2.2.2 整式的加减
2024秋七年级数学上册第二章整式的加减2.2整式的加减2去括号教案(新版)新人教版
1.提供与本节课内容相关的拓展阅读材料:
《代数运算指南》:这本书详细介绍了代数的基本概念和运算方法,包括整式的加减、乘除等。通过阅读这本书,学生可以进一步加深对整式加减的理解和掌握。
《数学问题解决策略》:这本书提供了一系列的数学问题解决方法,包括代数问题的解决方法。学生可以通过阅读这本书,学习到更多的数学问题解决策略,提高解决问题的能力。
九.重点题型整理
1. 去括号
(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
例题:去括号:-(a + b)= -a - b
(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
例题:去括号:-(a - b)= a - b
2. 合并同类项
(1)找出整式中的同类项,即具有相同字母和相同指数的项。
(2)解决实际问题,如计算购物找零、面积计算等。
例题:综合应用:计算购物找零:28 - 5(3 + 2) - 1 = 28 - 5*5 - 1 = 28 - 25 - 1 = 2
5. 整式加减的实际应用
(1)将整式加减应用于实际问题,如购物找零、计算面积等。
例题:实际应用:计算购物找零:32 - 5(4 + 2) = 32 - 5*6 = 32 - 30 = 2
在教学过程中,我发现学生们对去括号和合并同类项这两个重点内容的理解存在一定的困难。因此,我特别强调了这两个重点,并通过举例和比较来帮助学生理解。通过小组讨论和实践活动,学生们能够更好地将理论知识应用到实际问题中,提高了解决问题的能力。
在教学过程中,我也注意到了学生的参与度和互动情况。通过鼓励学生提问和参与小组讨论,我能够及时解答学生的疑问,帮助学生克服难点,提高学习效果。
七年级数学上册教学课件《整式的加减(第2课时)》
课堂检测
拓广探索题
2.2 整式的加减
先化简,再求值:2(a+8a2+1–3a3)–3(–a+7a2–2a3), 其中a=–2.
解:原式=–5a2+5a+2
a=–2时,原式=–28.
课堂小结
2.2 整式的加减
括号前是 “+”
去括号法则
括号前是
“–”
如果括号外的因数是正数,去括 号后原括号内各项的符号与原来 的符号相同;
课堂检测
2.2 整式的加减
2. 不改变代数式的值,把代数式括号前的“–”号变成
“+”号,
结果应是( D )
A.a+(b–3c)
B. a+(–b–3c)
C. a+(b+3c)
D. a+(–b+3c)
3. 已知a–b= –3,c+d=2,则(b+c)–(a–d)的值为( B )
A.1
B.5
C.–5
D.–1
课堂检测
基础巩固题
2.2 整式的加减
1. 下列去括号的式子中,正确的是( C ) A. a2–(2a–1)= a2–2a–1 B. a2+(–2a–3)= a2–2a+3 C. 3a– [5b – (2c–1)]= 3a–5b +2c–1 D. –(a +b) + (c–d)= –a – b –c+d
飞机顺风飞行4小时的行程是 4(x+20)=(4x+80)(千米). 飞机逆风飞行3小时的行程是 3(x–20)=(3x–60)(千米). 两个行程相差 (4x+80)–(3x–60)= 4x+80–3x+60=x+140(千米).
人教版数学七年级上册2 第3课时
16
• 尝试应用: • (1)把(a-b)2看成一个整体,合并3(a-b)2-6(a-b)2+2(a-b)2的结果是
___-__(_a-__b_)_2 ______ . • (2)已知x2-2y=4,求3x2-6y-21的值; • 拓广探索: • (3)已知a-2b=3,2b-c=-5,c-d=10,求(a-c)+(2b-d)-(2b-c)
无论字母a取何数,整式的值恒为一个不变的数,你知道小敏所取的字 母b的值是多少吗?
14
解:(1)原式=4(a2+2b2+2ab-4)-4a2-8b2-2ab+2a+2=4a2+8b2+8ab-16 -4a2-8b2-2ab+2a+2=6ab+2a-14.
(2)由题意可知 ab=1,所以原式=6+2a-14=0,所以 a=4,b=14 . (3)原式=(6b+2)a-14 恒为一个常数,所以 6b+2=0,所以 b=-13 .
• 解:若某人乘坐了x(x>5)千米的路程,则该付5+1+3×1.5+(x- 5)×2.5=(2.5x-2)元.当x=8时,2.5x-2=18.即当他乘坐了8千米的 路程时,应付费18元.
12
• 17.任意写一个三位数,交换这个三位数的百位数字和个位数字(个位 不为0),又得到一个新数,计算这两个数的差,再写几个三位数重复 上面的过程,你发现这些差有什么规律?你能说明你发现的规律对任 意一个三位数都成立吗?
2.2.2整式的加减(三)-上课用
记本和圆珠笔共花费(4x+3y)元。
小红和小明一共花费(3x+2y)+(4x+3y) =3x+2y+4x+3y =7x+5y (元) 解法二:小红和小明买笔记本共花费(3x+4x)元,买圆珠笔共 花 费(2y+3y)元。小红和小明一共花费 (3x+4x)+(2y+3y)
三.例题讲解
例3.做大小两个长方体纸盒,尺寸如下(单位:cm): (1)做这两个纸盒共用料多少厘米2?
