初中一元二次函数教案

合集下载

一元二次不等式教案5篇

一元二次不等式教案5篇

一元二次不等式教案一元二次不等式教案5篇作为一名优秀的教育工作者,总不可避免地需要编写教案,借助教案可以更好地组织教学活动。

那么教案应该怎么写才合适呢?以下是小编整理的一元二次不等式教案,仅供参考,希望能够帮助到大家。

一元二次不等式教案1教学内容3.2一元二次不等式及其解法三维目标一、知识与技能1.巩固一元二次不等式的解法和解法与二次函数的关系、一元二次不等式解法的步骤、解法与二次函数的关系两者之间的区别与联系;2.能熟练地将分式不等式转化为整式不等式(组),正确地求出分式不等式的解集;3.会用列表法,进一步用数轴标根法求解分式及高次不等式;4.会利用一元二次不等式,对给定的与一元二次不等式有关的问题,尝试用一元二次不等式解法与二次函数的有关知识解题.二、过程与方法1.采用探究法,按照思考、交流、实验、观察、分析得出结论的方法进行启发式教学;2.发挥学生的主体作用,作好探究性教学;3.理论联系实际,激发学生的学习积极性.三、情感态度与价值观1.进一步提高学生的运算能力和思维能力;2.培养学生分析问题和解决问题的能力;3.强化学生应用转化的数学思想和分类讨论的数学思想.教学重点1.从实际问题中抽象出一元二次不等式模型.2.围绕一元二次不等式的解法展开,突出体现数形结合的思想.教学难点1.深入理解二次函数、一元二次方程与一元二次不等式的关系.教学方法启发、探究式教学教学过程复习引入师:上一节课我们通过具体的问题情景,体会到现实世界存在大量的不等量关系,并且研究了用不等式或不等式组来表示实际问题中的不等关系。

回顾下等比数列的性质。

生:略师:某同学要把自己的计算机接入因特网,现有两种ISP公司可供选择,公司A每小时收费1.5元(不足1小时按1小时计算),公司B的收费原则是第1小时内(含恰好1小时,下同)收费1.7元,第2小时内收费1.6元以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算)那么,一次上网在多少时间以内能够保证选择公司A的上网费用小于等于选择公司B所需费用。

一元二次函数教案

一元二次函数教案

数学一元二次方程一.知识点归类知识点一一元二次方程的定义注意:一元二次方程必须同时满足以下三点:①方程是整式方程。

②它只含有一个未知数。

③未知数的最高次数是2.同时还要注意在判断时,需将方程化成一般形式。

例1 下列关于x 的方程,哪些是一元二次方程?⑴ 3522=+x ;⑵062=-x x ;(3)5=+x x ;(4)02=-x ;(5)12)3(22+=-x x x 例2 已知关于x 的方程()()021122=-+--+x m x m m 是一元二次方程时,则=m知识点二 建立一元二次方程模型建立一元二次方程模型的步骤是:审题、设未知数、列方程。

注意:(1)审题过程是找出已知量、未知量及等量关系;(2)设未知数要带单位;(3)建立一元二次方程模型的关键是依题意找出等量关系。

例3 如图(1),有一个面积为150㎡的长方形鸡场,鸡场一边靠墙(墙长18m ),另三边用竹篱笆围成,若竹篱笆的长为35m ,求鸡场的长和宽各为多少? (只设未知数,列出方程,并将它化成一般形式。

)知识点三 直接开平方法解一元二次方程 若()02≥=a a x ,则x 叫做a 的平方根,表示为a x ±=,这种解一元二次方程的方法叫做直接开平方法。

(1)()02≥=a a x 的解是a x ±=;(2)()()02≥=+n n m x 的解是m n x -±=;(3)()()0,02≥≠=+c m c n mx 且的解是mn c x -±=。

例4 用直接开平方法解下列一元二次方程 (1)01692=-x ; (2)()01652=-+x ; (3)()()22135+=-x x知识点四 用配方法解二次项系数不是1的一元二次方程当一元二次方程的形式为()1,002≠≠=++a a c bx ax 时,用配方法解一元二次方程的步骤:(1)先把二次项的系数化为1:方程的左、右两边同时除以二项的系数;(2) 移项:在方程的左边加上一次项系数的一半的平方,再减去这个数,把原方程化为()n m x =+2的形式; (3)若0≥n ,用直接开平方法或因式分解法解变形后的方程。

人教版九年级数学上册22.2二次函数与一元二次方程(教案)

人教版九年级数学上册22.2二次函数与一元二次方程(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数与一元二次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这两个知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
5.培养学生的合作意识和团队精神,通过小组讨论、合作完成抛物线与坐标轴围成图形面积等问题的探讨,增强学生之间的沟通与协作。
三、教学难点与重点
1.教学重点
(1)二次函数的定义及其图像性质:理解并掌握二次函数的基本形式,明确a、b、c的取值对二次函数图像的影响,特别是a的正负决定图像开口方向,顶点坐标的求法等。
举例:y=x²+2x+1与y=-2x²+3x+1的图像区别及顶点坐标的求解。
(2)一元二次方程的解法:熟练掌握因式分解法、配方法、求根公式法等解一元二次方程的方法,并能够根据方程特点选择合适解法。
举例:解方程x²-5x+6=0,通过因式分解法求解;解方程x²-4x+3=0,通过配方法求解。
(3)二次函数与一元二次方程的关系:理解二次函数图像与x轴交点坐标即为相应一元二次方程的解,并能应用于实际问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次函数与一元二次方程》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过抛物线形状的情况?”(如抛掷物体时的轨迹)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次函数与一元二次方程的奥秘。

一元二次函数教案

一元二次函数教案

一元二次函数教案教学目标:1. 理解一元二次函数的概念及其基本性质。

2. 掌握一元二次函数的图像、顶点、轴、对称轴等概念。

3. 掌握一元二次函数的基本图像变换。

4. 能够解一元二次函数的相关问题。

教学重点:1. 一元二次函数的基本概念及性质。

2. 一元二次函数图像的绘制。

教学难点:1. 一元二次函数相关问题的解答。

2. 一元二次函数图像的基本变换。

教学准备:教师准备:教材、黑板、多媒体课件。

学生准备:笔记本、铅笔、直尺等。

教学过程:一、导入新知(5分钟)教师通过多媒体课件展示一元二次函数的图像,引发学生兴趣,激发学生对新知识的探索欲望。

二、呈现新知(10分钟)教师对一元二次函数的定义进行讲解,并引导学生通过例题理解一元二次函数的概念和特点。

并通过多媒体课件展示一元二次函数的图像,引导学生发现一元二次函数图像的规律。

三、指导学习(20分钟)1. 讲解一元二次函数的图像特点:开口方向、顶点、对称轴和轴等。

2. 将一元二次函数的图像特点与一元二次函数的系数联系起来,通过调整系数观察图像的变化,体验一元二次函数图像的基本变换。

四、合作探究(20分钟)1. 将学生分为小组,每个小组根据给出的一元二次函数,画出函数的图像,并标出顶点、轴和对称轴。

2. 各小组互相交流并比较各自的图像,讨论其中的规律。

五、达标检测(10分钟)1. 出示一些应用题,要求学生利用一元二次函数图像解题。

2. 随机抽取学生回答问题,并给予评价和指导。

六、拓展延伸(10分钟)1. 引导学生思考:对于一元二次函数图像的基本特点,能否推广到其他类型的函数图像中?2. 鼓励学生自学相关知识,并通过小组讨论和展示总结成果。

