7.1.4 2020中考数学复习:《极差、方差、标准差》近8年全国中考题型大全(含答案)
极差、方差及标准差典型例题及习题(2)
典型例题例1计算下列一组数据的极差、方差及标准差(精确到0.01);50,55,96,98,65,100,70,90,85,100.解极差为100-50=50.平均数为.方差为:标准差为.于是,这组数据的极差、方差和标准差分别为50,334.69,18.29.例2若样本,,…,的平均数为10,方差为2,则对于样本,,…,,下列结论正确的是()(A)平均数为10,方差为2 (B)平均数为11,方差为3(C)平均数为11,方差为2 (D)平均数为12,方差为4解由已知条件,得故应选(C)说明此题充分应用了已知条件来进行整体计算,使运算十分简捷.例3 如图,公园里有两条石级路,哪条石级走起来更舒适?(图中数字表示每一级的高度,单位:厘米)解由于15+14+14+16+16+15=90,19+10+17+18+15+11=90,所以两条石级路总高度一样,都是90厘米;由于都是6个台阶,所以台阶的平均高度也一样,都15厘米.上台阶是否舒适,就看台阶的高低起伏情况如何,因此,需要计算两条石级路台阶高度的极差、方差和标准差.左边石级路台阶高度的极差为16-14=2,方差为:,标准差为;右边石级路台阶高度的极差为19-10=9,方差为:,标准差为.由以上计算可见,左边石级路的极差、方差和标准差都比右边小,所以左边石级路起伏小,走起来舒服些.例4要从甲、乙、丙三位射击运动员中选拔一名参加比赛,在预选赛中,他们每人各打10发子弹,命中的环数如下:甲:10 10 9 10 9 9 9 9 9 9 ;乙:10 10 10 9 10 8 8 10 10 8;丙:10 9 8 10 8 9 10 9 9 9 .根据这次成绩,应该选拔谁去参加比赛?分析本题着重考查对方差的意义及实际运用.解经计算,甲、乙、丙三人命中的总环数分别为93,93,91.所以丙应先遭淘汰.设甲、乙的命中环数分别为和,方差分别是和,则:.∵∴在总成绩相同的条件下,应选择水平发挥较稳定的运动员甲参加比赛.说明丙的总成绩显著,应先遭淘汰,然后利用方差的含义,来考查甲、乙二人成绩的稳定性.例5 小明和小华假期到工厂体验生活,加工直径为100毫米的零件,为了检验他们的产品的质量.从中各随机抽出6件进行测量,测得数据如下:(单位:毫米)小明:99 10 98 100 100 103小华:99 100 102 99 100 100(1)分别计算小明和小华这6件产品的极差、平均数与方差.(2)根据你的计算结果,说明他们两人谁加工的零件更符合要求.解(1)小明:极差=5,平均数=100,方差,小华:极差=3,平均数=100,方差=1.(2)计算结果说明,小明加工的零件极差大,方差也大,小华加工的零件极差小,方差小,所以小华加工的零件更符合要求。
【精品】2020年中考数学复习 --《极差、方差和标准差》知识点
【精品】2020年中考数学复习 --《极差、方差和标准差》知识点 极差、方差、标准差都是用来研究一组数据的离散程度,表示一组数据离散程度的指标.一、定义理解1、极差极差是用来反映一组数据变化范围的大小.我们可以用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差就称为极差.极差=最大值-最小值极差仅只表示一组数据变化范围的大小,只对极端值较为敏感,而不能表示其它更多的意义.2、方差方差是反映一组数据的整体波动大小的指标,它是指一组数据中各数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.求一组数据的方差可以简记为:“先平均,再求差,然后平方,最后再平均.”通常用2S 表示一组数据的方差,用x 表示一组数据的平均数,1x 、2x 、…n x 表示各数据. 方差计算公式是: s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2];3、标准差在计算方差的过程中,可以看出2S 的数量单位与原数据的不一致,因而在实际应用时常常将求出的方差再开平方,这就是标准差. 标准差=方差,方差=标准差2.一组数据的标准差计算公式是S =其中x 为n 个数据12n x x x ,,…,的平均数. 方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小.方差较大的波动较大,方差较小的波动较小,方差的单位是原数据的单位平方,标准差的单位与原数据的单位相同.在解决实际问题时,常用样本的方差来估计总体方差方法去考察总体的波动情况.二、例题讲析例1、甲、乙两支篮球队在一次联赛中,各进行10次比赛得分如下:甲队:100,97,99,96,102,103,104,101,101,100乙队:97,97,99,95,102,100,104,104,103,102(1) 求甲、乙两队的平均分和极差?(2)计算甲、乙两队的方差与标准差,并判断哪支球队发挥更为稳定?解:(1)3.100100101101104103102969997100101)=(=甲+++++++++⨯x 3.10010210310410410010295999797101)=(=乙+++++++++⨯x甲队的极差=104-96=8; 甲队的极差=104-95=9(2)61.5])3.100100()3.10099()3.100100[(1012222=甲-++-+-=S 21.9])3.100102()3.10097()3.10097[(1012222=乙-++-+-= S 甲队的标准差:37.261.5≈; 乙队的标准差:03.321.9≈ 所以,由此可以判断甲队的得分方差小,标准差也相应较小,因此他们在联赛中发挥更为稳定一些.例2、对10盆同一品种的花施用甲、乙两种花肥,把10盆花分成两组,每组5盆,记录其花期:甲组:25,23,28,22,27乙组:27,24,24,27,23(1)10盆花的花期最多相差几天?(2)施用何种花肥,花的平均花期较长?(3)施用哪种保花肥效果更好?分析:花期的极差就是花期最多相差的天数,花的平均花期就是分别求得甲、乙两组数据的平均数,而看哪种保花肥效果好,关键是比较方差,方差越小,波动越小,效果越好! 解:(1)28-22=6(天) 所以,10盆花的花期最多相差6天.(2)由平均数公式得:252722282325(51)==甲++++x252327242427(51)==乙++++x得乙甲=x x ,所以,无论用哪种花肥,花的平均花期相等.(3)由方差公式得: 2.5])2527()2522()2528()2523()2525[(101222222=甲-+-+-+-+-=S 8.2])2523()2527()2524()2524()2527[(51222222=乙-+-+-+-+-=S 得22S 乙甲<S 故施用乙种花肥,效果比较可靠三、反馈练习1.一组数据5,8,x ,10,4的平均数是2x ,则这组数据的方差是________.2.五名同学目测同一本教科书的宽度时,产生的误差如下(单位:cm ):2,-2,-1,1,0, 则这组数据的极差为______cm .方差是_______,标准差是______3.若样本1,2,3,x 的平均数为5,又样本1,2,3,x ,y 的平均数为6,则样本1,2,3,x ,y 的极差是_______,方差是_______,标准差是______.4.已知一组数据0,1,2,3,4的方差为2,则数据20,21,22,23,24的方差为_____, 标准差为________.5.一组数据-8,-4,5,6,7,7,8,9的极差是______,方差是_____,标准差是______.6.若样本x 1,x 2,……,x n 的平均数为 =5,方差S 2=0.025,则样本4x 1,4x 2,……,4x n 的平均数x '=_____,方差S '2=_______.。
平均数众数中位数方差极差标准差典型题
基础计算均匀数基本算公式:x 1( x1x2......x n ) , n均匀数的化算公式 :x x a ,加均匀数公式 : x x1 f 1x2 f2...x k fk , (此中f1+f2+⋯+f k=n);n方差算公式 : s21( x1x) 2( x2x )2...( x n x) 2;n准差的算公式 :s1( x1x) 2( x2x) 2...( x n x) 2.n1.一射运一次射的成是(位:):7,10,9,9,10,位运次射成的均匀数是.2. 某生数学科堂表90 分、平作92 分、期末考85 分,若三成分按 30%、 30%、 40%的比率入成,生数学科成是_______分.3. 在“ 祝建党90 周年的歌唱活”比中,七位委某参打的分数:92、86、 88、 87、 92、 94、 86,去掉一个最高分和一个最低分后,所剩五个分数的均匀数和中位数是()A. 89,92B. 87, 88C.89,88D. 88, 924. 在一次心捐钱中,某班有40 名学生取出自己的零花,有捐 5 元、 10 元、 20 元、50元的,下反应了不一样捐钱的人数比率,那么个班的学生均匀每人捐钱____元.5. 某校初三·一班 6 名女生的体重(位:kg): 35 36 38 40 4242则这组数据的中位数等于().A. 38B.39C.40D.426. 数据 1,2, 4, 4, 3 的众数是()A1B2C3D47. 已知一组数据:4,— 1, 5, 9, 7, 6,7,则这组数据的极差是()A 、 10B、 9C、 8D、 78. 计算一组数据:8, 9, 10,11, 12 的方差为()A . 1B.2C.3D.49.一组数据- 8,- 4, 5, 6,7, ?7,?8, ?9?的?标准差是 ______.10. 某班抽取 6 名同学参加体能测试,成绩以下:80, 90,75, 75,80, 80. 以下表述错误的..是()A.众数是80B.中位数是75C.均匀数是80D.极差是15 11. 初三年级某班十名男同学“俯卧撑”的测试成绩(单位:次数)分别是9, 14, 10, 15,7, 9, 16, 10, 11, 9,这组数据的众数、中位数、均匀数挨次是()A. 9,10,11,11,9,11,10,9,1112.某地域七、八月份天气较为酷热,小华对此中连续十天每日的最高气温进行统计,挨次获得以下一组数据: 34, 35, 36, 34, 36,37, 37,36, 37, 37(单位:℃),则这组数据的中位数和众数分别是()A. 36, 37B. 37, 36C., 37D. 37,13.商场购进一批大米,大米的标准包装为每袋 30kg,售货员任选 6 袋进行了称重查验,超出标准重量的记作“”,不足标准重量的记作“”,他记录的结果是0.5 , 0.5 ,0 ,0.5 ,0.5 ,1,那么这 6 袋大米重量的均匀数和极差分别是..A. 0,B., 1C. 30 ,D., 0年春我市发生了严重干旱,市政府呼吁居民节俭用水,为认识居民用水状况,在某小区随机抽查了 10 户家庭的月用水量,结果以下表:月用水量(吨)567户数262则对于这 10 户家庭的月用水量,以下说法错误的选项是A. 众数是 6B. 极差是 2C. 均匀数是6D.方差是 415.某中学数学兴趣小组 12 名成员的年纪状况以下:年纪(岁)1213141516人数14322则这个小构成员年纪的均匀数和中位数分别是()A. 15,16B. 13, 15C. 13, 14D.14, 1416. 小华五次跳远的成绩以下(单位:m):,, , ,.对于这组数据,以下说法错误的选项是()A.极差是B.众数是 C .中位数是 D .均匀数是17.十名工人某天生产同一部件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其均匀数为,中位数为,众数为,则有()A.B.C.D.18. 某校 A、 B 两队 10 名参加篮球比赛的队员的身高(单位:cm)以下表所示:队员 1 号 2 号 3 号 4 号 5 号A176175174171174 B170173171174182两身高的均匀数分xA, xB ,身高的方差分22,正确的是()S A,S BA、x A x B , S A2 S B2B、x A x B,S2A S B2x x , S2S2x x , S2S2C、A B A BD、A B A B稍难计算1.数据 2,3, m, 5, 9, n 的均匀数是 3, m,n 的均匀数是 _____.2. 在航天知中,包含甲同学在内的 6 名同学的均匀分74 分, ?此中甲同学考了89分,除甲之外的 5 名同学的均匀分______分.3. 若数据,,,⋯,的众数、中位数、均匀数分是、、,,,,⋯,的众数=,中位数=,均匀数=。
八年级数学《极差、方差和标准差》练习题doc资料
word 可编辑
资料收集于网络,如有侵权请联系网站删除
14、在一次射击练习中,甲、乙两人前5次射击的成绩分别为(单位:环) 10 7 乙: 7 10 9 9 10 则这次练习中,甲、乙两人方差的大小关系是(
甲: 10 8 10 ).
