陶瓷烧结
陶瓷烧结PPT课件
未来研究方向与展望
新材料与新工艺的开发
跨学科合作与技术融合
智能化与数字化技术的 应用
未来,研究者们将继续探索新型陶瓷 材料,研究新的烧结工艺和技术,以 满足各种应用需求。同时,如何实现 陶瓷材料的绿色生产和降低成本也是 未来的重要研究方向。
陶瓷烧结技术涉及到材料科学、物理 学、化学等多个学科领域,未来的研 究将更加注重跨学科的合作和技术融 合,以推动陶瓷材料的发展和应用。
还原气氛
可以还原杂质,提高陶瓷的纯度。
压力的影响
常压烧结
是最常见的烧结方式,适用于大多数 陶瓷材料。
加压烧结
在加压条件下,可以促进陶瓷的致密 化,提高其性能。
05
陶瓷烧结的质量控制与检测
质量控制方法
原料质量控制
对原料的化学成分、粒度、含水 率等指标进行严格检测和控制,
确保原料质量稳定。
工艺参数控制
在烧结过程中,对温度、压力、气 氛等工艺参数进行精确控制,以获 得最佳的烧结效果。
设备维护与校准
定期对烧结设备进行维护和校准, 确保设备运行稳定,提高产品的重 复性和可靠性。
性能检测与评价
物理性能检测
检测产品的密度、气孔率、热膨 胀系数等物理性能指标,确保产
品性能符合要求。
力学性能检测
通过抗弯强度、抗压强度等力学 性能试验,评估产品的机械性能
和可靠性。
耐腐蚀性能检测
对产品的耐酸、耐碱、耐热等性 能进行检测,以适应不同环境下
的使用要求。
缺陷分析与改进
缺陷识别
通过外观检查、无损检测等方法,识别产品中的 缺陷和问题。
原因分析
对缺陷产生的原因进行深入分析,找出根本原因 并制定相应的改进措施。
陶瓷烧结方法
马弗炉是一种传统的陶瓷烧成设备,具有结构简单、操作方便、加 热速度快等优点。
应用范围
适用于各种陶瓷材料的烧成、烧结和熔融等工艺过程,特别适合于 大规模生产。
使用注意事项
使用马弗炉时应注意安全,避免烫伤和火灾事故;同时应注意炉温的 控制和炉内气氛的调节,以保证烧成效果。
真空炉
特点
真空炉是在真空环境下进行加热的设备,具有高温、高真 空的特点,可以有效地去除材料中的气体和杂质,提高产 品的纯度和性能。
02
烧结方法的分类
固相烧结
01
02
03
定义
固相烧结是陶瓷材料在完 全或部分熔融状态下获得 致密化的过程。
特点
固相烧结过程中不出现液 相,致密化主要依靠颗粒 重排、扩散传质和颗粒表 面能的驱动。
应用
适用于制备高熔点、低导 热系数、低塑性的陶瓷材 料,如氧化铝、氮化硅等。
液相烧结
定义
01
液相烧结是通过添加可熔性组分(如金属、玻璃或其它陶瓷材
在复合材料中的应用
树脂基复合材料
通过烧结方法制备树脂基复合材料,提高材料的强度、刚度和耐 腐蚀性。
碳纤维复合材料
通过烧结方法制备碳纤维复合材料,实现材料的轻量化和高性能 化。
玻璃纤维复合材料
通过烧结方法制备玻璃纤维复合材料,提高材料的强度和耐热性。
感谢您的观看
THANKS
瓷材料的致密度和力学性能。
应用
适用于制备形状复杂、细孔结构的陶 瓷制品,如蜂窝陶瓷、多层陶瓷电容
器等。
03
烧结工艺参数
温度
低温烧结
低温烧结通常在1000℃以下进行,适用于对热敏感的材料,如某些玻璃或陶瓷。低温烧结可以减少材料内部的热应力, 降低烧结温度对材料性能的影响。
7-陶瓷烧结-2
12
第12页,共95页。
新型烧结方法
微波烧结 放电等离子烧结(Spark Plasma Sintering) 自蔓延高温合成
13 第13页,共95页。
1.3 烧结与固相反应的区别
晶界能取代了表面能,这是烧结后多晶材料稳定存在的原因。
粉体颗粒尺寸很小--比表面积大--表面能高 烧结是一个自发的不可逆过程,系统表面能降低是
推动烧结进行的基本动力。
23 第23页,共95页。
对于N个半径为a的球形颗粒的lmol粉体,
式中:M为分子重量,ρ为颗粒比重,Vm是摩尔体积。而颗粒系 统的总表面积SA为
能。 v烧结的应用领域:
陶瓷、耐火材料、粉末冶金、超高温材料等
烧结体特征: 烧结体一种多晶材料,其显微结构由晶体、玻璃体和气孔组成。
烧结直接影响显微结构中晶粒尺寸和分布、气孔大小形状和分布及 晶界的体积分数等。 v烧结依赖因素:
扩散、相变、固相反应等
4
第4页,共95页。
1 烧结概述
1.1 烧结理论研究的历史 烧结理论研究的过去、现在和未来。
16
第16页,共95页。
2.1.2 烧结过程的模型示意
