安徽省中考数学复习 2.9 视图、投影、尺规作图

合集下载

中考数学-尺规作图专题复习

中考数学-尺规作图专题复习

中考总复习—尺规作图一、理解“尺规作图”的含义在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、× .三、了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.四、最基本,最常用的尺规作图,通常称基本作图。

2021年安徽中考数学一轮复习课件:第七章 第一节 投影、视图、立体图形的展开与折叠

2021年安徽中考数学一轮复习课件:第七章  第一节 投影、视图、立体图形的展开与折叠

行,故选项A错误;在同一行中,两条
黑线不可能平行,故选项B错误;选
项C中的三条黑线不能构成等边三
角形,而选项D符合题意.
图27-10
图27-11
7.[2019·襄阳]某正方体的平面展开图如图27-12所示,则原正方体中与“春”字所
在的面相对的面上的字是 ( D )
A.青
B.来
C.斗
D.奋
图27-12
投影 下某物体的投影
(续表)
主视图 正投影情况下,在正面内得到的③由前向后 观察物体的视图
概 左视图 正投影情况下,在侧面内得到的④由左向右 观察物体的视图
念 俯视图 正投影情况下,在水平面内得到的⑤由上向下 观察物体的视图

(1)主视图和俯视图要⑥ 长对正 ;

(2)主视图和左视图要⑦ 高平齐 ;
考向三 关于三视图的计算
9.[2020·济宁]如图27-15是一个几何体的三视 [答案] B
图,根据图中所示数据计算这个几何体的侧面 [解析]由三视图可知,原几何体为
积是( ) A.12π cm2 B.15π cm2 C.24π cm2 D.30π cm2
圆锥,
∵l=
(6)
2
2
+
42=5(cm),
图27-1
2.[2019·安徽3题]一个由圆柱和长方体组成的几何体如图27-2水平放置,它的俯 视图是 ( C )
图27-2
图27-3
3.[2018·安徽4题]一个由圆柱和圆锥组成的几何体如图27-4水平放置,其主(正)视 图为 ( A )
图27-4
图27-5
4.[2017·安徽3题]如图27-6,一个放置在水平试验台上的锥形瓶,它的俯视图为( B )

中考数学复习:尺规作图与理论依据

中考数学复习:尺规作图与理论依据

中考数学复习:尺规作图与理论依据基本作图常添结论1、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。

线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。

逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

2、角的平分线及其性质一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。

角的平分线有下面的性质定理:(1)角平分线上的点到这个角的两边的距离相等。

(2)到一个角的两边距离相等的点在这个角的平分线上。

3、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

5三角形全等的判定定理:边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)6等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。

即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°。

7、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。

这个判定定理常用于证明同一个三角形中的边相等。

推论1:三个角都相等的三角形是等边三角形推论2:有一个角是60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

中考数学专题复习导学案尺规作图》(含答案)

中考数学专题复习导学案尺规作图》(含答案)

中考数学专题练习《尺规作图》【知识归纳】一)尺规作图1.定义只用没有刻度的和作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.【基础检测】1.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( )A .a =bB .2a +b =﹣1C .2a ﹣b =1D .2a +b =12.如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A ,点D 在BC 异侧,连结AD ,量一量线段AD 的长,约为( )A .2.5cmB .3.0cmC .3.5cmD .4.0cm3.如图,已知△ABC ,∠BAC=90°,请用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形(保留作图痕迹,不写作法)4.如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A (4,3)、B (4,1),把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C .(1)画出△A 1B 1C ,直接写出点A 1、B 1的坐标;(2)求在旋转过程中,△ABC 所扫过的面积.5.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC .(1)试在图中标出点D ,并画出该四边形的另两条边;(2)将四边形ABCD 向下平移5个单位,画出平移后得到的四边形A′B′C′D′.6.已知:线段a 及∠ACB .求作:⊙O ,使⊙O 在∠ACB 的内部,CO=a ,且⊙O 与∠ACB 的两边分别相切.7.如图,OA=2,以点A 为圆心,1为半径画⊙A 与OA 的延长线交于点C ,过点A 画OA 的垂线,垂线与⊙A 的一个交点为B ,连接BC(1)线段BC 的长等于 ; (2)请在图中按下列要求逐一操作,并回答问题:A B C①以点为圆心,以线段的长为半径画弧,与射线BA交于点D,使线段OD的长等于②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.【达标检测】一、选择题1.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°2.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧○1;步骤2:以B为圆心,BA为半径画弧○2,将弧○1于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()第10题图A.BH垂直分分线段AD B.AC平分∠BAD=BC·AH D.AB=ADC.S△ABC二、填空题3.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D 两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB=.4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的是。

2024中考数学总复习冲刺专题:尺规作图 通用版

2024中考数学总复习冲刺专题:尺规作图 通用版

“尺规作图”一、教学目标:1.知识与技能:(1)再认识什么是尺规作图,经历五个基本作图的复习与巩固,能在解答题中按要求进行尺规作图(不要求写出具体做法,但需要保留作图痕迹);(2)能在题目中识别出具体是哪种类型的尺规作图,并利用所做的线的性质来解决几何问题。

2.过程与方法:经历五个基本作图的复习与巩固,感受尺规作图的几何意义,规范学生的作图语言,积累一些尺规作图的方法与经验,感受数学的严谨性以及数学结论的确定性。

3.情感、态度与价值观:通过复习尺规作图,进一步加强学生的作图能力,使学生养成良好的动手操作、实践探索、合作交流的学习习惯。

二、教学重点:掌握五个基本尺规作图的作法三、教学难点:能利用尺规作图解决实际问题四、教学过程:知识技能梳理1.尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

2.五种基本作图:1)作一条线段等于已知线段;2)作已知角的平分线;3)作已知线段的垂直平分线;4)作一个角等于已知角;5)过一点作已知直线的垂线【点在线上、点在线外】。

模块一:五种尺规作图复习1.作一条线段等于已知线段已知:如图所示线段a.求作:线段AB,使AB=a.作法:(1)作射线AP;(2)在射线AP上截取AB=a.则线段AB就是所求作的图形。

2.作线段的垂直平分线(中垂线)或中点3.作已知角的平分线已知:如图,∠AOB.求作:射线OP,使∠AOP=∠BOP(即OP平分∠AOB).作法:(1)以O为圆心,任意长度为半径画弧,分别交OA,OB于M,N;(2)分别以M、N为圆心,大于的线段长为半径画弧,两弧交∠AOB内于P;作射线OP。

则射线OP就是∠AOB的角平分线。

4.作一个角等于已知角已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:1)作射线O′A′;2)以O为圆心,任意长度为半径画弧,交OA于M,交OB于N;3)以O′为圆心,以OM的长为半径画弧,交O′A′于M′;4)以M′为圆心,以MN的长为半径画弧,交前弧于N′;5)连接O′N′并延长到B′。

