《高考真题》专题06 函数的奇偶性的应用-2019年高考文数母题题源系列(全国Ⅱ专版)(解析版)
高考数学函数奇偶性之高考真题48道
函数的奇偶性之高考真题48道一、具体函数的奇偶性1.(2015•福建)下列函数为奇函数的是(D )A.y =x B.y =e x C.y =cos x D.y =e x -e -x2.(2015•福建)下列函数为奇函数的是(D )A.y =x B.y =|sin x | C.y =cos xD.y =e x -e -x3.(2014•广东)下列函数为奇函数的是(A )A.y =2x - 12xB.y =x 3sin xC.y =2cos x +1D.y =x 2+2x4.(2015•北京)下列函数中为偶函数的是(B )A.y =x 2sin xB.y =x 2cos xC.y =|lnx |D.y =2-x5.(2019•全国)下列函数中,为偶函数的是(C )A.y =(x +1)2B.y =2-xC.y =|sin x |D.y =lg (x +1)+lg (x -1)6.(2018•上海)下列函数中,为偶函数的是(A )A.y =x -2B.y =x13C.y =x -12D.y =x 37.(2012•广东)下列函数为偶函数的是(D )A.y =sin xB.y =x 3C.y =e xD.y =lnx 2+18.(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是(D )A.y =x +sin2xB.y =x 2-cos xC.y =2x + 12xD.y =x 2+sin x 9.(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是(D )A.y = 1+x 2B.y =x + 1xC.y =2x + 12xD.y =x +e x 二、抽象函数的奇偶性10.(2014•新课标Ⅰ)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论正确的是(C )A.f (x )∙g (x )是偶函数B.|f (x )|∙g (x )是奇函数C.f (x )∙|g (x )|是奇函数D.|f (x )∙g (x )|是奇函数三、已知奇偶性求参数11.(2020•上海)若函数y =a ∙3x + 13x为偶函数,则a =1.12.(2009•重庆)若f (x )=a + 12x +1是奇函数,则a =- 12.13.(2019•北京)设函数f (x )=e x +ae -x (a 为常数).若f (x )为奇函数,则a =-1;若f (x )是R 上的增函数,则a 的取值范围是(-∞,0].14.(2014•湖南)若f (x )=ln (e 3x+1)+ax 是偶函数,则a =- 32.15.(2015•新课标Ⅰ)若函数f (x )=xln (x +a +x 2)为偶函数,则a =1.16.(2015•上海)已知a 是实数,函数f (x )= x 2+ax +4x是奇函数,求f (x )在(0,+∞)上的最小值及取到最小值时x 的值.四、奇函数性质的应用之中值定理17.(1990•全国)已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于(A )A.-26B.-18C.-10D.1018.(2013•重庆)已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg (log 210))=5,则f (lg (lg 2))=(C )A.-5 B.-1C.3D.419.(2018•新课标Ⅲ)已知函数f (x )=ln (1+x 2-x )+1,f (a )=4,则f (-a )=-2.20.(2012•上海)已知y =f (x )是奇函数,若g (x )=f (x )+2且g (1)=1,则g (-1)=3.五、奇函数性质的应用之分段函数21.(2019•新课标Ⅱ)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=(D )A.e -x -1B.e -x +1C.-e -x -1D.-e -x +122.(2019•新课标Ⅱ)已知f (x )是奇函数,且当x <0时,f (x )=-e ax .若f (ln 2)=8,则a =-3.六、偶函数性质应用之比较大小23.(2019•新课标Ⅲ)设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则(C )A.f (log 3 14)>f (2- 32)>f (2- 23)B.f (log 3 14)>f (2- 23)>f (2- 32)C.f (2- 32)>f (2- 23)>f (log 3 14)D.f (2- 23)>f (2- 32)>f (log 3 14)七、函数性质综合24.(2018•新课标Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ),若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=(C )A.-50B.0C.2D.50八、奇偶性与单调性综合判断25.(2020•新课标Ⅱ)设函数f (x )=x 3- 1x 3,则f (x )(A )A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减26.(2020•新课标Ⅱ)设函数f (x )=ln |2x +1|-ln |2x -1|,则f (x )(D )A.是偶函数,且在( 12,+∞)单调递增B.是奇函数,且在(- 12, 12)单调递减C.是偶函数,且在(-∞,- 12)单调递增D.是奇函数,且在(-∞,- 12)单调递减27.(2015•湖南)设函数f (x )=ln (1+x )-ln (1-x ),则f (x )是(A )A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数28.(2014•湖南)下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是(A )A.f (x )= 1x2B.f (x )=x 2+1C.f (x )=x 3D.f (x )=2-x 29.(2017•北京)已知函数f (x )=3x -( 13)x ,则f (x )(A )A.是奇函数,且在R 上是增函数B.是偶函数,且在R 上是增函数C.是奇函数,且在R 上是减函数D.是偶函数,且在R 上是减函数30.(2005•山东)下列函数既是奇函数,又在区间[-1,1]上单调递减的是(D )A.f (x )=sin xB.f (x )=-|x +1|C.f (x )= 12(a x -a -x )D.f (x )=ln 2-x 2+x31.(2013•北京)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(D )A.y =1x B.y =e -x C.y =lg |x | D.y =-x 2+132.(2012•陕西)下列函数中,既是奇函数又是增函数的为(D )A.y =x +1B.y =-x 2C.y =1xD.y =x |x |33.(2012•天津)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(B )A.y =cos2x ,x ∈RB.y =log 2|x |,x ∈R 且x ≠0C.y = e x -e -x2,x ∈R D.y =x 3+1,x ∈R34.(2011•新课标)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是(B )A.y =2x 3B.y =|x |+1C.y =-x 2+4D.y =2-|x |九、奇偶函数图象的对称性35.(2009•黑龙江)函数y =log 2 2-x 2+x的图象(B )A.关于直线y =-x 对称B.关于原点对称C.关于y 轴对称D.关于直线y =x 对称36.(2010•重庆)函数f (x )= 4x+12x 的图象(D )A.关于原点对称B.关于直线y =x 对称C.关于x 轴对称D.关于y 轴对称37.(2011•上海)f (x )= 4x-12x的图象关于(A )A.原点对称B.直线y =x 对称C.直线y =-x 对称D.y 轴对称38.(2008•全国卷Ⅱ)函数f (x )= 1x-x 的图象关于(C )A.y 轴对称B.直线y =-x 对称C.坐标原点对称D.直线y =x 对称十、奇函数性质应用之解不等式39.(2020•山东)若定义在R 的奇函数f (x )在(-∞,0)单调递减,且f (2)=0,则满足xf (x -1)≥0的x 的取值范围是(D )A.[-1,1]∪ 3,+∞)B.[-3,-1]∪ 0,1]C.[-1,0]∪ 1,+∞)D.[-1,0]∪ 1,3]40.(2015•山东)若函数f (x )= 2x+12x -a是奇函数,则使f (x )>3成立的x 的取值范围为(C )A.(-∞,-1) B.(-1,0) C.(0,1) D.(1,+∞)十一、奇函数性质比较大小41.(2017•天津)已知奇函数f (x )在R 上是增函数.若a =-f (log 2 15),b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为(C )A.a <b <cB.b <a <cC.c <b <aD.c <a <b42.(2009•山东)已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x )且在区间[0,2]上是增函数,则(A )A.f (-25)<f (80)<f (11)B.f (80)<f (11)<f (-25)C.f (11)<f (80)<f (-25)D.f (-25)<f (11)<f (80)十二、偶函数性质比较大小43.(2015•天津)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为(C )A.a <b <cB.a <c <bC.c <a <bD.c <b <a44.(2008•天津)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上是增函数.令a=f (sin 2π7),b =f (cos 5π7),c =f (tan 5π7),则(A )A.b <a <cB.c <b <aC.b <c <aD.a <b <c 解:b =f (-cos 5π7)=f (cos 2π7),c =f (-tan 5π7)=f (tan 2π7)因为 π4< 2π7< π2,又由函数在区间[0,+∞)上是增函数,所以0<cos 2π7<sin 2π7<1<tan 2π7,所以b <a <c ,故选:A .十三、奇偶性综合之比较大小45.(2008•安徽)若函数f (x ),g (x )分别是R 上的奇函数、偶函数,且满足f (x )-g (x )=e x ,则有(D )A.f (2)<f (3)<g (0)B.g (0)<f (3)<f (2)C.f (2)<g (0)<f (3)D.g (0)<f (2)<f (3)十四、偶函数性质应用之解不等式46.(2016•天津)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增,若实数a满足f (2|a -1|)>f (- 2),则a 的取值范围是( 12, 32).47.(2014•新课标Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0,若f (x -1)>0,则x 的取值范围是(-1,3).48.(2015•新课标Ⅱ)设函数f (x )=ln (1+|x |)- 11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是(B )A.(-∞, 13)∪(1,+∞)B.( 13,1)C.(- 13, 13)D.(-∞,- 13)∪( 13,+∞)。
《高考真题》专题14 函数的奇偶性的应用-2019年高考理数母题题源系列(全国Ⅱ专版)(解析版)
专题14 函数的奇偶性的应用【母题来源一】【2019年高考全国Ⅱ卷理数】已知()f x 是奇函数,且当0x <时,()e axf x =-.若(l n2)8f =,则a =______________. 【答案】3-【解析】由题意知()f x 是奇函数,且当0x <时,()e axf x =-,又因为ln 2(0,1)∈,(ln 2)8f =, 所以ln 2e 8a --=-,两边取以e 为底数的对数,得ln 23ln 2a -=, 所以3a -=,即3a =-.【名师点睛】本题主要考查函数的奇偶性,对数的计算.【母题来源二】【2018年高考全国Ⅱ卷理数】已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++= A .50-B .0C .2D .50【答案】C【解析】因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1),(3)(1)(1),4f x f x f x f x f x T +=--∴+=-+=-∴=, 因此[](1)(2)(3)(50)12(1)()(2)(3)4(1)(2)f f f f f f f f f f ++++=+++++,因为(3)(1),(4)(2)f f f f =-=-,所以(1)(2)0())(34f f f f +++=, 因为(2)(0)0f f ==,从而(1)(2)(3)(50)(1)2f f f f f ++++==.故选C .【名师点睛】先根据奇函数的性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.【命题意图】1.结合具体函数,了解函数奇偶性的含义.2.以抽象函数的奇偶性、对称性、周期性为载体考查分析问题、解决问题的能力和抽象转化的数学思想. 【命题规律】高考对该部分内容考查一般以选择题或填空题形式出现,难度中等或中等上,热点是奇偶性、对称性、周期性之间的内在联系,这种联系成为命题者的钟爱,一般情况下可“知二断一”. 【答题模板】1.判断函数奇偶性的常用方法及思路 (1)定义法(2)图象法(3)性质法利用奇函数和偶函数的和、差、积、商的奇偶性和复合函数的奇偶性来判断.注意:①分段函数奇偶性的判断,要注意定义域内x 取值的任意性,应分段讨论,讨论时可依据x 的范围相应地化简解析式,判断()f x 与()f x 的关系,得出结论,也可以利用图象作判断. ②性质法中的结论是在两个函数的公共定义域内才成立的.③性质法在选择题和填空题中可直接运用,但在解答题中应给出性质推导的过程.2.与函数奇偶性有关的问题及解决方法 (1)已知函数的奇偶性,求函数的值将待求值利用奇偶性转化为已知区间上的函数值求解. (2)已知函数的奇偶性求解析式已知函数奇偶性及其在某区间上的解析式,求该函数在整个定义域上的解析式的方法是:首先设出未知区间上的自变量,利用奇、偶函数的定义域关于原点对称的特点,把它转化到已知的区间上,代入已知的解析式,然后再次利用函数的奇偶性求解即可. (3)已知带有参数的函数的表达式及奇偶性求参数在定义域关于原点对称的前提下,利用()f x 为奇函数⇔()()f x f x -=-,()f x 为偶函数⇔()f x -()f x =,列式求解,也可以利用特殊值法求解.对于在0x =处有定义的奇函数()f x ,可考虑列式(0)0f =求解.(4)已知函数的奇偶性画图象判断单调性或求解不等式.利用函数的奇偶性可画出函数在另一对称区间上的图象及判断另一区间上函数的单调性. 【方法总结】1.函数奇偶性的定义及图象特点判断()f x -与()f x 的关系时,也可以使用如下结论:如果()0()f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数;如果()0()f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数.注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x ,x -也在定义域内(即定义域关于原点对称). 2.函数奇偶性的几个重要结论(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反. (2)()f x ,()g x 在它们的公共定义域上有下面的结论:(3)若奇函数的定义域包括0,则(0)0f =.(4)若函数()f x 是偶函数,则()()(||)f x f x f x -==.(5)定义在(,)-∞+∞上的任意函数()f x 都可以唯一表示成一个奇函数与一个偶函数之和.(6)若函数()y f x =的定义域关于原点对称,则()()f x f x +-为偶函数,()()f x f x --为奇函数,()()f x f x ⋅-为偶函数.(7)一些重要类型的奇偶函数 ①函数()xxf x a a-=+为偶函数,函数()x xf x a a-=-为奇函数.②函数221()1x x x x x x a a a f x a a a ----==++(0a >且1a ≠)为奇函数. ③函数1()log 1axf x x-=+(0a >且1a ≠)为奇函数.④函数()log (a f x x =(0a >且1a ≠)为奇函数. 3.若()()f a x f a x +=-,则函数()f x 的图象关于x a =对称. 4.若()()f a x f a x +=--,则函数()f x 的图象关于(,0)a 对称.5.若函数()f x 关于直线x a =和()x b b a =>对称,则函数()f x 的周期为2()b a -. 6.若函数()f x 关于直线x a =和点(,0)()b b a >对称,则函数()f x 的周期为4()b a -. 7.若函数()f x 关于点(,0)a 和点(,0)()b b a >对称,则函数()f x 的周期为2()b a -. 8.若函数()f x 是奇函数,且关于x a =(0)a >对称,则函数()f x 的周期为4a . 9.若函数()f x 是偶函数,且关于x a =(0)a >对称,则函数()f x 的周期为2a . 10.若函数()f x 是奇函数,且关于(,0)a (0)a >对称,则函数()f x 的周期为2a . 11.若函数()f x 是偶函数,且关于(,0)a (0)a >对称,则函数()f x 的周期为4a . 12.若函数()()f x x R ∈满足()()f a x f x +=-,1()()f a x f x +=-,1()()f a x f x +=均可以推出函数()f x 的周期为2a .1.【重庆市第一中学2019届高三上学期期中考试】下列函数为奇函数的是 A . B . C .D .【答案】D【分析】根据奇函数的定义逐项检验即可.【解析】A 选项中 ,故不是奇函数,B 选项中 ,故不是奇函数,C 选项中 ,故不是奇函数,D 选项中,是奇函数,故选D .2.【黑龙江省齐齐哈尔市2019届高三第一次模拟】若函数2()22x a xx f x -=-是奇函数,则(1)f a -= A .1- B .23- C .23D .1【答案】B【分析】首先根据奇函数的定义,求得参数0a =,从而得到2(1)(1)3f a f -=-=-,求得结果. 【解析】由()()f x f x -=-可得22(2)22a x x x x--+=+,∴0a =,∴2(1)(1)3f a f -=-=-, 故选B .【名师点睛】该题考查函数的奇偶性及函数求值等基础知识,属于基础题目,考查考生的运算求解能力. 3.【甘肃省静宁县第一中学2019届高三上学期第一次模拟】已知()f x 是定义在R 上的奇函数,当 时3()x m f x =+(m 为常数),则3(log 5)f -的值为A .4B .4-C .6D .6-【答案】B【分析】根据奇函数的性质 求出 ,再根据奇函数的定义求出3(log 5)f -.【解析】当 时3()x m f x =+(m 为常数),则03(0)0m f =+=,则 , , 函数()f x 是定义在R 上的奇函数,∴335log 35((log 5)()log )314f f -=-=--=-.故选B .【名师点睛】本题考查函数的奇偶性,解题的突破口是利用奇函数性质:如果函数是奇函数,且0在其定义域内,一定有 .4.【甘青宁2019届高三3月联考】若函数3()1f x x =+,则1(lg 2)(lg )2f f +=A .2B .4C .2-D .4-【答案】A【分析】3()1f x x =+,可得()()2f x f x -+=,结合1lglg22=-,从而求得结果. 【解析】∵3()1f x x =+,∴()()2f x f x -+=,∵1lglg22=-,∴1(lg 2)(lg )22f f +=, 故选A .【名师点睛】该题考查的是有关函数值的求解问题,在解题的过程中,涉及到的知识点有奇函数的性质,属于简单题目,注意整体思维的运用.5.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第二次模拟】已知函数2()e e 21xxxxf x -=-++,若(lg )3f m =,则1(lg )f m = A .4- B .3- C .2-D .1-【答案】C【分析】先由2()e e 21xxxx f x -=-++得到()()1f x f x -+=,进而可求出结果.【解析】因为2()e e 21x xxx f x -=-++,所以21()e e e e 2121x x xx x x xf x -----=-+=-+++, 因此()()1f x f x -+=; 又(lg )3f m =,所以(lg )1(lg 1(lg )132)f mf m f m =-=-=-=-. 故选C .【名师点睛】本题主要考查函数奇偶性的性质,熟记函数奇偶性即可,属于常考题型. 6.【山东省济宁市2019届高三二模】已知 是定义在 上的周期为4的奇函数,当 时, ,则 A . B .0 C .1D .2【答案】A【解析】由题意可得: . 故选A .【名师点睛】本题主要考查函数的奇偶性,函数的周期性等知识,意在考查学生的转化能力和计算求解能力.7.【云南省玉溪市第一中学2019届高三第二次调研】下列函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是 A .3x y =B .1ln||y x =C .||2x y =D .cos y x =【答案】B【解析】易知1ln||y x =,||2x y =,cos y x =为偶函数, 在区间(0,)+∞上,1ln ||y x =单调递减,||2x y =单调递增,cos y x =有增有减. 故选B .【名师点睛】本题考查函数的奇偶性和单调性,属于基础题.8.【山东省烟台市2019届高三3月诊断性测试】若函数()f x 是定义在R 上的奇函数,1()14f =,当0x <时,2()log ()f x x m =-+,则实数m = A .1- B .0 C .1D .2【答案】C【解析】∵()f x 是定义在R 上的奇函数,1()14f =, 且0x <时,2()log ()f x x m =-+, ∴211()log 2144f m m -=+=-+=-, ∴1m =. 故选C .【名师点睛】本题主要考查函数奇偶性的应用,以及已知函数值求参数的方法,熟记函数奇偶性的定义即可,属于常考题型.9.【宁夏银川市2019年高三下学期质量检测】已知()f x 是定义在R 上奇函数,当0x ≥时,2()log (1)f x x =+,则3()f -= A .2- B .1- C .2D .1【答案】A【分析】利用函数()f x 是奇函数,得到(3)(3)f f -=-,再根据对数的运算性质,即可求解.【解析】由题意,函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()log (1)f x x =+,则22(3)(3)log (31)log 42f f -=-=-+=-=-,故选A .【名师点睛】本题主要考查了函数的奇偶性的应用,以及对数的运算的性质的应用,其中解答中熟记函数的奇偶性,以及熟练应用对数的性质运算是解答的关键,着重考查了转化思想,以及运算与求解能力,属于基础题.10.【甘肃省甘谷县第一中学2019届高三上学期第一次检测】已知定义在 上的函数 ,若 是奇函数,是偶函数,当 时, ,则 A . B . C .0D .【答案】A【分析】根据题意和函数的奇偶性的性质通过化简、变形,求出函数的周期,利用函数的周期性和已知的解析式求出 的值.【解析】因为 是奇函数, 是偶函数,所以 ,则 ,即 , 所以 , 则奇函数 是以4为周期的周期函数, 又当 时, ,所以 , 故选A .【名师点睛】该题考查的是有关函数值的求解问题,在解题的过程中,涉及到的知识点有函数的周期性,函数的奇偶性的定义,正确转化题的条件是解题的关键.11.【黑龙江省哈尔滨市第三中学2019届高三上学期期中考试】已知函数()f x 是定义在R 上的奇函数,对任意的x ∈R 都有33())22(f x f x +=-,当3(,0)2x ∈-时,()f x =12log (1)x -,则(2017)f +(2019)f =A .1B .2C .1-D .2-【答案】A【分析】根据题意,对33())22(f x f x +=-变形可得()(3)f x f x =-,则函数()f x 是周期为3的周期函数,据此可得(2017)(1)f f =,(2019)(0)f f =,结合函数的解析式以及奇偶性求出(0)f 与(1)f 的值,相加即可得答案.【解析】根据题意,函数()f x 满足任意的x ∈R 都有33())22(f x f x +=-, 则()(3)f x f x =-,则函数()f x 是周期为3的周期函数,所以(2017)(16723)(1)f f f =+⨯=,(2019)(6733)(0)f f f =⨯=, 又由函数()f x 是定义在R 上的奇函数,则(0)0f =, 当3(,0)2x ∈-时,()f x =12log (1)x -,则12(1)log [1(1)]1f -=--=-,则(1)(1)1f f =--=,故(2017)(2019)(0)(1)1f f f f +=+=, 故选A .12.