¨ 一般烧结过程,总伴随有气孔率降低,颗粒总表 面积减少,表面自由能减少及与其相联系的晶粒 长大等变化,可根据其变化特点来划分烧结阶段, 包括初期阶段、烧结中期、烧结后期。
图3-4 粉状成型体的烧结过程示意
17
第17页,共95页。
(1)初期阶段(a~b)
2.2 烧结推动力
烧结过程伴随着体系自由能的降低。促使自 由能降低的驱动力具体可分为下述三类: 1 烧结颗粒表面能提供的驱动力 2外加压力(如热压烧结时)所作的功 3 烧结中化学反应提供的驱动力
陶瓷材料的烧结与晶粒生长
陶瓷材料的烧结与晶粒生长烧结和晶粒生长是陶瓷材料制备过程中非常重要的步骤。
通过烧结和晶粒生长的控制,可以改善材料的性能、提高其致密性和强度。
本文将就陶瓷材料的烧结和晶粒生长进行探讨,并介绍一些常见的烧结方法和晶粒生长机制。
1. 烧结方法烧结是指将陶瓷粉末在一定的温度和压力下进行加热处理,使粒子间发生相互结合和扩散,形成致密的块体材料。
常见的烧结方法有以下几种:(1)热压烧结:将陶瓷粉末放入模具中,在高温和高压的条件下进行烧结。
热压烧结可以获得致密的陶瓷材料,具有较高的强度和硬度。
(2)微波烧结:通过微波加热的方式进行烧结。
微波烧结的优点是加热速度快,能够在较短的时间内完成烧结过程,适用于一些高温敏感的材料。
(3)等离子体烧结:通过等离子体的作用,加快粒子之间的扩散和结合,从而实现快速烧结。
等离子体烧结可以得到致密度较高的陶瓷材料,并能够控制晶粒尺寸和分布。
2. 晶粒生长机制晶粒生长是指陶瓷材料在烧结过程中晶粒尺寸的增大。
晶粒尺寸的大小和分布对陶瓷材料的性能有着重要的影响。
常见的晶粒生长机制包括以下几种:(1)一维生长:晶粒沿着某个方向生长,呈现出棒状或柱状的形态。
一维生长机制适用于一些具有纤维状结构的陶瓷材料。
(2)表面扩散:晶粒表面发生扩散,并与周围的颗粒结合。
表面扩散是晶粒生长的主要机制之一,通过控制晶粒表面的扩散速率,可以调控晶粒尺寸和形态。
(3)体内扩散:晶粒内部的原子通过扩散运动,使晶粒尺寸增大。
体内扩散主要取决于材料的化学成分和温度条件。
3. 影响烧结和晶粒生长的因素烧结和晶粒生长受到多种因素的影响,下面介绍其中几个重要的因素:(1)温度:温度是烧结和晶粒生长的关键因素之一。
适当的温度可以促进晶粒的结合和生长,但过高的温度可能引起过烧,导致晶粒长大过快。
(2)压力:压力可以提高粒子的结合程度和致密性,对烧结效果有重要影响。
不同材料和形状的陶瓷,适宜的压力范围也有所不同。
(3)时间:烧结时间影响烧结程度和晶粒生长的速率。
陶瓷烧结技术
陶瓷烧结技术
陶瓷烧结技术是一种制备高性能陶瓷的重要方法,其通过将粉末烧结成坚硬、致密、尺寸稳定的成品,大大提高了陶瓷的力学性能、化学稳定性和热稳定性。
陶瓷烧结技术的应用范围非常广泛,包括高温陶瓷、结构陶瓷、生物陶瓷、电子陶瓷等多个领域。
陶瓷烧结技术的基本原理是,将陶瓷粉末在高温下烧结成坚硬、致密的材料。
在烧结过程中,陶瓷粉末会逐渐熔化形成一种液相,该液相可以在陶瓷颗粒表面扩散并形成化学键和晶界,从而提高陶瓷的致密性和强度。
不同的陶瓷材料需要不同的烧结条件,如温度、压力、时间等。
陶瓷烧结技术的方法包括热压烧结、微波烧结、闪光烧结、等离子体烧结等多种方式。
其中热压烧结是一种最为常用的方法,其将陶瓷粉末置于高温高压下,通过热流和压力的作用使颗粒结合。
微波烧结则是利用微波辐射使陶瓷材料加热和烧结。
而闪光烧结和等离子体烧结则是利用高能电子或离子束直接作用于陶瓷粉末,实现快速有效的烧结。
陶瓷烧结技术的优点在于其能够制备出非常高性能的陶瓷材料。
其中包括高硬度、高强度、高耐磨、高温稳定性以及化学稳定性等。
这些
性能使得陶瓷材料在航空航天、化工、医疗、电子等领域具有广泛的应用前景。
总之,陶瓷烧结技术是一种非常重要的材料制备方法,其制备出来的陶瓷材料在各种领域都有着广泛的应用前景。
随着科技的不断发展和研究的深入,陶瓷烧结技术也将不断更新和改进,向更高性能、更节能、更环保的方向发展。
陶瓷的特种烧结方法
陶瓷的特种烧结方法陶瓷烧结是将陶瓷粉末转变为坚硬、致密和均质的陶瓷体的过程。
在传统烧结方法上,高温烧结严重影响了陶瓷晶体的生长和致密化程度,同时易出现微裂纹及材料不均匀等问题。
为了解决这些问题,并提高陶瓷材料的性能及成纤网络形态,一些特种烧结方法被发展出来。
1. 微波烧结法微波烧结利用微波辐射,刺激陶瓷颗粒内部产生电磁波吸收现象,从而使物料内部产生局部加热,加速物料烧结过程,达到陶瓷晶体快速成长和致密化的效果。
