2017年新课标人教版八年级上册13.2画轴对称图形第1课时画轴对称图形精选练习(2)含答案解析

合集下载

人教版八年级数学上册13.2.1《画轴对称图形》教案

人教版八年级数学上册13.2.1《画轴对称图形》教案

人教版八年级数学上册13.2.1《画轴对称图形》教案一. 教材分析人教版八年级数学上册13.2.1《画轴对称图形》是学生在掌握了轴对称的概念和性质的基础上,进一步学习如何通过作图的方法来画出各种轴对称图形。

本节内容通过具体的实例,使学生进一步理解轴对称图形的特征,提高他们的观察能力和动手能力,培养他们的空间想象能力。

二. 学情分析学生在学习本节内容前,已经掌握了轴对称的基本概念和性质,能够识别和判断一个图形是否是轴对称图形。

但是,对于如何通过作图的方法来画出轴对称图形,部分学生可能还存在困难。

因此,在教学过程中,需要教师通过详细的讲解和示范,引导学生掌握作图的方法。

三. 教学目标1.知识与技能:使学生能够理解和掌握轴对称图形的特征,能够通过作图的方法来画出各种轴对称图形。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和动手能力。

3.情感态度价值观:培养学生对数学的兴趣,提高他们解决问题的能力,培养他们的合作意识。

四. 教学重难点1.重点:使学生能够理解和掌握轴对称图形的特征,能够通过作图的方法来画出各种轴对称图形。

2.难点:如何引导学生通过作图的方法来画出轴对称图形。

五. 教学方法采用问题驱动法、案例教学法、合作学习法等,通过引导学生观察、操作、思考、交流等活动,提高他们的空间想象能力和动手能力。

六. 教学准备教师准备PPT、作图工具(直尺、圆规等)、练习题等。

七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生回顾轴对称的概念和性质,激发他们的学习兴趣。

2.呈现(10分钟)教师通过PPT展示各种轴对称图形,引导学生观察和思考,使他们能够发现轴对称图形的特征。

3.操练(10分钟)教师引导学生通过作图的方法来画出各种轴对称图形,边讲解边示范,使他们能够理解和掌握作图的方法。

4.巩固(10分钟)教师给出一些练习题,让学生独立完成,检测他们对于轴对称图形的理解和掌握。

人教版八年级上册数学 13.2 第1课时 画轴对称图形教案1

人教版八年级上册数学   13.2  第1课时 画轴对称图形教案1

13.2画轴对称图形第1课时画轴对称图形1.理解图形轴对称变换的性质.(难点)2.能按要求画出一个图形关于某直线对称的另一个图形.(重点)一、情境导入观察下面的图形:(1)这些图案有什么共同特点?(2)能否根据其中一部分画出整个图案?二、合作探究探究点一:轴对称变换【类型一】剪纸问题将一张正方形纸片按如图①,图②所示的方向对折,然后沿图③中的虚线剪裁得到图④,将图④的纸片展开铺平,再得到的图案是( )解析:严格按照图中的顺序先向右上翻折,再向左上翻折,剪去左上角,展开得到图形B.故选B.方法总结:此类题目主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【类型二】折叠问题如图,将矩形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB=60°,则∠CFD=( )A.20° B.30° C.40° D.50°解析:根据图形翻折变换后全等可得△ADE≌△FDE,∴∠EAD=∠EFD=90°.∵∠EFB =60°,∴∠CFD=30°,故选B.方法总结:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.探究点二:作轴对称图形【类型一】画一个图形关于已知直线对称的另一个图形画出△ABC关于直线l的对称图形.解析:分别作出点A 、B 、C 关于直线l 的对称点,然后连接各点即可.解:如图所示:方法总结:我们在画一个图形关于某条直线对称的图形时,先确定一些特殊的点,然后作这些特殊点的对称点,顺次连接即可得到.【类型二】在方格中设计轴对称图形在3×3的正方形格点图中,有格点△ABC 和△DEF ,且△ABC 和△DEF 关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF .解析:对称轴可以随意确定,根据你确定的对称轴去画另一半对称图形即可.解:如图所示:方法总结:作一个图形关于一条已知直线的对称图形,关键是作出图形上一些点关于这条直线的对称点,然后再根据已知图形将这些点连接起来.【类型三】利用轴对称设计图案某居民小区搞绿化,要在一块矩形空地(如下图)上建花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆与正方形的个数不限),并且使整个矩形场地成轴对称图形.请在下边矩形中画出你的设计方案.K解析:矩形是轴对称图形,而正方形和圆也是轴对称图形,设计出的图案只要折叠重合即可.解:如图所示:方法总结:利用轴对称可以设计出精美的图案,一个图形经过不同位置的几次变换,若再结合平移、旋转等,便可以得到非常美丽的图案.三、板书设计作轴对称图形1.如何由一个平面图形得到它的轴对称图形.2.利用轴对称设计图案.本节课尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容.重视动手操作,实践探究,但如果只有操作,而没有数学体验,数学课很容易上成劳技课,所以,本节课的设计在重视活动的同时,又重视知识的获取,因为动手操作的目的本身就在于更直观地发现新知识.练习的设计具有一定的层次性,使不同的学生在学习数学的过程中得到不同的发展.。

数学人教版八年级-上册 13.2画轴对称图形

数学人教版八年级-上册  13.2画轴对称图形

13.2画轴对称图形例1. 传说在古罗马时代的亚历山大城有一位精通数学和物理的学者,名叫海伦。

一天,一位将军专程去拜访他,想他请叫一个百思不得其解的问题。

将军每天都从军营A出发(如图),先到河边C处饮马,然后再去河岸的同侧B开会,他应该怎样走才能使路程最短?据说当时海轮略加思索就解决了它。

C现在同学们已经学习了轴对称,可曾想过,被广为流传的“将军饮马”的问题就是用这一知识解决的。

例2. 在旷野上,一个人骑马从A处出发,他先到河边N饮水,再到草场M出放马,然后返回A地,如图,请问他应该怎样走才能使总路程最短?M例3. (1)在图3所示编号为①、②、③、④的四个三角形中,关于y轴对称的两个三角形的编号为;关于坐标原点O对称的两个三角形的编号为;(2)在图中,画出与△ABC关于x轴对称的△A1B1C1例.4. ..(1)...如图..1.-.1.,要在燃气管道.......l .上修建一个泵站,分别向...........A .,.B .两城镇供气泵站修在什..........么地方,可使所用的输气管线最短...............?.(2)如图1-2,公园内两条小河汇合,两河形成的半岛上有一处古迹P ,现计划在两条小河上各修建一座小桥(垂直于河岸),并在半岛上修三条小路,连通两座小桥与古迹,这两座小桥应建在何处,使修路的费用最少?(3)如图1-3,公园中有两处古迹P 和Q ,现计划在两条小河上各修建一座小桥(垂直于河岸),并在半岛上修四条小路,连通两座小桥与古迹,这两座小桥应建在何处,才能使修路的费用最少?(4)如图1-4,现有一条地铁线路l ,小区A 和小区B 在l 的同侧,已知地铁站两入口C 、D 间的长度为a 米,现设计两条路AC 、BD 连接入口和两小区地铁站入口C 、D 设计在何处,能使得修建公路AC 与BD 的费用和最少?A 档(巩固专练)1.试分别作出已知图形关于给定直线l 的对称图形.2. 如图,已知△ABC与△111A B C是轴对称图形,画出它们的对称轴.CA AC3. 如图,画出△ABC关于直线l对称的△DEF.4. 如图,在直线AB上找一点P,使PC=PD.A ADC ADC5. 如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间建一个购物超市,使超市到这三个小区的距离相等,画出表示超市的点P.,使得货运站到三条公路的路程一样长,请问如何确定货运站P 的位置?7. 如图,要在公路MN 旁修建一个货物中转站,分别向A,B 两个开发区运货. (1)若要求货物中转站到A,B 两个开发区的距离相等,那么货物中转站应建在哪里? (2)若要求货物中转站到A ,B 两个开发区的距离和最小,那么货物中转站应建在哪里?M NABM NAB8. 如图,E ,F 分别是△ABC 的边AB ,AC 上的两个定点,在BC 上求一点M ,使△MEF 周长最短.9. 在旷野上,一个人骑马从A 处出发,他先到河边N 饮水,再到草场M 出放马,然后返回A 地,如图,请问他应该怎样走才能使总路程最短?AN M10. 如图,∠AOB=30°,角内有一点P ,PO=10cm,两边上各有一点Q 、R (均不同于点O )则△PQR 的周长的最小值是__。

