高考一轮复习教案立体几何文科用十一(3)空间直线与平面(教师)
高三数学第一轮复习教学案---立体几何全章
高三数学第一轮复习教学案---立体几何全章(2008.7)第九章直线、平面、简单几何体知识图谱二、考纲要求(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图.能够画出空间两条直线、直线和平面的各种位置关系的图形.能够根据图形想象它们的位置关系.(2)掌握两条直线平行与垂直的判定定理和性质定理.掌握两条直线所成的角和距离的概念(对于异面线的距离,只要求会计算已给出公垂线时的距离或在坐标表示下的距离).(3)掌握直线和平面平行的判定定理和性质定理.掌握直线和平面垂直的判定定理和性质定理.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念,了解三垂线定理及其逆定理.(4)掌握两个平面平行的判定定理和性质定理.掌握二面角、二面角的平面角、两个平面间的距离的概念掌握两个平面垂直的判定定理和性质定理.(5)会用反证法证明简单的问题.(6)了解多面体的概念,了解凸多面体的概念.(7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.(8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图.(9)了解正多面体的概念.(10)了解球的概念,掌握球的性质,掌握球的表面积、体积公式.第一节:平面的基本性质教学目的:①知识目标:掌握平面的基本性质,会用斜二测画法画水平放置的平面图形的直观图;能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系;②能力目标:能够运用平面的基本性质,进行有关推理,培养空间想能力;③情感目标:结合实际,认识学习基础知识的重要性。
教学重点、难点及其突破:本节内容是高考的基本考核内容,是为进一步学习和培养逻辑推理能力打下基础,高考中,一般不单独命题。
复习中要掌握平面基本性质的三条公理及推论,能运用它们证明共点、共线、共面问题,从而加深对性质的理解。
难点是平面基本性质的三条公理及推论,能运用它们证明共点、共线、共面问题,从而加深对性质的理解。
高三数学一轮复习精品教案2:空间点、直线、平面之间的位置关系教学设计
第三节 空间点、直线、平面之间的位置关系考纲传真1.理解空间直线,平面位置关系的定义,并了解可以作为推理依据的公理和定理. 2.能运用公理,定理和已获得的结论证明一些空间图形的位置关系的简单命题.1.平面的基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线在这个平面内. 公理2:过不共线的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间点、直线、平面之间的位置关系直线与直线直线与平面平面与平面平行 关系图形 语言符号 语言 a ∥ba ∥αα∥β相交 关系图形 语言符号 语言 a ∩b =Aa ∩α=Aα∩β=l 独有关系 图形 语言符号 语言a ,b 是异面直线a ⊂α3.异面直线所成的角(1)定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角或直角叫做异面直线a 与b 所成的角.(2)范围:(0,π2』.4.平行公理平行于同一条直线的两条直线平行. 5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.1.(人教A 版教材习题改编)下列命题正确的个数为( )①梯形可以确定一个平面;②若两条直线和第三条直线所成的角相等,则这两条直线平行;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A .0B .1C .2D .3『解析』 ②中两直线可以平行、相交或异面,④中若三个点在同一条直线上,则两个平面相交,①③正确.『答案』 C2.已知a 、b 是异面直线,直线c ∥直线a ,那么c 与b ( ) A .一定是异面直线 B .一定是相交直线 C .不可能是平行直线 D .不可能是相交直线『解析』 若c ∥b ,∵c ∥a ,∴a ∥b ,与a ,b 异面矛盾. ∴c ,b 不可能是平行直线. 『答案』 C3.平行六面体ABCD —A 1B 1C 1D 1中,既与AB 共面也与CC 1共面的棱的条数为( ) A .3 B .4 C .5 D .6『解析』 与AB 平行,CC 1相交的直线是CD 、C 1D 1;与CC 1平行、AB 相交的直线是BB 1,AA 1;与AB 、CC 1都相交的直线是BC ,故选C.『答案』 C4.(2013·宁波模拟)若直线l 不平行于平面α,且l ⊄α,则( ) A .α内的所有直线与l 异面 B .α内不存在与l 平行的直线 C .α内存在唯一的直线与l 平行 D .α内的直线与l 都相交『解析』 由题意知,直线l 与平面α相交,则直线l 与平面α内的直线只有相交和异面两种位置关系,因而只有选项B 是正确的.『答案』 B图7-3-15.(2012·四川高考)如图7-3-1,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱CD 、CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是________.『解析』 如图,取CN 的中点K ,连接MK ,则MK 为△CDN 的中位线,所以MK ∥DN .所以∠A 1MK 为异面直线A 1M 与DN 所成的角.连接A 1C 1,AM .设正方体棱长为4,则A 1K =(42)2+32=41,MK =12DN =1242+22=5,A 1M =42+42+22=6,∴A 1M 2+MK 2=A 1K 2,∴∠A 1MK =90°. 『答案』 90°平面的基本性质图7-3-2如图7-3-2所示,四边形ABEF 和ABCD 都是梯形,BC 綊12AD ,BE 綊12F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么? 『思路点拨』 (1)证明GH 綊BC 即可. (2)法一 证明D 点在EF 、CH 确定的平面内.法二 延长FE 、DC 分别与AB 交于M ,M ′,可证M 与M ′重合,从而FE 与DC 相交证得四点共面.『尝试解答』 (1)由已知FG =GA ,FH =HD , 得GH 綊12AD .又BC 綊12AD ,∴GH 綊BC ,∴四边形BCHG 是平行四边形. (2)法一 由BE 綊12AF ,G 为F A 中点知BE 綊GF , ∴四边形BEFG 为平行四边形, ∴EF ∥BG . 由(1)知BG ∥CH , ∴EF ∥CH , ∴EF 与CH 共面.又D ∈FH ,∴C 、D 、F 、E 四点共面.法二 如图所示,延长FE ,DC 分别与AB 交于点M ,M ′, ∵BE 綊12AF ,∴B 为MA 中点, ∵BC 綊12AD ,∴B 为M ′A 中点,∴M 与M ′重合,即FE 与DC 交于点M (M ′), ∴C 、D 、F 、E 四点共面.,1.解答本题的关键是平行四边形、中位线性质的应用.2.证明共面问题的依据是公理2及其推论,包括线共面,点共面两种情况,常用方法有:(1)直接法:证明直线平行或相交,从而证明线共面.(2)纳入平面法:先确定一个平面,再证明有关点、线在此平面内.(3)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α、β重合.图7-3-3已知:空间四边形ABCD (如图7-3-3所示),E 、F 分别是AB 、AD 的中点,G 、H 分别是BC 、CD 上的点,且CG =13BC ,CH =13DC .求证:(1)E 、F 、G 、H 四点共面;(2)三直线FH 、EG 、AC 共点.『证明』 (1)连接EF 、GH , ∵E 、F 分别是AB 、AD 的中点, ∴EF ∥BD .又∵CG =13BC ,CH =13DC ,∴GH ∥BD , ∴EF ∥GH ,∴E 、F 、G 、H 四点共面.(2)易知FH 与直线AC 不平行,但共面, ∴设FH ∩AC =M ,∴M ∈平面EFHG ,M ∈平面ABC . 又∵平面EFHG ∩平面ABC =EG , ∴M ∈EG ,∴FH 、EG 、AC 共点.空间两条直线的位置关系图7-3-4(1)如图7-3-4,在正方体ABCD —A 1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列判断错误的是( )A .MN 与CC 1垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与A 1B 1平行(2)在图中,G 、N 、M 、H 分别是正三棱柱的顶点或所在棱的中点,则表示直线GH 、MN 是异面直线的图形有________.(填上所有正确答案的序号)图7-3-5『思路点拨』(1)连接B1C,则点M是B1C的中点,根据三角形的中位线,证明MN ∥B1D1.(2)先判断直线GH、MN是否共面,若不共面再利用异面直线的判定定理判定.『尝试解答』(1)连接B1C,B1D1,则点M是B1C的中点,MN是△B1CD1的中位线,∴MN∥B1D1,∵CC1⊥B1D1,AC⊥B1D1,BD∥B1D1,∴MN⊥CC1,MN⊥AC,MN∥BD.又∵A1B1与B1D1相交,∴MN与A1B1不平行,故选D.(2)图①中,直线GH∥MN;图②中,G、H、N三点共面,但M∉面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G、M、N共面,但H∉面GMN,因此GH与MN异面.所以图②、④中GH与MN异面.『答案』(1)D(2)②④,1.判定空间两条直线是异面直线的方法(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点B的直线是异面直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.2.对于线线垂直,往往利用线面垂直的定义,由线面垂直得到线线垂直.3.画出图形进行判断,可化抽象为直观.图7-3-6如图7-3-6所示,正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为棱C 1D 1、C 1C 的中点,有以下四个结论:①直线AM 与CC 1是相交直线; ②直线AM 与BN 是平行直线; ③直线BN 与MB 1是异面直线; ④直线MN 与AC 所成的角为60°.其中正确的结论为________(注:把你认为正确的结论序号都填上).『解析』 由图可知AM 与CC 1是异面直线,AM 与BN 是异面直线,BN 与MB 1为异面直线.因为D 1C ∥MN ,所以直线MN 与AC 所成的角就是D 1C 与AC 所成的角,且角为60°.『答案』 ③④异面直线所成的角图7-3-7(2012·上海高考改编题)如图7-3-7,在三棱锥P —ABC 中,P A ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,P A =2.求:(1)三棱锥P —ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.『思路点拨』 (1)直接根据锥体的体积公式求解.(2)取PB 的中点,利用三角形的中位线平移BC 得到异面直线所成的角.(或其补角) 『尝试解答』 (1)S △ABC =12×2×23=23,三棱锥P ABC 的体积为 V =13S △ABC ·P A =13×23×2=433.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =22+22-22×2×2=34.,1.求异面直线所成的角常用方法是平移法,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移. 2.求异面直线所成的角的三步曲为:即“一作、二证、三求”.其中空间选点任意,但要灵活,经常选择“端点、中点、等分点”,通过作三角形的中位线,平行四边形等进行平移,作出异面直线所成角,转化为解三角形问题,进而求解.3.异面直线所成的角范围是(0,π2』.直三棱柱ABC —A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90°『解析』 分别取AB 、AA 1、A 1C 1的中点D 、E 、F ,则BA 1∥DE ,AC 1∥EF . 所以异面直线BA 1与AC 1所成的角为∠DEF (或其补角), 设AB =AC =AA 1=2,则DE =EF =2,DF =6,由余弦定理得,∠DEF =120°. 『答案』 C两种方法异面直线的判定方法:(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线.(2)反证法:证明两直线不可能平行、相交或证明两直线不可能共面,从而可得两直线异面.三个作用1.公理1的作用:(1)检验平面;(2)判断直线在平面内;(3)由直线在平面内判断直线上的点在平面内;(4)由直线的直刻画平面的平.2.公理2的作用:公理2及其推论给出了确定一个平面或判断“直线共面”的方法.3.公理3的作用:(1)判定两平面相交;(2)作两平面相交的交线;(3)证明多点共线.空间点、直线、平面的位置关系是立体几何的理论基础,高考常设置选择题或填空题,考查直线、平面位置关系的判断和异面直线所成的角的求法.在判断线、面位置关系时,有时可以借助常见的几何体做出判断.思想方法之十三借助正方体判定线面位置关系(2012·四川高考)下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行『解析』如图,正方体ABCD—A1B1C1D1中,A1D与D1A和平面ABCD所成的角都是45°,但A1D与D1A不平行,故A错;在平面ABB1A1内,直线A1B1上有无数个点到平面ABCD的距离相等,但平面ABB1A1与平面ABCD不平行,故B错;平面ADD1A1与平面DCC1D1和平面ABCD都垂直,但两个平面相交,故D错,从而C正确.『答案』C易错提示:(1)盲目和平面内平行线的判定定理类比,从而误选A.(2)不会利用正方体作出判断,考虑问题不全面,从而误选B或D.防范措施:(1)对公理、定理的条件与结论要真正搞清楚,以便做到准确应用,类比得到的结论不一定正确,要想应用,必须证明.(2)点、线、面之间的位置关系可借助长方体为模型,以长方体为主线直观感知并认识空间点、线、面的位置关系,准确判定线线平行、线线垂直、线面平行、线面垂直、面面平行、面面垂直.1.(2013·济南模拟)l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1⊥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面『解析』如图长方体ABCD—A1B1C1D1中,AB⊥AD,CD⊥AD但有AB∥CD,因此A不正确;又AB∥DC∥A1B1,但三线不共面,因此C不正确;又从A出发的三条棱不共面,所以D不正确;因此B正确,且由线线平行和垂直的定义易知B正确.『答案』B2.(2012·大纲全国卷)已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么异面直线AE与D1F所成角的余弦值为________.『解析』连接DF,则AE∥DF,∴∠D1FD即为异面直线AE与D1F所成的角.设正方体棱长为a , 则D 1D =a ,DF =52a ,D 1F =52a , ∴cos ∠D 1FD =(52a )2+(52a )2-a 22·52a ·52a =35. 『答案』 35。
高三数学一轮复习备考教学设计:高考中的立体几何问题说课稿
《高考中的立体几何问题》说课稿立体几何是高中数学知识体系的重要组成部分,是培养学生空间想象能力的重要载体,是每年高考必考的重要知识点!无论是从高考的现实出发,还是从学生个人的长远发展来看,学好立体几何这一模块的内容对于学生来说都是极为重要的。
在此,我仅从高考要求、命题趋势、考纲变化、复习意义四个方面来对立体几何模块谈谈我的看法。
一、高考要求1、空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征;(2)能画出简单空间图形的三视图,能识别相应三视图所表示的立体模型,会用斜二测画法画出他们的直观图;(3)会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表现形式;(4)了解球、棱柱、棱锥、台的表面积和体积的计算公式。
2、点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义,并了解四个公理及推论;(2)认识和理解空间中线面平行、垂直的有关性质与判定定理;(3)能够用公理、定理和已获得的结论证明一些空间位置关系的简单命题。
3、空间向量与立体几何(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;(2)掌握空间向量的线性运算及其坐标表示;(3)掌握空间向量的数量积及其坐标表示,能用向量数量积判断向量的共线与垂直;(4)理解直线的方向向量及平面的法向量;(5)能用向量语言表述线线、线面、面面的平行和垂直关系;(6)能用向量法证明立体几何中有关线面位置关系的一些简单定理;(7)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用。
二、命题趋势通过分析最近5年全国卷在立体几何模块的命题可以发现如下规律:1、题型一般是两道小题一道大题(偶尔出现一道小题一道大题);2、小题中必考内容:三视图!三视图一般与特殊的柱体、锥体、球体及相关组合体的表面积与体积结合考查;3、小题中变化的内容:直线平面平行垂直的性质判定与命题结合、球的切接几何体问题、简单的空间角的计算等。
高三一轮复习文科立体几何学案(精编文档).doc