中考数学一轮复习课件 投影、视图与尺规作图

中考数学一轮复习课件 投影、视图与尺规作图

4.(2018·安徽第4题)一个由圆柱和圆锥组成的几何体如图水 平放置,其主(正)视图为( A )
5.(2017·安徽第3题)如图,一个放置在水平实验台上的锥形瓶, 它的俯视图为( B )
6.(2016·安徽第4题)如图,一个放置在水平桌面上的圆柱,它的 主视图是( C )
7.(2015·安徽第4题)下列几何体中,俯视图是矩形的是( B )
考点一投影 典例1 (2020·贵阳)下列四幅图中,能表示两棵树在同一时刻 太阳光下的影子的图是( )
【解析】A项和B项,两棵小树的影子的方向相反,不可能为同 一时刻太阳光下的影子,所以A项、B项错误;在同一时刻太阳 光下,树高与影长成正比,所以C项正确,D项错误. 【答案】 C
考点二三视图[必考] 典例2 (2021·江西)如图,几何体的主视图是( )
【解析】选项A的俯视图是圆(圆心有一点),选项B的俯视图 是矩形,选项C的俯视图是三角形,选项D的俯视图是圆.
8.(2014·安徽第3题)如图,图中的几何体是圆柱沿竖直方向切 掉一半后得到的,则该几何体的俯视图是( D )
由三视图识别几何体的关键在于熟记各种常见几何体的三视图.
几何体
图形 主视图 左视图
俯视图
长方体
圆柱
圆锥
棱锥
棱柱

考向2 利用三视图进行计算
2.如图是一个几何体的三视图,根据图中数据计算,这个几何
体的体积为
16 2π 3
.
【解析】由三视图可判断出这个几何体是圆锥.该圆锥的母线长
为 6,底面半径为 2,所以它的高为 62-22=4 2,
【解析】几何体的主视图是两个长方形靠在一起.只有C项正 确. 【答案】 C
画三视图时要满足“长对正,高平齐,宽相等”,同时要注意虚 线与实线的用法.

(完整版)中考数学尺规作图专题复习(含答案)

(完整版)中考数学尺规作图专题复习(含答案)