七、作业布置(5分钟)布置练习题,巩固所学知识。

教学反思:本节课通过引入一元二次函数的图像,激发了学生的学习兴趣,并通过具体的例题和图像分析,有助于学生理解一元二次函数的概念和性质。

通过小组合作探究活动,使学生能够独立画出函数的图像并找出图像的特点。

九年级数学《一元二次方程》教案优秀九篇

九年级数学《一元二次方程》教案优秀九篇

九年级数学《一元二次方程》教案优秀九篇元二次方程教案篇一教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。

重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。

教学过程:一.情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二.探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。

活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)2)当x=时,函数值y=0。

3)求方程x2-x-6=0的解。

4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。

2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。

三.例题分析例1.不画图象,判断下列函数与x轴交点情况。

(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-11)当m为何值时,图象与x轴有两个交点2)当m为何值时,图象与x轴有一个交点?3)当m为何值时,图象与x轴无交点?四.拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。

1)请写出方程ax2+bx+c=0的根2)列举一个二次函数,使其图象与x轴交于(1,0)和(4,0),且适合这个图象。

九年级数学上册《二次函数与一元二次方程》教案、教学设计

九年级数学上册《二次函数与一元二次方程》教案、教学设计
2.教学过程:
(1)教师给出练习题,要求学生在规定时间内完成。
(2)学生独立完成练习题,教师巡回指导,解答学生的疑问。
(3)教师挑选部分学生的作业进行展示、讲解,总结解题方法。
(五)总结归纳
1.教学内容:总结二次函数与一元二次方程的知识点,梳理知识结构。
2.教学过程:
(1)教师引导学生回顾本节课所学内容,总结二次函数与一元二次方程的知识点。
(2)学生分享自己的学习心得,交流学习过程中遇到的困难和解决方法。
(3)教师总结归纳,强调重点,指出易错点,为课后复习提供指导。
五、作业布置
为了巩固学生对二次函数与一元二次方程知识点的掌握,提高学生的实际应用能力,特布置以下作业:
1.请同学们结合课堂所学,完成课后练习题第1、2、3题,加深对二次函数与一元二次方程概念的理解。
二、学情分析
九年级的学生已经具备了一定的数学基础,对一次函数、一元一次方程等知识点有了深入的理解和掌握。在此基础上,学生对二次函数与一元二次方程的学习将更加顺利。然而,由于二次函数与一元二次方程的概念较为抽象,学生在理解上可能会遇到一定的困难。此外,学生在解决实际问题时,可能会对知识点的运用感到困惑。
2.从生活中的实际问题出发,选取一个案例,将其抽象为二次函数与一元二次方程模型,并求解。要求撰写解题过程,明确解题思路和方法。
3.小组合作,共同完成一道拓展题。题目如下:
拓展题:已知抛物线y = ax^2 + bx + c(a≠0)的图象,求该抛物线与x轴的交点坐标。
要求:各小组通过讨论、探究,给出至少两种解题方法,并在课堂上分享解题过程和心得。
4.培养学生面对困难、挑战的精神,鼓励学生勇于尝试、不断探索,树立克服困难的信心。

一元二次方程优秀教案

一元二次方程优秀教案

一元二次方程优秀教案一元二次方程是初中数学的主要内容,在初中代数中占重要地位。

学生积极动手、动脑、动口为主线来完成。

在教学中渗透类比化归等数学思想,让学生充分观察、体验,同时营造轻松愉快的学习氛围,以此激发学生的学习兴趣并渗透环保内容。

以下是小编整理的关于一元二次方程教案,欢迎查阅!一元二次方程教案1教学目标1、知识与能力目标:要求学生会根据实际问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分析的能力。

2、过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念。

3.、情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识并与校园绿化相结合。

教学重点、难点教学重点:通过实际问题模型建立一元二次方程的概念,认识一元二次方程一般形式.2。

难点:通过实际问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念。

教学过程:(一)创设情景,导入新课问题一:学校有一块面积为900平方米的长方形绿地,并且长比宽多10米,则绿地的长和宽为多少分析:设长方形绿地的宽为x米,则列方程,整理可得。

问题二:有一块矩形绿化带,长100cm,宽50cm,在它的四角各栽种一个同样的正方形花坛,如果去掉四周矩形的底面积为3600cm2,那么四周花坛面积是多大的正方形分析:设长方形绿地的宽为x米,则列方程,整理可得。

问题三:要组织一次环保竞赛,参加的每两个班之间都要比赛一场。

根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个班参赛【设计意图】因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。

同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。

情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课,并激发学生环保意识。

一元二次方程教案

一元二次方程教案
任何一个一元二次方程都可以化为ax2+bx+c=0(a≠0)的标准形式
介绍一次项、二次项、常数项、一次项系数、二次项系数。
特别强调:a≠0,要正确说出各项系数,必须化成标准形式。
思考:
为什么一般形式中ax2+bx+c=0项中,关于x的一元二次方程的是( )
概念:1、只含有一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程。
2、三个条件:整式方程+ 一个未知数+未知数的最高次数为2
3、任何一个一元二次方程都可以化为ax2+bx+c=0(a≠0)的标准形式
4、一次项、二次项、常数项、一次项系数、二次项系数。
5、例题讲解
教学反思
本节课是人教版九年级数学(上册)第二十一章的第一节,主要介绍一元二次方程的概念及一般形式ax2+bx+c=0(a≠0)的概念,是典型的概念课。在教学过程中使用四环节循环教学法,让学生经历自学质疑——合作释疑——展示评价——巩固深化的过程。强调自主学习,注重合作交流,让学生与学生的合作交流在探究过程中进行,使他们在自主探索的过程中理解和掌握一元二次方程的概念及一般形式,并获得数学活动的经验,提高探究、发现和创新的能力。一元二次方程是学生学习了一元一次方程和二元一次方程组之后所接触的第三类方程,所以对于的它的概念,学生根据它的名称就能很容易知道。这里我通过两个实际问题,让学生经历了一元二次方程的产生过程,之后让学生来归纳出一元二次方程的三个特点①只有一个未知数;②未知数的最高次数是2次③方程两边都是整式。那么针对一元二次方程概念的理解,先由简单的练习再到稍难的问题,循序渐进,让学生在学习过程中有一个缓冲。
(学生小组讨论)
教师总结
讲解例1、2、3题

一元二次方程的相关教案【优秀3篇】

一元二次方程的相关教案【优秀3篇】

一元二次方程的相关教案【优秀3篇】元二次方程篇一[教材分析]中学阶段我们研究的多项式函数中有二次函数,研究的几何图形中有二次曲线。

因此一元二次方程便成为了方程中研究的重要内容。

一元二次方程有根与系数关系,求根公式向我们揭示了两根与系数间的密切关系,而根与系数还有更进一步的发现,这一发现在数学学科中具有极强的实用价值,本节内容既是代数式、一元一次方程和一元二次方程求根公式等知识的进一步深化,又蕴含有丰富的数学思想方法,也为学生们将来的学习打下了必要的基础。

[学生分析]进入了初二下半学期,随着年龄的增长以及实验几何向论证几何的逐步推进,学生们的逻辑推理能力已有了较大提高。

因此在学过了一元二次方程的解法后,自主探究其根与系数的关系是完全可能的。

再加上我所执教的学生,他们有着较强的认知力与求知欲,基于以上思考,我在设计中扩大了学生的智力参与度,也相对放大了知识探索的空间。

[教学目标]在学生探求一元二次方程根与系数关系的活动中,经历观察、分析、概括的过程以及“实践——认识——再实践——再认识”的过程,得出一元二次方程根与系数的关系。