同时,微波烧结可以实现快速均一化和高效化,提高了材料的成型和烧结速度,避免了材料的因温度差异引起的变形和启口。
2. 等离子烧结法等离子烧结是在真空或气氛中,通过引入高压等离子体激发陶瓷粉体表面覆盖的气体分子形成碘原子或硝基自由基等等离子体与材料反应,进而形成坚硬、致密和均质的陶瓷体。
这种方法可以避免烧结过程中存在的微孔和烧结反应不充分情况,具有优异的形成特性和微观结构调控能力。
3. 热等静压法热等静压法是将原始陶瓷粉末制成绿坯,用模具加压热压成形,然后加热进一步烧结而成的一种方法。
绿坯制备通过脱模后即可以直接进行热加压,克服了冷压而在烧结阶段固体化程度较低的缺点,可提高陶瓷材料的致密度和性能,同时可以实现复杂形状烧结。
快速烧结法在短时间内,快速加热陶瓷样品到一定温度,并控制在一定时间后,快速冷却而达到致密化和晶体生长的效果。
这种方法可以提高烧结的速度,降低了烧结过程中的氧化作用和烧结后的裂纹等问题,可以克服传统烧结方法中的很多缺陷,同时可以实现高温烧结。
总之,特种烧结方法的发展极大地提高了陶瓷材料的性能和应用,创新技术不断涌现,如等离子烧结、微波烧结、热等静压法和快速烧结法等,在实际应用中具有广泛的前景和市场需求。
先进陶瓷的6种新型快速烧结技术
一、激光烧结技术激光烧结技术是一种利用激光能量对陶瓷颗粒进行瞬间加热的新型烧结技术。
通过激光束在陶瓷颗粒表面瞬间产生高温,使颗粒迅速烧结成型,并且能够精确控制烧结过程中的温度和时间,实现快速高效的烧结。
二、微波烧结技术微波烧结技术利用微波照射对陶瓷粉体进行加热,通过高频电磁波与材料分子之间的相互作用,使陶瓷颗粒迅速升温并烧结成型。
微波烧结技术具有加热均匀、能耗低、速度快等优点,尤其适用于复杂形状、精密结构的陶瓷制品制备。
三、等离子烧结技术等离子烧结技术是利用等离子体对陶瓷颗粒进行高速撞击和加热的技术。
通过在陶瓷粉末表面产生等离子体,并将其能量传递给陶瓷颗粒,从而使颗粒快速烧结成型。
等离子烧结技术具有烧结速度快、能耗低、可以烧结高温陶瓷材料等优点。
四、压电陶瓷快速烧结技术压电陶瓷快速烧结技术是一种利用压电作用对陶瓷颗粒进行紧致烧结的技术。
通过施加外加电场,使陶瓷颗粒表面发生压电效应,从而实现颗粒的紧致烧结,烧结速度大大提高,同时制备出的陶瓷制品密度高、性能卓越。
五、等离子喷涂技术等离子喷涂技术是一种利用等离子体对陶瓷粉末进行快速烧结成型的技术。
通过等离子喷涂装置将陶瓷粉末与等离子体混合后,在高温高速气流的作用下迅速烧结成型。
等离子喷涂技术不仅可以实现陶瓷材料的快速烧结,还能够制备出具有优异性能的陶瓷涂层。
六、电磁场烧结技术电磁场烧结技术是一种利用电磁场对陶瓷颗粒进行加热和烧结的技术。
通过在陶瓷颗粒周围建立强磁场或者强电场,使颗粒表面迅速加热并烧结成型。
电磁场烧结技术具有能耗低、烧结速度快、制品性能优异等特点,尤其适用于纳米陶瓷材料的制备。
先进陶瓷的快速烧结技术主要包括激光烧结、微波烧结、等离子烧结、压电陶瓷快速烧结、等离子喷涂和电磁场烧结等多种技术。
这些新型烧结技术都具有烧结速度快、能耗低、制品性能优异等特点,对于提高陶瓷制品的生产效率、降低生产成本、改善产品性能具有重要意义。
随着科技的不断发展和进步,相信这些先进陶瓷的新型快速烧结技术在未来会得到更广泛的应用,为陶瓷制造业带来新的发展机遇。
北航材工 第九章 陶瓷的烧结原理与工艺
6.其它的烧结方法: · 烧结原理 · 影响因素 · 烧结方法
普通烧结 热压烧结 气氛烧结 反应烧结 液相烧结 其它方法
微波烧结法 电弧等离子烧结法 自蔓延烧结法 气相沉积法
· 烧结原理 · 影响因素 · 烧结方法
普通烧结 热压烧结 气氛烧结 反应烧结 液相烧结 其它方法
气氛压力烧结炉是德国KCE公司制造的 设备,采用计算机控制控制温度、气体压 力,最高使用温度为2200,最高使用气体 压力为100atm,广泛用于陶瓷及粉末冶金 制品的烧结,尤其是复杂形状的制品。材 料烧结后的相对密度可达99%以上。
5.液相烧结: · 烧结原理 · 影响因素 · 烧结方法
普通烧结 热压烧结 气氛烧结 反应烧结 液相烧结 其它方法
许多氧化物陶瓷采用低熔点助剂促进材料烧 结。助剂的加入一般不会影响材料的性能或反而为 某种功能产生良好影响。作为高温结构使用的添加 剂,要注意到晶界玻璃是造成高温力学性能下降的 主要因素。如果通过选择使液相有很高的熔点或高 粘度,或者选择合适的液相组成,然后作高温热处 理,使某些晶相在晶界上析出,以提高材料的抗蠕 变能力。