【最新整理,下载后即可编辑】第一节空间几何体的结构特征一.知识梳理1.空间几何体的结构特征(1)多面体的结构特征多面体定义结构特征棱柱棱锥棱台旋转体定义旋转图形旋转轴圆柱圆锥圆台球2.(1.)画三视图的规则:(2)三视图的排列顺序:3.空间几何体的直观图:空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为________ ,z′轴与x′轴和y′轴所在平面________(2)原图形中平行于坐标轴的线段,直观图中仍分别________;平行于x 轴和z轴的线段在直观图中保持原长度________;平行于y轴的线段在直观图中长度为________直观图与原图形面积的关系按照斜二测画法得到的平面图形的直观图与原图形面积的关系:(1)S直观图=24S原图形.(2)S原图形=2 2二.考点突破空间几何体的结构特征[例1] (1)几何体一定是( )A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体(2)下列说法正确的是( )A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个平面互相平行,其余各面都是梯形的多面体是棱台D.棱台的各侧棱延长后不一定交于一点(3)下列结论正确的是( )A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线(4)设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是________.(5)有半径为r的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高为_______(6)用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,则圆台的母线长为________ cm.能力练通抓应用体验的“得”与“失”1.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是( )A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上2.给出下列四个命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③有两侧面垂直于底面的棱柱一定是直棱柱;④长方体一定是正四棱柱.其中正确的命题个数是() A.0B.1 C.2 D.3空间几何体的三视图例1.(12,且侧棱AA1⊥平面A1B1C1,正视图是边长为2的正方形,该三棱柱的侧视图的面积为()(2)一个简单几何体的正视图、俯视图如图所示,则其侧视图不可能为( )A .正方形B .圆C .等腰三角形D .直角梯形棱长均为3, (3)正四棱锥的底面边长为2,侧其正视图和侧视图是全等的等腰三角形,则正视图的周长为_______.[例2](1)如图所示,四面体ABCD 的四个顶点是长方体的四个顶点,则四面体ABCD 的三视图是(用①②③④⑤⑥代表图形,按正视图,侧视图,俯视图的顺序排列)( ) A .①②⑥ B .①②③ C .④⑤⑥ D .③④⑤(2)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )能力练通 抓应用体验的“得”与“失”1.如图,三棱锥V ABC 的底面为正三角形,侧面VAC 与底面垂直且VA =VC ,已知其正视图的面积为23,则其侧视图的面积为( )A.32B.33C.34D.362.如图所示,三棱锥P ABC 的底面ABC 是直角三角形,直角边长AB=3,AC =4,过直角顶点的侧棱PA ⊥平面ABC ,且PA =5,则该三棱锥的正视图是( )3.已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为( )4.一个几何体的三视图如图所示,则侧视图的面积为________.空间几何体的直观图例1.(1)用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( ) (2)已知正三角形ABC的边长为2,那么△ABC的直观图△A′B′C′的面积为________.能力练通抓应用体验的“得”与“失”1.用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为( )A.4 cm2B.4 2 cm2C.8 cm2D.8 2 cm22.等腰梯形ABCD,上底CD=1,腰AD=CB=2,下底AB=3,以下底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.第二节空间几何体的表面积与体积一.知识梳理1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱 圆锥圆台侧面展开图侧面积公式圆柱、圆锥、圆台侧面积间的关系:S 圆柱侧=2πrl ――→r ′=r S 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl .2.空间几何体的表面积与体积公式 (1)柱体: (2)锥体: (3)台体: 二.考点突破空间几何体的表面积[例1](1) 某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为( )A .4π+16+4 3B .5π+16+4 3C .4π+16+2 3D .5π+16+2 3(2)一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2(2)图(1)图空间几何体的体积[例2] (1)( )A.16B.13C.12 D .1(2)某几何体的三视图如图所示,则该几何体的体积为( )A.13+2πB.13π6C.7π3D.5π2(3)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A )223π(B )423π()22π()42π能力练通 抓应用体验的“得”与“失” 1.一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26π D .1+2π 2.已知一个几何体的三视图如图所示,则该几何体的体积为( )A.5π3 cm 3 B .2π cm 3C.7π3 cm 3 D .3π cm 33.某几何体的三视图如图所示,则它的表面积为( ) A .125+20 B .242+20 C .44 D .12 51题图 2题图 4.某几何体的三视图如图所示,则该几何体的表面积等于( )A .8+2 2B .11+2 2 .1422C +.15D5.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸):若π取3,其体积为12.6(立方寸),则图中的x 的值为________.考点三球体1.球与正方体(1)正方体的内切球,位置关系:正方体的六个面都与一个球都相切,正方体中心与球心重合; 数据关系:设正方体的棱长为a ,球的半径为r ,这时有2r a =.(2)正方体的外接球, 位置关系:正方体的八个顶点在同一个球面上;正方体中心与球心重合; 数据关系:设正方体的棱长为a ,球的半径为r ,这时有23r a =.2.球与长方体:长方体内接于球,它的体对角线正好为球的直径. 例(1)已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.(2)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ).A. 16πB. 20πC. 24πD. 32π3.正四面体.三棱锥与球的切接问题(1) 正四面体的内切球,位置关系:正四面体的四个面都与一个球相切,正四面体的中心与球心重合; 数据关系:设正四面体的棱长为a ,高为h ;球的半径为R ,这时有643R h a ==; (2)正四面体的外接球:例(1) 若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.(2)已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 是球O 的直径,且2SC =;则此棱锥的体积为()A.2 B.3 C.2 D.24.其它棱锥(柱)与球的切接问题(构造长方体、正方体模型) 例(1).若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是 .(2)三棱锥P ABC -的四个顶点都在球D 的表面上,PA ⊥平面ABC ,AB ⊥BC ,2PA =,2AB BC ==,则球O 的体积为(3)直三棱柱111ABC A B C -的六个顶点都在球O 的球面上.若2AB BC ==,90ABC ∠=,122AA =,则球O 的表面积为____________.(4)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π4能力练通 抓应用体验的“得”与“失”1.一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.2.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .43.如图是某几何体的三视图,则该几何体的外接球的表面积为( )A .200πB .150πC .100πD .50π[全国卷5年真题集中演练——明规律](2013·全国新课标1已知H是球O的直径AB上一点,A H∶H B=1∶2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为________.1.(2016·全国甲卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π2.(2016·全国甲卷)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A.12π B.323π C.8π D.4π3.(2016·全国丙卷)在封闭的直三棱柱ABCA1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( )A.4π B.9π2C.6π D.32π34.(2015·新课标全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15.5.(2015·新课标全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( ) A.1 B.2C.4 D.86.(2015·新课标全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛 7.(2015·新课标全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π8.(2014·新课标全国卷Ⅱ)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.139.(2013·新课标全国卷Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π10.(2013·新课标全国卷Ⅰ)已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为________.第三节 空间点、直线、平面之间的位置关系一.知识梳理1.公理1~3 表示 公理 文字语言 图形语言 符号语言公理1公理2推论1: 推论2: 推论3:3.空间中两直线的位置关系: 4.公理4和等角定理:①公理4:②等角定理: 5.异面直线所成的角(1)定义 (2)范围:6.空间中线面的位置关系:二.考点突破[例1] (1)①在空间中,若两条直线不相交,则它们一定平行;交;④空间四条直线a ,b ,c ,d ,如果a ∥b ,c ∥d ,且a ∥d ,那么b ∥c .A .①②③B .②④C .③④D .②③(2)下列说法正确的是( )A .若a ⊂α,b ⊂β,则a 与b 是异面直线B .若a 与b 异面,b 与c 异面,则a 与c 异面C .若a ,b 不同在平面α内,则a 与b 异面D .若a ,b 不同在任何一个平面内,则a 与b 异面 (3)以下四个命题中,正确命题的个数是( )①不共面的四点中,其中任意三点不共线;②若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则A ,B ,C ,D ,E 共面;③若直线a ,b 共面,直线a ,c 共面,则直线b ,c 共面; ④依次首尾相接的四条线段必共面.A.0 B.1 C.2 D.3(4)下列命题中正确的是( )(填序号)①若直线l上有无数个点不在平面α内,则//lα②若直线l与平面α平行,则l与平面α内的任意一条直线都平行。
高考一轮复习教案立体几何文科用十一(2)空间直线与直线(教师)
模块: 十一、立体几何课题: 2、空间直线与直线教学目标: 掌握空间直线与直线各种位置关系,会用反证法证明两条直线为异面直线,能把平行线的传递性、等角定理等由平面推广到空间,理解等角定理的证明方法,理解异面直线所成角的概念,会求简单情形下的异面直线所成角.重难点: 求简单情形下的异面直线所成角 .一、 知识要点1、异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线.2、异面直线所成的角:已知两条异面直线,a b ,经过空间任一点O 作直线//,//a a b b '',,a b ''所成的角的大小与点O 的选择无关,把,a b ''所成的锐角(或直角)叫异面直线,a b 所成的角(或夹角).为了简便,点O 通常取在异面直线的一条上.异面直线所成的角的范围:(0,]2π. 3、两条异面直线的公垂线、距离:和两条异面直线都垂直相交的直线,我们称之为异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段(公垂线段)的长度,叫做两条异面直线间的距离.二、 例题精讲作图:例1、如图,已知直线AB∩α=P ,直线AC∩α=Q ,E ∈AB ,F ∈AC ,试作出直线BF 、直线CE 与平面α的交点M 、N .例2、如图,已知α∩β=EF ,A ∈β,B ∈β,C ∈α,画出过点A 、B 、C 的平面.αAC P • E • • F• Q α A • F β • B C •E M N例3、如图,已知ABCD -A 1B 1C 1D 1为正方体,M 、N 、P 分别为棱上的点,试画出过M 、N 、P 的截面.例4、如图,已知ABCD -A 1B 1C 1D 1为正方体,试作出截面BB 1D 1D 与截面A 1C 1B 的交线,截面C 1B 1D 与截面A 1C 1B 的交线.例5、如图,已知ABCD -A 1B 1C 1D 1为正方体,试作出直线A 1C 与平面AB 1D 1的交点.例6、正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱A 1A 、CD 的中点.求:(1)异面直线D 1E 、BF 所成的角;(2)异面直线D 1E 、A 1C 所成的角.答案:(1)54arccos ;(2)1515arccos.例7、已知12,l l 是互相垂直的异面直线,MN 是它们的公垂线段,点A 、B 在1l 上,C 在2l 上,AM MB MN ==.(1) 证明:AC NB ⊥;(2) 若60ACB ︒∠=,求NB 与平面ABC 所成角的余弦值.答案:(1)略;(2例8、正三棱柱111ABC A B C -(1) 设侧棱长为1,求证:11AB BC ⊥;(2) 设1AB 与1BC 成60︒角,求侧棱的长.答案:(1)略;(2)2.例9、在四棱锥P ABCD -中,PD ⊥平面ABCD ,1PD DC BC ===,2AB =,//AB CD ,90BCD ︒∠=.(1) 求证:PC BC ⊥;(2) 求点A 到平面PBC 的距离.答案:(1)略;(2.三、 课堂练习1、过直线外一点能作 条直线与已知直线平行.答案:12、已知空间四边形的对角线相等且垂直,顺次连结它的各边中点所成的四边形一定是 .答案:正方形3、正方体12条棱所在直线共能组成异面直线 对.答案:244、直线a ∥平面α,直线b ⊂平面α,则a 、b 的位置关系是 . 答案:平行或异面5、在空间四边形ABCD 中,AD =BC =2,E 、F 分别是AB 、CD 的中点,若EF =3,则AD 、BC 所成角为 .答案:60o6、E 、F 、G 、H 分别为空间四边形ABCD 各边的中点,若对角线BD =2,AC =4,则=+22HF EG .答案:10四、 课后作业一、填空题1、已知两直线a 、b 平行,c 与a 相交,则c 与b 的位置关系是 .答案:相交或异面2、如果一个角的两边和另一个角的两边分别平行,那么这两个角的关系是 . 答案:相等或互补3、正方体ABCD -A 1B 1C 1D 1中,与AC 异面且所成角为60o 的面对角线有: . 答案:BC 1、A 1B 、A 1D 、C 1D4、空间四边形ABCD ,AB =AD ,BC =CD ,则对角线AC 、BD 的位置关系是 . 答案:异面垂直5、正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是AA 1和BB 1的中点,则异面直线C 1M 与DN 所成角的大小为 . 答案:91arccos6、正方体ABCD -A 1B 1C 1D 1中,(1)B 1C 和A 1C 1所成的角的大小为 ;(2)BD 和A 1C 1所成的角的大小为 ;(3)BC 和A 1A 所成的角的大小为 ;(4)B 1C 和DD 1所成的角的大小为 .答案:(1)60o ;(2)90o ;(3)90o ;(4)45o.二、选择题11、空间四边形ABCD 中,E 、F 分别是ΔABD 和ΔBCD 的重心,则EF 与AC 的位置关系是( )A 、平行B 、相交C 、不平行也不相交D 、都可能答案:A12、设M 、N 是空间四边形ABCD 的边AD 、BC 的中点,则下列答案中正确的是( ) A 、MN =(21AB +CD ) B 、MN <(21AB +CD ) C 、MN >(21AB +CD ) D 、MN 与(21AB +CD )的大小关系不确定 答案:B 13、a 、b 为异面直线,它们分别在平面α、β内,若α∩β=l ,则直线l 必定( )A 、分别与a 、b 相交B 、至少与a 、b 中之一相交C 、与a 、b 都不相交D 、至多与a 、b 中之一相交答案:B三、解答题 18.已知正方体ABCD -A 1B 1C 1D 1的棱长为a ,O 1为上底面的中心,求O 1B 和AD 1所成角的大小.答案:30o19.已知ABCD -A 1B 1C 1D 1为长方体,(1)若AB =5,BC =4,CC 1=3,求B 1C 和A 1C 1所成角的大小;(2)若AB =5,BC =4,CC 1=3,求AD 1和A 1C 1所成角的大小;(3)若∠BAB 1=∠BAC = 30,求B 1A 和A 1C 1所成角的大小.答案:(1)2054116arccos ;(2)2054116arccos ;(3)43arccos .20.空间四边形ABCD 中,AB =CD =6,M 、N 分别是对角线AC 、BD 的中点,且MN =5,求异面直线AB 、CD 所成角的大小. 答案:187arccos.。
全国高考数学一轮复习立体几何空间点直线平面之间的位置关系学习教案
∴P∈平面 ABC.同理 P∈平面 ADC. ∴P 为平面 ABC 与平面 ADC 的公共点, 又平面 ABC∩平面 ADC=AC, ∴P∈AC,∴P,A,C 三点共线.
第25页/共48页
第二十六页,共49页。
考向 空间两条直线的位置关系 命题角度 1 两直线位置关系的判定 例 2 [2015·广东高考]若直线 l1 和 l2 是异面直线,l1 在平面 α 内,l2 在平面 β 内,l 是平面 α 与平面 β 的交线, 则下列命题正确的是( ) A.l 与 l1,l2 都不相交 B.l 与 l1,l2 都相交 C.l 至多与 l1,l2 中的一条相交 D.l 至少与 l1,l2 中的一条相交
第37页/共48页
第三十八页,共49页。
核心规律 1.三个公理的作用是证明点共线、点共面、线共面、线 共点等几何问题. 2.求异面直线所成的角就是要通过平移转化的方法,将 异面直线所成的角转化成同一平面内的直线所成的角,放到 同一个可解的三角形中去求解.
第38页/共48页
第三十九页,共49页。
满分策略 1.正确理解异面直线“不同在任何一个平面内”的含 义,不要理解成“不在同一个平面内”. 2.不共线的三点确定一个平面,一定不能丢掉“不共 线”条件. 3.两条异面直线所成角的范围是(0°,90°].