能利用一元二次方程根与系数的关系检验两数是否为原方程的根;已知一根求另一根及系数。

理解数学思想,体会代数论证的方法,感受辩证唯物主义认识论的基本观点。

[教学重难点]发现并掌握一元二次方程根与系数的关系,包括知识从特殊到一般的发生发展过程[教学过程](一)复习导入请学生求解表格内的方程,完成解法的交流以及求根公式的复习,求根公式向我们揭示了两根与系数间的关系,那么一元二次方程根与系数间是否还有更深一层的联系呢?由此疑问,导入新课。

(二)探求新知数学学科中由数到式的结构编排,让我们想到了从两根运算上的最简组合:和差积商展开进一步研究。

初探新知中,我将学生们分成两组,分别对二次项系数为1 的一元二次方程两根进行和差积商的运算,之后将结果汇总展示,共同观察与系数的联系。

我在这些方程中安排了两个无理根方程。

一元二次方程的教案(必备3篇)

一元二次方程的教案(必备3篇)

一元二次方程的教案(必备3篇)1.一元二次方程的教案第1篇一、教学目标知识与技能(1)理解一元二次方程的意义。

(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。

过程与方法在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。

情感、态度与价值观通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。

二、教材分析:教学重点难点重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。

难点:准确理解一元二次方程的意义。

三、教学方法创设情境——主体探究——合作交流——应用提高四、学案(1)预学检测3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?五、教学过程(一)创设情境、导入新(1)自学本P2—P3并完成书本(2)请学生分别回答书本内容再(二)主体探究、合作交流(1)观察下列方程:(35-2x)2=9004x2-9=03y2-5y=7它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?(2)一元二次方程的概念与一般形式?如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56(三)应用迁移、巩固提高例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?x2-x=13x(x-1)=5(x+2)x2=(x-1)2例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。

解:去括号得3x2-3x=5x+10移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0其中二次项系数为3,一次项系数为-8,常数项为-10.学生练习:书本P4练习(四)总结反思拓展升华总结1.一元二次方程的定义是怎样的?2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。

数学教案一元二次方程的应用(6篇)

数学教案一元二次方程的应用(6篇)

数学教案一元二次方程的应用(6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!数学教案一元二次方程的应用(6篇)在教学工作者实际的教学活动中,通常需要用到教案来辅助教学,编写教案有利于我们科学、合理地支配课堂时间。

一元二次函数讲解教案2篇

一元二次函数讲解教案2篇

一元二次函数讲解教案一元二次函数讲解教案精选2篇(一)教案:一元二次函数的讲解目标:1. 学生能够理解一元二次函数的基本概念。

2. 学生能够识别一元二次函数的标准形式和一般形式,并进行相互转化。

3. 学生能够画出一元二次函数的图像,并能够提取关键信息。

4. 学生能够解一元二次方程,并能够应用一元二次函数解决实际问题。

教学过程:一、导入(5分钟)通过简单的问题引入一元二次函数的概念:- 请举一个实际生活中的例子,可以用一元二次函数来描述的。

- 你知道一元二次函数和一次函数的区别吗?二、概念讲解(10分钟)1. 定义一元二次函数:y = ax^2 + bx + c。

其中a、b、c为常数,并且a ≠ 0。

2. 一元二次函数的图像呈现抛物线的形状。

3. 标准形式和一般形式的区别:- 标准形式:y = a(x - h)^2 + k。

其中(h, k)为顶点坐标。

- 一般形式:y = ax^2 + bx + c。

4. 标准形式和一般形式的转化方法。

三、画图和提取信息(15分钟)1. 根据给定的一元二次函数,画出抛物线的图像。

2. 从图像中提取关键信息:开口方向、顶点坐标、对称轴、x轴与y轴的交点等。

四、方程求解(15分钟)1. 什么是一元二次方程?如何解一元二次方程?2. 通过图像求解一元二次方程的根。

3. 通过公式求解一元二次方程的根。

4. 实际问题的应用案例。

五、练习与巩固(15分钟)1. 练习解一元二次方程:给定一元二次函数的图像,求解相应的方程。

2. 练习画图和提取信息:给定一元二次函数的一般形式,画出抛物线的图像,并提取关键信息。

3. 练习应用问题:通过一元二次函数解决实际问题。

六、总结与反思(5分钟)请学生总结今天学习的重点内容,并提出自己的疑问或观点。

七、课堂延伸可以引导学生进一步探究一元二次函数的性质,如开口方向、对称性等。

可以让学生自主寻找相关的性质与规律,并进行讨论和总结。

也可以通过拓展问题拓宽学生的思维,如给定一元二次函数的一般形式,求解其与坐标轴的交点等。

一元二次方程数学教学教案5篇

一元二次方程数学教学教案5篇

一元二次方程数学教学教案5篇一元二次方程数学教学教案1一、教材分析1、教材的地位和作用一元二次方程是中学教学的主要内容,在初中代数中占有重要的地位,在一元二次方程的前面,学生学了实数与代数式的运算,一元一次方程(包括可化为一元一次方程的分式方程)和一次方程组,上述内容都是学习一元二次方程的基础,通过一元二次方程的学习,就可以对上述内容加以巩固,一元二次方程也是以后学习(•指数方式,对数方程,三角方程以及不等式,函数,二次曲线等内容)的基础,此外,学习一元二次方程对其他学科也有重要的意义。

2、教学目标及确立目标的依据九年义务教育大纲对这部分的要求是:“使学生了解一元二次方程的概念”,依据教学大纲的要求及教材的内容,针对学生的理解和接受知识的实际情况,以提高学生的素质为主要目的而制定如下教学目标。

知识目标:使学生进一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。

能力目标:通过一元二次方程概念的教学,培养学生善于观察,发现,探索,归纳问题的能力,培养学生创造性思维和逻辑推理的能力。

德育目标:培养学生把感性认识上升到理性认识的辩证唯物主义的观点。

3、重点,难点及确定重难点的依据“一元二次方程”有着承上启下的作用,在今后的学习中有广泛的应用,因此本节课做为起始课的重点是一元二次方程的概念,一元二次方程(特别是含有字母系数的)化成一般形式是本节课的难点。

二、教材处理在教学中,我发现有的学生对概念背得很熟,但在准确和熟练应用方面较差,缺乏应变能力,针对学生中存在的这些问题,本节课突出对教学概念形成过程的教学,采用探索发现的方法研究概念,并引导学生进行创造性学习。

三、教学方法和学法教学中,我运用启发引导的方法让学生从一元一次方程入手,类比发现并归纳出一元二次方程的概念,启发学生发现规律,并总结规律,最后达到问题解决。

四、教学手段采用投影仪五、教学程序1、新课导入:(1)什么叫一元一次方程?(并引入一元二次方程的概念做铺垫)(2)列方程解应用题的方法,步骤?(并引例打基础)课本引例(如图)由教师提出并分析其中的数量关系。