普通烧结 热压烧结 气氛烧结 反应烧结 液相烧结 其它方法
3.烧结过程中的物质传递: ① 蒸发与凝聚(气相烧结)画图表示
2 M 1 g ) P=Poexp( RT r
当为凸面时,r为正,P>Po,蒸气压高,蒸发; 为凹面时,r为负,P<Po,蒸气压低,沉淀。 ② 扩散、流动 (固相烧结) 除气相扩散外,还包括表面扩散、晶格扩 散和晶界扩散。
主要技术参数:
· 烧结原理 · 影响因素 · 烧结方法
普通烧结 热压烧结 气氛烧结 反应烧结 液相烧结 其它方法
1.最高温度:2000℃(也可做2300℃) 2.工作区尺寸:Ф160χ160mm 3.额定功率:40KW
5-4_陶瓷材料的烧结
可广泛用于磁性材料、梯度功能材料、纳米陶瓷、纤维增强陶瓷和金 属间化合物等系列新型材料的烧结。
一、放电等离子体烧结的优点 ①烧结温度低(比HP和HIP低200-300℃)、烧结时间短(只需3-10min, 而HP和HIP需要120-300min)、单件能耗低; ②烧结机理特殊,赋予材料新的结构与性能;
2.2 烧结驱动力
烧结的驱动力就是总界面能的减少。粉末坯体的总界面能表示为 γA, 其中γ为界面能;A为总的比表面积。那么总界面能的减少为:
A A A
其中,界面能的变化(Δγ)是因为样品的致密化,比表面积的变化 是由于晶粒的长大。对于固相烧结,Δγ主要是固/固界面取代固/气界面。
(2)保温时间对产品性能的影响 在烧成的最高温度保持一定的时间,一方面使物理化学变化更趋完全,使 坯体具有足够液相量和适当的晶粒尺寸,另一方面组织结构亦趋均一。但保温 时间过长,则晶粒溶解,不利于在坯中形成坚强骨架,而降低机械性能。 (3)烧成气氛对产品性能的影响 ① 气氛对陶瓷坯体过烧膨胀的影响 ② 气氛对坯体的收缩和烧结的影响 ③ 气氛对坯的颜色和透光度以及釉层质量的影响 (4)升温与降温速度对产品性能的影响
(pore drag)和晶粒生长驱动力之间力的平衡作用。
研究表明,较小的颗粒尺寸分布范围是获取高烧结密度的必要条件。
二、影响陶瓷材料烧结的工艺参数 (1)烧成温度对产品性能的影响 烧成温度是指陶瓷坯体烧成时获得最优性质时的相应温度,即操作时的 止火温度。 烧成温度的高低直接影响晶粒尺寸和数量。对固相扩散或液相重结晶来 说,提高烧成温度是有益的。然而过高的烧成温度对特瓷来说,会因总体晶 粒过大或少数晶粒猛增,破坏组织结构的均匀性,因而产品的机电性能变差。
4.3 晶粒生长和粗化
陶瓷烧结原理
陶瓷烧结原理陶瓷烧结是指将陶瓷粉末在一定的温度下进行烧结,使其颗粒之间发生结合,形成致密的块状材料的过程。
烧结是陶瓷工艺中的重要环节,其原理和过程对最终产品的性能和质量具有重要影响。
下面将从烧结原理、影响因素和应用范围等方面进行详细介绍。
一、烧结原理。
陶瓷烧结的原理是在一定温度下,陶瓷粉末颗粒之间发生表面扩散和颗粒间扩散,使颗粒之间结合成块状材料。
在烧结过程中,首先是颗粒间扩散,即颗粒表面的原子或分子向颗粒内部扩散,使颗粒之间产生结合力。
随着温度的升高,颗粒表面扩散加剧,颗粒间的结合力增强,最终形成致密的块状材料。
二、影响因素。
1. 温度,烧结温度是影响烧结效果的关键因素,过低的温度会导致颗粒间扩散不足,无法形成致密材料;过高的温度则可能导致材料烧结过度,出现变形或开裂的情况。
2. 时间,烧结时间也是影响烧结效果的重要因素,过短的时间会导致烧结不完全,材料性能不达标;过长的时间则可能造成能耗浪费和生产效率低下。
3. 压力,在烧结过程中施加一定的压力可以促进颗粒间的结合,提高烧结效率和材料密度。
4. 添加剂,适量的添加剂可以改善陶瓷粉末的流动性和烧结性能,提高最终产品的质量。
三、应用范围。
陶瓷烧结广泛应用于陶瓷制品的生产过程中,如陶瓷砖、陶瓷器皿、陶瓷瓷砖等。
通过烧结工艺,可以使陶瓷制品具有较高的强度、硬度和耐磨性,满足不同领域的需求。
总结,陶瓷烧结是一项重要的陶瓷加工工艺,其原理是在一定温度下实现颗粒间的结合,影响因素包括温度、时间、压力和添加剂等,应用范围广泛,可用于生产各种陶瓷制品。
掌握烧结原理和技术,对于提高陶瓷制品的质量和性能具有重要意义。
陶瓷烧结过程【共23张PPT】
– 钟罩窑、梭式窑 室温就高吸收:CaCO3、Fe2O3、Cr2O3、SiC等
以高压气体作为压力介质作用于陶瓷材料(包封的粉体和素坯,或烧结体),使其在高温环境下受到等静压而达到高致密化 氧化锆,(<2000C)