板块破译高考第40题型技法系列11构造法判定空间线面位置关系2018西安模拟已知mn是两条不同的直线解题视点判断空间线面的位置关系常利用正长方体及其他几何体模型来判断把平面直线看作正长方体内及其它几何体平面侧棱对角线等进行推导验证使抽象的推理形象具体化
全国高考(ɡāo kǎo)数学一轮复习立体几何 空间点直线平面之间的位置关系
高三数学一轮复习精品教案1:空间点、直线、平面之间的位置关系教学设计
9.3空间点、直线、平面之间的位置关系1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 作用:可用来证明点、直线在平面内.公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线.作用:①可用来确定两个平面的交线;②判断或证明多点共线;③判断或证明多线共点. 公理3:经过不在同一条直线上的三点,有且只有一个平面. 作用:①用来确定一个平面;②证明点线共面.推论1:经过一条直线和这条直线外的一点,有且只有一个平面; 推论2:经过两条相交直线,有且只有一个平面; 推论3:经过两条平行直线,有且只有一个平面. 公理3及它的三个推论是确定点、线共面的依据. 公理4:平行于同一条直线的两条直线互相平行. 作用:判断空间两条直线平行的依据. 2.空间直线的位置关系 (1)位置关系的分类:⎩⎨⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角:①定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎤0,π2. (3)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.空间直线与平面,平面与平面之间的位置关系图形语言符号语言公共点直线与平面相交a∩α=A1个平行a∥α0个在平面内a⊂α无数个平面与平面平行α∥β0个相交α∩β=l无数个1.异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线既不平行,也不相交.2.直线与平面的位置关系在判断时最易忽视“线在面内”.『试一试』1.设α和β为不重合的两个平面,给出下列命题:(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线l与α内的一条直线平行,则l和α平行;(3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;(4)直线l与α垂直的充分必要条件是l与α内的两条直线垂直.上述命题中,真命题的序号是________(写出所有真命题的序号).『解析』由面面平行的判定定理可知,(1)正确.由线面平行的判定定理可知,(2)正确.对(3)来说,l只垂直于α和β的交线l,得不到l是α的垂线,故也得不出α⊥β.对(4)来说,l只有和α内的两条相交直线垂直,才能得到l⊥α.也就是说当l垂直于α内的两条平行直线的话,l不垂直于α.『答案』(1)(2)2.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是________.『解析』b与α相交或b⊂α或b∥α都可以.『答案』b与α相交或b⊂α或b∥α1.求异面直线所成角的方法(1)平移法:即选点平移其中一条或两条直线使其转化为平面角问题,这是求异面直线所成角的常用方法.(2)补形法:即采用补形法作出平面角. 2.证明共面问题的两种途径(1)首先由条件中的部分线(或点)确定一个平面,再证其他线(或点)在此平面内; (2)将所有条件分为两部分,然后分别确定平面,再证明这两个平面重合. 3.证明共线问题的两种途径(1)先由两点确定一条直线,再证其他点都在这条直线上; (2)直接证明这些点都在同一条特定直线上. 4.证明共点问题的常用方法先证其中两条直线交于一点,再证其他直线经过该点. 『练一练』(2014·镇江期末)如图,在多面体ABC DEFG 中,AB ,AC ,AD 两两垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB =AD =DG =2,AC =EF =1.(1)证明:四边形ABED 是正方形;(2)判断B ,C ,F ,G 是否四点共面,并说明理由; (3)连结CF ,BG ,BD ,求证:CF ⊥平面BDG . 『解』(1)证明:⎭⎪⎬⎪⎫平面ABC ∥平面DEFG平面ABED ∩平面ABC =AB 平面ABED ∩平面DEFG =DE ⇒AB ∥DE . 同理AD ∥BE ,则四边形ABED 是平行四边形. 又AD ⊥AB ,AD =AB ,所以四边形ABED 是正方形. (2)取DG 的中点P ,连结P A ,PF . 在梯形EFGD 中,PF ∥DE 且PF =DE .又AB ∥DE 且AB =DE ,所以AB ∥PF 且AB =PF ,所以四边形ABFP 为平行四边形,则AP ∥BF .在梯形ACGD 中,AP ∥CG ,所以BF ∥CG , 所以B ,C ,F ,G 四点共面.(3)证明:同(1)中证明方法知四边形BFGC 为平行四边形. 又有AC ∥DG ,EF ∥DG ,从而AC ∥EF .⎭⎬⎫⎭⎪⎬⎪⎫AC ∥EF AC ⊥AD ⇒EF ⊥AD BE ∥AD⇒BE ⊥EF .又BE =AD =2,EF =1,故BF = 5.而BC =5,故四边形BFGC 为菱形,所以CF ⊥BG .连结AE ,又由AC ∥EF 且AC =EF 知CF ∥AE . 在正方形ABED 中,AE ⊥BD ,故CF ⊥BD .⎭⎪⎬⎪⎫CF ⊥BGCF ⊥BD BG ∩BD =B ⇒CF ⊥平面BDG .考点一平面的基本性质及应用1.(2013·南京、盐城三模)已知m ,n 是两条不同的直线,α,β是两个不同的平面.给出下列命题:(1)若m ⊂α,m ⊥β,则α⊥β;(2)若m ⊂α,α∩β=n ,α⊥β,则m ⊥n ; (3)若m ∥α,m ⊂β,α∩β=n ,则m ∥n . 其中真命题是________(填序号).『解析』(2)中,m ∥n ,m 与n 相交都有可能. 『答案』(1)(3) 2.下列命题:①经过三点确定一个平面; ②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面; ④如果两个平面有三个公共点,则这两个平面重合. 其中正确命题有________个.『解析』对于①,未强调三点不共线,故①错误;②正确;对于③,三条直线两两相交,如空间直角坐标系,能确定三个平面,故③正确;对于④,未强调三点共线,则两平面也可能相交,故④错误.『答案』23.如图,已知:E ,F ,G ,H 分别是正方体ABCD A 1B 1C 1D 1的棱AB ,BC ,CC 1,C 1D 1的中点,证明:EF ,HG ,DC 三线共点.证明:连结C 1B ,HE ,GF ,如图所示.由题意知HC 1綊EB ,∴四边形HC 1BE 是平行四边形, ∴HE ∥C 1B .又C 1G =GC ,CF =BF , 故GF 綊12C 1B ,∴GF ∥HE ,且GF ≠HE ,∴HG 与EF 相交,设交点为K ,则K ∈HG . 又HG ⊂平面D 1C 1CD , ∴K ∈平面D 1C 1CD .∵K ∈EF ,EF ⊂平面ABCD , ∴K ∈平面ABCD .∵平面D 1C 1CD ∩平面ABCD =DC , ∴K ∈DC ,∴EF ,HG ,DC 三线共点.『备课札记』 『类题通法』1.证明共点问题的关键是先确定点后,再证明此点在第三条直线上,这个第三条直线应为前两条直线所在平面的交线,可以利用公理3证明.2.证明过程中要注意符号语言表达准确,公理成立的条件要完善.考点二空间两直线的位置关系『典例』 (1)已知直线a 和平面α,β,α∩β=l ,a ⊄α,a ⊄β,且a 在α,β内的射影分别为直线b 和c ,则直线b 和c 的位置关系是________.『解析』 依据题意,b ,c 分别为a 在α,β内的射影,可判断b ,c 相交、平行或异面均可.『答案』相交、平行或异面(2)已知空间四边形ABCD中,E,H分别是边AB,AD的中点,F,G分别是边BC,CD的中点.①求证:BC与AD是异面直线;②求证:EG与FH相交.『证明』①假设BC与AD共面,不妨设它们所共平面为α,则B,C,A,D∈α.所以四边形ABCD为平面图形,这与四边形ABCD为空间四边形相矛盾.所以BC与AD是异面直线.②如图,连结AC,BD,则EF∥AC,HG∥AC,因此EF∥HG;同理EH∥FG,则EFGH为平行四边形.又EG,FH是▱EFGH的对角线,所以EG与HF相交.『备课札记』『类题通法』1.异面直线的判定常用的是反证法,先假设两条直线不是异面直线,即两条直线平行或相交,由假设的条件出发,经过严格的推理,导出矛盾,从而否定假设肯定两条直线异面.此法在异面直线的判定中经常用到.2.客观题中,也可用下述结论:过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.『针对训练』若直线l不平行于平面α,且l⊄α,则下列结论正确的是________.(填写序号)①α内的所有直线与l异面②α内不存在与l平行的直线③α内存在唯一的直线与l平行④α内的直线与l都相交『解析』如图,设l∩α=A,α内直线若经过A点,则与直线l相交;若不经过点A,则与直线l异面.『答案』②『课堂练通考点』1.(2014·泰州期末)在空间中,用a,b,c表示三条不同的直线,γ表示平面,给出下列四个命题:(1)若a∥b,b∥c,则a∥c;(2)若a⊥b,b⊥c,则a⊥c;(3)若a∥γ,b∥γ,则a∥b;(4)若a⊥γ,b⊥γ,则a∥b.其中真命题的序号为________.『解析』根据公理4“平行于同一条直线的两条直线互相平行”知(1)是正确的;根据线面垂直性质定理“同垂直一个平面的两条直线平行”知(4)是正确的;(2)(3)均不恒成立.故填(1)(4).『答案』(1)(4)2.已知m,n,l是三条直线,α,β是两个平面,下列命题中,正确命题的序号是________.(1)若l垂直于α内两条直线,则l⊥α;(2)若l平行于α,则α内有无数条直线与l平行;(3)若m∥β,m⊂α,n⊂β,则m∥n;(4)若m⊥α,m⊥β,则α∥β.『解析』(1)中只有当两条直线相交时,l⊥α才成立,所以(1)不正确;若l∥α,则过l 任作平面β与α相交,则交线必与l平行,由于β的任意性,故(2)正确;(3)m与n可以平行可以异面,故(3)不正确;(4)正确.『答案』(2)(4)3.(2013·南通三模)已知直线l,m,n,平面α,m⊂α,n⊂α,则“l⊥α”是“l⊥m,且l⊥n”的________条件(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”之一).『解析』当l⊥α时,有l⊥m且l⊥n;当l⊥m且l⊥n时,由于m,n不一定相交,故l不一定垂直于α.『答案』充分不必要4.设a,b,c是空间的三条直线,下面给出四个命题:①若a⊥b,b⊥c,则a∥c;②若a,b是异面直线,b,c是异面直线,则a,c也是异面直线;③若a和b相交,b和c相交,则a和c也相交;④若a和b共面,b和c共面,则a和c也共面.其中真命题的个数是________.『解析』∵a⊥b,b⊥c,∴a与c可以相交、平行、异面,故①错.∵a,b异面,b,c异面,则a,c可能异面、相交、平行,故②错.由a,b相交,b,c相交,则a,c可以异面、相交、平行,故③错.同理④错,故真命题的个数为0.『答案』05.(2014·苏州调研)设α,β为两个不重合的平面,m,n为两条不重合的直线,给出下列四个命题:(1)若m⊥n,m⊥α,n⊄α,则n∥α;(2)若α⊥β,α∩β=m,n⊂α,n⊥m,则n⊥β;(3)若m⊥n,m∥α,n∥β,则α⊥β;(4)若n⊂α,m⊂β,α与β相交且不垂直,则n与m不垂直.其中所有真命题的序号是________.『解析』(1)(2)正确;(3)错误,α,β相交或平行;(4)错误,n与m可以垂直,不妨令n =α∩β,则在β内存在m⊥n.『答案』(1)(2)。
高考一轮复习教案立体几何文科用十一(1)平面、空间直线(教师)
模块: 十一、立体几何课题: 1、平面、空间直线教学目标: 知道平面的含义,理解平面的基本性质,会用文字语言、图形语言、集合语方表述平面的基本性质;掌握确定平面的方法,并能运用于确定长方体的简单截面.掌握空间直线与直线、直线与平面、平面与平面的各种位置关系,并能用图形、符号和集合语言予以表示.重难点: 平面的基本性质,平行线的传递性,空间直线与直线、直线与平面、平面与平面的各种位置关系及其表示方法.一、 知识要点1、平面的基本性质公理1、如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内. 公理2、如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线.公理3、经过不在同一条直线上的三点,有且只有一个平面.推论1、经过一条直线和直线外的一点有且只有一个平面.推论2、经过两条相交直线有且只有一个平面.推论3、经过两条平行直线有且只有一个平面.公理4、平行于同一条直线的两条直线互相平行.2、空间两直线的位置关系(1)相交——有且只有一个公共点;(2)平行——在同一平面内,没有公共点;(3)异面——不在任何..一个平面内,没有公共点. 3、等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.二、 例题精讲例1、四面体ABCD 中,E 、G 分别为BC 、AB 的中点,F 在CD 上,H 在AD 上,且有DF ∶FC=2∶3,DH ∶HA=2∶3求证:EF 、GH 、BD 交于一点.答案:证明略.例2、已知n 条互相平行的直线123,,,,n l l l l 分别与直线l 相交于点12,,,n A A A , 求证:123,,,,n l l l l 与l 共面.例3、已知四边形ABCD 中,AB ∥CD ,四条边AB ,BC ,DC ,AD (或其延长线)分别与平面α相交于E ,F ,G ,H 四点,求证:四点E ,F ,G ,H 共线.例4、平面α平面βC =,a α⊂,且//a c ,b β⊂,b c M =,求证:直线a b 、是异面直线.例5、A 是△BCD 平面外的一点,E 、F 分别是BC 、AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.答案:(1)略;(2)45︒例6、长方体ABCD —A 1B 1C 1D 1中,已知AB =a ,BC =b ,AA 1=c ,且a >b ,求:(1)下列异面直线之间的距离:AB 与CC 1;AB 与A 1C 1;AB 与B 1C .(2)异面直线D 1B 与AC 所成角的余弦值.答案:(1);;b c 22c b bc +;(2)))((2222222c b a b a b a +++-.例7、在四棱锥P ABCD -中,底面ABCD 是一直角梯形,90BAD ︒∠=,//AD BC ,AB BC a ==,2AD a =,且PA ⊥底面ABCD ,PD 与底面成30︒角.(1) 若AE PD ⊥,E 为垂足,求证:BE PD ⊥;(2) 求异面直线AE 与CD 所成角的余弦值.答案:(1)略;(2)4.三、 课堂练习1、在棱长为2的正方体1111ABCD A B C D -中,O 是底面ABCD 的中心,E 、F 分别是1CC 、AD 的中点,那么异面直线OE 和1FD 所成的角的余弦值等于 .2、在空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,若EFGH 是正方形,则AC 与BD 满足的条件是 .答案:垂直且相等.3、已知,a b 为不垂直的异面直线,α是一个平面,则,a b 在α上的射影可能是:(1)两条平行直线;(2)两条互相垂直的直线;(3)同一条直线;(4)一条直线及其外一点,则在上面的结论中,正确结论的编号是 .答案:(1)(2)(4)4、已知m n 、为异面直线,m ⊂平面α,n ⊂平面β,l αβ=,则l ( )A 、与m n 、都相交B 、与m n 、中至少一条相交C 、与m n 、都不相交D 、至多与m n 、中的一条相交答案:B5、一个正方体纸盒展开后如图所示,在原正方体纸盒中有下列结论:(1)AB EF ⊥;(2)AB 与CM 成60︒;(3)EF 与MN 是异面直线;(4)//MN CD ,其中正确的是( )A 、(1)(2)B 、(3)(4)C 、(2)(3)D 、(1)(3)答案:D6、与正方体1111ABCD A B C D -的三条棱111AB CC A D 、、所在直线的距离相等的点( )A 、有且只有1个B 、有且只有 2个C 、有且只有3个D 、有无数个 答案:D四、 课后作业一、填空题1、空间中有8个点,其中有3个点在一条直线上,此外再无任何三点共线,由这8个点可以确定 条直线,最多可确定 个平面.答案:26,452、已知PA ⊥平面ABC ,90ACB ︒∠=,且PA AC BC a ===,则异面直线PB 与AC 所成角的正切值等于 .答案:2.3、(1)若//,//a b b c ,则//a c ;(2)若,,a b b c ⊥⊥则a c ⊥;(3)若a 与b 相交,b 与c 相交,则a 与c 也相交;(4)若a 与b 异面,b 与c 异面,则a 与c 也异面.上面的四个命题中,正确命题的题号是 .答案:(1)4、已知平面//αβ,A C α∈、,B D β∈、,直线AB 与CD 交于S ,且AS=8,BS=9,CD=34,则CS= .答案:16或2725、以下命题:(1)过直线外一点有且只有一条直线与已知直线平行;(2)某平面内的一条直线和这个平面外的一条直线是异面直线;(3)过直线外一点作该直线的垂线是唯一的;(4)如果一个角的两边和另一个角的两边分别平行,则这两个角相等或互补.则其中正确的命题的题号是 .答案:(1)(4)6、对于四面体ABCD ,下列命题正确的是 .(1)相对棱、AB 与CD 所在的直线异面;(2)由顶点A 作四面体的高,其垂足是BDC ∆的三条高线上的交点;(3)若分别作ABC ∆和ABD ∆的边AB 上的高,则这两条高所在的直线异面;(4)分别作三组相对棱中点的连线,所得的三条线段相交于一点;(5)最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱.答案:(1)(4)(5)二、选择题7、正六棱柱111111ABCDEF A B C D E F -的底面边长为1,则这个棱柱的侧面对角线1E D 与1BC 所成的角是( )A 、90︒B 、60︒C 、45︒D 、30︒ 答案:B8、已知直线a 和平面αβ、,l αβ=,a α⊄,a β⊄,a 在αβ、内的射影分别为直线b 和c ,则b c 、的位置关系是( )A 、相交与平行B 、相交或异面C 、平行或异面D 、相交、平行或异面答案:D9、空间中有五个点,其中有四个点在同一个平面内,但没有任何三点共线,这样的五个点确定平面的个数最多可以是( )A 、4个B 、5个C 、6个D 、7个 答案:D三、解答题10、正方体1111ABCD A B C D -中,对角线1A C 与平面1BDC 交于点O ,AC BD 、交于点M ,求证:点1C O M 、、共线.11、如图,在四面体ABCD 中作截面PQR ,如PQ 、CB 的延长线交于点M ,RQ 、DB 的延长线交于点N ,RP 、DC 的延长线相交于点K .求证:M 、N 、K 三点共线.11、长方体1111ABCD A B C D -中,12,,AB BC a A A a E H ===、分别是11A B 和1BB的中点,求:(1)EH 与1AD 所成的角;(2)11A D 与1B C 之间的距离;(3)1AC 与1B C 所成的角.答案:(1)1arccos5;(2)2a ;(3)arccos 5.。