初中一元二次方程教案模板

初中一元二次方程教案模板

初中一元二次方程教案模板一、教学目标:1. 知识与能力目标:学生能够理解一元二次方程的概念,掌握一元二次方程的解法,并能够应用一元二次方程解决实际问题。

2. 过程与方法目标:通过探索一元二次方程的解法,培养学生逻辑思维能力和解决问题的能力。

3. 情感、态度与价值观目标:培养学生对数学的兴趣,感受数学在生活中的应用,培养学生的团队合作意识。

二、教学重点、难点:1. 教学重点:一元二次方程的概念,一元二次方程的解法及其应用。

2. 教学难点:一元二次方程的解法,特别是因式分解法和求根公式的运用。

三、教学过程:1. 导入新课:通过生活中的实际问题,引导学生列出方程,从而引出一元二次方程的概念。

2. 自主学习:学生自主探究一元二次方程的解法,总结解题步骤和技巧。

3. 课堂讲解:讲解一元二次方程的概念,解析一元二次方程的解法,并通过例题演示解题过程。

4. 练习巩固:学生独立完成练习题,教师进行个别辅导,巩固所学知识。

5. 拓展应用:学生分组讨论,运用一元二次方程解决实际问题,分享解题心得。

6. 总结反思:教师引导学生总结一元二次方程的特点和解题方法,反思自己在学习过程中的优点和不足。

四、教学方法:1. 情境教学法:通过设置生活情境,激发学生的学习兴趣,引导学生主动参与。

2. 启发式教学法:教师提问引导学生思考,激发学生的探究欲望。

3. 合作学习法:学生分组讨论,培养学生的团队合作意识和沟通能力。

4. 案例教学法:通过讲解典型例题,培养学生解决问题的能力。

五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答和练习完成情况。

2. 练习作业:检查学生完成练习题的情况,评估学生的掌握程度。

3. 小组讨论:评估学生在团队合作中的表现,包括沟通能力和解决问题的能力。

4. 学生自评:让学生反思自己在学习过程中的优点和不足,鼓励自我提高。

六、教学资源:1. 教材:一元二次方程相关章节的内容。

2. 课件:教师制作的课件,包括图片、文字和动画等。

第二章 一元二次函数、方程和不等式教学设计(全章)

第二章 一元二次函数、方程和不等式教学设计(全章)