练习. 若M=3x2-5x+10,N=3x2-4x+10,则M与N的大小 关系是( ) (A)M>N (B)M=N (C)M<N (D)无法确定
(2)(8a 7b) (4a 5b)
}
三.例题讲解
例2.一种笔记本的单价是x 元,圆珠笔的单价是y元, 小红买这种笔记本3个,买圆珠笔2支;小明买这种笔 记本4个,买圆珠笔3支。买这些笔记本和圆珠笔,小 红和小明一共花费多少钱?
解法一:小红买笔记本和圆珠笔共花费(3x+2y)元,小明买笔
式子表示出来。再进行整式的加减运算)。
3.比较复杂的式子求值问题解决步骤(两步走) : 先化简,再求值.
祝同学们学 习愉快!!
补例1 .有这样一道题: “计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的 值. 其中x=2,y=-1”.小明把x=2错抄成x=-2,但他计算的结 果也是正确的,你说这是为什么? 分析:要说明把x=2误代入x=-2计算的结果不变,则需要 将整数进行化简,通过化简的结果说明与x=2还是 x=-2没有关系.
2.2.2整式的加减-去括号法则教学设计人教版数学七年级上册
整式的加减去括号法则教学设计一、案例背景七年级数学二章第二节第2课时“整式的加减去括号法则”二、教学设计(一)教学目标(基于学科核心素养的教学目标)1.知识与技能:能运用运算律探究去括号法则,并且利用去括号法则将整式化简.2.过程与方法:经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力3.情感态度与价值观:培养学生主动探究、由生活中的实例体会数学来源于生活又高于生活.(二)内容分析1.教材分析:本节课的教学内容《去括号》是中学数学部分的一个基础知识点,是在前面学习了有理数、单项式、多项式、同类项、合并同类项的基础上来学习的,它是整式的化简和整式的加减的基础,为进一步学习下一章一元一次方程等后续数学知识做好准备,同时也是是以后分解因式、解方程(组)与不等式(组)、函数等知识点当中的重要环节之一,对于七年级学生来说接受这个知识点存在一个思维上的转换过程,同时它也是一个难点,因此去括号在初中数学教材中有其特殊地位和重要作用。
2.学生分析:七年级的学生在前面已经学习了有理数的运算、单项式、多项式、整式、合并同类项,而且在小学就学习了乘法分配律并用其进行简便运算,已经积累了一定的学习经验,但是对于七年级的学生用字母表示数以及式的运算还不太熟悉,前面学生已经学习了“字母表示数”的问题,接下来要让学生理解字母可以像数一样进行计算,所以本节课类比数学习式,数的运算性质和运算律在式的运算中仍然成立,让学生通过类比学习充分体会“数式通性”,为学习整式的加减运算打好基础,从而实现数到式的飞跃。
3.教学重点、难点:教学重点:去括号法则,准确应用法则将整式化简.教学难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误。
(三)教学策略设计1.教学方法设计:根据七年级学生的思维所呈现出的具体、直观、形象之特点,为突破本节课的难点,我选用“类比——探索——发现”的教学模式。
七年级数学上册第二章整式的加减2.2整式的加减(第四课时)整式的加减(2)教案(新版)新人教版
七年级数学上册第二章整式的加减2. 2整式的加减(第四课时)整式的加减(2)教案(新版)新人教版一、教学目标(-)学习目标1 .熟练掌握整式的加减运算法则,并能准确化简求值.2 .体会整体代入法的作用.3 .准确的运用去括号法则、合并同类项法则进行整式的化简求值.(二)学习重点熟练掌握整式的加减运算法则,并能化简求值.(三)学习难点准确的运用整体代入的方法化简求值.体会整体的代入方法的作用.二、教学设计(-)课前设计1 .预习任务整式的化简求值一般先一化简,再求值 .2 .预习自测(1)化简:-(a -h)2+\ 3(a - b)2 - 8(« - b)2 + 7(a - b)2. 2【知识点】合并同类项.【数学思想】整体思想.1 25【解题过程】解:原式=(一 + 13-8 + 7)(0-。
)2 二一(々一。
)2. 2 2【思路点拨】根据同类项,把同类项结合到一起,根据合并同类项,可得答案.9S【答案】—(a-b)2. 2(2)化简:6x2y + 2xy^-3x2y2 -7x-5yx-4y2x2 -6x2y .【知识点】合并同类项.【解题过程】解:原式二—7/),2—3邛—7-【思路点拨】根据合并同类项的法则求解即可.【答案】-7x2r-3^-7x.(3)化简求值:(7〃?。
-4〃?〃 -4,/)一(2"/ 一+ 2/J);其中/7? = ■!■ ; // =-- 22【知识点】去括号、合并同类项.【解题过程】解:原式=7〃/一4〃〃?一4/一2〃72+〃〃?一2万=5m2 -3//Z/Z-6/?2当〃2 =—, 〃 = 一工时,5m2 -36〃-6/ =5x(—)2 - 3x — x(--)-6x(--)2 =— 2 2 2 2 22 2【思路点拨】先化简再代入求值,可以简化计算.【答案】2(4)化简求值:(1〃2_2〃-6)-1(!〃2-4a-7),其中〃=2.3 2 2【知识点】化简求值【解题过程】解:(L『-2«-6)--(—i/2-4a-7) =-a2 -2a-6- — a2+2a + — = — a2-- 3 2 2 3 4 2 12 2i 5 i Q当a = 2时,原式二上x2?—二二一上.12 2 6【思路点拨】先化简再代入求值,可以简化计算.13【答案】—上6(二)课堂设计1 .知识回顾(1)去括号法则是.注意:①去括号,看符号,是“+”不变号,是“一”全变号.②括号前的因数分配到括号内不要漏乘项.③去括号前后项数一致.(2)合并同类项的法则:系数相加,字母和字母的指数不变.(3)整式加减运算实际是,2 .问题探究探究一•活动①(整合旧知,探究整式的化简求值)化简求值:4x?),一[6个一3(4\y-2)-x1] + l,其中x = 2,2学生独立自主的解决,老师巡视,发现学生在解题过程中的不同方法.