高考数学第一轮复习教案 专题4立体几何
专题四立体几何一、考试内容平面及其基本性质.平面图形直观图的画法.平行直线.对应边分别平行的角.异面直线所成的角.异面直线的公垂线.异面直线的距离.直线和平面平行的判定与性质.直线和平面垂直的判定与性质.点到平面的距离.斜线在平面上的射影.直线和平面所成的角.三垂线定理及其逆定理.平行平面的判定与性质.平行平面间的距离.二面角及其平面角.两个平面垂直的判定与性质.多面体.正多面体.棱柱.棱锥.球.二、考试要求(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图;能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想像它们的位置关系.(2)掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.(3)掌握直线和平面平行的判定定理和性质定理;掌握直线和平面垂直的判定定理和性质定理;掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念掌握三垂线定理及其逆定理.(4)掌握两个平面平行的判定定理和性质定理,掌握二面角、二面角的平面角、两个平行平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理.(5)会用反证法证明简单的问题.(6)了解多面体、凸多面体的概念,了解正多面体的概念.(7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.(8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图.(9)了解球的概念,掌握球的性质,掌握球的表面积、体积公式.三、命题热点高考对立体几何的考查主要有两个方面:一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系,线面平行、垂直关系的证明等;在高考试卷中,一般有1~2个客观题和一个解答题.多为容易题和中档题.四、知识回顾(一)、平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2. 两个平面可将平面分成3或4部分.(①两个平面平行,②两个平面相交)3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个.4. 三个平面最多可把空间分成 8 部分.(X 、Y 、Z 三个方向)(二)、空间直线.1. 空间直线位置分三种:相交、平行、异面.相交直线:有且仅有一个公共点;平行直线:共面,没有公共点;异面直线:不同在任一平面内,没有公共点[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系:平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).(二面角的取值范围[) 180,0∈θ) (直线与直线所成角(] 90,0∈θ) (斜线与平面成角() 90,0∈θ) (直线与平面所成角[] 90,0∈θ)(向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)(三)、直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线) ②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) ③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,12方向相同12方向不相同可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交)⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面)⑦直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), 得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA .● 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.[注]:①垂直于同一平面....的两个平面平行.(×)(可能相交,垂直于同一条直线.....的两个平面平行)②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)③垂直于同一平面的两条直线平行.(√)5. ⑴垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上(四)、平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面. P OA a P αβθM AB O证明:如图,找O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.6. 两异面直线任意两点间的距离公式:θcos 2222mn d n m l +++=(θ为锐角取加,θ为钝取减,综上,都取加则必有⎥⎦⎤ ⎝⎛∈2,0πθ) 7. ⑴最小角定理:21cos cos cos θθθ=(1θ为最小角,如图)⑵最小角定理的应用(∠PBN 为最小角)简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条.成角比交线夹角一半大,又比交线夹角补角小,一定有2条.成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条.成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有.(五)、棱锥、棱柱.1. 棱柱.⑴①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑵{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱柱}⊃{正方体}. {直四棱柱}⋂{平行六面体}={直平行六面体}.⑶棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全等的矩形...... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×)(直棱柱不能保证底面是钜形可如图)②(直棱柱定义)棱柱有一条侧棱和底面垂直.⑷平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则1c o s c o s c o s 222=++γβα.推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2c o s c o s c o s 222=++γβα.[注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形) ②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行) 图1θθ1θ2图2③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形) ④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)2. 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.[注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V Sh V ==.⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ③棱锥的侧面积与底面积的射影公式:αcos 底侧S S =(侧面与底面成的二面角为α) 附: 以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --.则l a S ⋅=211①,b l S ⋅=212②,b a =⋅αcos ③ ⇒①②③得αcos 底侧S S =.注:S 为任意多边形的面积(可分别多个三角形的方法).⑵棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心. ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的l ab c B等腰三角形不知是否全等)ii. 若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.简证:A B ⊥CD ,AC ⊥BD ⇒ BC ⊥AD. 令===,, 得-=⋅⇒=-=-=,,已知()()0,0=-⋅=-⋅c a b b c a0=-⇒c b c a 则0=⋅AD BC . iii. 空间四边形OABC 且四边长相等,则顺次连结各边的中点的四边形一定是矩形.iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形. 简证:取AC 中点'O ,则⊥⇒⊥'⊥'AC AC O B AC o o ,平面=∠⇒⊥⇒'FGH BO AC B O O 90°易知EFGH 为平行四边形⇒EFGH 为长方形.若对角线等,则EFGH FG EF ⇒=为正方形.3. 球:⑴球的截面是一个圆面.①球的表面积公式:24R S π=. ②球的体积公式:334R V π=. ⑵纬度、经度:①纬度:地球上一点P 的纬度是指经过P .②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B 点的经度.附:①圆柱体积:h r V 2π=(r 为半径,h 为高)②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥形体积:Sh V 31=(S 为底面积,h 为高)4. ①内切球:当四面体为正四面体时,设边长为a ,a h 36=,243a S =底,243a S =侧 得a a a R R a R a a a 46342334/424331433643222=⋅==⇒⋅⋅+⋅=⋅. 注:球内切于四面体:h S R S 313R S 31V 底底侧AC D B ⋅=⋅+⋅⋅⋅=- ②外接球:球外接于正四面体,可如图建立关系式.(六). 空间向量.1. (1)共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.注:①若a 与b 共线,b 与c 共线,则a 与c 共线.(×) [当0=b 时,不成立] ②向量c b a ,,共面即它们所在直线共面.(×) [可能异面]③若a ∥b ,则存在小任一实数λ,使b a λ=.(×)[与0=b 不成立]F E HG B C D A O'O rOR④若a 为非零向量,则00=⋅a .(√)[这里用到)0(≠b b λ之积仍为向量](2)共线向量定理:对空间任意两个向量)0(,≠b b a ,a ∥b 的充要条件是存在实数λ(具有唯一性),使b a λ=.(3)共面向量:若向量a 使之平行于平面α或a 在α内,则a 与α的关系是平行,记作a ∥α.(4)①共面向量定理:如果两个向量b a ,不共线,则向量P 与向量b a ,共面的充要条件是存在实数对x 、y 使b y a x P +=.②空间任一点...O .和不共线三点......A .、.B .、.C .,则)1(=++++=z y x OC z OB y OA x OP 是P ABC 四点共面的充要条件.(简证:→+==++--=AC z AB y AP OC z OB y OA z y OP )1(P 、A 、B 、C 四点共面)注:①②是证明四点共面的常用方法.2. 空间向量基本定理:如果三个向量....c b a ,,不共面...,那么对空间任一向量P ,存在一个唯一的有序实数组x 、y 、z ,使c z b y a x p ++=.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z 使 z y x ++=(这里隐含x+y+z≠1).注:设四面体ABCD 的三条棱,,,,d AD c AC b AB ===其中Q 是△BCD 的重心,则向量)(31++=用+=3. (1)空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵轴),z 轴是竖轴(对应为竖坐标).①令a =(a 1,a 2,a 3),),,(321b b b =,则),,(332211b a b a b a ±±±=+))(,,(321R a a a ∈=λλλλλ332211b a b a b a ++=⋅ a ∥)(,,332211R b a b a b a ∈===⇔λλλλ332211b a b a b a ==⇔ 0332211=++⇔⊥b a b a b a 222321a a a ++==(=⇒⋅=)232221232221332211||||,cos b b b a a a b a b a b a b a b a b a ++⋅++++=⋅⋅>=< ②空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=.DB(2)法向量:若向量所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥,如果α⊥那么向量叫做平面α的法向量.(3)用向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α②利用法向量求二面角的平面角定理:设21,n n 分别是二面角βα--l 中平面βα,的法向量,则21,n 所成的角就是所求二面角的平面角或其补角大小(21,n 方向相同,则为补角,21,n 反方,则为其夹角).③证直线和平面平行定理:已知直线≠⊄a 平面α,α∈⋅∈⋅D C a B A ,,且CDE 三点不共线,则a ∥α的充要条件是存在有序实数对μλ⋅使CE CD AB μλ+=.(常设CE CD AB μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交).AB(七)、常用结论、方法和公式1. 对照平面几何中的三角形,我们不难得到立体几何中的四面体的类似性质:①四面体的六条棱的垂直平分面交于一点,这一点叫做此四面体的外接球的球心;②四面体的四个面组成六个二面角的角平分面交于一点,这一点叫做此四面体的内接球的球心;③四面体的四个面的重心与相对顶点的连接交于一点,这一点叫做此四面体的重心,且重心将每条连线分为3︰1;④12个面角之和为720°,每个三面角中任两个之和大于另一个面角,且三个面角之和为180°.2. 直角四面体:有一个三面角的三个面角均为直角的四面体称为直角四面体,相当于平面几何的直角三角形. (在直角四面体中,记V 、l 、S 、R 、r 、h 分别表示其体积、六条棱长之和、表面积、外接球半径、内切球半径及侧面上的高),则有空间勾股定理:S 2△ABC +S 2△BCD +S 2△ABD =S 2△ACD.3. 等腰四面体:对棱都相等的四面体称为等腰四面体,好象平面几何中的等腰三角形.根据定义不难证明以长方体的一个顶点的三条面对角线的端点为顶点的四面体是等腰四面体,反之也可以将一个等腰四面体拼补成一个长方体.(在等腰四面体ABCD 中,记BC = AD =a ,AC = BD = b ,AB = CD = c ,体积为V ,外接球半径为R ,内接球半径为r ,高为h ),则有 ①等腰四面体的体积可表示为22231222222222c b a b a c a c b V -+⋅-+⋅-+=; O A BCD②等腰四面体的外接球半径可表示为22242c b a R ++=; ③等腰四面体的四条顶点和对面重心的连线段的长相等,且可表示为22232c b a m ++=; ④h = 4r.4、空间正余弦定理.空间正弦定理:sin ∠ABD/sin ∠A-BC-D=sin ∠ABC/sin ∠A-BD-C=sin ∠CBD/sin ∠C-BA-D 空间余弦定理:cos ∠ABD=cos ∠ABCcos ∠CBD+sin ∠ABCsin ∠CBDcos ∠A-BC-D5.从一点O 出发的三条射线OA 、OB 、OC ,若∠AOB=∠AOC ,则点A 在平面∠BOC 上的射影在∠BOC 的平分线上;6. 已知:直二面角M -AB -N 中,AE ⊂ M ,BF ⊂ N,∠EAB=1θ,∠ABF=2θ,异面直线AE 与BF 所成的角为θ,则;cos cos cos 21θθθ=7.立平斜公式:如图,AB 和平面所成的角是1θ,AC 在平面内,BC 和AB 的射影BA 1成2θ,设∠ABC=3θ,则cos 1θcos 2θ=cos 3θ;8.异面直线所成角的求法:(1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;(2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;9.直线与平面所成的角斜线和平面所成的是一个直角三角形的锐角,它的三条边分别是平面的垂线段、斜线段及斜线段在平面上的射影。
2025届高考数学一轮复习教案:立体几何-空间点、直线、平面之间的位置关系