第二章 一元二次函数、方程和不等式2.1等式性质与不等式性质一、内容和内容解析1.内容本单元主要学习用不等式表示现实问题、数学问题,为了解不等式,要探究不等式性质,而不等式性质的探究要先学习证明不等关系的“根本大法”,即“两个实数大小关系的基本事实”还要梳理等式基本性质及蕴含的思想方法,然后通过类比的方法猜想并证明不等式的性质,最后要会运用不等式的性质证明其它的一些不等关系.2.内容解析现实世界和日常生活中,大量存在着相等关系和不等关系,例如多与少、大与小、长与短、高与矮、远与近、快与慢、涨与跌、轻与重、不超过或不少于等.类似于这样的问题,反映在数量关系上,就是相等与不等.相等用等式表示,不等用不等式表示.实际问题中所蕴含的不等关系可抽象出不等式的关键是确定问题中涉及的量及其满足的不等关系,然后用未知数表示量,把不等关系“翻译”成不等式.两个实数大小关系的基本事实既是实数的基本性质,又是研究式的大小关系的基础,为不等式的研究奠定了逻辑基础.这个基本事实把两个实数的大小关系转化为它们的差与0的大小关系,实际上就是两个实数差的符号,从而把实数的大小关系转化为使实数的运算问题,使实数大小关系的比较有了抓手.重要不等式222a b ab ≥是基本不等式基础,该不等式从赵爽弦图中获得猜想,运用由一般性与特殊性获得“=”成立的条件.证明中,运用了完全平方差公式和两个实数大小关系的基本事实证明了上述不等式,这既体现了数学知识之间的联系,又再一次说明了两个实数大小关系的基本事实在解決不等式问题中的应用价值.等式性质可从自身特性看,包括“对称性”和“传递性”.“对称性”即两个相等的实数放在等号两边的两种不同的表现形式;“传递性”是实数相等的内在关系,两者均是实数序的特征.从运算角度看,“加法”、“乘法”运算中的不变性,即等式两边同加或同乘同一个实数,等式保持不変;也有其派生出来的在“乘方”、“开方”等运算中的不变性.不等式与等式的性质蕴含了同样的数学思想方法,也包含不等关系自身的特性和运算中的不变性两类.不等关系自身的特性有“自反性”和“传递性”两种.“自反性”是不相等的两个实数大小关系的两种不同表达形式,是实数序特性的体现.“传递性”是三个不相等的实数之间大小关系的内在联系,也是实数序特性的体现.运算中的不变性、规律性是指对不等号两边的实数同时进行“加法”、“乘法”等运算,得出新的不等关系.由于“正数乘正数大于0”,“负数乘正数小于0”,所以不等式对于乘法运算失去了“保号性”,这也是不等式性质与等式的性质的差异.实际上,在代数问题中,运算中的不变性、规律性就是性质,它是发现代数性质的“引路人”,在代数领域中具有基础地位.利用不等式的基本性质可推导出不等式的一些其他性质,即以基本性质为理论依据,以运算中的不变性和规律性为研究方向,通过“猜想—证明—修正—再证明—得出性质”的方法探究出其他的性质.结合以上分析,确定本节课的教学重点:两个实数大小关系的基本事实及其简单应用;梳理出等式基本性质中蕴含的思想方法;类比等式基本性质,探究不等式的基本性质.二、目标和目标解析1.目标(1)会从实际问题所蕴含的不等关系中抽象出不等式.(2)理解两个实数大小关系的基本事实,能运用这个基本事实比较式的大小关系.(3)运用等式基本性质中蕴含的思想方法,类比等式的基本性质研究不等式的基本性质,掌握不等式的基本性质.(4)运用不等式的基本性质发现并证明一些常用的不等式性质;运用不等式的性质证明一些简单的命题.2.目标解析达成上述目标的标志是:(1)学生能够在生活问题、数学问题等情境中,发现其中所蕴含的不等关系,并将其符号化,从而用不等式表达.(2)学生能够在比较大小的问题情境中,发现并运用两个实数大小关系的基本事实比较式的大小关系,体会这个基本事实能够使实数的运算参与到实数的大小比较中.(3)学生能够运用类比的方法,猜想并证明不等式的基本性质,并能够对比不等式与等式的基本性质说出其共性与差异.(4)学生能够分析简单不等式的证明思路,利用不等式的性质证明简单的不等关系.三、教学问题诊断分析学生在用不等式表示实际问题时,对没有符号化的问题不知从何入手,学生能够抽象不等关系,但不能用符号语言表达.教学中教师应引导学生将问题符号化,体会符号语言在数学中的作用.两个实数大小关系的基本事实及其应用对学生来说较为容易,但理解这个基本事实使运算参与比较之中存在困难.教学中要让学生动起来,在比较大小的过程中体会运算的作用.不等式性质的探究是以两个实数大小关系的基本事实为依据,以梳理等式性质中所蕴含的思想方法为前提,以类比等式的基本性质为方法展开的.学生虽然在初中阶段接触过一些内容,然而是运用由特殊到一般的归纳方法得到的,没能从根源上探索其成立的道理.高中阶段的等式与不等式的学习强调逻辑推理,因此学生会有一定的的困难.对于等式的基本性质学生是熟知的,但对性质中所蕴含的思想方法缺乏思考,尤其是体会相等关系自身的特性较为困难.教学中采用让学生对性质的特点进行归类的方法,总结每类性质的特点,引导学生从实数序关系的特性角度体会相等关系自身的特性.学生类比等式基本性质及其蕴含的思想方法,猜想并证明不等式的基本性质存在困难,由于初中时学生学习过不等式的基本性质3和性质4,而性质1和性质2学生认为是显然成立的,学生思维达不到从逻辑推理角度证明性质.因此,教学中在强调逻辑推理的重要性的同时,还要强调两个实数比较大小的基本事实和实数的一些其他事实是证明的依据.学生缺少从代数角度证明不等式的经验,运用两个实数大小关系的基本事实和不等式的性质证明一些简单命题存在一定的困难.教学中,要帮助学生进行分析,适当采用问题串的形式引导学生生成证明思路.本节课的教学难点是从实际问题所蕴含的不等关系中抽象出不等式;梳理出等式基本性质中蕴含的思想方法;类比等式的基本性质及其蕴含的思想方法,猜想证明不等式的基本性质.四、教学过程设计2.1等式性质与不等式性质(一)从不等关系中抽象不等式问题1:在现实世界和日常生活中,大量存在着相等关系和不等关系,例如多与少、大与小、长与短、轻与重、不超过或不少于等.你能举例说明生活中的相等关系和不等关系?师生活动:教师根据学生列举的例子,从严谨性的角度帮助学生梳理语言的表述.追问:你能用不等式或不等式组表示下列问题中的不等关系吗?(1)某路段限速40km h;(2)某品牌酸奶的质量检査规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p 应不少于2.3%;(3)三角形两边之和大于第三边、两边之差小于第边;(4)连接直线外一点与直线上各点的所有线段中,垂线段最短.师生活动:学生独立思考追问中的问题、讨论交流.教师引导学生梳理讨论交流的结果,用不等式表示不等关系的关键是确定问题在涉及的量及其满足的不等关系,然后用未知数表示量,把不等关系“翻译”成不等式.有时用自然语言表达的不等关系不够明确,例如“不少于”、“不低于”、“至多”、“至少”等,需要先把它们翻译成大于或小于的关系,再用不等式表示.设计意图:创设运用不等式表示问题的情景,使学生意识到不等式在生活及数学中的应用,为后面的学习奠定基础,引导学生将抽象出不等关系用符号语言表达.(二)探究两个实数大小关系的基本事实问题2:你能用不等式表示并解決下面的问题吗?某种杂志原以每本2.5元的价格销售,可以售出8万本,据市场调查,杂志的单价每提高0.1元,销售就可能减少2000本.如何定价才能使提价后的销售总收入不低于20万?师生活动:学生分析数量关系,并用不等式表达.设提价后每本杂志的定价为x 元,则销售总收入为 2.580.20.1x x --⨯()万元.于是,不等关系“销售总收入不低于20万元”可以用不等式表示为 2.580.2200.1x x --⨯()≥,但不会解不等式.与解方程要用等式性质一样,解不等式要用到不等式的性质.为此,我们需要先研究不等式的性质.实际上,在初中阶段学生已经通过具体实例归纳出了一些不等式的性质.追问:那么,这些性质为什么是正确的?还有其他不等式的性质吗?师生活动:学生独立思考追问中的问题、讨论交流.教师指出回答这些问题要用到关于两个实数大小关系的基本事实.若要研究不等式的性质,即由已知不等式得出新的不等式,这样必然需要比较两个式子或两个实数的大小关系.追问:大家来思考如何比较两个式子或实数的大小关系呢?师生活动:学生独立思考追问中的问题、讨论交流.思路一:利用实数的几何意义,由于数轴上的点与实数一一对应,所以可以利用数轴上点的位置关系来规定实数的大小关系,如图2.1-2,思路二:利用两个式子或实数作差,比较差值与0的大小关系,从而得出结论.这个基本事实可以表示为:0a b a b ⇔->>;==0a b a b ⇔-;0a b a b ⇔-<<.设计意图:两个实数大小关系的基本事实对学生来说并不陌生,只不过以往没有提炼出来,此环节以问题为载体,由学生自主探究基本事实,这个基本事实把两个实数的大小关系转化为它们的差与0的大小关系,实际上就是两个实数差的符号,从而使实数的运算能够参与到实数的大小比较中,为不等式的论证提供了运算工具,也为研究不等式的性质奠定了基础.(三)两个实数大小关系的基本事实的简单应用例1:比较23x x ++()()和14x x ++()()的大小.师生活动:学生能够比较顺利利用两个实数大小关系的基本事实比较出两数大小.因为2314x x x x ++-++()()()()22=5654x x x x ++-++()()=20>,所以2314x x x x ++++>)()()()(.设计意图:此题是两个实数大小关系的基本事实的简单应用,借助多项式减法运算,得出了一个明显大于0的数(式).这是解决不等式问题的常用方法,让学生再次体会此方法在比较大小中的应用.问题3:阅读教科书第39页“探究”,你能在图中找出一些相等关系和不等关系吗?师生活动:学生独立思考、讨论交流.教师指出这个会标实际上就是“赵爽弦图”——由4个全等的直角三角形围成一个大正方形,中空的部分是个小正方形.由于大正方形的面积大于4个直角三角形的面积和,即222a b ab +>(设直角三角形的两条直角边的长为a ,b a b (≠)).而当直角三角形変为等腰直角三角形,即=a b 时,中空部分缩为一个点,这时有相等关系22=2a b ab +.这样,就引出了基本不等式的一种变形形式222a b ab +≥.追问:你能总结一下22a b +与2ab 的大小关系吗?此不等关系中a b ,的取值范围如何?如果a b ∈R ,,此结论是否仍成立?师生活动:学生总结出222a b ab +≥,其中a b ,是边长,所以+a b ∈R ,.当a b ∈R ,时,上述结论是否成立的可題,只需比较22a b +与2ab 的大小关系,即2222=0a b ab a b +--()≥,由两个实数大小关系的基本事实,得222a b ab +≥,当且仅当=a b时等号成立.教师强调此结论是由两个实数大小关系的基本事实得到一类重要的不等式.设计意图:此探究问题的设计,作为相等关系和不等关系的总结,也为引出基本不等式做了铺垫.在推导过程中通过教师引导,学生从独立想象,并能够由“形”到“数”的逐步提炼出不等关系,通过再次追问,让学生经历猜想并证明不等式的一般过程,为不等式性质和基本不等式的学习奠定基础.(四)复习等式性质,梳理思想方法关于两个实数大小关系的基本事实为研究不等式的性质奠定了基础.那么不等式到底有哪些性质呢?要研究不等式的性质,我们可以从等式的性质及其蕴含的思想方法中获得启发.问题4:请你先梳理等式的基本性质,再观察它们的共性.