A S甲2 S乙2
B S甲2 S乙2
C S甲2 S乙2
D无法确定
15、甲、乙两名同学在相同条件下各射击 5 次,命中的环数如表: 那么下列结论正确的是 ( )
5 次数学成绩的(
)
A.平均数
B.众数
C.频数
D.方差
6、国家统计局发布的统计公报显示: 2001 到 2005 年,我国 GDP 增长率分别为 8.3% ,9.1% ,
10.0% , 10.1% , 9.9% .经济学家评论说:这五年的年度 GDP 增长率之间相当平稳.从
统计学的角度看, “增长率之间相当平稳”说明这组数据的(
)比较小
A.中位数
B.标准差
C.平均数
D.众数
7、在 2, 3, 4, 5, x 五个数据中,平均数是 4,那么这组数据的方差是(
)
A.2
B . 10
C. 2
D. 10
8、某车间 6 月上旬生产零件的次品数如下(单位:个) : 0, 2, 0,2, 3, 0, 2, 3,1, 2,
则在这 10 天中该车间生产零件的次品数的(
?但他们成绩的
方差不等,那么正确评价他们的数学学习情况的是(
)
A .学习水平一样 B .成绩虽然一样,但方差大的学生学习潜力大
C .虽然平均成绩一样,但方差小的学习成绩稳定 D .方差较小的学习成绩不稳定,忽高忽低
5、数学老师对小玲同学在参加高考前的
初三数学极差、方差、标准差
【知识点】
(1)极差是用来反映一组数据变化范围的大小.一组数据中的最大数据与最小数据所得的
差来称为极差;
(2)方差记作 S 2
1 n
[(
x1
x)2
(x2
x)2
(xn
x)2 ]
;在实际应用时常常将求出
的方差 算术平方根,这就是标准差.
【例题】
1、(2016 广西百色)一组数据 2,4,a,7,7 的平均数 x =5,则方差 S2=
C.甲和乙一样稳定
D.甲、乙稳定性没法对比
3、下面是甲、乙两人 10 次射击成绩(环数)的条形统计图,则下列说法正确的是( )
A.甲比乙的成绩稳定 C.甲、乙两人的成绩一样稳定
B.乙比甲的成绩稳定 D.无法确定谁的成绩更稳定
4.已知 A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是 A 样
A.平均数 3
B.众数是﹣2
C.中位数是 1
D.极差为 8
2.在一次射击训练中,甲、乙两人各射击 10 次,两人 10 次射击成绩的平均数均是 9.1 环, 方差分别是 S 甲 2=1.2,S 乙 2=1.6,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确 的是( )
A.甲比乙稳定
B.乙比甲稳定
本数据每个都加 2,则 A,B 两个样本的下列统计量对应相同的是( )
A.平均数
B.标准差
C.中位数
D.众数
【练习解析】
1、【答案】D.
2、【答案】A 【解析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小, 表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
数学《极差方差和标准差》知识点
八年级数学《极差、方差和标准差》知识点极差、方差、标准差都是用来研究一组数据的离散程度,表示一组数据离散程度的指标.一、定义理解1极差极差是用来反映一组数据变化范围的大小. 我们可以用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差就称为极差.极差=最大值-最小值极差仅只表示一组数据变化范围的大小,只对极端值较为敏感,而不能表示其它更多的意义.2、方差方差是反映一组数据的整体波动大小的指标,它是指一组数据中各数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.求一组数据的方差可以简记为:“先平均,再求差,然后平方,最后再平均•"通常用S表示一组数据的方差,用X表示一组数据的平均数,x“ x2、… X n表示各数据.方差计算公式是:s2=1[(x 1- x) 2+(x2- x) 2+—+(X n- x) 2];3、标准差在计算方差的过程中,可以看出S2的数量单位与原数据的不一致,因而在实际应用时常常将求出的方差再幵平方,这就是标准差.标准差=..方差,方差=标准差2.一组数据的标准差计算公式是S j1~xi~x X2—"X ~ xn~x ,其中X为n个数据X i, X2,…,X n的平均数.方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小.方差较大的波动较大,方差较小的波动较小,方差的单位是原数据的单位平方,标准差的单位与原数据的单位相同.在解决实际问题时,常用样本的方差来估计总体方差方法去考察总体的波动情况.二、例题讲析例1、甲、乙两支篮球队在一次联赛中,各进行10次比赛得分如下:甲队:100,97,99,96,102,103,104,101,101,100乙队:97,97,99,95,102,100,104,104,103,102(1)求甲、乙两队的平均分和极差?(2)计算甲、乙两队的方差与标准差,并判断哪支球队发挥更为稳定?解:(1) x= (100 97 99 96 102 103 104 101 101 100)= 100.3?10甲队的极差=104-96= 8; 甲队的极差=104-95= 9(2) S 甲2丄[(100 100.3)2(99 100.3)2(100 100.3)2 ]=5.6110甲队的标准差:-.5.61 2.37 ; 乙队的标准差:.9.21 3.03 所以,由此可以判断甲队的得分方差小,标准差也相应较小,因此他们在联赛中发挥更为稳定一些.例2、对10盆同一品种的花施用甲、乙两种花肥,把10盆花分成两组,每组5盆,记录其花期:甲组:25, 23, 28, 22, 27乙组:27, 24, 24, 27, 23(1)10盆花的花期最多相差几天?(2)施用何种花肥,花的平均花期较长?(3)施用哪种保花肥效果更好?分析:花期的极差就是花期最多相差的天数,花的平均花期就是分别求得甲、乙两组数据的平均数,而看哪种保花肥效果好,关键是比较方差,方差越小,波动越小,效果越好!解:(1) 28- 22= 6 (天) 所以,10盆花的花期最多相差6天._ 1(2)由平均数公式得:x= -(25 23 28 22 27)= 25?5得站=心,所以,无论用哪种花肥,花的平均花期相等.(3)由方差公式得:得S B2 s乙故施用乙种花肥,效果比较可靠三、反馈练习1. 一组数据5, 8, x, 10, 4的平均数是2x,则这组数据的方差是____________ .2. 五名同学目测同一本教科书的宽度时,产生的误差如下(单位:cm): 2,-2, —1, 1, 0,则这组数据的极差为______ cm.方差是_________ ,标准差是______3. 若样本1, 2, 3, x的平均数为5,又样本1, 2, 3, x, y的平均数为6,则样本1, 2, 3, x, y的极差是 _________ ,方差是_______ ,标准差是______ .4. 已知一组数据0, 1, 2, 3, 4的方差为2,则数据20, 21, 22, 23, 24的方差为 ____ ,标准差为________ .5. 一组数据—8,- 4, 5, 6, 7, 7, 8, 9的极差是 ________ ,方差是______ ,标准6. 若样本X1,X2,……,X n的平均数为 =5,方差S2= 0.025,贝肪羊本4X I,4X2,4X n的平均数X /= _______ ,方差S7 2= _______ .。
极差方差标准差表示一组数据的离散程度中考题集锦
极差、方差、标准差表示一组数据的离散程度1题•(2006常州课改)某校高一新生参加军训, 一学生进行五次实弹射击的成绩(单位:环)如下:8,6,10,27,9,则这五次射击的平均成绩是 ___________ 环,中位数是 ________ 环,方差是 ________ 环• 答案:8,8,22题• (2006常州课改)刘翔为了备战2008年奥运会,刻苦进行110米跨栏训练,为判断他的成绩是否稳定, 教练对他10次训练的成绩进行统计分析,则教练需了解刘翔这 10次成绩的()A .众数B .方差C .平均数D .频数答案:B3题• (2006芜湖课改)一组数据 5, 8, X , 10, 4的平均数是2x ,则这组数据的方差是 _____________________ 答案:6.84题• ( 2006滨州非课改)某同学对本地区2006年5月份连续六天的最高气温做了记录,每天最高气温与25 C 的上下波动数据分别为3 -4, -3< 7, 3,0,则这六天中气温波动数据的方差为 _______________ .43答案:4335题.(2006江西非课改)一次期中考试中, A , B, C , D , E 五位同学的数学、英语成绩等有关信息如下表 所示:(单位:分)(1)求这五位同学在本次考试中数学成绩的平均分和英语成绩的标准差;(2 )为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择•标准分的计算公式是:标准分 =(个人成绩—平均成绩)十成绩标准差.从标准分看,标准分大的考试成绩更好.请问A 同学在本次考试中,数学与英语哪个学科考得更好?友情提示:一组数据的标准差计算公式是 s 「1 X" -X 2 • x 2 -X 2…… Xn -X 2 ,其中X 为n 个数据X 1, x 2,…,X n 的平均数.英语考试成绩的标准差J(88 -85)2 +(82 -85)2 +(94 -85)2 +(85 -85)2 +(76 -85)2] = 6 .答案:解:(1 )数学考试成绩的平均分 X 数学二 ^(7172 69 68 70) = 70 ,5S 英语=(2)设A同学数学考试成绩标准分为P数学,英语考试成绩标准分为P英语,则_ 2 1P 数学二(71—70)-「、2, P 英语二(88 —85)“6 二一2 2:'P 数学> P 英语,从标准分来看,A 同学数学比英语考得更好.6题.(2006 泰州课改)小明和小兵两人参加学校组织的理 化实验操作测试,近期的 5次测试成绩如下图所示,则小 明5次成绩的方差 S 2与小兵5次成绩的方差 M 之间的大 小关系为 S 2 _________ M•(填“ >”、“<”、“=”) 答案:V7 题.(2006 湛江课改)数据 100, 99, 99, 100, 102, 100 的方差 S 二 _______________ 答案:18题.(2006 镇江课改)某校高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环)如下: 8,6,10, 7, 9.