江苏省南京市高二数学上学期期末考试试题 理(含解析)
江苏省盐城市五校联考2024-2025学年高二上学期10月月考试题 数学含答案
2024/2025学年第一学期联盟校第一次学情调研检测高二年级数学试题(答案在最后)(总分150分考试时间120分钟)注意事项:1.本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分.2.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题纸上.3.作答非选择题时必须用黑色字迹0.5毫米签字笔书写在答题纸的指定位置上,作答选择题必须用2B 铅笔在答题纸上将对应题目的选项涂黑。
如需改动,请用橡皮擦干净后,再选涂其它答案,请保持答题纸清洁,不折叠、不破损。
第I 卷(选择题共58分)一、单项选择题:(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项2.若直线20ax y +=与直线2(1)(1)0x a y a +++-=平行,则a 的值是()A.1或-2B.-1C.-2D.2或-13.已知圆1C :()()()222120x y r r -++=>与圆2C :()()224216x y -+-=外切,则r 的值为()A.1B.5C.9D.2110=的化简结果是()A.22153x y += B.22135x y += C.221259x y += D.221925x y +=5.已知直线l 方程:()220kx y k k R -+-=∈,若l 不经过第四象限,则k 的取值范围为()A.1k ≤B.1k ≥C.0k ≤D.0k ≥6.直线220x y +-=与曲线(10x y +-=的交点个数为()A.1个B.2个C.3个D.4个7.已知圆C 经过点()()3,5,1,3M N --,且圆心C 在直线350x y ++=上,若P 为圆C 上的动点,则线段(OP O 为坐标原点)长度的最大值为()A. B.5+ C.10D.108.实数x ,y 满足224690x x y y -+-+=,则11y x -+的取值范围是()A.5,12⎡⎫+∞⎪⎢⎣⎭B.12,5⎡⎫+∞⎪⎢⎣⎭C.50,12⎡⎤⎢⎥⎣⎦D .120,5⎡⎤⎢⎣⎦二、多项选择题:(本大题共3个小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分,请在答题纸的指定位置填涂答案选项.)9.已知直线l 过点()1,3,若l 与x ,y 轴的正半轴围成的三角形的面积为S ,则S 的值可以是()A.3 B.6 C.7 D.910.下列四个命题中正确的是()A.过点(3,1),且在x 轴和y 轴上的截距互为相反数的直线方程为20x y --=B.若直线10kx y k ---=和以(3,1),(3,2)M N -为端点的线段相交,则实数k 的取值范围为12k ≤-或32k ≥C.若三条直线0,0,3x y x y x ay a +=-=+=-不能构成三角形,则实数a 所有可能的取值组成的集合为{1,1}-D.若直线l 沿x 轴向左平移3个单位长度,再沿y 轴向上平移2个单位长度后,回到原来的位置,则该直线l 的斜率为23-11.已知圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则下列结论中正确的是()A.公共弦AB 所在的直线方程为0x y -=B.公共弦AB 的长为22C.线段AB 的中垂线方程为10x y +-=D.若P 为圆1O 上的一个动点,则三角形PAB +第II 卷(非选择题共92分)三、填空题:(本大题共3小题,每小题5分,计15分.不需要写出解答过程,请把答案写在答题纸的指定位置上.)12.两条平行直线1l :3450x y +-=与2l :6850x y +-=之间的距离是.13.已知圆22:4210C x y x y +--+=,圆C 的弦AB 被点()1,0Q 平分,则弦AB 所在的直线方程是.14.古希腊著名数学家阿波罗尼斯发现了平面内到两个定点A B ,的距离之比为定值(1)λλ≠的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系中,已知()1,0A ,()4,0B ,若动点P 满足12PA PB =,设点P 的轨迹为C ,过点(1,2)作直线l ,C 上恰有三个点到直线l 的距离为1,则直线l 的方程为.四、解答题:(本大题共5小题,共77分,请在答题纸指定的区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.