圆锥曲线与方程 (3)抛物线知识点
圆锥曲线方程-抛物线
抛物线1.定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫抛物线。
点F 叫做抛物线的焦点,直线l 叫做抛物线的准线。
2.标准方程坐标系:使坐标轴经过点F 且垂直于直线l 于K ,并使原点与线段KF 的中点重合。
设|KF|=p (p>0),则抛物线的标准方程及焦点坐标、准线方程如下表: 3.几何性质以抛物线y 2=2px (p>0)为例。
(1)范围。
x ≥0,|y|随x 增大而增大,但无渐近线。
(2)对称性。
关于x 轴对称。
(对称轴与准线垂直) (3)顶点。
对称轴与抛物线的交点。
(4)离心率。
同椭圆、双曲线离心率定义。
e=1(注e 与抛物线开口大小无关,开口大小由p 值确定,画特征草图时,先画出通径(2p )过焦点且与对称轴垂直的弦)。
4.几个重要的解析结果:(1)平行抛物线对称轴的直线和抛物线只有一个交点。
(2)焦点弦两端点的纵坐标乘积为常数即y 1y 2=-p 2(p>0)(4)焦点弦长公式:|AB|=x 1+x 2+p (x 1、x 2分别为A 、B的横坐标)或||sin ()AB pAB p =222θθ为的倾斜角,由此知,通径长为焦点弦长的最小值: 1、 抛物线28y x =的焦点到准线的距离是()A .1B .2C .4D .82、 设抛物线28y x =上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是()A .4B .6C .8D .123、 设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足.如果直线AF 的斜率为,那么|PF|=()A ..8C ..164、 已知抛物线22(0)y px p =>的准线与圆22670x y x +--=相切,则p 的值为()A .12B .1C .2D .4 5、 已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线与A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为()A .1x =B .1x =-C .2x =D .2x =- 6、 已知抛物线x y C =2:与直线1:+=kx y l ,“0≠k”是“直线l 与抛物线C 有两个不同交点”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.以抛物线24=y x 的焦点为圆心,且过坐标原点的圆的方程为( )A.2220++=x y xB.220++=x y x C.220+-=y x χ D.2220+-=x y x8已知抛物线22(0)y px p =>的焦点为F ,点111(,)P x y 、222(,)P x y 、333(,)P x y 在抛物线上,且2132x x x =+,则有()A.123FP FP FP +=B.222123FPFP FP += C.2132FP FP FP =+ D.2213FPFP FP =⋅ 9..设抛物线2y =2x 的焦点为F ,过点M(0)的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于C ,BF =2,则∆BCF 与∆ACF 的成面积之比BCFACFS S ∆∆=(A )45 (B )23(C )47(D )1210.设斜率为2的直线l 过抛物线)0(2≠=a ax y 的焦点F ,且和y 轴交于点A ,若OAF ∆(O 为坐标原点)的面积为4,则抛物线方程为(A )42±=y (B )x y 82±= (C )x y 42=(D )x y 82=11在平面直角坐标系xOy 中,已知抛物线关于x 轴对称,顶点在原点O ,且过点P (2,4),则该抛物线的方程是. 12若直线a x -y +1=0经过抛物线x y 42=的焦点,则a=.13.抛物线x y =2的准线方程是14.过抛物线)0(22>=p px y 的焦点F 作倾斜角为450的直线交抛物线于A 、B 两点,线段AB 的长为8,则=p .15.过点A (1,0)作倾斜角为4π的直线,与抛物线22y x =交于M N 、两点,则MN =。
圆锥曲线方程-抛物线(知识点、典型例题、考点、练习)
抛物线 典例剖析知识点一 抛物线概念的应用已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求|P A |+|PF |的最小值,并求出取最小值时P 点的坐标.解将x=3代入抛物线方程 y 2=2x ,得y=〒6.6>2,∴点A 在抛物线内部.设抛物线上点P 到准线l : x=21的距离为d ,由定义知|PA|+|PF|=|PA|+d , 当PA ⊥l 时,|PA|+d 最小, 最小值为27,即|PA|+|PF|的最小值为27, 此时P 点纵坐标为2,代入y 2=2x ,得x=2, ∴点P 坐标为(2,2).知识点二 求抛物线的标准方程求适合下列条件的抛物线的标准方程:(1)过点(-3,2);(2)焦点在直线x -2y -4=0上.分析 设出抛物线的标准形式,依据条件求出p 的值.解 (1)设抛物线标准方程为y 2=-2px 或x 2=2py (p >0),则将点(-3,2)代入方程得2p =43,或2p =92,故抛物线的标准方程为y 2=-43x ,或x 2=92y .(2)①令x =0,由方程x -2y -4=0,得y =-2. ∴抛物线的焦点为F (0,-2).设抛物线方程为x 2=-2py ,则由p2=2,得2p =8.∴所求的抛物线方程为x 2=-8y .②令y =0,由x -2y -4=0,得x =4. ∴抛物线的焦点为F (4,0).设抛物线方程为y 2=2px ,由p2=4,得2p =16.∴所求抛物线方程为y 2=16x .知识点三 抛物线在实际中的应用汽车前灯反射镜与轴截面的交线是抛物线的一部分,灯口所在的圆面与反射镜的轴垂直,灯泡位于抛物线焦点处,已知灯口的直径是24 cm ,灯深10 cm ,那么灯泡与反射镜的顶点(即截得抛物线顶点)距离是多少?分析 确定抛物线方程,求出抛物线的焦点到其顶点的距离解 取反射镜的轴即抛物线的对称轴为x 轴,抛物线的顶点为坐标原点,建立直角坐标系xOy ,如图所示.因灯口直径|AB|=24.灯深|OP|=10, 所以点A 的坐标是(10,12).设抛物线的方程为y 2=2px(p>0).由点A(10,12)在抛物线上,得122=2p ×10, ∴p=7.2.抛物线的焦点F 的坐标为(3.6,0).因此灯泡与反射镜顶点的距离是3.6 cm.知识点四 抛物线几何性质的简单应用抛物线的顶点在原点,对称轴重合于椭圆9x 2+4y 2=36短轴所在的直线,抛物线焦点到顶点的距离为3,求抛物线的方程.分析 先确定抛物线方程的形式,再依条件求待定参数.解 椭圆9x 2+4y 2=36可化为x 24+y 29=1,得抛物线的对称轴为x 轴.设抛物线的方程为y 2=ax (a ≠0), 又抛物线的焦点到顶点的距离为3,则有|a4|=3,∴|a |=12,即a =±12.故所求抛物线方程为y 2=12x ,或y 2=-12x .知识点五 直线与抛物线已知过抛物线y 2=2px (p >0)的焦点的直线交抛物线于A 、B 两点,且|AB |=52p ,求AB 所在的直线方程.解 焦点F (p2,0),设A (x 1,y 1)、B (x 2,y 2),若AB ⊥Ox ,则|AB |=2p <52p ,不合题意.所以直线AB 的斜率存在,设为k ,则直线AB 的方程为y =k (x -p2),k ≠0.由⎩⎪⎨⎪⎧y =k (x -p 2),y 2=2px ,消去x ,整理得ky 2-2py -kp 2=0.韦达定理得,y 1+y 2=2pk,y 1y 2=-p 2.∴|AB |=(x 1-x 2)2+(y 1-y 2)2=(1+1k 2)·(y 1-y 2)2=1+1k2·(y 1+y 2)2-4y 1y 2=2p (1+1k 2)=52p .解得k =±2.∴AB 所在直线方程为y =2(x -p 2),或y =-2(x -p 2).知识点六 抛物线的焦点弦问题AB 是过抛物线y 2=2px (p >0)焦点F 的弦,M 是AB 的中点,l 是抛物线的准线,MN ⊥l ,N 为垂足.求证:(1)AN ⊥BN ; (2)FN ⊥AB ;(3)若MN 交抛物线于Q ,则Q 平分MN .证明 (1)作AC ⊥l ,垂足为C ,作BD ⊥l ,垂足为D ,在直角梯形ABDC 中, ∵|AF|=|AC|,|BF|=|BD|, ∴|MN|=21(|AC|+|BD|) =21(|AF|+|BF|) =21|AB|, 由平面几何知识可知△ANB 是直角三角形,即AN ⊥BN. (2)∵|AM|=|NM|, ∴∠MAN=∠MNA , ∵AC ∥MN ,∴∠CAN=∠MNA ,∴∠MAN=∠CAN.在△ACN 和△AFN 中,|AN|=|AN|,|AC|=|AF|, 且∠CAN=∠FAN ,∴△ACN ≌△AFN , ∴∠NFA=∠NCA=90°, 即FN ⊥AB.(3)在Rt △MNF 中,连结QF , 由抛物线的定义及(2)的结论得 |QN|=|QF|⇒∠QNF=∠QFN ,且∠QFN=90°-∠QFM ,∠QMF=90°-∠QNF , ∴∠QFM=∠QMF ,∴|QF|=|QM|, ∴|QN|=|QM|,即Q 平分MN.知识点七 抛物线的综合问题过抛物线y 2=2px (p >0)的焦点F 作倾斜角为θ的直线交抛物线于A 、B 两点,设△AOB 的面积为S (O 为原点).(1)用θ、p 表示S ;(2)求S 的最小值;当最小值为4时,求抛物线的方程.解 (1)设直线y =k ⎝⎛⎭⎫x -p2,代入y 2=2px , 得y 2=2p ⎝⎛⎭⎫y k +p 2,即y 2-2pk y -p 2=0,∴y 1+y 2=2pk,y 1y 2=-p 2.∴|AB |= 1+1k2·(y 1+y 2)2-4y 1y 2= k 2+1k 2·4p 2k2+4p 2=(1+1k 2)2p =(1+1tan 2θ)2p=2p sin 2θ.① 当直线AB ⊥x 轴时,①也成立.∴S =12|OF ||AF |sin θ+12|OF ||BF |sin(π-θ)=12|OF ||AB |sin θ =12·p 22p sin 2θsin θ=p 22sin θ. (2)当θ=90°时,S min =12p 2.若S min =4,则12p 2=4.∴p =2 2.∴此时抛物线的方程为y 2=42x .考题赏析1.(辽宁高考)已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A.172 B .3 C. 5 D.92解析 如图所示,由抛物线的定义知,点P 到准线x =-12的距离d 等于点P 到焦点的距离|PF |.因此点P 到点(0,2)的距离与点P 到准线的距离之和可转化为点P 到点(0,2)的距离与点P到点F 的距离之和,其最小值为点M (0,2)到点F ⎝⎛⎭⎫12,0的距离,则距离之和的最小值为4+14=172.答案 A2.(全国Ⅰ高考)已知抛物线y =ax 2-1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为________.解析 ∵y =ax 2-1,∴y +1=ax 2.令y +1=y ′,x =x ′,则y ′=ax ′2,∴x ′2=2×12ay ′,∴x ′2=1a y ′的焦点坐标为⎝⎛⎭⎫0,14a ,即y +1=14a , ∴y =ax 2-1的焦点坐标为⎝⎛⎭⎫0,14a -1. 又y =ax 2-1的焦点是原点,∴14a =1,∴a =14.∴y =14x 2-1.令x =0,得y =-1,令y =0,得x =±2.故y =14x 2-1与两坐标轴的三个交点为(0,-1),(2,0),(-2,0),∴围成三角形面积为S =12×4×1=2.答案 23.(全国Ⅱ高考)已知F 是抛物线C :y 2=4x 的焦点,A 、B 是抛物线C 上的两个点,线段AB 的中点为M (2,2),则△ABF 的面积等于________.解析 设A (x 1,y 1),B (x 2,y 2),则y 21=4x 1,y 22=4x 2. ∴(y 1+y 2)(y 1-y 2)=4(x 1-x 2).∵x 1≠x 2,∴y 1-y 2x 1-x 2=4y 1+y 2=1.∴直线AB 的方程为y -2=x -2,即y =x . 