中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。

1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。

5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。

中考数学真题专项汇编解析—投影与视图、命题、尺规作图

中考数学真题专项汇编解析—投影与视图、命题、尺规作图

中考数学真题专项汇编解析—投影与视图、命题、尺规作图一.选择题1.(2022·新疆·中考真题)如图是某几何体的展开图,该几何体是()A.长方体B.正方体C.圆锥D.圆柱【答案】C【分析】观察所给图形可知展开图由一个扇形和一个圆构成,由此可以判断该几何体是圆锥.【详解】解:∵展开图由一个扇形和一个圆构成,∵该几何体是圆锥.故选C.【点睛】本题考查圆锥的展开图,熟记圆锥展开图的形状是解题的关键.2.(2022·江苏宿迁·中考真题)下列展开图中,是正方体展开图的是()A.B.C.D.【答案】C【分析】根据正方体的表面展开图共有11种情况,A,D是“田”型,对折不能折成正方体,B是“凹”型,不能围成正方体,由此可进行选择.【详解】解:根据正方体展开图特点可得C答案可以围成正方体,故选:C.【点睛】此题考查了正方体的平面展开图.关键是掌握正方体展开图特点.3.(2022·浙江金华·中考真题)如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是()A.B.C.D.【答案】C【分析】根据圆柱的侧面展开特征,两点之间线段最短判断即可;【详解】解:∵AB为底面直径,∵将圆柱侧面沿AC“剪开”后,B点在长方形上面那条边的中间,∵两点之间线段最短,故选:C.【点睛】本题考查了圆柱的侧面展开,掌握两点之间线段最短是解题关键.4.(2022·四川遂宁·中考真题)如图是正方体的一种展开图,那么在原正方体中与“我”字所在面相对的面上的汉字是()A.大B.美C.遂D.宁【答案】B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“美”是相对面.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手.5.(2022·四川自贡·中考真题)如图,将矩形纸片ABCD绕边CD所在的直线旋转一周,得到的立体图形是()A.B.C.D.【答案】A【分析】根据矩形绕一边旋转一周得到圆柱体示来解答.【详解】解:矩形纸片ABCD绕边CD所在的直线旋转一周,得到的立体图形是圆柱体.故选:A.【点睛】本题考查了点、线、面、体,熟练掌握“面动成体”得到的几何体的形状是解题的关键.6.(2022·湖南衡阳·中考真题)石鼓广场供游客休息的石板凳如图所示,它的主视图是()A.B.C.D.【答案】A【分析】根据主视图的定义和画法进行判断即可.【详解】解:从正面看过去,看到上下共三个矩形,所以主视图是:故选A【点睛】本题考查简单几何体的主视图,主视图就是从正面看物体所得到的图形.7.(2022·云南·中考真题)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.四棱柱D.圆柱【答案】D【分析】根据三视图逆向即可得.【详解】解:此几何体为一个圆柱.故选:D.【点睛】此题考查由三视图还原几何体,既要考虑各视图的形状,还要把各视图的情况综合考虑才能得到几何体的形状.8.(2022·天津·中考真题)下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【答案】A【分析】画出从正面看到的图形即可得到它的主视图.【详解】解:几何体的主视图为:故选:A【点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.9.(2022·江西·中考真题)如图是四个完全相同的小正方体搭成的几何体,它的俯视图为()A.B.C.D.【答案】A【分析】从上面观察该几何体得到一个“T”字形的平面图形,横着两个正方形,中间有一个正方形,且有两条垂直的虚线,下方有半个正方形.画出图形即可.【详解】俯视图如图所示.故选:A.【点睛】本题主要考查了几何体的三视图,俯视图是从上面观察几何体得出的平面图形..注意:能看到的线用实线,看不到而存在的线用虚线.10.(2022·浙江温州·中考真题)某物体如图所示,它的主视图是()A.B.C.D.【答案】D【分析】根据主视图的定义和画法进行判断即可.【详解】解:某物体如图所示,它的主视图是:故选:D.【点睛】本题考查简单几何体的主视图,主视图就是从正面看物体所得到的图形.11.(2022·浙江宁波·中考真题)如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是()A.B.C.D.【答案】C【分析】根据俯视图的意义和画法可以得出答案.【详解】根据俯视图的意义可知,从上面看物体所得到的图形,选项C符合题意,故答案选:C.【点睛】本题主要考查组合体的三视图,注意虚线、实线的区别,掌握俯视图是从物体的上面看得到的视图是解题的关键.12.(2022·江苏扬州·中考真题)如图是某一几何体的主视图、左视图、俯视图,该几何体是()A.四棱柱B.四棱锥C.三棱柱D.三棱锥【答案】B【分析】根据各个几何体三视图的特点进行求解即可.【详解】解:∵该几何体的主视图与左视图都是三角形,俯视图是一个矩形,而且两条对角线是实线,∵该几何体是四棱锥,故选B.【点睛】本题主要考查了由三视图还原几何体,熟知常见几何体的三视图是解题的关键.13.(2022·浙江绍兴·中考真题)由七个相同的小立方块搭成的几何体如图所示,则它的主视图是()A.B.C.D.【答案】B【分析】根据题目中的图形,可以画出主视图,本题得以解决.【详解】解:由图可得,题目中图形的主视图是,故选:B.【点睛】本题考查简单组合体的三视图,解题的关键是画出相应的图形.14.(2022·浙江嘉兴·中考真题)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【答案】B【分析】主视图有3列,每列小正方形数目分别为2,1,1.【详解】如图所示:它的主视图是:.故选:B.【点睛】此题主要考查了简单组合体的三视图,正确把握观察角度是解题关键.15.(2022·浙江丽水·中考真题)如图是运动会领奖台,它的主视图是()A.B.C.D.【答案】A【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:领奖台的主视图是:故选:A.【点睛】本题考查了简单几何体的三视图,从正面看得到的图形是主视图.16.(2022·安徽·中考真题)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A.B.C.D.【答案】A【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:该几何体的俯视图为:,故选:A【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.17.(2022·浙江舟山·中考真题)用尺规作一个角的角平分线,下列作法中错误的是( )A .B .C .D .【答案】D【分析】根据作图轨迹及角平分线的定义判断即可得出答案.【详解】A 、如图,由作图可知:,OA OC AB BC ==,又∵OB OB =,∵OAB OCB ≅,∵AOB COB ∠=∠,∵OB 平分AOC ∠.故A 选项是在作角平分线,不符合题意;B 、如图,由作图可知:,OA OB OC OD ==,又∵COB AOD ∠=∠,∵OBC OAD ≅,∵OA OB OAD OBC OCB ODA =∠=∠∠=∠,,,∵AC BD =,∵CEA BED ∠=∠,ECA EDB ∠=∠,∵AEC BED ≅△△,∵AE BE =,∵,EAO EBO OA OB ∠=∠=,∵AOE BOE ∠=∠,∵OE 平分AOB ∠.故B 选项是在作角平分线,不符合题意;C 、如图,由作图可知:,AOB MCN OC CD ∠=∠=,∵CD OB ∥,COD CDO =∠∠,∵DOB CDO ∠=∠,∵COD DOB ∠=∠,∵OD 平分AOB ∠.故C 选项是在作角平分线,不符合题意;D 、如图,由作图可知:,OA BC OC AB ==,又∵OB OB =,∵AOB CBO ≅,∵,,AOB OBC COB ABO ∠=∠∠=∠故D 选项不是在作角平分线,符合题意;故选:D【点睛】本题考查了角平分线的作图,全等三角形的性质与判定,掌握以上知识是解题的关键.18.(2022·山东泰安·中考真题)某种零件模型如图所示,该几何体(空心圆柱)的俯视图是( )A .B .C .D .【答案】C【详解】找到从上面看所得到的图形即可:空心圆柱由上向下看,看到的是一个圆环.故选C19.(2022·湖北十堰·中考真题)如图,工人砌墙时,先在两个墙脚的位置分别插一根木桩,再拉一条直的参照线,就能使砌的砖在一条直线上.这样做应用的数学知识是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.三角形两边之和大于第三边【答案】B【分析】由直线公理可直接得出答案.【详解】解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故选:B.【点睛】此题主要考查了直线的性质,要想确定一条直线,至少要知道两点.20.(2022·四川达州·中考真题)下列命题是真命题的是()A.相等的两个角是对顶角B.相等的圆周角所对的弧相等C.若a b<,则22ac bc<D.在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是1 3【答案】D【分析】分别根据对顶角的定义,圆周角定理,不等式的基本性质及概率公式进行判断即可得到答案.【详解】有公共顶点且两条边互为反向延长线的两个角是对顶角,故A选项错误,不符合题意;在同圆或等圆中,相等的圆周角所对的弧相等,故B选项错误,不符合题意;若a b<,则22ac bc≤,故C选项错误,不符合题意;在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是13,故D选项正确,符合题意;故选:D.【点睛】本题考查了命题的真假,涉及对顶角的定义,圆周角定理,不等式的基本性质及概率公式,熟练掌握知识点是解题的关键.21.(2022·湖北随州·中考真题)如图是一个放在水平桌面上的半球体,该几何体的三视图中完全相同的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.三个视图均相同【答案】A【分析】根据三视图的形成,从正面、左面和上面三个方向看立体图形得到的平面图形,注意所有的看到的或看不到的棱都应表现在三视图中,看得见的用实线,看不见的用虚线,虚实重合用实线.【详解】解:从正面和左面看,得到的平面图形均是半圆,而从上面看是一个圆,因此该几何体主视图与左视图一致,故选:A.【点睛】本题考查了三视图的知识,准确把握从正面、左面和上面三个方向看立体图形得到的平面图形是解决问题的关键.22.(2022·湖北黄冈·中考真题)某几何体的三视图如图所示,则该几何体是()A.圆锥B.三棱锥C.三棱柱D.四棱柱【答案】C【分析】由主视图和左视图得出该几何体是柱体,再结合俯视图可得答案.【详解】解:由三视图知,该几何体是三棱柱,故选:C.【点睛】本题主要考查由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.23.(2022·广西梧州·中考真题)下列命题中,假命题...是()A.2-的绝对值是2-B.对顶角相等C.平行四边形是中心对称图形D.如果直线,∥∥,那么直线a ba cb c∥【答案】A【分析】根据绝对值的意义,对顶角的性质,平行四边形的性质,平行线的判定逐一判断即可.【详解】解:A.2-的绝对值是2,故原命题是假命题,符合题意;B.对顶角相等,故原命题是真命题,不符合题意;C.平行四边形是中心对称图形,故原命题是真命题,不符合题意;D.如果直线,a cb c∥∥,那么直线a b∥,故原命题是真命题,不符合题意;故选:A.【点睛】本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.24.(2022·内蒙古包头·中考真题)几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为()A.3B.4C.6D.9【答案】B【分析】根据该几何体的俯视图以及该位置小正方体的个数,可以画出左视图,从而求出左视图的面积;【详解】由俯视图以及该位置小正方体的个数,左视图共有两列,第一列两个小正方体,第二列两个小正方体,可以画出左视图如图,所以这个几何体的左视图的面积为4故选:B【点睛】本题考查了物体的三视图,解题饿到关键是根据俯视图,以及该位置小正方体的个数,正确作出左视图.25.(2022·湖北武汉·中考真题)如图是一个立体图形的三视图,该立体图形是()A.长方体B.正方体C.三棱柱D.圆柱【答案】A【分析】根据题意可得这个几何体的三视图为长方形和正方形,即可求解.【详解】解:根据题意得:该几何体的三视图为长方形和正方形,∵该几何体是长方体.故选:A【点睛】本题考查由三视图确定几何体的名称,熟记常见几何体的三视图的特征是解题的关键.26.