人教版八年级数学上册第13章 轴对称2 第1课时 画轴对称图形

人教版八年级数学上册第13章   轴对称2 第1课时 画轴对称图形

(1) 认真观察,左脚印和右脚印
有什么关系?
P
P'
成轴对称.
(2) 对称轴是折痕所在的直线,
即直线 l,它与图中的线段 PP′
是什么关系?
l直线 l 垂直平分线段源自PP′.知识要点由一个平面图形可以得到与它关于一条直线 l 对称 的图形,这个图形与原图形的形状、大小完全相同(位 置、朝向可能不同);新图形上的每一点都是原图形上 的某一点关于直线 l 的对称点;连接任意一对对应点的 线段被对称轴垂直平分.
l
点 A′ 就是点 A 关于直线 l 的对称点. · A′
尺规作图
——作点关于 直线的对称点
点击视频 开始播放

问题2:如何画一条线段的对称图形? 已知线段 AB,画出 AB 关于直线 l 对称的线段.
A
BA
l B′ A′
A
B′
(B′)
Bl
l
A′
B
A′ (图 1)
(图 2)
(图 3)
想一想:如果有一个图形(如三角形、四边形)和一条
例4 在 3×3 的正方形格点图中,有格点△ABC 和
△DEF,且△ABC 和△DEF 关于某直线成轴对称,
请在下面给出的图中画出 4 个这样的△DEF.
E
D
C(F)
CF
D
E
C(F)
CF
A (D) B A
B(E) A
B A(D) B(E)
方法归纳:作一个图形关于一条已知直线的对称图形, 关键是作出图形上一些点关于这条直线的对称点,然 后再根据已知图形将这些点连接起来.
B A′ 就是点 A 关于直线 l 的对称点.
(2) 同理,分别画出点 B,C 关于 A

八年级数学上册13.2画轴对称图形第1课时画轴对称图形说课稿(新版)新人教版

八年级数学上册13.2画轴对称图形第1课时画轴对称图形说课稿(新版)新人教版

八年级数学上册 13.2 画轴对称图形第1课时画轴对称图形说课稿(新版)新人教版一. 教材分析八年级数学上册第13.2节“画轴对称图形”是新人教版数学课程的一部分,该部分内容在学生掌握了轴对称的概念和性质的基础上进行。