【甘肃省兰州市第一中学2019届高三9月月考】奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为 A .2B .1C .-1D .-2【答案】A【分析】根据函数的奇偶性的特征,首先得到 ,进而根据奇函数可得 ,根据 可得 ,即可得到结论.【解析】∵ 为偶函数, 是奇函数,∴设 , 则 ,即 ,∵ 是奇函数,∴ ,即 , , 则 , ,∴ , 故选A .【名师点睛】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴以及周期性是解决本题的关键,属于中档题.13.【陕西省彬州市2019届高三上学期第一次教学质量监测】已知函数()y f x =是奇函数,当0x >时,2()log (1)f x x =-,则(1)0f x -<的解集是A .(,1)(2,3)-∞-B .(1,0)(2,3)-C .(2,3)D .(,3)(0,1)-∞-【分析】根题设条件,分别求得,当0x >和0x <时,()0f x <的解集,由此可求解不等式(1)0f x -<的解集,得到答案.【解析】由题意,当0x >时,令()0f x >,即2log (1)0x -<,解得12x <<, 又由函数()y f x =是奇函数,函数()f x 的图象关于原点对称, 则当0x <时,令()0f x >,可得2x <-,又由不等式(1)0f x -<,可得112x <-<或12x -<-,解得23x <<或1x <-, 即不等式(1)0f x -<的解集为(,1)(2,3)-∞-,故选A .【名师点睛】本题主要考查了函数的基本性质的综合应用,其中解答中熟记对数函数的图象与性质,以及数列应用函数的奇偶性的转化是解答本题的关键,着重考查了分析问题和解答问题的能力,属于中档试题.14.【陕西省榆林市2019届高三第四次普通高等学校招生模拟考试】已知()f x 是定义在R 上的偶函数,且(5)(3)f x f x +=-,如果当[0,4)x ∈时,2()log (2)f x x =+,则(766)f =A .3B .3-C .2D .2-【答案】C【分析】根据(5)(3)f x f x +=-,可得(8)()f x f x +=,即()f x 的周期为8,再根据[0,4)x ∈时,2()log (2)f x x =+及()f x 为R 上的偶函数即可求出(766)(2)2f f ==.【解析】由(5)(3)f x f x +=-,可得(8)()f x f x +=,所以()f x 是周期为8的周期函数, 当[0,4)x ∈时,2()log (2)f x x =+,所以(96(7682)6)(2)2f f f ⨯-===, 又()f x 是定义在R 上的偶函数,所以2(2)(2)log 42f f -===. 故选C .15.【黑龙江省哈尔滨师范大学附属中学2019届高三上学期期中考试】已知定义域为R 的奇函数 ,当时, ,当 时, ,则 A .B .C .D .【分析】由当 时, ,可得,根据奇偶性求出 即可. 【解析】定义域为R 的奇函数 ,当 时, ,则, 则 ..., 又当 时, , — , 故. 故选B .16.【重庆市2018-2019学年3月联考】定义在[7,7]-上的奇函数()f x ,当07x <≤时,()26xf x x =+-,则不等式()0f x >的解集为 A .(2,7]B .(2,0)(2,7]-C .(2,0)(2,)-+∞D .[7,2)(2,7]--【答案】B【分析】当07x <≤时,()f x 为单调增函数,且(2)0f =,则()0f x >的解集为(2,7],再结合()f x 为奇函数,所以不等式()0f x >的解集为(2,0)(2,7]-.【解析】当07x <≤时,()26xf x x =+-,所以()f x 在(0,7]上单调递增,因为2(2)2260f =+-=,所以当07x <≤时,()0f x >等价于()(2)f x f >,即27x <≤,因为()f x 是定义在[7,7]-上的奇函数,所以70x -≤<时,()f x 在[7,0)-上单调递增, 且(2)(2)0f f -=-=,所以()0f x >等价于()(2)f x f >-,即20x -<<, 所以不等式()0f x >的解集为(2,0)(2,7]-.故选B .【名师点睛】本题考查函数的奇偶性,单调性及不等式的解法,属基础题.应注意奇函数在其对称的区间上单调性相同,偶函数在其对称的区间上单调性相反.17.【宁夏平罗中学2019届高三上学期期中考试】已知定义在 上的函数 是奇函数,且当 时,,则 ______________. 【答案】18-【分析】先求(4)f ,再利用函数的奇偶性求4()f -.【解析】由题得22(4)log 4418f =+=,所以(4)(4)18f f -=-=-.18.【重庆南开中学2019届高三第四次教学检测】已知偶函数()f x 的图象关于直线2x =对称,(3)f =则(1)f =______________.【分析】由对称性及奇偶性求得函数的周期求解即可【解析】由题()()(4)f x f x f x =-=-,则函数的周期4T =,则()1f =(1)(1)(3)f f f =-==19.【辽宁省抚顺市2019届高三第一次模拟】已知函数()f x 是奇函数,且当0x <时1()()2xf x =,则(3)f 的值是______________. 【答案】8-【分析】先求(3)f -,再根据奇函数性质得(3)f . 【解析】因为31(3)()82f --==,函数()f x 是奇函数,所以(3)(3)8f f =--=-.20.【辽宁省朝阳市重点高中2019届高三第四次模拟】已知()y f x =是定义域为R 的奇函数,且周期为2,若当[0,1]x ∈时,()(1)f x x x =-,则( 2.5)f -=______________. 【答案】0.25-【分析】根据函数的奇偶性和周期性,求出( 2.5)(0.5)f f -=-,求出函数值即可. 【解析】已知()y f x =是定义域为R 的奇函数,且周期为2,∴( 2.5)( 2.52)(0.5)(0.5)f f f f -=-+=-=-,∵当[0,1]x ∈时,()(1)f x x x =-,∴(0.5)0.5(10.5)0.25f =⨯-=,∴( 2.5)0.25f -=-. 21.【陕西省咸阳市2019届高三模拟检测三】已知定义在R 上的奇函数()f x 的图像关于点(2,0)对称,且(3)3f =,则(1)f -=______________.【答案】3【分析】先由函数关于(2,0)对称,求出(1)f ,然后由奇函数可求出(1)f -. 【解析】函数()f x 的图像关于点(2,0)对称,所以(1)(3)3f f =-=-, 又函数()f x 为奇函数,所以(1)(1)3f f =-=-.22.【宁夏石嘴山市第三中学2019届高三四模】若函数2,0()3(),0x x f x g x x ⎧>⎪=⎨⎪<⎩是奇函数,则1()2f -=______________.【答案】 【分析】利用解析式求出1()2f ,根据奇函数定义可求得结果.【解析】由题意知1212()233f ===, ()f x为奇函数,11()()22f f ∴-=-=.23.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟】已知函数()f x 是奇函数,当0x >时,()lg f x x =,则1(())100f f 的值为______________. 【答案】2lg - 【分析】先求出1()100f 的值,设为a ,判断a 是否大于零,如果大于零,直接求出()f a 的值,如果不大于零,那么根据奇函数的性质()()f a f a =--,进行求解. 【解析】10,100>∴1()100f =21lg()lg102100-==-, 20-<∵,函数()f x 是奇函数,(2)(2)lg 2f f ∴-=-=-,所以1(())100f f 的值为lg2-.24.【山东省滨州市2019届高三第二次模拟(5月)】若函数 为偶函数,则______________.【答案】2-【解析】函数 为偶函数,则 , 即 恒成立, .则.【名师点睛】本题主要考查偶函数的性质与应用,对数的运算法则等知识,意在考查学生的转化能力和计算求解能力.25.【甘肃省张掖市2019届高三上学期第一次联考】已知()f x ,()g x 分别是定义在R 上的奇函数和偶函数,且(0)0g =,当0x ≥时,2()()22xf xg x x x b -=+++(b 为常数),则(1)(1)f g -+-=______________. 【答案】4-【分析】根据函数的奇偶性,先求b 的值,再代入1x =,求得(1)(1)4f g -=,进而求解(1)(1)f g -+-的值.【解析】由()f x 为定义在R 上的奇函数可知(0)0f =,因为(0)0g =,所以0(0)(0)20f g b -=+=,解得1b =-,所以(1)(1)4f g -=,于是(1)(1)(1[(1)(1)](4)1)f g f g f g =-+=---+=--.【名师点睛】本题考查了函数的奇偶性的应用,涉及了函数求值的知识;注意解析式所对应的自变量区间.26.【陕西省安康市安康中学2019届高三第三次月考】若函数2()e 1x f x a =--是奇函数,则常数 等于______________. 【答案】【分析】由奇函数满足 ,代入函数求值即可. 【解析】 对一切 且 恒成立.恒成立,恒成立., .27.【吉林省长春市实验中学2019届高三期末考试】已知函数 是定义在 上的周期为 的奇函数,当时, ,则______________. 【答案】【分析】根据 是周期为4的奇函数即可得到 =f (﹣8 )=f ( )=﹣f (),利用当0<x <2时,=4x,求出,再求出 ,即可求得答案.【解析】∵ 是定义在R 上周期为4的奇函数,∴=f(﹣8)=f()=﹣f(),∵当x∈(0,2)时,,∴=﹣2,∵是定义在R上周期为4的奇函数,∴==,同时=﹣,∴=0,∴﹣2.【名师点睛】考查周期函数的定义,奇函数的定义,关键是将自变量的值转化到函数解析式所在区间上,属于中档题.28.【新疆昌吉市教育共同体2019届高三上学期第二次月考】下列函数:①;②,,;③;④.其中是偶函数的有______________.(填序号)【答案】①【分析】先判断函数的定义域是否关于原点对称可知②,,为非奇非偶函数;再利用偶函数的定义,分别检验①③④是否符合,从而得到结果.【解析】①,为偶函数;②定义域,关于原点不对称,为非奇非偶函数;③,为奇函数;④,为非奇非偶函数;故答案为①.【名师点睛】该题考查的是有关偶函数的选择问题,涉及到的知识点有函数奇偶性的定义,注意判断函数奇偶性的步骤,首先确定函数的定义域是否关于原点对称,再者就是判断与的关系.29.【吉林省长春市吉林省实验中学2019届高三上学期第三次月考】已知,.若偶函数满足(其中,为常数),且最小值为1,则______________.【答案】【分析】利用函数是偶函数,确定,利用基本不等式求最值,确定的值,即可得到结论.【解析】由题意,,,为偶函数,,,,,, ,.30.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次模拟】已知函数()f x 是定义域为(,)-∞+∞的偶函数,且(1)f x -为奇函数,当[0,1]x ∈时,3()1f x x =-,则29()2f =______________. 【答案】78-【分析】先由题意,()f x 是定义域为(,)-∞+∞的偶函数,且(1)f x -为奇函数,利用函数的奇偶性推出()f x 的周期4T =,可得291()()22f f =-,然后带入求得结果. 【解析】因为(1)f x -为奇函数,所以(1)(1),(2)()f x f x f x f x --=--∴--=-, 又()f x 是定义域为(,)-∞+∞的偶函数,所以()()f x f x -=,即(2)(),(2)()f x f x f x f x --=--∴-=-,所以()f x 的周期4T =,因为295551()(12)()(2)()22222f f f f f =+==--=-,2117()1()228f =-=, 所以297()28f =-.31.【辽宁省大连市2019届高三第二次模拟】已知函数 是定义域为 的偶函数,且 在 , 上单调递增,则不等式 的解集为______________. 【答案】 , ,【分析】利用偶函数关于 轴对称, 在 , 上单调递增,将不等式 转化为 ,即可解得 的解集. 【解析】 函数 是定义域为 的偶函数,可转化为 , 又 在 , 上单调递增,,两边平方解得 , , , 故 的解集为 , , .32.【辽宁省大连市2019届高三下学期第一次双基测试】已知定义在R 上的函数()f x ,若函数(1)f x +为偶函数,函数(2)f x +为奇函数,则20191()i f i ==∑______________.【答案】0【分析】根据函数(1)f x +为偶函数,函数(2)f x +为奇函数可得()(2)f x f x -=+和()(4)f x f x --=+,可得(4)()f x f x +=,则函数()f x 是周期为4的周期函数,结合函数的对称性可得(1)(3)0f f +=且(2)(0)(4)0f f f ===,从而可得结果.【解析】根据题意,(1)f x +为偶函数,则函数()f x 的图象关于直线1x =对称, 则有()(2)f x f x -=+,若函数(2)f x +为奇函数,则函数()f x 的图象关于点(2,0)对称, 则有()(4)f x f x --=+,则有(4)(2)f x f x +=-+, 设2t x =+,则(2)()f t f t +=-, 变形可得(4)(2)()f t f t f t +=-+=, 则函数()f x 是周期为4的周期函数, 又由函数()f x 的图象关于点(2,0)对称, 则(1)(3)0f f +=且(2)0f =, 则有(2)(0)0f f =-=, 可得(4)0f =,则20191(1)(2)(019))(2i f i f f f ==+++∑[12(3)4][(2013)(2014()()(2015)(2016]))()f f f f f f f f =+++++++++[(2017)(2018)(201()9)]12((0)3)f f f f f f ++=++=,故答案为0.33.【内蒙古呼和浩特市2019届高三上学期期中调研】已知函数 与 都是定义在 上的奇函数,当 时, ,则的值为______________. 【答案】2【分析】根据题意,由 是定义在R 上的奇函数可得 ,结合函数为奇函数,分析可得 ,则函数是周期为2的周期函数,据此可得,结合函数的解析式可得的值,结合函数的奇偶性与周期性可得 的值,相加即可得答案. 【解析】根据题意 是定义在R 上的奇函数,则 的图象关于点(﹣1,0)对称, 则有 ,又由 是R 上的奇函数,则 ,且 ,则有,即,则函数是周期为2的周期函数,则,又由=log2=﹣2,则=2,,故=2+0=2.。
【高中数学】函数的奇偶性专题复习(绝对原创!)
【函数的奇偶性】专题复习一、关于函数的奇偶性的定义定义说明:对于函数)(x f 的定义域内任意一个x :⑴)()(x f x f =- ⇔)(x f 是偶函数; ⑵)()(x f x f -=-⇔)(x f 奇函数;二、函数的奇偶性的几个性质①对称性:奇(偶)函数的定义域关于原点对称;②整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立; ③可逆性:)()(x f x f =-⇔)(x f 是偶函数; )()(x f x f -=-⇔)(x f 是奇函数; ④等价性:)()(x f x f =-⇔0)()(=--x f x f ; )()(x f x f -=-⇔0)()(=+-x f x f⑤奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;⑥可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。
三、函数的奇偶性的判断判断函数的奇偶性大致有下列两种方法:第一种方法:利用奇、偶函数的定义,考查)(x f 是否与)(x f -、)(x f 相等,判断步骤如下: ①定义域是否关于原点对称;②数量关系)()(x f x f ±=-哪个成立; 例1:判断下列各函数是否具有奇偶性(1)x x x f 2)(3+= (2)2432)(x x x f += (3)1)(23--=x x x x f(4)2)(x x f = []2,1-∈x (5)x x x f -+-=22)( (6)2|2|1)(2-+-=x x x f ;(7)2211)(x x x f -+-= (8)221()lg lgf x x x =+; (9)xx x x f -+-=11)1()(例2:判断函数⎩⎨⎧<≥-=)0()0()(22x x xx x f 的奇偶性。
)(0)0(:2x f f -==解 )()()(,0,022x f x x x f x x -=-=--=-<->有时即当)()()()(,0,022x f x x x f x x -=--=-=->-<有时即当.)(),()(为奇函数故总有x f x f x f =-∴第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数; 两个奇函数的积为偶函数; 两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。
《高考真题》专题06 指数函数与对数函数-2019年高考理数母题题源系列全国Ⅱ专版(解析版)
专题06 指数函数与对数函数【母题来源一】【2019年高考全国Ⅱ卷理数】若a >b ,则 A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0 D .│a │>│b │【答案】C【解析】取2,1a b ==,满足a b >,但ln()0a b -=,则A 错,排除A ; 由219333=>=,知B 错,排除B ;取1,2a b ==-,满足a b >,但|1||2|<-,则D 错,排除D ;因为幂函数3y x =是增函数,a b >,所以33a b >,即a 3−b 3>0,C 正确.故选C .【名师点睛】本题主要考查对数函数的性质、指数函数的性质、幂函数的性质及绝对值的意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.【命题意图】1.了解指数函数模型的实际背景.2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.3.理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点. 4.知道指数函数是一类重要的函数模型.5.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.6.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点. 7.知道对数函数是一类重要的函数模型.8.了解指数函数x y a =与对数函数log a y x =互为反函数0,1()a a >≠且. 【命题规律】指数函数与对数函数的性质及其应用是每年高考的必考内容之一,多以选择题或填空题的形式呈现,难度易、中、难都有,且主要有以下几种命题角度:比较幂、对数式的大小,解指数、对数方程或不等式. 【答题模板】 1.比较幂的大小①对于底数相同,指数不同的两个幂的大小比较,可以利用指数函数的单调性来判断; ②对于底数不同,指数相同的两个幂的大小比较,可以利用指数函数图象的变化规律来判断; ③对于底数不同,且指数也不同的幂的大小比较,可先化为同底的两个幂,或者通过中间值来比较. 2.解指数方程或不等式简单的指数方程或不等式的求解问题.解决此类问题应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论. 3.比较对数式的大小①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论;②若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较; ③若底数与真数都不同,则常借助1,0等中间量进行比较. 4.解对数不等式①形如log log a a x b >的不等式,借助log a y x =的单调性求解,如果a 的取值不确定,需分1a >与01a <<两种情况讨论;②形如log a x b >的不等式,需先将b 化为以a 为底的对数式的形式,再借助=log a y x 的单调性求解. 【方法总结】1.不管是比较指数式的大小还是解含指数式的不等式,若底数含有参数,需注意对参数的值分1a >与01a <<两种情况讨论.2.指数函数(0,1)x y a a a =>≠且的图象与性质指数函数在同一坐标系中的图象的相对位置与底数大小关系如下图所示,其中0<c <d <1<a <b .①在y 轴右侧,图象从上到下相应的底数由大变小; ②在y 轴左侧,图象从下到上相应的底数由大变小.即无论在y 轴的左侧还是右侧,底数按逆时针方向变大.【注】速记口诀:指数增减要看清,抓住底数不放松;反正底数大于0,不等于1已表明; 底数若是大于1,图象从下往上增; 底数0到1之间,图象从上往下减; 无论函数增和减,图象都过(0,1)点.3.对数函数的图象和性质一般地,对数函数=log (0,1)a y x a a >≠且的图象与性质如下表所示:在直线1x =的右侧,当1a >时,底数越大,图象越靠近x 轴;当01a <<时,底数越小,图象越靠近x 轴,即“底大图低”. 4.对数函数与指数函数的关系指数函数xy a =(0a >且1a ≠)与对数函数log (0a y x a =>且1a ≠)互为反函数,其图象关于直线y x =对称.5.与对数函数相关的复合函数问题,即定义域、值域的求解,单调性的判断和应用,与二次函数的复合问题等,解题方法同指数函数类似.研究其他相关函数的单调性、奇偶性一般根据定义求解,此外,需特别注意对数函数的定义域及底数的取值. 6.换底公式的变形及推广: (1)log log 01,0()且m na a nb b a a b m=>≠>; (2)(1log 01;01log )且且a b b a a b b a=>≠>≠; (3)log log log log a b c a b c d d ⋅⋅=(其中a ,b ,c 均大于0且不等于1,d >0). 7.对数的运算性质如果0,1,0,0a a M N >≠>>且,那么:(1)log ()log log a a a M N =M +N ⋅; (2)log log log -aa a M=M N N; (3)log log ()na a M =n M n ∈R .1.【内蒙古2019届高三高考一模】已知实数ln333,33ln 3(n ),l 3a b c ==+=,则,,a b c 的大小关系是A .c b a <<B .c a b <<C .b a c <<D .a c b <<【答案】B【分析】根据41ln33<<,利用指数函数对数函数的单调性即可得出结果. 【解析】∵41ln33<<,∴33ln36b =+>,43336a <<<,3464()3327c <=<, ∴c a b <<.故选B .2.【甘、青、宁2019届高三5月联考】若31log 2m =,0.17n -=,4log 25p =,则m ,n ,p 的大小关系为 A .m p n >> B .p n m >> C .p m n >>D .n p m >>【答案】B【分析】分别出,,m n p 的取值范围,由此比较出三者的大小. 【解析】31log (1,0)2∈-,0.17(0,1)-∈,42log 25log 5(2,3)=∈,故p n m >>.故选B . 3.【新疆乌鲁木齐2019届高三第二次质量检测】已知实数ln22a =,22ln2b =+,2(ln2)c =,则a ,b ,c 的大小关系是 A .c a b <<B .c b a <<C .b a c <<D .a c b <<【答案】A【分析】先判断ln2的大小范围,然后判断三个数的大小关系.【解析】因为0ln21<<所以1<ln 22<2,2+2ln2>2,0<2(ln2)<1,∴c a b <<.故选A .4.【吉林省长春市普通高中2019届高三质量检测三】若252log a =,30.4b =,ln3c =,则,,a b c 的大小关系是 A .a c b << B .a b c << C .c b a <<D .b c a <<【答案】B【解析】因为322log (,0),0.4(0,1),ln3(1,)5a b c =∈-∞=∈=∈+∞,所以a b c <<,故选B . 5.【重庆市2019年普通高等学校招生全国统一考试11月调研】设,,,则 , ,的大小关系为 A . B . C .D .【答案】B【分析】不难发现 , , ,从而可得 . 【解析】,,, ,故选B .6.【重庆市第一中学校2019届高三下学期第三次月考】若0.22.1a =,0.40.6b =;lg 0.6c =,则实数a ,b ,c 的大小关系为A .c b a >>B .a c b >>C .a c b >>D .b a c >>【答案】A【分析】根据指数函数与对数函数的性质,分别确定a ,b ,c 的范围,即可得出结果. 【解析】因为0.202.1 2.11a =>=,0.4000.60.61b <=<=,lg 0.6lg10c =<=, 所以c b a >>.故选A .【名师点睛】本题主要考查对数与指数比较大小的问题,熟记对数函数与指数函数的性质即可,属于常考题型.7.【陕西省咸阳市2019届高三高考模拟检测二】已知 , , 分别是方程 , , 的实数解,则 A . B . C .D .【答案】B【分析】将函数 , , , 画在同一坐标系中,可知图象的交点就是方程的根. 【解析】根据题干要求得到,在同一坐标系中画出函数 , , , 四个函数图象,如下图:方程的根就是两个图象的交点,根据图象可得到: .故选B . 8.