抽两个不同方法的学生板书(一个是直接代入求值,另一个先化简再求值)师问:比较两解法,哪种方法更简单?生答:先化简再求值更简单一些.师问:你们能总结整式的化简求值的方法步骤吗?生答:先化简,再求值【设计意图】使学生进一步理解掌握整式的加减法则,熟练进行整式的化简求值,掌握化简求值的格式要求.探究二•活动①(大胆操作,探究整体思想代入求值)已知代数式2/+3y + l的值是2,求6r+9)、-7的值.师问:题目没有直接告知x和y的值,如何求值呢?引导学生观察与思考.【设计意图】让学生初步认识整体思想的作用.・活动②(集思广益,证明整体代入的方法)师问:注意观察条件和结论中含字母的部分的系数有何特征?生答:成倍数关系师问:这类型的题目用什么方法求值呢?法一、由条件向结果转化V 2x2+3y + \ = 2,则3(2x2+3y + l) = 3x2,则6』+9y + 3 = 6, A 6x2+9y = 3. ・•.把6/ + 9 y作为整体带入6/ + 9 y - 7得值是-4法二、由结果向条件转化6/+9),一7:3(2/+3乃一7,再由2丁+3y + l = 2得2/+3y = 1,・••原式二—4 【设计意图】让学生认识到整体带入的数学思想使运算化简更简便.探究三运用整式的加减化简求值・活动①i i 3 1 ?例L 求Lx — 2(x —:y2) +(—, x + =),2)的值,其中工=—2,),=二.2 3 2 3 3【知识点】整式的化简求值.1 1 3 1【解题过程】解:ix-2(x-ir)+(--x+ir)2 3 2 31 个2)3 1 ,=—x-2x + — ~ — x + - y2 3, 2 3.= -3x+y2当x = -2, y = g时,原式二(一3)乂(一2) + ($2=6 + [=62.【思路点拨】先化简,再求值.4【答案】6-.9练习:先化简,再求值:12(。
2.2_整式的加减(教案)
一、教学内容
2.2_整式的加减:本节教学内容来自七年级数学上册,主要包括以下内容点:(1)理解整式的概念,掌握整式的加减法则;(2)能够正确列出整式,进行整式的加减运算;(3)掌握合并同类项的方法,并运用到实际问题中。具体内容包括:单项式与多项式的定义、同类项的辨识、合并同类项、整式的加减运算。通过本节内容的学习,使学生能够熟练掌握整式的加减运算,为后续学习打下基础。
三、教学难点与重点
1.教学重点
(1)整式的概念:使学生理解并掌握单项式、多项式的定义,能够辨识各种整式。
举例:如2x、-3xy、4x^2y等是单项式;3x+2y、4x^2-5xy+6等是多项式。
(2)整式的加减法则:使学生熟练掌握整式加减运算的步骤和方法,特别是合并同类项。
举例:如2x+3x=5x,-4xy-2xy=-6xy。
3.重点难点解析:在讲授过程中,我会特别强调整式的加减法则和合并同类项这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与整式加减相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。例如,通过计算不同物品的价格总和,演示整式的加减原理。
(3)应用整式加减解决实际问题:培养学生将现实问题抽象为整式加减运算,并能正确求解。
举例:某商品的单价为x元,购买a个该商生需掌握辨识同类项的规则,包括字母相同、指数相同。
举例:2x与3x是同类项,但2x与2x^2不是同类项。
(2)合并同类项:学生需学会将同类项的系数相加减,字母及指数保持不变。
举例:2x+3x=5x,而不是6x;4x^2-3x^2=x^2,而不是7x^2。
人教版数学七年级上册2.2.2整式的加减去括号法则教学设计
1.通过小组合作、讨论交流等方式,让学生在自主探究中发现整式的加减运算规律,培养学生独立思考、合作解决问题的能力。
2.通过实际例子的讲解,让学生理解整式的加减运算在实际问题中的应用,提高学以致用的能力。
3.引导学生总结和归纳整式的加减运算方法,培养学生的逻辑思维和概括能力。
4.设计不同难度的练习题,让学生在练习中巩固所学知识,提高解题技巧。
在教学过程中,教师应关注学生的情感态度,激发学生的学习兴趣,鼓励学生积极参与课堂讨论,培养良好的数学思维习惯。同时,注重课后辅导,针对学生的薄弱环节进行有针对性的指导,提高学生的学习效果。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-理解并掌握去括号法则,能够灵活运用到整式的加减运算中。
-能够正确识别和合并同类项,提高整式运算的速度和准确性。
3.实际应用题:布置2道与生活实际相关的问题,要求学生将问题转化为整式加减运算。这类题目旨在让学生体会数学知识在实际生活中的应用,培养学生的应用意识和创新精神。
4.思考总结题:要求学生撰写一篇关于本节课学习心得的短文,内容包括对去括号法则的理解、操作步骤、注意事项等。这有助于学生对自己的学习过程进行反思,提高自我学习能力。
-评价内容不仅包括整式加减运算的正确性和速度,还包括学生在解决问题时的思维过程和方法运用。
-鼓励学生自我评价和同伴评价,培养学生的自我反思和批判性思维能力。
4.教学拓展:
-结合本章节内容,引导学生探索整式加减运算在实际问题中的更广泛应用。
-开展数学活动,如数学竞赛、数学游戏等,激发学生的学习兴趣,提高学生的数学素养。
人教版数学七年级上册2.2.2整式的加减去括号法则教学设计
一、教学目标
2.2.2_整式的加减
(1)
1 1 5(3a 2b − ab 2 ) − (ab 2 + 3a 2b), 其中a = , b = . 2 3
已知 A = 2a 2 − a , B = − 5a + 1, 求当 a = 1 时, 3A − 2B + 1的值。 2
ห้องสมุดไป่ตู้
(2)
随堂练习: 3.合并同类项 ①X3-2X2+3X-1-5X+2+2X ④-mn+2mn-3mn2+4mn2 练一练 计算下列各题:
2
3
2
2
(1) 5a2+4-2a
(2) x2-x4+2-5x
2.把多项式降幂排列 瞧一 瞧 : 下列各题计算的结果对不对?如果不对,指出错在哪里?