本节课的主要内容是让学生通过实际操作,学会如何画出轴对称图形,并理解轴对称图形在实际生活中的应用。

教材通过丰富的实例和 activities 来引导学生探索和发现轴对称图形的性质,培养学生的动手能力和思维能力。

二. 学情分析八年级的学生已经掌握了基本的几何知识和一定的动手操作能力,对于轴对称的概念和性质已经有了一定的了解。

但是,学生对于如何将理论应用到实际问题中,可能会存在一定的困难。

因此,在教学过程中,我将会注重引导学生将理论知识和实际问题相结合,提高学生的应用能力。

三. 说教学目标1.知识与技能:学生能够理解轴对称图形的概念,学会如何画出轴对称图形,并能够运用轴对称图形的性质解决实际问题。

2.过程与方法:通过学生的自主探索和合作交流,培养学生的动手操作能力和团队协作能力。

3.情感态度与价值观:培养学生对数学的兴趣,提高学生对几何图形的审美能力。

四. 说教学重难点1.教学重点:学生能够理解轴对称图形的概念,学会如何画出轴对称图形。

2.教学难点:学生能够将轴对称图形的性质应用到实际问题中,解决实际问题。

五. 说教学方法与手段在本节课的教学过程中,我将采用讲授法、演示法、探究法和小组合作法等多种教学方法。

同时,我将会利用多媒体教学手段,如PPT和几何画板等,来进行教学,以提高学生的学习兴趣和动手操作能力。

六. 说教学过程1.导入:通过展示一些生活中的轴对称图形,如衣服的图案、建筑物的设计等,引导学生对轴对称图形产生兴趣,并引出本节课的主题。

2.讲解:通过PPT和几何画板,讲解轴对称图形的概念和性质,让学生理解并掌握。

3.实践操作:让学生分组进行实践活动,通过实际操作来画出轴对称图形,并观察和分析轴对称图形的性质。

最新人教版初中八年级数学上册《画轴对称图形》精品教案

最新人教版初中八年级数学上册《画轴对称图形》精品教案

13.2 画轴对称图形第1课时画轴对称图形教学目标(一)教学知识点1.通过实际操作,了解什么叫做轴对称变换.2.如何作出一个图形关于一条直线的轴对称图形.(二)能力训练要求经历实际操作、认真体验的过程,发展学生的思维空间,并从实践中体会轴对称变换在实际生活中的应用.教学重点1.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.教学难点1.作出简单平面图形关于直线的轴对称图形.2.利用轴对称进行一些图案设计.设置情境,引入新课在前一个章节,我们学习了轴对称图形以及轴对称图形的一些相关的性质问题.在上节课的作业中,我们有个要求,让同学们自己思考一种作轴对称图形的方法,现在来看一下同学们完成的怎么样.[生甲]将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,•得到的两个图案是关于折痕成轴对称的图形.[生乙]准备一张质地较软,吸水性能好的纸或报纸,在纸的一侧上滴上一滴墨水,将纸迅速对折,压平,并且手指压出清晰的折痕.再将纸打开后铺平,•位于折痕两侧的墨迹图案也是对称的.[师]大家回答得太好了,•这节课我们就是来作简单平面图形经过轴对称后的图形.导入新课[师]刚才同学们说出了几种得到轴对称图形的方法,•由我们已经学过的知识知道,连结任意一对对应点的线段被对称轴垂直平分.类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.(电脑演示下面图案的变化过程)大家看大屏幕.对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化.大家看大屏幕,从电脑演示的图案变化中找出对称轴的方向和位置,体会对称轴方向和位置的变化在图案设计中的奇妙用途.[师]下面,同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,•再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下.(学生动手做)结论:由一个平面图形呆以得到它关于一条直线L对称的图形,•这个图形与原图形的形状、大小完全相同;新图形上的每一点,都是原图形上的某一点关于直线L的对称点;连结任意一对对应点的线段被对称轴垂直平分.[师]我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换.成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.动手做一做.取一张长30厘米,宽6厘米的纸条,将它每3厘米一段,•一正一反像“手风琴”那样折叠起来,并在折叠好的纸上画上字母E,用小刀把画出的字母E挖去,拉开“手风琴”,你就可以得到以字母E为图案的花边.回答下列问题.(1)在你所得的花边中,相邻两个图案有什么关系?•相间的两个图案又有什么关系?说说你的理由.(2)如果以相邻两个图案为一组,每一组图案之间有什么关系?•三个图案为一组呢?为什么?(3)在上面的活动中,如果先将纸条纵向对折,再折成“手风琴”,•然后继续上面的步骤,此时会得到怎样的花边?它是轴对称图形吗?先猜一猜,再做一做.注:为了保证剪开后的纸条保持连结,画出的图案应与折叠线稍远一些.投影仪演示学生的作品.[生甲]相邻两个图案成轴对称图形,相间的两个图案之间大小和方向完全一样.[生乙]都成轴对称关系.[生丙]得到与上面类似的两层花边,它仍然是轴对称图形.[师]下面我们做练习.随堂练习(课件演示)(一)如图(1),将一张正六边形纸沿虚线对折折3次,得到一个多层的60°角形纸,用剪刀在折叠好的纸上随意剪出一条线,如图(2).(1)猜一猜,将纸打开后,你会得到怎样的图形?(2)这个图形有几条对称轴?(3)如果想得到一个含有5条对称轴的图形,你应取什么形状的纸?应如何折叠?答案:(1)轴对称图形.(2)这个图形至少有3条对称轴.(3)取一个正十边形的纸,沿它通过中心的五条对角线折叠五次,•得到一个多层的36°角形纸,用剪刀在叠好的纸上任意剪出一条线,•打开即可得到一个至少含有5条对称轴的轴对称图形.课时小结本节课我们主要学习了如何通过轴对称变换来作出一个图形的轴对称图形,•并且利用轴对称变换来设计一些美丽的图案.在利用轴对称变换设计图案时,要注意运用对称轴位置和方向的变化,使我们设计出更新疑独特的美丽图案.活动与探究如果想剪出如下图所示的“小人”以及“十字”,你想怎样剪?设法使剪的次数尽可能少.过程:学生通过观察、分析设计自己的操作方法,教师提示学生利用轴对称变换的应用.结果:“小人”可以先折叠一次,剪出它的一半即可得到整个图.“十字”可以折叠两次,剪出它的四分之一即可.作者留言:非常感谢!您浏览到此文档。

人教版数学八年级上册13.2 画轴对称图形(2课时)教案与反思

人教版数学八年级上册13.2 画轴对称图形(2课时)教案与反思

13.2 画轴对称图形投我以桃,报之以李。

《诗经·大雅·抑》原创不容易,【关注】,不迷路!第1课时画轴对称图形一、基本目标【知识与技能】掌握作已知图形关于直线的轴对称图形的方法.【过程与方法】在探索问题的过程中体会知识间的关系,并从实践中体会轴对称变换在实际生活中的应用,感受数学与生活的联系.【情感态度与价值观】经历实际操作、认真体验的过程,发展学生的思维空间,培养学生的应用意识和探究精神.二、重难点目标【教学重点】作出简单平面图形关于直线的轴对称图形.【教学难点】利用轴对称进行一些图案设计环节1 自学提纲,生成问题【5min阅读】阅读教材P67~P68的内容,完成下面练习.【3min反馈】1.画出下列轴对称图形的所有对称轴.略2.由一个平面图形可以得到它关于一条直线l成轴对称的图形,这个图形与原图形的形状、大小完全一样;新图形上一个点,都是原图形上的某一点关于直线l的对称点;连结任意一对对应点的线段被对称轴垂直平分.3.几何图形都可以看作由点组成,只要分别作出这些点关于对称轴的对应点,再连结这些对应点,就可以得到原图形的轴对称图形.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】画出△ABC关于直线l的对称图形.【互动探索】(引发学生思考)画已知图形关于直线对称的图形的关键是什么?【解答】如图所示:【互动总结】(学生总结,老师点评)我们在画一个图形关于某条直线对称的图形时,先确定一些特殊的点,然后作这些特殊点的对称点,顺次连结即可得到.活动2 巩固练习(学生独学)1.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是( B )2.在3×3的正方形格点图中,格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.略活动3 拓展延伸(学生对学)【例2】如图,将矩形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB =60°,则∠CFD=( )A.20°B.30°C.40°D.50°【互动探索】根据图形翻折变换后全等可得△ADE≌△FDE,∴∠EAD=∠EFD =90.∵∠EFB=60°,∴∠CFD=30°,故选B.【答案】B【互动总结】(学生总结,老师点评)折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.环节3 课堂小结,当堂达标(学生总结,老师点评)作与图形成轴对称的图形,关键在于将图形抽象出各点,然后作点的对称点,再连线即可.请完成本课时对应习!第2课时坐标中的轴对称一、基本目标【知识与技】理解并掌握关于x轴、y轴对称的点的坐标的规律.【过程与方法】1.在探索关于x轴、y轴对称的点的坐标的规律时,发展学生形象思维能力和数形结合的思维意识.2.在同一坐标系中,感受图形上点的坐标的变化与图形的轴对称变换之间的关系.【情感态度与价值观】在探规律的过程中,培养学的应用意识和探究精神,提高学生的求知欲和好奇心.二、重难点目标【教学重点】直角坐标系中关于x轴、y轴对称的点的特征.【教学难点】能解决有关坐标中的轴对称问题.环节1 自学提纲,生成问题【5min阅读】阅读教材P68~P70的内容,完成下面练习.【3min反馈】1.(1)点(x,)关于x轴对称的点的坐标为(x,-y);(2)关于x轴对称的点的坐标的特点:横坐标不变,纵坐标互为相反数.2.(1)点(x,y)关于y轴对称的点的坐标为(-x,y);(2)关于x轴对称的点的坐标的特点:横坐标互为相反数,纵坐标不变.3.点P(-4,3)关于x轴的对称点为Q,则点Q的坐标为(-4,-3).4.点P(-3,4)关于y轴的对称点为M,则点M的坐标为(3,4).环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】在平面直角坐标系中,已知点A(-3,1)、B(-1,0)、C(-2,-1),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.【互动探索】(引发学生思考)作已知图形关于坐标轴的对称图形的关键是什么?【解答】如图,△DEF是△ABC关于y轴对称的图形.【互动总结】(学生总结,老师点评)在坐标系中作出关于坐标轴的对称点,然后顺次连结,即可作出已知图形关于坐标轴的对称图形.活动2 巩固练习(学生独学)1.点A(2,-3)向上平移6个单位后的点关于x轴对称的点的坐标是(2,-3).2.点P(3,4)关于y轴对称的点的坐标是P′(a,b),则a-b=-7.3.已知点A(2a-b,5+a),B(2b-1,-a+b).(1)若点A、B关于x轴对称,求a、b的值;(2)若A、B关于y轴对称,求(4a+b)2018的值.解:(1)∵点A、B关于x轴对称,∴2a-b=2b-1,5+a-a+b=0,解得a=-8,b=-5.(2)∵A、B关于y轴对称,∴2a-b+2b-1=0,5+a=-a+b,解得a=-1,b=3,∴(4a+b)2018=1.3.画出△ABC关于x轴对称的图形△A1B1C1,并指出△A1B1C1的顶点坐标.解:画图略.其中A1(3,-4)、B1(1,-2)、C1(5,-1).活动3 拓展延伸(学生对学)【例3】如图,在10×10的正方形网格中,每个小方格的边长都是1,四边形ABCD的四个顶点在格点上.(1)若以点B为原点,线段BC所在直线为x轴建立平面直角坐标系,画出四边形ABCD关于y轴对称的四边形A1B1C1D1;(2)点D1的坐标是________;(3)求四边形ABCD的面积.【互动探索】(1)以点B为原点,线段BC所在直线为x轴建立平面直角坐标系,然后作出各点关于y轴对称的点,顺次连结即可;(2)根据直角坐标系的特点,写出点D1的坐标;(3)把四边形ABCD分解为两个直角三角形,求出面积.【解答】(1)画图略.(2)点D1的坐标为(-1,1).(3)四边形ABCD的面积为×1×3+×1×2=.【互动总结】(学生总结,老师点评)轴对称变换作图,基本作法是:(1)先确定图形的关键点;(2)利用轴对称性质作出关键点的对称点;(3)按原图形中的方式顺次连结对称点.求多边形的面积可将多边形转化为规则图形的面积的和或差求解.环节3 课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!【素材积累】海明威和他的“硬汉形象”美国作家海明威是一个极具进取精神的硬汉子。

