光学第三章答案

合集下载

第三章--光合作用习题及答案

第三章--光合作用习题及答案

第三章光合作用一、名词解释1. 光合作用2. 光合强速率3. 原初反应4. 光合电子传递链5. PQ穿梭6. 同化力7. 光呼吸8. 荧光现象9. 磷光现象10. 光饱和点11. 光饱和现象12. 光补偿点13. 光能利用率14. 二氧化碳饱和点15. 二氧化碳补偿点16. 光合作用单位17. 作用中心色素18. 聚光色素19. 希尔反应20. 光合磷酸化21. 光系统22. 红降现象23. 双增益效应24. C3植物25. C4植物26. 量子产额27. 量子需要量28. 光合作用‘午睡’现象三、填空题1. 光合色素按照功能不同分类为和。

2. 光合作用的最终电子供体是,最终电子受体是。

3. 光合作用C3途径CO2的受体是,C4途径的CO2的受体是。

4. 光合作用单位由和两大部分构成。

5. PSI的原初电子供体是,原处电子受体是。

6. PSII的原初电子受体是,最终电子供体是。

7. 光合放氧蛋白质复合体又称为,有种存在状态。

8. C3植物的卡尔文循环在叶片的细胞中进行,C4植物的C3途径是在叶片的细胞中进行。

9. 在卡尔文循环中,每形成1摩尔六碳糖需要摩尔ATP,摩尔NADPH+H+。

10. 影响光合作用的外部因素有、、、和。

11. 光合作用的三大步聚包括、和。

12. 光合作用的色素有、和。

13. 光合作用的光反应在叶绿体的中进行,而暗反应是在进行。

14. 叶绿素溶液在透射光下呈色,在反射光下呈色。

15. 光合作用属于氧化还原反应,其中中被氧化的物质是,被还原的物质时是。

16. 类胡萝卜素吸收光谱最强吸收区在,它不仅可以吸收传递光能,还具有的作用。

17. 叶绿素吸收光谱有光区和光区两个最强吸收区。

18. 光合作用CO2同化过程包括、、三个大的步骤。

19.根据光合途径不同,可将植物分为、、三种类别。

20. 尔文循环按反应性质不同,可分为、、三个阶段。

21. 在光合作用中,合成淀粉的场所是,合成蔗糖的场所是。

(最新)第三章几何光学的基本原理2

(最新)第三章几何光学的基本原理2

29 一厚透镜的焦距为60mm ,其两焦点间的距离为125mm ,若(1)物点放在光轴上焦点左方20mm 处;(2)物点放在光轴上物方焦点右方20mm 处;(3)虚物落在光轴上象方主点右方20mm 处,问在这三种情况下象的位置各在何处?象的性质如何?并作光路图。

解:(1)将f =-60毫米,60='f 毫米,=1x -20毫米代入牛顿公式得: ),( 240180601802060)60(111实象毫米毫米P s x f f x '=+='=-⨯-='='其光路图如图所示。

(2)将f =-60毫米,60='f 毫米,=1x 20毫米代入牛顿公式得:),( 120601801802060)60(222虚象毫米毫米P s x f f x '-=+-='-=⨯-='='(3)将f=-60毫米,8520560,603=++=='x f 毫米毫米代入牛顿公式得: ),( 65.1735.426035.428560)60(333实象毫米毫米P s x f f x '=-='-=⨯-='='30 一个会聚透镜和一个发散透镜互相接触构成一复合光具组,,当物距为-80cm 时,实象距镜60cm ,若会聚透镜的焦距为10cm ,问发散透镜的焦距为多少?解:设会聚透镜的焦距1f ',发散透镜的焦距2f ',复合系统的焦距f ' 因复合光具组在物距为-80cm 时,实象距为60cm 由:ss f 111-'=',解出复合光具组的焦距:cm f 7/240=' 因两透镜互相接触,有:21111f f f '-'=',已知:cm f 101=' 解出发散透镜的焦距:cm f 1.142-='31 试述测定会聚透镜焦距的几种方法。

光学课件全部习题

光学课件全部习题

解:三列平面波的复振幅分别为
选z=0平面
~ E1 = A1e i ( − k sin θx + k cosθz ) = A1e − ik sin θx ~ ikz E2 = A2 e = 2 A1
~ E3 = A3e i ( k sin θx + k cosθz ) = A1e ik sin θx
~ ~* ~ ~ ~ ~* ~* ~* I = EE = ( E1 + E2 + E3 )( E1 + E2 + E3 )
wwwwenku1comview9c970f097eb60a1分布a2sinkz221有三列在xz平面内传播的同频率单色平面波其振幅分别为a1a2a3传播方向如图求xy平面上的光强分布可设三列波在坐标原点初相均为0
第二章部分典型习题答案
2h1 +
λ1
2
= m1λ1
2h1 +
λ2
2
= m2 λ2
2h2 + 2h2 +
λ1
2
kλ1 = (k + 1)λ2
= (m1 + k )λ1 = (m2 + k + 1)λ2
980λ1 = 981λ2
λ2
2
λ1 = 589.6nm λ1 = 589nm
第四章部分典型习题答案
4.10 单色平面波垂直照射图示的衍射屏,图中标出的是该处到轴上场点 的光程,屏中心到场点的光程为ro,阴影区为不透光区.试用矢量图解 法求场点的光强与波自由传播时该场点的光强的比值.
2
2
I = 5I F
r0 + λ r0 + λ / 4
1 A= 2 AF 4

光学教程第3章_参考答案

光学教程第3章_参考答案

13.1 证明反射定律符合费马原理。

证明:证明:设两个均匀介质的分界面是平面,设两个均匀介质的分界面是平面,设两个均匀介质的分界面是平面,它们的折射率为它们的折射率为n 1和n 2。

光线通过第一介质中指定的A 点后到达同一介质中指定的B 点。

为了确定实际光线的路径,通过A,B 两点作平面垂直于界面,'OO 是它们的交线,则实际光线在界面上的反射点C 就可由费马原理来确定,如下图所示。

(1)反证法:如果有一点'C 位于线外,则对应于'C ,必可在'OO 线上找到它的垂足''C .由于''AC 'AC >,''BC 'BC >,故光线B AC'总是大于光程B ''AC 而非极小值,这就违背了费马原理,故入射面和反射面在同一平面内得证。

面内得证。

(2)在图中建立坐XOY 坐标系,则指定点A,B 的坐标分别为(x1,y1)和(x2,y2),未知点C 的坐标为(x ,0)。

C 点是在'A 、'B 之间的,光程必小于C 点在''B A 以外的相应光程,以外的相应光程,即即21vx x <<,于是光程ACB 为 yx x n y x x n CB n AC n ACB n 2211221221111)()(+-++-=+=根据费马原理,它应取极小值,即0)(1=ACB n dx d0)sin (sin )()()()()()(21112222211212111=-=¢-¢=+---+--=i i n CB B C AC C A n y x x x x n y x x x x n ACB n dx d 所以当11'i i =,取的是极值,符合费马原理。

,取的是极值,符合费马原理。

3.2 根据费马原理可以导出在近轴条件下,从物点发出并会聚倒像点的所有光线的光程都相等。

姚启钧光学第三章答案

姚启钧光学第三章答案

1. 证:设两个均匀介质的分界面是平面,它们的折射率为n 1和n 2。

光线通过第一介质中指定的A 点后到达同一介质中指定的B 点。

为了确定实际光线的路径,通过A,B 两点作平面垂直于界面,O O ′是他们的交线,则实际 光线在界面上的反射点C 就可由费马原理来确定(如右图)。

(1) 反正法:如果有一点C ′位于线外,则对应于C ′,必可在O O ′线上找到它的垂足C ′′.由于C A ′>C A ′′,B C ′>B C ′′,故光谱B C A ′总是大于光程B C A ′′而非极小值,这就违背了费马原理,故入射面和反射面在同一平面内得证。

(2) 在图中建立坐oxy 标系,则指定点A,B 的坐标分别为(y x 11,)和(yx 22,),未知点C 的坐标为(0,x )。

C 点在B A ′′,之间是,光程必小于C 点在B A ′′以外的相应光程,即x xx 21<<,于是光程ACB 为:x x n y x x n CB n AC n ACB n 21121221111)()(+−++−=+=根据费马原理,它应取极小值,即:()()()()()(12222211212111−′=+−−−+−−=AC C A n y x x x x n y x x x x n ACB n dx dQ i i 11=′,∴0)(1=ACB n dx d取的是极值,符合费马原理。

故问题得证。

2.(1)证:如图所示,有位于主光轴上的一个物点S 发出的光束经薄透镜折射后成一个明亮的实象点S ′。

由于球面AC 是由S 点发出的光波的一个波面,而球面DB 是会聚于S ′的球面波的一个波面,固而SB SC =, B S D S ′=′.又Q光程FD EF n CE CEFD ++=,而光程AB n AB =。