2x4y + x3y
2
− 3x2y
3
+
2 x + 2 3
(1 ) (3)
例1
3 a + 2 b = 5 ab ( 2 ) 2 ab − 2 ba = 0 ( 4 )
比较③、④两式,你能发现去括号时符号变化的规律吗? 思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师 板书(或用屏幕)展示: 如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相 同; 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反. 特别地,+(x-3)与-(x-3)可以分别看作 1 与-1 分别乘(x-3). 利用分配律,可以将式子中的括号去掉,得: +(x-3)=x-3 (括号没了,括号内的每一项都没有变号) -(x-3)=-x+3 (括号没了,括号内的每一项都改变了符号) 去括号规律要准确理解, 去括号应对括号的每一项的符号都予考虑,做到要 变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项. 二、范例学习 例 1.化简下列各式: (1)8a+2b+(5a-b); (2)(5a-3b)-3(a2-2b). 思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要 变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号. 为了防止错误,题(2)中-3(a2-2b),先把 3 乘到括号内,然后再去括号. 解答过程按课本,可由学生口述,教师板书. 例 2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水, 两船在 静水中的速度都是 50 千米/时,水流速度是 a 千米/时. (1)2 小时后两船相距多远? (2)2 小时后甲船比乙船多航行多少千米? 教师操作投影仪,展示例 2,学生思考、小组交流,寻求解答思路. 思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度, 船逆水 航行速度 =船在静水中行驶速度-水流速度.因此,甲船速度为( 50+a)千米 / 时,乙船速度为(50-a)千米/时,2 小时后,甲船行程为 2(50+a)千米,乙 船行程为(50-a)千米. 两船从同一洪口同时出发反向而行,所以两船相距等 于甲、乙两船行程之和. 解答过程按课本. 去括号时强调: 括号内每一项都要乘以 2, 括号前是负因数时, 去掉括号后, 括号内每一项都要变号.为了防止出错,可以先用分配律将数字 2 与括号内的 各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号. 三、巩固练习 1.课本第 68 页练习 1、2 题. 2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2. [5xy2] 思路点拨:一般地,先去小括号,再去中括号. 四、课堂小结 去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-” 号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律 可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数 字要乘以括号内的每一项,切勿漏乘某些项. 学生作总结后教师强调要求大家应熟记法则,并能根据法则进行去括号运算。 法 则顺口溜:去括号,看符号:是“+”号,不变号;是“―”号,全变号。
2.2.2 整式的加减——去括号 说课稿 2022—2023学年人教版数学七年级上册
2.2.2 整式的加减——去括号说课稿一、教材分析1. 教材内容本课时是数学七年级上册的第2单元第2节课,主要内容是整式的加减——去括号。
本节课的教学目标是让学生能够理解整式的加减法则,掌握去括号的方法,培养学生运算能力和思维能力。
2. 教学重点和难点本节课的教学重点是引导学生掌握整式的加减法则和去括号的方法。
教学难点在于让学生理解去括号的原理和运用去括号方法解决问题。
3. 教学准备为了能够有效地教授本节课,我准备了以下教学准备:•教案和课件•学生的课本和作业本•黑板和粉笔•各种整式的例题和练习题二、教学过程1. 导入新课通过提问学生已学过的内容,引导学生回忆整式的定义和加减法则,为本节课的学习做铺垫。
2. 介绍整式的去括号方法通过一个简单的例子,向学生展示括号中的项如何进入的去括号过程,引导学生理解去括号的原理和规则。
3. 整式的加减法则结合具体例子,向学生展示整式的加减法则,包括同类项相加减和不同类项相加减的步骤和规则。
4. 练习与巩固让学生在黑板上完成一些练习题,巩固整式的加减法则和去括号的方法。
5. 拓展思考提出一些拓展问题,让学生思考整式的运算性质和应用。
三、教学方法1. 案例教学法通过具体的案例和例题,引导学生理解整式的加减法则和去括号的方法。
2. 合作学习法在练习与巩固环节,鼓励学生进行小组合作,互相讨论和解决问题,提高学生的思维能力和合作能力。
3. 智慧板教学法结合智慧教育技术,使用智慧板进行教学,可以更加直观地展示各种整式的加减过程和去括号的方法。
四、教学评估1. 自我评估通过观察学生的表现和听取学生的回答、解题过程,评估学生是否掌握了整式的加减法则和去括号的方法。
2. 学生评估通过给学生一些作业题目,让他们在课后完成,再进行评估。
可以通过作业的完成情况和成绩来评估学生的学习效果。
五、板书设计去括号公式:(a + b) + c = a + b + c(a + b) - c = a + b - ca - (b + c) = a - b - c六、教学反思本节课的教学目标是引导学生理解整式的加减法则和去括号的方法。
七年级数学上册教学课件《整式的加减(第3课时)》
大纸盒的表面积是( 6ab +8bc + 6ac )cm2 .