13.2 画轴对称图形(附答案)

13.2 画轴对称图形(附答案)

13.2画轴对称图形第1课时画轴对称图形1.如图,有一个英语单词,四个字母都关于直线l对称,请在下图中补全字母,并写出这个单词所指的物品是.2.把图中的某两个小方格涂上阴影,使整个图形是以虚线为对称轴的轴对称图形.3.如图所示,在网格纸上,分别画出所给图形关于直线l对称的图形.4.如图,画出△ABC关于直线l对称的图形.5.如图,在4×4的正方形网格中,任意选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形,符合要求的画法有种.6.如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.(1)画出△ABC关于直线BM对称的△A1B1C1;(2)写出AA1的长度.7.如图,在10×10的正方形的网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.第2课时用坐标表示轴对称1.在平面直角坐标系中,点P(3,-2)关于y轴的对称点在( )A.第一象限B.第二象限C.第三象限D.第四象限2.在平面直角坐标系中,点B的坐标是(4,-1),点A与点B关于x轴对称,则点A的坐标是( )A.(4,1) B.(-1,4)C.(-4,-1) D.(-1,-4)3.在平面直角坐标系中,点A(2,3)与点B关于y轴对称,则点B的坐标为( ) A.(-2,3) B.(-2,-3)C.(2,-3) D.(-3,-2) 4.点E(a,-5)与点F(-2,b)关于y轴对称,则a=,b=.5.点M(-2,1)关于x轴对称的点N的坐标是,直线MN与x轴的位置关系是.6.分别写出下列各点关于x轴和y轴对称的点的坐标:(2,3),(-2,4),(-3,-3),(2,0),(0,-3).7.已知点A(a+2b,1),B(-2,2a-b).(1)若点A,B关于x轴对称,求a,b的值;(2)若点A,B关于y轴对称,求a+b的值.8.如图,△ABO关于x轴对称,点A的坐标为(1,-2),则点B的坐标为( ) A.(-1,2) B.(-1,-2)C.(1,2) D.(-2,1)第8题图第9题图9.已知正方形ABCD在坐标轴上的位置如图所示,x轴、y轴分别是正方形的两条对称轴,若A(2,2),则点B的坐标为,点C的坐标为,点D的坐标为.10.如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.11.点P(1,2)关于直线y=1对称的点的坐标是;关于直线x=2对称的点的坐标是.12.在平面直角坐标系中,将点A(-1,-2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为( )A.(-3,-2) B.(2,2)C.(-2,2) D.(2,-2)13.在平面直角坐标系中,已知点A(-2,4)关于x轴对称的点为B,点B关于y轴对称的点为C,则点C的坐标是( )A.(2,-4) B.(-4, 2)C.(2,4) D.(-2,4)14.在平面直角坐标系内,点A(x-6,2y+1)与点B(2x,y-1)关于y轴对称,则x+y的值为( )A.0 B.-1C.2 D.-315.点P(3a+6,3-a)关于x轴的对称点在第四象限内,则a的取值范围为.16.如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A1B1C1,写出△ABC 关于x轴对称的△A2B2C2的各点坐标.17.在如图所示的平面直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(-3,-1).(1)将△ABC沿y轴正方向平移3个单位长度得到△A1B1C1,画出△A1B1C1,并写出点B1的坐标;(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.18.如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3),直线m为横坐标都为2的点组成的一条直线.(1)作出△ABC关于直线m对称的△A1B1C1;(2)直接写出A1,B1,C1的坐标;(3)求出△A1B1C1的面积.参考答案:13.2画轴对称图形第1课时画轴对称图形1.书.2.解:如图.3.解:如图.4.解:如图所示.5.2.6.解:(1)如图所示,△A1B1C1即为所求.(2)由图可得,AA1=10.7.解:(1)如图所示.(2)S 四边形BB 1C 1C =12×(2+4)×4=12.第2课时 用坐标表示轴对称1.C 2.A 3.A4. 2, -5.5. (-2,-1), 垂直.6. 解:各点关于x 轴的对称的点的坐标分别是(2,-3),(-2,-4),(-3,3),(2,0),(0,3);关于y 轴的对称的点的坐标分别是(-2,3),(2,4),(3,-3),(-2,0),(0,-3). 7.解:(1)由题意,得⎩⎪⎨⎪⎧a +2b =-2,2a -b =-1.解得⎩⎨⎧a =-45,b =-35.(2)由题意,得⎩⎪⎨⎪⎧a +2b =2,2a -b =1.解得⎩⎨⎧a =45,b =35.∴a +b =75.8.C9.(2,-2),(-2,-2),(-2,2).10.解:(1)AB=5,AB边上的高是3,则S△ABC=12×5×3=152.(2)如图.11.(1,0);(3,2).12.B13.A14.A15.-2<a<3.16.解:△ABC的各顶点的坐标分别为:A(-3,2),B(-4,-3),C(-1,-1),△A1B1C1如图所示.△A2B2C2的各点坐标分别为:A2(-3,-2),B2(-4,3),C2(-1,1).17.解:(1)如图所示,△A1B1C1即为所求,点B1的坐标为(-2,-1).(2)如图所示,△A2B2C2即为所求,点C2的坐标为(1,1).18.解:(1)如图所示.(2)A1(5,5),B1(5,0),C1(8,3).(3)△A1B1C1的面积为7.5.。

13.2 画轴对称图形第1课时 作轴对称图形(优质版)