则这五次射击的平均成绩是 __________ 环,中位数是 __________ 环,方差是 ________ 环2 • 答案:8,8,29题.(2006 镇江课改)刘翔为了备战2008年奥运会,刻苦进行 教练对他10次训练的成绩进行统计分析,则教练需了解刘翔这 A .众数 B .方差 C .平均数 D .频数答案:B10题.(2006海南课改)某农科院为了选出适合某地种植的 甜玉米种子,对甲、乙两个品种甜玉米各用 10块试验田进行实 验,得到这两个品种甜玉米每公顷产量的两组数据(如图所 示).根据图6中的信息,可知在试验田中, __________________ 种甜玉米 的产量比较稳定. 答案:乙11题•( 2006韶关课改)对甲、乙两台机床生产的同一种型号的零件进行抽样检测(零件个数相同) ,其平均数、方差的计算结果是:机床甲:x 甲 =15, s p = 0.03;机床乙:x 乙=15, s 乙 = 0.06 .由此可知: (填甲或乙)机床性能较好. 答案:甲12题.(2006大连课改)小伟五次数学考试成绩分别为: 86分,78分,80分,85分,92分,李老师想了解小伟数学学习变化情况,则李老师最关注小伟数学成绩的()A.平均数E.众数 C.中位数D.方差110米跨栏训练,为判断他的成绩是否稳定, 10次成绩的( )20 86 42 O 11明兵、答案:D13题.(2006衡阳课改)在甲、乙两块试验田内,对生长的禾苗高度进行测量,分析数据得:甲、乙试验 田内禾苗高度数据的方差分别为 S 甲=2.36, S 2 =5.08,则这两块试验田中()A •甲试验田禾苗平均高度较高B .甲试验田禾苗长得较整齐C .乙试验田禾苗平均高度较高D .乙试验田禾苗长得较整齐答案:B14题.(2006无锡课改) 姚明是我国著名的篮球运动员,他在 2005~2006赛季NBA 常规赛中表现非常优异.下面是他在这个赛季中,分别与“超音速队”和“快船队”各四场比赛中的技术统计.场次对阵超音速 对阵快船得分 篮板 失误 得分篮板 失误 第一场 22 10 2 25 17 2 第二场 29 10 2 29 15第三场 241421712第四场26 10 2 22 7 2(1) (2)请你从得分的角度分析,姚明在与“超音速”和“快船”的比赛中,对阵哪一个队的发挥更稳定?(3) 如果规定“综合得分”为:平均每场得分1+平均每场篮板 1.5+平均每场失误 (一1.5),且综合得分越高表现越好,那么请你利用这种评价方法,来比较姚明在分别与“超音速”和“快船”的各四场比赛 中,对阵哪一个队表现更好?答案:解:(1)姚明在对阵“超音速”队的四场比赛中,平均每场得分为姚明在对阵“快船”队的四场比赛中,平均每场得分为x 2 =23.25.(2)姚明在对阵“超音速”队的四场比赛中得分的方差为s 2 =6.6875 , 姚明在对阵“快船”队的四场比赛中得分的方差为s ; =19.1875 .h/s 2.姚明在对阵“超音速”的比赛中发挥更稳定.(3)姚明在对阵“超音速”队的四场比赛中的综合得分为11 ,口 =25.25 11 1.51.5 =37.625,4姚明在对阵“快船”队的四场比赛中的综合得分为1/ P 1 ::: P2 ,-姚明在对阵“快船”队的比赛中表现更好.15题.(2006 济宁课改)如图是济宁日报 2006年2月17日发布的我市六 年来专利申请量(项)的统计图,贝U 这六年中平均每年专利申请量是项,极差是 _________ 项.x<|= 25.25,P 251沖5才「5 2―75,专利申请量(项)答案:47279116题.(2006 聊城课改)把一组数据中的每一个数据都减去 数是1.2,方差是4.4,则原来一组数据的平均数和方差分别为 答案:81.2,4.417题.(2006 沈阳课改)数据1,6,3,9,8的极差是( )A . 1B . 5C . 6D . 8答案:D18题.(2006湘潭课改)数学老师对小玲同学在参加高考前的 5次数学模拟考试成绩进行统计分析,判断 小玲的数学成绩是否稳定,于是数学老师需要知道小玲这5次数学成绩的()A.平均数E.众数C.频数D.方差答案:D19题.(2006宜昌课改)国家统计局发布的统计公报显示: 2001到2005年,我国GDP 增长率分别为8.眺, 9.1% , 10.0% , 10.1% , 9.9% •经济学家评论说:这五年的年度 GDP 增长率之间相当平稳•从统计学的角度看,“增长率之间相当平稳”说明这组数据的()比较小A.中位数E.标准差C.平均数D.众数答案:E20题.(2006湖南永州课改)在 2, 3, 4, 5, X 五个数据中,平均数是 4,那么这组数据的方差是( )A . 2B . 10C . ■. 2D . 、. 10答案:A21题.(2006湖南永州非课改)某公司对两名业务主管上半年六个月的工作业绩考核得分如下(每个月满 分为10分): 甲 5 6 8 7 9 7 乙 3 6 7 9 10 7(1) 分别求出甲、乙两人的平均得分.(2) 根据所学方差知识,请你比较谁的工作业绩较稳定.1答案:解:(1) X 甲 (5 6 8 7 9 7^ 7,1 X 乙 (3 6 7 9 10 7)=7. 6(2) S 2甲二丄[(5 -7)2 (6 -7)2 (8 -7)2 (7 -7)2 (9-7)2 (7-7)2] =◎,63S 2乙二丄[(3-7)2 (6-7)2 (7-7)2 (9-7)2 (10-7)2 (7-7)2]=5.6由S 2甲< S 2乙知甲的工作业绩较稳定.22题.(2006沈阳非课改)若甲、乙两名同学五次数学模拟考试成绩的平均分都是的方差S 甲=1.05,乙同学成绩的方差 s ; =0.41 ,则甲、乙两名同学成绩相对稳定的是 ________________ . (填 “甲” 或“乙”)80,得一组新数据,若求得新一组数据的平均135分,且甲同学成绩答案:乙23题.(2006 长春课改)5名同学目测同一本教科书的宽度时,产生的误差如下(单位:cm):2,- 2,-1, 1,0 ,则这组数据的极差为 _________ c m.答案:424题.(2006新疆课改)某农场购置了甲、乙、丙三台打包机,同时分装质量相同的棉花,从它们各自分装的棉花包中随机抽取了10包,测得它们实际质量的方差分别为S| =11.05,S乙=7.96,S丙二16.32.可以确定 _______ 打包机的质量最稳定.答—25题.(2006泉州课改)甲、乙两人比赛射击,两人所得平均环数相同,其中甲所得环数的方差为12,乙所得环数的方差为8,那么成绩较为稳定的是________________ (填“甲”或“乙”).答案:乙26题.(2006山西临汾)为考察甲、乙两种小麦的长势,分别从中抽取50株小麦,测得苗高,经过数据处理,它们的平均数相同,方差分别为S| =15.4, S乙=12,由此可以估计________ 种小麦长的比较整齐.答案:乙227题.(2006 资阳课改)数据8, 9, 10, 11, 12的方差S为_________________________ .答案:228题.(2006贵港非课改)在一次投篮比赛中,甲、乙两人共进行五轮比赛,每轮各投10个球,他们每轮投中的球数如下表:(1 )甲在五轮比赛中投中球数的平均数是_________ ,方差是______ ;(2)乙在五轮比赛中投中球数的平均数是 ________ ,方差是______ ;(3)通过以上计算,你认为在比赛中甲、乙两人谁的发挥更稳定些?答案:解:(1)7 , 2 (2)7 , 0.4(3): S2::: S甲2.在比赛中乙的发挥更稳定些.29题.(2006钦州非课改)我市某中学在践行“八荣八耻”的演讲比赛中,七年级和八年级各有10名同(1七年级成绩的众数是_________ 分,八年级成绩的中位数是__________ 分,七年级成绩的平均数{七二_________ 分,八年级成绩的平均数x八二 __________ 分,七年级成绩的方差5七= __________ 分2,八年级成绩的方差$八= ____________ 分2;(2)你认为哪个年级的成绩稳定,请运用所学的统计知识简要说明理由.答案:解:(1)83, 83.5, 83, 83, 20.4, 15.4;(2)v八年级成绩的方差S八<七年级成绩的方差S七,.八年级的成绩稳定.30题.(2006南充课改)某车间6月上旬生产零件的次品数如下(单位:个):0, 2, 0, 2, 3, 0, 2, 3, 1, 2,则在这10天中该车间生产零件的次品数的()A .众数是4B .中位数是1.5 C.平均数是2 D .方差是1.25答案:D31题.(2006郴州课改)一次数学测试后,随机抽取九年级二班5名学生的成绩如下:78, 85, 91 , 98, 98•关于这组数据的错误说法.是()A.极差是20 E.众数是98 C.中位数是91 D.平均数是91答案:D32题.(2006 郴州课改)下列说法不正确.的是()A.方差反映了一组数据与其平均数的偏离程度E.为了解一种灯泡的使用寿命,宜采用普查的方法C.必然事件的概率为1D.对于简单随机样本,可以用样本的方差去估计总体的方差答案:B33题.(2006益阳课改)为了了解市场上甲、乙两种手表日走时误差的情况,从这两种手表中各随机抽取10(1(2 )你认为甲、乙两种手表中哪种手表走时稳定性好?说说你的理由.1答案:解:(1) X甲=10(-3 4 2 -1 -2-2 1-2 2 1)=0 ,- 1x乙(Y 2 —3 2 4 2 —3—1 4 —3)=0 .10(2) <甲丄[(;)242 22 (_1)2(<)2(<)2 12 (_2)22212]=4.8,102 (^) 2 4 2 g 心)4 2) g.82 1 2 2 2 2 2 2 2 2 2 2 s乙帀[(/)由S甲::: si,知甲种手表走时稳定性好。
八年级数学知识点:极差方差与标准差知识点
八年级数学知识点:极差方差与标准差知识点人生的道路很长,但关键的却往往只有几步,而初中就是这关键几步中的第一步,下面小编为大家准备了极差方差与标准差知识点,欢迎阅读与选择!一、本节知识导学本节以自主探索为主,并初步体验:对图的观察和分析是科学研究的重要方法。
通过例题发现极差(最大值-最小值)的作用:用来表示数据高低起伏的变化大小;同时也希望同学们通过深入思考发现极差的不足之处:极差只能反应一组数据中两个极端值之间的差异情况,对其他数据的波动情况不敏感。
因此有必要重新找一个对整组数据的波动情况更敏感的指标,构造方差前请同学们注意以下几个方面:1.为什么要用“每次成绩”和“平均成绩”相减。
2.为什么要“平方”。
3.为什么“求平均数”比“求和”更好。
同时请同学们意识到:比较两组数据的方差有一个前提条件是,两组数据要一样多。
对于方差的学习,重点在于方差公式的导出和对于方差概念的理解,而不是数字的计算,应充分利用计算器和计算机去完成繁杂的计算。