根据费马原理,它们都应该取极值或恒定值,这些连续分布的实际光线,在近轴条件下其光程都取极大值或极小值是不可能的,唯一的可能性是取恒定值,即它们的光程却相等。

物理光学第三章 习题答案

物理光学第三章 习题答案

(2)
m 20 2 2 h 10 cos 2 40 20 4 h 16 20 2 0.707rad cos 2
3.24 牛顿环也可以在两个曲率半径很大的平凸透镜之间的空气层 中产生。如图所示,平凸透镜A和B的凸面的曲率半径分别为RA 和RB,在波长600nm的单色光垂直照射下,观察到它们之间空气 层产生的牛顿环第10个暗环的半径rAB=4mm。若有曲率半径为RC 的平凸透镜C,并且B、C组合和A、C组合产生的第10个暗环的 半径分别为rBC=4.5mm和rAC=5mm,试计算RA,RB和RC。
4.4 F-P标准具的间隔为2.5mm,问对于波长为500nm的光,条 纹系中心的干涉级是多少?如果照明光波包含波长500nm和稍 小与500nm得两种光波,它们的环条纹距离为1/100条纹间距, 求未知光波的波长。 解:条纹系中心的干涉级为:
2h m 2h m 104

e 2 0.0005(nm) 2he 499.9995(nm)
4.3 将一个波长稍小于600nm的光波与一个波长为600nm的光波 在F-P干涉仪上进行比较。当F-P干涉仪两镜面间距离改变 1.5mm时,两光波的条纹系就重合一次。试求未知光波的波长。 解: 2l n n 1
解得: n 5 103 n ' 599.88 109 (m) n 1
(3) 2nh cos 2 m 2nh sin 2 2 2 0.0022 2nh sin 2 由 sin 1 n sin 2 cos 1 1 n cos 2 2 n cos 2 2 1 0.0033 cos 条纹间距为:e f 1 6.7 10-4 m

chap3习题答案.

chap3习题答案.

f 60cm
(1)当x1 20mm时,有
x1= f f x1
60 (60) 180mm 20
s1 f x 60 180 240mm (p ,实像)
(2)当x2 20mm时,有
x2= f f x2
60 (60) -180mm 20



s2
2
r
r
r
r
s2

nr n
n

nD 2(n
n)
1.57 20 6.05 (cm) 2 (1.53 1)
15.有两块玻璃薄透镜的两表面均各为凸球面及凹球面,其曲率半径为10cm. 一物点在主轴上距离20cm处,若物和镜均浸在水中,分别用作图法和计算法 求像点的位置.设玻璃的折射率为1.5,水的折射率为1.33.
1
f f1 f f 1
1
1
sf12sf sf1sf 1 1
1 s
s11s1s
1 f1
1 f
120120

3913.911.2120.00.0224444
s凸 s凸s1 s1404.902.92cmcm
解: n' n n' n s' s r
(1)s r s1' r
n n n n n s1 r r r
n n n n s s r
即s1 r
(2) s1
s2'
r
2
r
仍在原处(球心),物像重合
/2
n n n n 2n n n n n
n n n n
s3
r1

应用光学【第三章】习题第一部分

应用光学【第三章】习题第一部分

1.200倍显微镜的目镜焦距为25mm, 求显微镜目镜视放大率和物镜
垂轴放大率。

2.对正常人眼,如要观察2m远的目标,需要调节多少视度?
3.已知显微镜的视放大率为-300,目镜的焦距为20mm,求显微镜物
镜的倍率。

假定人眼的视角分辨率为60”,问使用该显微镜观察时,能分辨的两物点的最小距离等于多少?
4.用一架5倍的开普勒望远镜,通过一个观察窗观察位于距离
500mm远处的目标,假定该望远镜的物镜和目镜之间有足够的调焦可能,该望远镜物镜的像方焦距为100mm,求此时仪器实际视放大率等于多少?。

物理光学第三章习题解答

物理光学第三章习题解答

多少?
解:S1和S2的像的强度分布式
I
I0
2
J1(Z Z
)
2
*
S1的像的中央对应于 Z 0
S2的像的第一强度零点对应于 Z 1.22 3.833rad
两像之间中点对应于 Z 1.22 0.61 1.9rad
2 将Z值代入*式,得中间点单独强度 I1 I0 因此,中间点合强度与像中央强度之比
解:加玻璃片后,双缝至P点程差为
d sin (n 1)h d sin (1.5 1) 0.001 m
又 a sin n(n=0对应衍射极大,n=±1,±2…为极小)
d m 0.0005 1 (m 1) 又 d 3 m 3n 1处缺级
a
n
n
a
故未加时,dsinθ=0为中央零级,m=3n处缺级
t1[
(
f
f0) (
f
f0 )]
1 2
i
t1e
2
[
(
f
f0) (
f
f0 )]
因此,有三个衍射斑(第一项为0级)
由于 f0 处各有相差
i
e2
的两
项,其合成振幅应为
2 2
t1
2
I f0
I0
2 2
t1
t0
2
1 2
t1 t0
11. 在不透明细丝的夫琅和费衍射图样中,测得暗条纹 间距为1.5mm,所用透镜的焦距为30mm,光波波长为 632.8nm。问细丝直径是多少?
加玻璃后,dsinθ=0.0005为零级,m=(3n+1)处缺级
即整体条纹平移一级
28. 设光栅的振幅透射系数为
t(x)
t0