13.2 画轴对称图形第1课时 作轴对称图形(优质版)
1、只要有坚强的意志力,就自然而然地会有能耐、机灵和知识。2、你们应该培养对自己,对自己的力量的信心,百这种信心是靠克服障碍,培养意志和锻炼意志而获得的。 3、坚强的信念能赢得强者的心,并使他们变得更坚强。4、天行健,君子以自强不息。5、有百折不挠的信念的所支持的人的意志,比那些似乎是无敌的物质力量有更强大 的威力。6、永远没有人力可以击退一个坚决强毅的希望。7、意大利有一句谚语:对一个歌手的要求,首先是嗓子、嗓子和嗓子……我现在按照这一公式拙劣地摹仿为:对 一个要成为不负于高尔基所声称的那种“人”的要求,首先是意志、意志和意志。8、执着追求并从中得到最大快乐的人,才是成功者。9、三军可夺帅也,匹夫不可夺志也。 10、发现者,尤其是一个初出茅庐的年轻发现者,需要勇气才能无视他人的冷漠和怀疑,才能坚持自己发现的意志,并把研究继续下去。11、我的本质不是我的意志的结果, 相反,我的意志是我的本质的结果,因为我先有存在,后有意志,存在可以没有意志,但是没有存在就没有意志。12、公共的利益,人类的福利,可以使可憎的工作变为可 贵,只有开明人士才能知道克服困难所需要的热忱。13、立志用功如种树然,方其根芽,犹未有干;及其有干,尚未有枝;枝而后叶,叶而后花。14、意志的出现不是对愿 望的否定,而是把愿望合并和提升到一个更高的意识水平上。15、无论是美女的歌声,还是鬓狗的狂吠,无论是鳄鱼的眼泪,还是恶狼的嚎叫,都不会使我动摇。16、即使 遇到了不幸的灾难,已经开始了的事情决不放弃。17、最可怕的敌人,就是没有坚强的信念。18、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下 去。19、意志若是屈从,不论程度如何,它都帮助了暴力。20、有了坚定的意志,就等于给双脚添了一对翅膀。21、意志坚强,就会战胜恶运。22、只有刚强的人,才有神 圣的意志,凡是战斗的人,才能取得胜利。23、卓越的人的一大优点是:在不利和艰难的遭遇里百折不挠。24、疼痛的强度,同自然赋于人类的意志和刚度成正比。25、能 够岿然不动,坚持正见,度过难关的人是不多的。26、钢是在烈火和急剧冷却里锻炼出来的,所以才能坚硬和什么也不怕。我们的一代也是这样的在斗争中和可怕的考验中 锻炼出来的,学习了不在生活面前屈服。27、只要持续地努力,不懈地奋斗,就没有征服不了的东西。28、立志不坚,终不济事。29、功崇惟志,业广惟勤。30、一个崇高 的目标,只要不渝地追求,就会居为壮举;在它纯洁的目光里,一切美德必将胜利。31、书不记,熟读可记;义不精,细思可精;惟有志不立,直是无着力处。32、您得相 信,有志者事竟成。古人告诫说:“天国是努力进入的”。只有当勉为其难地一步步向它走去的时候,才必须勉为其难地一步步走下去,才必须勉为其难地去达到它。33、 告诉你使我达到目标的奥秘吧,我唯一的力量就是我的坚持精神。34、成大事不在于力量的大小,而在于能坚持多久。35、一个人所能做的就是做出好榜样,要有勇气在风 言风语的社会中坚定地高举伦理的信念。36、即使在把眼睛盯着大地的时候,那超群的目光仍然保持着凝视太阳的能力。37、你既然期望辉煌伟大的一生,那么就应该从今 天起,以毫不动摇的决心和坚定不移的信念,凭自己的智慧和毅力,去创造你和人类的快乐。38、一个有决心的人,将会找到他的道路。39、在希望与失望的决斗中,如果 你用勇气与坚决的双手紧握着,胜利必属于希望。40、富贵不能淫,贫贱不能移,威武不能屈。41、生活的道路一旦选定,就要勇敢地走到底,决不回头。42、生命里最重 要的事情是要有个远大的目标,并借助才能与坚持来完成它。43、事业常成于坚忍,毁于急躁。我在沙漠中曾亲眼看见,匆忙的旅人落在从容的后边;疾驰的骏马落在后头, 缓步的骆驼继续向前。44、有志者事竟成。45、穷且益坚,不坠青云之志。46、意志目标不在自然中存在,而在生命中蕴藏。47、坚持意志伟大的事业需要始终不渝的精神。 48、思想的形成,首先是意志的形成。49、谁有历经千辛万苦的意志,谁就能达到任何目的。50、不作什么决定的意志不是现实的意志;无性格的人从来不做出决定。我终 生的等待,换不来你刹那的凝眸。最美的不是下雨天,是曾与你躲过雨的屋檐。征服畏惧、建立自信的最快最确实的方法,就是去做你害怕的事,直到你获得成功的经验。 真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。生活真象这杯浓酒,不经三番五次的提炼呵,就不会这样可口!人格的完善是本,财富的确立是末能力可以慢 慢锻炼,经验可以慢慢积累,热情不可以没有。不管什么东西,总是觉得,别人的比自己的好!只有经历过地狱般的折磨,才有征服天堂的力量。只有流过血的手指才能弹 出世间的绝唱。对时间的价值没有没有深切认识的人,决不会坚韧勤勉。第一个青春是上帝给的;第二个的青春是靠自己努力的。不要因为寂寞而恋爱,孤独是为了幸福而 等待。每天清晨,当我睁开眼睛,我告诉自己:我今天快乐或是不快乐,并非由我所遭遇的事情造成的,而应该取决于我自己。我可以自己选择事情的发展方向。昨日已逝,