(本小题满分13分)分别求符合下列条件的椭圆的标准方程:(1)过点P (-3,2),且与椭圆22194x y +=有相同的焦点.(2)经过两点(2,,141,2⎛- ⎪⎝⎭.16.(本小题满分15分)已知直线:210l x y +-=和点()1,2A (1)求点A 关于直线l 的对称点的坐标;(2)求直线l 关于点A 对称的直线方程.17.(本小题满分15分)已知半径为4的圆C 与直线1:3480l x y -+=相切,圆心C 在y 轴的负半轴上.(1)求圆C 的方程;(2)已知直线2:30l kx y -+=与圆C 相交于,A B 两点,且△ABC 的面积为8,求直线2l 的方程.18.(本小题满分17分)如图,已知圆22:10100C x y x y +++=,点()0,6A .(1)求圆心在直线y x =上,经过点A ,且与圆C 相外切的圆N 的方程;(2)若过点A 的直线m 与圆C 交于,P Q 两点,且圆弧 PQ恰为圆C 周长的14,求直线m 的方程.19.(本小题满分17分)已知圆M :()2244x y +-=,点P 是直线l :20x y -=上的一动点,过点P 作圆M 的切线PB P A ,,切点为B A ,.(1)当切线P A 的长度为时,求点P 的坐标;(2)若P AM ∆的外接圆为圆N ,试问:当P 运动时,圆N 是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;(3)求线段AB 长度的最小值.2024/2025学年第一学期联盟校第一次学情调研检测高二年级数学参考答案及评分标准一、单项选择题1.B2.C3.A4.C5.B6.B7.B8.D二、多项选择题9.BCD10.BD11.AC三、填空题12.1213.x+y-1=014.1x =或3450x y -+=四、解答题15.(1)因为所求的椭圆与椭圆22194x y +=的焦点相同,所以其焦点在x 轴上,且c 2=5.设所求椭圆的标准方程为()222210x y a b a b+=>>.因为所求椭圆过点P (-3,2),所以有22941a b+=①又a 2-b 2=c 2=5,②由①②解得a 2=15,b 2=10.故所求椭圆的标准方程为2211510x y +=.…………………………………………6分(2)设椭圆方程为22221x y m n +=,且(2,,141,2⎛- ⎪⎝⎭在椭圆上,所以222222421817412m m n n mn ⎧+=⎪⎧=⎪⇒⎨⎨=⎩⎪+=⎪⎩,则椭圆方程22184x y +=.………………………………13分16.(1)设(),A m n ',由题意可得211121221022n m m n ⎧-⎛⎫⨯-=- ⎪⎪⎪-⎝⎭⎨++⎪+⨯-=⎪⎩,…………………………4分解得3565m n ⎧=-⎪⎪⎨⎪=-⎪⎩,所以点A '的坐标为36,55⎛⎫-- ⎪⎝⎭.……………………………………………7分(2)在直线l 上任取一点(),P x y ,设(),P x y 关于点A 的对称点为()00,P x y ',则001222x xy y +⎧=⎪⎪⎨+⎪=⎪⎩,解得0024x x y y =-⎧⎨=-⎩,………………………………11分由于()2,4P x y '--在直线210x y +-=上,则()()22410x y -+--=,即290x y +-=,故直线l 关于点A 的对称直线l '的方程为290x y +-=.………………………………15分17.(1)由已知可设圆心()()0,0C b b <4=,解得3b =-或7b =(舍),所以圆C 的方程为22(3)16x y ++=.………………………………………6分(2)设圆心C 到直线2l 的距离为d,则182ABC AB S AB d d ==⨯= ,即4216640d d -+=,解得d =……………………………………………10分又d =272k =,解得142k =±,所以直线2l的方程为260y -+=260y +-=…………………………15分18.(1)由22:10100C x y x y +++=,化为标准方程:()()225550x y +++=.所以圆C 的圆心坐标为()5,5C --,又圆N 的圆心在直线y x =上,所以当两圆外切时,切点为O ,设圆N 的圆心坐标为(),a a ,=解得3a =,………………………………6分所以圆N 的圆心坐标为()3,3,半径r =故圆N 的方程为()()223318x y -+-=.