南开考研光学专业习题与解答第三章

南开考研光学专业习题与解答第三章

第三章 光的干涉例题3.1 菲涅耳双面镜干涉装置.双面镜M 1和M 2的夹角是20角分,准单色缝光源S 对M 1和M 2成两个虚的相干光源S 1和S 2, S 到双面镜交线的距离L 1=10厘米,接收屏幕与双面镜交线的距离L 2=100厘米,光源所发光的波长λ=600纳米.试问屏幕上干涉条纹间距是多少?解:由菲涅耳双面镜干涉装置条纹间距公式ϕλ1212)(L L L x +=∆,式中 弧度0058.01803,1000,10010,60021=⨯=====πϕλmm L mm cm L nm 代入上式,得 mm x 57.0=∆.3.2 将焦距为 50厘米的薄正透镜从正中切去宽度为a 的部分,再将剩下的两半粘接在一起, 形成一块比累对切透镜,如计算题 3.2图所示. 在透镜一侧的对称轴上放置一个波长为600纳米的单色点光源,另一侧远方的垂轴屏幕上出现干涉直条纹 ,测得条纹间距为5.0毫米,且沿轴向移动屏幕时条纹间距不变,求a .解:在比累对切装置中,若将屏幕前后移动干涉条纹间距不变,则干涉区是有一定夹角的两平行光波干涉场,干涉条纹间距公式)2/sin(2/θλ=∆x ,θ为两相干光束夹角. 点光源S位于比累对切透镜的焦平面上.比累对切透镜中心不是透镜的节点.对于下半透镜,节点在O1点,对于上半透镜,节点在O 2点(计算题3.2解图),O1O2的距离即为切去部分的长度a .由几何光学作图法,可以画出光束经比累透镜上下两部分折射后的平行光束.根据图中的几何关系有,sin f a '=θ).(6.05.010600500sin 6mm x f f a =⨯⨯=∆'='=-λθ计算题3.2图3.3 将杨氏双缝干涉装置照明光源波长为λ,S 2缝覆盖以厚度为h ,折射率为n 的透明介质薄膜(计算题3.3图),使零级干涉条纹移至原来的第K级明条纹处,试问介质薄膜的厚度h 是多少?解:如计算题 3.3图所示,S2缝盖以透明介质片,介质片产生附加光程差为h n )1(-=∆因为零级明条纹移至原来第K级明条纹处,在原K 级明条纹处,)1(21h n r r -=-λk r r =-12,因此有1--=n k h λ. 介质片厚度应为正值,因此K为负值,零级条纹应在屏幕的下方.3.4 如计算题3.4图所示的杨氏干涉装置.双孔屏S 1S 2右侧10厘米远处放置一枚焦距为10厘米的薄凸透镜L ,L 的光轴与干涉装置的对称轴重合.在L 的右侧10厘米远处又放置一垂轴屏幕.已知双孔间距d=0.02毫米,且用λ=500纳米的光照明.试计算题3.4图计算题3.3图解:杨氏双孔恰在透镜L的焦平面上,自双孔发出的相干光,经过透镜拐折后,变为夹角为α的两束平行光(计算题3.4解图a ).两束平行光的夹角为f d '=/α.今将两束平行光波场表示在计算题3.4图(b)中.两相干光波为平面波,K1、K2分别表示两波的传播方向,在干涉场中,两平面波波峰与波峰相重和波谷与波谷相重的点为相干加强的点.在三维空间中,这些点形成一组等间距、平行于两相干光束夹角平分面的平面.计算题3.4解图(b )中,屏幕上A和B点就是相干加强的点,是干涉明条纹的中心,显然,AB两倍于条纹间距.由图中的几何关系,得条纹间距)(5.210002.0105002/sin 26mm f d x =⨯⨯='=≈=∆-λαλαλ.3.5 在计算题3.4中,将透镜L 向左移近双孔2厘米,则屏幕上的条纹间距是多少?解法一:如计算题3.5解图(a )所示,若无透镜L,屏幕上P点光强由r 1和r 2的光程差来决定.加透镜后,r 1和r 2拐折了,不在P点会聚了.双孔屏和屏幕被透镜隔开在两个不同的光学空间.P点的光强由另外两光线R1和R 2的光程差决定.R1和R 2应分别发自S1和S2.怎样确定R1和R 2?R1和R 2会聚于P点,必来自P的共轭点P'.用薄透镜成象公式求出P'点的位置.这里物距12-=s 厘米,焦距10='f 厘米,代入成象公式计算题3.4解图(a )计算题3.4解图(b),1011211=--'s 解得60='s 厘米, 垂轴放大率1260-='=s s β.设P和P'点到光轴的距离分别为h 和h ',则,5h h h -=='β因此,P'在L左60厘米、光轴下-5h 处(计算题3.5解图a ).相干光束必从P'出发,分别过S1和S2,经L拐折后会聚到P点.双孔前面光程分别为[R'1]和[R'2],双孔后光程分别为[R1]和[R2].R1和R2是实际的光线,[R1]和[R2]称为实光程,[R'1]和[R'2]为虚光线的光程,称为虚光程.在近轴情况下,共轭点P、P'之间的光线等光程,因此有 ],[][][][2211R R R R +'=+'][][][][1212R R R R -='-'. 即双孔右实光线光程差正好等于左边虚光线的光程差的负值.我们可以把对实光程差的讨论,用对虚光程差的讨论来代替.或者说,我们把屏幕成象在双孔屏所在的光学空间,在屏幕的像面形成虚干涉.虚干涉条纹间距为3.12.0520105006=⨯⨯=''='∆-d L x λ(毫米).屏幕上实干涉与其像面上的虚干涉条纹共轭.因此,干涉条纹间距为26.053.15=='∆=∆x x (毫米).解法二将双孔变换到屏幕所在的光学空间,由透镜成象公式求出双孔屏的位置.,101811=--'s40-='s 厘米,计算题3.5解图a5840=--=β. 双孔的像S'1和S'2(计算题 3.5解图b )间距为12.055=⨯=='d d 毫米,524012=+='L 厘米,虚光源在屏幕上产生实干涉.屏幕上条纹间距为26.01520105006=⨯⨯=''=∆-d L x λ(毫米).3.6 菲涅耳双面镜的夹角为20角分,缝光源离双面镜交线10厘米,接收屏幕与光源的双像连线平行,屏幕距离双镜交线210厘米,光波波长600纳米,试求 (1) 屏幕上干涉条纹的间距;(2) 屏幕上可以看到几个干涉条纹?(3) 如果光源到两镜交线的距离增大一倍,干涉条纹有什么变化? (4) 如果光源与两镜交线距离不变,只是在横向有一小的位移δx ,干涉条纹有什么变化?(5) 如果使屏幕上干涉条纹可见度不为零,缝光源的最大宽度为多少?※※※解:(1)双面镜夹角20=α角分18031π⨯=弧度,1001=L 毫米,21002=L 毫米,屏幕上条纹间距为100)1803/(2)2100100(106002)(6121⨯⨯⨯+⨯⨯=+=∆-παλL L L x 13.1≈(毫米)(2)屏幕上干涉区宽度为222L L l αθ=≈∆,屏幕上的干涉条纹条数为22≈∆∆≈∆xlN 条. (3)由于21L L <<,当1L 增加一倍时,条纹间距计算题3.5解图L'=52cm12122)(L L L x ⋅+=∆αλ,分子中21212L L L L +≈+,条纹间距将减少为原来的一半,干涉区干涉条纹数 增加一倍.44≈∆N 条.(4)如计算题3.6图所示,当光源S移动δs 时,双像也作相应地移动,双像S 1、S 2连线的垂直平分线与屏幕交点O (原点,零级干涉条纹处)在屏幕上移动δx .由几何关系,21L xL sδδ=,由于光源的移动是横向的,移动时L 1、L 2和α都不变,因此条纹间距不变,屏幕上干涉图样只作平移,移动的距离为12L L sx δδ=. (5)设光源宽度为b ,边缘光源点在屏幕上的干涉图样彼此错开δx ,当δx 与干涉条纹的宽度∆x 一样大时,干涉条纹会因非相干叠加而消失,干涉也就消失.就是说,当x x ∆=δ时,干涉消失.此时有112122)(L L L b L L αλ+=,αλαλ22)(221≈⋅+=L L L b .S d 计算题3.6解图αλ2=b 是光源的极限宽度,αλ2<b 干涉可见度不为零. 3.7 透镜表面通常覆盖一层氟化镁(MgF 2)(n=1.38)透明薄膜,为的是利用干涉来降低玻璃表面的反射.为使波长为632.8纳米的激光毫不反射地透过,这覆盖层至少有多厚?解 从实际出发,可以认为光垂直入射于透镜表面.当某种波长的光在氟化镁薄 膜上下表面的反射相干相消时,我们认为该波长的光毫不反射地透过.薄膜干 涉光程差公式2/cos 222λ±=∆i d n ,相干相消满足λλ)2/1(2/cos 222+=±k i d n ,式中02=i ,1cos 2=i ,由于氟化镁膜上表面是折射率为1.0的空气,下表面是玻璃,玻璃折射率大于氟化镁的折射率,所以光程差公式中无2/λ±一项,上式可简化为λ)2/1(22+=k d n ,计算膜最小厚度,取k=0,得膜最小厚度46210146.138.14108.6324--⨯=⨯⨯==n d λ(毫米).3.8 焦距为30厘米的薄透镜沿一条直径切成L 1和L 2两半,将这两半彼此移开8.0厘米的距离(如计算题3.7图).位于光轴上的光源S 波长为500纳米,到L 1的距离是 60厘米,S '1和S '2 为光源形成的两个像. (1) 在图上标出相干光束的交叠区,(2) 在干涉区垂轴放置一屏幕,屏幕上干涉条纹的形状怎样? (3) 在两像连线中点垂轴放置屏幕,屏幕上条纹间距为多少?解 (1) 题中的干涉装置称为梅斯林干涉装置.光源点S经梅斯林透镜形成两个实象点S'1和S '2.干涉区如计算题3.8解图(a )所示,是像空间成像光束的交计算题3.8图n =计算题3.7解图叠区.(2) 将干涉区放大,如计算题3.8解图(b )建立坐标系.光源S 的像S'1(0,0,-a)和S '2(0,0,a)相距2a ,屏幕垂轴放置,P为干涉场中屏幕上任意一点,它是光线1'和2'的交点.以S '2为圆心,以2a 为半径作圆弧,交光线1'于S'1,交光线2'于Q,可认为光源S到S'1和Q点等光程,因此,1'和2'两光线到达P点,在P点的光程差为 ][2211S P S Q P S QP P S '-'-'=-'=∆2/12222/1222])[(2])[(y x z a a y x z a ++-+-+++=不同的P点将有不同的光程差,光程差为常数的点的轨迹方程为2/12222/1222])[(])[(y x z a y x z a ++++++-=+∆=a 2常数.这是一个以S'1和S '2为焦点的椭球方程,因此等光程差的轨迹是以S'1和S '2为焦点的旋转椭球面族.以垂直于光轴放置的屏幕截这些椭球面族,则得到以光轴为圆心、半圆形的、不定域的干涉条纹.(x,y )计算题3.8解图c计算题3.8解图b(3)以焦距30厘米,物距分别为60-厘米和)860(+-厘米,代入薄透镜成像公式,计算出两像距分别为60厘米和53.68厘米.两像点相距2a=1.68厘米,故干涉区在光轴的下方.若屏幕在两像点连线中垂面上,如计算题3.8解图c 所示,P 为屏幕上任意一点,相干光1' 和2' 在P 点的光程差为a r r a r QP P S 22)2(1211-=--=-'=∆, 因2/1222/12221)1()(ay x a a y x r ++=++=,在透镜孔径1s D '<<,222y x a +>>时,ay x a a y x a r 2)211(222221++≈+++= ,故1'和2'在P 点的相位差为]2)2(2[2222a ay x a -++=∆=λπλπδay x 222+=λπ.当λk ay x =+22时( ,2,1=k ),πδk 2=,该点是相干加强的点,为明条纹的中心.因此明条纹满足λka y x =+22,( ,2,1=k )令λρka =2,则222ρ=+y x .