第二节空间点、直线、平面之间的位置关系课程标准1.借助长方体,在直观认识空间点、直线、平面的位置关系的基础上,抽象出空间点、直线、平面的位置关系的定义,了解四个基本事实和一个定理.2.能运用基本事实、定理和已获得的结论证明空间基本图形位置关系的简单命题.考情分析考点考法:以空间几何体为载体,考查基本事实及其结论在判断位置关系、交线问题、求角中的应用.求异面直线所成的角是高考的热点,在各个题型中均有所体现.核心素养:直观想象、数学运算、逻辑推理.【必备知识·逐点夯实】【知识梳理·归纳】1.四个基本事实基本事实1:过不在一条直线上的三个点,有且只有一个平面.符号:A,B,C三点不共线⇒存在唯一的α使A,B,C∈α.基本事实2:如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内.符号:A∈l,B∈l,且A∈α,B∈α⇒l⊂α.基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号:P∈α,且P∈β⇒α∩β=l,且P∈l.基本事实4:平行于同一条直线的两条直线平行.符号:a∥b,b∥c⇒a∥c.2.基本事实的三个推论推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.3.空间点、直线、平面之间的位置关系项目直线与直线直线与平面平面与平面平行关系图形语言符号语言a ∥b a ∥αα∥β相交关系图形语言符号语言a ∩b =A a ∩α=A α∩β=l 其他关系图形语言-符号语言a ,b 是异面直线a ⊂α-【微点拨】(1)直线在平面外分直线与平面平行和直线与平面相交两种情况.(2)两条直线没有公共点分直线与直线平行和直线与直线异面两种情况.4.等角定理如果空间中两个角的两条边分别对应平行,那么这两个角相等或互补.5.异面直线所成的角(1)定义:已知两条异面直线a,b,经过空间任意一点O分别作直线a'∥a,b'∥b,把a'与b'所成的角叫做异面直线a与b所成的角(或夹角).(2)范围:,【基础小题·自测】类型辨析改编易错高考题号14231.(多维辨析)(多选题)下列结论错误的是()A.如果两个平面有三个公共点,则这两个平面重合B.经过两条相交直线,有且只有一个平面C.两两相交的三条直线共面D.若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线【解析】选ACD.A中的两个平面可能相交;B正确;C中的三条直线相交于一点时可能不共面;D中的两条直线可能是平行直线.2.(易错题)若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交【解析】选B.由题意知,直线l与平面α相交,则直线l与平面α内的直线只有相交和异面两种位置关系,因而只有选项B是正确的.3.(多选题)(2022·新高考Ⅰ卷)已知正方体ABCD-A1B1C1D1,则()A.直线BC1与DA1所成的角为90°B.直线BC1与CA1所成的角为90°C.直线BC1与平面BB1D1D所成的角为45°D.直线BC1与平面ABCD所成的角为45°【解析】选ABD.如图,连接AD1,在正方形A1ADD1中,AD1⊥DA1,因为AD1∥BC1,所以BC1⊥DA1,所以直线BC1与DA1所成的角为90°,故A正确.在正方体ABCD-A1B1C1D1中,CD⊥平面BCC1B1,又BC1⊂平面BCC1B1,所以CD⊥BC1,连接B1C,则B1C⊥BC1,因为CD∩B1C=C,CD,B1C⊂平面DCB1A1,所以BC1⊥平面DCB1A1,又CA1⊂平面DCB1A1,所以BC1⊥CA1,所以直线BC1与CA1所成的角为90°,故B正确.连接A1C1,交B1D1于点O,则易得OC1⊥平面BB1D1D,连接OB,因为OB⊂平面BB1D1D,所以OC1⊥OB,∠OBC1为直线BC1与平面BB1D1D所成的角.设正方体的棱长为a,则易得BC1=2a,OC1=22,所以在Rt△BOC1中,OC1=12BC1,所以∠OBC1=30°,故C错误.因为C1C⊥平面ABCD,所以∠CBC1为直线BC1与平面ABCD所成的角,易得∠CBC1=45°,故D正确.4.(必修二P134例1变形式)如图,在三棱锥A-BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件________时,四边形EFGH为菱形;(2)当AC,BD满足条件________时,四边形EFGH为正方形.【解析】(1)因为四边形EFGH为菱形,所以EF=EH,因为EF=12AC,EH=12BD,所以AC=BD.(2)因为四边形EFGH为正方形,所以EF=EH且EF⊥EH.因为EF∥AC,EH∥BD,且EF=12AC,EH=12BD,所以AC=BD且AC⊥BD.答案:(1)AC=BD(2)AC=BD且AC⊥BD【核心考点·分类突破】考点一空间位置关系的判断[例1](1)(多选题)下列选项正确的是()A.两两相交且不过同一点的三条直线必在同一平面内B.过空间中任意三点有且仅有一个平面C.若空间两条直线不相交,则这两条直线平行D.若直线l⊂平面α,直线m⊥平面α,则m⊥l【解析】选AD.对于选项A,可设l1与l2相交,这两条直线确定的平面为α;若l3与l1相交于B,则交点B在平面α内,同理,l3与l2的交点A也在平面α内,所以AB⊂α,即l3⊂α,选项A正确.对于选项B,若三点共线,则过这三个点的平面有无数个,选项B错误.对于选项C,空间中两条直线可能相交、平行或异面,选项C错误.对于选项D,若直线m⊥平面α,则m垂直于平面α内所有直线.因为直线l⊂平面α,所以直线m⊥直线l,选项D正确.(2)如图,G,N,M,H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH与MN是异面直线的图形有________.(填序号)【解析】题图①中,直线GH∥MN;题图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;题图③中,连接MG,则GM∥HN,因此GH与MN共面;题图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面,所以题图②④中GH 与MN异面.答案:②④【解题技法】1.点、线共面的判断方法(1)纳入平面法:要证明“点共面”或“线共面”,可先由部分点或直线确定一个平面,再证其余点或直线也在这个平面内.(2)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.(3)证明四点共面常通过证明四点组成的四边形为平行四边形或梯形来解决. 2.两直线位置关系的判断【微提醒】平面外一点与平面内一点的连线与平面内不经过该点的直线是异面直线.【对点训练】1.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定()A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行【解析】选C.由题意易知,c与a,b都可相交,也可只与其中一条相交,故A,B均错误;若c与a,b都不相交,则c与a,b都平行,根据基本事实4,知a∥b,与a,b为异面直线矛盾,D错误.2.设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线.上述命题中错误的是__________(写出所有错误命题的序号).【解析】由基本事实4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行或异面,故②错误;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③错误;a⊂α,b⊂β,并不能说明a与b不同在任何一个平面内,故④错误.答案:②③④考点二基本事实及其应用[例2]如图,在长方体ABCD-A1B1C1D1中,E,F分别是B1C1和C1D1的中点.求证:(1)E,F,D,B四点共面;(2)BE,DF,CC1三线共点.【证明】(1)如图,连接EF,BD,B1D1,因为EF是△B1C1D1的中位线,所以EF∥B1D1,因为BB1与DD1平行且相等,所以四边形BDD1B1是平行四边形,所以BD∥B1D1,所以EF∥BD,所以E,F,D,B四点共面;(2)因为EF∥BD,且EF≠BD,所以直线BE和DF相交,延长BE,DF,设它们相交于点P,因为P∈直线BE,直线BE⊂平面BB1C1C,所以P∈平面BB1C1C,因为P∈直线DF,直线DF⊂平面CDD1C1,所以P∈平面CDD1C1,因为平面BB1C1C∩平面CDD1C1=CC1,所以P∈CC1,所以BE,DF,CC1三线共点.【解题技法】1.证明空间点共线问题的方法(1)一般转化为证明这些点是某两个平面的公共点,再根据基本事实3证明这些点都在这两个平面的交线上.(2)选择其中两点确定一条直线,然后证明其余点也在该直线上.2.共面、共点问题(1)先确定一个平面,然后再证其余的线(或点)在这个平面内;(2)利用确定平面的定理,如由点构造平行直线、构造相交直线等.【对点训练】1.如图,α∩β=l,A,B∈α,C∈β,且A,B,C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必经过()A.点AB.点BC.点C但不过点MD.点C和点M【解析】选D.因为AB⊂γ,M∈AB,所以M∈γ.又α∩β=l,M∈l,所以M∈β.根据基本事实3可知,M在γ与β的交线上.同理可知,点C也在γ与β的交线上.所以γ与β的交线必经过点C和点M.2.已知空间四边形ABCD(如图所示),E,F分别是AB,AD的中点,G,H分别是BC,CD 上的点,且CG=13BC,CH=13DC.求证:(1)E,F,G,H四点共面;(2)三直线FH,EG,AC共点.【证明】(1)连接EF,GH,因为E,F分别是AB,AD的中点,所以EF∥BD.又因为CG=13BC,CH=13DC,所以GH∥BD,所以EF∥GH,所以E,F,G,H四点共面.(2)易知FH与直线AC不平行,但共面,所以设FH∩AC=M,所以M∈平面EFHG,M∈平面ABC.又因为平面EFHG∩平面ABC=EG,所以M∈EG,所以FH,EG,AC共点.考点三异面直线所成的角[例3](1)如图所示,圆柱O1O2的底面半径为1,高为2,AB是一条母线,BD是圆O1的直径,C是上底面圆周上一点,∠CBD=30°,则异面直线AC与BD所成角的余弦值为()A.33535B.43535C.3714D.277【解析】选C.连接AO2,设AO2的延长线交下底面圆周上的点为E,连接CE,易知∠CAE(或其补角)即为异面直线AC与BD所成的角,连接CD(图略),在Rt△BCD 中,∠BCD=90°,BD=2,∠CBD=30°,得BC=3,CD=1.又AB=DE=AE=BD=2,AC=B2+B2=7,CE=B2+B2=5,所以在△CAE中,cos∠CAE=B2+B2-B22B·B==3714,即异面直线AC与BD所成角的余弦值为3714.(2)(2023·武汉模拟)在直三棱柱ABC-A1B1C1中,AB⊥BC,AB=BC=AA1,D,E分别为AC,BC的中点,则异面直线C1D与B1E所成角的余弦值为()A .33B .55C .1010D .3010【解析】选D .设AB =2,取A 1B 1的中点F ,连接C 1F ,DF ,DE ,则B 1F =12A 1B 1,因为D ,E 分别为AC ,BC 的中点,所以DE ∥AB ,DE =12AB ,因为A 1B 1∥AB ,A 1B 1=AB ,所以DE ∥B 1F ,B 1F =DE ,所以四边形DEB 1F 为平行四边形,所以DF ∥B 1E ,所以∠C 1DF 为异面直线C 1D 与B 1E 所成的角或补角.因为AB ⊥BC ,AB =BC =AA 1=2,D ,E 分别为AC ,BC 的中点,所以DF =B 1E =12+22=5,C 1F =12+22=5,C 1D =(2)2+22=6,所以cos ∠C 1DF =121D ==3010.【解题技法】求异面直线所成角的方法(1)求异面直线所成角的常用方法是平移法.平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.(2)求异面直线所成角的三步:一作、二证、三求.①一作:根据定义作平行线,作出异面直线所成的角;②二证:证明作出的角是异面直线所成的角;③三求:解三角形,求出所作的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.【对点训练】1.在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A.π2B.π3C.π4D.π6【解析】选D.如图,连接A1C1,BC1,因为AD1∥BC1,所以∠PBC1为直线PB与AD1所成的角.设正方体的棱长为2,则PB=6,PC1=2,BC1=22,则PB2+P12=B12,在Rt△PBC1中,因为sin∠PBC1=B1B1=2=12,所以直线PB与AD1所成的角为π6.2.如图,在圆锥SO中,AB,CD为底面圆的两条直径,AB∩CD=O,且AB⊥CD, SO=OB=3,SE=14SB,则异面直线SC与OE所成角的正切值为()A .222B .53C .1316D .113【解析】选D .如图,过点S 作SF ∥OE ,交AB 于点F ,连接CF ,则∠CSF (或其补角)为异面直线SC 与OE 所成的角.因为SE =14SB ,所以SE =13BE.又OB =3,所以OF =13OB =1.因为SO ⊥OC ,SO =OC =3,所以SC =32.因为SO ⊥OF ,所以SF =B 2+D 2=10.因为OC ⊥OF ,所以CF =10.所以在等腰△SCF 中,tan ∠CSF =113.即异面直线SC 与OE 所成角的正切值为113.【加练备选】平面α过正方体ABCD-A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为()A .32B .22C .33D .13【解析】选A .如图所示,过点A 补作一个与正方体ABCD-A 1B 1C 1D 1相同棱长的正方体,易知平面α为平面AF 1E ,则m ,n 所成的角为∠EAF 1.因为△AF 1E 为正三角形,所以sin ∠EAF 1=sin 60°=32.。
高中高三数学《空间直线与平面的位置关系》教案、教学设计
1.学生需独立完成作业,不得抄袭他人成果,确保作业的真实性。
2.注意作业书写的规范性和整洁性,要求字迹清晰、步骤完整。
3.作业完成后,请学生认真检查,确保无误。
4.家长需关注学生的学习情况,协助学生合理安排学习时间,确保作业质量。
5.教师将针对作业完成情况进行反馈,及时了解学生的学习进度和困惑,为学生提供个性化指导。
5.鉴于高三学生面临高考压力,教师在教学中应关注学生的心理状态,激发学生的学习兴趣,帮助他们树立信心,以积极的心态面对挑战。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-空间直线与平面位置关系的判定及其性质的理解和应用。
-运用向量法、解析法解决空间直线与平面问题的策略和方法。
-培养学生的空间想象能力和逻辑思维能力。
五、作业布置
为了巩固学生对空间直线与平面位置关系的理解,提高他们的解题能力,特布置以下作业:
1.请学生完成课后练习题1、2、3,巩固空间直线与平面位置关系的判定方法和性质。
2.结合课堂所学,思考并解答课后思考题4、5,要求学生运用向量法、解析法等方法解决问题,提高他们的分析问题和解决问题的能力。
3.小组合作完成课后拓展题6,要求学生相互讨论、共同解决问题,培养团队协作能力和创新思维。
(三)学生小组讨论
在这一环节,学生将进行小组讨论,共同探讨空间直线与平面位置关系的相关问题。
1.教师给出几个具有代表性的问题,要求学生以小组为单位进行讨论,共同解决问题。
2.学生在讨论过程中,可以相互提问、解答,分享各自的想法和思路。
3.教师巡回指导,关注各小组的讨论情况,给予必要的提示和指导。
4.每个小组派代表进行汇报,分享本组的讨论成果,教师对学生的解答进行点评和总结。
高三文科数学一轮复习学案立体几何专题 共6课时
第1课时 空间点、直线、平面之间的位置关系【考试说明】内 容要 求 A B C 点、线、面、之间的位置关系平面及其基本性质√【学习要求】1、理解空间点、线、面的位置关系;会用数学语言规范的表述空间点、线、面的位置关系。
了解公理1、2、3及公理3的推论1、2、3,并能正确判定;了解平行公理和等角定理。
2、理解空间直线、平面位置关系的定义,能判定空间两直线的位置关系,了解异面直线所成角。
【知识梳理】1、公理1:如果一条直线上的 在一个平面内,那么这条直线上 都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们还有其他的公共点,这些公共点的集合是公理3:经过 的三点,有且只有一个平面。
推论1:经过 ,有且只有一个平面。
推论2:经过 ,有且只有一个平面。
推论3:经过 ,有且只有一个平面。
2 、空间两条直线的位置关系位置关系 共面情况 公共点的个数 相交直线 在同一平面内 平行直线没有不同在任何一个平面内没有3、平行直线的公理及定理(1)公理4:平行与同一直线的两条直线(2)等角定理:如果一个角的两边和另一个角的两边分别 并且方向 ,那么这两个角相等。
例题1、在棱长为1的正方体1111ABCD A B C D 中,E 、F 分别为棱1,AB AA 的中点. (1)求证:1,,,E C D F 四点共面;(2)求证:1,,CE D F DA 三线共点。
例题2、如图,E 、F 、G 、H 分别是空间四边形ABCD 各边AB 、BC 、CD 、DA 上的点,且直线EF 和GH 交于点P,求证:点A 、C 、P 在同一条直线上。
例题3、正方体1111ABCD A B C D 中,对角线1A C 与平面1BDC 交于点O ,AC 与BD 交于M ,求证:1,C O M ,共线.例题4、证明两两相交且不交于同一个点的四条直线共面。
第2课时 直线与平面的位置关系(1)1、 了解直线与平面的位置关系,了解空间平行的有关概念;除了能熟练运用线面平行的判定定理和性质定理外,还要充分利用定义。
高三一轮立体几何复习课教案
高三一轮立体几何复习课教案教案标题:高三一轮立体几何复习课教案教案目标:1. 复习高三一轮学习的立体几何基础知识;2. 强化学生对常见立体几何概念的理解和应用;3. 提高学生的解题能力和问题解决能力。
教学重点:1. 复习并掌握常见立体几何概念,如平行四边形、柱体、锥体等;2. 强化立体几何的思维方式和问题解决方法;3. 训练学生解决高难度立体几何题目的能力。
教学准备:1. 教学课件或者白板、黑板等;2. 学生练习册或习题集;3. 成绩单和学生笔记。
教学过程:一、引入(5分钟)1. 利用教学课件或黑板,引入本节课的主题,并激发学生对立体几何的兴趣和热情;2. 老师可以提出一个与立体几何相关的问题或者引用一个实际问题来引导学生思考;二、复习基础知识(15分钟)1. 复习并强化学生对立体几何基础概念的理解,例如平行四边形的性质、柱体的表面积和体积公式等;2. 提供简单的练习题,让学生回顾并解答,鼓励他们回忆相关的知识点;三、强化概念应用(25分钟)1. 回顾并讲解一些与立体几何相关的典型问题,例如求解线段比例、求解表面积和体积等;2. 给学生一些有挑战性的练习题,鼓励他们应用所学概念解决实际问题;3. 指导学生分析问题、确定解题方法,并辅导他们解题的思路和步骤;四、解题方法分享(15分钟)1. 学生进行小组活动,交流并分享解答问题的方法和思路;2. 老师对学生的分享进行点评和总结,同时指导他们在解题过程中的注意事项;3. 提供一些高难度问题,鼓励学生结合所学知识和解题方法进行探索和解答;五、课堂练习与梳理(15分钟)1. 发放练习册或习题集,让学生进行课堂练习;2. 在学生进行练习的同时,教师可以对学生的解题过程进行辅导和指导;3. 收集学生的成绩单,并提醒学生及时梳理和复习今日所学的知识点。
六、课堂总结与反思(5分钟)1. 对本节课的重点、难点进行总结,并强调学生的进步和知识提高;2. 鼓励学生提出问题、反思自己在学习过程中的困惑和不足之处;3. 鼓励学生积极参与课后的巩固练习,并准备下节课的复习内容。
2025届高考数学一轮复习讲义立体几何与空间向量之 空间直线、平面的平行
例2 [北京高考节选]如图,在正方形 AMDE 中, B , C 分别为 AM , MD 的中点.在五
棱锥 P - ABCDE 中, F 为棱 PE 的中点,平面 ABF 与棱 PD , PC 分别交于点 G ,
H . 求证: AB ∥ FG .
[解析] 在正方形 AMDE 中,因为 B 是 AM 的中点,所以 AB ∥ DE .
∴ BD 1∥平面 ACE .
易得直线 BA 1, BC 1, BB 1均与平面 ACE 不平行.
2. [多选/教材改编]若直线 a 平行于平面α,则(
A. 平面α内有且只有一条直线与a平行
B. 平面α内有无数条直线与a平行
C. 平面α内存在无数条与a不平行的直线
D. 平面α内任意一条直线都与a平行
又 AB ⊄平面 PDE , DE ⊂平面 PDE ,
所以 AB ∥平面 PDE .
因为 AB ⊂平面 ABF ,且平面 ABF ∩平面 PDE = FG ,
所以 AB ∥ FG .
方法技巧
1. 证明线线平行常用的方法
(1)利用线面平行的性质定理.
(2)利用面面平行的性质定理.
(3)利用中位线,对应线段成比例,平行四边形的性质等.
4. 两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.
5. 夹在两个平行平面之间的平行线段长度相等.