将其代入y 2=4x ,得A (0,0)、B (4,4).∴|AB |=4 2.又F (1,0)到y =x 的距离为22,∴S △ABF =12×22×42=2.答案 21.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是( ) A.|a |4 B.|a |2C .|a |D .-a2答案 B解析 因为y 2=ax ,所以p =|a |2,即该抛物线的焦点到其准线的距离为|a |2,故选B.2.抛物线y 2=2px (p >0)上一点M 到焦点的距离是a (a >p2),则点M 的横坐标是( )A .a +p 2B .a -p2C .a +pD .a -p 答案 B解析 由抛物线的定义知:点M 到焦点的距离a 等于点M 到抛物线的准线x =-p2的距离,所以点M 的横坐标即点M 到y 轴的距离为a -p2.3.已知抛物线的方程为标准方程,焦点在x 轴上,其上点P (-3,m )到焦点F 的距离为5,则抛物线方程为( )A .y 2=8xB .y 2=-8xC .y 2=4xD .y 2=-4x 答案 B解析 点P (-3,m )在抛物线上,焦点在x 轴上,所以抛物线的标准方程可设为y 2=-2px (p >0).由抛物线定义知|PF |=3+p2=5.所以p =4,所以抛物线的标准方程是y 2=-8x .应选B.4.抛物线y 2=ax 的焦点与双曲线x 23-y 2=1的左焦点重合,则这条抛物线的方程是( )A .y 2=4xB .y 2=-4xC .y 2=-42xD .y 2=-8x 答案 D解析 因为x 23-y 2=1的左焦点为(-2,0),所以抛物线开口向左,所以a <0,且p =|a |2=4,所以a =-8,所以抛物线方程为y 2=-8x ,故选D.5.已知F 为抛物线C :y 2=4x 的焦点,过F 且斜率为1的直线交抛物线C 于A 、B 两点.设|F A |>|FB |,则|F A |与|FB |的比值等于________.答案 3+2 2解析 ∵y 2=4x 的焦点坐标为 F (1,0),准线方程为x =-1,∴过F 且斜率为1的直线方程为y = x - 1.将其代入y 2= 4x 得 x 2 - 6x + 1=0.∴x 1, 2 =62± = 3〒22.∵|FA|>|FB|,∴x A =3+22,x B =3-22.又|FA|= x +1,|FB|= x B +1,∴|FA||FB|== 3+22. 答案 -36. 过抛物线y 2 = 4x 的焦点的直线交抛物线于A 、B 两点,O 为坐标原点,则· 的值是________.. 解析 当直线过焦点且垂直于x 轴时,直线方程为x =1,代入y 2=4x ,y 1,2=±2.A 、B 点的坐标分别为(1,2),(1,-2).∴·OB →=1-4=-3.当直线过焦点不垂直x 轴时,则直线的方程可设为y =k (x -1),设A ,B 坐标分别为(x 1,y 1)(x 2,y 2).则y 21·y 22=16x 1x 2.由⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1),得k 2x 2-(2k +4)x +k 2=0, ·OB →=x 1x 2+y 1y 2=1-4=-3. 7.已知圆A :(x +2)2+y 2=1与定直线l :x =1,若动圆C 与圆A 相外切,且与直线l 相切,求动圆圆心C 的轨迹方程.解 设圆心C 到直线l 的距离为d ,则由题意知|CA |=d +1从而可知圆心C 到点(-2,0)的距离和到定直线x =2的距离相等.所以动圆圆心C 的轨迹是抛物线,其焦点为(-2,0),准线为x =2,故设动圆圆心C 的轨迹方程为y 2=-2px (p >0),由p2=2,得p =4.因此动圆圆心C 的轨迹方程为y 2=-8x .8.已知点M (-2,4)及焦点为F 的抛物线y =18x 2,在此抛物线上求一点P 使|PM |+|PF |的值最小.分析 先根据已知条件画出图形,由定义知,抛物线上的点P 到焦点F 的距离等于P 到准线l 的距离d ,所以求|PM |+|PF |的最小值问题可转化为求|PM |+d 的最小值问题,让点P 在抛物线上运动,容易发现当点P 运动到过点M 且与x 轴垂直的直线与抛物线的交点处时,|PM |+d 最小.解 如图,设MN ⊥x 轴,与准线交于N ,与抛物线交于点P ,在抛物线上任取一点P ′,连P ′M ,P ′F ,作P ′N 垂直于准线,垂足为N ′.由抛物线的定义,|PN|=|PF|,|P ′N ′|=|P ′F||P ′M|+|P ′N ′|=|P ′M|+|P ′F| |PN|+|PM|=|PM|+|PF|∵|P ′M|+|P ′N ′|≥|PN|+|PM| ∴|P ′M|+|P ′F|≥|PM|+|PF|这就是说,当P ′与P 重合时,|PM|+|PF|的值最小解方程组22,1,8x y x =-⎧⎪⎨=⎪⎩得P(-2,12). 9.已知抛物线y 2=2x ,过点Q (2,1)作一条直线交抛物线于A 、B 两点,试求弦AB 中点的轨迹方程.解 设弦AB 的中点M (x ,y ),A (x 1,y 1),B (x 2,y 2),则有y 21=2x 1,y 22=2x 2, ∴y 1-y 2x 1-x 2=2y 1+y 2,又y 1+y 2=2y ,∴y 1-y 2x 1-x 2=1y,即k AB =1y .又k MQ =y -1x -2,由题意知k MQ =k AB .∴y -1x -2=1y,整理, 得y 2-x -y +2=0.所以,弦AB 中点的轨迹方程为y 2-x -y +2=0.10.抛物线的顶点在原点,以x 轴为对称轴,经过焦点且倾斜角为135°的直线,被抛物线所截得的弦长为8,试求抛物线方程.解 如右图所示,依题意设抛物线方程为y 2=2px(p>0),则直线方程为y=-x+12p. 设直线交抛物线于A(x 1,y 1), B(x 2,y 2),则由抛物线定义得|AB|=|AF|+|FB|=|AC|+|BD| =x 1+2P + x 2 + 2P , 即x 1+x 2 +p=8.①又A (x 1,y 1)、B (x 2,y 2)是抛物线和直线的交点.由⎩⎪⎨⎪⎧y =-x +12p ,y 2=2px ,消去y 得x 2-3px +p 24=0,∴x 1+x 2=3p ,将其代入①得p =2. ∴所求抛物线方程为y 2=4x .当抛物线方程设为y 2=-2px (p >0)时,同理可求得抛物线方程为y 2=-4x . 故抛物线的方程为y 2=4x 或y 2=-4x .讲练学案部分2.4.1 抛物线及其标准方程.对点讲练知识点一 求抛物线的标准方程分别求出满足下列条件的抛物线的标准方程.(1)过点(3,-4).(2)焦点在直线x +3y +15=0上. 解 (1)∵点(3,-4)在第四象限,∴抛物线的标准方程为y 2=2px (p >0)或x 2=-2p 1y (p 1>0),把点(3,-4)的坐标分别代入得(-4)2=2p ×3,32=-2p 1×(-4)即2p =163,2p 1=94∴所求抛物线的方程为y 2=163x 或x 2=-94y .(2)令x =0得y =-5;令y =0得x =-15 ∴抛物线的焦点为(0,-5)或(-15,0)∴所求抛物线的标准方程为y 2=-60x 或x 2=-20y .【反思感悟】 求抛物线方程应首先确定焦点的位置,进而确定方程的形式,然后利用已知条件求p 的值.求满足下列条件的抛物线的方程.(1)以坐标轴为对称轴,且过点A (2,3);(2)以坐标轴为对称轴,焦点到准线的距离为52.解 (1)由题意,方程可设为y 2=mx 或x 2=ny , 将点A (2,3)的坐标代入,得32=m ·2或22=n ·3,∴m =92或n =43.∴所求的抛物线方程为y 2=92x 或x 2=43y .(2)由焦点到准线的距离为52,可知p =52.∴所求抛物线方程为y 2=5x 或y 2=-5x 或x 2=5y 或x 2=-5y .知识点二 抛物线定义的应用已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M (-3,m )到焦点的距离等于5,求抛物线的方程和m 的值.解 设抛物线的方程为y 2=-2px (p >0),则准线方程为x =p2.∵点M (-3,m )是抛物线上的点,根据抛物线定义,M 点到焦点的距离等于M 点到准线的距离∴|-3|+p2=5 ∴p =4.∴抛物线方程为y 2=-8x .又点M (-3,m )在抛物线上故m 2=-8×(-3) ∴m =±2 6.【反思感悟】 涉及抛物线上一点与焦点的距离问题要注意用定义转化为该点到准线的距离,可简化计算.若动圆与圆(x -2)2+y 2=1相外切,又与直线x +1=0相切,则动圆圆心的轨迹是( )A .椭圆B .双曲线C .双曲线的一支D .抛物线答案 D解析 设动圆的圆心为M ,半径为r ,动圆与圆(x -2)2+y 2=1相外切,则M 到定点(2,0)的距离为r +1,动圆与直线x =-1相切,则点M 到定直线x =-1的距离为r ,所以M 到定点(2,0)和到定直线x =-2的距离相等,由抛物线定义知,答案选D.知识点三 抛物线知识在实际中的应用喷灌的喷头装在直立管柱OA 的顶点A 处,喷出水流的最高点B 高5 m ,且与OA 所在的直线相距4 m ,水流落在以O 为圆心,半径为9 m 的圆上,则管柱OA 的长是多少?解 如图所示,建立直角坐标系,设水流所形成的抛物线的方程为x 2= -2py(p>0),点C(5, -5)在抛物线上,所以25= -2p ·(-5),2p=5,所以抛物线的方程为x 2= -5y ,点A(-4,y 0)在抛物线上,所以16= -5y 0,y 0 = -165,所以OA 的长为5 - 165=1.8 (m).∴管柱OA 的长是1.8 m.【反思感悟】 根据题意,建立直角坐标系,用待定系数法求出抛物线方程,再利用抛物线方程解决实际问题.抛物线型拱桥顶距离水面2米,水面宽4米,当水下降1米后,水面宽________米.答案 2 6解析 可设抛物线方程为x 2=-2py ,则点(-2,-2)在抛物线上,则有:4=4p . ∴p =1,抛物线方程为x 2=-2y ,当y =-3时,x =±6. ∴水面宽为2 6. 课堂小结:1.四个标准方程的区分:焦点在一次项字母对应的坐标轴上,开口方向由一次项系数的符号确定.当系数为正时,开口方向为坐标轴的正方向;系数为负时,开口方向为坐标轴的负方向.2.焦点在y 轴上的抛物线的标准方程x 2=2py 通常又可以写成y=ax 2,这与以前学习的二次函数的解析式是完全一致的,但需要注意的是,由方程y=ax 2来求其焦点和准线时,必须先化成标准形式.3.经过抛物线的焦点的弦称为抛物线的焦点弦,它有以下特性:设焦点弦AB 的端点坐标分别为A (x 1 , y 1),B(x 2,y 2),则y 1y 2= - p 2, x 1x 2 = 24p ,|AB|= x 1 + x 2 + p.课时作业一、选择题1.已知抛物线的顶点在原点,对称轴为x 轴,焦点在曲线x 24-y 22=1上,则抛物线方程为( )A .y 2=8xB .y 2=4xC .y 2=2xD .y 2=±8x 答案 D解析 由题意知抛物线的焦点为双曲线x 24-y 22=1的顶点,即(-2,0)、(2,0),所以抛物线的方程为y 2=8x 或y 2=-8x .2.抛物线y =mx 2(m <0)的焦点坐标是( )A .(0,m 4)B .(0,14m )C .(0,-m 4)D .(0,-14m)答案 B解析 由于抛物线方程可化为x 2=1my (m <0),所以抛物线的焦点在y 轴的负半轴上,且2p =-1m ,所以p 2=-14m ,所以抛物线的焦点坐标是(0,14m),答案选B.3.过点M (2,4)作与抛物线y 2=8x 只有一个公共点的直线l 有( ) A .0条 B .1条 C .2条 D .3条 答案 C解析 容易发现点M (2,4)在抛物线y 2=8x 上,这样l 过M 点且与x 轴平行时,l 与抛物线有一个公共点,或者l 在M 点上与抛物线相切,故选C.4.已知P 1(x 1,y 1),P 2(x 2,y 2)是抛物线y 2=2px (p >0)上不同的两点,则y 1·y 2=-p 2是直线P 1P 2通过抛物线焦点的( )A .充分不必要条件B .充分必要条件C .必要不充分条件D .