(2022·黑龙江齐齐哈尔·中考真题)由一些大小相同的小正方体搭成的几何体的主视图、左视图和俯视图都是如图所示的“田”字形,则搭成该几何体的小正方体的个数最少为()A.4个B.5个C.6个D.7个【答案】C【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出第二层的个数,从而算出总的个数.【详解】解:由题中所给出的左视图知物体共两层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少2+4=6.故选:C.【点睛】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.27.(2022·黑龙江绥化·中考真题)下列图形中,正方体展开图错误的是()A.B.C.D.【答案】D【分析】利用正方体及其表面展开图的特点解题.【详解】D选项出现了“田字形”,折叠后有一行两个面无法折起来,从而缺少面,不能折成正方体,A、B、C选项是一个正方体的表面展开图.故选:D.【点睛】此题考查了几何体的展开图,只要有“田”“凹”字的展开图都不是正方体的表面展开图.28.(2022·广西贺州·中考真题)下面四个几何体中,主视图为矩形的是()A.B.C.D.【答案】A【分析】依次分析每个选项中的主视图,找出符合题意的选项即可.【详解】解:A选项图形的主视图为矩形,符合题意;B选项图形的主视图为三角形,中间由一条实线,不符合题意;C选项图形的主视图为三角形,不符合题意;D选项图形的主视图为梯形,不符合题意;故选:A.【点睛】本题考查了几何体的主视图,解题关键是理解主视图的定义.29.(2022·湖南永州·中考真题)我市江华县有“神州摇都”的美涨,每逢“盘王节”会表演长鼓舞,长鼓舞中使用的“长鼓”内腔挖空,两端相通,两端鼓口为圆形,中间鼓腰较为细小.如图为类似“长鼓”的几何体,其俯视图的大致形状是()A.B.C.D.【答案】B【分析】根据题目描述,判断几何体的俯视图即可;【详解】解:根据长鼓舞中使用的“长鼓”内腔挖空,两端相通,可知俯视图中空,两端鼓口为圆形可知俯视图是圆形,鼓腰也是圆形,且是不能直接看见,所以中间是虚圆;故选:B.【点睛】本题主要考查几何体的三视图中的俯视图,解本题的关键在于需学生具备一定的空间想象能力.30.(2022·湖南岳阳·中考真题)某个立体图形的侧面展开图如图所示,它的底面是正三角形,那么这个立体图形是()A.圆柱B.圆锥C.三棱柱D.四棱柱【答案】C【分析】根据常见立体图形的底面和侧面即可得出答案.【详解】解:A选项,圆柱的底面是圆,故该选项不符合题意;B选项,圆锥的底面是圆,故该选项不符合题意;C选项,三棱柱的底面是三角形,侧面是三个长方形,故该选项符合题意;D选项,四棱柱的底面是四边形,故该选项不符合题意;故选:C.【点睛】本题考查了几何体的展开图,掌握n棱柱的底面是n边形是解题的关键.31.(2022·河南·中考真题)2022年北京冬奥会的奖牌“同心”表达了“天地合·人心同”的中华文化内涵,将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A.合B.同C.心D.人【答案】D【分析】根据正方体的展开图进行判断即可;【详解】解:由正方体的展开图可知“地”字所在面相对的面上的汉字是“人”;故选:D.【点睛】本题主要考查正方体的展开图相对两个面上的文字,注意正方体的空间图形,从相对面入手是解题的关键.32.(2022·湖南湘潭·中考真题)如图,小明在学了尺规作图后,作了一个图形,其作图步骤是:∵作线段2AB ,分别以点A、B为圆心,以AB长为半径画弧,两弧相交于点C、D;∵连接AC、BC,作直线CD,且CD与AB相交于点H.则下列说法不正确的是()A.ABC是等边三角形B.AB CD⊥C.AH BH=D.45∠=︒ACD【答案】D【分析】根据等边三角形的判定和性质,线段垂直平分线的性质一一判断即可.【详解】解:由作图可知:AB=BC=AC,∵∵ABC是等边三角形,故A选项正确∵等边三角形三线合一,由作图知,CD是线段AB的垂直平分线,∵AB CD⊥,故B选项正确,∵AH BH=,30∠=︒,故C选项正确,D选项错误.故选:D.ACD【点睛】此题考查了作图-基本作图,等边三角形的判定和性质,线段垂直平分线的性质,解题的关键是理解题意,灵活运用所学知识解决问题.33.(2022·四川广元·中考真题)如图,在∵ABC中,BC=6,AC=8,∵C=90°,以点B为圆心,BC长为半径画弧,与AB交于点D,再分别以A、D为圆心,AD的长为半径画弧,两弧交于点M、N,作直线MN,分别交AC、AB于大于12点E 、F ,则AE 的长度为( )A .52B .3C .D .103【答案】A【分析】由题意易得MN 垂直平分AD ,AB =10,则有AD =4,AF =2,然后可得4cos 5AC A AB ∠==, 进而问题可求解.【详解】解:由题意得:MN 垂直平分AD ,6BD BC ==,∵1,902AF AD AFE =∠=︒,∵BC =6,AC =8,∵C =90°,∵10AB ,∵AD =4,AF =2,4cos 5AC A AB ∠==,∵5cos 2AF AE A ==∠;故选A . 【点睛】本题主要考查勾股定理、垂直平分线的性质及三角函数,熟练掌握勾股定理、垂直平分线的性质及三角函数是解题的关键.34.(2022·河北·中考真题)∵~∵是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择( )A.∵∵B.∵∵C.∵∵D.∵∵【答案】D【解析】【分析】观察图形可知,∵~∵的小正方体的个数分别为4,3,3,2,其中∵∵组合不能构成长方体,∵∵组合符合题意【详解】解:观察图形可知,∵~∵的小正方体的个数分别为4,3,3,2,其中∵∵组合不能构成长方体,∵∵组合符合题意故选D【点睛】本题考查了立体图形,应用空间想象能力是解题的关键.二、填空题35.(2022·江苏无锡·中考真题)请写出命题“如果a b>,那么0-<”的逆命题:b a________.【答案】如果0-<,那么a b>b a【分析】根据逆命题的概念解答即可.【详解】解:命题“如果a b>,那么0b a-<,那么a b>”,-<”的逆命题是“如果0b a故答案为:如果0-<,那么a b>.b a【点睛】此题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.36.(2022·湖南常德·中考真题)如图是一个正方体的展开图,将它拼成正方体后,“神”字对面的字是________.【答案】月【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:由正方体的展开图特点可得:“神”字对面的字是“月”.故答案为:月.【点睛】此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.37.(2022·浙江湖州·中考真题)“如果a b =,那么a b =”的逆命题是___________.【答案】如果a b =,那么a b =【分析】把一个命题的条件和结论互换就得到它的逆命题,从而得出答案.【详解】解:“如果a b =,那么a b =”的逆命题是:“如果a b =,那么a b =”,故答案为:如果a b =,那么a b =.【点睛】本题考查命题与定理,解题的关键是理解题意,掌握逆命题的定义. 38.(2022·浙江温州·中考真题)如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M 在旋转中心O 的正下方.某一时刻,太阳光线恰好垂直照射叶片,OA OB ,此时各叶片影子在点M 右侧成线段CD ,测得8.5m,13mMC CD==,垂直于地面的木棒EF与影子FG的比为2∵3,则点O,M之间的距离等于___________米.转动时,叶片外端离地面的最大高度等于___________米.【答案】1010【分析】过点O作AC、BD的平行线,交CD于H,过点O作水平线OJ交BD 于点J,过点B作BI∵OJ,垂足为I,延长MO,使得OK=OB,求出CH的长度,根据23EF OMFG MH==,求出OM的长度,证明BIO JIB∽,得出23BI IJ=,49OI IJ=,求出IJ、BI、OI的长度,用勾股定理求出OB的长,即可算出所求长度.【详解】如图,过点O作AC、BD的平行线,交CD于H,过点O作水平线OJ 交BD于点J,过点B作BI∵OJ,垂足为I,延长MO,使得OK=OB,由题意可知,点O是AB的中点,∵OH AC BD,∵点H是CD的中点,∵13m CD=,∵16.5m2CH HD CD===,∵8.5 6.515m MH MC CH=+=+=,又∵由题意可知:23EF OMFG MH==,∵2153OM=,解得10m=OM,∵点O、M之间的距离等于10m,∵BI∵OJ,∵90BIO BIJ∠=∠=︒,∵由题意可知:90OBJ OBI JBI ∠=∠+∠=︒,又∵90BOI OBI ∠+∠=︒,∵BOI JBI ∠=∠,∵BIO JIB ∽,∵23BI OI IJ BI ==,∵23BI IJ =,49OI IJ =, ∵,OJ CD OH DJ ,∵四边形IHDJ 是平行四边形,∵ 6.5m OJ HD ==, ∵46.5m 9OJ OI IJ IJ IJ =+=+=,∵ 4.5m IJ =,3m BI =,2m OI =,∵在Rt OBI △中,由勾股定理得:222OB OI BI =+,∵OB ,∵OB OK ==,∵(10m MK MO OK =+=,∵叶片外端离地面的最大高度等于(10m,故答案为:10,10+【点睛】本题主要考查了投影和相似的应用,及勾股定理和平行四边形的判定与性质,正确作出辅助线是解答本题的关键.39.(2022·浙江杭州·中考真题)某项目学习小组为了测量直立在水平地面上的旗杆AB 的高度,把标杆DE 直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC =8.72m ,EF =2.18m .已知B ,C ,E ,F 在同一直线上,AB ∵BC ,DE ∵EF ,DE =2.47m ,则AB =_________m .【答案】9.88【分析】根据平行投影得AC ∵DE ,可得∵ACB =∵DFE ,证明Rt ∵ABC ∵∵Rt ∵DEF ,然后利用相似三角形的性质即可求解.【详解】解:∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC =8.72m ,EF =2.18m .∵AC ∵DE ,∵∵ACB =∵DFE ,∵AB ∵BC ,DE ∵EF ,∵∵ABC =∵DEF =90°,∵Rt ∵ABC ∵∵Rt ∵DEF , ∵AB BC DE EF =,即8.722.47 2.18AB =,解得AB =9.88, ∵旗杆的高度为9.88m .故答案为:9.88.【点睛】本题考查了相似三角形的判定与性质,平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.证明Rt ∵ABC ∵∵Rt ∵DEF 是解题的关键.40.(2022·湖南衡阳·中考真题)如图,在ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径作圆弧,两弧相交于点M 和点N ,作直线MN 交CB 于点D ,连接AD .若8AC =,15BC =,则ACD △的周长为_________.【答案】23【分析】由作图可得:MN 是AB 的垂直平分线,可得,DA DB =再利用三角形的周长公式进行计算即可.【详解】解:由作图可得:MN 是AB 的垂直平分线,,DA DB ∴=8AC =,15BC =,81523,ACD CAC CD AD AC CD BD AC BC 故答案为:23【点睛】本题考查的是线段的垂直平分线的作图,线段的垂直平分线的性质,掌握“线段的垂直平分线的性质”是解本题的关键.三.解答题41.(2022·陕西·中考真题)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB 的影长OC 为16米,OA 的影长OD 为20米,小明的影长FG 为2.4米,其中O 、C 、D 、F 、G 五点在同一直线上,A 、B 、O 三点在同一直线上,且AO ∵OD ,EF ∵FG .已知小明的身高EF 为1.8米,求旗杆的高AB .【答案】旗杆的高AB 为3米.【分析】证明∵AOD ∵∵EFG ,利用相似比计算出AO 的长,再证明∵BOC ∵∵AOD ,然后利用相似比计算OB 的长,进一步计算即可求解. 【详解】解:∵AD ∵EG ,∵∵ADO =∵EGF . 又∵∵AOD =∵EFG =90°,∵∵AOD ∵∵EFG . ∵AO ODEF FG =.∵ 1.820152.4EF OD AO FG ⋅⨯===. 同理,∵BOC ∵∵AOD .∵BO OCAO OD =.∵15161220AO OC BO OD ⋅⨯===. ∵AB =OA −OB =3(米).∵旗杆的高AB 为3米.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.42.(2022·陕西·中考真题)如图,已知,,ABC CA CB ACD =∠△是ABC 的一个外角.请用尺规作图法,求作射线CP ,使CP AB ∥.(保留作图痕迹,不写作法)。