【陕西省渭南市2019届高三二模】设0.20.321(),log 3,22a b c -===,则A .b c a >>B .a b c >>C .b a c >>D .a c b >>【答案】C【分析】由题意利用所给的数所在的区间和指数函数的单调性比较大小即可.【解析】由题意可得:0.21()(0,1)2a =∈,2log 31b =>,0.30.312()(0,1)2c -==∈,指数函数1()2x y =单调递减,故0.20.311()()22>,综上可得b a c >>.故选C .【名师点睛】对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.9.【黑龙江省大庆市2019届高三第二次模拟】已知 , , ,则 , , 的大小关系为A .B .C .D .【答案】C【分析】首先利用对数的运算性质,将 , 化成同底的对数,再根据其单调性求得 , 的大小,之后再利用中介值1,得到 , , 的大小,从而求得结果.【解析】因为 , ,所以 ,所以 ,故选C . 【名师点睛】本题考查的是有关对数值与指数幂的大小比较的问题,涉及到的知识点有对数式的运算性质,利用对数函数的单调性比较对数值的大小,利用中介值比较对数值与指数幂的大小,属于简单题目.10.【重庆市西南大学附属中学校2019届高三第九次月考】已知0.42a =,0.29b =,3c =,则A .a b c <<B .a c b <<C .c a b <<D .c b a <<【答案】A【分析】利用指数函数和幂函数的单调性即可判断出a ,b ,c 的大小关系. 【解析】0.42a =,0.20.493b ==,330.75433c ===,幂函数0.4()f x x =在(0,)+∞上单调递增,则0.40.423a b =<=,指数函数()3xg x =在(0,)+∞上单调递增,则0.40.7533b c =<=, 可得a b c <<,故选A .11.【辽宁省沈阳市东北育才学校2019届高三第八次模拟】设3log 6a =,5log 10b =,61log 2=+c ,则A .a b c <<B .b a c <<C .c a b <<D .c b a <<【答案】D【分析】根据对数运算将,a b 变形为31log 2+和51log 2+,根据真数相同的对数的大小关系可比较出三个数之间的大小.【解析】333log 6log (32)1log 2a ==⨯=+;555log 10log (52)1log 2b ==⨯=+, 又356log 2log 2log 2>>,c b a ∴<<,故选D .【名师点睛】本题考查利用对数函数的图象比较大小的问题,关键是能利用对数运算将三个数转化为统一的形式.12.【山西省2019届高三高考考前适应性训练(三)数学试题】设0.321log 0.6,log 0.62m n ==,则 A .m n m n mn ->+> B .m n mn m n ->>+ C .m n m n mn +>->D .mn m n m n >->+【答案】A【解析】0.30.3log 0.6log 10,m =>= 2211log 0.6log 10,22n =<= 0mn <, 0.60.611log 0.3log 4m n +=+ 0.60.6log 1.2log 0.61=<=,即1m n mn +<,故m n mn +>. 又()()20m n m n n --+=->,所以m n m n ->+.故m n m n mn ->+>,故选A .【名师点睛】本题考查利用作差法、作商法比较大小,考查对数的化简与计算,考查分析计算,化简求值的能力,属中档题.13.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟】函数22()log (34)f x x x =--的单调减区间为A .(,1)-∞-B .3(,)2-∞- C .3(,)2+∞D .(4,)+∞【答案】A【解析】函数22()log (34)f x x x =--,则2340(4)(1)04x x x x x -->⇒-+>⇒>或1x <-,故函数()f x 的定义域为4x >或1x <-,由2log y x =是单调递增函数,可知函数()f x 的单调减区间即234y x x =--的单调减区间,当3(,)2x ∈-∞时,函数234y x x =--单调递减,结合()f x 的定义域,可得函数22()log (34)f x x x =--的单调减区间为(,1)-∞-.故选A .【名师点睛】本题考查了复合函数的单调性,要注意的是必须在定义域的前提下,去找单调区间.。
专题14 函数的奇偶性的应用-2019年高考理数母题题源系列(全国Ⅱ专版)(原卷版)
专题14 函数的奇偶性的应用【母题来源一】【2019年高考全国Ⅱ卷理数】已知()f x 是奇函数,且当0x <时,()e axf x =-.若(l n2)8f =,则a =______________. 【答案】3-【解析】由题意知()f x 是奇函数,且当0x <时,()e axf x =-,又因为ln 2(0,1)∈,(ln 2)8f =, 所以ln 2e 8a --=-,两边取以e 为底数的对数,得ln 23ln 2a -=, 所以3a -=,即3a =-.【名师点睛】本题主要考查函数的奇偶性,对数的计算.【母题来源二】【2018年高考全国Ⅱ卷理数】已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=A .50-B .0C .2D .50【答案】C【解析】因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1),(3)(1)(1),4f x f x f x f x f x T +=--∴+=-+=-∴=, 因此[](1)(2)(3)(50)12(1)()(2)(3)4(1)(2)f f f f f f f f f f ++++=+++++,因为(3)(1),(4)(2)f f f f =-=-,所以(1)(2)0())(34f f f f +++=, 因为(2)(0)0f f ==,从而(1)(2)(3)(50)(1)2f f f f f ++++==.故选C .【名师点睛】先根据奇函数的性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.【命题意图】1.结合具体函数,了解函数奇偶性的含义.2.以抽象函数的奇偶性、对称性、周期性为载体考查分析问题、解决问题的能力和抽象转化的数学思想. 【命题规律】高考对该部分内容考查一般以选择题或填空题形式出现,难度中等或中等上,热点是奇偶性、对称性、周期性之间的内在联系,这种联系成为命题者的钟爱,一般情况下可“知二断一”. 【答题模板】1.判断函数奇偶性的常用方法及思路 (1)定义法(2)图象法(3)性质法利用奇函数和偶函数的和、差、积、商的奇偶性和复合函数的奇偶性来判断.注意:①分段函数奇偶性的判断,要注意定义域内x 取值的任意性,应分段讨论,讨论时可依据x 的范围相应地化简解析式,判断()f x 与()f x 的关系,得出结论,也可以利用图象作判断. ②性质法中的结论是在两个函数的公共定义域内才成立的.③性质法在选择题和填空题中可直接运用,但在解答题中应给出性质推导的过程.2.与函数奇偶性有关的问题及解决方法 (1)已知函数的奇偶性,求函数的值将待求值利用奇偶性转化为已知区间上的函数值求解. (2)已知函数的奇偶性求解析式已知函数奇偶性及其在某区间上的解析式,求该函数在整个定义域上的解析式的方法是:首先设出未知区间上的自变量,利用奇、偶函数的定义域关于原点对称的特点,把它转化到已知的区间上,代入已知的解析式,然后再次利用函数的奇偶性求解即可. (3)已知带有参数的函数的表达式及奇偶性求参数在定义域关于原点对称的前提下,利用()f x 为奇函数⇔()()f x f x -=-,()f x 为偶函数⇔()f x -()f x =,列式求解,也可以利用特殊值法求解.对于在0x =处有定义的奇函数()f x ,可考虑列式(0)0f =求解.(4)已知函数的奇偶性画图象判断单调性或求解不等式.利用函数的奇偶性可画出函数在另一对称区间上的图象及判断另一区间上函数的单调性. 【方法总结】1.函数奇偶性的定义及图象特点判断()f x -与()f x 的关系时,也可以使用如下结论:如果()0()f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数;如果()0()f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数.注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x ,x -也在定义域内(即定义域关于原点对称). 2.函数奇偶性的几个重要结论(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反. (2)()f x ,()g x 在它们的公共定义域上有下面的结论:(3)若奇函数的定义域包括0,则(0)0f =.(4)若函数()f x 是偶函数,则()()(||)f x f x f x -==.(5)定义在(,)-∞+∞上的任意函数()f x 都可以唯一表示成一个奇函数与一个偶函数之和. (6)若函数()y f x =的定义域关于原点对称,则()()f x f x +-为偶函数,()()f x f x --为奇函数,()()f x f x ⋅-为偶函数.(7)一些重要类型的奇偶函数 ①函数()xxf x a a-=+为偶函数,函数()x xf x a a-=-为奇函数.②函数221()1x x x x x x a a a f x a a a ----==++(0a >且1a ≠)为奇函数. ③函数1()log 1axf x x-=+(0a >且1a ≠)为奇函数.④函数()log (a f x x =(0a >且1a ≠)为奇函数. 3.若()()f a x f a x +=-,则函数()f x 的图象关于x a =对称. 4.若()()f a x f a x +=--,则函数()f x 的图象关于(,0)a 对称.5.若函数()f x 关于直线x a =和()x b b a =>对称,则函数()f x 的周期为2()b a -. 6.若函数()f x 关于直线x a =和点(,0)()b b a >对称,则函数()f x 的周期为4()b a -. 7.若函数()f x 关于点(,0)a 和点(,0)()b b a >对称,则函数()f x 的周期为2()b a -. 8.若函数()f x 是奇函数,且关于x a =(0)a >对称,则函数()f x 的周期为4a . 9.若函数()f x 是偶函数,且关于x a =(0)a >对称,则函数()f x 的周期为2a . 10.若函数()f x 是奇函数,且关于(,0)a (0)a >对称,则函数()f x 的周期为2a . 11.若函数()f x 是偶函数,且关于(,0)a (0)a >对称,则函数()f x 的周期为4a . 12.若函数()()f x x R ∈满足()()f a x f x +=-,1()()f a x f x +=-,1()()f a x f x +=均可以推出函数()f x 的周期为2a .1.【重庆市第一中学2019届高三上学期期中考试】下列函数为奇函数的是 A . B . C .D .2.【黑龙江省齐齐哈尔市2019届高三第一次模拟】若函数2()22x a xx f x -=-是奇函数,则(1)f a -= A .1- B .23-C .23D .13.【甘肃省静宁县第一中学2019届高三上学期第一次模拟】已知()f x 是定义在R 上的奇函数,当 时3()x m f x =+(m 为常数),则3(log 5)f -的值为A .4B .4-C .6D .6-4.【甘青宁2019届高三3月联考】若函数3()1f x x =+,则1(lg 2)(lg )2f f +=A .2B .4C .2-D .4-5.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第二次模拟】已知函数2()e e 21xxxxf x -=-++,若(lg )3f m =,则1(lg )f m =A .4-B .3-C .2-D .1-6.【山东省济宁市2019届高三二模】已知 是定义在 上的周期为4的奇函数,当 时, ,则 A . B .0 C .1D .27.【云南省玉溪市第一中学2019届高三第二次调研】下列函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是 A .3x y =B .1ln||y x = C .||2x y =D .cos y x =8.【山东省烟台市2019届高三3月诊断性测试】若函数()f x 是定义在R 上的奇函数,1()14f =,当0x <时,2()log ()f x x m =-+,则实数m = A .1- B .0 C .1D .29.【宁夏银川市2019年高三下学期质量检测】已知()f x 是定义在R 上奇函数,当0x ≥时,2()log (1)f x x =+,则3()f -= A .2- B .1- C .2D .110.【甘肃省甘谷县第一中学2019届高三上学期第一次检测】已知定义在 上的函数 ,若 是奇函数,是偶函数,当 时, ,则 A . B . C .0D .11.【黑龙江省哈尔滨市第三中学2019届高三上学期期中考试】已知函数()f x 是定义在R 上的奇函数,对任意的x ∈R 都有33())22(f x f x +=-,当3(,0)2x ∈-时,()f x =12log (1)x -,则(2017)f +(2019)f =A .1B .2C .1-D .2-12.【甘肃省兰州市第一中学2019届高三9月月考】奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为A .2B .1C .-1D .-213.【陕西省彬州市2019届高三上学期第一次教学质量监测】已知函数()y f x =是奇函数,当0x >时,2()log (1)f x x =-,则(1)0f x -<的解集是A .(,1)(2,3)-∞-B .(1,0)(2,3)-C .(2,3)D .(,3)(0,1)-∞-14.【陕西省榆林市2019届高三第四次普通高等学校招生模拟考试】已知()f x 是定义在R 上的偶函数,且(5)(3)f x f x +=-,如果当[0,4)x ∈时,2()log (2)f x x =+,则(766)f =A .3B .3-C .2D .2-15.【黑龙江省哈尔滨师范大学附属中学2019届高三上学期期中考试】已知定义域为R 的奇函数 ,当时, ,当 时, ,则 A .B .C .D .16.【重庆市2018-2019学年3月联考】定义在[7,7]-上的奇函数()f x ,当07x <≤时,()26x f x x =+-,则不等式()0f x >的解集为 A .(2,7]B .(2,0)(2,7]-C .(2,0)(2,)-+∞D .[7,2)(2,7]--17.【宁夏平罗中学2019届高三上学期期中考试】已知定义在 上的函数 是奇函数,且当 时,,则 ______________.18.【重庆南开中学2019届高三第四次教学检测】已知偶函数()f x 的图象关于直线2x =对称,(3)f =则(1)f =______________.19.【辽宁省抚顺市2019届高三第一次模拟】已知函数()f x 是奇函数,且当0x <时1()()2xf x =,则(3)f 的值是______________.20.【辽宁省朝阳市重点高中2019届高三第四次模拟】已知()y f x =是定义域为R 的奇函数,且周期为2,若当[0,1]x ∈时,()(1)f x x x =-,则( 2.5)f -=______________.21.【陕西省咸阳市2019届高三模拟检测三】已知定义在R 上的奇函数()f x 的图像关于点(2,0)对称,且(3)3f =,则(1)f -=______________.22.【宁夏石嘴山市第三中学2019届高三四模】若函数2,0()3(),0x x f x g x x ⎧>⎪=⎨⎪<⎩是奇函数,则1()2f -=______________.23.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟】已知函数()f x 是奇函数,当0x >时,()lg f x x =,则1(())100f f 的值为______________. 24.【山东省滨州市2019届高三第二次模拟(5月)】若函数 为偶函数,则______________.25.【甘肃省张掖市2019届高三上学期第一次联考】已知()f x ,()g x 分别是定义在R 上的奇函数和偶函数,且(0)0g =,当0x ≥时,2()()22xf xg x x x b -=+++(b 为常数),则(1)(1)f g -+-=______________.26.【陕西省安康市安康中学2019届高三第三次月考】若函数2()e 1x f x a =--是奇函数,则常数 等于______________.27.【吉林省长春市实验中学2019届高三期末考试】已知函数 是定义在 上的周期为 的奇函数,当时, ,则______________. 28.【新疆昌吉市教育共同体2019届高三上学期第二次月考】下列函数:① ;② , , ;③ ;④ . 其中是偶函数的有______________.(填序号)29.【吉林省长春市吉林省实验中学2019届高三上学期第三次月考】已知 , .若偶函数 满足 (其中 , 为常数),且最小值为1,则 ______________. 30.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次模拟】已知函数()f x 是定义域为(,)-∞+∞的偶函数,且(1)f x -为奇函数,当[0,1]x ∈时,3()1f x x =-,则29()2f =______________.31.【辽宁省大连市2019届高三第二次模拟】已知函数 是定义域为 的偶函数,且 在 , 上单调递增,则不等式 的解集为______________.32.【辽宁省大连市2019届高三下学期第一次双基测试】已知定义在R 上的函数()f x ,若函数(1)f x +为偶函数,函数(2)f x +为奇函数,则20191()i f i ==∑______________.33.【内蒙古呼和浩特市2019届高三上学期期中调研】已知函数 与 都是定义在 上的奇函数,当 时, ,则的值为______________.。
高三数学函数的奇偶性试题
高三数学函数的奇偶性试题1.设是定义在上的奇函数,当时,,则的图像与圆的公共点的个数是()A.个B.个C.个D.个【答案】B【解析】根据奇函数的定义,可知x<0时,f(x)=x-1直接检验可得x>0是与圆有一个公共点,x<0时没有公共点,但注意到奇函数中f(0)=0恰好在圆周上,所以两者有两个公共点.选B【考点】函数的奇偶性,图像的公共点2.已知f(x)是定义在R上的奇函数,且当x<0时,f(x)=3x,则f(log94)的值为()A.-2B.C.D.2【答案】B【解析】根据对数性质,f(log94)=f(log32)因为f(x)是奇函数,于是f(log32)=-f(-log32)=-f(log3),且log3<0故f(log94)=-f(log3)=-【考点】函数的奇偶性,分段函数3.已知奇函数f (x)和偶函数g(x)分别满足,,若存在实数a,使得成立,则实数b的取值范围是A.(-1,1)B.C.D.【答案】C,【解析】由f (x)的解析式知,当0≤<1时,f (x)=是增函数,其值域为[0,1],当≥1时,f (x)=是减函数,值域为(0,1],故当≥0时,值域为[0,1],因为f (x)是奇函数,根据奇函数的对称性知,当≤0时,值域为[-1,0],所以f (x)的最小值为-1,由存在实数a,使得成立知,>=-1,①当≥0时,,解得,因为g(x)是偶函数,由偶函数的对称性知,当b≤0时,不等式的解为,所以实数b的取值范围是,故选C.【考点】函数奇偶性,指数函数与幂函数图像性质,含参数不等式成立问题4.已知,.现有下列命题:①;②;③.其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②【答案】A【解析】对①,,成立;对②,左边的可以取除之外的任意值,而右边的,故不成立;注:.当时成立.对③,,所以在内单调递增,且在处的切线为.作出图易知③成立法二、根据图象的对称性,可只考虑的情况. 时,,则,所以,所以③成立.标准答案选A,笔者认为有错,应该选C.题干中的应理解为函数的定义域,而不是后面三个命题中的范围,因为在它的前面是逗号.如果前是句号,则选A.【考点】1、函数的奇偶性;2、对数运算;3、函数与不等式.5.已知为偶函数,当时,,则不等式的解集为()A.B.C.D.【答案】A【解析】先画出当时,函数的图象,又为偶函数,故将轴右侧的函数图象关于轴对称,得轴左侧的图象,如下图所示,直线与函数的四个交点横坐标从左到右依次为,由图象可知,或,解得,选A.【考点】1、分段函数;2、函数的图象和性质;3、不等式的解集.6.已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是________.【答案】{x|-7<x<3}【解析】设x<0,则-x>0.∵当x≥0时,f(x)=x2-4x,∴f(-x)=(-x)2-4(-x).∵f(x)是定义在R上的偶函数,∴f(-x)=f(x),∴f(x)=x2+4x(x<0),∴f(x)=由f(x)=5得或∴x=5或x=-5.观察图像可知由f(x)<5,得-5<x<5.∴由f(x+2)<5,得-5<x+2<5,∴-7<x<3.∴不等式f(x+2)<5的解集是{x|-7<x<3}.7.(5分)(2011•湖北)若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=e x,则g(x)=()A.e x﹣e﹣x B.(e x+e﹣x)C.(e﹣x﹣e x)D.(e x﹣e﹣x)【答案】D【解析】根据已知中定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=e x,根据奇函数和偶函数的性质,我们易得到关于f(x)、g(x)的另一个方程:f(﹣x)+g(﹣x)=e﹣x,解方程组即可得到g(x)的解析式.解:∵f(x)为定义在R上的偶函数∴f(﹣x)=f(x)又∵g(x)为定义在R上的奇函数g(﹣x)=﹣g(x)由f(x)+g(x)=e x,∴f(﹣x)+g(﹣x)=f(x)﹣g(x)=e﹣x,∴g(x)=(e x﹣e﹣x)故选D点评:本题考查的知识点是函数解析式的求法﹣﹣方程组法,及函数奇偶性的性质,其中根据函数奇偶性的定义构造出关于关于f(x)、g(x)的另一个方程:f(﹣x)+g(﹣x)=e﹣x,是解答本题的关键.8.已知函数是定义在R上的可导函数,其导函数记为,若对于任意实数x,有,且为奇函数,则不等式的解集为()A.B.C.D.【答案】B【解析】令,所以在R上是减函数,又为奇函数,所以,所以,所以原不等式可化为,所以,故选B.【考点】导数的综合应用问题9.已知且,若,则 .【答案】【解析】由得,令,则,又由得,而函数是奇函数,∴,即,.【考点】奇函数的性质.10.已知定义在上的函数满足为奇函数,函数关于直线对称,则下列式子一定成立的是()A.B.C.D.【答案】B【解析】因为为奇函数,所以,则.又因为关于直线对称,所以关于对称,所以,则,于是8为函数的周期,所以,故选B.【考点】1、抽象函数;2、函数的奇偶性;3、函数的对称性;4、函数的周期性.11.已知函数是定义在上的偶函数,为奇函数,,当时,logx,2则在内满足方程的实数为A.B.C.D.【答案】C【解析】由f(x+1)为奇函数,可得f(x)=-f(2-x).由f(x)为偶函数可得f(x)=f(x+4),故 f(x)是以4为周期的函数.当8<x≤9时,求得f(x)=f(x-8)=log2(x-8).由log2(x-8)+1=0,得x的值.当9<x<10时,求得x无解,从而得出结论.【考点】函数性质的综合应用.12.已知定义域为R的函数f(x)=是奇函数,则a=________.【答案】2【解析】因为函数f(x)=是定义域为R的奇函数,所以f(-1)=-f(1),即=-,解得a=2.13.函数是上的奇函数,是上的周期为4的周期函数,已知,且,则的值为___________.【答案】2【解析】本题就是要待计算式中的每个式子计算化简,由已知,,因此,,,,,从而已知式为,∴.【考点】奇函数与周期函数的定义.14.函数,若,则()A.2018B.-2009C.2013D.-2013【答案】C【解析】因为函数为偶函数,.【考点】函数的奇偶性.15.若函数,则函数()A.是偶函数,在是增函数B.是偶函数,在是减函数C.是奇函数,在是增函数D.是奇函数,在是减函数【答案】A【解析】由定义易得,函数为奇函数.求导得:.(这里之所以在分子提出来,目的是便于将分子求导)再令,则.当时,,所以在时单调递减,,从而.所以在上是减函数,由偶函数的对称性知,在上是增函数.巧解:由定义易得,函数为奇函数.结合选项来看,函数在上必单调,故取特殊值来判断其单调性. ,,所以在上是减函数,由偶函数的对称性知,在上是增函数.选A【考点】函数的性质.16.已知函数为奇函数,且当时,,则( )A.2B.0C.1D.﹣2【答案】D【解析】.【考点】奇函数的性质及应用17.已定义在上的偶函数满足时,成立,若,,,则的大小关系是()A.B.C.D.【答案】C【解析】构造函数,由函数是R上的偶函数,函数是R上的奇函数可得是R上的奇函数,又当时,所以函数在时的单调性为单调递减函数;所以在时的单调性为单调递减函数,因为,,,故,即:,故选C.【考点】函数奇偶性的性质,简单复合函数的导数,函数的单调性与导数的关系.18.设是周期为2的奇函数,当时,,则 .【答案】【解析】因为是周期为2的奇函数,所以.【考点】函数的基本性质.19.已知一个奇函数的定义域为则=___________.【答案】【解析】奇函数的定义域要关于原点对称,于是对应于,所以.【考点】奇函数的概念.20.定义在上的偶函数满足且,则的值为()A.B.C.D.【答案】B【解析】,故函数是以为一个周期的周期函数,,故选B.【考点】1.函数的周期性;2.函数的奇偶性21.已知可以表示为一个奇函数与一个偶函数之和,若不等式对于恒成立,则实数的取值范围是____________.【答案】【解析】依题意,g(x)+h(x)= .....(1),∵g(x)是奇函数,∴g(-x)=-g(x);∵h(x)是偶函数,∴h(-x)=h(x);∴g(-x)+h(-x)="h(x)-g(x)=" (2)解(1)和(2)组成的方程组得h(x)=,g(x)=∴ag(x)+h(2x)=a +,∴a· +≥0在x∈[1,2]恒成立令t=,∴=,当x∈[1,2]时,t∈[2,4],∴原不等式化为a(t-)+(t2+)≥0在t∈[2,4]上恒成立,由不等式a(t-)+(t2+)≥0,可得a(t-)≥-(t2+),∵当t∈[2,4]时,t-t>0恒成立,∴a≥ == ,即a≥在t∈[2,4]上恒成立,令u=t-,求导得=1+>0恒成立,∴u=t-在t∈[2,4]上单调递增∴u∈[ ],令f(u)=u+,u∈[],求导得(u)=1->0在u∈[]上恒成立,∴f(u)在u∈[]上单调递增即当u=,f(u)取最小值f()= ,当u=时,可解得t=2(另一根不在t∈[2,4]内故舍去)∴当t=2时,取最小值为,即取最大值为-,∴a≥-,当t=2,x=1时取等号,∴a的最小值为-.【考点】1.函数的奇偶性;2.不等式的性质;3.导数的性质.22.已知函数(为常数)是奇函数,则实数为()A.1B.C.3D.【答案】D【解析】函数在处有意义,所以,得.【考点】函数的奇偶性.23.若函数f(x) (x∈R)是奇函数,函数g(x) (x∈R)是偶函数,则 ( )A.函数f(x)g(x)是偶函数B.函数f(x)g(x)是奇函数C.函数f(x)+g(x)是偶函数D.函数f(x)+g(x)是奇函数【答案】B【解析】令,由于函数为奇函数,,由于函数为偶函数,则,,故函数为奇函数,故选;对于函数,取,,则,此时函数为非奇非偶函数,故、选项均错误.【考点】函数的奇偶性24.已知函数是上的偶函数,若对于,都有,且当时,,则的值为A.B.C.1D.2【答案】C【解析】根据题意,由于函数是上的偶函数,若对于,都有,可知函数的周期为2,且当时,,那么则有,故可知答案为C。