既不充分也不必要条件 答案 B解析 设直线P 1P 2的斜率为k ,在x 轴上的截距为x 0,则P 1P 2的方程为y =k (x -x 0), x =1ky +x 0(k =0时只有一个交点不合题意), 所以y 2=2p ⎝⎛⎭⎫1k y +x 0,即y 2-2pky -2px 0=0. 当直线P 1P 2过焦点时,x 0=p2,则y 1y 2=-p 2.当y 1y 2=-p 2时,即-2px 0=-p 2,则x 0=p2,直线过焦点.当斜率不存在时也可验证是充要条件.5.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,那么|AB |等于( )A .10B .8C .6D .4 答案 B解析 方法一 由已知得抛物线焦点为(1,0),过焦点的直线设为y =k (x -1)(由x 1+x 2=6知,此直线不平行于y 轴,因而k 存在).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,消去y 得k 2x 2-2(k 2+2)x +k 2=0. 由⎩⎪⎨⎪⎧x 1+x 2=2(k 2+2)k 2=6,x 1·x 2=1得k =±1.所以|AB |2=(1+k 2)(x 1-x 2)2=2(x 1-x 2)2=64,故|AB |=8.方法二 由焦半径公式|AB |=|AF |+|BF |=x 1+p 2+x 2+p2=8.二、填空题6.抛物线2y 2+5x =0的焦点坐标为____________,准线方程为______________.答案 ⎝⎛⎭⎫-58,0 x =58解析 化抛物线2y 2+5x =0为标准方程y 2=-52x,2p =52,p 2=58,所以焦点坐标为(-58,0),准线方程为x =58.7.设点M ⎝⎛⎭⎫3,103与抛物线y 2=2x 上的点P 之间的距离为d 1,P 到抛物线准线l 的距离为d 2,则当d 1+d 2取最小值时,P 点坐标为____________.答案 (2,2)解析 当P 点是M 与焦点F ⎝⎛⎭⎫12,0连线与抛物线交点时,d 1+d 2最小,MF 的方程为y =43x -23,与抛物线y 2=2x 联立得P (2,2). 三、解答题8.过点Q (4,1)作抛物线y 2=8x 的弦AB ,若弦恰被Q 平分,求AB 所在直线方程. 解 设A (x 1,y 1),B (x 2,y 2),因点Q (4,1)为A ,B 的中点则有⎩⎪⎨⎪⎧x 1+x 2=8y 1+y 2=2将A 、B 两点坐标代入y 2=8x .则有⎩⎪⎨⎪⎧y 21=8x 1 ①y 22=8x 2 ②①-②得:(y 1-y 2)(y 1+y 2)=8(x 1-x 2),由y 1+y 2=2,则有y 1-y 2x 1-x 2=4,∴k AB =4.∴所求直线方程为y -1=4(x -4),即4x -y -15=0.9.一抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上有一宽4米、高6米的矩形大木箱,问能否安全通过?解建立坐标系如图,设抛物线方程为 x 2= -2py ,则点(26, -6.5)在抛物线上, ∴262= -2p ·(-6.5),∴p=52,抛物线的方程为x 2= -104y ,当y=-0.5时,x=〒213,则有413>4, 所以木箱能安全通过.10.已知过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点. 求证:(1)x 1x 2为定值;(2)1|F A |+1|FB |为定值. 证明 (1)抛物线y 2=2px 的焦点为F ⎝⎛⎭⎫p 2,0,当AB 不垂直于x 轴时,设直线AB 的方程为y =k ⎝⎛⎭⎫x -p2 (k ≠0). 由⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎫x -p 2y 2=2px消去y , 得k 2x 2-p (k 2+2)x +k 2p 24=0.由根与系数的关系得x 1x 2=p 24(定值).当AB ⊥x 轴时,x 1=x 2=p2,x 1x 2=p24也成立.(2)由抛物线的定义知,|F A |=x 1+p 2,|FB |=x 2+p2.又由(1)得x 1x 2=p24,所以1|F A |+1|FB |=1x 1+p 2+1x 2+p2=x 1+x 2+pp 2(x 1+x 2)+x 1x 2+p 24 =x 1+x 2+p p 2(x 1+x 2)+p 22=x 1+x 2+p p 2(x 1+x 2+p )=2p(定值). 2.4.2 抛物线的简单几何性质.对点讲练知识点一 由性质求方程已知抛物线的顶点为坐标原点,对称轴为x 轴,且与圆x 2+y 2=4相交的公共弦长等于23,求这条抛物线的方程.解 设所求抛物线方程为y 2=2px (p >0)或y 2=-2px (p >0),设交点A (x 1,y 1),B (x 2,y 2),(y 1>0,y 2<0),则|y 1|+|y 2|=23,即y 1-y 2=23,由对称性知,y 2=-y 1,代入上式得y 1=3,把y 1=3代入x 2+y 2=4得x =±1.所以点(1,3)在抛物线y 2=2px 上,点(-1,3)在抛物线y 2=-2px 上,所以3=2p 或3=-2p ×(-1).所以p =32,所以所求抛物线方程为y 2=3x 或y 2=-3x .【反思感悟】 (1)由已知的几何条件求抛物线方程,常用待定系数法.(2)由于抛物线是轴对称图形,所以与对称轴垂直的弦一定被对称轴平分.已知抛物线的焦点在x 轴上,直线y =2x +1被抛物线截得的线段长为15,求此抛物线的标准方程.解 ∵抛物线的焦点在x 轴上,∴设它的标准方程为y 2=2px由方程组⎩⎪⎨⎪⎧y 2=2pxy =2x +1得4x 2+(4-2p )x +1=0.∴|x 1-x 2|=(4-2p )2-164=p 2-4p2.∴1+22|x 1-x 2|=52p 2-4p .∴52p 2-4p =15.∴p =6或p =-2. ∴抛物线的方程为y 2=12x 或y 2=-4x .知识点二 与抛物线有关的证明问题过抛物线焦点F 的直线交抛物线于A ,B 两点,通过点A 和抛物线顶点的直线交抛物线的准线于点D ,求证:直线DB 平行于抛物线的对称轴.证明如图所示,以抛物线的对称轴为x 轴,它的顶点为原点,建立直角坐标系. 设抛物线的方程为y 2=2px ,①点A 的坐标为⎝⎛⎭⎫y 202p ,y 0,则直线OA 的方程为 y =2py 0x (y 0≠0),②抛物线的准线方程是x =-p2.③联立②③,可得点D 的纵坐标为y =-p 2y 0④因为点F 的坐标是⎝⎛⎭⎫p 2,0,当AB ⊥x 轴时,|y 0|=p 此时,|OA |=|OD |,∴DB ∥x 轴当AB 与x 轴不垂直时,即y 20≠p 2时,直线AF 的方程为y =2py 0y 20-p 2⎝⎛⎭⎫x -p 2,⑤ 联立①⑤,可得点B 的纵坐标为y =-p 2y 0.⑥由④⑥可知,DB ∥x 轴.【反思感悟】 因抛物线方程的独特形式,较之椭圆与双曲线,它上面的点便于用一个变量表示出来,如y 2=2px 上任一点,可表示为⎝ ⎛⎭⎪⎫y 22p ,y ,注意恰当运用.设抛物线y 2=2px (p >0)的焦点为F ,Q 是抛物线上除顶点外的任意一点,直线QO 交准线于P 点,过Q 且平行于抛物线对称轴的直线交准线于R 点,求证:PF ⊥RF .证明如图所示,设点Q ⎝⎛⎭⎫y 202p ,y 0,则R.(-2p,y 0 ) 直线OQ 的方程为y=02y p x , 当x=-2p 时,解得y=-02y p,∴P =2,20p p y ⎛⎫-- ⎪⎝⎭,又F (2p ,0),∴RF →=⎝⎛⎭⎫p ,p 2y 0,RF →=(p ,-y 0) ∴RF →·RF →=0,∴PF ⊥RF .知识点三 直线与抛物线的交点问题已知抛物线的方程为y 2=4x ,直线l 过定点P (-2,1),斜率为k .k 为何值时,直线l 与抛物线y 2=4x :只有一个公共点;有两个公共点;没有公共点?解 由题意,设直线l 的方程为y -1=k (x +2).由方程组⎩⎪⎨⎪⎧y -1=k (x +2)y 2=4x ,可得:ky 2-4y +4(2k +1)=0.① (1)当k =0时,由方程①得y =1.把y =1代入y 2=4x ,得x =14.这时,直线l 与抛物线只有一个公共点⎝⎛⎭⎫14,1. (2)当k ≠0时,方程①的判别式为 Δ=-16(2k 2+k -1). 1°由Δ=0,即2k 2+k -1=0,解得k =-1,或k =12.于是,当k =-1,或k =12时,方程①只有一个解,从而方程组(*)只有一个解.这时,直线l 与抛物线只有一个公共点.2°由Δ>0,即2k 2+k -1<0,解得-1<k <12.于是,当-1<k <12,且k ≠0时,方程①有两个解,从而方程组有两个解.这时,直线l与抛物线有两个公共点.3°由Δ<0,即2k 2+k -1>0,解得k <-1,或k >12.于是,当k <-1,或k >12时,方程①没有实数解,从而方程组(*)没有解.这时,直线l与抛物线没有公共点.综上,我们可得当k =-1,或k =12,或k =0时,直线l 与抛物线只有一个公共点;当-1<k <12,且k ≠0时,直线l 与抛物线有两个公共点;当k <-1,或k >12时,直线l 与抛物线没有公共点.【反思感悟】 当直线与抛物线的对称轴平行或重合时,抛物线和直线相交,只有一个交点.解决直线与抛物线位置关系问题时,不要忽视这一点,否则容易漏解.直线l :y =kx +1,抛物线C :y 2=4x ,当k 为何值时,l 与C 分别相切、相交、相离?解 将l 和C 的方程联立⎩⎪⎨⎪⎧y =kx +1, ①y 2=4x , ②①式代入②式,并整理,得 k 2x 2+(2k -4)x +1=0.当k ≠0时,是一元二次方程, ∴Δ=(2k -4)2-4k 2=16(1-k ).(1)当Δ=0时,即k =1时,l 与C 相切. (2)当Δ>0时,即k <1时,l 与C 相交. (3)当Δ<0时,即k >1时,l 与C 相离.当k =0时,直线l :y =1与曲线C :y 2=4x 相交.综上所述,当k =0或k <1时,l 与C 相交,当k =1时,l 与C 相切,当k >1时,l 与C 相离.课堂小结:1.在已知抛物线的顶点在坐标原点,对称轴为x 轴,求抛物线的标准方程时,为避免讨论张口的方向可设抛物线的方程为y 2=2ax (a ≠0).此时,不论a>0或a<0,焦点坐标都是(2a,0),准线方程都为x=-2a . 2.抛物线y 2= 2px (p>0)上任一点的坐标可用一个量y 1表示为21(1),2y y p;x 2 = 2py (p>0)上任一点坐标可设为(x 1 , 212x p).3.直线与抛物线的位置关系设直线l :y=kx+m ,抛物线:y 2=2px(p>0),将直线方程与抛物线方程联立整理成关于x 的方程:ax 2+bx+c=0,(1)若a ≠0,当Δ>0时,直线与抛物线相交,有两个交点; 当Δ=0时,直线与抛物线相切,有一个交点; 当Δ<0时,直线与抛物线相离,无公共点.(2)若a=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合,因此直线与抛物线有一个交点是直线与抛物线相切的必要不充分条件.一、选择题1.P (x 0,y 0)是抛物线y 2=2px (p ≠0)上任一点,则P 到焦点的距离是( )A .|x 0-p 2|B .|x 0+p2|C .|x 0-p |D .|x 0+p | 答案 B解析 当p >0时,由抛物线定义得点P (x 0,y 0)到焦点的距离为x 0+p2,当p <0时由抛物线定义知P (x 0,y 0)到焦点的距离为-p 2-x 0,综上得所求距离为|x 0+p2|,故选B.2.过抛物线y 2=4x 的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为4,则|AB |等于( )A .10B .8C .6D .4 答案 A解析 设A 、B 两点的横坐标分别为x A 、x B ,则有x A +x B =8,|AB |=|AF |+|BF |=x A +p 2+x B +p2=8+p =8+2=10.3.抛物线y 2=2px 与直线ax +y -4=0的一个交点是(1,2),则抛物线的焦点到该直线的距离为( )A.32 3B.25 5C.710 5D.172 答案 B解析 由已知得抛物线方程为y 2=4x ,直线方程为2x +y -4=0,抛物线y 2=4x 的焦点坐标是F (1,0),到直线2x +y -4=0的距离d =|2+0-4|22+1=255.4.