上式为标准的圆方程,k ∝ρ.由中心向外,条纹的半径分别为λρa =1,λρa 22=,……条纹间距为λρρρa k k k k ⋅-+=-=∆+)1(1.3.9 用钠光灯做杨氏干涉实验,光源宽度被限制为2毫米,双缝屏到光源的距离D=2.5米.为了使屏幕上获得可见度较好的干涉条纹,双缝间距选多少合适? 解 取钠光波长3.589=λ纳米.已知光源的宽度b =2毫米,相干孔径角被λθ≤b 式限制.即bλθ≤.由计算题3.9解图所示,要想得到可见度不为零的干涉条纹,双孔间距必需在上式孔径角所限制的范围内,即bD d λ<, 因此,双缝间距为736.02105.2103.58936=⨯⨯=<-b D d λ(毫米). 若想得到可见度较好的干涉条纹,光源上边缘光源点在屏幕上的光程差的差要小于或等于四分之一光源波长.即4λθ≤b ,或184.04=⋅≤bDd λ(毫米). 此种情况下,屏幕上干涉条纹可见度可达0.9以上.3.10 观察肥皂水薄膜(n=1.33)的反射光呈绿色(λ=500纳米),且这时法线和视线间角度为0145=i ,问膜最薄的厚度是多少?若垂直注视,将呈现何色? 解 入射到肥皂水薄膜表面光线的入射角为450,可求出光在膜内的折射角2i .由折射定律,20sin 33.145sin 0.1i ⨯=⨯,解出0212.32=i ,8470.0cos 2=i . 由于光在空气中的肥皂水膜上表面反射时有π的相位变化,在其下表面反射时无π的相位变化,因此光程差中要计入半波突变.对于相干加强的500纳米的绿光,应满足λλk i d n =-2/cos 222.题意求最薄厚度,应取0=k ,以各值代入上式,得8470.033.121210500cos 212622⨯⨯⋅⨯=⋅=-i n d λ41011.1-⨯=(毫米).同一厚度的肥皂水膜,若眼改微微垂直注视,则1cos 2=i ,此时看到的相干加计算题3.9解图强的波长λ'应满足λλ''='-k d n 2/22,将 2,1,0='k 代入上式发现,仅当0='k 时λ'才落在可见光范围内,以0='k 代入,求得3.590='λ纳米,为深黄色的光.可见,从不同方向观看,可以呈现不同颜色,这一现象也表现在一些鸟的羽毛薄膜上.有时从不同方向观看羽毛,颜色不同,这是一种薄膜干涉现象.3.11 如计算题3.11图所示,两平板玻璃在一边相连接,在与此边距离20厘米处夹一直径为0.05毫米的细丝,以构成空气楔.若用波长为589纳米的钠黄光垂直照射,相邻暗条纹间隔为多宽?这一实验有何意义?解 两玻璃板之间形成一尖劈空气隙,劈角4105.220005.0-⨯=÷=α弧度.经空气隙上下表面反射的光形成等厚干涉,由条纹间距公式18.1105.2210589246=⨯⨯⨯==∆--αλx (毫米).从上式可以看出,劈角愈小,条纹间距越大,越容易数出干涉条纹的条数.因为每相临两个等厚干涉条纹对应的厚度差等于半个波长,数出条纹数可以计算出细丝的直径.干涉条纹数越少,丝越细.因此,此实验可以做精密测量用.3.12 在牛顿环实验中,平凸透镜的凸面曲率半径为5米,透镜直径为20毫米,在钠光的垂直照射下(λ=589纳米),能产生多少个干涉条纹?要是把整个装置浸入n=1.33的水中,又会看见多少条纹?解 牛顿环实验装置产生等厚圆条纹.条纹半径公式为λkR r k =.式中k 是干涉圆条纹的序数.透镜的直径为20毫米,对应的干涉条纹序数为3410589105106322≈⨯⨯⨯==-λR r k k 条. 若装置放入水中,波长应为n /λλ=',看到的条纹数为452≈=''λR n r k k 条.计算题3.11图3.13 光学冷加工抛光过程中,经常用“看光圈”的办法检查工件的质量是否符合设计要求.如计算题3.13图所示,将标准件平凸透镜的球面放在工件平凹透镜的凹面之上,用来检验凹面的曲率.此时,凸面和凹面之间形成一空气层.在光线照射下,可以看到环状干涉条纹.试证明由中央外数第k 个明环的半径k r 和凸面半径R 1、凹面半径R 2以及波长λ之间的关系为12212)21(R R R R k r k --=λ.解 如计算题3.13解图所示,平凸透镜和平凹透镜之间形成空气隙,设A点处形成 k 级明条纹,明条纹半径为r k ,该处对应的空气膜厚度为d k .由图中几何关系得211221)(d R r R k -+=,将上式展开,并消去无穷小量21d ,得1212R r d k =, 同理可得2222R r d k =. K 级明条纹对应的膜厚为)11(221221R R r d d d k k -⋅=-=,k 级明条纹满足光程差公式λλk d k =+2/2.将k d 代入,整理得计算题3.13图 计算题3.13解图d12212)21(R R R R k r k --=λ.3.14 机加工中常常要用块规来校对长度.计算题3.14图中,块规G 1的长度是标准的,G 2是要校准的块规,两块块规的两个端面经过磨平抛光.G 1 和G 2的长度不等,在它们的上面盖以透明的平板玻璃G ,G 与G 1、 G 2之间形成空气隙,当用单色光照明G 的表面时,可产生干涉条纹.(1) 设所用光波波长为500纳米,图中,间距l =5厘米,观察到等间距的干涉条纹,条纹间距为0.5毫米.试求块规的高度差.怎样判断它们之中哪个长?(2) 如果G 和 G 1间干涉条纹间距是0.5毫米,G和G 2间干涉条纹间距是0.3毫米,则说明什么问题?解 (1)在玻璃平板G与块规之间形成尖劈形状的空气隙(计算题3.14解图a ),劈角α与产生的干涉条纹间距之间的关系为αλ2=∆x , 因此块规G 1、G 2之间的高度差为26105.25.021*******--⨯=⨯⨯⨯=∆==∆x l l h λα(毫米).轻轻压玻璃板G,G1和G2中短者与G 之间夹角变小,干涉条纹变疏;长者与G之间夹角变大,条纹变密(计算题3.14解图b).(2)在不加压力于G的情况下,若与G1、G2间干涉条纹间距不同,说明G1G2的上表面不严格平行,两表面空气劈角不等劈角差为2)11(1212λαααx x ∆-∆=-=∆计算题3.14图计算题3.14解图(a )(b )46103.3210500)5.013.01(--⨯=⨯⨯-=(弧度)3.15 若用钠光灯(λ1=589.0纳米,λ2=589.6纳米)照明迈克尔孙干涉仪,首先调整干涉仪,得最清晰的干涉条纹,然后移动M 1,干涉图样为什么逐渐变得模糊?问第一次干涉条纹消失时,M 1由原来位置移动了多少距离?解 迈可耳孙干涉仪双光束干涉,可以等效为空气中的空气膜的干涉.空气膜折射率为1.0.取视场中心,则0.10cos cos 2==i .今以λ1=589.0纳米和λ2=589.6纳米钠双线照明.设在空气膜厚度为d 1时,对λ1和λ2,干涉条纹中心都为明条纹,前者级次为1k ,后者级次为m k -1.视场中心同时满足 1112λk d =,(1)211)m k (d 2λ-=.(2)由于两谱线波长相差很小,所以它们干涉条纹宽度分布规律基本上一样.即在两者干涉图样中心都是亮条纹时,其他亮条纹也重合得很好.使得视场中干涉条纹看起来很清晰. 今逐渐移动M1,增加等效空气膜厚度d ,视场中心两种波长的干涉条纹各自以不同的速度外冒,由于两套干涉条纹非相干叠加的结果,使得视场中条纹可见度越来越坏,直至条纹完全消失.此时两套干涉图样恰好是一个的极大与另一个的极小相重合.因此有 1222λk d =,(3)222)21(2λ--=m k d .(4)代入已知量解上面四个方程,求得M 1移动的距离1447.012=-=∆d d d (毫米).3.16 用水银蓝光(λ =435.8纳米)扩展光源照明迈克耳孙干涉仪,在视场中获得整20个干涉圆条纹.现在使M1远离M'2,使d 逐渐加大,由视场中心冒出500个条 纹后,视场内等倾圆条纹变为40个.试求此干涉装置的视场角、开始时的间距d 1和最后的间距d 2.解 计算题3.16解图中,M1是圆形反射镜, M'2是圆形反射镜M2的像,二者等效为空气 膜面.它们对观察透镜中心的张角22i 是视场角.当M1和M'2的起始间距为d 1时,对于视场中心 和边缘,分别有λ中k d =12,1 '2计算题3.16解图λ)20(cos 221-=中k i d .间距由d 1增加到d 2的过程中,冒出500个条纹,则此时对中心和边缘有 λ)500(22+=中k d ,λ)40500(cos 222-+=中k i d .已知λ=435.8纳米,解上面四方程,可得0226.16=i ,500=中k , 109.01=d 毫米,218.02=d 毫米.3.17 用迈克耳孙干涉仪作精密测长,光源为632.8纳米的氦氖激光,其谱线宽度为10-4纳米,光电转换接收系统的灵敏度可达到1/10个条纹,求这台仪器的测长精度和测长量程.解 迈克耳孙干涉仪的测长精度由接收系统的灵敏度来决定.由于干涉条纹每变化一个,长度就变化半个波长.接收系统灵敏度可达到1/10个条纹,因此测长精度为64.312101=⋅=λδl (纳米). 一次测长量程m l 由相干长度0l 来决定.2212120≈∆⋅==λλl l m (米).3.18 我们大致知道某谱线的能量分布在600~600.018纳米范围内,并且其中包含很多细结构,最细结构的波长间隔为6×10-4纳米.试设计一标准具,用它可以研究这一谱线的全部结构.解 由于要分析的谱线能量在600~600.018纳米范围内,要求所设计的标准具(即d 固定的法布里-珀罗干涉仪)自由光谱范围应为018.022==∆dλλ自(纳米).由此计算出标准具反射面之间距离最大应为10018.02600222=⨯=≤自λλd (毫米). 所得最大的干涉级次为λdk m 2=.因最细结构的波长间隔为6×10-4纳米,此为要求的最小可分辨波长间隔.由此求出对标准具分辨本领的要求.即64101106600⨯=⨯=∆=-辨λλR .又因21r rk R m-=π,将k m 代入可求得反射面的振幅反射比为r ≥0.95.因此,要分析能量分布在600~600.018纳米范围内,最细结构的波长间隔为6×10-4纳米的谱线,标准具d 最大为10 毫米,反射面 r ≥0.95.3.19 设法-珀腔腔长5厘米,照明的扩展光源波长为600纳米,试求(1) 所得到的等倾干涉圆条纹中心的级次是多少?(2) 设光强反射率为0.98,在倾角10附近干涉环的半角宽度是多少? (3) 如果用这个法-珀腔分辨谱线,其色分辨本领有多高:(4) 如果用这个法-珀腔对白光进行选频,透射最强的谱线有几条?每条谱线的宽度为多少?(5) 由于热胀冷缩,引起腔长的改变量为510-(相对值),则谱线的漂移量为多少?解 (1)法布里-珀罗干涉仪透射光相干加强的件是 λk i nd =cos 2,对于干涉圆条纹中心,0.1cos =i ,上式为 λk nd =2,其中0.1=n ,5=d 厘米,600=λ纳米,代入上式,得干涉条纹中心级次56107.1106005022⨯≈⨯⨯==-λdk . (2)k 级亮环的半角宽度公式98.098.011sin 502106001sin 20622/0ππλ∆-⋅⨯⨯⨯=-⋅=-r r d i k I6102.2-⨯=(弧度)54.0''≈.可见亮环非常细锐. (3)分辨本领72106.21⨯=-=r rk R π,可分辨的最小波长间隔:57103.2106.2600-⨯=⨯==Rλδλ(纳米) (4)用白光做光源进行选频,相邻两极大的波长间隔32110025.32-=∆⨯==∆dk λλ(纳米)。