高中数学函数奇偶性知识点归纳考点分析配经典案例分析
函数奇偶性知识点归纳考点分析及经典案例分析函数的奇偶性定义:1.偶函数:一般地,对于函数的定义域内的任意一个,都有,那么就叫做偶函数.2.奇函数:一般地,对于函数的定义域的任意一个,都有,那么就叫做奇函数.二、函数的奇偶性的几个性质1、对称性:奇(偶)函数的定义域关于原点对称;2、整体性:奇偶性是函数的整体性质,对定义域内任意一个都必须成立;3、可逆性:是偶函数;奇函数;4、等价性:;;5、奇函数的图像关于原点对称,偶函数的图像关于轴对称;6、可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。
7、判断或证明函数是否具有奇偶性的根据是定义。
8、如果一个奇函数f(x)在x=0处有意义,则这个函数在x=0处的函数值一定为0。
并且关于原点对称。
三、关于奇偶函数的图像特征一般地:奇函数的图像关于原点对称,反过来,如果一个函数的图像关于原点对称,那么这个函数是奇函数;即:f(x)为奇函数<=>f(x)的图像关于原点对称 点(x,y )→(-x,-y ) 偶函数的图像关于轴对称,反过来,如果一个函数的图像关于轴对称,那么这个函数是偶函数。
()f x x ()()f x f x -=()f x ()f x x ()()f x f x -=-()f x x )()(x f x f =-⇔)(x f )()(x f x f -=-⇔)(x f )()(x f x f =-⇔0)()(=--x f x f (||)()f x f x ⇔=)()(x f x f -=-⇔0)()(=+-x f x f y y y即: f(x)为偶函数<=>f(x)的图像关于Y 轴对称 点(x,y )→(-x,y ) 奇函数对称区间上的单调性相同(例:奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
)偶函数对称区间上的单调性相反(例:偶函数在某一区间上单调递增,则在它的对称区间上单调递减)。
函数的奇偶性的应用题型归纳
函数的奇偶性的应用题型归纳一、 求函数值例1、已知函数5)(24+++=x cx ax x f ,若f (-3)=-3,求f (3)的值。
分析:若将f (-3)=-3展开,显然无法求出a ,c 的值,只能将81a +9c 视为整体 来求f (3),进一步观察函数结构,可构造函数解题。
解:设5)(24++=cx ax x g ,则g (x )为偶函数,且g (x )=f (x )-x ,因为)()()(),()(x x f x g x g x g ---=-=-,所以x x f x x f -=---)()()(,所以x x f x f 2)()(=--,所以6)3()3(=--f f ,又因为3)3(-=-f ,所以.3)3(=f二、 求函数解析式 例2、已知f (x )是R 上的奇函数,且当),0(+∞∈x 时,)1()(3x x x f +=,求f (x ) 的解析式。
分析:要求f (x )在R 上的解析式,条件已给出f (x )在),0(+∞上的解析式,还需求当0≤x 时f (x )对应的解析式。
解:方)0,(-∞∈x ,),0(+∞∈-x ,所以)1()1()(33x x x x x f --=-+-=-因为f (x )是R 上的奇函数,所以)1()()(3x x x f x f -=--=,)0,(-∞∈x ,在)()(x f x f -=-中,令x =0,得f (0)=0,所以⎪⎩⎪⎨⎧<-=>+=0),1(0,00),1()(33x x x x x x x x f 即⎪⎩⎪⎨⎧<-≥+=0),1(0),1()(33x x x x x x x f 点评:利用函数的奇偶性求解析式是常见题型,其步骤为:(1)设,即将自变量x 设在未知区间上;(2)化,即将x 转化到已知区间上;(3)求,即根据函数的奇偶性求出解析式。
另外,若奇函数f (x )在原点处有定义,则f (0)=0.三、 比较大小例3、已知f (x )是偶函数,且在区间[0,1]上是单调增函数,比较)0(),1(),5.0(f f f -- 的大小。
高三数学函数的奇偶性试题答案及解析
高三数学函数的奇偶性试题答案及解析1.已知函数为奇函数,且当时,则()A.B.C.D.【答案】A【解析】由已知有,故选A.【考点】函数的奇偶性.2.已知定义在上的函数是奇函数且满足,,数列满足,且,(其中为的前项和),则( ).A.B.C.D.【答案】C【解析】由定义在上的函数是奇函数且满足知,= = =,所以= = = =,所以的周期为3,由得,,当n≥2时,=,所以=,所以=-3,=-7,=-15,=-31,=-63,所以 ====3,故选C.【考点】函数的奇偶性、周期性,数列的递推公式,转化与化归思想3.下列函数在定义域内为奇函数的是()A.B.C.D.【答案】A【解析】根据奇函数的定义:A选项:,所以函数为奇函数;B选项:,所以函数为偶函数;C选项:,所以函数为偶函数;D选项:,所以函数为偶函数;可知A正确。
【考点】函数的奇偶性.4.设函数的定义域为,且是奇函数,是偶函数,则下列结论中正确的是A.是偶函数B.是奇函数C.是奇函数D.是奇函数【答案】C【解析】由函数的定义域为,且是奇函数,是偶函数,可得:和均为偶函数,根据一奇一偶函数相乘为奇函数和两偶函数相乘为偶函数的规律可知选C.【考点】函数的奇偶性5.(本题满分14分)本题有2个小题,第一小题满分6分,第二小题满分1分.设常数,函数(1)若=4,求函数的反函数;(2)根据的不同取值,讨论函数的奇偶性,并说明理由.【答案】(1),;(2)时为奇函数,当时为偶函数,当且时为非奇非偶函数.【解析】(1)求反函数,就是把函数式作为关于的方程,解出,得,再把此式中的互换,即得反函数的解析式,还要注意的是一般要求出原函数的值域,即为反函数的定义域;(2)讨论函数的奇偶性,我们可以根据奇偶性的定义求解,在,这两种情况下,由奇偶性的定义可知函数具有奇偶性,在时,函数的定义域是,不关于原点对称,因此函数既不是奇函数也不是偶函数.试题解析:(1)由,解得,从而,∴,∵且∴①当时,,∴对任意的都有,∴为偶函数②当时,,,∴对任意的且都有,∴为奇函数③当且时,定义域为,∴定义域不关于原定对称,∴为非奇非偶函数【考点】反函数,函数奇偶性.6.已知f(x)=asinx+bx+c(a,b,c∈R),若f(0)=-2,f()=1,则f(-)=________.【答案】-5【解析】由题设f(0)=c=-2,f()=a+b-2=1所以f(-)=-a-b-2=-5.7.若f(x)是偶函数,且当x∈[0,+∞)时,f(x)=x-1,则f(x-1)<0的解集是()A.(-1,0)B.(-∞,0)∪(1,2)C.(1,2)D.(0,2)【答案】D【解析】根据函数的性质作出函数f(x)的图象如图.把函数f(x)向右平移1个单位,得到函数f(x-1),如图,则不等式f(x-1)<0的解集为(0,2),选D.8.已知函数f(x)=为奇函数,则a+b=________.【解析】当x>0时,-x<0,由题意得f(-x)=-f(x),所以x2-x=-ax2-bx,从而a=-1,b=1,a+b=0.9.下面四个命题:①已知函数f(x)=sin x,在区间[0,π]上任取一点x0,则使得f(x)>的概率为;②函数y=sin 2x的图象向左平移个单位得到函数y=sin的图象;③命题“∀x∈R,x2-x+1≥”的否定是“∃x0∈R,x2-x+1<”;④若函数f(x)是定义在R上的奇函数,则f(x+4)=f(x),则f(2 012)=0.其中所有正确命题的序号是________.【答案】①③④【解析】②错误,应该向左平移;①使得f(x)>的概率为p==;④f(2 012)=f(0)=0.10.函数的图象大致是()A.B.C.D.【答案】A【解析】易知函数是偶函数,当x=0时,. 所以选A.11.已知定义在R上的奇函数和偶函数满足 (,且),若,则()A.2B.C.D.【答案】B【解析】由条件,,即,由此解得,,所以选B.12.函数的图像大致为( ).【答案】A【解析】由条件,得函数的定义域为,排除C、D;又==,所以函数为奇函数,排除B,故选A.【考点】函数图象.13.设直线l与曲线f(x)=x3+2x+1有三个不同的交点A、B、C,且︱AB︱=︱BC︱=,则直线l的方程为()A.y=5x+1B.y=4x+1C.y=3x+1D.y=x+1【答案】C【解析】由曲线关于(0,1)中心对称,则B(0,1),设直线l的方程为y=kx+1,代入y=x3+2x+1,可得x3=(k-2)x,∴x=0或x=±,∴不妨设A(,k·+1)(k >2),∵|AB|=|BC|=∴(-0)2+(k·+1-1)2=10∴k3-2k2+k-12=0,∴(k-3)(k2+k+4)=0,解得k=3,∴直线l的方程为y=3x+1,故选C.【考点】1.函数的周期性;2.函数奇偶性的性质.14.将函数的图象向左平移个单位长度后得到函数,则函数()A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.既不是奇函数,也不是偶函数【答案】B【解析】,由题意知,因此函数为偶函数,故选B.【考点】1.三角函数图像变换;2.辅助角公式;3.三角函数的奇偶性15.设函数的定义域为,如果存在正实数,对于任意,都有,且恒成立,则称函数为上的“型增函数”,已知函数是定义在上的奇函数,且当时,,若为上的“2014型增函数”,则实数的取值范围是()A.B.C.D.【答案】C【解析】是定义在上的奇函数,设,则.,..①当时,由,可得,化为,由绝对值的几何意义可得,解得②当时,由f(2014+x)>f(x),分为以下两类研究:当时,可得,化为,由绝对值的几何意义可得,解得.当,,化为,故时成立.当时,,③当时,由可得,当时成立,当时,.综上可知:的取值范围是,故选C.【考点】1.奇函数的性质;2.绝对值的意义;3.分类讨论思想.16.设偶函数满足,则( )A.B.C.D.【答案】B【解析】的解集为,因为是偶函数,关于轴对称,所以的解集为或,那么的解集为或,故解集为或,故选B.【考点】1.函数的奇偶性;2.解不等式.17.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x3+x+1,则当x<0时,f(x)=________.【答案】x3+x-1【解析】若x<0,则-x>0,f(-x)=-x3-x+1,由于f(x)是奇函数,所以f(-x)=-f(x),所以f(x)=x3+x-1.18.设函数f(x)=x(e x+ae-x)(x∈R)是偶函数,则实数a的值为______________.【答案】-1【解析】由题意可得g(x)=e x+ae-x为奇函数,由g(0)=0,得a=-1.19.已知函数y=f(x)是R上的偶函数,对∀x∈R都有f(x+4)=f(x)+f(2)成立.当x1,x2∈[0,2],且x1≠x2时,都有<0,给出下列命题:①f(2)=0;②直线x=-4是函数y=f(x)图象的一条对称轴;③函数y=f(x)在[-4,4]上有四个零点;④f(2 014)=0.其中所有正确命题的序号为________.【答案】①②④【解析】令x=-2,得f(-2+4)=f(-2)+f(2),解得f(-2)=0,因为函数f(x)为偶函数,所以f(2)=0,①正确;因为f(-4+x)=f(-4+x+4)=f(x),f(-4-x)=f(-4-x+4)=f(-x)=f(x),所以f(-4+x)=f(-4-x),即x=-4是函数f(x)的一条对称轴,②正确;当x1,x2∈[0,2],且x 1≠x2时,都有<0,说明函数f(x)在[0,2]上是单调递减函数,又f(2)=0,因此函数f(x)在[0,2]上只有一个零点,由偶函数知函数f(x)在[-2,0]上也只有一个零点,由f(x+4)=f(x),知函数的周期为4,所以函数f(x)在(2,6]与[-6,-2)上也单调且有f(6)=f(-6)=0,因此,函数在[-4,4]上只有2个零点,③错;对于④,因为函数的周期为4,即有f(2)=f(6)=f(10)=…=f(2 014)=0,④正确.20.已知函数f(x)是定义域为R上的奇函数,且周期为2.若当x∈[0,1)时,f(x)=2x-1,则f(的值是 ().A.-B.-5C.-D.-6【答案】C【解析】∵f(x)是在R上的奇函数,且周期为2.∴f=-f(log26)=-f(log26-2)=-f(log2),又x∈[0,1)时,f(x)=2x-1,从而f=+1=-+1=-21.设函数f(x)=x(e x+a e-x)(x∈R)是偶函数,则实数a=________.【答案】-1【解析】g(x)=e x+a e-x为奇函数,由g(0)=0得a=-1.22.设为实常数,是定义在上的奇函数,且当时,.若对一切成立,则的取值范围是 .【答案】【解析】因为是定义在上的奇函数,所以当时,;当时,,因此且对一切成立所以且,即.【考点】函数奇偶性,不等式恒成立23.函数的图象大致为( )【答案】A【解析】观察函数可知,該函数是偶函数,其图像关于轴对称,据此可排除B,D.又在轴附近,函数值接近1,所以C不符合.选A.【考点】函数的奇偶性,函数的图像.24.设偶函数满足,则不等式的解集为()A.或B.或C.或D.或【答案】B【解析】画出的图象,再关于轴对称,得到偶函数左侧的图象,再将所得图象向右平移2个单位,得到的图象,由图观察得的解集为或.【考点】1偶函数的图象和性质;2、图象的变换;3、不等式解法.25..定义在上的偶函数,当x≥0时,,则满足的x取值范围是()A.(-1,2)B.(-2,1)C.[-1,2]D.(-2,1]【答案】A【解析】设,则,因为当时,,所以,又因为函数定义在上的偶函数,所以.所以当时,,如图所示:因为,所以,解得:.故选A.【考点】函数的奇偶性,抽象函数及其应用.26.已知函数为奇函数,且当时,则当时,的解析式( )A.B.C.D.【答案】B【解析】因为求当时,的解析式时的解析式,设在任意的则,.又因为函数为奇函数.所以.故选B.本小题考查的分段函数的奇偶性问题.【考点】1.分段函数的解析式.2.函数的奇偶性.27.设函数,其中为已知实数,,则下列各命题中错误的是()A.若,则对任意实数恒成立;B.若,则函数为奇函数;C.若,则函数为偶函数;D.当时,若,则【答案】D【解析】由函数,可化简得:,则,,则在中,若,则,即正确;在中,若,则函数,有是奇函数,即正确; 在中,若,则函数,有是偶函数,即正确;在中,由知不同时为,则函数的最小正周期为,若,则,即错误.【考点】1.三角化简;2.函数的奇偶性;3.函数的同周期性28.若为偶函数,且是的一个零点,则-一定是下列哪个函数的零点()A.B.C.D.【答案】D【解析】因为函数为偶函数.所以f(-x)=f(x).是的一个零点所以.又因为.所以.即.所以是函数的零点.即是函数的零点.因为.所以是函数的零点.故选D.【考点】1.函数的奇偶性.2.函数的零点问题.3.函数的对称性.29. R上的奇函数满足,当时,,则()A.B.C.D.【答案】A【解析】据题意得,这是一个周期为3的周期函数,且为奇函数.所以.选A.【考点】函数的性质.30.是定义在R上的以3为周期的偶函数,且,则方程在区间(0,6)内解的个数的最小值是 .【答案】【解析】因为函数是周期为的偶函数,所以由可知,,,所以有,,所以在区间内,方程至少有,,,四个解.【考点】1.函数的周期性;2.偶函数31.若函数,则函数()A.是偶函数,在是增函数B.是偶函数,在是减函数C.是奇函数,在是增函数D.是奇函数,在是减函数【答案】A【解析】由定义易得,函数为奇函数.求导得:.(这里之所以在分子提出来,目的是便于将分子求导)再令,则.当时,,所以在时单调递减,,从而.所以在上是减函数,由偶函数的对称性知,在上是增函数.巧解:由定义易得,函数为奇函数.结合选项来看,函数在上必单调,故取特殊值来判断其单调性. ,,所以在上是减函数,由偶函数的对称性知,在上是增函数.选A【考点】函数的性质.32.已定义在上的偶函数满足时,成立,若,,,则的大小关系是()A.B.C.D.【答案】C【解析】构造函数,由函数是R上的偶函数,函数是R上的奇函数可得是R上的奇函数,又当时,所以函数在时的单调性为单调递减函数;所以在时的单调性为单调递减函数,因为,,,故,即:,故选C.【考点】函数奇偶性的性质,简单复合函数的导数,函数的单调性与导数的关系.33.设函数是定义在R上的偶函数,当时,,若,则实数的值为【答案】【解析】当时,由有,得,又由函数是定义在R上的偶函数,根据对称性知,当时,由,应有,所以实数的值为.【考点】函数的奇偶性.34.若为奇函数且在)上递增,又,则的解集是()A.B.C.D.【答案】D【解析】为奇函数且在上递增,则在上递减.又,所以等价于.根据题设作出的大致图象如图所示:由图可知,的解集是:.所以选D.【考点】1、抽象函数;2、函数的单调性和奇偶性;3、解不等式.35.已知可以表示为一个奇函数与一个偶函数之和,若不等式对于恒成立,则实数的取值范围是____________.【答案】【解析】依题意,g(x)+h(x)= .....(1),∵g(x)是奇函数,∴g(-x)=-g(x);∵h(x)是偶函数,∴h(-x)=h(x);∴g(-x)+h(-x)="h(x)-g(x)=" (2)解(1)和(2)组成的方程组得h(x)=,g(x)=∴ag(x)+h(2x)=a +,∴a· +≥0在x∈[1,2]恒成立令t=,∴=,当x∈[1,2]时,t∈[2,4],∴原不等式化为a(t-)+(t2+)≥0在t∈[2,4]上恒成立,由不等式a(t-)+(t2+)≥0,可得a(t-)≥-(t2+),∵当t∈[2,4]时,t-t>0恒成立,∴a≥ == ,即a≥在t∈[2,4]上恒成立,令u=t-,求导得=1+>0恒成立,∴u=t-在t∈[2,4]上单调递增∴u∈[ ],令f(u)=u+,u∈[],求导得(u)=1->0在u∈[]上恒成立,∴f(u)在u∈[]上单调递增即当u=,f(u)取最小值f()= ,当u=时,可解得t=2(另一根不在t∈[2,4]内故舍去)∴当t=2时,取最小值为,即取最大值为-,∴a≥-,当t=2,x=1时取等号,∴a的最小值为-.【考点】1.函数的奇偶性;2.不等式的性质;3.导数的性质.36.已知是奇函数,且.若,则_______ .【答案】【解析】令为奇函数, ,,从而,.【考点】函数的奇偶性.37.设函数是定义在上的偶函数,当时,.若,则实数的值为 .【答案】.【解析】当时,,解得;当时,,由于函数是偶函数,,解得,综上所述,.【考点】函数的奇偶性38.已知偶函数满足,且在区间上单调递增.不等式的解集为()A.B.C.D.【答案】B【解析】因为偶函数在区间上是增函数且,所以可化为,则有,解得的取值范围是,选B.【考点】函数的性质。
高三数学函数的奇偶性试题答案及解析
高三数学函数的奇偶性试题答案及解析1.已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,(x+1),则f(-2012)+f(2013)=________________.f(x)=log2【答案】1【解析】试题分析:∵函数f(x)是(-∞,+∞)上的偶函数,∴f(-x)=f(x),又∵对于x≥0都有f(x+2)=f(x),∴T=2∴f(-2012)+f(2013)=f(2012)+f(2013)=f(1006×2)+f(1006×2+1)=f(0)+f(1)=log21+log22=1.故答案为:1.【考点】函数的周期性2.已知,分别是定义在上的偶函数和奇函数,且,则.【答案】.【解析】∵,∴,又∵,分别是定义在上的偶函数和奇函数,∴,,∴,∴.【考点】函数的奇偶性.3.已知定义在上的函数是奇函数且满足,,数列满足,且,(其中为的前项和),则( ).A.B.C.D.【答案】C【解析】由定义在上的函数是奇函数且满足知,= = =,所以= = = =,所以的周期为3,由得,,当n≥2时,=,所以=,所以=-3,=-7,=-15,=-31,=-63,所以 ====3,故选C.【考点】函数的奇偶性、周期性,数列的递推公式,转化与化归思想4.设函数的定义域为,且是奇函数,是偶函数,则下列结论中正确的是()A.是偶函数B.是奇函数C.是奇函数D.是奇函数【答案】C【解析】设,则,因为是奇函数,是偶函数,故,即是奇函数,选C.【考点】函数的奇偶性.5.已知为偶函数,当时,,则不等式的解集为()A.B.C.D.【答案】A【解析】先画出当时,函数的图象,又为偶函数,故将轴右侧的函数图象关于轴对称,得轴左侧的图象,如下图所示,直线与函数的四个交点横坐标从左到右依次为,由图象可知,或,解得,选A.【考点】1、分段函数;2、函数的图象和性质;3、不等式的解集.6.若是偶函数,则____________.【答案】【解析】因为函数为偶函数,所以,故填.【考点】奇偶性对数运算7. [2013·重庆高考]已知函数f(x)=ax3+bsinx+4(a,b∈R),f(lg(log10))=5,则f(lg(lg2))=2()A.-5B.-1C.3D.4【答案】C【解析】∵f(x)=ax3+bsinx+4,①∴f(-x)=a(-x)3+bsin(-x)+4,即f(-x)=-ax3-bsinx+4,②①+②得f(x)+f(-x)=8,③又∵lg(log10)=lg()=lg(lg2)-1=-lg(lg2),2∴f(lg(log10))=f(-lg(lg2))=5,2又由③式知f(-lg(lg2))+f(lg(lg2))=8,∴5+f(lg(lg2))=8,∴f(lg(lg2))=3.故选C.8.已知函数y=f(x)是定义在R上且以3为周期的奇函数,当x∈时,f(x)=ln(x2-x+1),则函数f(x)在区间[0,6]上的零点个数为()A.3B.5C.7D.9【答案】C【解析】当x∈时,-x∈,f(x)=-f(-x)=-ln(x2+x+1);则f(x)在区间上有3个零点(在区间上有2个零点).根据函数周期性,可得f(x)在上也有3个零点,在上有2个零点.故函数f(x)在区间[0,6]上一共有7个零点.9.设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()A.f(x)+|g(x)|是偶函数B.f(x)-|g(x)|是奇函数C.|f(x)|+g(x)是偶函数D.|f(x)|-g(x)是奇函数【答案】A【解析】由题意知f(x)与|g(x)|均为偶函数.A项,偶+偶=偶;B项,偶-偶=偶,错;C项与D项分别为偶+奇=偶,偶-奇=奇,均不恒成立.10.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(﹣1)=()A.﹣3B.﹣1C.1D.3【答案】A【解析】因为f(x)为定义在R上的奇函数,所以f(0)=20+2×0+b=0,解得b=﹣1,所以当x≥0时,f(x)=2x+2x﹣1,又因为f(x)为定义在R上的奇函数,所以f(﹣1)=﹣f(1)=﹣(21+2×1﹣1)=﹣3,故选A.11.已知定义在R上的奇函数和偶函数满足 (,且),若,则()A.2B.C.D.【答案】B【解析】由条件,,即,由此解得,,所以选B.12.已知是奇函数,且,若,则= .【答案】【解析】因为为奇函数,所以.∵,∴,∴.13.设是上的奇函数,且,下面关于的判定:其中正确命题的序号为_______.①;②是以4为周期的函数;③的图象关于对称;④的图象关于对称.【答案】①②③【解析】∵,∴,即的周期为4,②正确.∴(∵为奇函数),即①正确.又∵,∴的图象关于对称,∴③正确,又∵,当时,显然的图象不关于对称,∴④错误.14.已知函数是定义在上的偶函数,且对任意,都有,当时,,设函数在区间上的反函数为,则的值为()A.B.C.D.【答案】D【解析】由得,所以函数周期为,所以时,,所以=,又函数为偶函数,所以时,则=.令==19,解得=,从而=,故选D.【考点】1、反函数;2、函数奇偶性的性质;3、函数的周期性.15.设偶函数满足,则( )A.B.C.D.【答案】B【解析】的解集为,因为是偶函数,关于轴对称,所以的解集为或,那么的解集为或,故解集为或,故选B.【考点】1.函数的奇偶性;2.解不等式.16.已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2-4x,则不等式f(x)>x的解集用区间表示为________.【答案】(-5,0)∪(5,+∞)【解析】作出f(x)=x2-4x(x>0)的图象,如图所示.