中考数学《2.9视图、投影、尺规作图》总复习课件ppt

中考数学《2.9视图、投影、尺规作图》总复习课件ppt

考纲 解读
命题 解读
考点 扫描
综合 探究
考点1 考点2 考点3 考点4
考点1 投影与三视图 1.投影 一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子 叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做 投 影面 . 2.平行投影 有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光 中的光线.由平行光线形成的投影叫平行投影.
考点 扫描
综合 探究
考点1 考点2 考点3 考点4
【变式训练】(2016·武汉)如图是由一个圆柱体和一个长方体组成 的几何体,其左视图是 ( A )
【解析】本题考查三视图.从左面看,上面是长方形,下面也是长方 形,且两个长方形底边长度相等.
考点 扫描
综合 探究
考点1 考点2 考点3 考点4
考点2 直棱柱及圆锥的侧面展开图
考点 扫描
综合 探究
考点1 考点2 考点3 考点4
(2)圆锥侧面上两点之间的最短距离 如图,圆锥侧面上B,D两点间的最短距离,即为侧面展开图中线段 BD的距离.
考点 扫描
综合 探究
考点1 考点2 考点3 考点4
考点 扫描
综合 探究
考点1 考点2 考点3 考点4
5.圆锥的侧面是一个曲面,展开是一个扇形.
6.圆柱的侧面展开图是一个矩形.
考点 扫描
综合 探究
考点1 考点2 考点3 考点4
典例2 (2016·山东德州)图中三视图对应的正三棱柱是 ( )
考点 扫描
综合 探究
考点1 考点2 考点3 考点4
【解析】本题考查由三视图判断几何体:由三视图想象几何体的形 状,应分别根据主视图、俯视图和左视图想象几何体的前面、上面 和左侧面的形状,然后综合起来考虑整体形状.同时从实线和虚线 想象几何体看得见部分和看不见部分的轮廓线.由俯视图得到正三 棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于 是可判定A选项正确. 【答案】 A

九年级中考数学一轮复习课件:第28课时 尺规作图、视图与投影

九年级中考数学一轮复习课件:第28课时 尺规作图、视图与投影

成实线,看不见的轮廓线画成虚线.
例2(2015 达州)一个几何体由大小相同的小方
块搭成,从上面看到的几何体的形状图如图所示, 其中小正方形中的数字表示在该位置的小立方块 的个数,则从正面看到几何体的形状图是( D )
【思路点拨】由俯视图中每个数字是该位置小方块的个数,
可判断出主视图有3列,再根据小方块的数量判断几何体每
第一部分
考点研究
第七章 图形的变化
第28课时 尺规作图、视图与投影
考点精讲
尺规作图
尺规作图的定义:只用无刻度的直 圆规 来完成的作图方法称 尺和①______ 为尺规作图 五种基本尺规作图
尺规 作图、 视图 与投 影
三视图
1.三视图的判断 2.几种常见几何体的三视图及展开图 3.由三视图还原几何体
正方体的展开与折叠 投影
1.作一条线段等于已知线段的步骤 2.作角平分线的步骤 五种 基本 尺规 作图
3.作线段的垂直平分线的步骤
4.作一个角等于已知角的步骤 5.过一点P作已知直线AB的垂线的步骤
1.作一条线 段等于已知 线段的步骤
1.作射线AC 2.用圆规在射线AC上截取AB=a, AB即为所求线段
1.以点O为圆心,任意长为半径作弧,分别 交射线OA、OB于点C、D 2.作角的平分 线的步骤
1 CD 2.分别以点C、D为圆心,大于②______ 的 2
长为半径作弧,两弧在∠AOB的内部交于 点P
3.作射线OP,OP即为所求角平分线
3.作线段的 垂直平分 线的步骤
1 AB 2 1.分别以点A、B为圆心,以大于③______
列有几个小正方块即可.
判断小立方块组成几何体的视图:①找准所判断视 图的观察方向;②从视图观察方向看几何体: a.判断主视图时,从前往后看,几何体从左至右有x列, 每一列最高有y层,对应到方形数为y个.b.判断左视图时,从左往

初中数学中考复习:尺规作图及命题、证明

初中数学中考复习:尺规作图及命题、证明

14
考点三:与圆有关的尺规作图 • 与圆有关的尺规作图:
• (1)过不在同一条直线上的三点作圆(即三角形的外接圆); • (2)作三角形的内切圆; • (3)作圆的内接正方形及正六边形.
• 有关中心对称或轴对称的作图以及设计图案是中考常见的类型.
15
考点三:与圆有关的尺规作图
• 【例 如图,已知△ABC,∠B=40°.
题;

若甲错,即x≤14,则y≥6,则乙错,故D不是真命题.