(1)做这两个纸盒共用料
(2ab+2bc+2ac)+(6ab+8bc+6ac)
= 2ab+2bc+2ac+6ab+8bc+6ac = 8ab+10bc+8ac (cm2)
c
a
b
2c
2b 1.5a
探究新知
2.2 整式的加减
(2)做大纸盒比小纸盒多用料多少平方厘米? 小纸盒的表面积是(2ab+2bc+2ac)cm2. 大纸盒的表面积是(6ab+8bc+6ac)cm2.
还是一样多.
课堂小结
2.2 整式的加减
整式的加减
整式加减的步骤
列代数式 去括号 合并同类项
整式加减的应用
课后作业
作业 内容
2.2 整式的加减
教材作业 从课后习题中选取 自主安排 配套练习册练习
解:3a2–2(2a2+a)+2(a2–3a) =3a2–4a2–2a+2a2–6a =a2–8a. 当a= –2时,原式=(–2)2–8×(–2)=4+16=20.
(2)5x2y– [3x2y–2(2xy–x2y) –4x2]–3xy,其中x= –3, y= –2.
解:原式=5x2y–[3x2y–4xy+2x2y–4x2]–3xy =5x2y–3x2y+4xy–2x2y+4x2–3xy =4x2+xy. 当x= –3, y= –2时,原式=4×(–3)2+(–3)×(–2)=36+6=42.
答:种果树的地有2b亩.
2.2.2整式的加减
例2 2 2 2 2 x - 5 x + x + 4 x - 3 x -2 的值, (1)求多项式
1 其中 x = 2
;
1 2 1 2 (2)求多项式 3a+abc- c -3a+ c 的值, 3 3 1 c -3 其中 a - , b 2 , 6
2 2 (2)求多项式5abc+ b -3c+2-3abc+3c 3 1 的值, 其中a=- ,b=3,c=-2. 2
义务教育教科书
数学
七年级
上册
2.2 整式的加减 (第2课时)
知识要点
同类项
所含字母相同,并且相同字母的指 数也相同的项叫做同类项. 另外,所有的常数项都是同类项.
2.下列各对不是同类项的是( B A.-3x2y与2x2y C.-5x2y与3yx2
)
B. -2xy2与 3x2y D. 3mn2与2mn2
降幂排列:
如:-4m3-3m2+m+7 .
升幂排列:
如:7 +m -3m2 -4m3.
练一练
合并同类项
(1)x3-3x2+2x3-4+6x2+3x3;
6x3+3x2-4
(2)-ay +6bx-3ay-5bx;
-4ay+bx
(3)3mn-2m+n-2+6n-2m- 5-3mn;
-4m+7n-7
(4)-3xy+6xy-3xy2+4xy2.
3.合并同类项正确的是( B ) A.4a+b=5ab C.6x2-4x2=2 B.6xy2-6y2x=0 D.3x2+2x3=5x5
指出下列多项式中的同类项. (1)3x-2y+1+3y-2x-5 (2) 3x2y-2xy2 +5xy2 -6x2y (1)3x与-2x是同类项,-2y与3y是同 类项,1与-5是同类项.
2.2.2整式的加减运算
应用练习
(1)
第三组
(2x-3y)+(5x+4y)
=2x+5x-3y+4y
解:原式=2x-3y+5x+4y
=7x+y
(2)(8a-7b)-(4a-5b)
解:原式= 8a-7b-4a+5b
=8a-4a-7b+5b =4a-2b
应用练习
1.
第四组
3x+(5y-2x)
解:原式=3x+5y-2x =X+5y 2. 8y-(-2x+3y) 解:原式=8y+2x-3y =2x+5y
3.
-2(8a+2b)+4(5a+b)
解:原式=-16a-4b+20a+4b=4a 4. 3(5a-3c)-2(a-c) 解:原式=15a-9c-2a+2c=13a-7c
应用练习
1.
第五组
(5a-3b) – 3(a2 -2b)+7(3b+2a)
解:原式=5a-3b-3a2+6b+21b+14a =5a+14a+(-3b+6b+21b)- 3a2 =19a+24b - 3a2
练习:已知M=3x2-2xy+y2,N=2x2+xy-3y2,
求2M-3N的值(其中x=1,y=-2)。
作业 P69. 练习2 P70. 4题 、5题
再 见 碑
2
y )
2
= 3x y
当
x=-2,y=
2 3
时 ,
原 式 = ( - 3 )( 2)(
2 3
2.2.2整式的加减---去括号
三、合作探究:
研讨2(知识点:去括号法则的应用) 化简下列各式:
(1)8a+2b+(5a-b) ;
(2) (5a-3b)-3(a -2b) ;
2
三、合作探究:
研讨3(知识点:去括号法则的应用) 例5 两船从同一港口同时出发反向而行,甲船 顺水,乙船逆水,两船在静水中的速两船相距多远? (2)2小时后甲船比乙船多航行多少千米?