由于f(x)是定义在R上的奇函数,利用奇函数图象关于原点对称,作出x<0的图象.不等式f(x)>x表示函数y=f(x)的图象在y=x的上方,观察图象易得,原不等式的解集为(-5,0)∪(5,+∞)17.若函数f(x)=(a+)cosx是奇函数,则常数a的值等于()A.-1B.1C.-D.【答案】D【解析】设g(x)=a+,t(x)=cosx,∵t(x)=cosx为偶函数,而f(x)=(a+)cosx为奇函数,∴g(x)=a+为奇函数,又∵g(-x)=a+=a+,∴a+=-(a+)对定义域内的一切实数都成立,解得:a=.18.设a为实数,函数f(x)=x3+ax2+(a-2)x的导数是f′(x),且f′(x)是偶函数,则曲线y=f(x)在原点处的切线方程为()A.y=-2x B.y=3xC.y=-3x D.y=4x【答案】A【解析】由已知得f′(x)=3x2+2ax+a-2为偶函数,∴a=0,∴f(x)=x3-2x,f′(x)=3x2-2.又f′(0)=-2,f(0)=0,∴y=f(x)在原点处的切线方程为y=-2x.19.已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是________.【答案】{x|-7<x<3}【解析】当x≥0时,f(x)=x2-4x<5的解集为[0,5),又f(x)为偶函数,所以f(x)<5的解集为(-5,5).由于f(x)向左平移两个单位即得f(x+2),故f(x+2)<5的解集为{x|-7<x<3}.20.已知是定义域为R的奇函数,当x≤0时,,则不等式的解集是()A.(5,5)B.(1,1)C.(5,+)D.(l,+)【答案】C【解析】因为是定义在R上的奇函数,所以对于任意实数x,都有且.又当时,则当时,,有,所以:,则,解不等式,即或或得,选C.【考点】函数的奇偶性,分段函数,一元二次不等式的解法.21.设函数()(Ⅰ)若函数是定义在R上的偶函数,求a的值;(Ⅱ)若不等式对任意,恒成立,求实数m的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)函数是定义在R上的偶函数,则恒成立,代入解析式得:,.即对任意都成立,由此得,.(Ⅱ)不等式对任意,恒成立,则小于等于的最大值,而.所以对任意恒成立,令,这是关于的一次函数,故只需取两个端点的值时不等式成立即可,即,解之即可得实数m的取值范围.试题解析:(Ⅰ)由函数是定义在R上的偶函数,则恒成立,即,所以,所以恒成立,则,故. 4分(Ⅱ).所以对任意恒成立,令,由解得,故实数m的取值范围是. 12分【考点】1、函数的奇偶性;2、不等式恒成立问题.22.函数f(x)是偶函数,则下列各点中必在y=f(x)图象上的是( )A.B.C.D.【答案】A【解析】由于函数上必过点.又因为函数是偶函数所以函数经过点 .又因为.所以函数一定经过和.故选A.本小题关键是考查函数的的奇偶性问题.【考点】1.函数的奇偶性.2.函数的对称性问题.23.已知函数是上的奇函数,且的图象关于直线对称,当时,,则 .【答案】-1【解析】∵的图象关于直线对称,∴,又是上的奇函数,∴,∴,即4为的周期,∴.由时,,得,由,得,∴,故答案为.【考点】函数的奇偶性、周期性24.已知函数.(1)当时,判断的奇偶性,并说明理由;(2)当时,若,求的值;(3)若,且对任何不等式恒成立,求实数的取值范围.【答案】(1)既不是奇函数,也不是偶函数;(2)所以或;(3)当时,的取值范围是,当时,的取值范围是;当时,的取值范围是.【解析】(1)时,为确定的函数,要证明它具有奇偶性,必须按照定义证明,若要说明它没有奇偶性,可举一特例,说明某一对值与不相等(不是偶函数)也不相反(不是奇函数).(2)当时,为,这是含有绝对值符号的方程,要解这个方程一般是分类讨论绝对值符号里的式子的正负,以根据绝对值定义去掉绝对值符号,变成通常的方程来解.(3)不等式恒成立时要求参数的取值范围,一般要把问题进行转化,例如分离参数法,或者转化为函数的最值问题.即为,可以先把绝对值式子解出来,这时注意首先把分出来,然后讨论时,不等式化为,于是有,即,这个不等式恒成立,说明,这时我们的问题就转化为求函数的最大值,求函数的最小值.试题解析:(1)当时,既不是奇函数也不是偶函数(2分)所以既不是奇函数,也不是偶函数(4分)(2)当时,,由得(1分)即(3分)解得(5分)所以或(6分)(3)当时,取任意实数,不等式恒成立,故只需考虑,此时原不等式变为(1分)即故又函数在上单调递增,所以;(2分)对于函数①当时,在上单调递减,,又,所以,此时的取值范围是(3分)②当,在上,,当时,,此时要使存在,必须有,此时的取值范围是(4分)综上,当时,的取值范围是当时,的取值范围是;当时,的取值范围是(6分)【考点】(1)函数的奇偶性;(2)含绝对值的方程;(2)含参数的不等式恒成立问题.25.如图,直角坐标平面内的正六边形ABCDEF,中心在原点,边长为a,AB平行于x轴,直线(k为常数)与正六边形交于M、N两点,记的面积为S,则关于函数的奇偶性的判断正确的是()A.一定是奇函数B.—定是偶函数C.既不是奇函数,也不是偶函数D.奇偶性与k有关【答案】B【解析】:∵当直线与边重合时,,当直线与重合时,,∴,∵正六边形即是中心对称图形又是轴对称图形,∴函数为偶函数.【考点】1.函数的奇偶性;2.数形结合思想.26.设函数是偶函数,则实数的值为___________.【答案】-1.【解析】因是偶函数,则,所以.【考点】函数的奇偶性.27.设是周期为2的奇函数,当时,=,则=.【答案】【解析】由是周期为2的奇函数可知,.【考点】函数的周期性与奇偶性.28.已定义在上的偶函数满足时,成立,若,,,则的大小关系是()A.B.C.D.【答案】C【解析】构造函数,由函数是R上的偶函数,函数是R上的奇函数可得是R上的奇函数,又当时,所以函数在时的单调性为单调递减函数;所以在时的单调性为单调递减函数,因为,,,故,即:,故选C.【考点】函数奇偶性的性质,简单复合函数的导数,函数的单调性与导数的关系.29.已知m为常数,函数为奇函数.(1)求m的值;(2)若,试判断的单调性(不需证明);(3)若,存在,使,求实数k的最大值.【答案】(1);(2)在R上单调递增;(3).【解析】(1)由奇函数的定义得:,将解析式代入化简便可得m的值;(2),结合指数函数与反比例函数的单调性,便可判定的单调性;(3)对不等式:,不宜代入解析式来化简,而应将进行如下变形:,然后利用单调性去掉,从而转化为:.进而变为:.由题设知:.这样只需求出的最大值即可.将配方得:.所以在时,取得最大值,最大值为10.∴,从而.试题解析:(1)由,得,∴,即,∴. 4分(2),在R上单调递增. 7分(3)由,得, 9分即.而在时,最大值为10.∴,从而 12分【考点】1、函数的奇偶性和单调性;2、二次函数的最值;3、不等关系.30.已知函数是上的偶函数,若对于,都有,且当时,,则=____________.【答案】1【解析】由题意可知函数的周期,于是,又函数是上的偶函数,所以,则.【考点】周期函数、奇偶性.31.若函数满足,且时,,则函数的图象与函数的图象的交点的个数为()A.3B.4C.6D.8【答案】C【解析】由题意知,函数是个周期为2的周期函数,且是个偶函数,在一个周期上,图象是两条斜率分别为1和-1的线段,且,同理可得到在其他周期上的图象.函数也是个偶函数,先看在[0,+∞)上的交点个数,则它们总的交点个数是在[0,+∞)上的交点个数的2倍,在(0,+∞)上,,图象过(1,0),和(4,1),是单调增函数,与交与3个不同点,∴函数的图象与函数的图象的交点的个数为6个,故选.【考点】函数的奇偶性、周期性,对数函数的图象和性质.32.若函数f(x) (x∈R)是奇函数,函数g(x) (x∈R)是偶函数,则 ( )A.函数f(x)g(x)是偶函数B.函数f(x)g(x)是奇函数C.函数f(x)+g(x)是偶函数D.函数f(x)+g(x)是奇函数【答案】B【解析】令,由于函数为奇函数,,由于函数为偶函数,则,,故函数为奇函数,故选;对于函数,取,,则,此时函数为非奇非偶函数,故、选项均错误.【考点】函数的奇偶性33.已知是定义域为实数集的偶函数,,,若,则.如果,,那么的取值范围为( )A.B.C.D.【答案】B【解析】∵,,,则,∴定义在实数集上的偶函数在上是减函数.∵, ∴, 即.∴或解得或.∴.故选B.【考点】函数的奇偶性、单调性.34.函数()【答案】A【解析】由于函数为偶函数又过(0,0)所以直接选A.【考点】对图像的考查其实是对性质的考查,注意函数的特征即可,属于简单题.35.已知函数是上的偶函数,若对于,都有,且当时,,则的值为A.B.C.1D.2【答案】C【解析】根据题意,由于函数是上的偶函数,若对于,都有,可知函数的周期为2,且当时,,那么则有,故可知答案为C。
专题06 导数的几何意义-2019年高考数学(理)母题题源系列(全国Ⅲ专版)(原卷版)
【母题原题1】【2019年高考全国Ⅲ卷,理数6】已知曲线e ln xy a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =-【答案】D【解析】e ln 1,xy a x '=++1|e 12x k y a ='==+=,1e a -∴=将(1,1)代入2y x b =+得21,1b b +==-,故选D .【名师点睛】本题关键得到含有a ,b 的等式,利用导数几何意义和点在曲线上得到方程关系.【母题原题2】【2018年高考全国Ⅲ卷,理数14】曲线()1e x y ax =+在点()01,处的切线的斜率为2-,则a =________. 【答案】3-【解析】()e 1e x x y a ax =++',则()012f a =+=-',所以3a =-,故答案为:3-. 【名师点睛】本题主要考查导数的计算和导数的几何意义,属于基础题.【命题意图】本类题通常主要考查导数的几何意义,切线方程的不同形式的求解.【命题规律】导数的几何意义最常见的是求切线方程和已知切线方程求参数值,常以选择题、填空题的形式出现,有时也出现在解答题的第一问,难度中等. 【答题模板】1.求曲线y=f (x )的切线方程若已知曲线y=f (x )过点P (x 0,y 0),求曲线过点P 的切线方程. (1)当点P (x 0,y 0)是切点时,切线方程为y–y 0=f'(x 0)(x–x 0). (2)当点P (x 0,y 0)不是切点时,可分以下几步完成: 第一步:设出切点坐标P'(x 1,f (x 1));第二步:写出过点P'(x 1,f (x 1))的切线方程y–f (x 1)=f'(x 1)(x–x 1); 第三步:将点P 的坐标(x 0,y 0)代入切线方程求出x 1;第四步:将x 1的值代入方程y–f (x 1)=f'(x 1)(x–x 1)可得过点P (x 0,y 0)的切线方程. 2.根据切线的性质求倾斜角或参数值由已知曲线上一点P (x 0,y 0)处的切线与已知直线的关系(平行或垂直),确定该切线的斜率k ,然后利用导数的几何意义得到k=f'(x 0)=tan θ,其中倾斜角θ∈[0,π),进一步求得倾斜角θ或有关参数的值.3.已知切线的斜率求切点已知斜率k ,求切点(x 1,f (x 1)),应先解方程f'(x 1)=k 得出x 1,然后求出f (x 1)即可.【经验分享】利用导数的几何意义求曲线的切线方程的问题的关键就是抓住切点,首先要分清题目所求的是“在曲线上某点处的切线方程”还是“过某点的切线方程”.(1)求曲线y =f (x )在0x x 处的切线方程可先求0()f 'x ,再利用点斜式写出所求切线方程;(2)求过某点的曲线的切线方程要先设切点坐标,求出切点坐标后再求切线方程.总之,求解切线问题的关键是切点坐标,无论是已知切线斜率还是切线经过某一点,切点坐标都是化解难点的关键所在. 【方法总结】导数的几何意义蕴含着“逼近”和“以直代曲”的思想方法,对后面即将学习的利用导数研究函数的性质有至关重要的作用,同时导数的几何意义的应用即利用导数的几何意义求解曲线的切线方程问题是本课的重点和难点.有关切线方程的问题有以下四类题型: 类型一:已知切点,求曲线的切线方程,此类题较为简单,只须求出曲线的导数()f 'x ,并代入点斜式方程即可. 类型二:已知斜率,求曲线的切线方程,此类题可利用斜率求出切点,再用点斜式方程加以解决. 类型三:已知过曲线上一点,求切线方程,过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.类型四:已知过曲线外一点,求切线方程,此类题可先设切点,再求切点,即用待定切点法来求解.1.【四川省教考联盟2019届高三第三次诊断性考试数学】设曲线(e 1)xy a x =--在点(0,0)处的切线方程为y x =,则a = A .0 B .1 C .2D .32.【四川省成都市第七中学2019届高三二诊模拟考试数学】函数()ex xf x =在2x =处的切线方程为 A .2234e e y x =- B .2238e e y x =- C .2214e ey x =-+D .21ey x =-3.【四川省绵阳市2019届高三第二次(1月)诊断性考试数学】若函数()2ln 21f x x x bx =+--的图象上任意一点的切线斜率均大于0,则实数b 的取值范围为 A .(-∞,4) B .(-∞,4]C .(4,+∞)D .(0,4)4.【四川省内江市2019届高三第一次模拟考试数学】若函数()3=ln f x x x x +-,则曲线()y f x =在点()()1,1f 处的切线的倾斜角是A .π6B .π3 C .2π3D .5π65.【四川省华蓥市第一中学2019届高三入学调研考试数学】已知函数()()ln 1cos f x x x ax =+⋅-在()()0,0f 处的切线倾斜角为45o,则a =A .2-B .1-C .0D .36.【云南省曲靖市第一中学2019届高三高考复习质量监测三数学】曲线ln 2(0)y a x a =->在1x =处的切线与两坐标轴成的三角形的面积为4,则a 的值为A B .2 C .4D .87.【西藏拉萨市2019届高三第三次模拟考试数学】若曲线3222y x x =-+在点A 处的切线方程为46y x =-,且点A 在直线10mx ny +-=(其中0m >,0n >)上,则12m n+的最小值为A .B .3+C .6+D .8.【四川省百校2019届高三模拟冲刺卷数学】已知函数()2ln f x x a x b =++在点1x =处的切线方程为42y x =-,则a b +=__________.9.【四川省攀枝花市2019届高三第一次统一考试数学】曲线()2af x x x=+在点()()1,1f 处的切线与直线20x y +-=垂直,则实数a =__________.10.【四川省绵阳市高中2019届高三第一次诊断性考试数学】若函数()()311f x x t x =+--的图象在点()()1,1f --处的切线平行于x 轴,则t =__________.11.【四川省宜宾市第四中学2019届高三12月月考数学】已知函数()31f x x ax =++的图象在点()()1,1f 处的切线过点()1,1-,则a =__________.12.【贵州省遵义航天高级中学2019届高三第四次模拟考试数学】曲线2e 24x y x x =+-在1x =处的切线方程是__________.13.【贵州省2019届高三普通高等学校招生适应性考试数学】曲线3113y x x =++在点()01,处切线的方程为__________.14.【贵州省遵义航天高级中学2019届高三第四次模拟考试数学】曲线2ln(1)y x =+在点(1,0)处的切线方程为__________.。
专题06 函数的奇偶性、对称性-2021年高考数学一轮复习优拔尖必刷压轴题(选择题、填空题)(新高考地区专用
专题06 函数的奇偶性、对称性【方法点拨】1. 若单调奇函数f (x )满足f (a )+f (b )=0,则a +b =0.一般的,若单调函数f (x )关于点(m ,n )对称,且满足f (a )+f (b )=2n ,则a +b =2m .2. 对于具有对称性的函数零点问题,要注意检验充分性,以防增解.【典型题示例】例 1 设函数22(1)sin ()1x xf x x ++=+的最大值为M ,最小值为m ,则M m + =___ . 【答案】2【分析】本题解法较多,利用函数的奇偶性应当最为简单.将函数解析式适当作如下变形,222(1)2sin 2sin ()111x x x x x f x x x ++++==+++,设22sin ()()11x x g x f x x +=-=+,显然()g x 为奇函数,由题意知其最大值、最小值一定存在,根据函数图象的对称性,最大值与最小值互为相反数,其和为0,所以,本题应填2. 点评:1.本题欲求最大值与最小值的和,上述解法没有运用常规的求最值的基本工具,如:求导、基本不等式、单调性、反解等,而是充分利用函数的性质——奇偶性,舍弃解析式其外在的“形”转而研究函数的“性”,这种策略和方法在解题中经常涉及.由于考生受定势思维的影响,此类题目多为考生所畏惧.2. 发现函数隐藏的单调性、对称性是解决此类问题之关键,对于单调奇函数有下列性质:若单调奇函数f (x )满足f (a )+f (b )=0,则a +b =0.更一般的,若单调函数f (x )关于点(m ,n )对称,且满足f (a )+f (b )=2n ,则a +b =2m .例 2 设函数,数列是公差不为0的等差数列,,则( )A .0B .7C .14D .213()(3)1f x x x =-+-{}n a 127()()()14f a f a f a ++⋅⋅⋅+=127a a a ++⋅⋅⋅+=【答案】D【分析】根据函数值之和求自变量之和127a a a ++⋅⋅⋅+,很自然会去考虑函数的性质,而等式常常考查对称性,从而尝试去寻求函数的对称中心.函数可以视为由3(3)y x =-与1y x =-构成,它们的对称中心不一样,可以考虑对函数的图象进行平移, 比如3()2(3)(3)f x x x -=-+-,引入函数3()(3)2F x f x x x =+-=+,则该函数是奇函数,对称中心是坐标原点,由图象变换知识不难得出的图象关于点(3,2)中心对称.【解析】∵是公差不为0的等差数列,且∴∴∴例3 已知函数有唯一零点,则a =( )A .B .C .12D .1【答案】C【分析】如果利用导数研究()f x 的零点,就会小题大做,容易陷入困难.由函数与方程思想,函数的零点满足()2112=x x x x a e e ---+.设()11=x x e e---+,显然()g x 是由函数xxy e e -=+向右平移一个单位而得到,易知xx y e e -=+是偶函数且在[)0,+∞上是增函数.故()g x 关于直线1x =对称,且在[)1,+∞上是增函数,在(],1-∞上是减函数,()()min 12g x g ==.设()22h x x x =-,显然()22h x x x =-关于直线1x =对称,顶点为()1,1.若0a <,则函数()y a g x =⋅关于直线1x =对称,且在[)1,+∞上是减函数,在(],1-∞上是增函数,最大值为2a ,()max 2a h x <.127()()()14f a f a f a ++⋅⋅⋅+=3()(3)1f x x x =-+-3()(3)1f x x x =-+-3()(3)1f x x x =-+-{}n a 127()()()14f a f a f a ++⋅⋅⋅+=14]1)3[(]1)3[(]1)3[(737232131=-+-++-+-+-+-a a a a a a 147)(721=-++a a a 21721=++a a a 211()2()x x f x x x a ee --+=-++12-13若()y a g x =⋅的图象与()h x 的图象有一个公共点A ,根据对称性必有另一个公共点B.所以,0a <不合题意; 若0a>,函数()y a g x =⋅关于直线1x =对称,且在[)1,+∞上是增函数,在(],1-∞上是减函数,最小值为2a .若()y a g x =⋅的图象与()h x 的图象只有一个公共点,必有21a=,得12a =. 【解析】()211()1()1x x f x x a ee --+=-++-,令2()(1)1()x x g xf x x a e e -=++=++则易知()g x 是偶函数,所以()f x 图象关于直线1x =对称,欲使()f x 有唯一零点,必有(1)0f =,即210a -=,所以12a =. 例4 已知关于x 的方程03)2(log 22222=-+++a x a x 有唯一解,则实数a 的值为________. 【答案】1【分析】利用隐藏的对称性,易得f (0)=0,求得a =1或a =-3,再利用数形结合,将增解舍弃.【解析】通过对函数f (x )=x 2+2a log 2(x 2+2)+a 2-3的研究,可发现它是一个偶函数,那么它的图象就关于y 轴对称,若有唯一解,则该解必为0.将x =0代入原方程中,可求得a =1或a =-3.这就意味着,当a =1或a =-3时,原方程必有一解0,但是否是唯一解,还需进一步验证.当a =1时,原方程为x 2+2log 2(x 2+2)-2=0,即2log 2(x 2+2)=2-x 2,该方程实数根的研究可能过函数y =2log 2t 和函数y =4-t 的交点情况来进行,不难发现,此时是符合题意的;而当a =-3时,原方程为x 2-6log 2(x 2+2)+6=0,即x 2+6=6log 2(x 2+2).通过研究函数y =4+t 和y =6log 2t 可以发现,此时原方程不止一解,不合题意,需舍去. 点评:f (0)=0仅是函数存在零点的必要条件,要注意检验充分性,一般是代入检验进行取舍.【巩固训练】1.已知函数f (x )是偶函数,且当x>0时,f (x )=ln x -ax ,若函数f (x )恰有5个零点,则实数a的取值范围是 .2.若函数22()243f x x a x a =++-的零点有且只有一个,则实数a = .3.若函数f (x )=x 2-m cos x +m 2+3m -8有唯一零点,则满足条件的实数m 组成的集合为 .4.已知函数211()2()x x f x x x a e e --+=-++,a R ∈ ,则函数()f x 零点的个数所有可能值构成的集合为 .5.函数11y x =-的图象与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于( )A.2B. 4C.6D.8 6.已知函数满足,若函数与图象的交点为 则 ( )A. 0B. mC. 2mD. 4m7.(2020·江苏启东中学最后一卷·12)已知函数12()sin 21x x f x x +=++在区间[,]k k -的值域为[,]m n ,则m n +的值为_______.8. 已知函数22(1)cos sin ()cos 1x x xf x x x ++-=++,在区间[]1,1-上的最大值为M 最小值为N 则M N +=_____.9.已知实数x 、y 满足(1x y =,则2234662020x xy y x y ----+的值是 .10.(2020·扬州中学五月考·13)圆22640x y x y ++-=与曲线243x y x +=+相交于,,,A B C D 点四点,O 为坐标原点,则OA OB OC OD +++=_______.【答案或提示】1.【答案】(0,e )2.【答案】a =3.【答案】m =2【解法提示】发现f (x )是偶函数,故得到f (0)=0,立得m =2或m =-4,难点在于对m =-4的取舍问题.思路有二,一是“分离函数”,利用“形”助数;二是利用导数知识,只需当x >0时,函数恒增或恒减即可. 4.【答案】{0,1,2,4} 5.【答案】B 6.【答案】B【分析】该题设计抽象函数()f x 关于点()0,1成中心对称,函数由奇函数1y x=向上平移一个单位得到,也关于点()0,1成中心对称,因而两函数图象的交点为也关于点()0,1成中心对称,1m ix ∑1m iy +∑,考虑倒序相加法,可得10mix=∑,1m iym =∑,故m .7.【答案】2【分析】本题的难点在于发现函数内隐藏的奇偶性、对称性.【解析】因为()()12121221()sin sin sin 1212121x x x x x x x f x x x x +-++-=+=+=+++++ 设21g()sin 21x x x x -=++,则g()x 为定义在R 上的单调递增函数所以()f x 在区间[,]k k -单增,且关于点(0,1)对称,所以m n +=2. 8.【答案】2【解析】22(1)cos sin ()cos 1x x x f x x x ++-=++2221cos sin cos 1x x x x x x +++-=++22sin 1cos 1x x x x -=+++. 令22sin ()cos 1x xg x x x -=++22+sin ()()cos 1x xg x g x x x --==-++,且[]1,1x ∈-,∴ ()g x 为奇函数, 设其最大值为a ,则其最小值为a -, ∴函数()f x 的最大值为1a +,最小值为1a -+11a M a N +=⎧∴⎨-+=⎩,∴ 2M N +=.故答案为:2.9.【答案】2020【提示】两边取自然对数得((ln ln 0x y +++=设(()ln f x x =,则易得其为R 上的单增奇函数,所以0x y +=, 故2234662020()(4)6()20202020x xy y x y x y x y x y ----+=+--++=. 10.【分析】注意发现圆与一次分式函数243x y x +=+的图象均关于点(−3, 2)对称,利用三角形中线的向量表示,将所求转化即可.【解析】由圆方程22640x y x y ++-=,可得()()223213x y ++-=,圆心坐标为(−3, 2)242(3)222x x y ++-===-,其对称中心为(−3, 2). 4413OD OM =。
函数的奇偶性例题分析
【例5】设a>0,f(x)= 是R上的偶函数.
(1)求a的值;
(2)证明f(x)在(0,+∞)上是增函数.
【评述】本题主要考查了函数的奇偶性以及单调性的基础知识.
【例6】设f(x)为定义在R上的偶函数,当x≤-1时,y=f(x)的图象是经过点(-2,0),斜率为1的射线,又在y=f(x)的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线.试写出函数f(x)的表达式,并作出其图象.