你能归纳一些发现等式基本性质的方法吗?师生活动:学生独立思考、讨论交流并给出答案.教师进行总结、归纳、补充并板书出等式的性质.这其中性质3,4,5是学生比较熟悉的,但对于性质1,2只有很少学生能回答出来,教师指出性质1,2反映了相等关系自身的特性,由于它们太明显了,是相等关系本身蕴含的性质,反而容易被忽略.学生在教师引导下可以归纳出性质3,4,5是从运算角度提出的,即等式两边加、减,乘,除同一个数,等式仍然成立.教师指出,这三条性质反映了相等关系在运算中保持不変性的特点.设计意图:通过以上问题,让学生在梳理并观察等式的基本性质的基础上认识到,这些性质包括在数学推理和运算中经常用到的“对称性”和“传递性”,还包括解方程所需要的等式对四则运算的不变性,而这两个方面反映了“式的大小关系”的本质属性,这些基本属性为探究不等式的基本性质指明了方向.(五)通过类比,探究不等式的性质问题5:类比等式的基本性质,你能猜想不等式的基本性质,并加以证明吗?师生活动:学生独立思考、讨论交流后得出:不等式的基本性质可从不等式的自身特性和运算两个角度来研究,教师进行总结、归纳、补充并板书出不等式的基本性质1,2,3,4.学生在猜想不等式的基本性质的过程中会发现,不等式的基本性质与等式的基本性质存在差异:就不等式自身的特性而言,不等式不具有“对称性”,而是具有“相反性”,即a b b a><,⇒<>;就不等式与四则运算的关系而言,当乘一个负数时,不等号要调换方向,即⇒b a a b,.不等式的这种特殊性是由实数的基本性质决定的.在对不等式进行论证><<a b c ac bc⇒时,除了要用到实数大小关系的基本事实,还需要用到关于实数的其他一些基本事实,例如:(1)正数大于0,也大于一切负数;负数小于0,也小于一切正数.(2)正数的相反数是负数,负数的相反数是正数.(3)两个正数的和仍是正数,两个负数的和仍是负数.(4)同号两数相乘,其积为正数;异号两数相乘,其积为负数.利用这些基本事实,可以对猜想出的不等式的基本性质进行证明.例如,性质2的证明可由0a b a b ⇒->>,0b c b c ⇒->>,继而得到+0a b b c --())>(. 性质3的证明中学生能够分析出要证明a c b c ++>,只需证明a c b c +-+()()与0的大小关系,也就是a b -与0的大小关系,得出如下证明:由a b >,得0a b ->,所以0a c b c +-+())>(,即a c b c ++>.追问:用文字语言怎样表达此性质?两个实数大小关系还可以形象地在数轴上表达出来,你能从几何意义的角度对这个性质进行解释吗?师生活动:学生用文字语言表达,即不等式的两边都加同一个实数,所得不等式与原不等式同向.通过教师课件展示a c +,b c +的变化,学生体会此性质的几何意义,并注意到可用运动方向表达实数c 的正负.教师强调,几何语言的表达具有“直观”的特点,建议学生经常从几何视角发现或解释一些代数问题,能实现更直观地认识问题,更深刻地理解问题.设计意图:对同一个概念从不同的角度来表述,有利于揭示概念的本质.不等式是用不等号连接起来的式子,有的不等式的内涵是比较抽象的,为了帮助学生理解和掌握不等式的本质,用文字语言、图形语言等多种形式来表达重点的不等式的性质,有助于对问题的深入理解.追问:利用以上不等式的基本性质,我们还可以推导出不等式的其它一些性质吗?师生活动:由性质3学生得到猜想“大数加大数大于小数加小数”,即“如果a b >,c d >,那么a c b d ++>”.学生分析证明方法,若要证a c b d ++>只需证0a c b d +-+())>(,由已知0a b ->,0c d ->,由“正数加正数是正数”这一基本事实,猜想得证. 教师评价,此证明是基于两个实数大小关系的基本事实和实数的一些基本事实证明的,这是证明不等式的根本大法,在证明不等关系时起到重要作用.追问:在基本性质4中,不等式的两边同乘同实数.如果同乘不同的实数,你有何结论? 师生活动:学生独立思考、讨论交流得出:两边同乘负数不等号要変方向,所以此问题中,乘法不一定具备“保号性”.同时,学生与性质4进行对比,发现对于正数乘法是具有“保号性”的.教师指出此性质为不等式性质6,即“如果0a b >>,0c d >>,那么ac bd >”.追问:如果性质6中=a c ,=b d ,你有何新的结论?师生活动:学生独立思考、讨论交流得出“如果0a b >>,那么22a b >”,并能推广到“如果0a b >>,那么n n a b >2n n N (,≥)”.教师指出这是不等式的性质7,它是性质6的特例.设计意图:证明以上性质的过程可以看作不等式的性质在代数证明中的初步应用,通过不等式性质的推导,让学生经历“猜想—证明—修正再证明—得出性质—理解”的研究数学问题的过程.(六)不等式性质的简单应用例2 已知00a b c >>,<,求证c c a b>. 师生活动:学生独立思考得出分析:要证明c c a b >,因为0c <,所以可以先证明11a b<.利用已知0a b >>和性质3,即可证明c c a b>. 设计意图:通过本题向学生示范了应用不等式的性质证明命题的一般思路.对于有些不等式的证明,要在“分析”中给出了证明的一般思路:从结论出发,结合已知条件,寻求使当前命题成立的充分条件,而这个充分条件是容易由已知条件证明的,这实际上是综合运用“综合法”和“分析法”.此外,通过本例引导学生领会这种“发展条件、转化结论、寻求联系”的证明较复杂命题的一般思路.(七)单元小结教师引导学生回顾本单元所学知识,并引导学生回答下面的问题:(1)本单元我们研究了两个实数大小关系的基本事实,这个基本事实在研究不等式时有什么作用?(2)本单元我们还重点学习了不等式的性质,我们采取什么样的方法进行研究?能否梳理并总结出探究的过程?师生活动:问题(1)学生总结并回答,研究两个实数大小关系的基本事实是为了研究不等式的性质,从而解决解不等式的问题.这个基本事实把两个实数的大小关系转化为它们的差与0的大小关系,实际上就是两个实数差的符号,从而把实数的大小关系转化为使实数的运算问题,使实数大小关系的比较有了抓手.问题(2)学生总结并回答,通过梳理等式的基本性质及蕴含的思想方法,猜想并证明不等式的基本性质,再由不等式的基本性质推理得到不等式另外一些常用性质.教师帮助整理:经历“前备经验—归纳特点—类比猜想—推理证明—理解表达—应用反思”的过程.设计意图:梳理、总结、归纳提炼本单元的核心内容和方法.(八) 布置作业教科书习题2.1第1,2,3,4,5,6题.五、目标检测设计1.用不等式或不等式组表示下面的不等关系:(1)某高速公路规定通过车辆的车货总高度h (单位:m )从地面起不超过4 m ;(2)a 与b 的和是非负实数;(3)如图,在一个面积小于2350m 的矩形地基的中心位置上建造一个仓库,仓库的四周建 成绿地,仓库的长L (单位:m )大于宽W (单位:m )的4倍.设计意图:考查从实际问题中抽象出不等式的能力.2.比较37x x ++()()和46x x ++()()的大小. 设计意图:利用两个实数大小关系的基本事实比较大小.3.用不等号“>”或“<”填空:(1)如果a b c d >,<,那么_____a c b d --;(2)如果00a b c d >><<,,那么_____ac bd ;(3)如果0a b >>,那么2211_____a b ; (4)如果0a b c >>>,那么_____c c a b . 设计意图:考查学生对不等式性质的简单应用能力.4.已知a b >,0ab >,求证11a b<. 设计意图:考查学生对不等式证明方法的探究水平,以及综合运用不等式性质的能力.六、教学反思2.2基本不等式一、内容和内容解析1.内容本单元主要学习基本不等式的定义、几何解释、证明方法与应用.2.内容解析相等关系、不等关系是数学中最基本的数量关系,是构建方程、不等式的基础.基本不等式是一种重要而基本的不等式类型,在中学数学知识体系中也是一个非常重要的、基础的内容. 基本不等式与很多重要的数学概念和性质相关.从数与运算的角度,2a b 是两个正数a ,b 的“算术平均数”a ,b 的“几何平均数”.因此,不等式中涉及的是代数中的“基本量”和最基本的运算.从几何图形的角度,“周长相等的矩形中,正方形的面积最大”,“等圆中,弦长不大于直径”等,都是基本不等式的直观理解.基本不等式的证明或推导方法很多,上面的分析也是基本不等式证明方法的来源.利用分析法,从数量关系的角度,利用不等式的性质来推导基本不等式;从平面几何图形的角度,借助几何直观,通过数形结合来探究不等式的几何解释;从函数的角度,通过构造函数,利用函数性质来证明基本不等式;等等.这些方法也是代数证明和推导的典型方法.基本不等式是几何平均数不大于算术平均数的最基本和最简单的情形,可以推广至n 个正数的几何平均值不大于算术平均值.基本不等式的代数结构也是数学模型思想的一个范例,借助这个模型可以求最大值和最小值.同时,在理解和应用基本不等式的过程中涉及变与不变、变量与常量,以及数形结合、数学模型等思想方法.因此,基本不等式的内容可以培养学生的逻辑推理、数学运算和数学建模素养.基于以上分析,确定本节课的教学重点:基本不等式的定义、几何解释和证明方法,用基本不等式解决简单的最值问题.二、目标和目标解析1.目标(1)理解基本不等式,发展逻辑推理素养.(2)结合具体实例,用基本不等式解决简单的求最大值或最小值的问题,发展数学运算和数学建模素养.2.目标解析达成上述目标的标志是:(1)知道基本不等式的内容,明确基本不等式就是“两个正数的算术平均数不小于它们的几何平均数”;会利用不等式的性质证明基本不等式,能说明基本不等式的几何意义.(2)能结合具体实例,明确基本不等式的使用条件和注意事项,即“一正、二定、三相等”;能用基本不等式模型识别和理解实际问题,能用基本不等式求最大值或最小值;在解决具体问题的过程中,体会基本不等式的作用,提升数学运算、数学建模等核心素养.三、教学问题诊断分析由于学生缺少代数式证明的经验,所以基本不等式的证明是本节课的一个难点.基本不等式的几何解释也是学生不容易想到的,需要数形结合地去理解,所以这也是本节课的一个难点.在进行基本不等式的集合解释的教学时,为了帮助学生直观地观察图形中几何元素之间的动态关系,并将其转化为代数表示,可以利用信息技术制作一个动态图形,以帮助学生直观理解.此外,在利用基本不等式研究最值问题时,学生容易出现忽视使用条件,不验证等号是否成立,甚至出现没有确认和或积为定值就求“最值”等问题,这也是学生思维不够严谨的表现,因此基本不等式的证明和利用基本不等式求最值也是本节课的难点.四、培养数学学科素养(1)数学抽象:基本不等式的形式以及推导过程.(2)逻辑推理:基本不等式的证明.(3)数学运算:利用基本不等式求最值.(4)数据分析:利用基本不等式解決实际问题.(5)数学建模:利用函数的思想和基本不等式解決实际问题,提升学生的逻辑推理能力.五、教学过程设计2.2基本不等式(一)基本不等式的定义导入语:我们知道,乘法公式在代数式的运算中有重要作用.那么,是否也有一些不等式,它们在解决不等式问题时有着与乘法公式类似的作用呢?下面就来研究这个问题.问题1:在上一节我们利用完全平方公式得出了一类重要不等式,请同学回忆是什么不等式?师生活动:学生回忆、表述,对于任意实数a b ,,有222a b ab +≥,当且仅当a b =时等号成立.。