根据以上分析,故选B.
• 【答案】 B
30
考点五:命题、定理、证明 • 基本事实与定理:
• (1)经过长期实践后公认为正确的命题,作为判断其他命题的依据,这些命题称为 基本事实.例如,“两点之间线段最短”,“两点确定一条直线”.
• (2)用推理的方法判断为正确的命题叫做定理.例如,“对顶角相等”,“三角形任何 两边的和大于第三边”.
1 2
AC的长为半径画弧,两弧相交于M,N两点,作直线MN交AD于点E,则△CDE的周长是(
B
)

A.7
B.10
C.11
D.12
22
考点四:尺规作图的综合应用
• 【例】(2018·湖州)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作 图考他的大臣:
• ①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点; • ②分别以点A、D为圆心,AC长为半径画弧,G是两弧的一个交点; • ③连结OG. • 问:OG的长是多少? • 大臣给出的正确答案应是( )
1 2
AC的长为半径画弧,两弧相交于M,N两点,作直线MN交AD于点E,则△CDE的周长是(
)

中考数学尺规作图专题复习(含答案)

中考数学尺规作图专题复习(含答案)

中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。

1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。

5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。

中考数学知识点复习:尺规作图全面版

中考数学知识点复习:尺规作图全面版

如何利用尺规作图解决最值问题?
最值问题的求解
最值问题是一类求解最优解的问题,可以利用尺规作图来解决。例如,在几何、代数等领域中,经常需要使用尺规作 图来求解最值问题。
作图方法
利用尺规作图求解最值问题,需要先了解问题的具体内容,然后根据问题内容进行尺规作图。在作图过程中,需要注 意图形绘制的准确性和规范性,以保证求解的准确性。
03
多边形的尺规作图
作已知线段的垂线
01
总结词:通过一个已知点,作 已知线段的垂线,是尺规作图
的基础。
02
详细描述
03
04
1. 分别以线段的两个端点为 圆心,以大于线段的一半为半 径画圆弧,得到两个交点。
2. 连接两个交点,得到的直 线即为已知线段的垂线。
已知二线段平行的垂线段的中垂线
总结词:找到一个已知的平行线段的中垂线,是尺规作 图的进阶技能。
1. 以平行线段的一个端点为圆心,以适当长度为半径画 圆弧,与平行线段相交于两点。
详细描述
2. 连接这两个交点得到的直线即为已知平行线段的中垂 线。
作已知直线的平行线
01
总结词:通过一个已知点,作已知直线的平行线,是尺规作图的基本 技能之一。
02
详细描述
03
1. 以已知点为圆心,以适当长度为半径画圆弧,与直线相交于两点。
04
2. 连接这两个交点得到的直线即为已知直线的平行线。
作已知二线段的中垂线
01 总结词:通过两个已知点,作已知二线段 的中垂线,是尺规作图的高级技能。
02
详细描述
Hale Waihona Puke 031. 以两个已知点为圆心,以适当长度为半 径画圆弧,得到两个交点。
04