• 连续式: 氮化硅无熔点、高温分解(1900C)
硅钼棒,MoSi2(<1700C)
• 整体均匀加热 低温吸收小,高于某温度急剧增加:Al2O3、MgO、ZrO2、Si3N4等
利用微波与材料的相互作用,其介电损耗导致陶瓷坯体自身发热而烧结
• 无热惯性,烧成周期短 埋粉(Si3N4:BN:MgO=5:4:1)抑制氮化硅分解
管式气氛炉:电热丝、硅碳、硅钼 为了抑制氮化物分解,在N2气压力1-10MPa高压下烧成。
Al2O3-SiO2)
• 采用α氮化硅为原料,1420C相变为β相,有利烧结, 且该β相为柱状晶,力学性能好。
• 埋粉(Si3N4:BN:MgO=5:4:1)抑制氮化硅分解
氮化硅的气压烧结 (Gas Pressure Sintering GPS)
• 为了抑制氮化物分解,在N2气压力110MPa高压下烧成。
• 对于氮化硅常压烧成温度要低于1800C, 而气压烧结温度可提高到2100-2390C。
热压烧结(Hot Pressing, HP)
• 加热的同时施加机械压力 ,增加烧结驱动力,促进 烧结
– 粘性流动 – 塑性变形 – 晶界滑移 – 颗粒重排
• 一般采用石墨模具,表面 涂覆氮化硼,防止反应
热等静压 (Hot Isostatic Pressing, HIP)
陶瓷烧结过程
烧结的驱动力
• 粉体表面能与界面能的差 • 传质过程
第九章陶瓷的烧结原理与工艺
第九章陶瓷的烧结原理与工艺陶瓷的烧结是指在高温条件下,原始的陶瓷颗粒通过相互之间的结合形成坚固的陶瓷坯体的过程。
烧结是陶瓷工艺中的重要步骤,它不仅可以提高陶瓷的物理和化学性能,还可以改善陶瓷的外观和装饰效果。
陶瓷的烧结原理主要包括两个方面:烧结颗粒之间的形成和烧结颗粒内部的结构变化。
首先,烧结颗粒之间的形成是通过烧结助剂的作用实现的。
烧结助剂是一种能够在高温下产生液相的物质,它可以填充在陶瓷颗粒之间的空隙中,并在高温下熔化形成液相。
液相的形成可以提高陶瓷颗粒之间的接触面积,促进颗粒之间的结合。
其次,烧结颗粒内部的结构变化是通过扩散和重排实现的。
在陶瓷的烧结过程中,烧结助剂的熔化会使陶瓷颗粒之间的空隙变得更加有序和稠密,从而使颗粒之间的扩散更加顺利。
同时,陶瓷颗粒在高温下会发生结构的重排,形成致密的结晶相。
这种结构的变化不仅可以提高陶瓷的强度和硬度,还可以改善陶瓷的气密性和耐磨性等性能。
陶瓷的烧结工艺主要包括两个步骤:预烧和烧结。
预烧是指在低温下对未烧结的陶瓷坯体进行加热处理。
在预烧过程中,陶瓷坯体会经历物理和化学性质的变化,这些变化可以为后续的烧结过程提供条件。
预烧的温度一般控制在700-900°C之间。
烧结是指将预烧后的陶瓷坯体加热至更高的温度,使其发生结构的变化和颗粒之间的结合。
烧结的温度和时间会根据陶瓷材料的种类和要求来确定。
在烧结过程中,要注意控制烧结助剂的熔化温度和流动性,以避免产生不均匀的结合和表面缺陷。
除了烧结助剂之外,其他因素也会对陶瓷的烧结效果产生影响。
比如陶瓷颗粒的尺寸和形状、烧结温度和冷却速率等。
此外,还可以通过控制烧结的气氛和压力等条件来优化陶瓷的烧结工艺,以提高陶瓷的性能和品质。
综上所述,陶瓷的烧结原理和工艺是通过烧结助剂的作用和颗粒内部结构的变化来实现颗粒之间的结合。
烧结工艺主要包括预烧和烧结两个步骤,通过控制温度、时间和其他工艺参数来实现烧结过程的优化。
通过烧结,陶瓷的物理和化学性能可以得到改善,从而提高陶瓷的品质和使用价值。
第三章 陶瓷材料的烧结
d
dt
3 2r
1 1
fr
2
ln
1
1
d
其中:η是作用力超过屈服值f时液体的粘度,r为原始颗粒半径,γ液-气表 面张力。f值愈大,烧结速率愈低。当屈服值f=0时,(d)式即变为(c)式,此 时为粘性流动。r↓、η↓、γ↑→有利于烧结,t↑→易于烧结。
烧成的含义包括的范围广,一般发生在多相系统中,而烧结只是
烧成过程中的一个重要部分。
2、烧结和熔融
烧结是在远低于固态物质的熔融温度下进行的,泰曼烧结温度(TS) 和熔融温度(TM)的关系规律: ✓ 金属粉末:TS =(0.3~0.4)TM ✓ 盐类: TS =0.5TM ✓ 硅酸盐: TS =(0.8~0.9)TM 熔融时全部组元都转变为液相,而烧结时至少有一组元处于固相。
液相烧结:烧结过程中出现液相。
Illustration of various types of sintering