一元二次函数的教案

一元二次函数的教案

一元二次函数的教案教案标题:探索一元二次函数的性质与图像教学目标:1. 理解一元二次函数的定义,并能够区分一元二次函数与其他函数的特点。

2. 掌握一元二次函数的标准形式、顶点形式和描点法,并能够在不同形式之间进行转换。

3. 理解一元二次函数的图像特征,包括开口方向、顶点位置、对称轴、最值等。

4. 能够通过一元二次函数的性质解决实际问题,如最值问题、最优化问题等。

教学准备:1. 教师准备:课件、黑板、白板、彩色笔、教学实例。

2. 学生准备:课本、笔记本、铅笔、计算器。

教学过程:一、导入(5分钟)1. 引入学生对函数的概念,复习线性函数的特点和图像。

2. 提问:你知道什么是一元二次函数吗?它与线性函数有什么区别?二、概念讲解与示例演示(15分钟)1. 讲解一元二次函数的定义和一般形式。

2. 介绍一元二次函数的标准形式和顶点形式,并通过示例演示如何进行转换。

3. 讲解一元二次函数的描点法,通过选择不同的点确定函数图像。

三、图像特征与性质(20分钟)1. 讲解一元二次函数图像的开口方向和顶点位置的关系。

2. 引导学生发现一元二次函数的对称轴,并解释其特点。

3. 讲解一元二次函数的最值问题,包括最大值、最小值的求解方法。

四、练习与巩固(15分钟)1. 学生进行课堂练习,通过给定的函数图像确定函数的表达式。

2. 学生解决实际问题,如给定一元二次函数,求解最值问题等。

五、拓展与应用(10分钟)1. 引导学生思考一元二次函数在实际生活中的应用,如抛物线的运动轨迹等。

2. 提供更多的拓展问题,让学生进一步巩固和应用所学的知识。

六、总结与反思(5分钟)1. 总结一元二次函数的定义和性质,强调重点和难点。

2. 让学生进行自我评价,反思本节课的学习收获和困难。

教学辅助:1. 在教学过程中,可以通过课件展示一元二次函数的图像和示例。

2. 在黑板或白板上绘制一元二次函数的图像,以便学生更直观地理解。

3. 提供一些实际问题的例子,让学生将所学的知识应用到实际中。

一元二次方程根公式的推导与教学教案

一元二次方程根公式的推导与教学教案

一元二次方程根公式的推导与教学教案一、前言二次函数是初中数学中的一个重要内容,其中,关于一元二次方程解法的讲解显得尤为重要。

在传统教学中,老师们常常是采用“白板黑板”直接讲解的方式来传授学生如何解一元二次方程的问题,这方式虽然可以准确地将知识点传达出去,但是对于理解程度较弱的学生而言来说,这种简单的“推导”方式并不能够真正地帮助他们理解、记忆二次函数的内容。

本文将会对一元二次方程的根公式进行推导探究,并且基于此,设计一套适合中学生的教学教案,使他们能够更好地理解和掌握这一知识点。

二、一元二次方程根公式的推导一元二次方程的标准形式为:$ax^2 + bx + c = 0$其中,$a \neq 0$,$b$ 和 $c$ 是已知数,$x$ 是未知数。

解一元二次方程的最常用方法是使用求根公式,也就是“二次公式”。

其原理是,通过综合对齐 $ax^2$ 和 $c$ 这两个项,利用配方法把中间项 $bx$ 抵消掉,从而得到答案的表达式。

1、对齐 $ax^2$ 和 $c$ 的项。

将 $ax^2$ 移到等式右边,并除以 $a$,将方程化为标准形式:$x^2 + \dfrac{b}{a}x = - \dfrac{c}{a}$2、利用配方法抵消 $bx$。

将 $x$ 的系数 $\dfrac{b}{a}$ 除以 $2$,并将结果平方,得到$\left( \dfrac{b}{2a} \right) ^2$ 。

接着,将其加入等式两边:$x^2 + \dfrac{b}{a}x + \left( \dfrac{b}{2a} \right) ^2 = - \dfrac{c}{a} + \left( \dfrac{b}{2a} \right) ^2$两边整理得到:$\left( x + \dfrac{b}{2a} \right) ^2 = \dfrac{b^2 -4ac}{4a^2}$3、求根。