2.2.2整式的加减---去括号
年级:七年级 学科:数学 课型:新授 编制人:
【励志语录】:一个人,想要优秀,你必须要接 受挑战;一个人,你想要尽快优秀,就要去寻找挑 战。 【学习目标】 1.能运用运算律探究去括号法则,并且利用去括 号法则将整式化简。 2.通过去括号法则的探究,体会数与式的关系。
三、合作探究:
研讨4(知识点:去括号法则的应用,合并同类 项)
化简求值: (4a 2a 6) 2(2a 2a 5) 其中 a 1 。
2 2
四、直击中考
(2011,台湾,3,4分)化简5(2x-3)-4(3-2x) 之后,可的下列哪个结果( ) A、2x-27 B、8x-15 C、12x-15 D、18x-27
一、激趣明标:
【复习旧知】 1.合并同类项:
(1) 7a 3a (2) 4 x 2 2 x 2
2 2 (3) 5ab 13ab
(4) 9x y 9x y
2 3 2
3
预习检测
1.如果括号外的因数是正数,去括号后原括号内 各项的符号与原来的符号 __________;如果括 号外的因数是负数,去括号后原括号内各项的 符号与原来的符号__________。
2.去括号: a (b c) ______________; a (b c) _______________。
2.2.2整式的加减二(求代数式的值)
练习: 2 ,则 x 1 4 x 1
16
;
x y 2 (7) 若 x y
x y x y 3 2 2 ,则 x y x y
。
六、小结本节课内容:
1、求代数式的值的步骤:(1)化简(2)代入,(3)计算; 2、求代数式的值的注意事项: (1)代入数值前应先指明字母的取值,把“当……时 ”写出来。 (2)如果字母的值是负数、分数,并且要计算它的乘 方,代入时应加上括号; (3)代数式中省略了乘号时,代入数值以后必须添上 乘号。 3、相同的代数式可以看作一个字母——整体代换。 4、代数式的值的广泛应用:计算机编程(包括用Excel 处理数据等)、经济、生活等方面的应用。
例3: (1)水库中水位第一天连续下降了a小时,每小 时平均下降2cm;第二天连续上升了a小时, 每小时平均上升0.5cm,这两天水位总的变化 情况如何?
解:(1)把下降的水位变化量记为负,上升的水位变 化量记为正,第一天水位的变化量为-2a cm,第二
天水位的变化量为0.5a
Hale Waihona Puke cm.两天水位的总变量为 -2a+0.5a=(-2+0.5)a=-1.5a(cm)这两天水位
总的变化情况为下降了1.5a cm。
(2)某商店原有5袋大米,每袋大米为x千克, 上午卖出3袋,下午又购进同样包装的大米 4袋,进货后这个商店有大米多少千克?
解: 把进货的数量记为正,售出的数量记 为负,进货后这个商店共有大米 5x-3x+4x = (5-3+4)x = 6x(千克)
-2a 1.当n为奇数时 , 则(1 )a 2a 3a __ .3
2.先化简,再求值:
(1)11a 3ab b 11a b 5ab
人教版七年级数学上册(RJ)第2章 整式的加减 第3课时 整式的加减
第二章 整式的加减2.2 整式的加减 第2课时 整式的加减学习目标:1.熟练进行整式的加减运算.2.能根据题意列出式子,表示问题中的数量关系.重点:熟练进行整式的加减运算.难点:能根据题意列出式子,表示问题中的数量关系.一、知识链接1.同类项:必须同时具备的两个条件(缺一不可):①所含的 相同;②相同 也相同. 合并同类项,就是把多项式中的同类项合并成一项.方法:把同类项的 相加,而 不变. 2.去括号法则:①如果括号外的因数是 ,去括号后原括号内各项的符号与原来的符号 ;②如果括号外的因数是 ,去括号后原括号内各项的符号与原来的符号 .去括号法则的依据实际是.二、新知预习做一做:小亮和小莹到希望小学去看望小同学,小亮买了10支钢笔和5本字典作为礼物;小莹买了6支钢笔、4本字典和2个文具盒作为礼物品.钢笔的售价为每支a元,字典的售价为每本b元,文具盒的售价为每个c 元.请你计算:(1)小亮花了________元;小莹花了__________元;小亮和小莹共花___________________元.(2)小亮比小莹多花_______________元.想一想:如何进行整式的加减运算?【自主归纳】整式加减运算的基础是__________、_____________,运算结果仍是____________.三、自学自测1.求单项式24xy2xy,2-的和.5x y,22x y-,22.求2x xy467+-的差.x xy-+与231一、要点探究探究点1:整式的加减合作探究:如果用a,b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为 .交换这个两位数的十位数字和个位数字,得到的数是 .将这两个数相加可得: + = .结论:这些和都是_________的整数倍.做一做:任意写一个三位数交换它的百位数字与个位数字,又得到一个数,两个数相减.你又发现什么规律了吗?例如:原三位数728,百位与个位交换后的数为827,由728 -827= -99.你能看出什么规律并验证它吗?任意一个三位数可以表示成100a+10b+c设原三位数为100a+10b+c,百位与个位交换后的数为100c+10b+a,它们的差为:(100a+10b+c)-( 100c+10b+a)= 100a+10b+c-100c-10b-a=99a-99c=99(a -c).议一议:在上面的两个问题中,分别涉及了整式的什么运算?说说你是如何运算的?例1 计算: (1)(2a-3b)+(5a+4b);(2)(8a-7b)-(4a-5b)例2 求多项式 2453x x -+ 与多项式 2273x x -+- 的和与差.