【评述】解答本题易出现如下思维障碍:
(1)无从下手,不知如何脱掉“f”.解决办法:利用函数的单调性.
(2)无法得到另一个不等式.解决办法:关于原点对称的两个区间上,奇函数的单调性相同,偶函数的单调性相反.
【例4】(2006年滨州模拟题)已知函数f(x)=x+ +m(p≠0)是奇函数.
(1)求m的值.
10.已知函数y=f(x)的定义域为R,对任意x、x′∈R均有f(x+x′)=f(x)+f(x′),且对任意x>0,都有f(x)<0,f(3)=-3.
(1)试证明:函数y=f(x)是R上的单调减函数;
(2)试证明:函数y=f(x)是奇函数;
(3)试求函数y=f(x)在[m,n](m、n∈Z,且mn<0)上的值域.
3.奇、偶函数的性质
(1)具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称).
(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.
(3)若奇函数的定义域包含数0,则f(0)=0.
(4)奇函数的反函数也为奇函数.
(5)定义在(-∞,+∞)上的任意函数f(x)都可以唯一表示成一个奇函数与一个偶函数之和.
专题06 阅读理解环保类(原卷版)
2019年高考英语母题题源系列专题06 阅读理解(环保类)【母题来源一】【2019·北京卷,D】环保类By the end of the century,if not sooner,the world's oceans will be bluer and greener thanks to a warming climate,according to a new study.At the heart of the phenomenon lie tiny marine microorganisms(海洋微生物)called phytoplankton. Because of the way light reflects off the organisms,these phytoplankton create colourful patterns at the ocean surface. Ocean colour varies from green to blue,depending on the type and concentration of phytoplankton. Climate change will fuel the growth of phytoplankton in some areas,while reducing it in other spots,leading to changes in the ocean's appearance.Phytoplankton live at the ocean surface,where they pull carbon dioxide(二氧化碳)into the ocean while giving off oxygen. When these organisms die,they bury carbon in the deep ocean,an important process that helps to regulate the global climate. But phytoplankton are vulnerable to the ocean's warming trend. Warming changes key characteristics of the ocean and can affect phytoplankton growth,since they need not only sunlight and carbon dioxide to grow,but also nutrients.Stephanie Dutkiewicz,a scientist in MIT's Center for Global Change Science,built a climate model that projects changes to the oceans throughout the century. In a world that warms up by 3℃,it found that multiple changes to the colour of the oceans would occur. The model projects that currently blue areas with little phytoplankton could become even bluer. But in some waters,such as those of the Arctic,a warming will make conditions riper for phytoplankton,and these areas will turn greener. “Not only are the quantities of phytoplankton in the ocean changing. ”she said,“but the type of phytoplankton is changing. ”42. What are the first two paragraphs mainly about?A. The various patterns at the ocean surface.B. The cause of the changes in ocean colour.C. The way light reflects off marine organisms.D. The efforts to fuel the growth of phytoplankton.43. What does the underlined word “vulnerable”in Paragraph 3 probably mean?A. Sensitive.B. BeneficialC. SignificantD. Unnoticeable44. What can we learn from the passage?A. Phytoplankton play a declining role in the marine ecosystem.B. Dutkiewicz's model aims to project phytoplankton changesC. Phytoplankton have been used to control global climateD. Oceans with more phytoplankton may appear greener.45. What is the main purpose of the passage?A. To assess the consequences of ocean colour changesB. To analyse the composition of the ocean food chainC. To explain the effects of climate change on oceansD. To introduce a new method to study phytoplankton【母题来源二】【2019·天津卷,C】环保类How does an ecosystem(生态系统)work?What makes the populations of different species the way they are?Why are there so many flies and so few wolves?To find an answer,scientists have built mathematical models of food webs,noting who eats whom and how much each one eats.With such models,scientists have found out some key principles operating in food webs. Most food webs,for instance,consist of many weak links rather than a few strong ones. When a predator(掠食动物)always eats huge numbers of a single prey(猎物),the two species are strongly linked;when a predator lives on various species,they are weakly linked. Food webs may be dominated by many weak links because that arrangement is more stable over the long term. If a predator can eat several species,it can survive the extinction(灭绝)of one of them. And if a predator can move on to another species that is easier to find when a prey species becomes rare,the switch allows the original prey to recover. The weak links may thus keep species from driving one another to extinction.Mathematical models have also revealed that food webs may be unstable,where small changes of top predators can lead to big effects throughout entire ecosystems. In the 1960s,scientists proposed that predators at the top of a food web had a surprising amount of control over the size of populations of other species---including species they did not directly attack.And unplanned human activities have proved the idea of top-down control by top predators to be true. In the ocean,we fished for top predators such as cod on an industrial scale,while on land,we killed off large predators such as wolves. These actions have greatly affected the ecological balance.Scientists have built an early-warning system based on mathematical models. Ideally,the system would tell uswhen to adapt human activities that are pushing an ecosystem toward a breakdown or would even allow us to pull an ecosystem back from the borderline. Prevention is key,scientists says because once ecosystems pass their tipping point(临界点),it is remarkably difficult for them to return.46. What have scientists discovered with the help of mathematical models of food webs?A. The living habits of species in food webs.B. The rules governing food webs of the ecosystems.C. The approaches to studying the species in the ecosystems.D. The differences between weak and strong links in food webs.47. A strong link is found between two species when a predator______A. has a wide food choiceB. can easily find new preyC. sticks to one prey speciesD. can quickly move to another place48. What will happen if the populations of top predators in a food web greatly decline?A. The prey species they directly attack will die out.B. The species they indirectly attack will turn into top predators.C. The living environment of other species will remain unchanged.D. The populations of other species will experience unexpected changes.49. What conclusion can be drawn from the examples in Paragraph 4?A. Uncontrolled human activities greatly upset ecosystems.B. Rapid economic development threatens animal habitats.C. Species of commercial value dominate other species.D. Industrial activities help keep food webs stable.50. How does an early-warning system help us maintain the ecological balance?A. By getting illegal practices under control.B. By stopping us from killing large predators.C. By bringing the broken-down ecosystems back to normal.D. By signaling the urgent need for taking preventive action.【母题来源三】【2019·浙江卷,C】、California has lost half its big trees since the 1930s, according to a study to be published Tuesday and climate change seems to be a major factor(因素).The number of trees larger than two feet across has declined by 50 percent on more than 46, 000 square miles ofCalifornia forests, the new study finds. No area was spared or unaffected, from the foggy northern coast to the Sierra Nevada Mountains to the San Gabriels above Los Angeles. In the Sierra high country, the number of big trees has fallen by more than 55 percent; in parts of southern California the decline was nearly 75 percent.Many factors contributed to the decline, said Patrick Mclntyre, an ecologist who was the lead author of the study. Woodcutters targeted big trees. Housing development pushed into the woods. Aggressive wildfire control has left California forests crowded with small trees that compete with big trees for resources(资源).But in comparing a study of California forests done in the 1920s and 1930s with another one between 2001 and 2010, Mclntyre and his colleagues documented a widespread death of big trees that was evident even in wildlands protected from woodcutting or development.The loss of big trees was greatest in areas where trees had suffered the greatest water shortage. The researchers figured out water stress with a computer model that calculated how much water trees were getting in comparison with how much they needed, taking into account such things as rainfall, air temperature, dampness of soil, and the timing of snowmelt(融雪).Since the 1930s, Mclntyre said, the biggest factors driving up water stress in the state have been rising temperatures, which cause trees to lose more water to the air, and earlier snowmelt, which reduces the water supply available to trees during the dry season.27. What is the second paragraph mainly about?A. The seriousness of big-tree loss in California.B. The increasing variety of California big trees.C. The distribution of big trees in California forests.D. The influence of farming on big trees in California.28. Which of the following is well-intentioned but may be bad for big trees?A. Ecological studies of forests.B. Banning woodcutting.C. Limiting housing development.D. Fire control measures.29. What is a major cause of the water shortage according to Mclntyre?A. Inadequate snowmelt.B. A longer dry season.C. A warmer climate.D. Dampness of the air.30. What can be a suitable title for the text?A. California's Forests: Where Have All the Big Trees Gone?B. Cutting of Big Trees to Be Prohibited in California SoonC. Why Are the Big Trees Important to California Forests?D. Patrick Mclntyre: Grow More Big Trees in California【命题意图】阅读理解从能力的角度来讲,考查学生运用英语的能力,具体地说,就是通过阅读有关文章提取有用信息的能力。
2019年高考文科数学题型秘籍【06】函数的奇偶性与周期性(解析版)
高考数学精品复习资料2019.5专题06 函数的奇偶性与周期性【高频考点解读】从近几年的高考试题来看,函数的奇偶性、周期性是高考命题的热点.主要是奇偶性与单调性的小综合,周期性的考查常以利用周期性求函数值,以选择题、填空题的形式出现,这部分知识对学生要求很高,属中低档题.1.结合具体函数,了解函数奇偶性的含义.2.会运用函数的图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. 【热点题型】题型一 函数奇偶性的判定 例1、判断下列各函数的奇偶性: (1)f (x )=lg x 2+lg 1x 2;(2)f (x )=(x -1)1+x1-x; (3)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0-x 2+x ,x >0;(4)f (x )=-x 2|x -2|-2.【提分秘籍】(1)利用定义判断函数奇偶性的步骤:(2)分段函数奇偶性的判断,要注意定义域内x取值的任意性,应分段讨论,讨论时可依据x的范围取相应的解析式化简,判断f(x)与f(-x)的关系,得出结论,也可以利用图象作判断.【举一反三】判断下列函数的奇偶性:(1)f(x)=4-x2|x+3|-3;(2)f(x)=x2-|x-a|+2.【热点题型】题型二 函数奇偶性的应用(1)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( ) A .-3 B .-1 C .1D .3(2)若函数f (x )=x x +x -a 为奇函数,则a =( )A.12 B.23 C.34D .1(3)已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -2)<f (2)的x 的取值范围是( )A .(-∞,0)B .(0,2)C .(0,22)D .(2,+∞)【举一反三】在本例(1)中的条件下,求f(x)在R上的解析式.【热点题型】题型三函数的周期性例3、设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式.【提分秘籍】1.深化奇函数和偶函数的定义(1)定义域在数轴上关于原点对称是函数f (x )为奇函数或偶函数的必要非充分条件; (2)f (-x )=-f (x )或f (-x )=f (x )是定义域上的恒等式.在利用定义时,可应用定义的等价形式:f (-x )=±f (x )⇔f (-x )±f (x )=0⇔f -x f x=±1(f (x )≠0).2.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也真.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性.3.若对于函数f (x )的定义域内任一个自变量的值x 都有f (x +a )=-f (x )或f (x +a )=1f x或f (x +a )=-1f x(a 是常数且a ≠0),则f (x )是一个周期为2a 的周期函数.4.函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值,以及解决与周期有关的函数综合问题.解决此类问题的关键是充分利用题目提供的信息,找到函数的周期,利用周期在有定义的范围上进行求解.【举一反三】已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=-f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (20xx)+f (-20xx)的值为( )A .-2B .-1C .1D .2【热点题型】题型四利用奇偶性破解函数的最值例4、设函数f(x)=x+2+sin xx2+1的最大值为M,最小值为m,则M+m=________.【提分秘籍】本题看似复杂,其实并不难,破解本题的关键就是把函数f(x)=x+2+sin xx2+1的解析式分解成1+g(x),其次利用奇函数的图象关于原点对称这一性质得出g(x)max+g(x)min=0,突出转化思想,问题得到圆满解决.【举一反三】已知y=f(x)是奇函数.若g(x)=f(x)+2且g(1)=1,则g(-1)=________.【高考风向标】1.