对于任何实数 $a$ 和 $b$,有 $(a + b)^2 = a^2 + 2ab +b^2$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二讲:一元二次方程
一、考点、热点回顾
1. 一元二次方程的四种解法:
直接开平方法、因式分解法、配方法、公式法
2. 根的判别式:
关于x 的一元二次方程ax bx c a 2
00++=()≠
∆=-b ac 24 当∆>0时,方程有两个不相等的实根
当∆=0时,方程有两个相等的实根
当∆<0时,方程无实根
3. 根与系数关系
关于x 的一元二次方程ax bx c a 2
00++=()≠ 当
∆≥+=-=01212时,有,x x b a x x c a
二、典型例题
一、复习引入
(学生活动)用配方法解下列方程
(1)6x 2-7x+1=0 (2)4x 2-3x=52
(老师点评) (1)移项,得:6x 2-7x=-1
二次项系数化为1,得:x 2-
76x=-16 配方,得:x 2-76x+(712)2=-16+(712
)2 (x-712)2=25144
x-712=±512 x 1=512+712=7512
+=1 x 2=-512+712=7512-=16 (2)略
总结用配方法解一元二次方程的步骤(学生总结,老师点评).
(1)移项;
(2)化二次项系数为1;
(3)方程两边都加上一次项系数的一半的平方;
(4)原方程变形为(x+m )2=n 的形式;
(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.
二、探索新知
如果这个一元二次方程是一般形式ax 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.
问题:已知ax 2+bx+c=0(a ≠0)且b 2
-4ac ≥0,试推导它的两个根x 1=2b a -+,
x 2 分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c•也当成一个具体数字,根据上面的解题步骤就可以一直推下去.
解:移项,得:ax 2+bx=-c
二次项系数化为1,得x 2+
b a x=-
c a
配方,得:x 2+b a x+(2b a )2=-c a +(2b a )2 即(x+2b a
)2=2244b ac a - ∵b 2-4ac ≥0且4a 2>0
∴22
44b ac a -≥0
直接开平方,得:x+2b a =±2a

∴x 1,x 2 由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:
(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b-4ac ≥0时,•将a 、b 、
c 代入式子 (2)这个式子叫做一元二次方程的求根公式.
(3)利用求根公式解一元二次方程的方法叫公式法.
(4)由求根公式可知,一元二次方程最多有两个实数根.
例1.用公式法解下列方程.
(1)2x 2-4x-1=0 (2)5x+2=3x 2
(3)(x-2)(3x-5)=0 (4)4x 2-3x+1=0
分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.
解:(1)a=2,b=-4,c=-1
b 2-4ac=(-4)2-4×2×(-1)=24>0
x=(4)422242
--±±±==⨯
∴x 1x 2 (2)将方程化为一般形式
3x 2-5x-2=0
a=3,b=-5,c=-2
b 2-4ac=(-5)2-4×3×(-2)=49>0
x=(5)57236
--±=⨯ x 1=2,x 2=-13
(3)将方程化为一般形式
3x 2-11x+9=0
a=3,b=-11,c=9
b 2-4ac=(-11)2-4×3×9=13>0
∴x=(11)11236
--±=⨯
∴x 1=
116+,x 2=116- (3)a=4,b=-3,c=1
b 2-4ac=(-3)2-4×4×1=-7<0
因为在实数范围内,负数不能开平方,所以方程无实数根.
三、巩固练习
教材P 42 练习1.(1)、(3)、(5)
四、应用拓展
例2.某数学兴趣小组对关于x 的方程(m+1)22m x ++(m-2)x-1=0提出了下列问题.
(1)若使方程为一元二次方程,m 是否存在?若存在,求出m 并解此方程.
(2)若使方程为一元二次方程m 是否存在?若存在,请求出.
你能解决这个问题吗?
分析:能.(1)要使它为一元二次方程,必须满足m 2+1=2,同时还要满足(m+1)≠0.
(2)要使它为一元一次方程,必须满足:
①211(1)(2)0m m m ⎧+=⎨++-≠⎩或②21020m m ⎧+=⎨-≠⎩
或③1020m m +=⎧⎨-≠⎩ 解:(1)存在.根据题意,得:m 2+1=2
m 2=1 m=±1
当m=1时,m+1=1+1=2≠0
当m=-1时,m+1=-1+1=0(不合题意,舍去)
∴当m=1时,方程为2x 2-1-x=0
a=2,b=-1,c=-1
b 2-4ac=(-1)2-4×2×(-1)=1+8=9
x=(1)13224
--±=⨯ x 1=,x 2=-12
因此,该方程是一元二次方程时,m=1,两根x 1=1,x 2=-
12. (2)存在.根据题意,得:①m 2+1=1,m 2=0,m=0
因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0
所以m=0满足题意.
②当m 2+1=0,m 不存在.
③当m+1=0,即m=-1时,m-2=-3≠0
所以m=-1也满足题意.
当m=0时,一元一次方程是x-2x-1=0,
解得:x=-1
当m=-1时,一元一次方程是-3x-1=0
解得x=-13
因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-•1时,其一元一次方程的根为x=-
13. 五、归纳小结
本节课应掌握:
(1)求根公式的概念及其推导过程;
(2)公式法的概念;
(3)应用公式法解一元二次方程;
(4)初步了解一元二次方程根的情况.
六、布置作业
1.教材P 45 复习巩固4.
2.选用作业设计:
一、选择题
1.用公式法解方程4x 2-12x=3,得到( ).
A .
B .
C .x=32-±
D .x=32
±
22的根是( ).
A .x 1x 2
B .x 1=6,x 2
C .x 1x 2
D .x 1=x 2 3.(m 2-n 2)(m 2-n 2-2)-8=0,则m 2-n 2的值是( ).
A .4
B .-2
C .4或-2
D .-4或2
二、填空题
1.一元二次方程ax 2+bx+c=0(a ≠0)的求根公式是________,条件是________.
2.当x=______时,代数式x 2-8x+12的值是-4.
3.若关于x 的一元二次方程(m-1)x 2+x+m 2+2m-3=0有一根为0,则m 的值是_____.
三、综合提高题
1.用公式法解关于x 的方程:x 2-2ax-b 2+a 2=0.
2.设x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根,(1)试推导x 1+x 2=-b a ,x 1·x 2=c a
;(2)•求代数式a (x 13+x 23)+b (x 12+x 22)+c (x 1+x 2)的值.
3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A 千瓦时,•那么这户居民这个月只交10元电费,如果超过A 千瓦时,那么这个月除了交10•元用电费外超过部分还要按每千瓦时100
A
元收费.
(1)若某户2月份用电90千瓦时,超过规定A 千瓦时,则超过部分电费为多少元?(•用A 表示)
(2
答案:
一、1.D 2.D 3.C
二、1.x=2b a
-,b 2-4ac ≥0 2.4 3.-3
三、1.x=22
a =a ±│
b │ 2.(1)∵x 1、x 2是ax 2+bx+c=0(a ≠0)的两根,
∴x 1=2b a -+,x 2=2b a
-
∴x 1+x 2b a

x 1·x 2=2b a -·2b a
-=c a (2)∵x 1,x 2是ax 2+bx+c=0的两根,∴ax 12+bx 1+c=0,ax 22+bx 2+c=0 原式=ax 13+bx 12+c 1x 1+ax 23+bx 22+cx 2
=x 1(ax 12+bx 1+c )+x 2(ax 22+bx 2+c )
=0
3.(1)超过部分电费=(90-A )·
100A =-1100A 2+910A (2)依题意,得:(80-A )·
100
A =15,A 1=30(舍去),A 2=50。

相关文档
最新文档