第三章 光现象 第一节 光的颜色 色彩-纯答案用卷

第三章 光现象 第一节 光的颜色 色彩-纯答案用卷

第三章光现象第一节光的颜色色彩答案和解析【答案】1. A2. D3. A4. C5. D6. B7. ABC8. 色散;绿光9. 反射10. 绿红黑11. 红;绿12. 大;色散13. 直线传播红绿蓝14. 答:因为黑色可以吸收所有色光,白色可以反射所有色光,所以同等情况下,黑色瓶子吸热多,水的温度高.由于蒸发的快慢与液体的温度有关,那么一样情况下,黑色瓶子中的水蒸发快,故一段时间后,黑色瓶子中的水的质量明显少于白色瓶子.15. 解:(1)梳头发时梳子和头发互相摩擦,发生了电荷的转移,使梳子和头发上带了不同的电荷而互相吸引,所以是摩擦起电现象;(2)雨后太阳光照在空气中的小水滴上发生折射而形成彩虹,即发生了光的色散;故答案如下表:现象物理知识例如衣柜里的樟脑球过段时间变小升华1在枯燥的天气里,梳头发时头发随梳子飘起摩擦起电2雨后的天空出现彩虹光的色散16. 解:太阳光通过三棱镜后,被分解成各种颜色的光,在白屏上形成一条彩色的光带,因为这条彩色的光带颜色依次是红、橙、黄、绿、蓝、靛、紫,所以最上面的是红光,最下面的为紫光,那么绿光的折射光线,如下图:【解析】1. 解:色光的三原色是:红、绿、蓝.应选A.根据对于色光三原色的认识来作答.此题考察了色光的三原色,是一道光学根底题.2. 解:白色物体可以反射所有色光,其他颜色物体反射与其一样的色光.当红色灯光照在白色上衣上时,白色上衣反射红色光,即看上去是红色;当红色灯光照在蓝色裙子上时,蓝色裙子将红色光吸收,没有色光反射,即看上去是黑色的.应选D.(1)不透明物体的颜色由物体反射的色光决定,不透明物体只能反射和它一样的色光,其他的色光被它吸收.(2)白光是复色光,包括各种颜色的光,白色物体反射所有的色光,不反射任何色光的物体看起来是黑色的.第 1 页此题考察了物体的颜色由所它反射的色光决定的特点,白光中包括各种颜色的光,是复色光.3. 解:不透明物体的颜色是由它反射的色光决定,绿色植物只反射绿光,其它色光全部吸收,所以用绿光照射时,绿色植物将绿光反射掉,植物不能进展光合作用,效能最低;应选A.不透明物体的颜色是由它反射的色光决定.此题主要考察物体的颜色,属于根底知识,应当掌握.4. 解:周杰伦在舞台上演出时,身穿红衣服,绿裤子和红白鞋子,当只有红光照来时,红衣服会反射红光,故衣服是红色的;绿裤子吸收红光,不反射光,故是黑色;白色的鞋子可以反射所有色光,故鞋子反射红光,显示红色。

第三章习题解答及参考答案

第三章习题解答及参考答案

(
)

2 式中 m 为整数。令 u = αr ,显然上式是 u 的周期函数,周期为 2π ,故可展开成傅里 ∞ 1 1 + sgn (cos u ) = ∑ Cn e inu 2 2 n = −∞
叶级数:
其中,
Cn =
1 2π

π 2
−π 2
e −inu du =
sin (nπ 2) nπ

遂有:
∞ 1 1 sin (nπ 2 ) inαr 2 e + sgn cos αr 2 = ∑ 2 2 nπ n= −∞

σ ( f x ,0 ) 2λd i =1− f x = 1− f x f0 σ0 l
l l ≤ λd i f x ≤ (见附图3 - 4(b)) 4 2
2 1 l l σ ( f x ,0 ) = (l − λd i f x ) l − = − λd i l f x 2 2 2
λd ;两个一级分量与中央亮斑 L
附图 3-2
习题[3-2]图示
附图 3-3
归一化强度分布
[3-3]
将面积为 10 mm × 10 mm 的透射物体置于一傅里叶变换透镜的前焦面上作频谱分析。
用波长 λ = 0.5 µ m 的单色平面波垂直照明,要求在频谱面上测得的强度在频率 140 线/mm 以下能准确代表物体的功率谱。并要求频率为 140 线/mm 与 20 线/mm 在频谱面上的间隔为 30mm,问该透镜的焦距和口径各为多少? 解:取面积为10mm ×10mm 的透射物体的对角线方向为 x 轴。因要求在 140 线/mm 以下的 空间频率成分不受到有限孔径的渐晕效应的影响,故透镜的口径 D 应满足条件:

工程光学习题参考答案第三章平面与平面系统

工程光学习题参考答案第三章平面与平面系统

第三章 平面与平面系统1. 人照镜子时,要想看到自己的全身,问镜子要多长?人离镜子的距离有没有关系? 解:镜子的高度为1/2人身高,和前后距离无关。

2有一双面镜系统,光线平行于其中一个平面镜入射,经两次反射后,出射光线与另一平面镜平行,问两平面镜的夹角为多少? 解:OA M M //32 3211M M N M ⊥∴1''1I I -= 又2''2I I -=∴α同理:1''1I I -=α321M M M ∆中 ︒=-+-+180)()(1''12''2I I I I α︒=∴60αO答:α角等于60︒。

3. 如图3-4所示,设平行光管物镜L 的焦距'f =1000mm ,顶杆离光轴的距离a =10mm 。

如果推动顶杆使平面镜倾斜,物镜焦点F 的自准直象相对于F 产生了y =2mm 的位移,问平面镜的倾角为多少?顶杆的移动量为多少? 解:θ'2f y =rad 001.02==θθx=mm a x 01.0001.010=⨯=⨯=∴θ图3-44. 一光学系统由一透镜和平面镜组成,如图3-29所示。

平面镜MM 与透镜光轴垂直交于D点,透镜前方离平面镜600mm 有一物体AB ,经透镜和平面镜后,所成虚像''A ''B 至平面镜的距离为150mm,且像高为物高的一半,试分析透镜焦距的正负,确定透镜的位置和焦距,并画出光路图。

图3-29 习题4图解: 由于平面镜性质可得''B A 及其位置在平面镜前150mm 处''''B A 为虚像,''B A 为实像则211-=β21'1-==L L β450150600'=-=-L L 解得 300-=L 150'=L 又'1L -L 1='1f mm f 150'=∴ 答:透镜焦距为100mm 。

《光学教程》第五版 姚启钧 第三章 光的干涉.解析

《光学教程》第五版 姚启钧 第三章 光的干涉.解析
2

r2 r1
2


3.3.2 干涉图样
2 I A12 A2 2 A1 A2 cos 2 A1 A2 2 A1 A2 2
2 j
干涉相长
2 j 1 干涉相消
j 干涉相长(明纹) 1 j 2 干涉相消( 暗纹)
1 A1 A2 2 A1 A2 2 A1 A2 V 2 2 2 A1 A2 1 A1 A2 0 A1 A2
——验证了干涉条件之一 振幅相差不能太大 令
I 0 I1 I 2 A A
2 1
2 1 2 2
2 2
2 A1 A2 I A A 1 2 cos 2 A1 A2 I 0 1 V cos
由光强公式
1 I1 4 I10Cos , 2 2 2 I 2 4 I 20Cos 2
2
1
2
1 2 2 2
I I1 I 2
,
yd l
dy 2dy 4 I10Cos 4 I 20Cos l1 l2
2
3.5菲涅耳公式
As1 n1 n2 Ap1 A’s1 A’p1
400 430 450 500 570 600 630 760 nm



cyan
绿
green



purple blue
yellow orange red
可见光 4~7.6 × 1014Hz
ν——频率,表征发光机制的物理量 真空中, 介质中,
c 0

0
n

折射率的定义:

光学实验知到章节答案智慧树2023年潍坊学院

光学实验知到章节答案智慧树2023年潍坊学院

光学实验知到章节测试答案智慧树2023年最新潍坊学院第一章测试1.光学实验室中常见的光源有()。

参考答案:热辐射光源;气体放电光源;激光光源2.钠光光源的波长为589.3nm。

()参考答案:对3.氦氖激光器发出的光波波长为632.8nm()。

参考答案:对4.光具座需要调节各个元件的等高共轴。

()参考答案:对5.使用测微目镜的过程中,将螺旋沿同一个方向旋转,目的是为了防止回城误差。

()参考答案:对6.分光计在使用前要进行调整,调整之前,要把仪器上的所有螺丝都调到中间的位置。

()参考答案:对7.借助双面镜调整垂直时,可随意放置。

()参考答案:错8.显微镜镜筒改变后,放大率也会随之改变。

()参考答案:对9.钠灯和汞灯点燃后一般要预热3~4分钟才能正常工作,熄灭后也需冷却3~4分钟后,方可重新开启。

()参考答案:对10.读数显微镜的读数鼓轮上每一个小格是0.1mm。

()参考答案:错第二章测试1.凸透镜成像时,物距在大于一倍焦距且小于两倍焦距处,成()。

参考答案:倒立放大实像2.用共轭法测凸透镜的焦距,不需要测量物距、像距。

()参考答案:对3.自准法测量凸透镜焦距,平面镜的位置最好在()。

参考答案:凸透镜近距离后面4.使用读数显微镜时,要单方向移动测量螺丝,以避免回程差。

()参考答案:对5.显微镜光学部分的照明系统由哪几部分构成?()参考答案:反射镜;聚光镜;可变光阑6.显微镜的转动手轮顺时针时会下降,逆时针时会上升。

()参考答案:对7.干涉和衍射是光具有波动性的具体表现。

()参考答案:对8.用测节器测定光具组基点时不需要准直物镜。

()参考答案:错9.分光计的主要结构包括( )。

参考答案:载物平台;望远镜;平行光管10.分光计的平线光管的作用是产生平行光,望远镜的作用是接收平行光,载物平台上放置光学元件。

()参考答案:对11.调整分光计至可以使用需要满足那几个条件?()参考答案:平行光管发出的平行光与主光轴垂直;载物平台与主光轴垂直;望远镜接收的光与主光轴垂直12.仪器调整好之后,望远镜的仰角螺丝,平行光管的仰角螺丝,载物平台底下的三个螺丝是不能再动的。

光学 第三章 光的衍射

光学 第三章  光的衍射
d
19
光学仪器的分辨本领
成像光学仪器都有限制光束的孔径。物光通过光学仪器成像 时,由于衍射作用,物点所成的像是一个爱里斑。
几何光学
波动光学
经透镜
物点 像点 物点
经透镜
艾里斑
物(物点集合)像(像点集合) 物(物点集合)像(爱里斑集合)
20
D
夫琅禾费圆孔衍射是一个在一切使用透镜的光学系统中普遍 存在的现象。因为任何一个单透镜成像,都可以看成两个透镜加 上一个光阑的组合。因此几何像点实际上是有一定半径的爱里斑, 这种情况就产生了一个问题,即两个像斑可能发生重叠,重叠到 一定程度,就无法分辨。这就是仪器的分辨本领问题。

Δ λ
s1 *
r1
r2
P
s 2*
n
透镜不引起附加的光程差
9
强度分布公式
R
L
衍射角
f
P
Q
B b
C

N
b sin
o
单缝宽度b,从B到C发出的次波传播到P点的相位差逐点增加, 2 2 BC两点的相位差为 θ称为衍射角 b sin 10
矢量图解法
B b
D
F P
ye l e 25cm 3.3 10 4 rad 0.08mm
人眼在 10m处的分辨本领: ye l e 10m 3.3 10 4 rad 3.3mm
人眼睛分辨本领对一些仪器的设计有指导作用。
24
望远镜的分辨本领和物镜口径
望远镜的角放大倍数
屏幕 屏幕
阴 影
缝较大时,光是直线传播的
缝很小时,衍射现象明显
当障碍物的线度接近光的波长,衍射现象尤其显著。