对于方差与标准差之间除了计算公式不一样,数量单位也不一样但通过求算术平方根运算又可以将他们联系在一起。
二、例题1.不通过计算,比较图中(1)(2)两组数据的平均值和标准差分析:平均值是反映一组数据的平均水平,标准差是反映一组数据与其平均值的离散程度。
本例不通过计算,从折线图来估算标准差,应先估算平均值的大小。
解:从图(1)(2)中可以看出,两组数据的平均值相等。
(图(1)中数据与图(2)中前10个数据相等,且图(2)中后几个数据不影响平均值)。
图(1)的标准差比图(2)的标准差大。
(因为图(1)中各数据与其平均值离散程度大,图(2)中前10个数据与其平均值的离散程度与图(1)相同,而后几个数据与其平均值的离散程度小。
因此整体上说图(2)所有数据与其平均值的离散程度小于图(1)。
)2.求下列数据的方差(小数点后保留两位):5,7,9,9,10,11,13,14。
分析:要求方差,必须先求平均数。
中考数学课程重点难点分值题型分布
中考数学重点难点分值题型分布第一章数与式1.1实数考点1:实数的分类与实数的有关概念(掌握)题型:选择题、填空题; 分值:3分考试内容:1.实数的定义与分类2.实数的大小比较3.数轴4.相反数、倒数、绝对值5.无理数的估算考点2:实数的运算(掌握)题型:选择题、填空题;分值:3分、4分考试内容:1.平方根与立方根2.实数的混合运算考点3:科学计数法(掌握)与近似数(了解)题型:选择题;分值:3分考试内容:1.科学记数法2.近似数1.2代数式考点1:代数式(理解)——必考点题型:选择题;分值:4分考试内容:1.列代数式表示简单的数量关系2.能解释一些简单代数式的实际意义或几何意义考点2:求代数式的值题型:解答题;分值:6分考试内容:1.代数式的值的概念“(了解)2.根据问题所提供的资料,求代数式的值1.3整式考点1:整式及其运算(灵活运用)题型:填空题;分值:3分考试内容:1.整式的有关概念(了解)2.整数指数幂的意义和基本性质(了解)3.整式加减乘除法运算的法则4.会进行简单的整式加减乘除法运算考点2:整式乘法公式(灵活运用)——必考点题型:填空题;分值:3分、4分考试内容:1.完全平方公式、平方差公式的几何背景(了解)2.平方差公式、完全平方公式3.用平方差公式、完全平方公式进行简单计算考点3:因式分解(灵活运用)题型:填空题;分值:3分、4分考试内容:1.因式分解的意义及其与整式乘法之间的关系(了解)2.用提取公因式法、、公式法进行因式分解,会在实数范围内分解因式1.4分式与二次根式考点1:分式的概念与基本性质(灵活运用)——必考点题型:选择题;分值:3分考试内容:1.分式的概念(了解)2.确定分式有意义的条件3.确定使分式的值为零的条件4.分式的基本性质5.约分和通分考点2:分式的运算(掌握)——必考点题型:解答题;分值:6分考试内容:1.分式的加、减、乘、除、乘方运算法则2.简单的分式加减乘除乘方运算,用恰当方法解决与分式有关的问题考点3:二次根式(掌握)——必考点题型:选择题;分值:3分考试内容:1.二次根式的概念2.最简二次根式3.二次根式的运算第二章方程(组)与不等式(组)2.1整式方程考点1:一元一次方程(掌握,灵活运用)题型:选择题、解答题;分值:3分、6分、8分考试内容:1.方程是刻画现实世界数量关系的一个数学模型(了解)2.运用一元一次方程解决简单的实际问题3.方程的解的概念(了解)4.由方程的解求方程中字母系数的值5.一元一次方程的有关概念(了解)6.一元一次方程的解法考点2:一元二次方程(掌握,灵活运用)——必考点题型:选择题、填空题;分值:3分、4分考试内容:1.一元二次方程的概念(了解)2.一元二次方程的解法3.用一元二次方程根的判别式判断根的情况4.运用一元二次方程解决简单的实际问题2.2分式方程考点1:分式方程及其解法——必考点题型:选择题、填空题;分值:3分、4分考试内容:1.分式方程的概念2.分式方程的增根3.分式方程的求解4.分式方程的检验考点2:分式方程的应用题型:解答题;分值:10分考试内容:1.利用分式方程解决生活实际问题2.注意分式方程要对方程和实际意义进行双检验2.3方程组考点1:二元一次方程组题型:解答题;分值:7分考试内容:1.二元一次方程组的有关概念(了解)2.代入消元法、加减消元法的意义3.选择适当的方法解二元一次方程组考点2:二元一次方程组的应用——必考点题型:解答题;分值:9分考试内容:运用二元一次方程组解决简单的实际问题2.4不等式组考点1:不等式和一元一次不等式(组)题型:选择题、填空题;分值:3分、4分考试内容:1.不等式的意义(了解)2.根据具体问题中的数量关系列出不等式3.不等式的基本性质4.利用不等式的性质比较两个实数的大小5.一元一次不等式的解集(了解)6.解不等式组考点2:一元一次不等式(组)的应用——必考点题型:解答题;分值:8分考试内容:根据具体问题中的数量关系,用一元一次不等式或不等式组解决简单问题第三章变量与函数3.1位置的确定与变量之间的关系考点1:平面直角坐标系题型:选择题、填空题;分值:3分考试内容:1.坐标平面内点的坐标特征的运用2.关于坐标轴、原点对称的点的坐标的特征考点2:函数及其图象题型:选择题、填空题;分值:3分、8分考试内容:1.求函数自变量的取值范围2.根据条件写出函数关系式3.用描点法画出函数图像考点3:函数的有关应用题型:选择题;分值:3分考试内容:解决与函数有关的应用型问题3.2一次函数考点1:一次函数的概念、图象和性质题型:解答题;分值:3分、10分考试内容:1.对一次函数概念的理解(理解)2.根据已知条件用待定系数法确定函数解析式3.会画一次函数图象并能根据图象解决相关的问题4.根据自变量的变化判断函数值的增减情况(灵活运用)5.由函数值的取值范围判断自变量的取值范围,求一次函数图象的交点坐标考点2:一次函数的应用题型:解答题;分值:9分考试内容:与一次函数有关的应用问题(灵活运用)3.3反比例函数考点1:求反比例函数解析式题型:填空题;分值:4分考试内容:1.对反比例函数的理解2.根据已知条件用待定系数法确定反比例函数解析式考点2:反比例函数的图象和性质题型:解答题;分值:8分考试内容:1.会画反比例函数的增减性;掌握比例系数K的几何意义考点3:反比例函数的应用题型:填空题、解答题;分值:3分、9分考试内容:1.反比例函数与一次函数图象与性质的综合应用2.确定与反比例函数有关的应用型问题3.4二次函数考点1:二次函数的图象和性质题型:选择题、解答题;分值: 3分、3分考试内容:1.用配方法把抛物线的解析式y=ax²+bx+c(a≠0)化为y=a(x-h)²+k(a≠0)的形式2.根据已知条件用待定系数法确定二次函数的解析式3.根据抛物线的位置确定a、b、c的符号,根据公式确定抛物线的顶点和对称轴4.根据自变量的变化判断二次函数值的增减情况5.根据函数图象求一元二次方程的根,由一元二次方程根的情况判断抛物线与x 轴的交点;根据图象判断一元二次不等式的解集考点2:二次函数的综合应用题型:解答题;分值:10分、12分考试内容:1.利用二次函数解决简单的实际问题2.与二次函数有关的综合应用第四章图形的认识4.1角、相交线与平行线考点1:角题型:选择题;分值:3分考试内容:1.角的有关概念(了解)2.角的比较、角的和差计算3.余角、补角考点2:相交线题型:选择题;分值:3分考试内容:1.对顶角2.垂线、点到直线的距离3.作已知直线的垂线4.命题、定理、证明考点3:平行线题型:选择题;分值:3分考试内容:1.平行线的性质2.平行线间的距离3.平行线的判定4.2三角形及其全等考点1:三角形的相关概念题型:选择题;分值:3分考试内容:1.角平分线、中线、高线、中位线以及性质2.画任意三角形的角平分线、中线和高3.三角形的稳定性、三边关系定理、三角形内角和定理考点2:三角形全等题型:填空题、解答题;分值:3分考试内容:1.全等三角形对应边相等、对应角相等2.三角形全等的判定定理:SAS, ASA, AAS, SSS, HL4.3等腰三角形与直角三角形考点1:等腰三角形题型:选择题;分值:3分考试内容:1.等腰三角形的有关概念、性质和判定2.等边三角形的有关概念、性质和判定考点2:直角三角形题型:选择题;分值:3分考试内容:1.直角三角形的概念、性质和判定2.勾股定理及其逆定理:4.4多边形与平行四边形考点1:多边形题型:选择题;分值:3分考试内容:多边形和正多边形的概念、内角和与外角和公式(了解)考点2:平行四边形题型:解答题;分值:9分考试内容:1、平行四边形的概念和性质2、平行四边形的判定4.5特殊的平行四边形考点1:矩形题型:选择题、填空题、解答题;分值:3分、8分考试内容:1.矩形的概念、性质2.矩形的判定考点2:菱形题型:选择、解答;分值:3分、10分考试内容:1、菱形的概念、性质2、菱形的判定考点3:正方形题型:选择题、解答题;分值:3分考试内容:1.正方形具有矩形和菱形的性质2.既是矩形又是菱形的四边形是正方形4.6梯形(依据考情选用)题型:填空题;分值:3分考试内容:1.梯形的概念和性质2.等腰梯形的概念、性质和判定3.直角梯形的概念第五章圆5.1圆的性质及与圆有关的位置关系考点1:圆的有关概念与性质题型:选择题、解答题;分值:3分、4分、9分考试内容:1.垂径定理及其推论的应用2.弧、圆心角、圆周角之间的关系3.圆周角定理及其推论考点2:与圆有关的位置关系题型:选择题、解答题考试内容:1.点和圆的位置关系2.直线和圆的位置关系3.切线的性质和判定5.2与圆有关的计算题型:选择题、填空题、解答题;分值:3分、10分考试内容:1.求圆的周长、弧长及简单组合图形的周长2.求圆的面积、扇形的面积及简单组合图形的面积3.圆柱的侧面积和全面积的计算4.圆锥的侧面积和全面积的计算第六章空间与图形6.1圆形的轴对称、平移与旋转考点1:轴对称的概念及性质题型:选择题;分值:3分考试内容:1.轴对称的概念及性质2.基本图形的对称性及轴对称的应用考点2:图形的平移题型:选择题;分值:3分考试内容:1.平移的概念和性质2.简单图形的平移及平移的应用考点3:图形的旋转题型:选择题;分值:3分考试内容:1.旋转的概念及性质2.基本图形的旋转及旋转的应用6.2图形的相似考点1:相似的有关概念题型:近5年未考考试内容:成比例线段、比例的基本性质、黄金分割考点2:相似三角形的性质与判定题型:填空题;分值:3分考试内容:1.相似的概念及相似的判定2.相似的性质、多边形相似比、周长比与面积比考点3:位似的概念与性质题型:选择题;分值:3分考试内容:1.位似的概念和性质2.利用位似放大或缩小图形,会在坐标系中作位似图形并求出对应的坐标6.3解直角三角形题型:选择题、填空题、解答题;分值:3、6分考点1:锐角三角函数考试内容:1.锐角三角函数的定义及其性质2.特殊角的三角函数值考点2:解直角三角形考试内容:1.解直角三角形的概念2.直角三角形的边角关系3.仰角、俯角、坡度(坡比)4.用三角函数解决与直角三角形有关的实际问题6.4视图与投影考点1:几何体及其展开图题型:选择题;分值:3分考试内容:基本几何体的展开图考点2:几何体的三视图题型:选择题;分值:3分考试内容:画基本几何体或简单组合体的三视图,根据三视图描述实物考点3:投影题型:近五年未考考试内容:1.中心投影和平行投影2.影子、视点、视角和盲区的概念第七章统计与概率7.1统计考点1:数据的收集题型:选择题;分值:3分考试内容:1.普查和抽样调查2.总体、个体、样本和样本容量3.用样本估计总体的思想考点2:数据的处理题型:选择题;分值:3分考试内容:1.求一组数据的平均数(包括加权平均数)、众数、中位数、极差与方差2.根据具体问题,选择合适的统计量表示数据的集中程度或离散程度3.根据统计结果做出合理的判断和预测考点3:统计图表题型:解答题;分值:4分、8分考试内容:1.用扇形统计图表示数据2.频数、频率的概念,频数分布的意义和作用3.列频数分布表,画频数分布直方图和频数分布折线图4.利用统计图表解决简单的实际问题7.2概率考点1:事件的分类题型:选择题;分值:3分考试内容:不可能事件、必然事件和随机事件考点2:概率的计算题型:解答题;分值:10分考试内容:1.概率的意义2.运用列举法(包括列表、画树状图)计算简单事件发生的概率考点3:用频率估计概率题型:填空题;分值:3分考试内容:大量重复试验时,可以用频率估计概率解决一些实际问题赠送以下资料考试知识点技巧大全一、考试中途应饮葡萄糖水大脑是记忆的场所,脑中有数亿个神经细胞在不停地进行着繁重的活动,大脑细胞活动需要大量能量。