练一练:求上述两多项式的差.总结归纳:1. 几个整式相加减,如果有括号就先去括号,然后再合并同类项.2. 整式加减实际上就是:去括号、合并同类项.3. 对于运算结果,常将多项式按某个字母(如 x )的降幂(升幂)排列. 探究点2:整式的加减的应用例3 一种笔记本的单价是x 元,圆珠笔的单价是y 元.小红买这种笔记本3本,买圆珠笔2支;小明买这种笔记本4本,买圆珠笔3支.买这些笔记本和圆珠笔,小红和小明一共花费多少钱?例4 做大小两个长方体纸盒,尺寸如下(单位:cm):(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比小纸盒多用料多少平方厘米?总结归纳:整式加减解决实际问题的一般步骤:(1)根据题意列代数式;(2)去括号、合并同类项;(3)得出最后结果.例5 求2211312()()2323x x y x y --+-+的值,其中32,2=-=y x .【能力提升】有这样一道题“当a =2,b =-2时,求多项式3a 3b 3-12a 2b +b -(4a 3b 3-14a 2b -b 2)+(a 3b 3+14a 2b )-2b 2+3的值”,马小虎做题时把a =2错抄成a =-2,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.二、课堂小结1.已知一个多项式与的和等于,则这个多项式是( ) A .B .C .D .2.长方形的一边长等于3a+2b,相邻边比它大a-b,那么这个长方形的周长是( )A.14a+6bB.7a+3bC.10a+10bD.12a+8b3.若A 是一个二次二项式,B 是一个五次五项式,则B -A 一定是( ) A.二次多项式 B.三次多项式 C.五次三项式 D. 五次多项式4.多项式32281x x x -+-与多项式323253x mx x +-+的和不含二次项,则m 为( )A.2B.-2C.4D.-4 5.已知,,则=_______________________.6.若mn=m+3,则2mn+3m-5mn+10=__________.7.计算:8.某公司计划砌一个形状如下图(1)的喷水池,后有人建议改为如下图(2)的形状,且外圆直径不变,只是担心原来备好的材料不够,请你比较两种方案,哪一种需用的材料多(即比较两个图形的周长)?若将三个小圆改为n 个小圆,又会得到什么结论?1232+-=a a A 2352+-=a a B BA 32-思路:设大圆半径为R,小圆半径依次为r1,r2,r3,分别表示两个图形的周长,再结合r1+r2+r3=R,化简式子比较大小.参考答案自主学习一、知识链接1.字母字母的指数系数字母的指数2.正数相同负数相反分配律二、新知预习做一做:(1)(10a+5b)(6a+4b+2c)(16a+9b+2c)(2)(4a+b-2c)想一想:有括号先去括号,然后再合并同类项.【自主归纳】去括号合并同类项整式三、自学自测1.和为x²y.2.差为-x²-7xy+8.课堂探究一、要点探究合作探究:10a+b 10b+a 10a+b 10b+a 11a+11b= 11(a + b) 结论:这些和都是 11 的倍数.议一议:整式的加减运算,去括号、合并同类项解: (1)原式=7a+b. (2)原式=4a-2b.2 解:4-5x2+3x +(-2x+7x2-3)=4-5x2+3x-2x+7x2-3=(-5x2+7x2)+(3x-2x)+(4-3)=2x2+x+1.练一练:-5x2+3x -(-2x+7x2-3)=4-5x2+3x+2x-7x2+3=(-5x2-7x2)+(3x+2x)+(4+3)= -12x2+5x+7.3 解:小红买笔记本和圆珠笔共花费 (3x + 2y) 元,小明买笔记本和圆珠笔共花费 (4x + 3y) 元.小红和小明一共花费(单位:元)(3x + 2y)+ (4x + 3y) = 7x+5y,则小红与小明一共花费(7x+5y)元.另解:小红和小明买笔记本共花费 (3x + 4x) 元,买圆珠笔共花费 (2y + 3y) 元.小红和小明一共花费(单位:元)(3x + 4x) + (2y + 3y) = 7x + 5y.4 解:小纸盒的表面积是 ( 2ab+2bc+2ac ) cm²;大纸盒的表面积是( 6ab+ 8bc+ 6ca ) cm²(1)做这两个纸盒共用料(单位:cm2)(2ab+2bc+2ac)+(6ab+ 8bc+ 6ca )=8ab+10bc+8ac.(2)做大纸盒比做小纸盒多用料(单位:cm2)(6ab+8bc+6ca)-(2ab+2bc+2ca)=4ab+6bc+4ac.【能力提升】解:将原多项式化简后,得-b2+b+3. 因为这个式子的值与a的取值无关,所以即使把a抄错,最后的结果都会一样.当堂检测1.A2.A3.D4.C5. -9a2+5a-46. 18. 设大圆半径为R,小圆半径依次为r1,r2,r3,则图(1)的周长为4πR,图(2)的周长为2πR+2πr1+2πr2+2π r3=2πR+2π(r1+ r2+ r3),因为2 r1+2 r2+2 r3=2R,所以r1+ r2+ r3=R,因此图(2)的周长为2πR+2πR=4πR.这两种方案,用材料一样多.将三个小圆改为n个小圆,用料还是一样多.第11页共11页。
2.2.2整式的加减-去括号法则课件人教版数学七年级上册
2.去括号,合并同类项:
(1)-3(2s-5)+6s; 解:原式=-6s+15+6s=15. (2)6a2-4ab-4(2a2+12ab); 解:原式=6a2-4ab-8a2-2ab=-2a2-6ab.