若抛物线y 2=2px (p >0)上三个点的纵坐标的平方成等差数列,那么这三个点到抛物线焦点的距离的关系是( )A .成等差数列B .既成等差数列又成等比数列C .成等比数列D .既不成等比数列也不成等差数列 答案 A解析 设三点为P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3),则y 21=2px 1,y 22=2px 2,y 23=2px 3,因为2y 22=y 21+y 23, 所以x 1+x 3=2x 2,即|P 1F |-p 2+|P 3F |-p2=2⎝⎛⎭⎫|P 2F |-p 2, 所以|P 1F |+|P 3F |=2|P 2F |. 二、填空题5.抛物线的顶点在原点,准线垂直于x 轴,且焦点到顶点的距离为4,则其方程为______________________.答案 y 2=16x 或y 2=-16x解析 焦点到顶点的距离即p2=4,p =8.6.抛物线y =x 2上的点到直线2x -y -4=0的距离最短的点的坐标是____________. 答案 (1,1)解析 设点A (x ,y )是符合题设条件的点,则由点到直线的距离公式,得d =55|2x -y -4|=55|2x -x 2-4| =55|-(x -1)2-3|≥355. 当且仅当x =1时,d 取得最小值,故所求点为(1,1).7.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是____________.答案 [-1,1]解析 Q 点坐标为(-2,0),直线l 的斜率不存在时,不满足题意,所以可设直线l 的斜率为k ,方程为y =k (x +2).当k =0时满足.当k ≠0时,x =1ky -2,代入y 2=8x ,得y 2-8k y +16=0.Δ=64k2-64≥0,k 2≤1,即-1≤k ≤1(k ≠0).综上,-1≤k ≤1.三、解答题8.过点(-3,2)的直线与抛物线y 2=4x 只有一个公共点,求此直线方程. 解 显然,直线存在斜率k , 设其方程为y -2=k (x +3), 由⎩⎪⎨⎪⎧y -2=k (x +3)y 2=4x 消去x ,整理得ky 2-4y +8+12k =0①(1)当k =0时,方程①化为-4y +8=0,即y =2, 此时过(-3,2)的直线方程为y =2,满足条件. (2)当k ≠0时,方程①应有两个相等实根. 由⎩⎪⎨⎪⎧ k ≠0Δ=0即⎩⎪⎨⎪⎧k ≠016-4k (8+12k )=0,得k =13或k =-1.∴直线方程为y -2=13(x +3)或y -2=-(x +3),即x -3y +9=0或x +y +1=0.故所求直线有三条,其方程分别为: y =2,x -3y +9=0或x +y +1=0.9.A ,B 是抛物线y 2=2px (p >0)上两点,满足OA ⊥OB ,其中O 为抛物线顶点.求证: (1)A ,B 两点的纵坐标乘积为定值; (2)直线AB 恒过一定点. 证明(1)设A(x 1,y 1),B(x 2,y 2),x 1≠0,x 2≠0,则y 12=2px 1, y 22=2px 2. ∵OA ⊥OB ,∴x 1x 2 + y 1y 2=0.∴y 12y 22、= 4p 2 x 1x 2 = 24p -y 1y 2.∴y 1y 2 =24p -为定值, x 1x 2=-y 1y 2=4p 2也为定值.∴A 、B 两点的纵坐标乘积为定值.(2)若AB ⊥x 轴,则易知直线AB 方程为x = 2p , 过点(2p,0);若AB 与x 轴不垂直,则x 1≠x 2,y 1+y 2≠0.由y 12-y 22=2p(x 1-x 2),得1212122y y px x y y -++=. ∴直线AB 的方程是y= 122py y + (x -x 1)+y 1,即y = 211121222px px y y y y y ++-+。
圆锥曲线抛物线的基本知识点
圆锥曲线抛物线的基本知识点一、什么是抛物线?抛物线是一种特殊的圆锥曲线,它是由一个固定点(焦点)和一个固定直线(准线)确定的所有点到焦点距离等于该点到准线距离的轨迹。
二、抛物线的基本性质1. 抛物线的对称轴是准线,焦点在对称轴上;2. 抛物线上任意一点与其对称轴的距离相等;3. 焦点到抛物线上任意一点的距离与该点到准线的距离相等;4. 抛物线在对称轴上有最小值,即顶点;5. 抛物线开口方向由焦点和准线位置决定。
三、抛物线方程1. 标准式:y = ax^2 (a>0)其中 a 为常数,表示开口方向和开口大小。
2. 顶点式:y - k = a(x - h)^2其中 (h, k) 为顶点坐标。
3. 参数式:x = at^2, y = 2at其中 t 为参数。
四、抛物线应用1. 物理学中,抛物运动就是指在重力作用下,以一定初速度沿着一个确定角度投掷出去后,运动轨迹为抛物线的运动方式。
2. 工程学中,抛物线常用于设计拱形桥、天桥、高架桥等建筑结构。
3. 数学中,抛物线是圆锥曲线中最简单的一种,也是研究圆锥曲线的基础。
五、抛物线相关概念1. 焦距:焦点到顶点的距离。
2. 焦直线:过焦点且与准线垂直的直线。
3. 焦半径:从焦点到抛物线上任意一点的距离。
4. 垂直平分线:过顶点且与对称轴垂直的直线。
六、抛物线相关定理1. 抛物定理:从焦点到抛物线上任意一点的距离等于该点到准线距离的一半。
2. 切角定理:从焦点引一条切线,该切线与准线之间的夹角等于该切点处法向量与准线方向向量之间夹角(即反射角等于入射角)。
3. 两个相交抛物面交于一条直母线。
圆锥曲线方程知识点总结
圆锥曲线方程知识点总结一、圆锥曲线的基本方程椭圆的标准方程如下:$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. (a > b > 0)$$其中椭圆的长轴为$2a$,短轴为$2b$,焦距为$\sqrt{a^2 - b^2}$,离心率为$c/a$。
双曲线的标准方程如下:$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. (a > 0, b > 0)$$其中双曲线的两个分支的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$。
抛物线的标准方程如下:$$x^2 = 4ay. (a > 0)$$其中抛物线的焦点为$(0, a)$,顶点为$(0, 0)$。
二、圆锥曲线的参数方程圆锥曲线还可以用参数方程表示。
以椭圆为例,其参数方程为:$$\begin{cases}x = a \cos \theta, \\y = b \sin \theta. \\\end{cases}$$其中$\theta$的取值范围为$[0, 2\pi]$。
双曲线和抛物线的参数方程也可以类似地表示。
三、圆锥曲线的极坐标方程圆锥曲线还可以用极坐标方程表示。
以椭圆为例,其极坐标方程为:$$r = \frac{ab}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}}.$$其中$r$为极径,$\theta$为极角。
双曲线和抛物线的极坐标方程也可以类似地表示。
四、圆锥曲线的性质1. 圆锥曲线关于坐标轴的对称性:- 椭圆关于$x$轴和$y$轴都对称;- 双曲线关于$x$轴和$y$轴都对称;- 抛物线关于$y$轴对称。
2. 圆锥曲线的焦点、直径、离心率等:- 椭圆的焦点到中心的距离为$c = \sqrt{a^2 - b^2}$,离心率为$e = c/a$;- 双曲线的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$,离心率为$e = c/a$;- 抛物线的焦点到中心的距离为$c = a$,离心率为$e = 1$。
抛物线知识点归纳总结
积
• 利用抛物线的对称性,简化体积计算过程
抛物线面积与体积问题的实际应用
抛物线面积与体积在几何问题中的应用
• 描述圆锥曲线、圆等几何图形的面积和体积问题
• 描述抛物线与椭圆、双曲线等二次曲线的面积和体积问题
抛物线面积与体积在物理问题中的应用
• 描述物体的抛物线运动轨迹的面积和体积问题
• 描述物体的抛物线形变问题的面积和体积问题
• 标准方程y = ax^2 + bx + c决定了抛物线图像的形状、
• 一般方程为Ax^2 + Bx + Cy + D = 0,其中A、B、C、
开口方向、顶点坐标等
D为常数,A≠0
• 根据抛物线图像的特征,可以反推出标准方程
• 一般方程可以转化为标准方程,进而确定抛物线图像
03
抛物线的方程求解与应用
kx
抛物线的切线绘制方法与技巧
抛物线的切线绘制方法
抛物线的切线绘制技巧
• 确定抛物线上需要绘制切线的点
• 利用抛物线的对称性,简化切线绘制过程
• 利用切线方程,计算切线的斜率和截距
• 结合图像,判断抛物线的形状和开口方向,辅助切线绘
• 绘制切线,使其通过指定点和切线方程
制
抛物线切线问题的实际应用
• 对抛物线方程进行化简,得到标准方程或一般方程
• 变形后的抛物线方程仍保持原有性质,但图像发生改变
• 化简后的抛物线方程便于求解和应用
04
抛物线的极值与最值问题
抛物线的极值点与最值点求解
抛物线的极值点
抛物线的最值点
• 抛物线在顶点处取得极值,即顶点为极值点
• 抛物线在顶点处取得最值,即顶点为最值点
2022年秋高中数学第三章圆锥曲线的方程3.3抛物线3.3.1抛物线及其标准方程课件新人教A版选择性
探究点三 利用抛物线的定义解决轨迹问题
【例3】 已知动点M(x,y)满足5 (-1)2 + 2=|3x-4y+2|,则动点M的轨迹是
(
)
A.椭圆 B.双曲线
C.直线 D.抛物线
答案 D
2
解析 方程 5 (-1) +
2
(-1) +
2 表示点
2 =|3x-4y+2|可化为
2
(-1) +
规律方法 定义法解决轨迹问题
根据动点坐标满足的方程判断其轨迹时,要注意结合两点间的距离公式以
及点到直线的距离公式,对所给方程进行适当变形,分析其几何意义,然后
结合有关曲线的定义作出判定.
变式训练2
一个动圆经过点A(2,0),并且和直线l:x=-2相切,则动圆圆心M的轨迹方程是
.
答案 y2=8
解析 设动圆的半径为R.因为动圆经过点A(2,0),所以|MA|=R.又因为动圆和
离之和最小,最小值为|AF|= √5 .
图①
(2)同理,|PF|与点P到准线x=-1的距离相等.
如图②所示,
过点B作BQ垂直于准线交准线于点Q,交抛物
线于点P1.
由题意知|P1Q|=|P1F|,
所以|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4.
所以|PB|+|PF|的最小值为4.
图②
规律方法 求圆锥曲线上到两定点的距离之和最小的点的位置时,通常有
面宽为 2√6 米.
本节要点归纳
2
1
p=6;
若抛物线的标准方程为 x =-2py(p>0),则由(-3) =-2p×(-1),解得
湘教版高中学案数学选择性必修第一册精品课件 第3章 圆锥曲线与方程 3.3.2 抛物线的简单几何性质
p
的距离等于顶点到准线的距离,大小为2 .
(2)在解决与抛物线的性质有关的问题时,要注意利用几何图形形象、直观
的特点来解题,特别是涉及焦点、顶点、准线的问题.
变式训练1
已知A,B是抛物线y2=2px(p>0)上不同的两点,O为坐标原点,若|OA|=|OB|,
(2)因为抛物线y2=4x的焦点坐标为(1,0),若l与x轴垂直,则|AB|=4,不符合题
意,所以可设所求直线l的方程为y=k(x-1),A(x1,y1),B(x2,y2).
= (-1),
由 2
得 k2x2-(2k2+4)x+k2=0.
= 4,
2 2 +4
则由根与系数的关系,得 x1+x2=
2
故设 A(3,m)(m>0),代入 y2=8x 得 m2=24,所以 m=2√6或 m=-2√6(舍去).
所以 A(3,2√6),B(3,-2√6),|OA|=|OB|=√33,
所以△OAB 的周长为 2√33+4√6.
规律方法
抛物线的几何性质的应用方法
(1)抛物线的焦点始终在对称轴上,顶点就是抛物线与对称轴的交点,准线
第3章
3.3.2 抛物线的简单几何性质
内
容
索
引
01
基础落实•必备知识全过关
02
重难探究•能力素养全提升
03
学以致用•随堂检测全达标
课标要求
1.掌握抛物线的几何性质;
2.掌握直线与抛物线的位置关系的判断及相关问题;
3.能利用方程及数形结合思想解决焦点弦、弦中点等问题.