6. 经过平面外一点有且只有一个平面与已知平面平行.
二、基础题练习
1. [教材改编]在正方体 ABCD - A 1 B 1 C 1 D 1中, E 为 DD 1的中点,则下列直线中与
平面 =2,∴ AB
DE ,
∴四边形 ABED 为平行四边形,
高考数学立体几何备考复习教案
高考数学立体几何备考复习教案一、教学目标1. 知识与技能:使学生掌握立体几何的基本概念、性质和定理,提高空间想象能力。
2. 过程与方法:通过复习,使学生掌握立体几何的解题方法,提高解题能力。
3. 情感态度与价值观:激发学生学习立体几何的兴趣,培养学生的创新意识。
二、教学内容1. 立体几何的基本概念:点、线、面的位置关系,空间向量。
2. 立体几何的性质:平行公理,空间向量的运算律。
3. 立体几何的定理:平行线、异面直线、线面平行、面面平行、线面垂直、面面垂直的判定与性质。
4. 立体几何的计算:体积、表面积、角、距离的计算。
5. 立体几何的综合应用:空间几何体的结构特征,几何体的运动变化。
三、教学重点与难点1. 教学重点:立体几何的基本概念、性质和定理,立体几何的计算方法。
2. 教学难点:立体几何的综合应用,空间想象能力的培养。
四、教学方法1. 采用讲解、示范、练习、讨论、探索相结合的方法,引导学生掌握立体几何的基本概念、性质和定理。
2. 通过案例分析、几何画板演示等手段,培养学生的空间想象能力。
3. 组织学生进行合作学习,提高学生的解题能力。
五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习与作业:检查学生完成的练习和作业,评估学生的掌握程度。
3. 考试成绩:定期进行立体几何的测试,分析学生的成绩,了解学生的学习效果。
教案第一课时:立体几何的基本概念1. 教师讲解立体几何的基本概念,如点、线、面的位置关系,空间向量。
2. 学生通过案例分析,理解并掌握基本概念。
第二课时:立体几何的性质1. 教师讲解立体几何的性质,如平行公理,空间向量的运算律。
2. 学生通过几何画板演示,直观地理解立体几何的性质。
第三课时:立体几何的定理1. 教师讲解立体几何的定理,如平行线、异面直线、线面平行、面面平行、线面垂直、面面垂直的判定与性质。
2. 学生通过案例分析,掌握立体几何的定理。
2025届高考数学一轮复习教案:立体几何-空间直线、平面的垂直
第四节空间直线、平面的垂直课程标准1.从定义和基本事实出发,借助长方体,通过直观感知,了解空间中直线与直线、直线与平面、平面与平面的垂直关系的定义,归纳出有关垂直的性质定理和判定定理,并加以证明.2.能运用已获得的结论证明空间基本图形位置关系的简单命题.考情分析考点考法:高考题常以空间几何体为载体,考查空间直线、平面的垂直关系.线面垂直是高考的热点,在各种题型中都会有所体现.核心素养:直观想象、数学运算、逻辑推理.【必备知识·逐点夯实】【知识梳理·归纳】1.直线与平面垂直(1)直线和平面垂直的定义一般地,如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直.(2)判定定理与性质定理类型文字语言图形表示符号表示【微点拨】证明线面垂直时,平面内的两条直线必须是相交直线.2.直线和平面所成的角(1)定义:平面的一条斜线和它在平面上的射影所成的角,叫做这条直线和这个平面所成的角.一条直线垂直于平面,则它们所成的角是90°;一条直线和平面平行或在平面内,则它们所成的角是0°.(2)范围:,3.二面角(1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角若有①O ∈l ;②OA ⊂α,OB ⊂β;③OA ⊥l ,OB ⊥l ,则二面角α-l -β的平面角是∠AOB .(3)二面角的平面角θ的范围:0°≤θ≤180°.4.平面与平面垂直(1)定义一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理与性质定理【基础小题·自测】类型辨析改编易错高考题号12341.(多维辨析)(多选题)下列结论错误的是()A .若直线与平面所成的角为0°,那么直线与平面平行B .直线l 与平面α内的无数条直线都垂直,则l ⊥αC .设m ,n 是两条不同的直线,α是一个平面,若m ∥n ,m ⊥α,则n ⊥αD .若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面【解析】选ABD .A 中直线也可能在平面内;B 中若平面α内的与直线l 都垂直的无数条直线都平行,则l 与α不一定垂直;C正确;D 中平面内与交线垂直的直线与另一个平面垂直.2.(必修二P161例10变形式)如图所示,在Rt △ABC 中,∠ABC =90°,P 为△ABC 所在平面外一点,PA ⊥平面ABC ,则四面体P-ABC 中直角三角形的个数为()A .4B .3C .2D .1【解析】选A.在Rt△ABC中,∠ABC=90°,P为△ABC所在平面外一点,PA⊥平面ABC,所以BC⊥PA,因为BC⊥AB,PA∩AB=A,所以BC⊥平面PAB.所以四面体P-ABC中直角三角形有△PAC,△PAB,△ABC,△PBC,共4个.3.(多选题)(空间垂直关系不清致误)下列命题中不正确的是()A.如果直线a不垂直于平面α,那么平面α内一定不存在直线垂直于直线aB.如果平面α垂直于平面β,那么平面α内一定不存在直线平行于平面βC.如果直线a垂直于平面α,那么平面α内一定不存在直线平行于直线aD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β【解析】选ABD.A中存在无数条在平面α内与a垂直的直线;B中α内与交线平行的直线与β平行.若直线a垂直于平面α,则直线a垂直于平面α内的所有直线,故C 正确,不符合题意,D中α内与交线不垂直的直线与β不垂直.4.(2021·浙江高考)如图,已知正方体ABCD-A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN∥平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN∥平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B1【解析】选A.连接AD1(图略),则易得点M在AD1上,且M为AD1的中点,AD1⊥A1D.因为AB⊥平面AA1D1D,A1D⊂平面AA1D1D,所以AB⊥A1D,又AB∩AD1=A,AB,AD1⊂平面ABD1,所以A1D⊥平面ABD1,又BD1⊂平面ABD1,显然A1D与BD1异面,所以A1D与BD1异面且垂直.在△ABD1中,由中位线定理可得MN∥AB,又MN⊄平面ABCD,AB⊂平面ABCD,所以MN∥平面ABCD.易知直线AB与平面BB1D1D成45°角,所以MN与平面BB1D1D不垂直.【巧记结论·速算】1.若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.2.一条直线垂直于两个平行平面中的一个,则这条直线与另一个平面也垂直.3.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.【即时练】已知PD垂直于正方形ABCD所在的平面,连接PB,PC,PA,AC,BD,则一定互相垂直的平面有________对.【解析】如图,由于PD垂直于正方形ABCD,故平面PDA⊥平面ABCD,平面PDB⊥平面ABCD,平面PDC⊥平面ABCD,平面PDA⊥平面PDC,平面PAC⊥平面PDB,平面PAB⊥平面PAD,平面PBC⊥平面PDC,共7对.答案:7【核心考点·分类突破】考点一直线与平面垂直的判定与性质【考情提示】直线与平面垂直作为空间垂直关系的载体因其集中考查直线与平面垂直的判定定理和性质定理而成为高考的热点,涉及直线与平面垂直关系的判断、证明以及线面垂直关系在空间几何体中的实际应用.角度1直线与平面垂直的判定[例1]如图所示,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥DC,PD=AD,E是PB的中点,F是DC上的点,且DF=12AB,PH为△PAD中AD边上的高.求证:(1)PH⊥平面ABCD;(2)EF⊥平面PAB.【证明】(1)因为AB⊥平面PAD,AB⊂平面ABCD,所以平面PAD⊥平面ABCD.因为平面PAD∩平面ABCD=AD,PH⊥AD,所以PH⊥平面ABCD.(2)取PA的中点M,连接MD,ME.因为E是PB的中点,所以ME=12AB.又因为DF=12AB,所以ME-DF,所以四边形MEFD是平行四边形,所以EF∥MD.因为PD=AD,所以MD⊥PA.因为AB⊥平面PAD,所以MD⊥AB.因为PA∩AB=A,所以MD⊥平面PAB,所以EF⊥平面PAB.角度2直线与平面垂直的性质[例2]如图,在四棱锥P-ABCD中,四边形ABCD是矩形,AB⊥平面PAD,AD=AP,E 是PD的中点,M,N分别在AB,PC上,且MN⊥AB,MN⊥PC.证明:AE∥MN.【证明】因为AB⊥平面PAD,AE⊂平面PAD,所以AE⊥AB.又AB∥CD,所以AE⊥CD.因为AD=AP,E是PD的中点,所以AE⊥PD.又CD∩PD=D,CD,PD⊂平面PCD,所以AE⊥平面PCD.因为MN⊥AB,AB∥CD,所以MN⊥CD.又因为MN⊥PC,PC∩CD=C,PC,CD⊂平面PCD,所以MN⊥平面PCD,所以AE∥MN.【解题技法】1.证明线面垂直的常用方法(1)判定定理;(2)垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);(3)面面平行的性质(a⊥α,α∥β⇒a⊥β);(4)面面垂直的性质.2.直线与平面垂直性质的解题策略(1)判定定理与性质定理的合理转化是证明线面垂直的基本思想,证明线线垂直则需借助线面垂直的性质.(2)在解题中要重视平面几何的知识,特别是正余弦定理及勾股定理的应用.(3)重要结论要熟记:经过一点与已知直线垂直的直线都在过这点且与已知直线垂直的平面内.此结论可帮助解决动点的轨迹问题.【对点训练】1.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.【证明】(1)在四棱锥P-ABCD中,因为PA⊥底面ABCD,CD⊂平面ABCD,所以PA⊥CD.因为AC⊥CD,PA∩AC=A,所以CD⊥平面PAC.而AE⊂平面PAC,所以CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,所以△ABC是等边三角形,所以AC=PA.因为E是PC的中点,所以AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD.而PD⊂平面PCD,所以AE⊥PD.因为PA⊥底面ABCD,所以PA⊥AB.又因为AB⊥AD且PA∩AD=A,所以AB⊥平面PAD,而PD⊂平面PAD,所以AB⊥PD.又因为AB∩AE=A,所以PD⊥平面ABE.2.如图所示,已知正方体ABCD-A1B1C1D1.(1)求证:A1C⊥B1D1;(2)M,N分别为B1D1与C1D上的点,且MN⊥B1D1,MN⊥C1D,求证:MN∥A1C.【证明】(1)连接A1C1(图略).因为CC1⊥平面A1B1C1D1,B1D1⊂平面A1B1C1D1,所以CC1⊥B1D1.因为四边形A1B1C1D1是正方形,所以A1C1⊥B1D1.又CC1∩A1C1=C1,所以B1D1⊥平面A1C1CA.又A1C⊂平面A1C1CA,所以A1C⊥B1D1.(2)连接B1A,AD1(图略).因为B1C1∥AD,所以四边形ADC1B1为平行四边形,所以C1D∥AB1.因为MN⊥C1D,所以MN⊥AB1.又MN⊥B1D1,AB1∩B1D1=B1,所以MN⊥平面AB1D1.易得A1C⊥AB1,由(1)知A1C⊥B1D1,又AB1∩B1D1=B1,所以A1C⊥平面AB1D1,所以MN∥A1C.考点二平面与平面垂直的判定与性质【考情提示】平面与平面垂直作为空间垂直关系的载体因其集中考查平面与平面垂直的判定定理,性质定理成为高考的热点,涉及平面与平面垂直关系的判断、证明以及在空间几何体中的实际应用.角度1平面与平面垂直的判定[例3]如图,四棱锥P-ABCD中,底面ABCD是菱形,对角线AC,BD交于点O,M为棱PD的中点,MA=MC.求证:(1)PB∥平面AMC;(2)平面PBD⊥平面AMC.【证明】(1)连接OM(图略),因为O是菱形ABCD对角线AC,BD的交点,所以O 为BD的中点,因为M是棱PD的中点,所以OM∥PB,因为OM⊂平面AMC,PB⊄平面AMC,所以PB∥平面AMC.(2)在菱形ABCD中,AC⊥BD,且O为AC的中点,因为MA=MC,所以AC⊥OM,因为OM∩BD=O,所以AC⊥平面PBD,因为AC⊂平面AMC,所以平面PBD⊥平面AMC.角度2平面与平面垂直的性质[例4]在矩形ABCD中,AB=2AD=4,E是AB的中点,沿DE将△ADE折起,得到如图所示的四棱锥P-BCDE.(1)若平面PDE⊥平面BCDE,求四棱锥P-BCDE的体积;(2)若PB=PC,求证:平面PDE⊥平面BCDE.【解析】(1)如图所示,取DE的中点M,连接PM,由题意知,PD=PE,所以PM⊥DE,又平面PDE⊥平面BCDE,平面PDE∩平面BCDE=DE,PM⊂平面PDE,所以PM⊥平面BCDE,即PM为四棱锥P-BCDE的高.在等腰直角三角形PDE中,PE=PD=AD=2,所以PM=12DE=2,而梯形BCDE的面积S=12(BE+CD)·BC=12×(2+4)×2=6,所以四棱锥P-BCDE的体积V=13PM·S=13×2×6=22.(2)取BC的中点N,连接PN,MN,则BC⊥MN,因为PB=PC,所以BC⊥PN,因为MN∩PN=N,MN,PN⊂平面PMN,所以BC⊥平面PMN,因为PM⊂平面PMN,所以BC⊥PM,由(1)知,PM⊥DE,又BC,DE⊂平面BCDE,且BC与DE延长后是相交的,所以PM⊥平面BCDE,因为PM⊂平面PDE,所以平面PDE⊥平面BCDE.【解题技法】关于面面垂直的判定与性质(1)判定面面垂直的方法①面面垂直的定义.②面面垂直的判定定理.(2)面面垂直性质的应用①面面垂直的性质定理是把面面垂直转化为线面垂直的依据,运用时要注意“平面内的直线”.②若两个相交平面同时垂直于第三个平面,则它们的交线也垂直于第三个平面.【对点训练】1.如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若AF⊥EF,求证:平面PAD⊥平面ABCD.【证明】(1)因为四边形ABCD是矩形,所以AB∥CD.又AB⊄平面PDC,CD⊂平面PDC,所以AB∥平面PDC.又因为AB⊂平面ABE,平面ABE∩平面PDC=EF,所以AB∥EF.(2)因为四边形ABCD是矩形,所以AB⊥AD.因为AF⊥EF,(1)中已证AB∥EF,所以AB⊥AF.又AB⊥AD,由点E在棱PC上(异于点P,C),所以点F异于点D,所以AF∩AD=A,AF,AD⊂平面PAD,所以AB⊥平面PAD.又AB⊂平面ABCD,所以平面PAD⊥平面ABCD.2.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,PA=PD=AD=2,点M 在线段PC上,且PM=2MC,N为AD的中点.(1)求证:AD⊥平面PNB;(2)若平面PAD⊥平面ABCD,求三棱锥P-NBM的体积.【解析】(1)连接BD(图略).因为PA=PD,N为AD的中点,所以PN⊥AD.又底面ABCD是菱形,∠BAD=60°,所以△ABD为等边三角形,所以BN⊥AD.又PN∩BN=N,所以AD⊥平面PNB.(2)因为PA=PD=AD=2,所以PN=NB=3.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PN⊥AD,所以PN⊥平面ABCD,又NB⊂平面ABCD,所以PN⊥NB,所以S△PNB=12×3×3=32.因为AD⊥平面PNB,AD∥BC,所以BC⊥平面PNB.又PM=2MC,所以V P-NBM=V M-PNB=23V C-PNB=23×13×32×2=23.考点三直线、平面垂直的综合应用[例5]如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2, A1D∩AD1=O,E为线段AB上一点.(1)当OE∥平面D1BC时,求证:E为AB的中点;(2)在线段AB上是否存在点E,使得平面D1DE⊥平面AD1C?若存在,求出AE的长;若不存在,请说明理由.