人教版数学八年级上册 13.2 画轴对称图形

人教版数学八年级上册  13.2 画轴对称图形

13.2 画轴对称图形第1课时作轴对称图形1.通过动手操作体验如何作轴对称图形.2.能作出一个图形经一次或二次轴对称变换后的图形.3.能利用轴对称变换设计一些简单的图案.4.通过实际操作获取作轴对称图形的方法,并应用于简单的图案设计.5.通过图案设计等活动,培养学生的动手操作能力\,审美及数学兴趣,发展学生的空间观念.【教学重点】作一个图形经轴对称变换后的图形.【教学难点】通过动手操作总结轴对称变换的特征.一、情境导入,初步认识利用多媒体向学生展示剪纸图片,供学生欣赏,并请学生交流:如此漂亮的剪纸是如何剪出的呢?问题 1 请学生拿出画有一个简单风筝(如图形状)的半透明纸,把这张纸对折后描图,学生画好后打开对折的纸,观察并回答下列问题:(1)画出的图形与原来的图形有什么关系?(2)两个图形成轴对称有什么特征?问题 2 如果改变对称轴的方向和位置,结果又如何呢?让学生在刚才的纸上任意折叠,描图,打开纸.你发现了什么?【教学归纳】由学生画图、操作、观察后总结出:(1)由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样.(2)新图形上的每一点,都是原图形上的某一点关于直线l的对称点,连接任意一对对应点的线段被对称轴垂直平分.【教学说明】教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知【教学说明】成轴对称的两个图形中的任何一个可以看作由另一个图形经轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.问题除上面所用的描图法;还可用什么方法画出轴对称变换后的图形?请学生间交流探讨.例1(1)如图1,已知△ABC和直线l,作出与△ABC关于直线l对称的图形.(2)将△ABC的位置移至图2,图3,图4时,再作出关于直线l对称的图形.并验证画法.【归纳总结】一个平面图形都是由一些点组成,点动成线,故要画一个图形经轴对称后的图形,只要找到一些特殊点,作出这些特殊点的对称点即可.【教学说明】利用轴对称变换,可以设计出精美的图案.有时,将平移和轴对称结合起来,可以设计出更美丽的图案.例2 操作并思考:如图所示,取一张薄的正方形纸,沿对角线对折后,得到一个等腰直角三角形,再沿斜边上的高线对折,将得到的三角形沿黑线剪开,去掉含90°角的部分,拆开折叠的纸,并将其铺开.(1)你会得到怎样的图案?先猜一猜,再做一做.(2)你能说明为什么会得到这样的图案吗?应用学过的轴对称的知识试一试.(3)如果将正方形纸按上面方式折3次,然后再去掉含90°角的部分展开后的结果又会怎样?为什么?解:(1)得到一个有2条对称轴的图形.(2)按照上面的做法,实际相当于折出了正方形的2条对称轴,因此图中得到的图案一定有2条对称轴.(3)按题中的方式将正方形对折3次,相当于折出了正方形的4条对称轴,因此得到的图案一定有4条对称轴.【教学说明】教师参与,与学生一起操作,力求使图案与花边完美.三、运用新知,深化理解1.把下列图形补成关于直线l对称的图形.2.如图,利用轴对称变换画出花瓶的另一半.3.如图,左边的旗子经过几次轴对称变换,可以变成右边的旗子?你能设计一种变换方案吗?4.如果我们把台球桌做成等边三角形形状,那么从AC中点D处出发的球,能否依次经BC,AB两条边反射后回到D处?如果认为不能,请说明理由;如果认为能,请作出球运动的路线.【教学说明】指导学生解答上述习题时,要注意引导学生:(1)画轴对称图形时,要先画好关键的对应点;(2)在已知成轴对称的图形时,利用成轴对称的图形的性质,找出对称轴.【答案】4.能.运动路线如图的D→E→F→D四、师生互动,课堂小结教师请学生回忆本节内容,学生发言谈收获,最后引导总结.1.由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样.2.经轴对称变换后的图形与原图形上的对应点连线被对称轴垂直平分.3.画一个图形经轴对称变换后的图形,关键是找到图形上的一些点,作出这些点的对称点.1.布置作业:从教材“习题13.2”中选取.2.完成练习册中本课时的练习.本课时教学时要尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,重视学生的实际操作和观察发现与表述能力.教学时,根据本课内容特点,可依据其学科知识间联系(如例2)调动课堂气氛,培养学生学习兴趣.第2课时用坐标表示轴对称1.能在直角坐标系中画出已知点关于坐标轴对称的点.2.能求出已知点关于坐标轴对称的点的坐标,求出已知点关于平行于坐标轴的直线对称的点的坐标.3.在找关于坐标轴对称的点的坐标之间规律并检验其正确性的过程中,培养学生的语言表达能力、归纳能力.4.在找点,绘图的过程中使学生体验数形结合思想、体验学习乐趣,养成良好的科学研究方法.【教学重点】能求出已知点关于坐标轴对称的点的坐标.【教学难点】找对称点的坐标之间的关系,规律.一、情境导入,初步认识用多媒体展示北京城风光图片,及北京城形象地图.问题1 老北京的地图(教材图13.2-3)中,西直门和东直门是关于中轴线对称的,如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系,对应于如教材图13.2-3所示的东直门的坐标,你能找到西直门的位置和坐标吗?学生指出西直门的位置或坐标,由此指出用坐标表示轴对称,很方便确定一个地方的位置.【教学说明】教师讲课前,先让学生完成“自主预习”.问题2(1)在直角坐标系中画出下列已知点:A(2,-3);B(-1,2);C(-6,-5);D(3,5);E(4,0);F(0,-3).(2)画出这些点分别关于x轴、y轴对称的点,并填写表格.(3)请你仔细观察点的坐标,你能发现关于坐标轴对称的点的坐标有什么规律吗?(4)请你想办法检验你所发现的规律的正确性,说说你是如何检验的.【归纳结论】点(x,y)关于x轴对称的点的坐标为(x,-y),即横坐标相等,纵坐标互为相反数;点(x,y)关于y轴对称的点的坐标为(-x,y),即横坐标互为相反数,纵坐标相等.二、典例精析,掌握新知例1 已知点P1(a-1,5)和P2(2,b-1)关于x轴对称,则(a+b)2012的值为( ).A.0B.-1C.1D.(-3)2012出示新问题:1.如图,分别作出△PQR关于直线x=1和直线y=1对称的图形.2.试找出它们对应点的坐标.3.猜想:如果作关于直线x=3和直线y=-4对称的图形,试找出它们对应点的坐标,并总结出一般性规律.点(x,y)关于直线x=m对称点的坐标是(2m-x,y),即若两点(x1,y1),(x2,y2)关于直线x=m 对称,则m=221x x +,y 1=y 2. 点(x,y)关于直线y=n 对称点的坐标是(x,2n-y),即若两点(x 1,y 1),(x 2,y 2)关于直线y=n 对称,则x 1=x 2,n=221y y +. 例2 如图,梯形ABCD 关于y 轴对称,点A 的坐标为(-3,3),点B 的坐标为(-2,0),试写出点C 和点D 的坐标,并求出梯形ABCD 的面积.【分析】已知点D 与点A 关于y 轴对称,点B 和点C 关于y 轴对称,由此可推知点D,点C 的坐标.解:∵点D 与点A(-3,3)关于y 轴对称,∴点D 的坐标为(3,3).同理点C 的坐标为(2,0).故AD=|3-(-3)|=6,BC=|2-(-2)|=4,∴S 梯形=21 (AD+BC)·OE=21×(6+4)×3=15. 【教学说明】由以上例题,应让学生掌握:1.平行于x 轴的两点之间的距离等于两点横坐标差的绝对值.2.求规则图形的面积应选用平行于x 轴(或y 轴)的边为底边,求面积较方便.三、运用新知,深化理解1.说出下列各点关于x 轴,y 轴对称的点的坐标.(-2,6),(1,-2),(-1,3),(-4,-2),(1,0).2.四边形ABCD 的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别作出与四边形关于x 轴和y 轴对称的图形.3.在坐标系中描出点A(-1,3),B(5,-4),C(-3,-1),D(-1,1),E(-3,5),F(5,8),连接AB,BC,AC,DE,EF,DF,请你判断所得图形是轴对称图形吗?如果不是,请你说明理由;如果是,请说出对称轴.【教学说明】教师指导学生完成上述问题的解答,提示学生解题过程中注重画图找答案,体验数形结合的作用.同时,鼓励学生从实际解题中总结题中所隐含的规律.【答案】1.2.略3.图略.所得图形是轴对称图形,对称轴是y=2.四、师生互动,课堂小结教师引导学生总结本节课用坐标表示轴对称的主要解题方法和解题思路.1.已知点关于某条直线对称的点的坐标可以通过寻找线段间关系来求.2.学生表述关于x轴,y轴对称的点的坐标规律.1.布置作业:从教材“习题13.2”中选取.2.完成练习册中本课时的练习.本课时采用探究、发现式的教学方法,通过找具有一定代表性的分别位于四个象限及坐标轴的一些点的对称点及坐标,寻找关于坐标轴对称的点的坐标的一般规律,可培养学生观察、归纳、分析问题解决问题的能力,并通过研究线段之间关系发现对称点的坐标之间的关系,从中体验数形结合思想,教学中应让学生认识到寻找规律后检验其正确性是科学研究问题的一个必不可少的步骤.。