§ 3.2 特种陶瓷烧结概论
一、特种陶瓷烧结原理
1、烧结过程和现象 烧结过程中,主要发生晶粒和气孔尺寸及其形状变化:
烧结过程大致分为烧结前期、烧结中期和烧结后期三个阶段:
点接触
烧结前期 烧结中期
3、烧结和固相反应
•相同之处:两个过程在低于材料熔点或熔融温度之下进行的,并 且在过程中自始自终都至少有一相是固态。 •不同之处:固相反应必须至少有两组元参加,如A和B,发生化学 反应,最后生成化合物C。而烧结可以只有单组元,或者两组元参 加,且两组元并不一定发生化学反应。
4、固相烧结和液相烧结
固相烧结:整体上在固相情况 下发生的致密化;
➢ 塑性流动
在高温下坯体中液相含量降低,而固相含量增加,这是烧结传质 不能看成是牛顿型流体,而是属于塑性流动的流体,过程的推动 力仍然是表面能。为了尽可能达到致密烧结,应选择尽可能小的 颗粒、粘度和较大的表面能。
陶瓷烧结工艺
陶瓷烧结工艺
陶瓷烧结是一种将陶瓷粉末通过高温加热,使其颗粒之间发生结合并形成固体陶瓷体的工艺。
烧结的目的是消除粉末之间的孔隙,提高陶瓷的密实度、硬度、强度和耐磨性。
陶瓷烧结工艺主要包括以下几个步骤:
1. 制备陶瓷粉末:选择合适的原料,经过研磨、筛分等处理,将原料粉末制备成所需的颗粒大小和形状。
2. 造型成型:将陶瓷粉末与所需的添加剂混合均匀,然后使用成型方法将混合物制备成所需形状的陶瓷坯体。
常用的成型方法包括注塑成型、压制成型、挤出成型等。
3. 烧结过程:将陶瓷坯体放入烧结炉中,通过高温加热使其逐渐烧结成固体陶瓷。
烧结温度和时间根据陶瓷材料的性质和要求进行调控。
在烧结过程中,陶瓷粉末颗粒之间发生结合,形成致密的陶瓷体,同时消除孔隙。
4. 冷却处理:烧结完成后,将烧结好的陶瓷体从炉中取出,并进行冷却处理。
冷却过程需要慢慢降温,以免陶瓷材料因快速冷却引起应力过大而破裂。
5. 后续处理:根据需要,可以对已烧结的陶瓷体进行后续处理,如磨削、抛光、涂层等,以改善陶瓷产品的表面光洁度、功能特性等。
陶瓷烧结工艺的选择和优化对于陶瓷制品的品质和性能至关重要。
通过合理的烧结工艺,可以获得具有优异力学性能、耐热性、耐腐蚀性和电性能等特点的陶瓷制品。
陶瓷材料的烧结与原理
陶瓷材料的烧结与原理烧结是陶瓷材料加工的重要工艺之一,通过烧结可以使陶瓷材料的颗粒结合成坚实的整体,提高其物理和化学性能。
烧结的原理主要包括粒间结合、扩散和晶粒长大三个方面。
首先是粒间结合。
烧结陶瓷材料的第一步是颗粒的接触,在高温下颗粒接触面出现局部融化,形成粒间结合区。
当局部融化发生时,一些颗粒间的空隙被完全填满,使得颗粒间距变小。
局部熔融的液相材料充当粘结剂,促使颗粒互相结合,形成更加坚固的结构。
其次是扩散。
在烧结过程中,颗粒间的物质会发生扩散,使得局部结合区域的颗粒之间更加牢固地结合。
扩散过程受温度、时间和颗粒之间的距离等因素的影响。
一般来说,扩散速率随着温度的上升而增加,扩散距离也会增加,从而促进了材料的结合。
最后是晶粒长大。
在烧结过程中,由于颗粒间的扩散,晶粒之间的材料也发生了重排和扩散。
在高温下,晶粒会长大,晶界会消失或减少,从而提高陶瓷材料的致密性和力学性能。
晶粒长大的速率受到烧结温度、时间和材料颗粒的尺寸等因素的影响。
除了上述原理外,烧结还受到其他因素的影响,例如:1.烧结温度:烧结温度决定了材料的烧结速率和晶粒长大速率。
温度过高可能导致结构破坏或晶粒过大,温度过低则会导致烧结不完全。
2.烧结时间:烧结时间决定了物质的扩散程度和晶粒的长大程度。
时间过短会导致烧结不完全,时间过长则会导致结构破坏。
3.烧结气氛:烧结过程中的气氛对于陶瓷材料的烧结也有一定影响,不同的气氛可以影响材料的结构和性能。
4.材料的物理和化学性质:材料的物理和化学性质直接影响烧结的过程和结果。
例如,不同成分的材料具有不同的烧结性质。
总之,烧结是陶瓷材料加工过程中不可或缺的一环,通过粒间结合、扩散和晶粒长大等原理,可以实现颗粒间的结合,提高陶瓷材料的致密性和力学性能。
同时,烧结过程中的温度、时间、气氛等因素,以及材料的物理和化学性质,也对烧结的效果产生一定的影响。
以上就是关于陶瓷材料烧结与原理的简要介绍。
陶瓷的特种烧结方法
陶瓷的特种烧结方法
烧结是陶瓷制品生产过程中非常重要的一个环节,直接影响到产品的质量和性能。
为了满足不同行业的需求,人们研发出了多种特种烧结方法,下面介绍几种常用的方法。