(3)3x-[5x-(12x-4)]; 解:原式=3x-(5x-12x+4)=3x-5x+12x-4=-32x-4.
• 20+3(x+2)
= 20+3x+3×2
• 100-3(a+b) = 100-3a-3b
• 讨论一下:下面两个等式中,左右两 边的框中的多项式的各项的符号有什 么关系?这种关系是由谁决定的?
• +3(x+2) = +3x+6 • -3(a+b) = -3a-3b
• 去括号法则: • 情况一:括号外的因数是正数:去括号后,
第二章 整式的加减
2.2去括号法则
3(0 9 1 ) 10 15
(30 9 30 1 )
10
15
(27 2)
25
学习目标
1.能运用运算律探究去括号法则.(重点) 2.会利用去括号法则将整式化简.(难点)
问题引入
• 问题1:老王和老吴家有两块土地和一个 20平米的院子,土地如下图的长方形, 两家要联合起来种大棚蔬菜,你能帮他 们计算一下,这三块土地的面积和吗?
=3b-2c+4a-c-3b+c =-2c+4a
THANKS
FOR WATCHING
原括号内各项的符号与原来的符号相同; • 情况二:括号外的因数是负数:去括号后,
原括号内各项的符号与原来的符号相反;
• 把去括号法则提炼成一句话: • 括号前“+”则内不变, • 括号前“-”则内全变
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.2 整式的加减
教学内容
教科书:去括号法则.
教学目标
1.知识与技能
能运用运算律探究去括号法则,并且利用去括号法则将整式化简.
2.过程与方法
经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.
3.情感态度与价值观
培养学生主动探究、合作交流的意识,严谨治学的学习态度.
重、难点与关键
1.重点:去括号法则,准确应用法则将整式化简.
2.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.
3.关键:准确理解去括号法则.
教具准备
投影仪.
教学过程
一、新授
利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?
现在我们来看本章引言中的问题(3):
在格尔木到拉萨路段,如果列车通过冻土地段要t小时,•那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,•非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为
100t+120(t-0.5)千米①
冻土地段与非冻土地段相差
100t-120(t-0.5)千米②
上面的式子①、②都带有括号,它们应如何化简?
思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:
利用分配律,可以去括号,合并同类项,得:
100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60
100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60
我们知道,化简带有括号的整式,首先应先去括号.
上面两式去括号部分变形分别为:
+120(t-0.5)=+120t-60 ③
-120(t-0.5)=-120+60 ④
比较③、④两式,你能发现去括号时符号变化的规律吗?
思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.
特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).
利用分配律,可以将式子中的括号去掉,得:
+(x-3)=x-3 (括号没了,括号内的每一项都没有变号)
-(x-3)=-x+3 (括号没了,括号内的每一项都改变了符号)
去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.
二、范例学习
例1.化简下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.
解答过程按课本,可由学生口述,教师板书.
例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,•两船在静水中的速度都是50千米/时,水流速度是a千米/时.
(1)2小时后两船相距多远?
(2)2小时后甲船比乙船多航行多少千米?
教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.
思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,•船逆水航行速度=船在静水中行驶速度-水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米.•两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.
解答过程按课本.
去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,•括号内每一项都要变号.为了防止出错,可以先用分配律将数字2•与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.
三、巩固练习
1.课后练习
2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-x y2. [5xy2]
思路点拨:一般地,先去小括号,再去中括号.
四、课堂小结
去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.
五、作业
第二课时作业设计
一、选择题:
1.下列各式化简正确的是().
A.a-(2a-b+c)=-a-b+c B.(a+b)-(-b+c)=a+2b+c
C.3a-[5b-(2c-a)]=2a-5b+2c D.a-(b+c)-d=a-b+c-d
2.下面去括号错误的是().
A.a2-(a-b+c)=a2-a+b-c B.5+a-2(3a-5)=5+a-6a+5
C.3a-1
3
(3a2-2a)=3a-a2+
2
3
a D.a3-[(a2-(-b))=a3-a2-b
3.将多项式2ab-4a2-5ab+9a2的同类项分别结合在一起错误的是().
A.(2ab-5ab)+(-4a2+9a) B.(2ab-5ab)-(4a2-9a2)
C.(2ab-5ab)+(9a2-4a2) D.(2ab-5ab)-(4a2+9a2)
二、化简下列各式:
4.2(-a3+2a2)-(4a2-3a+1). 5.(4a2-3a+1)-3(-a3+2a2).
6.3(a2-4a+3)-5(5a2-a+2). 7.3x2-[5x-2(1
4
x-
3
2
)+2x2].
答案:
一、1.C 2.B 3.D
二、4.-2a3+3a-1 5.3a3-2a2-3a+1 6.-22a2-7a-1 7.x2-9
2
x-3.。