蔡履中光学课后习题答案光学第三章课后题

蔡履中光学课后习题答案光学第三章课后题

d zm x λ='dzm x 2)12(λ+='dzd z 2132)132(λλ=+⨯nm 67.5086712==∴λλ极大值极小值解:53-mm d z e 45.0105.0103.3363=⨯⨯⨯==--λλm h n =-)1(λm d z x ='λz x d m '=zx d h n '=-∴)1(zh dx n '=+∴152.11001.03103.31073.41333=⨯⨯⨯⨯⨯=+=---n 条纹向上移动解:43-cms 40='5=βmmd d 152.0=⨯==∴βcms z 52210=++'=mmdze 26.0==∴λ,则由成像公式)若右移(cm 23方向垂直于21s s 21εαεαλ+=e 001.01022.0221=⨯==⋅==⋅f d f z dαεαεmmm e 25.0105.2002.01050049=⨯=⨯=∴--ε,带公式求的像距求亦可用成像2121s s s s S )直条纹(1解:63-间距为空间周期)条纹无变化(2x d z e =15= 5.11015==∴e nm z ed 58715.11045.05.15=⨯⨯==-λ解:33-86.21==dz e λnm400=λ93.32==z de λnm 550=λnm 700=λ53=e 解:23-4=d 5.1=z 1875.0==∴d z e λ由几何关系45.3=x 15.1='x 3.215.145.3=-='-=∆∴x x x 条取可观察:122.121875.03.2=解:113-60=l 18012060=+=z θλ⨯⨯-=60)1(2n ze rad31084.8-⨯=θ2.051==e mm x n 6.10)12(=-θ范围:解:103-rade 3100.1-⨯=5.0=l 25.15.0=+=z mml z e 1105.02250023=⨯⨯⨯==∴-θλl z l x d m-=5.12lx l m =θmm x m3=条3=e x m可观察∴解:93-)有由几何关系(见书上图7.2.3α201cos I =I β202cos I =I βαθ+=而)cos(cos cos cos cos 2)cos(cos cos cos cos 2cos 22222222121βαβαβαβαβαβαθ++=++=I +I I I =v 夹角21P P 后的通过21P P 00,2I P I 后为则透过设入射光强为解:73-cmf tg D 048.130=⋅=048.1=Nγ设hn n f λγN =N0则λγN =∴N n f 221.6106005.120102048.1923222=⨯⨯⨯⨯⨯==N ∴--N λγn f h个亮环可观察6∴解:273-i f e δ⋅=或用ndn n i λδ021=cme 671.0=i nh cos 2=∆光程差时)(010=i 331061025.122--⨯=⨯⨯⨯=nh m m 4391010610600⨯⨯=⨯=--hnN n f r λ.102=)(00=n 5.1=n CMF 20=10=N cmr 34.1067.02010210600105.11203910=⨯=⨯⨯⨯⨯=∴--cmr 4.107.02010210600115.12033911=⨯=⨯⨯⨯⨯=--)(cmr 27.120063.01021060095.120399=⨯=⨯⨯⨯⨯=--cm r 07.027.134.1=-=∆cmr 06.034.14.1=-=∆∴为明点∴无半波损失解:263-mmm d z b s3164.04.316102108.632139==⨯⨯⨯==--Mμλmmm b b p0791.01.7941===Mμ解:163-t C L C∆=s c l t c 982101031030--=⨯⨯==∆x f Hz t '=∆=∆9101ν()nmmm m x c 3912918221038.11038.11038.110108.643----⨯=⨯=⨯=⨯'⨯=∆=∆νλλ解:223-mmb z dm s2.1105.010600139=--⨯⨯⨯==λmm b z dm s4.2105.010600239--⨯⨯⨯==λ解:173-21h h h +=2)12(22λλ+=+=∆m h 2λm h =∴11212h R r =由几何关系22222hR R =222222121λm R r R r =+∴21r r =λm R R R R r 21212+=∴2121R R m R R r +=λ解373-2020=R 220,2=⋅=∴λλR Rm 2010231-⨯=λR 2010432-⨯=λR 3.589=λm R 34.01=∴mR 35.12=∴cmR R n f 543.074.094.22)35.1134.01(5.01)11)(1(121=+=+=--=∴解:353-mm r r 123=-2021rr -求m R r R e mλλ212==λmR r m=12323=-=-∴λλR R r r 1)23(=-λR )23(231+=-=λR mmR r r 346.0146.311.0)23)(2021()2021(2021=⨯=+-=-=-∴λ解333-αλn e 2=ad ne γλα5310876.310552.123.5892--⨯=⨯⨯⨯==∴解313-λλm nh =+22337.1=n m h 910380-⨯=910016.1)21(-⨯=-λm 时当1=m nm 20321=λ时2=m nm3.6772=λnm4.4063=λ时3=m λm nh =2时当1=m nm 1016=λ时2=m nm 5082=λnm3383=λ时3=m 时当nm h 38=<<9106.1012-⨯=nh 光干涉相长反射光干涉相消,透射远小于.λ解:303-nm nm 3.677064.4和最强光波长为∴透射光无半波损失波长的光最强508∴,则条纹移过一个每移动2λ1102423220.0=∴λnm 9.62810242322.0=⨯=λ:解40-321h h h +=2)12(22λλ+=+=∆m h 2211222hR h R r ==12212R R m R R r -=λ2222212λm R r R r =-∴1221R R m R R r -=∴λ解:同上题38-3λλm h =+222)12(λk m r -=亮环半径m r m 311006.13-⨯==时mrR 9988.052121==∴λm r m 321077.15-⨯==时nmr rr r r R 1.697952592921212221122222=⋅=⋅==∴λλλ解363-解:413-hn )1(2-了插入玻璃板后光程增加条纹移一条)每增加则条纹增加一条(厚度光程每增加2λλ120)1(2=-∴λh n λ10)1(=-∴h n nmm n h 41009.19.10110⨯==-=μλ解:433-nm 0013.0=∆λλλγ∆=∆∴2c γ∆=∆∴1t cmc L c88.312=∆=∆=∴λλγhh 2则光程增加镜子每移动最大光程差cL h =2cm L h c94.15288.312===∴λm h =个510476.2⨯==λhm 解:463-2)1(4R R F -=2r R =80)1(4)1(222=-=∴r rF 447.04)2(==∆Fδ05.142)3(=∆=σπϑF 9756.02993.012)4(2=+==+=F FR r V解:473-λ02m nh =1=n 41042⨯==λhm 第二十个环399802040000200=-=-=m m λm i h =cos 29995.010210500399802cos 29=⨯⨯⨯==∴--h m i λyad i 201016.381.1-⨯==变化。

第三章几何光学基本原理习题及答案

第三章几何光学基本原理习题及答案

第三章 几何光学基本原理1.证明反射定律符合费马原理。

证明:费马原理是光沿着光程为最小值、最大值或恒定值的路径传播。

⎰=BAnds 或恒值max .min ,在介质n 与'n 的界面上,入射光A 遵守反射定律11i i '=,经O 点到达B 点,如果能证明从A 点到B 点的所有光程中AOB 是最小光程,则说明反射定律符合费马原理。

设C 点为介质分界面上除O 点以外的其他任意一点,连接ACB 并说明光程∆ ACB>光程∆AOB由于∆ACB 与∆AOB 在同一种介质里,所以比较两个光程的大小,实际上就是比较两个路程ACB 与AOB 的大小。

从B 点到分界面的垂线,垂足为o ',并延长O B '至 B ′,使B O B O '='',连接 B O ',根据几何关系知B O OB '=,再结合11i i '=,又可证明∠180='B AO °,说明B AO '三点在一直线上,B AO ' 与AC 和B C '组成ΔB AC ',其中B C AC B AO '+〈'。

又∵CB B C AOB OB AO B O AO B AO ='=+='+=',ACB CB AC AOB =+〈∴即符合反射定律的光程AOB 是从A 点到B 点的所有光程中的极小值,说明反射定律符合费马原理。

2、根据费马原理可以导出在近轴光线条件下,从物点发出并会聚到像点的所有光线的光程都相等.由此导出薄透镜的物象公式。

证明:由QB A ~FBA 得:OF\AQ=BO\BQ=f\s同理,得OA\BA=f '\s ',BO\BA=f\s由费马定理:NQA+NQ A '=NQ Q '结合以上各式得:(OA+OB)\BA=1得证 3.眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板(见题3.3图),平板的厚度d 为30cm.求物PQ 的像 与物体PQ 之间的距离 为多少?解:.由题意知光线经两次折射后发生的轴向位移为:cmn d p p 10)321(30)11(=-=-=',即像与物的距离为cm 10题3.3图4.玻璃棱镜的折射棱角A 为60度,对某一波长的光其折射率为1.6.计算(1)最小偏向角;(2)此时的入射角;(3)能使光线从A 角两侧透过棱镜的最小入射角.解:由最小偏向角定义得 n=sin2A0+θ/sin 2A,得θ0=46゜16′由几何关系知,此时的入射角为:i=2A0+θ=53゜8′当在C 处正好发生全反射时:i 2’= sin-16.11 =38゜41′,i 2=A- i 2’=21゜19′∴i 1= sin -1(1.6sin 21゜19′)= 35゜34′ ∴imin =35゜34′5.图示一种恒偏向棱角镜,它相当于一个30度-60-90度棱镜与一个45度-45度度棱镜按图示方式组合在一起.白光沿i 方向入射,我们旋转这个棱镜来改变1θ,从而使任意一种波长的光可以依次循着图示的路径传播,出射光线为r.求证:如果2sin 1n=θ则12θθ=,且光束i 与 r 垂直(这就是恒偏向棱镜名字的由来). 解: i nsin sin 11=θ若θ1sin = 2n , 则 sini 1 = 21, i 1=30。

