于点A (1,a ), 则k = . 14、反比例函数y =(m +2)x m 2-10的图象散布在第二、四象限内,那么m 的值为 .1五、在反比例函数xk y 1+=的图象上有两点11()x y ,和22()x y ,,假设x x 120<<时,y y 12>, 则k 的取值范围是 .1六、如图,点M 是反比例函数y =xa(a ≠0)的图象上一点,过M 点作x 轴、y 轴的平行线,假设S 阴影=5,那么此反比例函数解析式为 .轴、y17、如图,点A 、B 是双曲线3y x=上的点,别离通过A 、B 两点向x轴作垂线段,假设1S =阴影,则12SS +=.1八、点P 在反比例函数1y x =(x > 0)的图象上,且横坐标为2. 假设将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点P '.那么在第一象限内,通过点P '的反比例函数图象的解析式是___________.19. 如图,直线y =kx(k >0)与双曲线xy 4=交于A (x 1,y 1),B (x 2,y 2)两点,那么2x 1y 2-7x 2y 1=___________.20、如图5,A 、B 是函数2y x =的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,则△ABC 的面积S =___________xyABO1S 2S 17题图x y 4-=三、解答题(共50分)2一、(8分)已知 21y y y += 假设1y 与2x 成正比例关系 ,2y 与x 成反比例关系 ,且当X=-1时,y=3.由x=1时,y=-5时, 求y与x的函数关系式?22、(10分)如下图:已知直线y=x 21与双曲线y=)0(>k xk交于A B两点,且点A的横坐标为4⑴ 求k的值⑵ 假设双曲线y=)0(>k xk上的一点C 的纵坐标为8,求△AOC 的面积23、(8分)在反比例函数xky =的图像的每一条曲线上,y 都随x 的增大而减小.在曲线上取一点A ,别离向x 轴、y 轴作垂线段,垂足别离为B 、C ,坐标原点为O ,假设四边形ABOC 面积为6,求k 的值图524、(24分)如图, 已知反比例函数y =xk的图象与一次函 数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点. (1)求这两个函数的解析式; (2)求△MON 的面积;(3)请判定点P (4,1)是不是在那个反比例函数的图象上,并说明理由. (4)依照图象写出使反比例函数的值大于一次函数的值的x 的取值范围.参考答案一、B 二、D 3、B 4、C 五、C 六、D 7、C 八、D 九、D 10、B 1一、(2,1)1二、-1 , 13、-5 14、-3 , 1五、K <-11六、y=x 5, 17、41八、y=x6, 1九、420、4 , 2一、y=-x 2- x42二、k=8, △AOC 的面积=15 23、k=6,24、(1) y=x4, y=2x-2(2) =3, (3)在, (4)、x <-1 或 0< x <2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十七章反比例函数单元测试卷
时间:90分钟 满分:100分
一、选择题(每小题5分,共25分.)
1、下列函数中,y是x的反比例函数的是( ) A 、x
y 21-
= B 、 C 、
1
1+=
x y D 、
x
y 11-
=
2、已知y与x成正比例,z 与y 成反比例,那么z 与x 之间的关系是 ( ) A 、成正比例 B 、成反比例 C 、有可能成正比例,也可能成反比例 D 、无法确定
3、函数y=k(x+1)与
x
k y =
在同一坐标系中,图象只可能是下图中的 ( )
4、三角形的面积为4
x(cm)之间的函数关系式图象大致应为( )
5、反比例函数)
0(
<=k x k y 的图象上有两点A (x 1
,y 1)B (x 2,y 2),
且x 1<x 2,则y 1-y 2的值是( )
A 、正数
B 、负数
C 、非正数
D 、不能确定
x
学校_____________
班级________________ 姓名________________ 考号______________
………密…………………封…………………装…………………订…………………线…………
二、填空题(每小题5分,共25分)
6、如图所示的三个反比例x
k y x k y x k y 321,
,
=
=
=
的图象,由此观察k 1,k 2,k 3的大小关系是
用“>”号连接。
7、某奶粉生产厂要制造一种容积为2升的圆柱形桶,桶的底面积s 与桶的高h 有怎样的函数
关系式
8、一水桶的下底面积是盖面积的2倍,如果将其底朝下放在桌上,它对桌面的压强是600帕,
压强=压力÷受力面积。
反过来放,对桌面的压强是 9、设有反比例函数),()
,(,12211y x y x x
k y +=
为其图象上两点,若x 1<0<x 2,y 1>y 2
,则k 的
取值范围是
10、直线y=kx+b 过一、三、四象限,则函数
kx
b y =
的图象在 象限,并且在每一
个象限内y 随x 的增大而 三、解答题:
1、(8分).已知y-2与x+3成反比例,并且当x=2时y=4. (1)求y和x之间的函数关系式;(2)求当x=-2时y的值
2. (8分)一定质量的二氧化碳气体,体积和密度,对应公式为: 质量=密度×体积 ① 由下图中的已知条件写出:体积 V (立方米)是密度ρ(千克/立方米)的函数关系式. ②求出当密度ρ= 1.1 kg/m3时,二氧化碳体积所对应的值?
3. (10分)在某电路中电压保持不变,电流I (安培)与电阻R (欧姆)成反比例函数.当电阻R=5欧姆时,电流I=1.2安培. (1)求I 与R 的函数关系式. (2)当电流I=0.5安培时,求电阻R.
(3)如果一个用电器电阻为5欧姆,其允许通过的最大电流强度为1安培,那么把这个用电
器接在这个封闭电路中会不会被烧坏?
4.(12分)如图所示:一次函数1y kx b =+的图象与反比例函数2m y x
=的图象,相交于A 、
B 两点,
(1)利用图中条件,求该反比例函数和一次函数的表达式;
(2)看图,指出方程组y kx b m y x =+⎧⎪⎨
=
⎪⎩
的解 (3)观察图象,当x 在什么范围时,1y <2y ?
5、(12分)如图,正方形OABC 的面积为9,点O 为坐标原点,点B 在函数
)
0,0(>>=
x k x
k y 的图象上,点P (m ,n )是函数
)
0,0(>>=
x k x
k y 的图象上任意一点,过点P 分别作x 轴、y
轴的垂线,垂足分别为E 、F ,并设矩形OEPF 和正方形OABC 不重合部分的面积为S (16
分)
(1)求k 值和B 点坐标;
(2)当S =29
时,求点P 的坐标;
(考虑点P 在点B 的右侧或左侧两种情况,面积S 为矩形NAEP 或者矩形FCMP 的面积)
附加题(10分)
如图所示,已知一次函数y=kx+b(k≠0)的图象与x 轴、y 轴分别交于A,B 两点,且与反比例函数y=
m x
(m≠0)的图象在第一象限交于C 点,CD⊥x 轴, 垂足为D,若OA=OB=OD=1.
(1)求点A,B,D 坐标.
(2)求一次函数和反比例函数的关系式.
O
C D
B A
x
y。