安徽省2023中考数学第7章图形的变化试题

安徽省2023中考数学第7章图形的变化试题

第七章图形的变化第一节尺规作图方法帮提分特训1.[2021湖北荆州]如图,在△ABC中,AB=AC,∠A=40°,点D,P分别是图中所作直线和射线与AB,CD的交点.根据图中尺规作图痕迹推断,以下结论错误的是(D)A.AD=CDB.∠ABP=∠CBPC.∠BPC=115°D.∠PBC=∠A2.[2021湖北襄阳]如图,BD为▱ABCD的对角线.(1)作对角线BD的垂直平分线,分别交AD,BC,BD于点E,F,O(尺规作图,不写作法,保留作图痕迹);(2)连接BE,DF,求证:四边形BEDF为菱形.(1)如图,直线EF即为所求(作图如图所示).(2)证明:∵EF垂直平分BD,∴OB=OD,EB=DE,BF=DF.∵四边形ABCD为平行四边形,∴AD∥BC,∴∠EDO=∠FBO,∠DEO=∠BFO, 在△ODE和△OBF中,{∠DDD=∠DDD,∠DDD=∠DDD, DD=DD,∴△DEO≌△BFO,∴DE=BF,∴BE=DE=BF=DF,∴四边形BEDF为菱形.3.[2020山东济宁]如图,在△ABC中,AB=AC,点P在BC上.(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC=2∠ABC,求证:PD∥AB.(1)△PCD如图所示.(2)证明:∵∠APC=∠ABC+∠BAP=2∠ABC,∴∠BAP=∠ABC.又∠BAP=∠CPD,∴∠CPD=∠ABC,∴PD∥AB.真题帮考法尺规作图(10年1考)[2018安徽,20]如图,☉O为锐角三角形ABC的外接圆,半径为5.(1)用尺规作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.解:(1)作图如图所示.(2)如图,连接OE交BC于点M,连接OC,OB.∵∠BAE=∠CAE,∴∠BOE=∠COE,∴DD⏜,⏜=DD∴OE⊥BC,∴EM=3.在Rt△OMC中,OM=5-3=2,OC=5,∴MC2=OC2-OM2=25-4=21.在Rt△EMC中,CE2=EM2+MC2=9+21=30,故弦CE的长为√30.第二节投影与视图考点帮易错自纠易错点找三视图时忽略图中线的虚实1.如图是一个空心正方体,它的左视图是(D)A B C D2.如图,下列关于物体的主视图画法正确的是(C)A B C D真题帮考法1根据三视图判断几何体(10年1考)考法2判断常见几何体的三视图(10年9考)考法1根据三视图判断几何体1.[2021安徽,4]某几何体的三视图如图所示,这个几何体是(C)考法2判断常见几何体的三视图2.[2020安徽,3]下面四个几何体中,主视图为三角形的是(B)3.[2019安徽,3]一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是(C)A B C D4.[2018安徽,4]一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为(A)A B C D5.[2017安徽,3]如图,一个放置在水平实验台上的锥形瓶,它的俯视图为(B)A B C D6.[2016安徽,4]如图,一个放置在水平桌面上的圆柱,它的主(正)视图是(C)7.[2014安徽,3]如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是(D)A B C D第三节图形的对称、平移、旋转与位似方法帮提分特训1.[2021广东广州]如图,在△ABC中,AC=BC,∠B=38°,点D是边AB上一点,点B关于直线CD的对称点为B',当B'D∥AC时,∠BCD的度数为33°.2.[2021重庆A卷]如图,在三角形纸片ABC中,点D,E,F分别在边AB,AC,BC上,BF=4,CF=6.将这张纸片沿直线DE翻折,点A与点F重合.若DE∥BC,AF=EF,则四边形ADFE的面积为5√3.3.[2021浙江金华]如图,菱形ABCD的边长为6cm,∠BAD=60°,将该菱形沿AC方向平移2√3cm得到四边形A'B'C'D',A'D'交CD于点E,则点E到AC的距离为2cm.4.[2021广东广州]如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,将△ABC绕点A逆时针旋转得到△AB'C',使点C'落在AB边上,连接BB',则sin∠BB'C'的值为(C)A.35B.45C.√55D.2√555.[2020山东烟台]如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为(4,2).6.[2021合肥包河区一模]如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(5,4),B(1,1),C(5,1).(1)请画出△ABC关于x轴对称的△A1B1C1(点A,B,C的对应点分别为点A1,B1,C1),并写出点A1的坐标;(2)画出△ABC关于点O成中心对称的△A'B'C'(点A,B,C的对应点分别为点A',B',C');(3)请用无刻度的直尺画出∠ABC的平分线BQ(点Q在线段AC上)(保留作图辅助线).解:(1)如图(1)所示,△A1B1C1即为所求,点A1的坐标为(5,-4).图(1)(2)如图(1)所示,△A'B'C'即为所求.(3)如图(1)所示,射线BQ即为所求.(第(3)问另解如图(2))图(2)真题帮考法1图形的对称(10年4考)考法2图形的平移(10年2考)考法3在网格中作图(必考)考法1图形的对称1.[2014安徽,8]如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为(C)A.53B.52C.4D.5考法2图形的平移2.[2018安徽,13]如图,正比例函数y=kx与反比例函数y=6D的图象有一个交点A(2,m),AB⊥x轴于点B.平移直线y=kx,使其经过点B,得到直线l,则直线l对应的函数表达式是y=32x-3.考法3在网格中作图3.[2021安徽,16]如图,在每个小正方形的边长为1个单位长度的网格中,△ABC的顶点均在格点(网格线的交点)上.(1)将△ABC向右平移5个单位长度得到△A1B1C1,画出△A1B1C1(点A1,B1,C1分别为点A,B,C的对应点);(2)将(1)中的△A1B1C1绕点C1逆时针旋转90°得到△A2B2C1,画出△A2B2C1(点A2,B2分别为点A1,B1的对应点).解:(1)△A1B1C1如图所示.(2)△A2B2C1如图所示.4.[2020安徽,16]如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.解:(1)如图所示,线段A1B1即为所求.(2)如图所示,线段B1A2即为所求.5.[2019安徽,16]如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了以格点(网格线的交点)为端点的线段AB.(1)将线段AB先向右平移5个单位长度,再向上平移3个单位长度,得到线段CD(点A,B的对应点分别为点C,D),请画出线段CD;(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)解:(1)线段CD如图所示.(2)菱形CDEF如图所示.(答案不唯一,符合条件即可)6.[2018安徽,17]如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形的面积是20个平方单位.解:(1)线段A1B1如图所示.(2)线段A2B1如图所示.(3)207.[2017安徽,18]如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC和格点三角形DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移2个单位长度,再向下平移2个单位长度,画出平移后的三角形;(2)画出△DEF关于直线l对称的三角形;(3)填空:∠ACB+∠DEF= 45°.解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△B1C1F1即为所求.(3)45°8.[2015安徽,17]如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1(点A,B,C的对应点分别为点A1,B1,C1);(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2(点A,C的对应点分别为点A2,C2),并以它为一边作一个格点三角形A2B2C2,使A2B2=C2B2.解:(1)△A1B1C1如图所示.(2)线段A2C2和△A2B2C2如图所示.(符合条件的△A2B2C2不唯一)9.[2014安徽,17]如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1(点A,B,C的对应点分别为点A1,B1,C1);(2)请画一个格点三角形A2B2C2,使△A2B2C2∽△ABC,且相似比不为1(点A,B,C的对应点分别为点A2,B2,C2).解:(1)△A1B1C1如图所示.(2)本题是开放题,答案不唯一,只要作出的△A2B2C2满足条件即可.10.[2013安徽,17]如图,已知A(-3,-3),B(-2,-1),C(-1,-2)是直角坐标平面上三点.(1)请画出△ABC关于原点O对称的△A1B1C1;(2)请写出点B关于y轴对称的点B2的坐标.若将点B2向上平移h个单位,使其落在△A1B1C1内部,指出h的取值范围.解:(1)△A1B1C1如图所示.(2)点B2的坐标为(2,-1);h的取值范围为2<h<3.5.高分突破·微专项 13利用对称解决与线段长有关的最值问题强化训练1.如图,在△ABC中,AB=AC,AD,CE是△ABC的两条中线,点P是AD上的一个动点,则下列线段的长等于BP+EP最小值的是(B) A.BC B.CE C.AD D.AC(第1题)(第2题)2.[2020河南]如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交DD⏜于点D,点E为半径OB上一动点.若OB=2,.则阴影部分周长的最小值为2√2+π33.如图,∠AOB=45°,点P是∠AOB内一点,PO=5,点Q,R分别是OA,OB上的动点,则△PQR周长的最小值为5√2.x2-2x经过点A(4,0),点C的坐标为(1,-3),点D是抛物线对称轴上一动点, 4.在平面直角坐标系中,抛物线y=12当|AD-CD|的值最大时,点D的坐标为(2,-6).5.如图,在四边形纸片ABCD中,∠A=90°,AD∥BC,AB=6.将∠A沿BD折叠,点A的对应点E恰好落在CD边的中点上.若点M,N分别是BD,BE上的动点,则ME+MN的最小值为3√3.(第5题)(第6题)6.[2020湖北荆门]如图,在平面直角坐标系中,长为2的线段CD(点D在点C右侧)在x轴上移动,A(0,2),B(0,4),连接AC,BD,则AC+BD的最小值为2√10.第七章图形的变化第一节尺规作图例略提分特训=70°.观察题中尺规作图痕迹可知,点D在线段1.D在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠ACB=180°−∠D2AC的垂直平分线上,BP平分∠ABC,∴AD=CD,∠ABP=∠PBC=1∠ABC=35°,∴∠ACD=∠A=40°,∴∠BCP=∠ACB-2∠ACD=30°,∴∠BPC=180°-∠CBP-∠BCP=115°.故选D.2~3.略略第二节投影与视图【易错自纠】 1.D 2.C1.C 从几何体正面看得到的图形像一个反向的“L”,据此可排除A,B,D 选项,故选C.2.B 题中四个几何体的主视图依次为圆、三角形、矩形、正方形,故选B .3.C 从上方观察该几何体,圆柱的俯视图是圆,长方体的俯视图是正方形,且圆内切于该正方形.故选C .4.A 从正面观察该几何体,得到的平面图形是由等腰三角形和矩形组成的,故选项A 中的图形符合题意.5.B 从正上方观察该锥形瓶,瓶口和瓶底都是圆,故它的俯视图是圆环.6.C 从圆柱的正前方观察,所得到的平面图形是矩形.7.D 俯视图是从物体的正上方观察物体所得到的平面图形,圆柱沿竖直方向切掉一半后,俯视图是半圆,故选D .第三节 图形的对称、平移、旋转与位似例1.D 由正方形的性质,得AB ∥DC ,∴∠BEF=∠EFD=60°.由折叠的性质,得∠BEF=∠B'EF=60°,BE=B'E ,∴∠AEB'=60°.设BE=B'E=x ,则AE=B'E ·cos∠AEB'=12x ,∴AB=AE+BE=12x+x=3,解得x=2,∴BE 的长度为2. 例2.(3,1)例3.B 在正方形ABCD 中,∠ABC=90°.由旋转的性质可知∠ABF=∠ADE=90°,故点F ,B ,C 三点共线.∵BG=3,CG=2,∴BC=BG+GC=2+3=5,∴CD=BC=5.设DE=BF=x ,则CE=5-x ,CF=5+x.∵AH ⊥EF ,∠ABG=90°,∴∠HFG+∠AGF=90°,∠BAG+∠AGF=90°,∴∠BAG=∠HFG.又∵∠ABG=∠FCE ,∴△ABG ∽△FCE ,∴DD DD =DDDD ,即5−D 5+D =35,∴x=54,∴CE=5-54=154.故选B .例4.略 提分特训1.33° ∵AC=BC ,∴∠A=∠B=38°,∴∠ACB=180°-∠A-∠B=104°.∵B'D ∥AC ,∴∠ACD+∠B'DC=180°.∵点B ,B'关于直线CD 对称,∴∠B'DC=∠BDC.又∠ADC+∠CDB=180°,∴∠ACD=∠ADC=180°−∠D2=71°,∴∠BCD=∠ACB-∠ACD=104°-71°=33°.2.5√3 如图,设AF 与DE 交于点G ,由轴对称图形的性质可知,DE ⊥AF ,AG=FG.又DE ∥BC ,∴DE 是△ABC 的中位线,AF ⊥BC ,∴DE=12BC=12×(4+6)=5.由轴对称图形的性质可知,AE=FE.又AF=EF ,∴AF=EF=AE ,∴△AEF 是等边三角形,∴∠EAF=60°.在Rt△AFC 中,AF=DD tan60°=√3=2√3,∴AG=FG=√3,∴S 四边形ADFE =2×12×5×√3=5√3.3.2 如图,过点E 作EF ⊥AC 于点F ,则EF 的长即为点E 到AC 的距离.∵菱形ABCD 的边长为6,∠BAD=60°,∴AD=6,∠DAC=30°,∴AC=2AD×cos30°=6√3,∴A'C=AC -AA'=6√3-2√3=4√3.由平移及菱形的性质易得∠EA'C=∠ECA'=30°,∴EA'=EC ,∴A'F=12A'C=2√3,∴EF=A'F×tan30°=2√3×√33=2,即点E 到AC 的距离为2.4.C ∵在Rt△ABC 中,∠C=90°,AC=6,BC=8,∴AB=√DD 2+DD 2=10.由旋转知∠AC'B'=∠C=90°,AC'=AC=6,B'C'=BC=8,∴∠BC'B'=90°,BC'=AB-AC'=4,∴BB'=√DD '2+D 'D '2=√42+82=4√5,∴sin∠BB'C'=DD 'DD '=4√5=√55.5.(4,2) 连接AC ,BD ,分别作线段AC ,BD 的垂直平分线,两垂直平分线的交点即为旋转中心,如图,P 点是旋转中心,其坐标为(4,2).6.略1.C 设BN=x ,则DN=AN=9-x ,BD=12BC=3.在Rt△BND 中,根据勾股定理,可得BN 2+BD 2=DN 2,即x 2+32=(9-x )2,解得x=4,即BN=4.故选C .2.y=32x-3 ∵点A (2,m )在反比例函数y=6D的图象上,∴m=62=3,∴点A 的坐标为(2,3).∵AB ⊥x 轴于点B ,∴点B的坐标为(2,0).∵点A (2,3)在直线y=kx 上,∴3=2k ,解得k=32,则可设直线l 对应的函数表达式为y=32x+b.∵点B (2,0)在直线l 上,∴0=2×32+b ,解得b=-3,故直线l 对应的函数表达式为y=32x-3.3~10.略高分突破·微专项13强化训练1.B ∵AB=AC ,AD 是中线,∴AD ⊥BC ,∴点B ,C 关于直线AD 对称.连接CE 交AD 于点F ,当点P 与点F 重合时,BP+EP 的值最小,最小值为CE 的长.故选B.2.2√2+π3 ∵OD 平分∠BOC ,∴∠BOD=∠COD=30°,∴D DD ⏜=30×π×2180=π3.如图,作点D 关于OB 的对称点D',连接CD'交OB 于点E ,此时CE+DE 的值最小,即阴影部分的周长最小.连接OD'.∵点D ,D'关于OB 对称,∴∠D'OB=∠DOB=30°,OD'=OD=2,∴∠COD'=∠D'OB+∠COB=30°+60°=90°,∴CD'=√22+22=2√2,∴CE+DE=CE+D'E=CD'=2√2,∴阴影部分周长的最小值为2√2+π3.(第2题) (第3题)3.5√2 如图,分别作点P 关于OA ,OB 的对称点M ,N ,连接OM ,ON ,MN ,MN 交OA ,OB 于点Q ,R ,此时△PQR 周长最小,为MN 的长.由轴对称的性质可得,OM=ON=OP=5,∠MOA=∠POA ,∠NOB=∠POB ,则∠MON=2∠AOB=2×45°=90°.在Rt△MON 中,MN=√DD 2+DD 2=5√2,即△PQR 周长的最小值等于5√2.4.(2,-6) 易知抛物线的对称轴为直线x=2.如图,作点C 关于直线x=2的对称点C'(3,-3),作直线AC',与直线x=2交于点D.设直线AC'的解析式为y=kx+b ,将A (4,0),C'(3,-3)分别代入,得{4D +D =0,3D +D =−3,解得{D =3,D =−12,故直线AC'的解析式为y=3x-12,当x=2时,y=-6,故点D 的坐标为(2,-6).5.3√3连接AM,由折叠可知点A,E关于直线BD对称,∴ME=AM,∴ME+MN=AM+MN.根据“垂线段最短”可知,当A,M,N三点共线且AN⊥BE时,AM+MN的值最小,且最小值为AN的长,即ME+MN的最小值为AN的长,如图.∵点E 为CD的中点,∠BED=∠BAD=90°,∴直线BE垂直平分线段CD,∴BC=BD,∴∠CBE=∠DBE,又AB=3√3,即ME+MN的最小值为3√3.∠DBE=∠DBA,∴∠DBE=∠DBA=30°,∴∠ABE=60°,∴AN=√32(第5题)(第6题)6.2√10如图,作A(0,2)关于x轴的对称点A'(0,-2),过A'作A'E∥x轴,且A'E=2,则E(2,-2),连接DE,A'C,则四边形CDEA'为平行四边形,∴A'C=DE,∴AC+BD=A'C+BD=DE+BD.连接BE交x轴于点D',易知当点D与点D'重合时,DE+BD最小,即AC+BD最小,最小值为BE的长,易知BE=√(2-0)2+(-2-4)2=2√10,即AC+BD的最小值为2√10.。