第三章__几何光学的基本原理

第三章__几何光学的基本原理

由图可知 d ? QQ QN sin i i 设QN x ,即光线横向的偏移,则d ? sin i i (1) 在出射点B 处,有 n sini ? nsin^ ,因此可得 i 1 i 1 第三章几何光学的基本原理 3.眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板(如图所示),平板的厚 度d 为30cm 求物体PQ 的像PQ 与物体PQ 之间的距离d ?为多少? 已知:n 1, n 1.5, d 30cm在入射点 A 处,有 nsinh n sin i ?即出射线与入射线平行,但横向偏移了x由图中几何关系可得:dx AB sin i1 i? sin i t i ?cosi?而 ni i n i ?, 则 x d i 1 i 2 n . 所以i 2 iln d i i i i,即n (2)式代入(1)式得 d 26.高5cm 的物体距凹面镜顶点 并作光路图1 i i n d . n 1 i 1 i 1 n 1.5 1d Id 10cm 1.5 3 12cm ,凹面镜的焦距是10cm,求像的位置及高度, 求:s ?y ? 作光路图 1 1 1解:根据— f s s 11 1 1 1 1 刁曰 —得s f s10 12 60 s60cmy s n又据— — —,而 n ny s n所以得ys y 60 5 25cm s 12 光路图(r f 2 10cm, r 20cm7. 一个5cm 高的物体放在球面镜前10cm 处,成1cm 高的虚像。

求:(1)此镜的 曲率半径;(2)此镜是凸面镜还是凹面镜?已知: y 5cm , y 1cm , s 10cm已知:y 10cm根据反射镜_y_解: y得: s 上s 1 - 10y51 1 2又由s s r刁曰r,得r ss2cm5cm >0 ,所以此镜是凸面镜。

求:r ?此镜是凸面镜还是凹面镜?8. 某观察者通过一块薄玻璃去看在凸面镜中他自己的像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 证:设两个均匀介质的分界面是平面,它们的折射率为n 1和n 2。

光线通过第一介质中指定的A 点后到达同一介质中指定的B 点。

为了确定实际光线的路径,通过A,B 两点作平面垂直于界面,O O '是他们的交线,则实际 光线在界面上的反射点C 就可由费马原理来确定(如右图)。

(1) 反正法:如果有一点C '位于线外,则对应于C ',必可在O O '线上找到它的垂足C ''.由于C A >C A ,B C >B C ,故光谱B C A '总是大于光程B C A ''而非极小值,这就违背了费马原理,故入射面和反射面在同一平面内得证。

(2) 在图中建立坐oxy 标系,则指定点A,B 的坐标分别为(y x 11,)和(yx 22,),未知点C 的坐标为(0,x )。

C 点在B A '',之间是,光程必小于C 点在B A ''以外的相应光程,即x xx 21<<,于是光程ACB 为:y x x n y x x n CB n AC n ACB n 221121221111)()(+-++-=+=根据费马原理,它应取极小值,即:()()()()()(12222211212111-'=+---+--=CB AC n y x x x x n y x x x x n n dx di i 11=',∴0)(1=ACB n dx d取的是极值,符合费马原理。

故问题得证。

2.(1)证:如图所示,有位于主光轴上的一个物点S 发出的光束经薄透镜折射后成一个明亮的实象点S '。

由于球面AC 是由S 点发出的光波的一个波面,而球面DB 是会聚于S '的球面波的一个波面,固而SB SC =,B S D S '='.又光程FD EF n CE CEFD ++=,而光程AB n AB =。

根据费马原理,它们都应该取极值或恒定值,这些连续分布的实际光线,在近轴条件下其光程都取极大值或极小值是不可能的,唯一的可能性是取恒定值,即它们的光程却相等。

由于实际的光线有许多条。

我们是从中去两条来讨论,故从物点发出并会聚到像点的所有光线的光程都相等得证。

除此之外,另有两图如此,并与今后常用到:3.解:由13164-L P 的结果)11(n h P P -='得:)11(2n d d -==)5.111(30-⨯=10(cm )4.解:由P 170结果知: (1)2sin 2sinA A n +=θ, 2sin2sin 0A A n +=θ∴ AAn -=-]2sin [sin 21θ60]260sin 6.1[sin 21-⨯=- 60]8.0[sin 21-=-6013.532-⨯=26.46=6146'≈(2) 805326061462'=+'=+='A i θ (3)i i n 102sin sin =∴6.116.190sin sin sin 102=='='n i i 143868.386.11sin 12'==='-i而 912114386022'='-='-=i A i 又 n dii =102sin sin i n i 210sin sin =4335433557.35)9121sin 1(sin 10min110'=='≈='=∴-i i i 故:5.证:414.1222245sin 2sin .245.1i 9090:i 909021nsin30sin sin 303021sin 2nsin sin sin 12121212212211121222222121==⨯=====⊥=+=∴=+⊥=+∴==+=∴=''===θθθγθθαααθγαθθθαθθθθθθn or i n i i i i in 由此可推论讨论:得证。

即故:,,又得证。

即,而又得证。

=而==即:则=若6.解:)(2551260)(606011211011111111cm ys s y ss y y cm s s sf s f s s -=⨯---='-='∴-'-='--='∴-=--+'-'='∴'=+' 又-即:7.解:(1))(552101212211)(2)10(51/////cm r r r s scm s y y s ss y y =∴=-==+=-⨯-=-=∴-==即又 β(2).05是凸透镜>=cm r9.证:P D n y P D y n n n ynn y '='∴'===='1112121,第一次折射:P E P E P E P E P P P E d y ny d y y n n '-'='--'-='∴'=-'='-'===111112112)()()(1,n,1第二次折射:n n dn d d p D d n p D d p D d p D n nd p D d y n 1)11(1)()(1)()(1111111-=-=+'--'=-'--'=-'--'=由图可知,若 使凹透镜向物体移动n n d1-的距离 亦可得到同样的结果。

10.解:γn n s n s n -'=-'21212,1212='='-'-'='-'-'∴=='∞=n n n n n n n n s s 故而:γγγP ′11.解:(1)由73208-L P 经导知:)(6)15.1(245.1)1(2cm n nR f =-⨯=-='按题意,物离物方主点H 的距离为)46(+-, 于是由)(15151303510161111111cm s f s s f s s ='∴=-=-+='+=''=-'得(2)5.14615=+='=s s β12.解:r n n s n s n r n n s n s n -'-''=∴-'=-'(1)r s r n r n n rn s nrs ==-'-'=∴='11即 仍在原处(球心),物像重合 (2)r n n r n n r n r n n n s n r s +'=-'-'=-'-'=∴='22221γ )(22n n nDn n nr s +'=+'=)(05.6)153.1(22057.1cm ≈+⨯⨯=13.解:(1)即鱼在原处又cm r s rn r n r n n s n r s s n r n n sn r n n s n s n 152=='∴'=+-'=''=+-'=∴-'=-''(2)33.1133.11515=⨯='⋅'='=n n s s y y β14解: (1)cmr n n n f cmr n n n f 647.17233.150.150.1647.15233.150.133.1=⨯-=-''='-=⨯--=-''=cm f s f s s sf s s f s f s f s f 5.1846.18647.7176.141)647.15(8647.17811-≈-≈-=---⨯-=-'='∴-==''=+''-即而(2)2046.250.133.185.18≈≈⨯--='⋅'='=n n s s y y β(3)光路图如右: 15解: (1)cm s s f s s s f s f ff s f s f f n f n n r r r n n n nf rn n rn n nn n r n r 92.400244.012.3912011111112.39)33.15.1(21033.1,,,)(1111121211221-='='∴-=---=-='=+''-∴-='=+'''-=-≈-⨯⨯=+-=∴'=====--=-'+-'--'-凸又(2)cms s f s s s f s f ff s fs f fn n nr n f n n r r r n n n nf rn n rn n n n n r n r 23.130756.012.3912011111112.39)33.15.1(21033.1)(2,,,)(222222222221211221-='='∴-=-+-='+='=-+''∴-='=+''-=-≈-⨯⨯-=-'-=+='∴'=====+='--'+--'-凹又(3)16.解:(1)透镜在空气中和在水中的焦距分别为:6.211)154.1(401)1(11154.109.222.34033.1)408.1361(33.1)1()1()()()1()1()11(1)11)(1(11211212121212121212212211=-⨯=-'=-≈--=--⨯=''-'''-'=∴''-'=''-''''-''='-''''-=-''--'=''∴-''-='--='n f rr f n f f n n f f n f f n n f f n f f n n n n f f n n n n n n n n f f r r n n n f rr n f(2)透镜置于水2cs 中的焦距为:cmf r r n n n f 4.43708.0992.34992.3408.06.21162.162.154.1)11(13213-=--='∴-=⨯-=-''''-='17.解:cmrr n n n n f n n n n f rn r n nn 78.4409.033.033.1)251201(33.1133.1)11()1(212122211-≈⨯-=---=-'--'='∴'==+='--18.解:(1))。

相关文档
最新文档