部编版人教初中数学八年级上册《13.2 画轴对称图形 教学设计及反思》最新精品优秀教案

部编版人教初中数学八年级上册《13.2 画轴对称图形 教学设计及反思》最新精品优秀教案
【教学目标】
1.在平面直角坐标系中,会画出关于x轴、y轴对称的点,进而探求关于x轴、y轴对称点的坐标规律.
2.通过找关于坐标轴对称的点之间的规律,以及在验证规律正确的过程中,培养学生语言能力、观察能力、归纳能力,养成良好的科学研究方法.
3.在找点与绘图的过程中,发展学生数形结合的思维意识,使学生形成数形结合的思想.
【板书设计】
画轴对称图形(1)
1.作轴对称图形的基本特征:……贴剪纸用
2.作已知图形关于已知直线对称的图形的一般步骤:
(1)找点;(2)画点;(3)连线.
【教学反思】
本节课体现了以学生为主体,学生自己动手操作、演示,自己在画图中总结规律,学生动手、动口说得多,老师主要是以引导、启发为辅.
第2课时 画轴对称图形(2)
C(8,-5)
D(0,-1)
E(4,0)
关于x轴对称
关于y轴对称
3. 已知点P(2a+b,-3a)与点P′(8,b+2).
若点P与点P′关于x轴对称,则a=________,b=________.
若点P与点P′关于y轴对称,则a=________,b=________.
4.教师:接下来,我们一起来看看利用关于坐标轴对称的点的坐标变换规律,是否可以作出与一个图形关于x轴或y轴成轴对称的图形.
以北京地图为例引出新课,既可以激发学生的兴趣,又可以让学生感受到用坐标描述对称的重要性.
二、师生互动,探究新知
如图,在平面直角坐标系中你能画出点A(2,3)关于x轴、y轴的对称点吗?
说出你是怎么操作的?这么操作的依据是什么?
教师活动:出示点关于x,y轴对称点的坐标特点,进行知识小结.
强化结:关于坐标轴对称的点的坐标变换规律:
三、运用新知,解决问题

人教版八年级数学上册13.2 画轴对称图形 课件

人教版八年级数学上册13.2 画轴对称图形 课件

活动4 例题与练习
例1 已知:如图,已知△ABC,过点A作直线 l. 求作:△A′B′C′,使它与△ABC关于直线l对称. 解:如图,分别作出点B,C关于直线 l 的对称点B′, C′,再依次连接AB′,B′C′,C′A,则△AB′C′即为所求 .
例2 如图,图中的几个灯笼都是经过轴对称变换得到 的,试画出每次变换的对称轴. 解:如图,分别找出两个对称图形中的对称点,画出 其线段的垂直平分线即可.
个图案的对称轴.(1)你能猜出整个图案的形状吗?(2) 你能画出这个图案的另一半吗?
几何图形都可以看作是由点组成的,我们只要分 别作出这些点关于对称轴的对应点,再连接这些对应 点便可以得到原图形的轴对称图形,如何作出点A,B ,C,D关于直线l的对称点呢?
活动2 探究新知 1、如图13.2-1,在一张半透明的纸的左边部分,画一 只左脚印,把这张纸对折后描图,打开对折的纸,就 能得到相应的右脚印。这时,右脚印 和左脚印成轴对称,折痕所在直线就 是它们的对称轴,并且连接任意一对 对应点的线段被对称轴垂直平分。类 似地,请你在画一个图形做一做,看 看能否得到同样的结论。
提出问题: (1)认真观察,左脚印和右脚印有什么关系? (2)左脚印和右脚印在形状和大小上有什么关系? (3)右脚印上的任意一点关于直线l的对称点是否一定在 左脚印上? (4)图中的线段PP′与直线l是什么关系?
2、例1 如图13.2-2(1),已知△ABC和直线 l,画出 与△ABC关于直线l对称的图形。 分析: △ABC可以由三个顶点的位置确定,只要能分 别画出这三个顶点关于直线 l 的对称点,连接这些对 称点,就能得到要画的图形。
13.2 画轴对称图形 第1课时 画能熟练画出一个图形关于某一条直线对 称的轴对称图形. 2.培养学生良好的动手实践能力.

人教版八年级数学上册作业课件 第十三章 轴对称 画轴对称图形 第1课时 画轴对称图形

人教版八年级数学上册作业课件 第十三章 轴对称 画轴对称图形 第1课时 画轴对称图形

4.如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出 格纸中所有与△ABC成轴对称且也以格点为顶点的三角形.这样的三角形共有多 少个?画出图形.
解:如图,与△ABC成轴对称且也以格点为顶点的三角形有5个.分别为 △BCD,△BFH,△ADC,△AEF,△CGH
5.如图,分别以直线l为对称轴,所作轴对称图形错误的是( C )
数学 八年级上册 人教版
第十三章 轴对称
13.2 画轴对称图形
第1课时 画轴对称图形
1.如图,以虚线为对称轴,请画出如图图案的另一半. 解:略
2.在如图所示的网格中,分别只画出了两个轴对称图形的一半(直线l为对称 轴),请分别画出它们的另一半.
解:略
3.如图,作出△ABC关于直线l对称的图形. 解:略
6.仔细观察ห้องสมุดไป่ตู้列图案,并按规律在横线上画出合适的图形.
7.(长春中考)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格 点,线段OM,ON的端点均在格点上.在图①、图②给定的网格中以OM,ON为 邻边各画一个四边形,使第四个顶点在格点上.要求:
(1)所画的两个四边形均是轴对称图形; (2)所画的两个四边形不全等.
解:如图所示
8.如图,△ABC和△A′B′C′关于直线MN对称,△A′B′C′和△A″B″C″关于直线EF对 称.
(1)画出直线EF; (2)直线MN与EF相交于点O,试探究∠BOB″与直线MN, EF所夹锐角α之间的数量关系. 解:(1)连接B′B″,作线段B′B″的垂直平分线EF,则直线EF是△A′B′C′和△A″B″C″ 的对称轴,画图略 (2)连接BO,B′O,B″O,∵△ABC和△A′B′C′关于MN对称,∴∠BOM=∠B′OM, 同 理 ∠ B′OE = ∠ B″OE , ∴ ∠ BOB″ = ∠ BOB′ + ∠ B′OB″ = 2∠B′OM + 2∠B′OE = 2(∠B′OM+∠B′OE)=2∠MOE=2α,即∠BOB″=2α

13.2.1《画轴对称图形》优秀课件1

13.2.1《画轴对称图形》优秀课件1

L B
A
A'
A L
A'
B'
B
B' ①

练习题:
判断下列画线段MN的轴对称图形,哪一个是正确的( C)
N1 N (M1)
N (N1)N (M1) M来自以上答案 M1 都不对
M
M
N1
A
B
C
D
图形变式:
已知△ABC,直线L,画出△ABC关于直线
L对称的图L 形。
L
A A'
A A'
C'
B
C C'
B' B
C B'
C1 A1
B1
(1)你可以通过什么方法来验证你 画的是否正确?
(2)和其他同学比较一下,你的方 法是最简单的吗?
做一做 1 如图,已知点 A 和 直线l ,试画出
点A关于直线l的对称点A′并写出画法。
l
. . A
o
A’
作法:1.画AO l于O,
2.延长AO到 A’ , 使A’O = AO, 则点A’即为所求。
做一做 2 如图,已知线段 AB 和 直线l ,试
. 画出线段 AB关于直线l的对称线段并写出画法。
A l
A0 画法:
(1) 作点A的对称点A0 ,
(2) 作点B的对称点B0,
(3) 连结线段A0B0 .
.B0
则线段A0B0即为所求。 B
做一做 3 已知△ABC,直线l,画出△ABC关于
. 直线 l 对称的图形.
巩固练习:
1、在图中分别画出点A关于两条直线的对 称点 A'和A''。
2、画出所示图形关于直线L的对称图形。