(20xx·重庆卷) 下列函数为偶函数的是( )A .f (x )=x -1B .f (x )=x 2+xC .f (x )=2x -2-x D .f (x )=2x +2-x2.(20xx·安徽卷) 若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=______. 【答案】516 【解析】由题易知f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫-34+f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫34-f ⎝⎛⎭⎫76=-316+sin π6=516. 3.(20xx·广东卷) 下列函数为奇函数的是( ) A .2x -12x B .x 3sin xC .2cos x +1D .x 2+2x4.(20xx·湖北卷) 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}5.(20xx·湖南卷)下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是()A.f(x)=1x2B.f(x)=x2+1C.f(x)=x3D.f(x)=2-x【答案】A【解析】由偶函数的定义,可以排除C,D,又根据单调性,可得B不对.6.(20xx·湖南卷)若f(x)=ln(e3x+1)+ax是偶函数,则a=________.7.(20xx·江苏卷)已知函数f(x)=e x+e-x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数.(2)若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围.(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(-x30+3x0)成立.试比较e a-1与a e-1的大小,并证明你的结论.8.(20xx·全国卷)奇函数f(x)的定义域为R.若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.-2 B.-1C.0 D.19.(20xx·新课标全国卷Ⅱ] 偶函数y=f(x)的图像关于直线x=2对称,f(3)=3,则f(-1)=________.10.(20xx·全国新课标卷Ⅰ] 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B . |f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数11.(20xx·四川卷) 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=________. 【答案】1 【解析】由题意可知,f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫2-12f ⎝⎛⎭⎫-12=-4⎝⎛⎭⎫-122+2=1. 【随堂巩固】1.满足f (π+x )=-f (x )且为奇函数的函数f (x )可能是( ) A .cos2x B .sin x C .sin x2D .cos x2.设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( ) A .-3 B .-1 C .1D .33.若函数f (x )=ax +1x (a ∈R ),则下列结论正确的是( )A .∀a ∈R ,函数f (x )在(0,+∞)上是增函数B .∀a ∈R ,函数f (x )在(0,+∞)上是减函数C .∃a ∈R ,函数f (x )为奇函数D .∃a ∈R ,函数f (x )为偶函数4.下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数为( ) A .y =ln 1|x |B .y =x 3C .y =2|x |D .y =cos x5.对于定义在R 上的任何奇函数,均有( ) A .f (x )·f (-x )≤0 B .f (x )-f (-x )≤0 C .f (x )·f (-x )>0D .f (x )-f (-x )>06.设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .f (x )+|g (x )|是偶函数 B .f (x )-|g (x )|是奇函数 C .|f (x )|+g (x )是偶函数 D .|f (x )|-g (x )是奇函数7.定义在R 上的偶函数f (x )的部分图象如图所示,则在(-2,0)上,下列函数中与f (x )的单调性不同的是( )A .y =x 2+1B .y =|x |+1C .y =⎩⎪⎨⎪⎧2x +1,x ≥0x 3+1,x <0D .y =⎩⎪⎨⎪⎧e x ,x ≥0e -x ,x <08.f (x )=1x -x 的图象关于( )A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称9.若函数f (x )=2x +2-x 与g (x )=2x -2-x 的定义域为R ,则( )A .f (x )与g (x )均为偶函数B . f (x )为奇函数,g (x )为偶函数C .f (x )与g (x )均为奇函数D .f (x )为偶函数,g (x )为奇函数10.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52=( ) A .-12B .-14C.14 D .1211.设函数f (x )=x (e x +a e -x )(x ∈R )是偶函数,则实数a 的值为________.12.函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________.13.设f (x )是定义在R 上的奇函数,且f (x +3)·f (x )=-1,f (-1)=2,则f (20xx)=________.14.判断下列函数的奇偶性: (1)f (x )=x 2-1+1-x 2; (2)f (x )=⎩⎪⎨⎪⎧x 2-2x +3 x ,x =,-x 2-2x -x15.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >00, x =0x 2+mx x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.16.定义在R上的函数f(x)满足:①对任意x,y∈R,有f(x+y)=f(x)+f(y).②当x>0时,f(x)<0.(1)求证:f(0)=0;(2)判断函数f(x)的奇偶性;(3)判断函数f(x)的单调性.。
专题06 文学常识-2019年中考语文母题题源系列(原卷版)
母题六:文学常识【母题来源】2019年中考广西柳州卷【母题原题】1.下列关于文学文化常识表述有误的一项是A.科举考试分为乡试、会试、殿试三级,乡试考中的称举人,俗称“孝廉”。
B.《诗经》是我国最早的一部诗歌总集,共305篇,也称“诗三百”,内容分为风、雅、颂三部分。
《关雎》《陈太丘与友期行》是其中的两篇。
C.古代祭祀的土地神叫“社”,谷神叫“稷”,后来用“社稷”代指国家。
D.古人对不同年龄有不同的称谓:而立之年指三十岁,花甲之年指六十岁。
【试题解析】A、C、D表述正确。
B项,《陈太丘与友期行》选自刘义庆编写的《世说新语》,故说《陈太丘与友期行》选自《诗经》的说法错误。
故选B。
【命题意图】本题考核文学常识,识记名著和基本的文体知识,注意积累记忆。
【考试方向】此考点主要考核识记中外著名作家的生活时代、字号、国别;了解文学体裁和文体知识;了解教材中有关作品涉及的文化常识。
题型主要有选择题、填空题、判断或连线题。
【得分要点】首先,要牢牢抓住现行初中语文教材所涉及的重要作家、作品及文学体裁常识,在此基础上适当向课外拓展。
其次,要抓住典型的文学样式和有代表性的作家、作品展开复习。
再次,不同国籍、不同时代的作家、作品都有一定的内在联系,要从宏观上分门别类地加以梳理,概要识记。
让时间、国别、体裁穿针引线,将众多文学常识连成一体。
最后,我们还可将文学常识分成几块;形成小的系统来复习。
如按诗歌、小说、散文、戏剧等文学体裁分类,形成四个小系统,掌握这几块知识。
另外,每一个作家,他的生活时代、代表作,也可以构成“扇面”进行复习。
还可以围绕教材,从诗歌、小说、散文、戏剧四种体裁,从不同时代、不同国度中,分别找出最能代表该时期文学成就的最有影响力的作家、作品进行识记。
【母题1】从传统文化的角度来看,下列说法正确的一项是A.腊八节是阳历12月8日,这天有喝腊八粥的习俗。
B.“足下”的意思是“你”,可以称同辈,也可以称晚辈。
C.“春分”这一节气在每年公历的2月20~22日之间。
高三数学函数的奇偶性试题答案及解析
高三数学函数的奇偶性试题答案及解析1.已知函数是定义在R上的奇函数,,当时,有成立,则不等式的解集是A.B.C.D.【答案】A【解析】由当时,有成立,知函数的导函数在上恒成立,所以函数在上是增函数,又因为函数是定义在R上的奇函数,所以函数是定义域上的偶函数,且由得,由此可得函数的大致图象为:由图可知不等式的解集是.故选A.【考点】1.函数导数的求导法则;2.函数的奇偶性;3. 利用函数的单调性解不等式.2.若为偶函数,则实数 .【答案】.【解析】∵为偶函数,∴,.【考点】偶函数的性质.3.已知f(x)是定义在R上的奇函数,且当x<0时,f(x)=3x,则f(log94)的值为()A.-2B.C.D.2【答案】B【解析】根据对数性质,f(log94)=f(log32)因为f(x)是奇函数,于是f(log32)=-f(-log32)=-f(log3),且log3<0故f(log94)=-f(log3)=-【考点】函数的奇偶性,分段函数4.对于函数,若存在常数,使得取定义域内的每一个值,都有,则称为准偶函数,下列函数中是准偶函数的是()A.B.C.D.【答案】D【解析】由为准偶函数的定义可知,若的图象关于对称,则为准偶函数.在D 中,的图象关于对称,故选D.【考点】新定义,函数的图象和性质.5.下列函数为奇函数的是()A.B.C.D.【答案】A【解析】对于A选项中的函数,函数定义域为,,故A选项中的函数为奇函数;对于B选项中的函数,由于函数与函数均为奇函数,则函数为偶函数;对于C选项中的函数,定义域为,,故函数为偶函数;对于D选项中的函数,,,则,因此函数为非奇非偶函数,故选A.【考点】本题考查函数的奇偶性的判定,着重考查利用定义来进行判断,属于中等题.6.已知是定义在上的奇函数,当时,,则函数的零点的集合为()A.B.C.D.【答案】D【解析】因为是定义在上的奇函数,当时,,所以,所以,由解得或;由解得,所以函数的零点的集合为,故选D.【考点】函数的奇偶性的运用,分段函数,函数的零点,一元二次方程的解法,难度中等.7.设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.(1)求f(π)的值;(2)当-4≤x≤4时,求f(x)的图象与x轴所围图形的面积.【答案】(1)π-4. (2)4【解析】解:(1)由f(x+2)=-f(x),得f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),所以f(x)是以4为周期的周期函数,从而得f(π)=f(π-4)=-f(4-π)=-(4-π)=π-4.(2)由f(x)是奇函数与f(x+2)=-f(x),得f[(x-1)+2]=-f(x-1)=f[-(x-1)],即f(1+x)=f(1-x).故知函数y=f(x)的图象关于直线x=1对称.又0≤x≤1时,f(x)=x,且f(x)的图象关于原点成中心对称,则f(x)的图象如图所示.当-4≤x≤4时,f(x)的图象与x轴围成的图形面积为S,=4×(×2×1)=4.则S=4S△OAB8. x为实数,[x]表示不超过x的最大整数,则函数f(x)=x-[x]的最小正周期是________.【答案】1【解析】如图,当x∈[0,1)时,画出函数图像,再左右扩展知f(x)为周期函数.9.已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g(1)=2,f(1)+g(-1)=4,则g(1)等于________.【答案】3【解析】由已知可得,-f(1)+g(1)=2,f(1)+g(1)=4,两式相加解得,g(1)=3.10.已知函数f(x)=为奇函数,则a+b=________.【解析】当x>0时,-x<0,由题意得f(-x)=-f(x),所以x2-x=-ax2-bx,从而a=-1,b=1,a+b=0.11.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(-1)=( )A.-2B.0C.1D.2【答案】A【解析】当x>0时,f(x)=x2+,∴f(1)=12+=2.∵f(x)为奇函数,∴f(-1)=-f(1)=-2.12.函数的图象大致是()A.B.C.D.【答案】A【解析】易知函数是偶函数,当x=0时,. 所以选A.13.设为定义在R上的奇函数,当时,(b为常数),则()A.3B.1C.D.【答案】D【解析】因为为定义在R上的奇函数,所以有,解得,所以当时,,即.14.设是上的奇函数,且,下面关于的判定:其中正确命题的序号为_______.①;②是以4为周期的函数;③的图象关于对称;④的图象关于对称.【答案】①②③【解析】∵,∴,即的周期为4,②正确.∴(∵为奇函数),即①正确.又∵,∴的图象关于对称,∴③正确,又∵,当时,显然的图象不关于对称,∴④错误.15.将函数的图象向左平移个单位长度后得到函数,则函数()A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.既不是奇函数,也不是偶函数【答案】B【解析】,由题意知,因此函数为偶函数,故选B.【考点】1.三角函数图像变换;2.辅助角公式;3.三角函数的奇偶性16.已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2-4x,则不等式f(x)>x的解集用区间表示为________.【答案】(-5,0)∪(5,+∞)【解析】作出f(x)=x2-4x(x>0)的图象,如图所示.由于f(x)是定义在R上的奇函数,利用奇函数图象关于原点对称,作出x<0的图象.不等式f(x)>x表示函数y=f(x)的图象在y=x的上方,观察图象易得,原不等式的解集为(-5,0)∪(5,+∞)17.函数y=f(x-1)为奇函数,y=f(x+1)为偶函数(定义域均为R).若0≤x<1时,f(x)=2x,则f(10)=.【答案】1【解析】依题意得f(-x-1)=-f(x-1),f(-x+1)=f(x+1),所以f(x+4)=-f(x),f(x+8)=f(x),故函数周期为8.f(10)=f(2)=f(1+1)=f(1-1)=f(0)=1.18.设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()A.f(x)+|g(x)|是偶函数B.f(x)-|g(x)|是奇函数C.|f(x)|+g(x)是偶函数D.|f(x)|-g(x)是奇函数【答案】A【解析】∵g(x)是R上的奇函数,∴|g(x)|是R上的偶函数,从而f(x)+|g(x)|是偶函数,故选A.19.若函数f(x)=x2-|x+a|为偶函数,则实数a=________.【解析】由题意知,函数f(x)=x2-|x+a|为偶函数,则f(1)=f(-1),故1-|1+a|=1-|-1+a|,所以a=0.20.函数是上的奇函数,是上的周期为4的周期函数,已知,且,则的值为___________.【答案】2【解析】本题就是要待计算式中的每个式子计算化简,由已知,,因此,,,,,从而已知式为,∴.【考点】奇函数与周期函数的定义.21.已知,函数且,且.(1) 如果实数满足且,函数是否具有奇偶性? 如果有,求出相应的值;如果没有,说明原因;(2) 如果,讨论函数的单调性。
(完整版)高考文科数学函数专题讲解及高考真题精选(含答案)
函 数【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <. (3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:利用常见函数的值域来求一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠=k xky 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R ,当a>0时,值域为{ab ac y y 4)4(|2-≥};当a<0时,值域为{ab ac y y 4)4(|2-≤}②配方法:③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.转化成型如:)0(>+=k xkx y ,利用平均值不等式公式来求值域;⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象. (7)求函数解析式的题型有:1)已知函数类型,求函数的解析式:待定系数法;2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法;3)已知函数图像,求函数解析式;4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法;5)应用题求函数解析式常用方法有待定系数法等yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的 性 质定义图象判定方法函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.1 (4)证明函数单调性的一般方法:①定义法:设2121,x x A x x <∈且;作差)()(21x f x f -,判断正负号②用导数证明: 若)(x f 在某个区间A 内有导数,则()0f x ≥’,)x A ∈(⇔)(x f 在A 内为增函数;⇔∈≤)0)(A x x f ,(’)(x f 在A 内为减函数 (5)求单调区间的方法:定义法、导数法、图象法(6)复合函数[])(x g f y =在公共定义域上的单调性:①若f 与g 的单调性相同,则[])(x g f 为增函数;②若f 与g 的单调性相反,则[])(x g f 为减函数注意:先求定义域,单调区间是定义域的子集(7)一些有用的结论:①奇函数在其对称区间上的单调性相同;②偶函数在其对称区间上的单调性相反; ③在公共定义域内:增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数④函数)0,0(>>+=b a x bax y 在,,b b a a ⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭或上单调递增;在,00b b a a ⎡⎫⎛⎤-⎪ ⎢⎥⎪ ⎣⎭⎝⎦或,上是单调递减【1.3.2】奇偶性①定义及判定方法函数的 性 质定义图象判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若奇函数()f x 的定义域包含0,则(0)0f =.()f x 为偶函数()(||)f x f x ⇔=③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1()f x f x =±- 函数周期性定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立,则f(x)叫做周期函数,T 叫做这个函数的一个周期〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去①y=f(x) 轴x →y= -f(x); ②y=f(x) 轴y →y=f(-x);③y=f(x) ax =→直线y=f(2a -x); ④y=f(x) xy =→直线y=f -1(x);⑤y=f(x) 原点→y= -f(-x)(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次当n 是偶数时,正数a 的正的n负的n次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0) a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,mna a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且【2.2.2】对数函数及其性质设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y fx -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则qpy x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a-+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a ->,则()m f q = ①若02b x a -≤,则()M f q = ②02bx a ->,则()M f p =(Ⅱ)当0a <时(开口向下)①若2bp a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2bq a ->,则()M f q =①若02bx a -≤,则()m f q = ②02bx a ->,则()m f =.>O -=f (p) f (q) ()2b f a -x>O -=f (p) f (q) ()2b f a -x >O -=f(p)f (q) ()2bf a -x>O -=f(p)f (q) ()2bf a -0x x >O -=f (p) f (q) ()2b f a -0x x <O -=f (p) f (q) ()2b f a -x <O -=f (p) f(q) ()2bf a -x <O -=f (p) f (q) ()2b f a -0xx <O -=f(p) f (q)()2bf a -x<O-=f(p) f (q)()2bfa -0x第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题06 函数的奇偶性的应用【母题来源一】【2019年高考全国Ⅱ卷文数】设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A .e 1x -- B .e 1x -+ C .e 1x ---D .e 1x --+【答案】D【解析】由题意知()f x 是奇函数,且当x ≥0时,f (x )=e 1x -,则当0x <时,0x ->,则()e x f x --=-1()f x =-,得()e 1x f x -=-+.故选D .【名师点睛】本题考查分段函数的奇偶性和解析式,渗透了数学抽象和数学运算素养.采取代换法,利用转化与化归的思想解题.【母题来源二】【2018年高考全国Ⅱ卷文数】已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=A .50-B .0C .2D .50【答案】C【解析】因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1),(3)(1)(1),4f x f x f x f x f x T +=--∴+=-+=-∴=, 因此[](1)(2)(3)(50)12(1)()(2)(3)4(1)(2)f f f f f f f f f f ++++=+++++,因为(3)(1),(4)(2)f f f f =-=-,所以(1)(2)0())(34f f f f +++=, 因为(2)(0)0f f ==,从而(1)(2)(3)(50)(1)2f f f f f ++++==.故选C .【名师点睛】先根据奇函数的性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.【母题来源三】【2017年高考全国Ⅱ卷文数】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f =______________.【答案】12【解析】(2)(2)[2(8)4]12f f =--=-⨯-+=.【名师点睛】(1)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于()f x 的方程,从而可得()f x 的值或解析式;(2)已知函数的奇偶性求参数,一般采用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.【命题意图】1.结合具体函数,了解函数奇偶性的含义.2.以抽象函数的奇偶性、对称性、周期性为载体考查分析问题、解决问题的能力和抽象转化的数学思想. 【命题规律】高考对该部分内容考查一般以选择题或填空题形式出现,难度中等或中等上,热点是奇偶性、对称性、周期性之间的内在联系,这种联系成为命题者的钟爱,一般情况下可“知二断一”. 【答题模板】1.判断函数奇偶性的常用方法及思路 (1)定义法(2)图象法(3)性质法利用奇函数和偶函数的和、差、积、商的奇偶性和复合函数的奇偶性来判断. 注意:①性质法中的结论是在两个函数的公共定义域内才成立的.②性质法在选择题和填空题中可直接运用,但在解答题中应给出性质推导的过程. 2.与函数奇偶性有关的问题及解决方法 (1)已知函数的奇偶性,求函数的值将待求值利用奇偶性转化为已知区间上的函数值求解. (2)已知函数的奇偶性求解析式已知函数奇偶性及其在某区间上的解析式,求该函数在整个定义域上的解析式的方法是:首先设出未知区间上的自变量,利用奇、偶函数的定义域关于原点对称的特点,把它转化到已知的区间上,代入已知的解析式,然后再次利用函数的奇偶性求解即可. (3)已知带有参数的函数的表达式及奇偶性求参数在定义域关于原点对称的前提下,利用()f x 为奇函数⇔()()f x f x -=-,()f x 为偶函数⇔()f x -()f x =,列式求解,也可以利用特殊值法求解.