安徽省2023中考数学第一部分中考考点过关第七章图形的变化课件1

安徽省2023中考数学第一部分中考考点过关第七章图形的变化课件1

方法帮 命题角度 尺规作图

自主解答
(1)作图如图所示.
(2)OE∥AC,OE=12 AC.
证明:∵AD平分∠BAC,
1
∴∠BAD= ∵∠BAD=
21∠∠BBOADC,.
2
∴∠BOD=∠BAC,
∴OE∥AC.
又∵OA=OB,
∴OE为△ABC的中位线, ∴OE= 1AC.
2
方法帮 命题角度 尺规作图
㉚n 条
相邻两边的垂直平分线
相邻两边的垂直平分线和对角线所在的直线
奇数边:一个顶点和该顶点所对的边的中点所在的直 线即为对称轴;偶数边:一条边的中点与图形中心所在
的直线或一个顶点与图形中心所在的直线是对称轴.

㉛ 无数 条 任何一条直径所在的直线
4.作轴对称图形的一般步骤 (1)找:在原图形上找关键点(如线段的端点、线与线的交点等); (2)作:作各个关键点关于已知直线(对称轴)的对称点; (3)连:按原图形依次连接各关键点的对称点.
图示:
考点帮
考点
尺规作图
(3)作已知角的平分线
已知:∠AOB.
求作:∠AOB的平分线OP.
作法:
①以点O为圆心,任意长为半径画
弧,分别交OA,OB于点N,M;
②分别以点M,N为圆心,大于
1 2
MN
图示:
的长为半径在角的内部画弧,两
弧交于点P;
③作射线OP.射线OP即为所求作
的角平分线.
考点帮 尺规作图
解答中除了作图之外,最后的答案一定要强调题目所要 求作的是哪条线段、哪个角、哪个点或哪个图形
第二节 投影与视图
PART 01
考点帮
考点1 投影
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档