1. 高温烧结法
高温烧结法是指将陶瓷制品置于高温下进行烧结,一般温度在1200℃以上。
这种方法可以加快烧结速度,提高产品的硬度和密度,适用于制作高强度、高硬度的陶瓷制品,如切削工具、轴承等。
2. 低温烧结法
低温烧结法是指将陶瓷制品置于较低温度下进行烧结,一般在1100℃以下。
这种方法可以减少能耗,降低成本,适用于制作一些需求较低强度和硬度的陶瓷制品,如餐具、瓷砖等。
3. 微波烧结法
微波烧结法是指将陶瓷制品置于微波辐射下进行烧结。
这种方法可以缩短烧结时间,提高产品的均匀性和致密性,适用于制作高精度的陶瓷制品,如电子器件、光学器件等。
4. 热等静压烧结法
热等静压烧结法是指将陶瓷粉末在高温下进行压缩,再进行烧结。
这种方法可以提高产品的致密性和强度,适用于制作高要求的陶瓷制品,如氧化铝陶瓷刀片、高温炉具等。
总之,不同的烧结方法适用于不同的陶瓷制品,生产者可以根据产品的要求选择合适的烧结方法,以达到最佳的生产效果。
陶瓷烧制中常见烧结问题及解决方法
陶瓷烧制中常见烧结问题及解决方法陶瓷烧制是一门古老而精湛的工艺,它将陶土经过一系列的加工和烧制过程,最终形成美丽而实用的陶瓷制品。
然而,在这个过程中,常常会遇到一些烧结问题,影响到陶瓷制品的质量和成品率。
本文将讨论一些常见的烧结问题,并提供相应的解决方法。
首先,我们来讨论陶瓷烧制过程中常见的烧结问题之一:烧结不均匀。
这种情况下,陶瓷制品的一部分可能会烧结得过于致密,而另一部分则烧结得不够坚固。
造成这种问题的原因可能是原料配比不当,或者烧制过程中温度和时间控制不准确。
解决这个问题的方法是,首先要仔细选择和配比原料,确保其成分均匀;其次,在烧制过程中要严格控制温度和时间,确保烧结的均匀性。
其次,我们来讨论另一个常见的烧结问题:烧结收缩。
在陶瓷烧制过程中,由于烧结过程中原料发生化学反应,陶瓷制品会发生收缩现象。
然而,如果收缩过大,就会导致陶瓷制品变形或者破裂。
造成这种问题的原因可能是原料配比不当,或者烧制温度过高。
解决这个问题的方法是,首先要仔细选择和配比原料,确保其烧结收缩性能适中;其次,在烧制过程中要严格控制温度,避免过高的温度造成过大的收缩。
此外,还有一个常见的烧结问题是结构烧结不良。
在陶瓷制品的烧制过程中,如果结构不够坚固,就会导致制品易碎或者容易破裂。
造成这种问题的原因可能是原料配比不当,或者烧制温度和时间控制不准确。
解决这个问题的方法是,首先要仔细选择和配比原料,确保其成分和结构的稳定性;其次,在烧制过程中要严格控制温度和时间,确保结构的牢固性。
最后,我们来讨论一个与烧结问题相关的解决方法:添加助烧剂。
助烧剂是一种能够改善陶瓷烧制过程的物质,它可以提高烧结温度和烧结速度,改善烧结均匀性和结构稳定性。
在陶瓷烧制过程中,添加适量的助烧剂可以有效解决一些烧结问题,提高陶瓷制品的质量和成品率。
综上所述,陶瓷烧制中常见的烧结问题包括烧结不均匀、烧结收缩和结构烧结不良。
这些问题的解决方法包括仔细选择和配比原料、严格控制烧制温度和时间,以及添加适量的助烧剂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目前,微波烧结技术已经被广泛用于多种陶瓷复合 材料的试验研究材料直接耦合导致整体加热。
(2)微波烧结升温速度快,烧结时间短。 (3)安全无污染。 (4)能实现空间选择性烧结。
材料与微波场的作用类型
材料与微波的作用方式示意图
微波烧结系统
5 )反应烧结
反应烧结(reaction-bonded sintering)是让原料混合 物发生固相反应或原料混合物与外加气(液)体发生 围—气(液)反应,以合成材料,或者对反应后的反应 体施加其它处理工艺以加工成所需材料的一种技术 。
是将粉末压坯或装入包套的粉料装入高压容器中,使粉 料经受高温和均衡压力的作用,被烧结成致密件。
其基本原理是:以气体作为压力介质,使材料(粉 料、坯体或烧结体)在加热过程中经受各向均衡的压力, 借助高温和高压的共同作用促进材料的致密化。 目前,热等静压技术的主要应用有:金属和陶瓷的 固结,金刚石刀具的烧结,铸件质量的修复和改善,高 性能磁性材料及靶材的致密化。
(2)具备快熔快冷性,有利于保持粉末的优异特性;
(3)可以使 Si3N4,SiC 等非热熔性陶瓷在无需添加
烧结助剂的情况下 发生烧结。
间接法爆炸烧结装置(a.单面飞片; b.单活塞;c.双活塞)
直接法爆炸烧结装置
谢谢大家!