【解析】(1)因为四边形AA1D1D为正方形,A1D∩AD1=O,所以O为AD1的中点,又因为OE∥平面D1BC,平面ABD1∩平面D1BC=BD1,OE⊂平面ABD1,所以OE∥BD1,又因为O为AD1的中点,所以E为AB的中点;(2)存在,当AE=12时,平面D1DE⊥平面AD1C,理由如下:设AC∩DE=F,因为四边形AA1D1D为正方形,所以D1D⊥AD,又因为AD=平面AA1D1D∩平面ABCD,平面AA1D1D⊥平面ABCD,D1D⊂平面AA1D1D,所以D1D⊥平面ABCD,又因为AC⊂平面ABCD,所以D1D⊥AC,又因为在矩形ABCD中,AB=2,AD=1,当AE=12时,在Rt△ADE中,tan∠ADE=A A=12,在Rt△ABC中,tan∠BAC=B B=12,所以∠ADE=∠BAC,又因为∠BAD=∠BAC+∠DAC=90°,所以∠ADE+∠DAC=90°,则∠AFD=90°,所以AC⊥DE,又因为DE∩DD1=D,DE,DD1⊂平面D1DE,所以AC⊥平面D1DE,又因为AC⊂平面AD1C,所以平面D1DE⊥平面AD1C.【解题技法】关于线、面垂直关系的综合应用(1)三种垂直的综合问题,一般通过作辅助线进行线线、线面、面面垂直间的转化.求解时应注意垂直的性质及判定的综合应用;(2)如果有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.【对点训练】如图,在四棱锥P-ABCD中,侧棱PD⊥底面ABCD,底面ABCD是直角梯形,AB ∥DC,AD⊥DC,且AB=AD=1,PD=DC=2,E是PC上一点.过A,B,E的平面交侧面PDC于l.(1)求证:AB∥l;(2)若E为PC的中点,在线段PB上是否存在一点Q,使得平面PDC⊥平面DEQ?若存在,求出B B的值;若不存在,请说明理由.【解析】(1)梯形ABCD中,AB∥DC,AB⊄平面PDC,DC⊂平面PDC,所以AB∥平面PDC,又AB⊂平面ABE,平面ABE∩平面PDC=l,所以AB∥l;(2)存在点Q,使得平面PDC⊥平面DEQ,此时B B=3,证明如下:连接BD(图略),易得BD=2,BC=12+(2-1)2=2,又PD⊥底面ABCD,CD⊂底面ABCD,BD⊂底面ABCD,则PD⊥DC,PD⊥DB,则PC=4+4=22,PB=22+(2)2=6,则PB2+BC2=PC2,PB⊥BC,又PQ=23PB=263,PE=12PC=2,cos∠BPC=B B=32,由余弦定理得,QE2=PQ2+PE2-2PQ·PE·cos∠BPC=23,则QE2+PE2=PQ2,则QE⊥PC,又DE⊥PC,QE⊂平面DEQ,DE⊂平面DEQ,QE∩DE=E,则PC⊥平面DEQ,又PC⊂平面PDC,故存在点Q,使得平面PDC⊥平面DEQ,此时B B=3.【重难突破】球与几何体的切、接问题【解题关键】(1)“接”的处理:把一个多面体的几个顶点放在球面上即球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.(2)“切”的处理:解决与球有关的内切问题主要是指球内切多面体与旋转体,解答时要先找准切点,通过作截面来解决.如果内切的是多面体,则多通过多面体过球心的对角面来作截面.1.常见几何体的内切球和外接球(1)内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等;(2)正多面体的内切球和外接球的球心重合;(3)正棱锥的内切球和外接球的球心都在高线上.【说明】求外接球或内切球的方法:在球内部构造直角三角形,利用勾股定理求解.2.长方体的外接球(1)球心:体对角线的交点;(2)半径:R a,b,c为长方体的长、宽、高).3.正方体的外接球、内切球及与各条棱相切的球球心是正方体的中心,设a为正方体的棱长.(1)外接球:半径R=32a;(2)内切球:半径r=2;(3)与各条棱都相切的球:半径r'=22a.4.正四面体的外接球与内切球球心是正四面体的中心,a为正四面体的棱长.(1)外接球:半径R=64a;(2)内切球:半径r=612a.【推导如下】设正四面体S-ABC的棱长为a,其内切球的半径为r,外接球的半径为R,如图,取AB的中点D,连接SD,CD,SE为正四面体的高,在截面三角形SDC内作一个与边SD和DC相切,且圆心在高SE上的圆.由正四面体的对称性,可知其内切球和外接球的球心同为O.此时,OC=OS=R,OE=r,CE=33a,SE=63a,则有R+r=SE=63a,R2-r2=CE2=23,解得R=64a,r=612a.类型一外接球问题命题点1柱体的外接球[例1](2023·重庆模拟)已知圆柱O1O2的高O1O2=8,球O是圆柱的外接球,且球O 的表面积是圆柱O1O2侧面积的2倍,则球O的半径为()A.4B.32C.42D.42+23【解析】选C.设圆柱O1O2的底面半径为r,球O的半径为R,则R2=r2+16,因为球O的表面积是圆柱O1O2侧面积的2倍,所以4πR2=2πr×8×2,R2=8r,所以r2+16=8r,所以r=4,R=42(负值舍去).命题点2锥体的外接球[例2](2023·保定模拟)已知正三棱锥S-ABC的所有顶点都在球O的球面上,棱锥的底面是边长为23的正三角形,侧棱长为25,则球O的表面积为()A.25πB.20πC.16πD.30π【解析】选A.如图,延长SO交球O于点D,设△ABC的外心为E,连接AE,AD由正弦定理得2AE=23sin60°=4,所以AE=2,易知SE⊥平面ABC,由勾股定理可知,三棱锥S-ABC的高SE=B2-A2=(25)2-22=4,由于点A是以SD为直径的球O上一点,所以∠SAD=90°,由射影定理可知,球O的直径2R=SD=B2A=5,因此,球O的表面积为4πR2=π×(2R)2=25π.命题点3台体的外接球[例3](2022·新高考Ⅱ卷)已知正三棱台的高为1,上、下底面边长分别为33和43,其顶点都在同一球面上,则该球的表面积为()A.100πB.128πC.144πD.192π【解析】选A.如图所示,设该正三棱台上、下底面所在圆面的半径分别为r1,r2.所以2r1=33sin60°,2r2=43sin60°,解得r1=3,r2=4,设该球的球心到上、下底面的距离分别为d1,d2,球的半径为R,所以d1=2-9,d2=2-16,故1-2=1或d1+d2=1,或2-9+2-16=1,解得R2=25,符合题意,所以球的表面积为S=4πR2=100π.命题点4组合体的外接球[例4](2023·安庆模拟)我国有着丰富悠久的“印章文化”,古时候的印章一般用贵重的金属或玉石制成,本是官员或私人签署文件时代表身份的信物,后因其独特的文化内涵,也被作为装饰物来使用.图1是明清时期的一个金属印章摆件,除去顶部的环以后可以看作是一个正四棱柱和一个正四棱锥组成的几何体,如图2.已知正四棱柱和正四棱锥的高相等,且底面边长均为2,若该几何体的所有顶点都在同一个球的表面上,则这个球的表面积为________.【解析】如图,设正四棱柱和正四棱锥的高为h,则其外接球的半径为R +2h+12h=32h,解得h=1,所以R=32,故球的表面积为S=4πR2=9π.答案:9π【解题技法】求解外接球问题的方法(1)解决多面体外接球问题的关键是确定球心的位置,方法是先选择多面体中的一面,确定此面多边形外接圆的圆心,再过此圆心作垂直此面的垂线,则球心一定在此垂线上,最后根据其他顶点的情况确定球心的准确位置.(2)对于特殊的多面体还可通过补成正方体或长方体的方法找到球心位置.【对点训练】1.在直三棱柱ABC-A1B1C1中,AB=BC=2,∠ABC=π2.若该直三棱柱的外接球的表面积为16π,则该直三棱柱的高为()A.4B.3C.42D.22【解析】选D.因为∠ABC=π2,所以可以将直三棱柱ABC-A1B1C1补成长方体ABCD-A1B1C1D1,则该直三棱柱的外接球就是长方体的外接球,外接球的直径等于长方体的体对角线长.设外接球的半径为R,则4πR2=16π,解得R=2.设该直三棱柱的高为h,则4R2=22+22+h2,即16=8+h2,解得h=22,所以该直三棱柱的高为22.2.如图所示的粮仓可近似看作一个圆锥和圆台的组合体,且圆锥的底面圆与圆台的较大底面圆重合.已知圆台的较小底面圆的半径为1,圆锥与圆台的高分别为5-1和3,则此组合体外接球的表面积是()A.16πB.20πC.24πD.28π【解析】选B.设外接球半径为R,球心为O,圆台较小底面圆的圆心为O1,则O12+12=R2,而OO1=5-1+3-R,故R2=1+(5+2-R)2,解得R=5,此组合体外接球的表面积S=4πR2=20π.3.已知在三棱锥P-ABC中,AB⊥平面APC,AB=42,PA=PC=2,AC=2,则三棱锥P-ABC外接球的表面积为()A.28πB.36πC.48πD.72π【解析】选B.解法1:因为PA=PC=2,AC=2,所以PA⊥PC.因为AB⊥平面APC, AC,PC⊂平面APC,所以AB⊥AC,AB⊥PC.又PA∩AB=A,PA,AB⊂平面PAB,所以PC⊥平面PAB,又PB⊂平面PAB,所以PC⊥PB,则△BCP,△ABC均为直角三角形.如图,取BC的中点为O,连接OA,OP,则OB=OC=OA=OP,即点O为三棱锥P-ABC外接球的球心,在Rt△ABC中,AC=2,AB=42,则BC=6,所以外接球的半径R=3,所以三棱锥P-ABC外接球的表面积S=4πR2=36π.解法2:因为PA=PC=2,AC=2,所以PA⊥PC,△ACP为直角三角形.如图,取AC的中点为M,则M为△PAC外接圆的圆心.过M作直线n垂直于平面PAC,则直线n上任意一点到点P,A,C的距离都相等.因为AB⊥平面PAC,所以AB∥n.设直线n与BC的交点为O,则O为线段BC的中点,所以点O到点B,C的距离相等,则点O即为三棱锥P-ABC外接球的球心.因为AB⊥平面PAC,AC⊂平面PAC,所以AB⊥AC.又AC=2,AB=42,所以BC=6,则外接球的半径R=3,所以三棱锥P-ABC外接球的表面积S=4πR2=36π.解法3:因为PA=PC=2,AC=2,所以PA⊥PC,又AB⊥平面PAC,所以可把三棱锥P-ABC放在如图所示的长方体中,此长方体的长、宽、高分别为2,2,42,则三棱锥P-ABC的外接球即长方体的外接球,长方体的体对角线即长方体外接球的直径,易得长方体的体对角线的长为6,则外接球的半径R=3,所以三棱锥P-ABC外接球的表面积S=4πR2=36π.类型二内切球问题命题点1柱体的内切球[例5]如图,已知球O是棱长为1的正方体ABCD-A1B1C1D1的内切球,则平面ACD1截球O的截面面积为()A.66πB.π3C.π6D.33π【解析】选C.平面ACD1截球O的截面为△ACD1的内切圆,如图.因为正方体的棱长为1,所以AC=CD1=AD1=2,所以内切圆的半径r=66,所以S=πr2=π×636=π6.命题点2锥体的内切球[例6]已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为__________.【解析】易知半径最大的球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中BC=2,AB=AC=3,且点M为BC边的中点,设内切圆的圆心为O,半径为r,由于AM=32-12=22,故S△ABC=12×2×22=22,因为S△ABC=S△AOB+S△BOC+S△AOC=12×AB×r+12×BC×r+12×AC×r=12×(3+2+3)×r=22,解得r=22,故所求体积V=43πr3=23π.答案:23π【解题技法】求解内切球问题的关键点(1)求解多面体的内切球问题的关键是求内切球的半径.(2)求多面体内切球半径,往往可用“等体积法”.V多=S表·R内切·13.(3)正四面体内切球半径是高的14,外接球半径是高的34.【对点训练】1.(2023·本溪模拟)如图所示,直三棱柱ABC-A1B1C1是一块石材,测量得∠ABC= 90°,AB=6,BC=8,AA1=13.若将该石材切削、打磨,加工成几个大小相同的健身手球,则一个加工所得的健身手球的最大体积及此时加工成的健身手球的个数分别为()A.32π3,4B.9π2,3C.6π,4D.32π3,3【解析】选D.依题意知,当健身手球与直三棱柱的三个侧面均相切时,健身手球的体积最大.易知AC=B2+B2=10,设健身手球的最大半径为R,则12×(6+8+10)×R=12×6×8,解得R=2.则健身手球的最大直径为4.因为AA1=13,所以最多可加工3个健身手球.于是一个健身手球的最大体积V=43πR3=43π×23=32π3.2.我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.在封闭的鳖臑P-ABC内有一个体积为V的球,若PA⊥平面ABC,AB⊥BC, PA=AB=BC=1,则V的最大值是()A.52+36πB.5π3C .52-76πD .32π3【解析】选C .球与三棱锥的四个面均相切时球的体积最大,设此时球的半径为R ,则V 三棱锥P-ABC =13·R ·(S △ABC +S △PAB +S △PAC +S PBC ),即13×12×1×1×1=13×R ×(12×1×1+12×1×1+12×1×2+12×1×2),解得R =2-12.所以球的体积V的最大值为43π(2-12)3=52-76π.类型三与外接球有关的最值问题[例7](2023·昆明模拟)四棱锥S -ABCD 的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,当此四棱锥的体积取得最大值时,其表面积等于8+83,则球O 的体积等于()A .32π3B .322π3C .16πD .1623π【解析】选A .设球O 的半径为R ,四棱锥S -ABCD 的高为h ,则有h ≤R ,即h 的最大值是R ,易得AB =2R ,所以四棱锥S -ABCD 的体积V S-ABCD =13×2R 2h ≤23.因此,当h =R时,四棱锥S-ABCD 的体积最大,其表面积等于(2R )2+4×12×2R 8+83,解得R =2,因此球O 的体积为4π33=32π3.【解题技法】与球有关的最值问题的解法(1)从图形的特征入手:观察分析问题的几何特征,充分利用其几何性质解决.(2)从代数关系入手:解题时,通过分析题设中的所有条件,在充分审清题目意思的基础上,从问题的几何特征入手,利用其几何性质,找出问题中的代数关系,建立目标函数,利用函数最值的方法求解.【对点训练】(2023·成都模拟)已知圆柱的两个底面圆周在体积为32π3的球O的球面上,则该圆柱的侧面积的最大值为()A.4πB.8πC.12πD.16π【解析】选B.方法一:设球的半径为R,由球的体积公式得43πR3=32π3,得R=2.设圆柱的底面半径为r,球的半径与上底面夹角为α(0<α<π2),则r=2cosα,所以圆柱的高为4sinα,所以圆柱的侧面积为4πcosα×4sinα=8πsin2α,当且仅当sin2α=1,即α=π4时,圆柱的侧面积最大,所以圆柱的侧面积的最大值为8π.方法二:设球的半径为R,由球的体积公式4πR3=32π3,得R=2.设圆柱的底面半径为r,高为h,则r2+(ℎ2)2=R2=4,所以r2+ℎ24=4≥2hr,即hr≤4,当且仅当r=ℎ2=2时等号成立,所以圆柱的侧面积S=2πrh≤8π,所以圆柱的侧面积的最大值为8π.。
高三数学一轮复习精品教案3:空间点、直线、平面之间的位置关系教学设计