初三复习案:极差、方差与标准差——数据的离散程度
初三复习案:极差、方差与标准差——数据的离散程度【学习目标】 一. 教学内容: 数据的离散程度 二. 学习目标:1. 掌握极差的定义,了解极差反映一组数据的变化范围,能够通过极差的大小来判断一组数据的波动情况。
2. 了解衡量一组数据的波动大小除了平均数、极差外,还有方差、标准差、理解方差、标准差的定义,会计算一组数据的方差和标准差,了解样本的方差,样本标准差、总体方差的意义,会用简化的计算公式求一组数据的方差、标准差,会比较两组数据的波动情况。
三. 重点:极差的定义,方差、标准差的应用。
四、难点:会用极差的意义判断一组数据的波动情况,利用方差、标准差描述社会生活的方方面面,在实际运用时理解相关数据之间的规律。
【学习内容】 (一)知识要点知识点1:表示数据集中趋势的代表平均数、众数、中位数都是描述一组数据集中趋势的特征数,只是描述的角度不同,其中平均数的应用最为广泛。
知识点2:表示数据离散程度的代表极差的定义:一组数据中最大值与最小值的差,能反映这组数据的变化范围,我们就把这样的差叫做极差。
极差=最大值-最小值,一般来说,极差小,则说明数据的波动幅度小。
知识点3:生活中与极差有关的例子 在生活中,我们经常用极差来描述一组数据的离散程度,比如一支篮球队队员中最高身高与最矮身高的差。
一家公司成员中最高收入与最低收入的差。
知识点4:平均差的定义在一组数据x 1,x 2,…,x n 中各数据与它们的平均数-x 的差的绝对值的平均数即T=|)x x ||x x ||x x (|n1n 21----+⋅⋅⋅+-+-叫做这组数据的“平均差”。
“平均差”能刻画一组数据的离散程度,“平均差”越大,说明数据的离散程度越大。
知识点5:方差的定义在一组数据x 1,x 2,…,x n 中,各数据与它们的平均数差的平方,它们的平均数,即S 2=])x x ()x x ()x x [(n12n 2221----+⋅⋅⋅+-+-来描述这组数据的离散程度,并把S 2叫做这组数据的方差。
九年级数学上册极差、方差、标准差复习题 试题
蠡园中学九年级数学上册?极差、方差、HY 差?复习苏科版制卷人:打自企; 成别使; 而都那。
审核人:众闪壹; 春壹阑; 各厅…… 日期:2022年二月八日。
〔一〕新课概念1.极差:我们可以用一组数据中的__________减去__________所得的差来反映这组数据的变化范围.用这种方法得到的差称为________.2.方差:方差实际上是一种表示一组数据的_________的量,我们可以用“先平均,_________, 然后_________,最后再________〞的方法得到.3.HY 差:与方差有什么关系? 这二者与原数据在单位上有什么关系? . 4.反映数据离散程度的指标是 . 〔二〕课后作业1.下表给出了05年5月28日至6月3日的最高气温,那么这些最高气温的极差是_____℃.2.〔〔2〕假设样本1,2,3,x 的平均数为5,又样本1,2,3,x ,y 的平均数为6,那么样本1,2,3,x ,y 的极差是_______,方差是_______,HY 差是______.3.〔1〕一组数据0,1,2,3,4的方差为2,那么数据20,21,22,23,24的方差为_____,• HY 差为________.〔2〕321,,x x x 的平均数=x 10,方差=2S 3,那么3212,2,2x x x 的平均为 ,方差为.4.利用计算器求一组数据的方差和HY差:78,84,98,92,66,77,75,80,79,815.为了考察甲、乙两种农作物的长势,分别从中抽取了10株苗,测得苗高如下:〔单位:mm〕甲:9,10,11,12,7,13,10,8,12,8乙:8,13,12,11,10,12,7,7,9,11请你经过计算后答复如下问题:〔1〕哪种农作物的10株苗长的比拟高?〔2〕哪种农作物的10株苗长的比拟整齐?6.某校要从甲、乙两名跳远运发动中挑选一人参加一项校际比赛.在最近的10次选拔赛中,他们的成绩〔单位:cm〕如下:甲:585 596 610 598 612 597 604 600 613 601乙:613 618 580 574 618 593 585 590 598 624〔1〕他们的平均成绩分别是多少?〔2〕他们的极差分别是多少?〔3〕甲、乙这10次比赛成绩的方差分别是多少?〔4〕这两名运发动的运动成绩各有什么特点?12 35 689 10 11 12(月份〕29 10 11 12(月份〕7.某公司为了评价甲、乙两位营销员去年的营销业绩,统计了这两人去年12个月的营销业绩〔所推销甲 乙〔1〕利用图中信息,完成下表:〔2〕假假设你是公司主管,请你根据〔1〕中图表信息,应用所学的统计知识,对两人的营销业绩作出评价.8.体校准备挑选一名跳高运发动参加全中学生运动会,对跳高运动队的甲、乙两名运发动进展了8次选拔比赛.他们的成绩〔单位:m 〕如下:甲:1.70 1.65 1.68 1.69 1.72 1.73 1.68 1.67乙:1.60 1.73 1.72 1.61 1.62 1.71 1.70 1.75〔1〕甲、乙两名运发动的跳均成绩分别是多少?〔2〕哪位运发动的成绩更为稳定?〔3〕假设预测,跳过1.65m就很可能获得冠HY,该校为了获得冠HY,可能选哪位运发动参赛?假设预测跳过1.70m才能得冠HY呢?9.某校初三〔1〕班、〔2〕班各有49名学生,两班在一次数学测验中的成绩统计如下表:班级平均分众数中位数HY差一班79 70 87二班79 70 79〔1〕请你对下面的一段话给予简要分析:初三〔1〕班的小刚回家对妈妈说:“昨天的数学测验,全班平均79分,得70分的人最多,我得了85分,在班里可算上游了!〞〔2〕请你根据表中数据,对这两个班的测验情况进展简要分析,并提出教学建议.10.王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.〔1〕分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;〔2〕试通过计算说明,哪个山上的杨梅产量较稳定?11.一次期中考试中,A、B、C、D、E五位同学的数学、英语成绩等有关信息如下表所示:〔单位:分〕A B C D E 平均分 HY差数学 71 72 69 68 70〔1〕求这五位同学在本次考试中数学成绩的平均分和英语成绩的HY差;〔2〕为了比拟不同学科考试成绩的好与差,采用HY分是一个合理的选择,HY分的计算公式是:HY分=〔个人成绩一平均成绩〕÷成绩HY差.从HY分看,HY分大的考试成绩更好.请问A同学在本次考试中,数学与英语哪个学科考得更好?12.甲、乙两人在一样的条件下各射靶5次,每次射靶的成绩情况如下图.〔1〕请你根据图中的数据填写上下表:姓名平均数〔环〕众数〔环〕方差甲乙〔2〕从平均数和方差相结合看,分析谁的成绩好些.制卷人:打自企;成别使;而都那。
2020中考数学复习知识点总结
兴义思源实验学校1712班2020年中考数学复习资料姓名:学号:2020年1月31日整理第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
“极差、方差、标准差”典例分析
“极差、方差、标准差”典例分析我们知道要描述一组数据的离散程度,则要选用极差、方差与标准差.极差可以反映一组数据变化的范围的大小,方差和标准差则能反映一组数据的偏离平均值的情况. 在中考试题中,常常涉及到极差、方差和标准差的计算和应用问题,请看几例.一、根据数据求值型例1、数据100,99,99,100,102,100的方差2S =__. 解析:解决问题的关键是掌握求方差的公式和步骤。
∵1(1003992102)6x =⨯⨯+⨯+=100,∴2S =2221(100100)3(99100)2(102100)6⎡⎤-⨯+-⨯+-⎣⎦=1. 例2、一组数据35,35,36,36,37,38,38,38,39,40的极差是________。
解析:极差=最大值-最小值,所以本题的极差=40-35=5。
二、与图结合型例3、据2007年5月26日《生活报》报道,我省有关部门要求各中小学要把“每天锻炼一小时”写入课表.为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图.请结合统计图回答下列问题:(1)该校对多少名学生进行了抽样调查? (2)本次抽样调查中,5项人数的极差是多少?解析:(1)由图1知4+8+10+18+10=50(名) 所以该校对50名学生进行了抽样调查.(2)本次调查中,喜欢篮球活动的人数最多有18人,喜欢羽毛球的人数最少有4人,所以极差是=18-4=14(人).例4、甲乙二人参加某体育训练,近期5次测试成绩得分情况如下图所示:分别求出两人得分的平均数与方差.解析:此题数据较简单,由图容易看出:甲的五次成绩分别为:10分,13分,12分,14分,16分,乙的五次成绩依次为:13分,14分,12分,12分,14分. 容易求得二人平均成绩都是13分,24s =甲,20.8s =乙.从折线的走势就可看出甲的方差比乙的方差大。
八年级数学《极差、方差和标准差》知识点教学文案
解: ( 1) 28- 22=6(天)
所以, 10 盆花的花期最多相差 6 天.