基础落实•必备知识全过关
圆锥曲线解题技巧如何利用抛物线的焦点和准线求解问题
圆锥曲线解题技巧如何利用抛物线的焦点和准线求解问题圆锥曲线是数学中的一个重要概念,包括椭圆、双曲线和抛物线。
在解题过程中,利用抛物线的焦点和准线可以帮助我们更好地解决与圆锥曲线相关的问题。
本文将介绍圆锥曲线解题技巧,重点讨论如何使用抛物线的焦点和准线来求解问题。
1. 抛物线的焦点和准线抛物线是一种特殊的圆锥曲线,它具有以下性质:焦点F到抛物线上任意一点P的距离等于该点到抛物线的准线的距离。
准线是过焦点垂直于对称轴所得的直线。
2. 求解抛物线的焦点和准线求解焦点和准线可以通过以下步骤进行:Step 1: 确定抛物线的方程抛物线的方程一般形式为y = ax^2 + bx + c或x = ay^2 + by + c。
根据题目给出的限定条件,我们可以确定抛物线的具体方程。
Step 2: 求解焦点坐标根据焦点到抛物线上任意一点的距离等于该点到准线的距离,我们可以得到以下等式:PF = PL,其中P为抛物线上任意一点,F为焦点,L为准线上的点。
根据抛物线的方程,将P(x, y)代入等式,然后解方程组,即可求解焦点坐标。
Step 3: 求解准线方程通过焦点的对称性,我们知道准线与抛物线对称,且焦点在准线上的中垂线上。
利用这一性质,我们可以求解准线的方程。
首先,求解焦点对称的点,然后通过这两点求解中垂线的斜率,最后根据中垂线上一点求解直线方程,即可得到准线的方程。
3. 利用焦点和准线求解问题在解题过程中,我们可以利用焦点和准线的性质来求解与抛物线相关的问题。
以下是一些具体应用:应用一:求解顶点和焦距通过焦点和准线,可以求解抛物线的顶点和焦距。
顶点的坐标可以通过焦点和准线的交点求得,焦距可以通过焦点到准线的距离求得。
应用二:求解切线和法线利用焦点和准线的性质,我们可以求解抛物线上任意一点处的切线和法线方程。
首先,求解该点关于焦点的对称点,然后利用对称点和该点求解对称轴,最后通过求导和求解斜率,可以得到切线和法线的方程。
圆锥曲线知识点总结
圆锥曲线知识点总结圆锥曲线是平面上的一类重要的几何曲线,由易知,它们具有各种各样的性质和特点,广泛应用于数学、物理、工程等领域。
下面将对圆锥曲线的基本概念、方程及其性质进行简要总结。
一、圆锥曲线的基本概念圆锥曲线是由平面和圆锥交于一条封闭曲线形成的曲线。
根据圆锥和平面的位置关系,可以分为椭圆、抛物线和双曲线三类。
(一)椭圆当切割平面与圆锥的两部分相交时,形成椭圆。
椭圆有两个焦点,与这两个焦点的距离之和是常数。
椭圆的方程常用标准方程表示为:(x/a)² + (y/b)² = 1,其中a和b分别表示椭圆的长轴和短轴长度。
(二)抛物线当切割平面与圆锥的一部分相交时,形成抛物线。
抛物线是一条对称曲线,其开口方向由切割平面的位置决定。
抛物线的方程常用标准方程表示为:y = ax²,其中a为常数。
(三)双曲线当切割平面与圆锥的两部分不相交时,形成双曲线。
双曲线有两个焦点,与这两个焦点的距离之差是常数。
双曲线的方程常用标准方程表示为:(x/a)² - (y/b)² = 1,其中a和b分别表示双曲线的长轴和短轴长度。
二、圆锥曲线的方程(一)椭圆的一般方程椭圆的一般方程为:Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数。
(二)抛物线的一般方程抛物线的一般方程为:Ay² + Bx + C = 0,其中A、B和C为常数。
(三)双曲线的一般方程双曲线的一般方程为:Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数,且B² - 4AC > 0。
三、圆锥曲线的性质(一)椭圆的性质1. 椭圆是一个闭合曲线,对称于x轴和y轴。
2. 椭圆的长轴和短轴分别与x轴和y轴平行。
3. 椭圆有两个焦点,对称于椭圆的长轴上。
圆锥曲线知识点总结
圆锥曲线知识点总结圆锥曲线是二维平面上的几何图形,由直角圆锥与一个平面相交而产生。
它在数学、物理、工程和计算机图形等领域具有广泛的应用。
本文将对圆锥曲线的基本概念、方程、性质和应用进行总结。
一、基本概念1. 定义:圆锥曲线可以分为三种类型,即椭圆、抛物线和双曲线。
它们的定义分别是:- 椭圆:平面上到两个定点的距离之和等于常数的点的集合。
- 抛物线:平面上到一个定点的距离等于定直线的距离的点的集合。
- 双曲线:平面上到两个定点的距离之差等于常数的点的集合。
2. 方程形式:圆锥曲线可以以各种形式的方程表示。
常见的方程形式包括标准方程、参数方程和极坐标方程。
二、椭圆1. 基本性质:椭圆是一个闭合的曲线,两个焦点之间的距离是常数,而离心率小于1。
椭圆对称于两个坐标轴,并且具有两个主轴和两个焦点。
2. 椭圆的方程:椭圆的标准方程是(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是椭圆的中心坐标,a和b分别是两个半轴的长度。
3. 参数方程:椭圆的参数方程是x = h + a*cos(t),y = k + b*sin(t),其中t是参数的角度。
4. 极坐标方程:椭圆的极坐标方程是r = (a*b) / sqrt((b*cos(t))² + (a*sin(t))²),其中r是极径,t是极角。
5. 应用:椭圆在日常生活中有多种应用,例如天体运动的轨道、水平仪和椭圆形浴缸等。
三、抛物线1. 基本性质:抛物线是一个开放的曲线,焦点和直线称为准线。
抛物线对称于准线,并且具有一个顶点。
2. 抛物线的方程:抛物线的标准方程是y = a*x² + b*x + c,其中a、b和c是常数。
3. 参数方程:抛物线的参数方程是x = t,y = a*t² + b*t + c,其中t是参数。
4. 极坐标方程:抛物线没有显式的极坐标方程。
5. 应用:抛物线在物理学、工程学和天文学中有多种应用,例如抛物线反射器、天体运动的近似模型和喷泉水流的轨迹等。
圆锥曲线(椭圆、双曲线、抛物线)知识点总结
双曲线知识点一、 双曲线的定义:1. 第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长〔<|F 1F 2|〕的点的轨迹〔21212F F a PF PF <=-〔a 为常数〕〕这两个定点叫双曲线的焦点.要注意两点:〔1〕距离之差的绝对值.〔2〕2a <|F 1F 2|.当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在.2. 第二定义:动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程:12222=-b y a x 〔a >0,b >0〕(焦点在x 轴上);12222=-bx a y 〔a >0,b >0〕(焦点在y 轴上);1. 如果2x 项的系数是正数,那么焦点在x 轴上;如果2y 项的系数是正数,那么焦点在y 轴上. a 不一定大于b.2. 与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x 3. 双曲线方程也可设为:221(0)x y mn m n-=> 例题:双曲线C 和椭圆221169x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。
三、点与双曲线的位置关系,直线与双曲线的位置关系: 1 点与双曲线:点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b ⇔-<点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>上220022-=1x y a b ⇔2 直线与双曲线:〔代数法〕设直线:l y kx m =+,双曲线)0,0(12222>>=-b a by a x 联立解得02)(222222222=----b a m a mkx a x k a b1) 0m =时,b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕;b k a ≥,bk a≤-,或k 不存在时直线与双曲线没有交点;2) 0m ≠时,k 存在时,假设0222=-k a babk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;假设2220b a k -≠,222222222(2)4()()a mk b a k a m a b ∆=-----2222224()a b m b a k =+-0∆>时,22220m b a k +->,直线与双曲线相交于两点; 0∆<时,22220m b a k +-<,直线与双曲线相离,没有交点;0∆=时22220m b a k +-=,2222m b k a +=直线与双曲线有一个交点;假设k 不存在,a m a -<<时,直线与双曲线没有交点; m a m a ><-或直线与双曲线相交于两点; 3. 过定点的直线与双曲线的位置关系:设直线:l y kx m =+过定点00(,)P x y ,双曲线)0,0(12222>>=-b a by a x1).当点00(,)P x y 在双曲线内部时:b bk a a-<<,直线与双曲线两支各有一个交点; a bk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;b k a >或bk a<-或k 不存在时直线与双曲线的一支有两个交点;2).当点00(,)P x y 在双曲线上时:bk a =±或2020b x k a y =,直线与双曲线只交于点00(,)P x y ;b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕; 2020b x k a y >〔00y ≠〕或2020b x bk a a y << 〔00y ≠〕或b k a <-或k 不存在,直线与双曲线在一支上有两个交点;当00y ≠时,bk a =±或k 不存在,直线与双曲线只交于点00(,)P x y ;b k a >或bk a <-时直线与双曲线的一支有两个交点;b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕; 3).当点00(,)P x y 在双曲线外部时: 当()0,0P 时,b bk a a -<<,直线与双曲线两支各有一个交点; b k a ≥或bk a≤或k 不存在,直线与双曲线没有交点;当点0m ≠时,k =时,过点00(,)P x y 的直线与双曲线相切 bk a=±时,直线与双曲线只交于一点;几何法:直线与渐近线的位置关系例:过点(0,3)P 的直线l 和双曲线22:14y C x -=,仅有一个公共点,求直线l 的方程。
圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结
椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数〔大于12F F 〕的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,那么动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①假设常数2a 等于2c ,那么动点轨迹是线段12F F 。
②假设常数2a 小于2c ,那么动点轨迹不存在。
2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴;长轴长2a ,短轴长2b ; 焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率 )10(<<=e ace )10(<<=e ace 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。
圆锥曲线知识点归纳汇总 - 抛物线
抛物线1.抛物线的概念定义:平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.2.抛物线的标准方程和几何性质(教材定义)标准方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F ⎝⎛⎭⎫p 2,0F ⎝⎛⎭⎫-p2,0 F ⎝⎛⎭⎫0,p 2 F ⎝⎛⎭⎫0,-p2 离心率 e =1准线方程 x =-p 2x =p 2 y =-p2y =p 2 范围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0,x ∈R开口方向向右向左向上向下学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。
2、训练学生良好的数学思维习惯和思维品质。
要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。
3、锻炼学生优良的意志品质。
可以培养持之以恒的耐心和克服困难的信心, 以及战胜难题的勇气。
可以养成坚韧不拔的毅力4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。
3.抛物线的补充的性质及二级结论以开口向右为例:y 2=2px (p >0)1)通径:(过焦点的所有弦长中通径最短为p MN 2=) 2)准线:2px l -=:准线 3)焦半径公式:如图二θp x p AF A cos -=+=12,θpx p BF B cos +=+=12 推导:A x pAP AF +==2,AFcos θRF FT RF RT AP AF +=+=== 所以:AFcos θp AF +=即θpAF cos -=1,同理可证BF4)过焦点弦长公式:如图二θsin px x p AB B A 22=++= 推导:B A B A x x p x px p BF AF AB ++=+++=+=22θsin p cos θp cos θp BF AF AB 2211=++-=+= 5)被焦点截的线段倒数之和=p24==通径 如图二所示:pBF AF 241111==+通径 推导:由焦半径公式可知θp AF cos -=1,θpBF cos +=1所以:通径421111==++-=+p p θp θBF AF cos cos 6)一般弦长公式:直线l :y =kx +m 与抛物线C 交于A (x 1,y 1)B (x 2,y 2)则弦长AB 的计算公式为()212212212411x x x x k x x k AB -++=-+=或者()21221221241111y y y y k y y k AB -++=-+=7)sin θp 2S 2OAB=∆(如图二,直线l 过F 交抛物线与A 、B 两点) 8)42p x x B A =,2p y y B A -=(如图二,直线l 过F 交抛物线与A 、B 两点)【知识拓展】1.抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F ⎝⎛⎭⎫p 2,0的距离|PF |=x 0+p2,也称为抛物线的焦半径. 2.y 2=ax 的焦点坐标为⎝⎛⎭⎫a 4,0,准线方程为x =-a4. (1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解.3.抛物线的离心率e =1,体现了抛物线上的点到焦点的距离等于到准线的距离.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简化. 抛物线上的点到焦点的距离根据定义转化为到准线的距离,即|PF |=|x |+p 2或|PF |=|y |+p2.。