对于在0x =处有定义的奇函数()f x ,可考虑列式(0)0f =求解.(4)已知函数的奇偶性画图象判断单调性或求解不等式.利用函数的奇偶性可画出函数在另一对称区间上的图象及判断另一区间上函数的单调性. 【方法总结】1.函数奇偶性的定义及图象特点(1)偶函数:如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,那么函数()f x 是偶函数,其图象关于y 轴对称;(2)奇函数:如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=-,那么函数()f x 是奇函数,其图象关于原点对称.2.判断()f x -与()f x 的关系时,也可以使用如下结论:如果(()0)f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数;如果()0()f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数. 注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x ,x -也在定义域内(即定义域关于原点对称). 3.函数奇偶性的几个重要结论(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反. (2)()f x ,()g x 在它们的公共定义域上有下面的结论:(3)若奇函数的定义域包括0,则(0)0f =.(4)若函数()f x 是偶函数,则()()(||)f x f x f x -==.(5)定义在(,)-∞+∞上的任意函数()f x 都可以唯一表示成一个奇函数与一个偶函数之和.(6)若函数()y f x =的定义域关于原点对称,则()()f x f x +-为偶函数,()()f x f x --为奇函数,()()f x f x ⋅-为偶函数.(7)一些重要类型的奇偶函数 ①函数()xxf x a a-=+为偶函数,函数()x xf x a a-=-为奇函数.②函数221()1x x x x xxa a a f x a a a ----==++(0a >且1a ≠)为奇函数. ③函数1()log 1axf x x-=+(0a >且1a ≠)为奇函数.④函数()log (a f x x =(0a >且1a ≠)为奇函数. 4.若()()f a x f a x +=-,则函数()f x 的图象关于x a =对称. 5.若()()f a x f a x +=--,则函数()f x 的图象关于(,0)a 对称.6.若函数()f x 关于直线x a =和()x b b a =>对称,则函数()f x 的周期为2()b a -. 7.若函数()f x 关于直线x a =和点(,0)()b b a >对称,则函数()f x 的周期为4()b a -. 8.若函数()f x 关于点(,0)a 和点(,0)()b b a >对称,则函数()f x 的周期为2()b a -. 9.若函数()f x 是奇函数,且关于x a =(0)a >对称,则函数()f x 的周期为4a . 10.若函数()f x 是偶函数,且关于x a =(0)a >对称,则函数()f x 的周期为2a . 11.若函数()f x 是奇函数,且关于(,0)a (0)a >对称,则函数()f x 的周期为2a . 12.若函数()f x 是偶函数,且关于(,0)a (0)a >对称,则函数()f x 的周期为4a . 13.若函数()()f x x R ∈满足()()f a x f x +=-,1()()f a x f x +=-,1()()f a x f x +=均可以推出函数()f x 的周期为2a .1.【重庆市第一中学2019届高三上学期期中考试】下列函数为奇函数的是 A . B . C .D .【答案】D【分析】根据奇函数的定义逐项检验即可.【解析】A 选项中 ,故不是奇函数,B 选项中 ,故不是奇函数,C 选项中,故不是奇函数,D 选项中,是奇函数,故选D .2.【黑龙江省齐齐哈尔市2019届高三第一次模拟】若函数2()22x a xx f x -=-是奇函数,则(1)f a -= A .1- B .23- C .23D .1【答案】B【分析】首先根据奇函数的定义,求得参数0a =,从而得到2(1)(1)3f a f -=-=-,求得结果. 【解析】由()()f x f x -=-可得22(2)22a x x x x--+=+,∴0a =,∴2(1)(1)3f a f -=-=-, 故选B .【名师点睛】该题考查函数的奇偶性及函数求值等基础知识,属于基础题目,考查考生的运算求解能力. 3.【甘肃省静宁县第一中学2019届高三上学期第一次模拟】已知()f x 是定义在R 上的奇函数,当 时3()x m f x =+(m 为常数),则3(log 5)f -的值为A .4B .4-C .6D .6-【答案】B【分析】根据奇函数的性质 求出 ,再根据奇函数的定义求出3(log 5)f -.【解析】当 时3()x m f x =+(m 为常数),则03(0)0m f =+=,则 , , 函数()f x 是定义在R 上的奇函数,∴335log 35((log 5)()log )314f f -=-=--=-.故选B .【名师点睛】本题考查函数的奇偶性,解题的突破口是利用奇函数性质:如果函数是奇函数,且0在其定义域内,一定有 .4.【甘青宁2019届高三3月联考】若函数3()1f x x =+,则1(lg 2)(lg )2f f +=A .2B .4C .2-D .4-【答案】A【分析】3()1f x x =+,可得()()2f x f x -+=,结合1lglg22=-,从而求得结果. 【解析】∵3()1f x x =+,∴()()2f x f x -+=,∵1lglg22=-,∴1(lg 2)(lg )22f f +=, 故选A .【名师点睛】该题考查的是有关函数值的求解问题,在解题的过程中,涉及到的知识点有奇函数的性质,属于简单题目,注意整体思维的运用.5.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第二次模拟】已知函数2()e e 21xxxxf x -=-++,若(lg )3f m =,则1(lg )f m = A .4- B .3- C .2-D .1-【答案】C【分析】先由2()e e 21xxxx f x -=-++得到()()1f x f x -+=,进而可求出结果.【解析】因为2()e e 21x xxx f x -=-++,所以21()e e e e 2121x x xx x x xf x -----=-+=-+++, 因此()()1f x f x -+=; 又(lg )3f m =,所以(lg )1(lg 1(lg )132)f mf m f m =-=-=-=-. 故选C .【名师点睛】本题主要考查函数奇偶性的性质,熟记函数奇偶性即可,属于常考题型. 6.【山东省济宁市2019届高三二模】已知 是定义在 上的周期为4的奇函数,当 时, ,则 A . B .0 C .1D .2【答案】A【解析】由题意可得: . 故选A .【名师点睛】本题主要考查函数的奇偶性,函数的周期性等知识,意在考查学生的转化能力和计算求解能力.7.【云南省玉溪市第一中学2019届高三第二次调研】下列函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是 A .3x y =B .1ln||y x = C .||2x y =D .cos y x =【答案】B 【解析】易知1ln||y x =,||2x y =,cos y x =为偶函数, 在区间(0,)+∞上,1ln ||y x =单调递减,||2x y =单调递增,cos y x =有增有减. 故选B .【名师点睛】本题考查函数的奇偶性和单调性,属于基础题.8.【山东省烟台市2019届高三3月诊断性测试】若函数()f x 是定义在R 上的奇函数,1()14f =,当0x <时,2()log ()f x x m =-+,则实数m = A .1- B .0 C .1D .2【答案】C【解析】∵()f x 是定义在R 上的奇函数,1()14f =, 且0x <时,2()log ()f x x m =-+, ∴211()log 2144f m m -=+=-+=-, ∴1m =. 故选C .【名师点睛】本题主要考查函数奇偶性的应用,以及已知函数值求参数的方法,熟记函数奇偶性的定义即可,属于常考题型.9.【宁夏银川市2019年高三下学期质量检测】已知()f x 是定义在R 上奇函数,当0x ≥时,2()log (1)f x x =+,则3()f -=C .2D .1【答案】A【分析】利用函数()f x 是奇函数,得到(3)(3)f f -=-,再根据对数的运算性质,即可求解. 【解析】由题意,函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()log (1)f x x =+,则22(3)(3)log (31)log 42f f -=-=-+=-=-,故选A .【名师点睛】本题主要考查了函数的奇偶性的应用,以及对数的运算的性质的应用,其中解答中熟记函数的奇偶性,以及熟练应用对数的性质运算是解答的关键,着重考查了转化思想,以及运算与求解能力,属于基础题.10.【甘肃省甘谷县第一中学2019届高三上学期第一次检测】已知定义在 上的函数 ,若 是奇函数,是偶函数,当 时, ,则 A . B . C .0D .【答案】A【分析】根据题意和函数的奇偶性的性质通过化简、变形,求出函数的周期,利用函数的周期性和已知的解析式求出 的值.【解析】因为 是奇函数, 是偶函数,所以 ,则 ,即 , 所以 , 则奇函数 是以4为周期的周期函数, 又当 时, ,所以 , 故选A .【名师点睛】该题考查的是有关函数值的求解问题,在解题的过程中,涉及到的知识点有函数的周期性,函数的奇偶性的定义,正确转化题的条件是解题的关键.11.【黑龙江省哈尔滨市第三中学2019届高三上学期期中考试】已知函数()f x 是定义在R 上的奇函数,对任意的x ∈R 都有33())22(f x f x +=-,当3(,0)2x ∈-时,()f x =12log (1)x -,则(2017)f +(2019)f =C .1-D .2-【答案】A【分析】根据题意,对33())22(f x f x +=-变形可得()(3)f x f x =-,则函数()f x 是周期为3的周期函数,据此可得(2017)(1)f f =,(2019)(0)f f =,结合函数的解析式以及奇偶性求出(0)f 与(1)f 的值,相加即可得答案.【解析】根据题意,函数()f x 满足任意的x ∈R 都有33())22(f x f x +=-, 则()(3)f x f x =-,则函数()f x 是周期为3的周期函数,所以(2017)(16723)(1)f f f =+⨯=,(2019)(6733)(0)f f f =⨯=, 又由函数()f x 是定义在R 上的奇函数,则(0)0f =, 当3(,0)2x ∈-时,()f x =12log (1)x -,则12(1)log [1(1)]1f -=--=-,则(1)(1)1f f =--=,故(2017)(2019)(0)(1)1f f f f +=+=, 故选A .12.【甘肃省兰州市第一中学2019届高三9月月考】奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为 A .2B .1C .-1D .-2【答案】A【分析】根据函数的奇偶性的特征,首先得到 ,进而根据奇函数可得 ,根据 可得 ,即可得到结论.【解析】∵ 为偶函数, 是奇函数,∴设 , 则 ,即 ,∵ 是奇函数,∴ ,即 , , 则 , ,∴ , 故选A .【名师点睛】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴以及周期性是解决本题的关键,属于中档题.13.【陕西省彬州市2019届高三上学期第一次教学质量监测】已知函数()y f x =是奇函数,当0x >时,2()log (1)f x x =-,则(1)0f x -<的解集是A .(,1)(2,3)-∞-B .(1,0)(2,3)-C .(2,3)D .(,3)(0,1)-∞-【答案】A【分析】根题设条件,分别求得,当0x >和0x <时,()0f x <的解集,由此可求解不等式(1)0f x -<的解集,得到答案.【解析】由题意,当0x >时,令()0f x >,即2log (1)0x -<,解得12x <<, 又由函数()y f x =是奇函数,函数()f x 的图象关于原点对称, 则当0x <时,令()0f x >,可得2x <-,又由不等式(1)0f x -<,可得112x <-<或12x -<-,解得23x <<或1x <-, 即不等式(1)0f x -<的解集为(,1)(2,3)-∞-,故选A .【名师点睛】本题主要考查了函数的基本性质的综合应用,其中解答中熟记对数函数的图象与性质,以及数列应用函数的奇偶性的转化是解答本题的关键,着重考查了分析问题和解答问题的能力,属于中档试题.14.【陕西省榆林市2019届高三第四次普通高等学校招生模拟考试】已知()f x 是定义在R 上的偶函数,且(5)(3)f x f x +=-,如果当[0,4)x ∈时,2()log (2)f x x =+,则(766)f =A .3B .3-C .2D .2-【答案】C【分析】根据(5)(3)f x f x +=-,可得(8)()f x f x +=,即()f x 的周期为8,再根据[0,4)x ∈时,2()log (2)f x x =+及()f x 为R 上的偶函数即可求出(766)(2)2f f ==.【解析】由(5)(3)f x f x +=-,可得(8)()f x f x +=,所以()f x 是周期为8的周期函数,当[0,4)x ∈时,2()log (2)f x x =+,所以(96(7682)6)(2)2f f f ⨯-===, 又()f x 是定义在R 上的偶函数,所以2(2)(2)log 42f f -===. 故选C .15.【黑龙江省哈尔滨师范大学附属中学2019届高三上学期期中考试】已知定义域为R 的奇函数 ,当时, ,当 时, ,则 A .B .C .D .【答案】B【分析】由当 时, ,可得,根据奇偶性求出 即可. 【解析】定义域为R 的奇函数 ,当 时, ,则, 则 ..., 又当 时, , — , 故. 故选B .16.【重庆市2018-2019学年3月联考】定义在[7,7]-上的奇函数()f x ,当07x <≤时,()26x f x x =+-,则不等式()0f x >的解集为 A .(2,7]B .(2,0)(2,7]-C .(2,0)(2,)-+∞D .[7,2)(2,7]--【答案】B【分析】当07x <≤时,()f x 为单调增函数,且(2)0f =,则()0f x >的解集为(2,7],再结合()f x 为奇函数,所以不等式()0f x >的解集为(2,0)(2,7]-.【解析】当07x <≤时,()26xf x x =+-,所以()f x 在(0,7]上单调递增,因为2(2)2260f =+-=,所以当07x <≤时,()0f x >等价于()(2)f x f >,即27x <≤,因为()f x 是定义在[7,7]-上的奇函数,所以70x -≤<时,()f x 在[7,0)-上单调递增,且(2)(2)0f f -=-=,所以()0f x >等价于()(2)f x f >-,即20x -<<, 所以不等式()0f x >的解集为(2,0)(2,7]-.故选B .【名师点睛】本题考查函数的奇偶性,单调性及不等式的解法,属基础题.应注意奇函数在其对称的区间上单调性相同,偶函数在其对称的区间上单调性相反.17.【宁夏平罗中学2019届高三上学期期中考试】已知定义在 上的函数 是奇函数,且当 时,,则 ______________. 【答案】18-【分析】先求(4)f ,再利用函数的奇偶性求4()f -.【解析】由题得22(4)log 4418f =+=,所以(4)(4)18f f -=-=-.18.【重庆南开中学2019届高三第四次教学检测】已知偶函数()f x 的图象关于直线2x =对称,(3)f =则(1)f =______________.【分析】由对称性及奇偶性求得函数的周期求解即可【解析】由题()()(4)f x f x f x =-=-,则函数的周期4T =,则()1f =(1)(1)(3)f f f =-==19.【辽宁省抚顺市2019届高三第一次模拟】已知函数()f x 是奇函数,且当0x <时1()()2xf x =,则(3)f 的值是______________. 【答案】8-【分析】先求(3)f -,再根据奇函数性质得(3)f . 【解析】因为31(3)()82f --==,函数()f x 是奇函数,所以(3)(3)8f f =--=-.20.【辽宁省朝阳市重点高中2019届高三第四次模拟】已知()y f x =是定义域为R 的奇函数,且周期为2,若当[0,1]x ∈时,()(1)f x x x =-,则( 2.5)f -=______________. 【答案】0.25-【分析】根据函数的奇偶性和周期性,求出( 2.5)(0.5)f f -=-,求出函数值即可.【解析】已知()y f x =是定义域为R 的奇函数,且周期为2,∴( 2.5)( 2.52)(0.5)(0.5)f f f f -=-+=-=-,∵当[0,1]x ∈时,()(1)f x x x =-,∴(0.5)0.5(10.5)0.25f =⨯-=,∴( 2.5)0.25f -=-. 21.【陕西省咸阳市2019届高三模拟检测三】已知定义在R 上的奇函数()f x 的图像关于点(2,0)对称,且(3)3f =,则(1)f -=______________.【答案】3【分析】先由函数关于(2,0)对称,求出(1)f ,然后由奇函数可求出(1)f -. 【解析】函数()f x 的图像关于点(2,0)对称,所以(1)(3)3f f =-=-, 又函数()f x 为奇函数,所以(1)(1)3f f =-=-.22.【宁夏石嘴山市第三中学2019届高三四模】若函数2,0()3(),0x x f x g x x ⎧>⎪=⎨⎪<⎩是奇函数,则1()2f -=______________.【答案】3-【分析】利用解析式求出1()2f ,根据奇函数定义可求得结果.【解析】由题意知1212()23f === ()f x为奇函数,11()()22f f ∴-=-=.23.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟】已知函数()f x 是奇函数,当0x >时,()lg f x x =,则1(())100f f 的值为______________. 【答案】2lg - 【分析】先求出1()100f 的值,设为a ,判断a 是否大于零,如果大于零,直接求出()f a 的值,如果不大于零,那么根据奇函数的性质()()f a f a =--,进行求解.【解析】10,100>∴1()100f =21lg()lg102100-==-, 20-<∵,函数()f x 是奇函数,(2)(2)lg 2f f ∴-=-=-,所以1(())100f f 的值为lg2-.24.【山东省滨州市2019届高三第二次模拟(5月)】若函数 为偶函数,则______________.【答案】2-【解析】函数 为偶函数,则 , 即 恒成立, .则.【名师点睛】本题主要考查偶函数的性质与应用,对数的运算法则等知识,意在考查学生的转化能力和计算求解能力.25.【甘肃省张掖市2019届高三上学期第一次联考】已知()f x ,()g x 分别是定义在R 上的奇函数和偶函数,且(0)0g =,当0x ≥时,2()()22xf xg x x x b -=+++(b 为常数),则(1)(1)f g -+-=______________. 【答案】4-【分析】根据函数的奇偶性,先求b 的值,再代入1x =,求得(1)(1)4f g -=,进而求解(1)(1)f g -+-的值.【解析】由()f x 为定义在R 上的奇函数可知(0)0f =,因为(0)0g =,所以0(0)(0)20f g b -=+=,解得1b =-,所以(1)(1)4f g -=,于是(1)(1)(1[(1)(1)](4)1)f g f g f g =-+=---+=--.【名师点睛】本题考查了函数的奇偶性的应用,涉及了函数求值的知识;注意解析式所对应的自变量区间.26.【陕西省安康市安康中学2019届高三第三次月考】若函数2()e 1xf x a =--是奇函数,则常数 等于______________. 【答案】【分析】由奇函数满足,代入函数求值即可.【解析】对一切且恒成立.恒成立,恒成立.,.27.【吉林省长春市实验中学2019届高三期末考试】已知函数是定义在上的周期为的奇函数,当时,,则______________.【答案】【分析】根据是周期为4的奇函数即可得到=f(﹣8)=f()=﹣f(),利用当0<x<2时,=4x,求出,再求出,即可求得答案.【解析】∵是定义在R上周期为4的奇函数,∴=f(﹣8)=f()=﹣f(),∵当x∈(0,2)时,,∴=﹣2,∵是定义在R上周期为4的奇函数,∴==,同时=﹣,∴=0,∴﹣2.【名师点睛】考查周期函数的定义,奇函数的定义,关键是将自变量的值转化到函数解析式所在区间上,属于中档题.28.【新疆昌吉市教育共同体2019届高三上学期第二次月考】下列函数:①;②,,;③;④.其中是偶函数的有______________.(填序号)【答案】①【分析】先判断函数的定义域是否关于原点对称可知②,,为非奇非偶函数;再利用偶函数的定义,分别检验①③④是否符合,从而得到结果.【解析】①,为偶函数;②定义域,关于原点不对称,为非奇非偶函数;③,为奇函数;④ ,为非奇非偶函数; 故答案为①.【名师点睛】该题考查的是有关偶函数的选择问题,涉及到的知识点有函数奇偶性的定义,注意判断函数奇偶性的步骤,首先确定函数的定义域是否关于原点对称,再者就是判断 与 的关系. 29.【吉林省长春市吉林省实验中学2019届高三上学期第三次月考】已知 , .若偶函数 满足 (其中 , 为常数),且最小值为1,则 ______________. 【答案】【分析】利用函数是偶函数,确定 ,利用基本不等式求最值,确定 的值,即可得到结论. 【解析】由题意, , , 为偶函数, , , , , , ,.30.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次模拟】已知函数()f x 是定义域为(,)-∞+∞的偶函数,且(1)f x -为奇函数,当[0,1]x ∈时,3()1f x x =-,则29()2f =______________. 【答案】78-【分析】先由题意,()f x 是定义域为(,)-∞+∞的偶函数,且(1)f x -为奇函数,利用函数的奇偶性推出()f x 的周期4T =,可得291()()22f f =-,然后带入求得结果. 【解析】因为(1)f x -为奇函数,所以(1)(1),(2)()f x f x f x f x --=--∴--=-, 又()f x 是定义域为(,)-∞+∞的偶函数,所以()()f x f x -=,即(2)(),(2)()f x f x f x f x --=--∴-=-,所以()f x 的周期4T =,因为295551()(12)()(2)()22222f f f f f =+==--=-,2117()1()228f =-=, 所以297()28f =-.31.【辽宁省大连市2019届高三第二次模拟】已知函数 是定义域为 的偶函数,且 在 , 上单调递增,则不等式 的解集为______________.【答案】 , ,【分析】利用偶函数关于 轴对称, 在 , 上单调递增,将不等式 转化为 ,即可解得 的解集. 【解析】 函数 是定义域为 的偶函数,可转化为 , 又 在 , 上单调递增,,两边平方解得 , , , 故 的解集为 , , .32.【辽宁省大连市2019届高三下学期第一次双基测试】已知定义在R 上的函数()f x ,若函数(1)f x +为偶函数,函数(2)f x +为奇函数,则20191()i f i ==∑______________.【答案】0【分析】根据函数(1)f x +为偶函数,函数(2)f x +为奇函数可得()(2)f x f x -=+和()(4)f x f x --=+,可得(4)()f x f x +=,则函数()f x 是周期为4的周期函数,结合函数的对称性可得(1)(3)0f f +=且(2)(0)(4)0f f f ===,从而可得结果.【解析】根据题意,(1)f x +为偶函数,则函数()f x 的图象关于直线1x =对称, 则有()(2)f x f x -=+,若函数(2)f x +为奇函数,则函数()f x 的图象关于点(2,0)对称, 则有()(4)f x f x --=+,则有(4)(2)f x f x +=-+, 设2t x =+,则(2)()f t f t +=-, 变形可得(4)(2)()f t f t f t +=-+=, 则函数()f x 是周期为4的周期函数, 又由函数()f x 的图象关于点(2,0)对称, 则(1)(3)0f f +=且(2)0f =, 则有(2)(0)0f f =-=,可得(4)0f=,则20191(1)(2)(019) )(2if i f f f ==+++∑[12(3)4][(2013)(2014()()(2015)(2016]))()f f f f f f f f=+++++++++[(2017)(2018)(201()9)]12((0)3)f f f f f f++=++=,故答案为0.33.【内蒙古呼和浩特市2019届高三上学期期中调研】已知函数与都是定义在上的奇函数,当时,,则的值为______________.【答案】2【分析】根据题意,由是定义在R上的奇函数可得,结合函数为奇函数,分析可得,则函数是周期为2的周期函数,据此可得,结合函数的解析式可得的值,结合函数的奇偶性与周期性可得的值,相加即可得答案.【解析】根据题意是定义在R上的奇函数,则的图象关于点(﹣1,0)对称,则有,又由是R上的奇函数,则,且,则有,即,则函数是周期为2的周期函数,则,又由=log2=﹣2,则=2,,故=2+0=2.。