( 2) 由 平 均 数 公 式 得 :
x乙= 1 (27 24 24 27 23)=25 5
1 x甲= (25
5
23 28
22 27)=25
得 x甲=x乙 ,所以,无论用哪种花肥,花的平均花期相等.
( 3)由方差公式得:
(102 100.3) 2 ]=9.21
甲队的标准差:
5.61 2.37 ; 乙队的标准差:
9.21 3.03
所以,由此可以判断甲队的得分方差小,标准差也相应较小,因此他们在联赛中发 挥更为稳定一些. 例 2、对 10 盆同一品种的花施用甲、乙两种花肥,把 10 盆花分成两组,每组 5 盆,记录其 花期:
标准
差的单位与原数据的单位相同. 在解决实际问题时, 常用样本的方差来估计总体方差方法去
考察总体的波动情况.
二、例题讲析
例 1、甲、乙两支篮球队在一次联赛中,各进行
10 次比赛得分如下:
甲队: 100, 97, 99, 96, 102, 103, 104,101, 101, 100
乙队: 97, 97,99, 95,102, 100, 104,104, 103, 102
2
S甲
1 [( 25 25) 2 (23 25) 2 (28 25) 2 ( 22 25) 2 (27 25)2 ]=5.2
10
S乙 2 1 [( 27 25) 2 (24 25)2 (24 25) 2 5
得 S甲2 S乙2 故施用乙种花肥,效果比较可靠
(27 25)2
(23 25) 2 ]=2.8
资料收集于网络,如有侵权请联系网站删除
八年级数学极差-方差-标准差
极差、方差和标准差的区别与联系: 联系:极差、方差和标准差都是用来衡量 (或描述)一组数据偏离平均数的大小(即 波动大小)的指标,常用来比较两组数 据的波动情况。
区别:极差是用一组数据中的最大值与最 小值的差来反映数据的变化范围,主要反 映一组数据中两个极端值之间的差异情况, 对其他的数据的波动不敏感。
谁的成绩较为稳定?为什么? 能通过计算回答吗?
通常,如果一组数 据与其平均值的离 散程度较小,我们 就说它比较稳定.
请同学们进一步思 考,什么样的数能 反映一组数据与其 平均值的离散程度?
从表和图中可以看到,小兵的测试成绩 与平均值的偏差较大,而小明的较小.那 么如何加以说明呢?
那么,你能提出一个可行的方案吗?
3.观察下面的图,指出其中谁的标准差较大, 并说说为什么.
反映数据离散程度的指标是什么?
在一次数学测试中,甲、乙两班的 平均成绩相同,甲班成绩的方差为 42,乙班成绩的方差为35,这样的 结果说明两个班的数学学习状况各 有什么特点?
交流反思
1.了解方差、标准差的意义.
2.知道计算方差和标准差公式的来
请在下表的红色格子中写上新的计算方案, 并将计算结果填入表中.
考虑实际情况,如果一共进行了7次测试, 小明因故缺席两次,怎样比较谁的成绩 更稳定?
我们可以用“先平均,再求差,然后 平方,最后再平均”得到的结果表示一 组数据偏离平均值的情况.这个结果通 常称为方差(variance).
方差越大,说明这组数据偏离平均值的 情况越严重,即离散程度较大,数据也越不稳定. 方差反映的是一组数据与平均值 的离散程度或一组数据的稳定程度.
复习回忆:
1.何谓一组数据的极差? 极差反映了这组数据哪方面的特征? 答 一组数据中的最大值减去最小 值所得的差叫做这组数据的极差,极 差反映的是这组数据的变化范围或变 化幅度.
专题17方差极差标准差综合题(原卷版)
专题17 方差、极差、标准差(综合题)知识点:极差、方差和标准差1.极差一组数据中 ,称为极差,极差= 细节剖析:极差是 ,它受 的影响较大.一组数据极差越小,这组数据就越 2.方差方差是 .方差的计算公式是:,其中,是,,…的 细节剖析:(1)方差反映的是一组数据 的情况.方差越大,数据的 越大;方差越小,数据的波动 .(2)一组数据的每一个数都 同一个常数,所得的一组新数据的方差 (3)一组数据的每一个数据都变为原来的倍,则所得的一组新数据的方差变为原来的倍. 3.标准差方差的算术平方根叫做这组数据的标准差,用符号表示,即:;标准差的数量单位与原数据一致.4.极差、方差和标准差的联系与区别联系:极差与方差、标准差都是表示 .区别:极差表示 ,它受 的影响较大;方差反映了 .方差越大,稳定性也 ;反之,则稳定性 .所以一般情况下只求 用极差,在考虑到 时用方差.2s ()[]222212)(...)(1x x x x x x nS n -++-+-=x 1x 2x n x k 2k s 易错点拨易错题专训一.选择题1.(2021秋•汝州市期末)描述一组数据的离散程度,我们还可以用“平均差”.在一组数x1、x2、x3、…、x n中,各数据与它们的平均数x的差的绝对值的平均数,即T=(|x1﹣x|+|x2﹣x|+…+|x n﹣x|)叫做这组数据的“平均差”.“平均差”也能描述一组数据的离散程度,“平均差”越大说明数据的离散程度越大,稳定性越小.现有甲、乙两组数据,如表所示,则下列说法错误的是()甲12 13 11 15 13 14乙10 16 10 18 17 7 A.甲、乙两组数据的平均数相同B.乙组数据的平均差为4C.甲组数据的平均差是2D.甲组数据更加稳定2.(2021秋•青羊区期末)甲、乙、丙、丁四人进行射击测试,他们在相同条件下各射击10次,成绩(单位:环)统计如表:甲乙丙丁平均数9.7 9.6 9.6 9.7方差0.25 0.25 0.27 0.28如果从这四人中,选出一位成绩较好且状态稳定的选手参加比赛,那么应选()A.甲B.乙C.丙D.丁3.(2022春•定海区期末)若一组数据x1+1,x2+1,…,x n+1的平均数为17,方差为2,则另一组数据x1+2,x2+2,…,x n+2的平均数和方差分别为()A.17,2 B.18,2 C.17,3 D.18,34.(2021秋•历下区期中)在2020东京奥运会女子10米气步枪的项目中,杨倩以251.8环的好成绩一举夺冠,为中国体育代表团斩获奥运首金.现将决赛淘汰阶段中国选手杨倩每一轮(两轮之和)的数据进行汇总,并进行一定的数据处理作出以下表格.姓名第1轮第2轮第3轮第4轮第5轮第6轮第7轮总计杨倩20.9 21.7 21.0 20.6 21.1 21.3 20.5 147.1 根据表格信息可以得到杨倩在决赛淘汰阶段成绩的极差和中位数分别为多少()A.1.1,20.6 B.1.2,20.6 C.1.2,21.0 D.1.1,21.35.(2020秋•泰山区期末)甲,乙两个班参加了学校组织的“国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是()参加人数平均数中位数方差甲40 93 92 5.2乙40 93 94 4.7 A.甲、乙两班的平均水平相同B.甲、乙两班竞赛成绩的众数相同C.甲班的成绩比乙班的成绩稳定D.甲班成绩优异的人数比乙班多6.(2021•天心区模拟)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如下表所示.今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()甲乙丙丁24 24 23 20S2 1.9 2.1 2 1.9 A.甲B.乙C.丙D.丁二.填空7.(2021秋•开江县期末)某班有50人,一次数学测试后,老师对测试成绩进行了统计.由于小颖没有参加此次集体测试,因此计算其他49人的平均分为92分,方差s2=23.后来小颖进行了补测,成绩是92分,则该班50人的数学测试成绩的方差(填“变小”、“不变”、“变大”).8.(2021秋•福田区期末)新兴农场果农随机从甲、乙、丙三个品种的枇杷树中各选10棵,每棵产量的平均数(单位:千克)及方差(单位:千克2)如下表所示,他准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是.甲乙丙44 44 42S2 1.7 1.5 1.7 9.(2021秋•巨野县期末)在对一组样本数据进行分析时,小华列出了方差的计算公式:S2=,由公式提供的信息,①样本的容量是4,②样本的中位数是3,③样本的众数是3,④样本的平均数是3.5,则说法错误的是(填序号)10.(2022春•黄陵县期末)甲、乙两地6月上旬的日平均气温如图所示,则甲、乙两地这10天日平均气温的方差大小关系为S甲2S乙2(填>或<)11.(2021秋•莱州市期中)跳远运动员李强在一次训练中,先跳了6次的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9(单位:m).这六次成绩的平均数为7.8,方差为.如果李强再跳两次,成绩分别为7.6,8.0,则李强这8次跳远成绩与前6次的成绩相比较,其方差.(填“变大”、“不变”或“变小”)12.(2021秋•海曙区校级期末)已知一组数据的方差s2=[(x1﹣6)2+(x2﹣6)2+(x3﹣6)2+(x4﹣6)2],那么这组数据的总和为.三.解答题13.(2021秋•中牟县期末)为增强防疫意识,某初中在元旦举行了疫情防控知识竞赛活动,现从本校甲、乙两班中各随机抽取10名同学的测试成绩进行整理、描述和分析,如图所示:班级平均数/分中位数/分众数/分方差乙班83.7 82 46.21甲班83.7 86 13.21 请将乙班学生成绩按从小到大的顺序写在横线上.(1)两组数据的平均数、中位数、众数、方差如上表所示,请补充完整.(2)根据上述数据,请从两个不同角度评价甲班与乙班掌握防疫知识的情况.14.(2021秋•平顶山期末)某校为了改善学生伙食,准备午餐为学生提供鸡腿.现有A、B两家副食品厂可以提供规格为75g的鸡腿,而且它们的价格相同,品质也相近.质检人员分别从两家随机各抽取10个,记录它们的质量(单位:g)如下:A加工厂74 74 74 75 73 77 78 72 76 77B加工厂78 74 77 73 75 75 74 74 75 75并对以上数据进行整理如下:平均数中位数众数方差A加工厂a74.5 c 3.4B加工厂75 b75 2根据以上分析,回答下列问题:(1)统计表中a=;b=;c=;(2)根据以上信息估计B加工厂加工的100个鸡腿中,质量为75g的鸡腿有多少个?(3)如果考虑鸡腿的规格,学校应该选购哪家加工厂的鸡腿?说明理由.15.(2021秋•渭城区期末)某学校从九年级同学中任意选取40人,平均分成甲、乙两个小组进行“引体向上”体能测试,根据测试成绩绘制出如下的统计表和统计图(成绩均为整数,满分为10分).甲组成绩统计表成绩7 8 9 10人数 1 9 5 5 请根据上面的信息,解答下列问题:(1)m=,甲组成绩的众数是,乙组成绩的中位数是;(2)已知甲组成绩的方差s=0.81,求出乙组成绩的方差,并判断哪个小组的成绩更加稳定?16.(2021秋•乾县期末)某中学开展“唱歌”比赛活动,八(1),八(2)班各选出5名选手参加复赛,5名选手的复赛成绩(满分为100分),如图所示:(1)根据图示填写下表:班级中位数/分众数/分八(1)班85八(2)班100 (2)通过计算得知八(2)的平均成绩为85分,请计算八(1)的平均成绩.(3)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好.(4)经计算八(1)班复赛成绩的方差为70,请计算八(2)班复赛成绩的方差,并说明哪个班学生的成绩比较稳定.17.(2021秋•新民市期末)某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.(1)根据图示填写下表:平均数/分中位数/分众数/分A校85B校85 100(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.18.(2022春•宁武县期末)市体校射击队要从甲、乙两名射击队员中挑选一人参加省级比赛,因此,让他们在相同条件下各射击10次,成绩如图所示.为分析成绩,教练根据统计图算出了甲队员成绩的平均数为8.5环、方差为1.05,请观察统计图,解答下列问题:(1)先写出乙队员10次射击的成绩,再求10次射击成绩的平均数和方差;(2)根据两人成绩分析的结果,若要选出总成绩高且发挥稳定的队员参加省级比赛,你认为选出的应是,理由是:.19.(2021秋•驻马店期末)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个),经统计发现两班总分相等,此时有学生建议,可通过考查数据中的其他信息作为参考.请你回答下列问题:1号2号3号4号5号总分甲班100 98 110 89 103 500乙班86 100 98 119 97 500(1)根据上表提供的数据填写下表:班级参加人数优秀率中位数方差甲 5乙 5(2)根据以上信息,你认为应该把冠军奖状发给哪一个班级?简述理由.20.(2021•锡林浩特市校级模拟)我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分)中位数(分)众数(分)方差(分2)初中部a85 b s初中2高中部85 c100 160(1)根据图示计算出a、b、c的值;(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?(3)计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.。