高中数学抛物线题型归类
高中数学抛物线题型归类高中数学抛物线题型归类一、基础知识1、抛物线的定义:平面上,到一个定点(F)和一条定直线(l)的距离相等的点的集合。
2、抛物线的标准方程:右开口抛物线的标准方程为 y^2 = 2px,左开口抛物线的标准方程为 y^2 = -2px,上下开口抛物线的标准方程为 y^2 = 2p(x + k) 和 y^2 = 2p(x - k)。
3、抛物线的性质:抛物线是平滑的曲线,它关于轴、轴和原点对称,它的焦点在直线上,它的准线与直线的交点在对称轴上。
二、常见题型1、抛物线的定义题例1. 已知抛物线的方程为y^2 = 4x,F是抛物线的焦点,准线与对称轴的交点为M,过M作直线l交抛物线于A、B 两点,求证:AF、MF、BF成等比数列。
解:设A、B的横坐标分别为x1、x2,根据抛物线的定义,得|AF| = x1 + 1,|MF| = -1,|BF| = x2 + 1,因为x1 + x2 = 4,所以(x1 + 1)^2 = (x2 + 1)(4 - x2),即x1^2 + 2x1 - 3x2 - 4 = 0,由此得到(x1 + 3)(x1 - 4) = -3(x2 + 1),即x1x2 = -12,所以|AF||BF| = |MF|^2,即AF、MF、BF成等比数列。
2、抛物线的标准方程题例2. 已知抛物线的焦点在y轴上,且经过点A(0, 6)和B(6,0),求此抛物线的标准方程。
解:设此抛物线的标准方程为 x^2 = 2py(p > 0),因为抛物线经过点A(0, 6),所以6 = 2p,解得p = 3,因此此抛物线的标准方程为 x^2 = 6y。
3、抛物线的几何性质题例3. 已知抛物线y^2 = ax(a > 0)上有两个不同的点A和B,它们的横坐标分别为x1、x2,且满足条件x1^2 + x2^2 = a^2 + 6a - 8。
求证:直线AB的斜率为-4a。
解:因为A和B是抛物线上的两个不同的点,所以可以设它们的坐标分别为(x1, y1)和(x2, y2)。
高考数学二轮复习考点知识与题型专题讲解41---圆锥曲线的方程与性质
高考数学二轮复习考点知识与题型专题讲解第41讲圆锥曲线的方程与性质[考情分析]高考对这部分知识的考查侧重三个方面:一是求圆锥曲线的标准方程;二是求椭圆的离心率、双曲线的离心率以及渐近线问题;三是抛物线的性质及应用问题.考点一圆锥曲线的定义与标准方程核心提炼1.圆锥曲线的定义(1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|).(2)双曲线:||PF1|-|PF2||=2a(0<2a<|F1F2|).(3)抛物线:|PF|=|PM|,l为抛物线的准线,点F不在定直线l上,PM⊥l于点M.2.求圆锥曲线标准方程“先定型,后计算”“定型”:确定曲线焦点所在的坐标轴的位置;“计算”:利用待定系数法求出方程中的a2,b2,p 的值.例1(1)(2022·衡水中学模拟)已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B,以线段F1A为直径的圆交线段F1B的延长线于点P,若F2B∥AP且线段AP的长为2+2,则该椭圆方程为()A.x 24+y 22=1B.x 28+y 23=1 C.x 25+y 24=1 D.x 28+y 24=1 答案 D解析 设椭圆的半焦距为c ,因为点P 在以线段F 1A 为直径的圆上,所以AP ⊥PF 1.又因为F 2B ∥AP ,所以F 2B ⊥BF 1.又因为|F 2B |=|BF 1|,所以△F 1F 2B 是等腰直角三角形,于是△F 1AP 也是等腰直角三角形,因为|AP |=2+2,所以|F 1A |=2(2+2),得a +c =2(2+2),又b =c ,所以a =2c ,解得a =22,c =2,得b 2=a 2-c 2=4,所以椭圆方程为x 28+y 24=1. (2)(2022·荆州模拟)已知双曲线C :x 216-y 29=1的左、右焦点分别是F 1,F 2,点P 是C 右支上的一点(不是顶点),过F 2作∠F 1PF 2的角平分线的垂线,垂足是M ,O 是原点,则|MO |=________. 答案 4解析 延长F 2M 交PF 1于点Q ,由于PM 是∠F 1PF 2的角平分线,F 2M ⊥PM ,所以△QPF 2是等腰三角形,所以|PQ |=|PF 2|,且M 是QF 2的中点.根据双曲线的定义可知|PF 1|-|PF 2|=2a ,即|QF 1|=2a ,由于O 是F 1F 2的中点,所以MO 是△QF 1F 2的中位线,所以|MO |=12|QF 1|=a =4. 易错提醒 求圆锥曲线的标准方程时的常见错误双曲线的定义中忽略“绝对值”致错;椭圆与双曲线中参数的关系式弄混,椭圆中的关系式为a 2=b 2+c 2,双曲线中的关系式为c 2=a 2+b 2;圆锥曲线方程确定时还要注意焦点位置.跟踪演练1 (1)已知双曲线的渐近线方程为y =±22x ,实轴长为4,则该双曲线的方程为( ) A.x 24-y 22=1 B.x 24-y 28=1或y 24-x 28=1 C.x 24-y 28=1 D.x 24-y 22=1或y 24-x 28=1 答案 D解析 设双曲线方程为x 22m -y 2m=1(m ≠0), ∵2a =4,∴a 2=4,当m >0时,2m =4,m =2;当m <0时,-m =4,m =-4.故所求双曲线的方程为x 24-y 22=1或y 24-x 28=1. (2)已知A ,B 是抛物线y 2=8x 上两点,当线段AB 的中点到y 轴的距离为3时,|AB |的最大值为( )A .5B .5 2C .10D .10 2答案 C解析 设抛物线y 2=8x 的焦点为F ,准线为l ,线段AB 的中点为M .如图,分别过点A ,B ,M 作准线l 的垂线,垂足分别为C ,D ,N ,连接AF ,BF .因为线段AB 的中点到y 轴的距离为3,抛物线y 2=8x 的准线l :x =-2,所以|MN |=5.因为|AB |≤|AF |+|BF |=|AC |+|BD |=2|MN |=10,当且仅当A ,B ,F 三点共线时取等号,所以|AB |max =10.考点二 椭圆、双曲线的几何性质 核心提炼1.求离心率通常有两种方法(1)求出a ,c ,代入公式e =c a. (2)根据条件建立关于a ,b ,c 的齐次式,消去b 后,转化为关于e 的方程或不等式,即可求得e 的值或取值范围.2.与双曲线x 2a 2-y 2b 2=1(a >0,b >0)共渐近线bx ±ay =0的双曲线方程为x 2a 2-y 2b 2=λ(λ≠0).考向1 椭圆、双曲线的几何性质例2(2022·河南五市联考)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以F 2为圆心的圆恰好与双曲线C 的两条渐近线相切,且该圆恰好经过线段OF 2的中点,则双曲线C 的渐近线方程为( )A .y =±3xB .y =±33x C .y =±233x D .y =±2x答案 B解析 由题意知,渐近线方程为y =±b ax , 焦点F 2(c ,0),c 2=a 2+b 2,因为以F 2为圆心的圆恰好与双曲线C 的两渐近线相切,则圆的半径r 等于圆心到切线的距离,即r =⎪⎪⎪⎪±b a ·c 1+⎝⎛⎭⎫±b a 2=b , 又该圆过线段OF 2的中点,故c 2=r =b , 所以b a =b 2a 2=b 2c 2-b2=33. 所以渐近线方程为y =±33x . 考向2 离心率问题例3(多选)(2022·全国乙卷)双曲线C 的两个焦点为F 1,F 2,以C 的实轴为直径的圆记为D ,过F 1作D 的切线与C 交于M ,N 两点,且cos ∠F 1NF 2=35,则C 的离心率为( ) A.52B.32 C.132 D.172 答案 AC解析 不妨设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),F 1(-c ,0),F 2(c ,0). 当两个交点M ,N 在双曲线两支上时,如图1所示,图1设过F 1的直线与圆D 相切于点P ,连接OP ,由题意知|OP |=a ,又|OF 1|=c ,所以|F 1P |=b .过点F 2作F 2Q ⊥F 1N ,交F 1N 于点Q .由中位线的性质,可得|F 2Q |=2|OP |=2a ,|PQ |=b .因为cos ∠F 1NF 2=35, 所以sin ∠F 1NF 2=45, 故|NF 2|=52a ,|QN |=32a , 所以|NF 1|=|F 1Q |+|QN |=2b +32a . 由双曲线的定义可知|NF 1|-|NF 2|=2a ,所以2b +32a -52a =2a ,所以2b =3a . 两边平方得4b 2=9a 2,即4(c 2-a 2)=9a 2,整理得4c 2=13a 2,所以c 2a 2=134, 故c a =132,即e =132. 当两个交点M ,N 都在双曲线上的左支上时,如图2所示,图2同理可得|F 2Q |=2|OP |=2a ,|PQ |=b .因为cos ∠F 1NF 2=35, 所以sin ∠F 1NF 2=45, 可得|NF 2|=52a ,|NQ |=32a , 所以|NF 1|=|NQ |-|QF 1|=32a -2b , 所以|NF 2|=|NF 1|+2a =72a -2b , 又|NF 2|=52a ,所以72a -2b =52a , 即a =2b ,故e =1+⎝⎛⎭⎫b a 2=52.故选AC.规律方法 (1)在“焦点三角形”中,常利用正弦定理、余弦定理,结合椭圆(或双曲线)的定义,运用平方的方法,建立与|PF 1|·|PF 2|的联系.(2)求双曲线渐近线方程的关键在于求b a 或a b的值,也可将双曲线方程中等号右边的“1”变为“0”,然后因式分解得到.跟踪演练2 (1)(2022·全国甲卷)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP ,AQ 的斜率之积为14,则C 的离心率为( ) A.32 B.22 C.12 D.13答案 A解析 设P (m ,n )(n ≠0),则Q (-m ,n ),易知A (-a ,0),所以k AP ·k AQ =n m +a ·n -m +a =n 2a 2-m 2=14.(*) 因为点P 在椭圆C 上,所以m 2a 2+n 2b 2=1,得n 2=b 2a2(a 2-m 2),代入(*)式,得b 2a 2=14, 所以e =c a =1-b 2a 2=32.故选A. (2)(多选)(2022·衡水中学模拟)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 2的直线与双曲线的右支交于A ,B 两点,若|AF 1|=|BF 2|=2|AF 2|,则( )A .∠AF 1B =∠F 1ABB .双曲线的离心率e =333C .双曲线的渐近线方程为y =±63x D .原点O 在以F 2为圆心,|AF 2|为半径的圆上答案 AB解析 设|AF 1|=|BF 2|=2|AF 2|=2m ,则|AB |=|AF 2|+|BF 2|=3m ,由双曲线的定义知,|AF 1|-|AF 2|=2m -m =2a ,即m =2a ,|BF 1|-|BF 2|=2a ,即|BF 1|-2m =2a ,∴|BF 1|=3m =|AB |,∠AF 1B =∠F 1AB ,故选项A 正确;由余弦定理知,在△ABF 1中,cos ∠AF 1B =|AF 1|2+|BF 1|2-|AB |22|AF 1|·|BF 1|=4m 2+9m 2-9m 22·2m ·3m =13, 在△AF 1F 2中,cos ∠F 1AB =|AF 1|2+|AF 2|2-|F 1F 2|22·|AF 1|·|AF 2|=4m 2+m 2-4c 22·2m ·m =cos ∠AF 1B =13, 化简整理得12c 2=11m 2=44a 2,∴离心率e =c a =4412=333,故选项B 正确; 双曲线的渐近线方程为y =±b ax =±c 2-a 2a 2x =±e 2-1x =±263x , 故选项C 错误;若原点O 在以F 2为圆心,|AF 2|为半径的圆上,则c =m =2a ,与c a =333相矛盾,故选项D 错误. 考点三 抛物线的几何性质核心提炼抛物线的焦点弦的几个常见结论设AB 是过抛物线y 2=2px (p >0)的焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则(1)x 1x 2=p 24,y 1y 2=-p 2. (2)|AB |=x 1+x 2+p .(3)当AB ⊥x 轴时,弦AB 的长最短为2p .例4 (1)(2022·泰安模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,点M 在抛物线C 上,射线FM 与y 轴交于点A (0,2),与抛物线C 的准线交于点N ,FM →=55MN →,则p 的值等于( )A.18 B .2 C.14D .4 答案 B解析 设点M 到抛物线的准线的距离为|MM ′|,抛物线的准线与x 轴的交点记为点B.由抛物线的定义知,|MM ′|=|FM |.因为|FM ||MN |=55, 所以|MM ′||MN |=55, 即cos ∠NMM ′=|MM ′||MN |=55, 所以cos ∠OF A =cos ∠NMM ′=55, 而cos ∠OF A =|OF ||AF |=p 2⎝⎛⎭⎫p 22+22=55,解得p =2. (2)(多选)(2022·新高考全国Ⅱ)已知O 为坐标原点,过抛物线C :y 2=2px (p >0)焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点M (p ,0).若|AF |=|AM |,则( )A .直线AB 的斜率为2 6B .|OB |=|OF |C .|AB |>4|OF |D .∠OAM +∠OBM <180°答案 ACD解析 对于A ,由题意,得F ⎝⎛⎭⎫p 2,0. 