【精品】人教版八年级数学上册课件:13.2 第1课时 画轴对称图形

【精品】人教版八年级数学上册课件:13.2 第1课时 画轴对称图形
B C
lA
分析:△ABC可以由三个顶点的位置确定,只要能分别画出 这三个顶点关于直线l的对称点,连接这些对称点,就能得到 要画的图形.
作法:(1)过点A画直线l的垂
B
线,垂足为点O,在垂线上截取
C
OA′=OA,A′就是点A关于直线l
的对称点.
lA
O
(2)同理,分别画出点B,C A′
关于直线l的对称点B′,C′ .
1.作已知点关于某直线的对称点的第一步是( B ) A.过已知点作一条直线与已知直线相交 B.过已知点作一条直线与已知直线垂直 C.过已知点作一条直线与已知直线平行 D.不确定
2.如图,把一张长方形的纸按图那样折叠后,B、 D两点落在B′、D′点处,若得∠AOB′=70°,则 ∠B′OG的度数为___5_5_°___.
3.如图,把下列图形补成关于直线l的对称图形.
l l
l
l
4. 如图给出了一个图案的一半,虚线 l 是这个图案的
对称轴.整个图案是个什么形状?请准确地画出它的另
一半.
l BA
C D
FE
G
H
5.如图,画△ABC关于直线m的对称图形.
m (A ′) A
C′
C
B
B′
6.如图,在2×2的正方形格纸中,有一个以格点为顶 点的△ABC,请你找出格纸中所有与△ABC成轴对称 且以格点为顶点的三角形,这样的三角形共有__5___个. 请在下面所给的格纸中一一画出(所给的六个格纸未
我们前面学习了轴对称图形以及轴对称图形 的一些相关的性质.如果有一个图形和一条直线, 如何画出这个图形关于这条直线对称的图形呢? 这节课我们一起来学习作轴对称图形的方法.
讲授新课
一 轴对称变换 在一张半透明纸的左边部分,画一只左脚印,把
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13.2 画轴对称图形
第1课时画轴对称图形
一.选择题(共10小题)
2.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,

AB
个结论,其中正确的个数是()
①∠DEF=∠DFE;②AE=AF;③AD垂直平分
第2题图第4题图第8题图
5.下列图形:其中所有轴对称图形的对称轴条数之和为()
.如图是一台球桌面示意图,图
的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是
.小华将一张如图所示通过图形变换构成了下列四个图形,这四个图形中不是轴对称图形的是( )
C
白的两个小正方形涂黑,得到新的图形(阴影部分),其中不是轴对称图形的是( )
C
9.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形 _________ .
10.(2009•绍兴)在黑板报的设计中,小敏遇到了如下的问题:在如图中,直线l 与AB 垂直,要作△ABC 关于l 的轴对称图形.小敏已作出了一步,请你用直尺和圆规作出这个图形的
其余部分,保留作图痕迹,并写出相应的作法.
作法:(1)以B 为圆心,
BA 为半径作弧,与AB 的延长线交于点P ; _________ _________________________就是所要作的轴对称图形.
11.在如图的正方形网格中有一个三角形ABC ,作出三角形ABC 关于直线MN 的轴反射图形,若网格上最小正方形边长为1,则三角形ABC 与它轴反射图形的面积之和是 _________ .
12.画一个图形关于某条直线的对称图形时,只要从已知图形上找出几个 _________ ,然后分别作出它们的 _________ ,再按原有方式连接起来即可.
13.如图,已知长方形的台球桌台ABCD ,有黑、白两球分别位于M 、N 两点的位置上,试问:怎样撞击白球N ,才能让白球先撞台边AB ,反弹后再击中黑球M .(在图上画出) 14.利用图形中的对称点,画出图形的对称轴.
15.如图,AB左边是计算器上的数字“5”,若以直线AB为对称轴,那么它的轴对称图形是数字_________ .
16.下列每对文字图形中,能看成关于虚线对称的有:_________ (只需要序号).
17.如图所示,观察规律并填空:_________ .
18.下图是用纸叠成的生活图案,其中属于轴对称图形的是(用序号表示)
_________ .
三.解答题(共10小题)
19.观察右面两个图形,解答下列问题:
(1)其中是轴对称图形的为_________
(2)用尺规作图的方法画出其中轴对称图形的对称轴(要求:只保留作图痕迹,不写作法)
20.已知四边形ABCD,如果点D、C关于直线MN对称,
(1)画出直线MN;
(2)画出四边形ABCD关于直线MN的对称图形.
21.如图,在10×10的正方形网格中,每个小正方形的边
长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).
(1)在图中作出△ABC 关于直线l 对称的△A 1B 1C 1;(要求:A 与A 1,B 与B 1,C 与C 1相对应)
(2)在(1)问的结果下,连接BB 1,CC 1,求四边形BB 1C 1C 的面积.
22.已知:如图,在△ABC 中,AB=BC=2,
∠ABC=120°,BC∥x 轴,点B 的坐标是(﹣3,1). (1)画出△ABC 关于y 轴对称的△A′B′C′;
(2)求以点A 、B 、B′、A′为顶点的四边形的面积.
23.(2005•大连)如图,△ABC 和△A′B′C′关于直线MN 对称,△A′B′C′和△A″B″C″关于直线EF 对称. (1)画出直线EF ;
(2)直线MN 与EF 相交于点O ,试探究∠BOB″与直线MN 、EF 所夹锐角α的数量关系.
13.2.1 画轴对称图形
一、选择题(共8小题)
1.B 2.C 3.C 4.C 5.B 6.A 7.A 8.D
二.填空题(共10小题)
9.
10. 解:
(1)分别以B,P为圆心,BC,A C为半径作弧,两弧交于点Q;
(2)连接BQ,PQ.△BPQ.
11. 5
12.
关键点对称点
13.
14.
15.
2;16. ①⑤;17. .;18. ①②③三.解答题(共5小题)
19. 解:(1)②,①;
(2)
(3分)
20. 解:(1)如图,直线MN即为所求;
(2)四边形A′B′DC即为四边形ABDC关于直线MN的对称图
形.
21. 解(1)如图,△A1B1C1是△ABC关于直线l的对称图形.
(2)由图得四边形BB1C1C是等腰梯形,BB1=4,CC1=2,高是4.
∴S四边形BB1C1C=,
==12.
22.解:(1)如图所示;
(2)过A点作AD⊥BC,交CB的延长线于点D,
则∠ABD=180°﹣∠ABC=180°﹣120°=60°
在Rt△ABD中,BD=AB•cos∠ABD=2×=1
AD=AB•sin∠ABD=2×
又知点B的坐标为(﹣3,1)
∴点A的坐标为(﹣4,1+)
∵AA′⊥y轴,BB′⊥y轴
∴AA′⊥BB′
∵AB与A′B′不平行
∴以点A,B,B′,A′为顶点的四边形是等腰梯形
由点A,B的坐标可求得AA′=2×4=8,BB′=2×3=6
∴梯形ABB′A′的面积=(AA′+BB′)•AD=×(8+6)×=7.
23. 解:(1)如图,连接B′B″.(1分)
作线段B'B″的垂直平分线EF.(2分)
则直线EF是△A′B′C′和△A″B″C″的对称轴.(3分)
(2)连接B′O.
∵△ABC和△A'B'C'关于直线MN对称,
∴∠BOM=∠B'OM.(5分)
又∵△A'B'C'和△A″B″C″关于直线EF对称,
∴∠B′OE=∠B″OE.(6分)
∴∠BOB″=∠BOM+∠B′OM+∠B′OE+∠B″OE=2
(∠B′OM+∠B′OE)=2α
即∠BOB″=2α.(7分)。

相关文档
最新文档