1)热压烧结
热压烧结(hot pressing)是在烧结过程中同时对
坯料施加压力,加速了致密化的过程。所以热压 烧结的温度更低,烧结时间更短。
热压技术已有70年历史,最早用于碳化钨和钨粉致密件的 制备。现在已广泛应用于陶瓷、粉末冶金和复合材料的生 产。
热压烧结的优点
(1)所需的成型压力仅为冷压法的1/10
烧结装置
烧结系统大致由 四个部分组成:真空 烧结腔(图中6), 加压系统(图中3), 测温系统(图中7) 和控制反馈系统。图 中1示意石墨模具,2 代表用于电流传导的 石墨板,4是石墨模 具中的压头,5是烧 结样品。
4 )微波烧结
微波烧结(Microwave Sintering)是利用微波具有 的特殊波段与材料的基本细微结构耦合而产生热量,材 料在电磁场中的介质损耗使材料整体加热至烧结温度而 实现致密化的方法。
低。
陶瓷材料工艺学的主线
陶瓷原料 原料加工
坯体成型
配料计算
陶瓷烧结
陶瓷修饰
烧结的主要阶段
1)烧结前期阶段(坯体入炉——90%致密化) ① 粘结剂等的脱除:如石蜡在250~400℃全部汽化挥发。 ② 随着烧结温度升高,原子扩散加剧,孔隙缩小,颗粒间由点接触 转变为面接触,孔隙缩小,连通孔隙变得封闭,并孤立分布。 ③ 小颗粒间率先出现晶界,晶界移动,晶粒长大。 2)烧结后期阶段 ①孔隙的消除:晶界上的物质不断扩散到孔隙处,使孔隙逐渐消除 ②晶粒长大:晶界移动,晶粒长大。
热等静压装置
3 )放电等离子体烧结
放电等离子体烧结工艺(Spark Plasma Sintering,简 写为SPS)是近年来发展起来的一种新型材料制备工艺 方法。又被称为脉冲电流烧结。该技术的主要特点是利 用体加热和表面活化,实现材料的超快速致密化烧结。 可广泛用于磁性材料、梯度功能材料、纳米陶瓷、
陶瓷烧结
材料学 fairy
主要内容
陶瓷烧结的 定义
烧结的主要 阶段
烧结分类
特色烧结方 法
陶瓷材料的烧结
烧结(sintering)是一种利用热能使粉末坯体致 密化的技术。是指多孔状陶瓷坯体在高温条件下, 表面积减小、孔隙率降低、机械性能提高的致密 化过程。
烧结驱动力: 粉体的表面能降低和系统自由能降
热等静压的优点
(1)陶瓷材料的致密化可以在比无压烧结或热压烧结低 得多的温度下完成,可以有效地抑制材料在高温下发生很 多不利的发应或变化; (2)能够在减少甚至无烧结添加剂的条件下,制备出微 观结构均匀且几乎不含气孔的致密陶瓷烧结体; (3)可以减少乃至消除烧结体中的剩余气孔,愈合表面 裂纹,从而提高陶瓷材料的密度、强度; (4)能够精确控制产品的尺寸与形状,而不必使用费用 高的金刚石切割加工,理想条件下产品无形状改变。
反应烧结的优点:
(1)反应烧结时,质量增加
(2)烧结坯件不收缩,尺寸不变
6 )爆炸烧结
爆炸粉末烧结(explosion sintering)是利用炸药爆轰产生 的能量,以冲击波的形式作用于金属或非金属粉末,在瞬态、 高温、高压下发生烧结的一种材料加工或合成的新技术。
优点 : (1)具备高压性,可以烧结出近乎密实的材料;
(2)降低烧结温度和缩短烧结时间,抑制了晶粒 的长大。 (3)易得到具有良好机械性能、电学性能的产品。 (4)能生产形状较复杂、尺寸较精确的产品。
热压法的缺点是生产率低、成本高。
热压装置和模具
(a)电阻间热式;(b)感应间热式; (c)电阻直热式;(d)感应直热式
2)热等静压
热等静压工艺(Hot Isostatic Pressing,简写为HIP)
纤维增强陶瓷和金属间化合物等系列新型材料的烧结。
放电等离子体烧结的优点
①烧结温度低(比HP和HIP低200-300℃)、烧结时间 短(只需3-10min,而HP和HIP需要120-300min)、单 件能耗低; ②烧结机理特殊,赋予材料新的结构与性能; ③烧结体密度高,晶粒细小,是一种近净成形技术; ④操作简单,不像热等静压那样需要十分熟练的操作 人员和特别的模套技术。
烧结的分类:
固相烧结(只有固相传质) 烧 结
液相烧结(出现液相)
气相烧结(蒸汽压较高)
烧结过程中的物质传递 气相传质(蒸发与凝聚为主)
烧结过程 中的物质 传递
固相传质(扩散为主)
液相传质(溶解和沉淀为主)
特色烧结方法
1)热压烧结
2)热等静压
3)放电等离子体烧结
4)微波烧结
5)反应烧结
6)爆炸烧结