极差、方差与标准差
新希望外语培训学校初二数学极差、方差与标准差习题1、(1)极差公式:___________________________________________。
(2)方差公式:___________________________________________。
(3)方差反映的是数据的离散程度:方差___________,数据越________,波动________。
2、反映一组数据的离散程度不选用()A. 极差B. 标准差C. 方差D. 平均数3、一组数据3,1,5,8,11,2,4,求这组数据的极差。
x 的平均数是1,求这组数据的极差。
4、一组数据3,,0,1,35、要判断小刚的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A. 方差B. 中位数C. 众数D. 平均数(1)求甲、乙两名同学射击的平均数;(2)求甲、乙两名同学射击的方差。
(1)求两队队员身高的平均数;(2)求两队队员身高的方差。
8、某地在一周内每天的最高气温(单位:℃)分别是:24,20,22,23,25,23,21,求这组数据的极差。
9、求数据1,2,3,2的方差。
10、A、B、C、D四个班选10名同学参加学校1500米长跑比赛,各班选手平均用时及方差A. A班B. B班C. C班D. D班11、甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,但甲的成绩比乙的成绩稳定,那么两者的方差的大小关系是()A. 2S甲<2S乙B. 2S甲>2S乙C. 2S甲=2S乙D. 不能确定--的方差。
12、求数据2,3,0,3,713、甲乙两人比赛掷飞镖,两人所得的平均数相同,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,其中比较稳定是谁?14、朝阳中学九年级一班在一次数学测试中,成绩为100分的8人,90分的13人,80分的17人,70分的8人,60分的3人,50分的1人,求该班此次测试的平均分。
八年级数学极差-方差-标准差
考虑实际情况,如果一共进行了7次测试, 小明因故缺席两次,怎样比较谁的成绩 更稳定?
我们可以用“先平均,再求差,然后 平方,最后再平均”得到的结果表示一 组数据偏离平均值的情况.这个结果通 常称为方差(variance).
方差越大,说明这组数据偏离平均值的 情况越严重,即离散程度较大,数据也越不稳定. 方差反映的是一组数据与平均值 的离散程度或一组数据的稳定程度.
3.观察下面的图,指出其中谁的标准差较大, 并说说为什么.
反映数据离散程度的指标是什么?
在一次数学测试中,甲、乙两班的 平均成绩相同,甲班成绩的方差为 42,乙班成绩的方差为35,这样的 结果说明两个思
1.了解方差、标准差的意义.
2.知道计算方差和标准差公式的来
谁的成绩较为稳定?为什么? 能通过计算回答吗?
通常,如果一组数 据与其平均值的离 散程度较小,我们 就说它比较稳定.
请同学们进一步思 考,什么样的数能 反映一组数据与其 平均值的离散程度?
从表和图中可以看到,小兵的测试成绩 与平均值的偏差较大,而小明的较小.那 么如何加以说明呢?
那么,你能提出一个可行的方案吗?
方差是用“先平均,再求差,然后平方,最 后再平均”的方法得到的结果,主要反映整组 数据的波动情况,是反映一组数据与其平均值 离散程度的一个重要指标,每个数年据的变化 都将影响方差的结果,是一个对整组数据波动 情况更敏感的指标。在实际使用时,往往计算 一组数据的方差,来衡量一组数据的波动大小。 标准差实际是方差的一个变形,只是方差的单 位是原数据单位的平方,而标准差的单位与原 数据单位相同。
历并会利用它进行计算. 3.会利用方差和标准差的计算结果 来分析一组数据的离散程度.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极差、方差、标准差一、选择题1. (2017 浙江省舟山市) 已知一组数据c,的平均数为5,方差为4,那么数a,b据2ba的平均数和方差分别是()-c-,2-,2A.3,2 B.3,4 C.5,2 D.5,42. (2017 贵州省六盘水市) 已知A组四人的成绩分别为90、60、90、60,B组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当( )A.平均数B.中位数C.众数D.方差3. (2018 浙江省杭州市) (3分)测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是()A.方差B.标准差C.中位数D.平均数4. (2018 新疆建设兵团) (5分)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:某同学分析上表后得出如下结论:1(1)甲、乙两班学生的平均成绩相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字的个数≥150为优秀);(3)甲班成绩的波动比乙班大.上述结论中,正确的是()A.①②B.②③C.①③D.①②③5. (2018 新疆乌鲁木齐) (4分)甲、乙两名运动员参加射击预选赛.他们的射击成绩(单位:环)如表所示:第一次第二次第三次第四次第五次甲7 9 8 6 10乙7 8 9 8 8设甲、乙两人成绩的平均数分别为,,方差分别s甲2,s乙2,下列关系正确的是()A.=,s甲2>s乙2 B.=,s甲2<s乙2C.>,s甲2>s乙2 D.<,s甲2<s乙26. (2018 四川省自贡市) (4分)在一次数学测试后,随机抽取九年级(3)班5名学生的成绩(单位:分)如下:80、98、98、83、91,关于这组数据的说法错误的是()A.众数是98 B.平均数是90 C.中位数是91 D.方差是5627. (2018 四川省资阳市) (3分)某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是()A.87 B.87.5 C.87.6 D.888. (2019 黑龙江省齐齐哈尔市)小明和小强同学分别统计了自己最近10次“一分钟跳绳”的成绩,下列统计量中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.方差D.众数9. (2019 湖北省孝感市) (3分)下列说法错误的是()A.在一定条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式10. (2019 辽宁省沈阳市) (2分)下列说法正确的是()A.若甲、乙两组数据的平均数相同,20.1S=甲,20.04S=乙,则乙组数据较稳定B.如果明天降水的概率是50%,那么明天有半天都在降雨C.了解全国中学生的节水意识应选用普查方式D.早上的太阳从西方升起是必然事件311. (2019 山东省潍坊市) (3分)小莹同学10个周综合素质评价成绩统计如下:这10个周的综合素质评价成绩的中位数和方差分别是()A.97.5 2.8; B.97.5 3; C.97 2.8; D.97 312. (2019 山东省烟台市) (2019年烟台)某班有40人,一次体能测试后,老师对测试成绩进行了统计,由于小亮没有参加本次集体测试,因此计算其他39人的平均成绩为90分,方差为s2=41.后来小亮进行了补测,成绩为90分.关于该班40人的测试成绩,下列说法中确的是()A.平均分不变,方差变大 B.平均分不变,方差变小C.平均分和方差都不变 D.平均分和方差都改变13. (2019 四川省达州市) (3分)一组数据1,2,1,4的方差为()A.1 B.1.5 C.2 D.2.514. (2019 四川省自贡市) (4分)在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩方差是3,下列说法正确的是()A.甲的成绩比乙的成绩稳定 B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定15. (2019 浙江省宁波市) (4分)去年某果园随机从甲、乙、丙、丁四个品种的4葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙丁24 24 23 20S2 2.1 1.9 2 1.9要选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A.甲B.乙C.丙D.丁16. (2019 浙江省台州市) (4分)方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,…,x n,可用如下算式计算方差:s2=[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(x n﹣5)2],其中“5”是这组数据的()A.最小值B.平均数C.中位数D.众数17. (2019 四川省攀枝花市) (3分)比较A组、B组中两组数据的平均数及方差,以下说法正确的是()A.A组、B组平均数及方差分别相等 B.A组、B组平均数相等,B组方差大C.A组比B组的平均数、方差都大D.A组、B组平均数相等,A组方差大5二、填空题18. (2015 山东省济宁市) 甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为S甲2S乙2(填>或<).19. (2019 贵州省安顺市) (4分)已知一组数据x1,x2,x3,…,x n的方差为2,则另一组数据3x1,3x2,3x3,…,3x n的方差为.20. (2019 湖南省郴州市) (3分)如图是甲、乙两人6次投篮测试(每次投篮10个)成绩的统计图,甲、乙两人测试成绩的方差分别记作s甲2、s乙2,则s甲2 s乙2.(填“>”,“=”或“<”)21. (2019 内蒙古通辽市) (3分)某机床生产一种零件,在6月6日至9日这4天中出现次品的数量如下表:6日期6月6日6月7日6月8日6月9日次品数量(个) 1 0 2 a若出现次品数量的唯一众数为1,则数据1,0,2,a的方差等于.22. (2019 山东省菏泽市) (3分)一组数据4,5,6,x的众数与中位数相等,则这组数据的方差是.23. (2019 内蒙古赤峰市) (3分)如图是甲、乙两名射击运动员10次射击成绩的统计表和折线统计图.平均数中位数众数甲8 8 8乙8 8 8你认为甲、乙两名运动员,的射击成绩更稳定.(填甲或乙)三、应用题24. (2012 福建省厦门市) 本题满分7分)已知A组数据如下:0,1,-2,-1,0,-1,3.(1)求A组数据的平均数;(2)从A组数据中选取5个数据,记这5个数据为B组数据. 要求B组数78据满足两个条件:①它的平均数与A 组数据的平均数相等;②它的方差比A 组数据的方差大.你选取的B 组数据是 ,请说明理由. 注:A 组数据的方差的计算式是S A 2=17[(x 1-—x )2+(x 2-—x )2+(x 3-—x )2+(x 4-—x )2+(x 5-—x )2+(x 6-—x )2+(x 7-—x )2]25. (2013 四川省绵阳市) 为了从甲.乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表: 图1 甲、乙射击成绩统计表图2 甲、乙射击成绩折线图乙甲y x命中环数射击次数1234567891010987654321(1)请补全上述图表(请直接在表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?26. (2014 黑龙江省大庆市) 甲、乙两名同学进入初四后某科6次考试成绩如图所示:请根据右图填写下表;平均数方差中位数众数极差甲75 75乙33 .3 159请你从以下两个不同的方面对甲、乙两名同学6次考试成绩进行分析:①从平均数和方差结合看;②从折线图上两名同学分数的走势上看,你认为反应出什么问题?27. (2015 河北省) 某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A,B产品单价变化统计表第一次第二次第三次A产品单价(元/件) 6 5.2 6.5B产品单价(元/件) 3.5 4 3并求得了A产品三次单价的平均数和方差:=5.9,s A2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了%(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;10(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.28. (2016 山东省青岛市) 甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?29. (2019 浙江省杭州市) (8分)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表数据 1 2 3 4 5甲组48 52 47 49 54乙组﹣2 2 ﹣3 ﹣1 4(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为,,写出与之间的等量关系.②甲,乙两组数据的方差分别为S甲2,S乙2,比较S甲2与S乙2的大小,并说明理由.参考答案一、选择题 1. 答案B.试题分析:平均数为13(a −2 + b −2 + c −2 )=13(3×5-6)=3;原来的方差:2221(5)(5)(5)43a b c ⎡⎤-+-+-=⎣⎦;新的方差:2221(23)(23)(23)3a b c ⎡⎤--+--+--=⎣⎦2221(5)(5)(5)43a b c ⎡⎤-+-+-=⎣⎦,故选B.考点: 平均数;方差.2. 考点方差;平均数;中位数;众数.分析根据A 组和B 组成绩,求出中位数,平均数,众数,方差差,即可做出判断. 解答解:A 组:平均数=75,中位数=75,众数=60或90,方差=225A 组:平均数=75,中位数=75,众数=70或80,方差=25故选D .3. 分析根据中位数的定义解答可得.解答解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不易受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数,故选:C.4.分析两条平均数、中位数、方差的定义即可判断;解答解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大.故(1)(2)(3)正确,故选:D.5.分析分别计算平均数和方差后比较即可得到答案.解答解:(1)=(7+8+9+6+10)=8;=(7+8+9+8+8)=8;=[(7﹣8)2+(8﹣9)2+(8﹣8)2+(6﹣8)2+(10﹣8)2]=2;=[(7﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=0.2;∴=,s>s故选:A.6.分析根据众数、中位数的概念、平均数、方差的计算公式计算.解答解:98出现的次数最多,∴这组数据的众数是98,A说法正确;=(80+98+98+83+91)=90,B说法正确;这组数据的中位数是91,C说法正确;S2=[(80﹣90)2+(98﹣90)2+(98﹣90)2+(83﹣90)2+(91﹣90)2]=×278=55.6,D说法错误;故选:D.7.分析将三个方面考核后所得的分数分别乘上它们的权重,再相加,即可得到最后得分.解答解:小王的最后得分=90×+88×+83×=27+44+16.6=87.6(分),故选:C.8.分析根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.解答解:能用来比较两人成绩稳定程度的是方差,故选:C.点评此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.9.分析分别根据随机事件的定义、众数的定义、方差的意义以及调查方式判断即可.解答解:A.在一定条件下,可能发生也可能不发生的事件称为随机事件,正确,故选项A不合题意;B.一组数据中出现次数最多的数据称为这组数据的众数,正确,故选项B不合题意;C.方差可以刻画数据的波动程度,方差越大,波动越大;方差越小,波动越小.故选项C符合题意;D.全面调查和抽样调查是收集数据的两种方式,正确,故选项D不合题意.故选:C.点评本题主要考查了随机事件的定义、众数的定义、方差的意义以及调查的方式,属于基础题.10.分析根据方差、概率、全面调查和抽样调查以及随机事件的意义分别对每一项进行分析即可得出答案.解答解:A、20.1S=Q甲,20.04S=乙,22S S∴>乙甲,∴乙组数据较稳定,故本选项正确;B、明天降雨的概率是50%表示降雨的可能性,故此选项错误;C、了解全国中学生的节水意识应选用抽样调查方式,故本选项错误;D、早上的太阳从西方升起是不可能事件,故本选项错误;故选:A.点评本题考查了方差、概率、全面调查和抽样调查以及随机事件,熟练掌握定义是解题的关键.11.分析根据中位数和方差的定义计算可得.解答解:这10个周的综合素质评价成绩的中位数是=97.5(分),平均成绩为×(94+95×2+97×2+98×4+100)=97(分),∴这组数据的方差为×[(94﹣97)2+(95﹣97)2×2+(97﹣97)2×2+(98﹣97)2×4+(100﹣97)2]=3(分2),故选:B.点评本题主要考查中位数和方差,解题的关键是掌握中位数和方差的定义.12. {答案}B{解析}本题考查了统计量的意义与计算,由平均数和方差的计算公式知平均分不变,方差变小.因此本题选B.13.分析先求得这组数据平均值,再根据方差公式,计算即可解答解:平均数为==2方差S2=[(1﹣2)2+(2﹣2)2+(1﹣2)2+(4﹣2)2]=故选:B.点评此题主要考查方差的计算公式,熟记方差的计算公式:S2=×[(x1﹣)2+(x)2+…+(x n﹣1﹣)2+(x n﹣)2]是解题的关键2﹣14.分析根据方差的意义求解可得.解答解:∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳定,故选:B.点评本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.15. 分析先比较平均数得到甲组和乙组产量较好,然后比较方差得到乙组的状态稳定.解答解:因为甲组、乙组的平均数丙组、丁组大, 而乙组的方差比甲组的小, 所以乙组的产量比较稳定,所以乙组的产量既高又稳定,故选:B .点评本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.16. 解答解:方差s 2=[(x 1﹣5)2+(x 2﹣5)2+(x 3﹣5)2+…+(x n ﹣5)2]中“5”是这组数据的平均数,故选:B .17. 分析由图象可看出A 组的数据为:3,3,3,3,3,2,2,2,2,B 组的数据为:2,2,2,2,3,0,0,0,0,则分别计算出平均数及方差即可 解答解:由图象可看出A 组的数据为:3,3,3,3,3,2,2,2,2,B 组的数据为:2,2,2,2,3,0,0,0,0则A 组的平均数为111(333332222)99A x =⨯++++++++=B 组的平均数为111(222230000)99B x =⨯++++++++=∴A B x x =A 组的方差:22222222221111111111111111111320[(3)(3)(3)(3)(3)(1)(1)(1)(1)]999999999981A S =⨯-+-+-+-+-+--+--+--+--=B 组的方差:22222222221111111111111111111104[(2)(2)(2)(2)(3)(0)(0)(0)(0)]999999999981B S =⨯-+-+-+-+-+-+-+-+-=22A B S S ∴>综上,A 组、B 组的平均数相等,A 组的方差大于B 组的方差 故选:D .点评本题考查了平均数,方差的意义.平均数平均数表示一组数据的平均程度;方差是用来衡量一组数据波动大小的量.二、填空题18. 分析: 根据气温统计图可知:贵阳的平均气温比较稳定,波动小,由方差的意义知,波动小者方差小.解答: 解:观察平均气温统计图可知:乙地的平均气温比较稳定,波动小; 则乙地的日平均气温的方差小, 故S 2甲>S 2乙. 故答案为:>.点评: 本题考查方差的意义:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.19.分析如果一组数据x1、x2、…、x n的方差是s2,那么数据kx1、kx2、…、kx n 的方差是k2s2(k≠0),依此规律即可得出答案.解答解:∵一组数据x1,x2,x3…,x n的方差为2,∴另一组数据3x1,3x2,3x3…,3x n的方差为32×2=18.故答案为18.点评本题考查了方差的定义.当数据都加上一个数时,平均数也加上这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数时,平均数也乘以这个数(不为0),方差变为这个数的平方倍.20.分析根据数据偏离平均数越大,即波动越大,数据越不稳定,方差越大;数据偏离平均数越小,即波动越小,数据越稳定,方差越小进行判断.解答解:由图象可知:乙偏离平均数大,甲偏离平均数小,所以乙波动大,不稳定,方差大,即S甲2<S乙2.故答案为:<.点评本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.21.分析求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.解答解:Q 出现次品数量的唯一众数为1,1a ∴=,∴102114x +++==, 22222(11)(01)(21)(11)142S -+-+-+-∴==,故答案为12.点评本题考查了方差,熟练运用方差公式是解题的关键.22. 分析分别假设众数为4,5,6,分类讨论,找到符合题意的x 的值,再根据方差的定义求解可得.解答解:若众数为4,则数据为4,4,5,6,此时中位数为4.5,不符合题意; 若众数为5,则数据为4,5,5,6,中位数为5,符合题意, 此时平均数为=5,方差为[(4﹣5)2+(5﹣5)2+(5﹣5)2+(6﹣5)2]=;若众数为6,则数据为4,5,6,6,中位数为5.5,不符合题意; 故答案为.点评本题主要考查众数、中位数及方差,根据众数的可能情况分类讨论求解是解题的关键.23. 分析根据题意和统计图中的数据可以解答本题. 解答解:由统计表可知,甲和乙的平均数、中位数和众数都相等, 由折线统计图可知,乙的波动小,成绩比较稳定, 故答案为:乙.点评本题考查折线统计图、平均数、中位数、众数,解答本题的关键是明确波动越小,成绩越稳定. 三、应用题 24. 本题满分7分)(1)解:A 组数据的平均数是0+1-2-1+0-1+371分 =0.3分 (2)解1:选取的B 组数据:0,-2,0,-1,3. 4分 ∵ B 组数据的平均数是0.5分∴ B 组数据的平均数与A 组数据的平均数相同. ∴ S B 2=145 ,S A 2=167 .6分 ∴ 145 >167.7分∴ B 组数据:0,-2,0,-1,3.解2:B 组数据:1,-2,-1,-1,3. 4分 ∵ B 组数据的平均数是0.5分∴ B 组数据的平均数与A 组数据的平均数相同. ∵S A 2=167, S B 2=165 .6分 ∴165>1677分∴ B 组数据:1,-2,-1,-1,3.25.解:(1)如右图(2)甲胜出。