第3课时 空间点、直线、平面之间的位置关系1.理解空间直线、平面位置关系的定义. 2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.『梳理自测』一、平面的基本性质1.长方体ABCD -A 1B 1C 1D 1中,既与AB 共面也与CC 1共面的棱的条数为( ) A .3 B .4 C .5 D .62.平面α,β相交,在α,β内各取两点,这四点都不在交线上,这四点能确定________个平面.『答案』1.C 2.1或4◆以上题目主要考查了以下内容:图形文字语言符号语言公理1如果一条直线上的两点在一个平面内,那么这条直线在此平面内.⎭⎪⎬⎪⎫A ∈lB ∈lA ∈αB ∈α⇒l ⊂α 公理2过不在同一条直线上的三点,有且只有一个平面.A ,B ,C 三点不共线⇒有且只有一个平面α,使A ∈α,B ∈α,C ∈α.公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线若P∈α且P∈β,则α∩β=a,且P∈a.二、空间中两直线的位置关系1.如图,在正方体ABCD-A1B1C1D1中,E,F,G,H分别为AA1,AB,BB1,B1C1的中点,则异面直线EF与GH所成的角为()A.45° B.60°C.90° D.120°2.和两条异面直线都相交的两条直线的位置关系是()A.异面B.相交C.平行D.异面或相交3.空间两个角α,β的两边分别对应平行,且α=60°,则β为()A.60° B.120°C.30° D.60°或120°『答案』1.B 2.D 3.D◆以上题目主要考查了以下内容:(1)空间两直线的位置关系图形语言符号语言公共点平行直线a∥b0个相交直线a∩b=A1个异面直线a,b是异面直线0个(2)平行公理和等角定理①平行公理平行于同一条直线的两条直线平行.用符号表示:设a,b,c为三条直线,若a∥b,b ∥c,则a∥c.②等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.(3)异面直线所成的角①定义:已知两条异面直线a,b,经过空间中任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角或直角叫做异面直线所成的角(或夹角).②范围:⎝⎛⎦⎤0,π2. 三、空间中直线与平面、平面与平面的位置关系1.如果a ⊂α,b ⊂α,l∩a =A ,l∩b =B ,那么下列关系成立的是( ) A .l ⊂α B .l ⊄α C .l∩α=A D .l∩α=B2.若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成________个部分.『答案』1.A 2.7◆以上题目主要考查了以下内容:图形语言符号语言 公共点 直线与平面 相交a∩α=A1个平行a ∥α 0个 在平面内a ⊂α无数个平面与平面平行α∥β0个相交α∩β=l无数个『指点迷津』1.两种方法异面直线的判定方法:(1)判定定理:平面外一点A 与平面内一点B 的连线和平面内不经过该点的直线是异面直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面. 2.三个推论 公理2的三个推论推论1:经过一条直线和这条直线外一点,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面. 推论3:经过两条平行直线,有且只有一个平面. 3.三个作用(1)公理1的作用:①检验平面;②判断直线在平面内;③由直线在平面内判断直线上的点在平面内.(2)公理2的作用:公理2及其推论给出了确定一个平面或判断“直线共面”的方法. (3)公理3的作用:①判定两平面相交;②作两平面相交的交线;③证明多点共线.考向一 平面的基本性质及应用如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD =∠FAB =90°,BC ∥AD 且BC =12AD ,BE ∥AF 且BE=12AF ,G ,H 分别为FA ,FD 的中点. ①证明:四边形BCHG 是平行四边形; ②C ,D ,F ,E 四点是否共面?为什么?『审题视点』 ①线GH ∥AD ∥BC 及等量关系判定平行四边形. ②利用EF ∥CH 构造平面.『典例精讲』 ①由题设知,FG =GA ,FH =HD , 所以GH ∥AD 且GH =12AD ,又BC ∥AD 且BC =12AD ,故GH ∥BC 且GH =BC , 所以四边形BCHG 是平行四边形. ②C ,D ,F ,E 四点共面.理由如下:由BE ∥AF 且BE =12AF ,G 是FA 的中点知,BE ∥GF 且BE =GF ,所以四边形EFGB 是平行四边形, 所以EF ∥BG.由①知BG ∥CH ,所以EF ∥CH , 故EC ,FH 共面. 又点D 在直线FH 上, 所以C ,D ,F ,E 四点共面.『类题通法』 证明点或线共面问题,一般有两种途径:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.1.(2014·台州模拟)以下四个命题中:①不共面的四点中,其中任意三点不共线;②若点A、B、C、D共面,点A、B、C、E共面,则点A、B、C、D、E共面;③若直线a、b共面,直线a、c共面,则直线b、c共面;④依次首尾相接的四条线段必共面.正确命题的个数是()A.0B.1C.2 D.3『解析』选B.①中显然是正确的;②中若A、B、C三点共线则A、B、C、D、E五点不一定共面.③构造长方体或正方体,如图显然b、c异面故不正确.④中空间四边形中四条线段不共面,故只有①正确.考向二空间中两直线的位置关系(2014·江南十校联考)如图,正方体ABCD-A1B1C1D1的棱长为1,点M∈AB1,N∈BC1,且AM=BN≠2,有以下四个结论:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN与A1C1是异面直线.其中正确结论的序号是________.(注:把你认为正确命题的序号都填上)『审题视点』过M、N作某些垂直于棱的直线找平行关系或者构造平面判定.『典例精讲』过N作NP⊥BB1于点P,连接MP,可证AA1⊥平面MNP,∴AA1⊥MN,①正确.过M、N分别作MR⊥A1B1、NS⊥B1C1于点R、S,则当M不是AB1的中点、N不是BC1的中点时,直线A1C1与直线RS相交;当M、N分别是AB1、BC1的中点时,A1C1∥RS,∴A1C1与MN可以异面,也可以平行,故②④错误.由①正确知,AA1⊥平面MNP,而AA1⊥平面A1B1C1D1,∴平面MNP∥平面A1B1C1D1,故③对.综上所述,其中正确命题的序号是①③.『答案』①③『类题通法』空间中两直线位置关系的判定,主要是异面、平行和垂直的判定,对于异面直线,可采用直接法或反证法;对于平行直线,可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;对于垂直关系,往往利用线面垂直的性质来解决.2.如图是正四面体的平面展开图,G、H、M、N分别为DE、BE、EF、EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.『解析』如图所示,GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE⊥MN.『答案』②③④考向三异面直线所成的角(2014·宁波调研)正方体ABCD-A1B1C1D1中.(1)求AC与A1D所成角的大小;(2)若E、F分别为AB、AD的中点,求A1C1与EF所成角的大小.『审题视点』(1)平移A1D到B1C,找出AC与A1D所成的角,再计算.(2)可证A1C1与EF垂直.『典例精讲』(1)如图所示,连接AB 1,B1C,由ABCD-A1B1C1D1是正方体,易知A1D∥B1C,从而B1C与AC所成的角就是AC与A1D所成的角.∵AB1=AC=B1C,∴∠B1CA=60°.即A1D与AC所成的角为60°.(2)如图所示,连接AC、BD,在正方体ABCD-A1B1C1D1中,AC⊥BD,AC∥A1C1,∵E、F分别为AB、AD的中点,∴EF∥BD,∴EF⊥AC.∴EF⊥A1C1.即A1C1与EF所成的角为90°.『类题通法』求异面直线所成角的一般步骤为:(1)平移:选择适当的点,平移异面直线中的一条或两条成为相交直线,这里的点通常选择特殊位置的点,如线段的中点或端点,也可以是异面直线中某一条直线上的特殊点.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.3.(2014·天津和平模拟)已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,E 是AA 1的中点,则异面直线D 1C 与BE 所成角的余弦值为( )A .15B .31010C .1010 D .35『解析』选B .连结A 1B.由题意知A 1D 1綊BC ,所以四边形A 1D 1CB 为平行四边形,故D 1C ∥A 1B.所以∠A 1BE 为异面直线D 1C 与BE 所成的角.不妨设AA 1=2AB =2,则A 1E =1,BE =2,A 1B =5,在△A 1BE 中,cos ∠A 1BE =A 1B 2+EB 2-A 1E 22A 1B·EB =5+2-12×5×2=31010,故选B .平面直线所成的角与三角形内角混淆已知三棱锥A -BCD 中,AB =CD ,且直线AB 与CD 成60°角,点M 、N 分别是BC 、AD 的中点,求直线AB 和MN 所成的角.『正解』 如图,取AC 的中点P. 连接PM 、PN. 则PM ∥AB , 且PM =12AB.PN ∥CD , 且PN =12CD ,所以∠MPN 为AB 与CD 所成的角(或所成角的补角). 则∠MPN =60°或∠MPN =120°, 若∠MPN =60°,因PM ∥AB ,所以∠PMN是AB与MN所成的角(或所成角的补角).又因AB=CD,所以PM=PN,则△PMN是等边三角形,所以∠PMN=60°,即AB与MN所成的角为60°.若∠MPN=120°,则易知△PMN是等腰三角形.所以∠PMN=30°,即AB与MN所成的角为30°.故直线AB和MN所成的角为60°或30°.『易错点』①在△MPN中,找不清AB与CD、AB与MN所成的角.②只得出∠MPN=60°一种情况,而忽略另一种情况∠MPN=120°,即混淆了异面直线所成的角与三角形内角.『警示』(1)在用平行平移将异面直线所成的角转化为三角形的内角时,不要忽视对三角形的内角“即为两异面直线所成的角(或其补角)”的叙述;也就是平移线段后形成的三角形的内角为钝角时,其对应的异面直线所成的角为它的补角.求异面直线所成的角务必注意范围『0°,90°』.(2)解三角形时要注意分析三角形是否为特殊三角形,可使解答简单:如本题的等腰三角形.1.(2013·高考浙江卷)设m、n是两条不同的直线,α,β是两个不同的平面()A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β『解析』选C.可以借助正方体模型对四个选项分别剖析,得出正确结论.A项,当m∥α,n∥α时,m,n可能平行,可能相交,也可能异面,故错误;B项,当m∥α,m∥β时,α,β可能平行也可能相交,故错误;C项,当m∥n,m⊥α时,n⊥α,故正确;D项,当m∥α,α⊥β时,m可能与β平行,可能在β内,也可能与β相交,故错误.故选C.2.(2013·高考全国新课标卷)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l『解析』选D.结合给出的已知条件,画出符合条件的图形,然后判断得出.根据所给的已知条件作图,如图所示.由图可知α与β相交,且交线平行于l,故选D.3.(2012·高考重庆卷)设四面体的六条棱的长分别为1,1,1,1,2和a,且长为a的棱与长为2的棱异面,则a的取值范围是()A.(0,2)B.(0,3)C.(1,2) D.(1,3)『解析』选A.根据题意构造四面体ABCD,AB=a,CD=2,AC=AD=BC=BD=1,取CD中点E,连结BE,AE,则AE=BE=2 2.又∵a<22+22=2,∴0<a< 2.故选A.4.(2013·高考江西卷)如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.『解析』取CD的中点为G,由题意知平面EFG与正方体的左、右侧面所在平面重合或平行,从而EF与正方体的左、右侧面所在的平面平行或EF在平面内.所以直线EF与正方体的前、后侧面及上、下底面所在平面相交.故直线EF与正方体的六个面所在的平面相交的平面个数为4.『答案』4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块:十一、立体几何
课题:3、空间直线与平面
教学目标:掌握空间直线与平面的位置关系,掌握直线与平面平行与垂直的判定及性质运用.掌握简单的直线与平面所成角的求法.
重难点:掌握直线与平面平行与垂直的判定及性质运用.掌握简单的直线与平面所成角的求法.
一、知识要点
1、直线和平面的位置关系
(1)直线在平面内(无数个公共点);
(2)直线和平面相交(有且只有一个公共点);
(3)直线和平面平行(没有公共点)
2.线面平行
(1)判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.
(2)性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.
3、线面垂直
(1)判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.
(2)性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.
二、例题精讲
例1、两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB且AM=FN,求证:MN∥平面BCE
例2、正方体ABCD—A1B1C1D1中,侧面对角线AB1、BC1上分别有两点E、F,且B1E=C1F.求证:EF∥平面ABCD
例3 、已知正四棱锥P—ABCD的底面边长及侧棱长均为13,M、N分别是P A、BD上的点,且PM∶MA=BN∶ND=5∶8.
(1)求证:直线MN∥平面PBC;
(2)求直线MN与平面ABCD所成的角.
答案:(2)arcsin
72
4
例4、设a、b是异面直线,AB是a、b的公垂线,过AB的中点O作平面α与a、b分别平行,M、N分别是a、b上的任意两点,MN与α交于点P,求证:P是MN的中点.
例5、在直三棱柱ABC—A1B1C1中,AB1⊥BC1,AB=CC1=a,BC=b.
(1)设E、F分别为AB1、BC1的中点,求证:EF∥平面ABC;
(2)求证:A1C1⊥AB;
(3)求点B1到平面ABC1的距离.
答案:(3
例6、已知直线a⊥平面α,直线b⊥平面α,O、A为垂足.求证:a∥b.
例7、已知P A⊥⊙O所在的平面,AB是⊙O的直径,C是⊙O上任意一点,过A点作AE⊥PC 于点E,求证:AE⊥平面PBC.
例8、在正方体ABCD-A1B1C1D1中,E、F分别是BB1,CD的中点.
(1)求证:AD⊥D1F;(2)求AE与D1F所成的角;(3)证明平面AED⊥平面A1FD1.
三、课堂练习
1、设PA,PB,PC是从点P引出的三条射线,每两条的夹角都等于60°,则直线PC与平面APB所成角的余弦值是_______________.
答案:
3
2、空间四边形ABCD的边长和对角线均为1,边AB∥平面α,则空间四边形上所有顶点在平面α上的射影构成的图形面积的取值范围是.
答案:
1 ,] 42
3、在直三棱柱ABC—A1B1C1中,B1C1=A1C1,A1B⊥AC1,求证:A1B⊥B1C.
4、在长方体ABCD-A
1B
1
C
1
D
1
中,设AA
1
=2,AB=4,求B
1
C
1
到平面A
1
BCD
1
的距
离.
答案:5
54.
四、 课后作业
一、填空题
1、空间中有四个点,如果其中任意三点都不在同一条直线上,那么经过其中三点的平面最多有 个.
答案:4
2、如图在长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、
G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角
是 .
答案:2
π 3、已知△ABC 中,AB=9,AC=15,∠BAC=120°,△ABC 所在平面外一点P 到此三角形三个顶点的距离都是14,则点P 到平面ABC 的距离是 .
答案:7
4、平面α外的一侧有一个三角形,三个顶点到α的距离分别是7,9,13.则这个三角形的重心到α的距离为 _______________.
答案:293
5、ABCD 是空间四边形,E 、F 、G 、H 分别是四边上的点,并且AC 面EFGH ,BD 面EFGH ,,AC m BD n ==当EFGH 是菱形时,:AE EB =____________________. 答案:m n
6、在正方体1111ABCD A B C D -中,该正方体的12条棱所在直线与过顶点A 及另两个顶点的平面所成的角的大小相等的平面可以是 (只要写出一个符合的即可). 答案:平面11AD B 或平面1ACD
二、选择题
7、用α表示一个平面,l 表示一条直线,则平面α内至少有一条直线与l ( )
A .平行
B .相交
C .异面
D .垂直
答案:D
8、对于平面α和共面..
的直线m 、,n 下列命题中真命题是( ) A .若,,m m n α⊥⊥则n α∥
B .若m αα∥,n ∥,则m ∥n
C . 若m 在α上,n α∥,则m ∥n
D .若m 、n 与α所成的角相等,则m ∥n
答案:C
9、对于已知直线a ,如果直线b 同时满足下列三个条件:①与a 是异面直线;②与a 所成的角为定值;③与a 的距离为定值d .则这样的直线b 有( )
A .0条
B .1条
C .2条
D .无数条
答案:D
三、解答题
10、在ΔABC 中,已知AB =6,AC =8,BC =10,P 为平面ABC 外的一点,且PA =PB =PC =7,求点P 到平面ABC 的距离.
答案:26.
11、已知在空间四边形ABCD 中,AB =AC =AD =BC =1,CD =2,且∠BCD =90o .求:
(1)点A 到平面BCD 的距离;(2)AC 与平面BCD 所成的角的大小.
答案:(1)
21;(2)30o .
12、已知长方体1111ABCD A B C D ,点E 在是棱1DD 的中点,1BD 与底面ABCD 所成的角为060,AB =AD=1.
(1)求证:1BD ∥平面EAC ;
(2)求异面直线11A B 与AC 之间的距离;
(3)求1AB 与平面AEC 所成的角.
答案:(1)略;(2
;(3
)arcsin 28
D 1 C 1 B C A 1 B 1 D
E A。