因为|AF |=|AM |,且M (p ,0), 所以x A =x F +x M 2=34p ,将其代入抛物线方程y 2=2px ,得y A =62p , 所以A ⎝⎛⎭⎫34p ,62p ,所以直线AB 的斜率k AB =k AF =62p -034p -p 2=26,故A 正确;对于B ,由选项A 的分析,知直线AB 的方程为y =26⎝⎛⎭⎫x -p2,代入y 2=2px ,得12x 2-13px +3p 2=0,解得x =34p 或x =13p ,所以x B =13p ,所以y B =-63p ,所以|OB |=x 2B +y 2B =73p ≠|OF |,故B不正确;对于C ,由抛物线的定义及选项A ,B 的分析, 得|AB |=x A +x B +p =1312p +p =2512p >2p ,即|AB |>4|OF |,故C 正确; 对于D ,易知|OA |=334p ,|AM |=54p , |OB |=73p ,|BM |=103p , 则cos ∠OAM =|OA |2+|AM |2-|OM |22|OA |·|AM |=3316p 2+2516p 2-p 22×334p ·54p=21533>0,cos ∠OBM =|OB |2+|BM |2-|OM |22|OB |·|BM |=79p 2+109p 2-p 22×73p ·103p=470>0,所以∠OAM <90°,∠OBM <90°,所以∠OAM +∠OBM <180°,故D 正确.综上所述,选ACD.规律方法 利用抛物线的几何性质解题时,要注意利用定义构造与焦半径相关的几何图形(如三角形、直角梯形等)来沟通已知量与p 的关系,灵活运用抛物线的焦点弦的特殊结论,使问题简单化且减少数学运算.跟踪演练3 (1)(2021·新高考全国Ⅰ)已知O 为坐标原点,抛物线C :y 2=2px (p >0)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ ⊥OP .若|FQ |=6,则C 的准线方程为________. 答案 x =-32解析 方法一 (解直角三角形法)由题易得|OF |=p2,|PF |=p ,∠OPF =∠PQF ,所以tan ∠OPF =tan ∠PQF , 所以|OF ||PF |=|PF ||FQ |,即p 2p =p 6,解得p =3,所以C 的准线方程为x =-32.方法二 (应用射影定理法)由题易得|OF |=p 2,|PF |=p ,|PF |2=|OF |·|FQ |,即p 2=p2×6,解得p =3或p =0(舍去),所以C 的准线方程为x =-32.(2)(2022·济宁模拟)过抛物线y 2=4x 的焦点F 的直线与该抛物线及其准线都相交,交点从左到右依次为A ,B ,C .若AB →=2BF →,则线段BC 的中点到准线的距离为( ) A .3 B .4 C .5 D .6 答案 B解析 由抛物线的方程可得焦点F (1,0),渐近线的方程为x =-1,由AB →=2BF →,可得|AB ||BF |=2,由于抛物线的对称性,不妨假设直线和抛物线位置关系如图所示,作BE 垂直准线于点E , 准线交x 轴于点N ,则|BF |=|BE | ,故|AB ||BF |=|AB ||BE |=2,故∠ABE =π4 , 而BE ∥x 轴,故∠AFN =π4,所以直线AB 的倾斜角为π4,所以直线AB 的方程为y =x -1, 设B (x 1,y 1),C (x 2,y 2),联立⎩⎪⎨⎪⎧y =x -1,y 2=4x ,整理可得x 2-6x +1=0,则x 1+x 2=6,所以BC 的中点的横坐标为3, 则线段BC 的中点到准线的距离为3-(-1)=4.专题强化练一、单项选择题1.(2022·中山模拟)抛物线C :y 2=2px 上一点(1,y 0)到其焦点的距离为3,则抛物线C 的方程为( ) A .y 2=4x B .y 2=8x C .y 2=12x D .y 2=16x 答案 B解析 因抛物线C :y 2=2px 上一点(1,y 0)到其焦点的距离为3,则p >0,抛物线准线方程为x =-p2,由抛物线定义得1-⎝⎛⎭⎫-p2=3,解得p =4, 所以抛物线C 的方程为y 2=8x .2.已知双曲线x 2m -y 2=1(m >0)的一个焦点为F (3,0),则其渐近线方程为( )A .y =±24x B .y =±22xC .y =±2xD .y =±12x答案 A解析 因为双曲线x 2m -y 2=1(m >0)的一个焦点为F (3,0),所以由m +1=32,得m =8, 所以双曲线方程为x 28-y 2=1,所以双曲线的渐近线方程为y =±24x .3.(2022·全国乙卷)设F 为抛物线C :y 2=4x 的焦点,点A 在C 上,点B (3,0),若|AF |=|BF |,则|AB |等于( ) A .2 B .2 2 C .3 D .3 2 答案 B解析 方法一由题意可知F (1,0),抛物线的准线方程为x =-1.设A ⎝⎛⎭⎫y 24,y 0, 则由抛物线的定义可知|AF |=y 204+1.因为|BF |=3-1=2,所以由|AF |=|BF |,可得y 204+1=2,解得y 0=±2,所以A (1,2)或A (1,-2).不妨取A (1,2),则|AB |=(1-3)2+(2-0)2=8=22,故选B. 方法二 由题意可知F (1,0),故|BF |=2, 所以|AF |=2.因为抛物线的通径长为2p =4, 所以AF 的长为通径长的一半, 所以AF ⊥x 轴,所以|AB |=22+22=8=2 2.故选B.4.(2022·潍坊模拟)如图,某建筑物白色的波浪形屋顶像翅膀一样漂浮,建筑师通过双曲线的设计元素赋予了这座建筑以轻盈、极简和雕塑般的气质,该建筑物外形弧线的一段可以近似看成焦点在y 轴上的双曲线y 2a 2-x 2b 2=1(a >0,b >0)上支的一部分.已知该双曲线的上焦点F 到下顶点的距离为36,F 到渐近线的距离为12,则该双曲线的离心率为( )A.53B.54C.43D.45 答案 B解析 点F (0,c )到渐近线y =±ab x ,即ax ±by =0的距离d =|±bc |a 2+b 2=b =12, 又由题意知⎩⎪⎨⎪⎧a +c =36,a 2+122=c 2, 解得⎩⎪⎨⎪⎧a =16,c =20,所以e =c a =2016=54.5.(2022·福州质检)已知点F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 2的直线交椭圆于A ,B 两点,且满足AF 1⊥AB ,|AF 1||AB |=43,则该椭圆的离心率是( )A.23B.53C.33D.63 答案 B解析 如图所示,设|AF 1|=4x ,则|AB |=3x ,因为AF 1⊥AB ,则|BF 1|=|AB |2+|AF 1|2=5x , 由椭圆的定义可得|AF 1|+|AB |+|BF 1|=(|AF 1|+|AF 2|)+(|BF 2|+|BF 1|)=4a =12x ,则x =a 3,所以|AF 1|=4x =4a 3, 则|AF 2|=2a -4a 3=2a3,由勾股定理可得|AF 1|2+|AF 2|2=|F 1F 2|2, 则⎝⎛⎭⎫4a 32+⎝⎛⎭⎫2a 32=4c 2,则c =53a , 因此该椭圆的离心率为e =c a =53.6.如图,圆O 与离心率为32的椭圆T :x 2a 2+y 2b 2=1(a >b >0)相切于点M (0,1),过点M 引两条互相垂直的直线l 1,l 2,两直线与两曲线分别交于点A ,C 与点B ,D (均不重合).若P 为椭圆上任意一点,记点P 到两直线的距离分别为d 1,d 2,则d 21+d 22的最大值是( )A .4B .5 C.163 D.253答案 C解析 易知椭圆C 的方程为x 24+y 2=1,圆O 的方程为x 2+y 2=1, 设P (x 0,y 0), 因为l 1⊥l 2,则d 21+d 22=|PM |2=x 20+(y 0-1)2,因为x 204+y 20=1,所以d 21+d 22=4-4y 20+(y 0-1)2=-3⎝⎛⎭⎫y 0+132+163, 因为-1≤y 0≤1,所以当y 0=-13,即点P ⎝⎛⎭⎫±423,-13时,d 21+d 22取得最大值163. 二、多项选择题7.(2022·临沂模拟)2022年4月16日9时56分,神舟十三号返回舱成功着陆,返回舱是宇航员返回地球的座舱,返回舱的轴截面可近似看作是由半圆和半椭圆组成的“曲圆”,如图在平面直角坐标系中半圆的圆心在坐标原点,半圆所在的圆过椭圆的焦点F (0,2),椭圆的短轴与半圆的直径重合,下半圆与y 轴交于点G .若过原点O 的直线与上半椭圆交于点A ,与下半圆交于点B ,则( )A .椭圆的长轴长为4 2B .|AB |的取值范围是[4,2+22]C .△ABF 面积的最小值是4D .△AFG 的周长为4+4 2 答案 ABD解析 由题意知,椭圆中的几何量b =c =2, 得a =22,则2a =42,A 正确; |AB |=|OB |+|OA |=2+|OA |, 由椭圆性质可知2≤|OA |≤22, 所以4≤|AB |≤2+22,B 正确; 记∠AOF =θ, 则S △ABF =S △AOF +S △OBF=12|OA |·|OF |sin θ+12|OB |·|OF |sin(π-θ) =|OA |sin θ+2sin θ =(|OA |+2)sin θ, 取θ=π6,则S △ABF =1+12|OA |≤1+12×22<4,C 错误;由椭圆定义知|AF |+|AG |=2a =42, 所以△AFG 的周长L =|FG |+42=4+42, D 正确.8.(2022·济宁模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,左、右顶点分别为A 1,A 2,点P 是双曲线C 上异于顶点的一点,则( ) A .||P A 1|-|P A 2||=2aB .若焦点F 2关于双曲线C 的渐近线的对称点在C 上,则C 的离心率为 5 C .若双曲线C 为等轴双曲线,则直线P A 1的斜率与直线P A 2的斜率之积为1D .若双曲线C 为等轴双曲线,且∠A 1P A 2=3∠P A 1A 2,则∠P A 1A 2=π10答案 BCD解析 对于A ,在△P A 1A 2中,根据三角形两边之差小于第三边, 可知||P A 1|-|P A 2||<|A 1A 2|=2a ,故A 错误; 对于B ,焦点F 2(c ,0),渐近线不妨取y =bax ,即bx -ay =0,设F 2关于双曲线C 的渐近线的对称点为(m ,n ),则⎩⎨⎧n m -c ×ba =-1,b ×m +c 2-a ×n2=0,得⎩⎨⎧m =a 2-b 2c,n =2abc ,即F 2关于双曲线C 的渐近线的对称点为⎝⎛⎭⎫a 2-b 2c ,2ab c , 由题意知该点在双曲线上,故(a 2-b 2)2a 2c 2-(2ab )2b 2c 2=1,将c 2=a 2+b 2 代入,化简整理得b 4-3a 2b 2-4a 4=0,即b 2=4a 2,∴e 2=c 2a 2=a 2+b 2a 2=1+b 2a 2=5,得e =5,故B 正确;对于C ,双曲线C 为等轴双曲线, 即C :x 2-y 2=a 2(a >0), 设P (x 0,y 0)(y 0≠0),则x 20-y 20=a 2, 则x 20-a 2=y 20,故12·PA PA k k =y 0x 0+a ·y 0x 0-a=y 20x 20-a2=1,故C 正确; 对于D ,双曲线C 为等轴双曲线, 即C :x 2-y 2=a 2(a >0), 且∠A 1P A 2=3∠P A 1A 2, 设∠P A 1A 2=θ,∠A 1P A 2=3θ, 则∠P A 2x =4θ,根据C 的结论12·PA PA k k =1, 即有tan θ·tan 4θ=1, ∴sin θcos θ·sin 4θcos 4θ=1, ∴cos 5θ=0, ∵θ+3θ∈(0,π), ∴θ∈⎝⎛⎭⎫0,π4, ∴5θ=π2,∴∠P A 1A 2=θ=π10.三、填空题9.写出一个满足以下三个条件的椭圆的方程:______________.①中心为坐标原点;②焦点在坐标轴上;③离心率为13.答案x 29+y 28=1(答案不唯一)解析 只要椭圆方程形如x 29m +y 28m =1(m >0)或y 29m +x 28m=1(m >0)即可.10.(2022·淄博模拟)已知P 1,P 2,…,P 8是抛物线x 2=4y 上不同的点,且F (0,1).若FP 1--→+FP 2--→+…+FP 8--→=0,则|FP 1--→|+|FP 2--→|+…+|FP 8--→|=________.答案 16解析 设P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3),…,P 8(x 8,y 8),P 1,P 2,P 3,…,P 8是抛物线x 2=4y 上不同的点,点F (0,1),准线为y =-1,则FP i --→=(x i ,y i -1)(i =1,2,…,8),所以FP 1--→+FP 2--→+…+FP 8--→=(x 1+x 2+…+x 8,(y 1-1)+(y 2-1)+…+(y 8-1))=0,所以(y 1-1)+(y 2-1)+…+(y 8-1)=0,即y 1+y 2+y 3+…+y 8=8,∴|FP --→1|+|FP 2--→|+…+|FP 8--→|=(y 1+1)+(y 2+1)+…+(y 8+1)=y 1+y 2+…+y 8+8=16.11.(2022·济南模拟)已知椭圆C 1:x 236+y 2b 2=1(b >0)的焦点分别为F 1,F 2,且F 2是抛物线C 2:y 2=2px (p >0)的焦点,若P 是C 1与C 2的交点,且|PF 1|=7,则cos ∠PF 1F 2的值为________.答案57解析 依题意,由椭圆定义得|PF 1|+|PF 2|=12,而|PF 1|=7,则|PF 2|=5,因为点F 2是抛物线C 2:y 2=2px (p >0)的焦点,则该抛物线的准线l 过点F 1,如图,过点P 作PQ ⊥l 于点Q ,由抛物线定义知|PQ |=|PF 2|=5,而F 1F 2∥PQ ,则∠PF 1F 2=∠F 1PQ ,所以cos ∠PF 1F 2=cos ∠F 1PQ =|PQ ||PF 1|=57. 12.(2022·福州质检)已知O 为坐标原点,F 是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,A 为C 的右顶点,过F 作C 的渐近线的垂线,垂足为M ,且与y 轴交于点P .若直线AM 经过OP 的中点,则C 的离心率是________.答案 2解析 由题意可知,F (-c ,0),A (a ,0),渐近线不妨设为y =-b ax , 则k FM =a b, 直线FM 的方程为y =a b(x +c ), 令x =0,可得y =ac b, 则P ⎝⎛⎭⎫0,ac b , 则OP 的中点坐标为⎝⎛⎭⎫0,ac 2b , 联立⎩⎨⎧ y =-b a x ,y =a b (x +c ),解得M ⎝⎛⎭⎫-a 2c ,ab c , 因为直线AM 经过OP 的中点,所以ac 2b -00-a =ab c -0-a 2c-a ,则2b 2=ac +c 2,2(c 2-a 2)=ac +c 2, 即c 2-ac -2a 2=0,则e 2-e -2=0,解得e =-1 (舍)或e =2.四、解答题13.(2022·衡水中学模拟)双曲线x 2-y 2b 2=1(b >0)的左、右焦点分别为F 1,F 2,直线l 过F 2且与双曲线交于A ,B 两点.(1)若l 的倾斜角为π2,△F 1AB 是等边三角形,求双曲线的渐近线方程; (2)设b =3,若l 的斜率存在,且(F 1A --→+F 1B --→)·AB →=0,求l 的斜率.解 (1)设A (x A ,y A ).由题意知,F 2(c ,0),c =1+b 2,y 2A =b 2(c 2-1)=b 4,因为△F 1AB 是等边三角形, 所以2c =3|y A |,即4(1+b 2)=3b 4,解得b 2=2⎝⎛⎭⎫b 2=-23舍去. 故双曲线的渐近线方程为y =±2x .(2)由已知,F 1(-2,0),F 2(2,0). 设A (x 1,y 1),B (x 2,y 2),直线l :y =k (x -2).显然k ≠0.由⎩⎪⎨⎪⎧x 2-y 23=1,y =k (x -2),得(k 2-3)x 2-4k 2x +4k 2+3=0. 因为l 与双曲线交于两点,所以k 2-3≠0,且Δ=36(1+k 2)>0. 设AB 的中点为M (x M ,y M ). 由(F 1A --→+F 1B --→)·AB →=0,即F 1M →·AB →=0, 知F 1M ⊥AB ,故1· 1.F M k k =-而x M =x 1+x 22=2k 2k 2-3,y M =k (x M -2)=6k k 2-3,1F M k =3k 2k 2-3, 所以3k 2k 2-3·k =-1,得k 2=35, 故l 的斜率为±155.。
圆锥曲线抛物线的基本知识点
圆锥曲线抛物线的基本知识点一、什么是圆锥曲线抛物线?抛物线是一种特殊的圆锥曲线,它由一个平面与一个平行于该平面的直线相交而形成。
抛物线具有独特的形状,呈现出对称性和特定的数学性质。
二、抛物线的定义与特点1.定义:抛物线是平面上到一个定点距离与到一条定直线距离相等的点的轨迹。
2.特点:–抛物线具有对称性,它关于焦点和准线对称。
–抛物线的焦点是定点,准线是定直线。
–抛物线的离心率为1,是所有圆锥曲线中离心率等于1的一种情况。
–抛物线具有无穷远点,它是一条无限延伸的曲线。
三、抛物线方程的一般形式抛物线的方程通常可以表达为一般二次方程的形式:y=ax2+bx+c,其中a、b、c为常数,且a≠0。
四、抛物线的焦点与准线1.焦点:抛物线的焦点是定义抛物线的重要元素之一,与抛物线的离心率密切相关。
焦点的坐标可通过方程求解得到。
2.准线:抛物线的准线与焦点共同决定了抛物线的形状,准线的坐标也可通过方程求解得到。
五、抛物线的性质1.对称性:抛物线关于焦点对称,对称轴为准线。
这个性质使得抛物线在很多实际应用中具有重要意义。
2.焦距公式:定义抛物线焦点到准线的距离为焦距,通过焦距公式可以计算焦点到准线的距离。
3.切线方程:抛物线上任一点处的切线方程可以通过求导得到,切线斜率即为函数的导数值。
4.弧长与曲率:抛物线上任意两点之间的弧长可以通过积分计算得到,曲率表示曲线的弯曲程度。
六、抛物线的应用抛物线在现实生活和科学研究中具有广泛的应用,以下是一些例子: 1. 物理学中的抛物线轨迹:在无空气阻力的情况下,自由落体运动的轨迹为抛物线。
2. 抛物面反射:抛物面反射是一种利用抛物面的反射特性设计的照明系统,例如汽车大灯、探照灯等。
3. 投射问题:抛体在给定初始速度和角度下的运动轨迹就是抛物线,如炮弹飞行轨迹、游泳、跳水等。
七、抛物线与其他圆锥曲线的关系抛物线与其他圆锥曲线(椭圆、双曲线)具有一些相似和不同的地方: 1. 相似之处:抛物线、椭圆和双曲线都是圆锥曲线,它们的定义都可以归纳为距离比例关系。
高中数学圆锥曲线选知识点总结
高中数学圆锥曲线选知识点总结高中数学圆锥曲线是高中数学的一门重要内容,主要包括椭圆、双曲线和抛物线三种基本曲线。
以下是一份完整的高中数学圆锥曲线选知识点总结:1.定义:圆锥曲线是平面上的一条曲线,它是由一个交角不为直角的平面截一个圆锥所得到的截面图形。
2.椭圆:椭圆是一条平面曲线,它的定义是所有到两个给定点的距离之和等于定值的点所形成的轨迹。
椭圆的性质包括离心率、焦点、焦距、长轴、短轴、半焦距等。
3.双曲线:双曲线是一条平面曲线,它的定义是所有到两个给定点的距离之差等于定值的点所形成的轨迹。
双曲线的性质包括离心率、焦点、焦距、渐近线等。
4.抛物线:抛物线是一条平面曲线,它的定义是所有到一个给定点的距离等于定值的点所形成的轨迹。
抛物线的性质包括焦点、焦距、准线、对称轴、顶点等。
5.圆锥曲线的参数方程:圆锥曲线也可以用参数方程表示,例如椭圆的参数方程为x = a cos t,y = b sin t;双曲线的参数方程为x = a sec t,y = b tan t;抛物线的参数方程为x = at^2,y = 2at。
6.圆锥曲线的应用:圆锥曲线在几何学、物理学、工程学等领域都有广泛的应用。
例如,在天文学中,行星轨道和彗星轨道就是圆锥曲线;在工程学中,喷气式飞机的外形和空气动力学研究中也常常使用圆锥曲线。
7.椭圆的方程:椭圆的标准方程为(x^2 / a^2) + (y^2 / b^2) = 1,其中a和b分别为椭圆长轴和短轴的长度。
可以通过椭圆的焦点坐标和离心率求得椭圆的方程。
8.双曲线的方程:双曲线的标准方程为(x^2 / a^2) - (y^2 / b^2) =1,其中a和b分别为双曲线的顶点到两条渐近线的距离。
同样可以通过双曲线的焦点坐标和离心率求得双曲线的方程。
9.抛物线的方程:抛物线的标准方程为y = ax^2 + bx + c,其中a、b、c为常数。
抛物线的顶点坐标为(-b / 2a, c - b^2 / 4a),焦距为1 / 4a。
圆锥曲线与方程知识总结
高二数学圆锥曲线与方程单元复习与巩固知识网络知识要点梳理知识点一:圆锥曲线的统一定义椭圆、双曲线、抛物线统称圆锥曲线。
平面内,到一定点的距离与它到一条定直线(不经过定点)的距离之比是常数e的点的轨迹叫做圆锥曲线。
定点叫做焦点,定直线叫做准线、常数叫做离心率。
①e∈(0,1)时轨迹是椭圆;②e=1时轨迹是抛物线;③e∈(1,+∞)时轨迹是双曲线。
知识点二:圆锥曲线的标准方程和几何性质1.椭圆:(1)定义:平面内到两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫椭圆,这两个定点叫焦点.(2)标准方程当焦点在轴上时,椭圆的标准方程:,其中;当焦点在轴上时,椭圆的标准方程:,其中;(3)椭圆的的简单几何性质:范围:,,焦点,顶点、,长轴长=,短轴长=,焦距=,2.双曲线(1)定义:平面内与两个定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫双曲线的焦点.(2)标准方程当焦点在轴上时,双曲线的标准方程:,其中;当焦点在轴上时,双曲线的标准方程:,其中.(3)双曲线的简单几何性质范围:,;焦点,顶点,实轴长=,虚轴长=,焦距=;离心率是,准线方程是;渐近线:.3.抛物线(1)定义:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.(2)标准方程四种形式:,,,。
(3)抛物线标准方程的几何性质范围:,,对称性:关于x轴对称顶点:坐标原点离心率:.知识点三:直线和圆锥曲线的位置关系1.直线Ax+By+C=0和椭圆的位置关系:将直线方程代入椭圆后化简为一元二次方程,其判别式为Δ。
(1)若Δ>0,则直线和椭圆相交,有两个交点(或两个公共点);(2)若Δ=0,则直线和椭圆相切,有一个切点(或一个公共点);(3)若Δ<0,则直线和椭圆相离,无公共点.2.直线Ax+By+C=0和双曲线的位置关系:将直线方程代入双曲线方程后化简方程①若为一元一次方程,则直线和双曲线的渐近线平行,直线和双曲线只有一个交点,但不相切不是切点;②若为一元二次方程,则(1)若Δ>0,则直线和双曲线相交,有两个交点(或两个公共点);(2)若Δ=0,则直线和双曲线相切,有一个切点;(3)若Δ<0,则直线和双曲线相离,无公共点.注意:如说直线和双曲线有一个公共点,则要考虑两种情况:一个切点和一个交点3.直线Ax+By+C=0和抛物线y2=2px(p>0)的位置关系:将直线方程代入抛物线方程后化简后方程:①若为一元一次方程,则直线和抛物线的对称轴平行,直线和抛物线有一个交点,但不相切不是切点;②若为一元二次方程,则(1)若Δ>0,则直线和抛物线相交,有两个交点(或两个公共点);(2)若Δ=0,则直线和抛物线相切,有一个切点;(3)若Δ<0,则直线和抛物线相离,无公共点。
高中数学-人教A版-必修第一册-第三章(圆锥曲线的方程)3.3抛物线
(3)∵点(-3,-1)在第三象限, ∴设所求抛物线的标准方程为 y2=-2px(p>0)或 x2=-2py(p>0). 若抛物线的标准方程为 y2=-2px(p>0), 则由(-1)2=-2p×(-3),解得 p=16; 若抛物线的标准方程为 x2=-2py(p>0), 则由(-3)2=-2p×(-1),解得 p=92. ∴所求抛物线的标准方程为 y2=-13x 或 x2=-9y.
A.圆
B.椭圆
C.直线
D.抛物线
【解析】由题意可知,动圆的圆心到点 A 的距离与到 直线 y 轴的距离相等,满足抛物线的定义,故应选 D.
【答案】D
3.设抛物线 y2=8x 上一点 P 到 y 轴的距离是 4,
则点 P 到该抛物线焦点的距离是________.
【解析】由抛物线的方程得2p=24=2, 再根据抛物线的定义,可知所求距离为 4+2=6. 【答案】6
2.抛物线的标准方程
图形
标准方程
__y_2=__2_p_x_(p_>_0_)__
焦点坐标
_F_p2_,__0___
准线方程
_x_=__-_2_p__
_y_2_=__-__2p_x_(_p_>_0_)_ F-2p,0 ___x_=__p2___
图形
标准方程
焦点坐标 准线方程
_x_2_=__2_p_y_(p_>_0_)__ __F_0_,__p2___ __y_=__-_p2__
3.抛物线方程中参数 p 的几何意义是什么?
[提示] 抛物线的标准方程中参数 p 的几何意义是:抛 物线的焦点到准线的距离(即焦准距),所以 p 的值永远 大于 0.当抛物线标准方程中一次项的系数为负值时,不 要出现 p<0 的错误.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线与方程 (3)抛物线
1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质:
标准方程
图形 顶点 对称轴 焦点
准线 离心率
)0(22
>=p px y
轴
)0(22
>-=p px y
轴
)0(22
>=p py x
轴
)0(22
>-=p py x
轴
3.抛物线)0(22>=p px y 的几何性质:
(1)范围 因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧,
当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸. (2)对称性:对称轴要看一次项,符号决定开口方向. (3)顶点(0,0),离心率:1=e ,焦点(
,0)2
p F ,准线2
p x -
=,焦准距p .
(4) 焦半径:抛物线 )0(22>=p px y 上一点),(00y x P 到焦点(
,0)2
p F 的距离 2
||0p x PF +
=
抛物线 )0(22>-=p px y 上一点),(00y x P 到焦点(,0)2p F 的距离2||||0p x PF +=
抛物线 )0(22>±=p py x 上一点),(00y x P 到焦点(
,0)2
p F 的距离 2
||||0p y PF +
=
(5) 焦点弦:抛物线)0(22
>=p px y 的焦点弦AB ,),(11y x A ,),(22y x B ,则p x x AB ++=21||. 4.焦点弦的相关性质:焦点弦AB ,),(11y x A ,),(22y x B ,焦点(,0)2
p F
(1)以抛物线的焦点弦为直径的圆和抛物线的准线相切 (2) 2
21p y y -=,4
2
21p
x x =
证明:①若AB 斜率不存在,则直线AB 的方程为2
p x =
,p y =1,p y -=2∴221p y y -=
②若AB 斜率存在,记为k (0≠k ),则AB 的方程为)2(p x k y -
=
由⎪⎩
⎪⎨⎧
=-=px y p x k y 2)2(2得022
2=--kp py ky ∴2
21p y y -=,4
222
2
2
2
1
21p
p
y p
y x x =
⋅
=
.
(3)p
BF
AF
211=
+
(4)通径:过焦点垂直于焦点所在的轴的焦点弦叫做通径.抛物线的通径长:2p .
5.弦长公式:),(11y x A ,),(22y x B 是抛物线上两点,则 22
1212()()
AB x x y y =
-+-||11||1212
212
y y k
x x k
-+
=
-+=
6.二次函数2
2
2
4()24b ac b y ax bx c a x a
a
-=++=++
(0)a ≠的图象是抛物线: (1)顶点坐标为2
4(,)24b ac b a a
--
;
(2)对称轴a
b x 2-=;
(3)开口方向:0>a ,向上, a
b a
c y 442
min -= 0<a ,向下,a
b a
c y 442
max -=
应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系
——二次方程
,
02
=++c bx ax 0>∆时,两根21x x 、为二次函数c bx ax y ++=2的图像与x 轴的两个焦点,也是二次不等式)0(02
<>++c bx ax
解集的端点值
②求闭区间[m ,n ]上的最值。
③求区间定(动),对称轴动(定)的最值问题。
④一元二次方程根的分布问题。
例如:二次方程02
=++c bx ax
的两根都大于k ⎪⎪⎩⎪⎪⎨⎧>
>
-≥∆⇔0)(20
k f k a b
一根大于,k 一根小于k 0)(<⇔k f
y
(a >0)
O k x 1 x 2 x
y
(a >0)
O x 1 k x 2 x。