………………………………………8分(2)因为圆弧PQ 恰为圆C 周长的14,所以CP CQ ⊥.所以点C 到直线m 的距离为5.……………………………………10分当直线m 的斜率不存在时,点C 到y 轴的距离为5,直线m 即为y 轴,所以此时直线m 的方程为0x =.………………………………………12分当直线m 的斜率存在时,设直线m 的方程为6y kx =+,即60kx y -+=.5=,解得4855k =.所以此时直线m 的方程为486055x y -+=,即48553300x y -+=,…………………16分故所求直线m 的方程为0x =或48553300x y -+=.………………………………17分19⑴由题可知,圆M 的半径2=r ,设()b b P ,2,因为P A 是圆M 的一条切线,所以︒=∠90MAP ,所以=MP 4==,解得580==b b 或,所以()⎪⎭⎫ ⎝⎛585160,0,或P P .………………………………5分⑵设()b b P ,2,因为︒=∠90MAP ,所以经过M P A ,,三点的圆N 以MP 为直径,其方程为:()()222244424b b b x b y +-+⎛⎫-+-=⎪⎝⎭,即()22(24)40x y b x y y +--+-=………………………………8分由2224040x y x y y +-=⎧⎨+-=⎩,解得04x y =⎧⎨=⎩或8545x y ⎧=⎪⎪⎨⎪=⎪⎩,所以圆过定点84(0,4),,55⎛⎫ ⎪⎝⎭.……11分⑶因为圆N 方程为()()222244424b b b x b y +-+⎛⎫-+-=⎪⎝⎭即222(4)40x y bx b y b +--++=.圆M :()2244x y +-=,即228120x y y +-+=.②-①得圆M 方程与圆N 相交弦AB 所在直线方程为:2(4)1240bx b y b +-+-=点M 到直线AB的距离d =,相交弦长即:AB ===…14分当45b =时,AB.……………………………………17分。
江苏省连云港市涟水县2024-2025学年四年级数学第一学期期末联考模拟试题含解析
江苏省连云港市涟水县2024-2025学年四年级数学第一学期期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、快乐填一填。
(每题2分,共22分)1.下面各组线中,相交关系的是(________)。
(写出所有序号)2.如果A÷35的商大于B÷35的商,那么A就一定大于B.___.3.在括号里填上“>”“<”或“=”。
99300000(________)100230000 60×280(________)50×3084.一个自动生产线从8:00每隔15分钟记录一次生产产品的总数量,下表是8:00-8:45间记录的情况。
时刻8:00 8:15 8:30 8:45 …产品数量/个120 150 180 210 …照这样的速度,12:00产品的总数量是(______)个。
5.如图中,______⊥______,______∥______.6.钟面上6时整,时针和分针组成的角是_______;12时整,时针和分针组成的角是_______.7.如图中∠1=30°,∠2=_____,∠3=_____,∠4=_____,∠5=_____.8.根据“路程÷时间=速度”写出另外两个数量关系式:______________________;______________________。
9.在括号里填上“>”或“<”。
99109(______)157600 777000(______)78万100110(______)999999 2662531(______)266251310.一道除法算式的商是46,余数是25,除数最小是__,当除数最小的时候被除数是__。
江苏省徐州市高二数学上学期期末试卷 理(含解析)-人教版高二全册数学试题
2015-2016学年某某省某某市高二(上)期末数学试卷(理科)一、填空题:(本大题共14小题,每小题5分,共计70分)1.抛物线y2=12x的焦点坐标是.2.命题“∃x∈R,x2≤0”的否定为.3.底面边长为2,高为3的正三棱锥的体积为.4.已知椭圆+=1的两个焦点分别为F1,F2,点P是椭圆上一点,则△PF1F2的周长为.5.已知正方体的体积为64,则与该正方体各面均相同的球的表面积为.6.已知函数f(x)=xsinx,则f′(π)=.7.双曲线﹣=1的焦点到渐近线的距离为.8.“m<”是“方程+=1表示在y轴上的椭圆”的条件.(填写“充分不必要”、“必要不充分”、“充要”“既不充分也不必要”之一)9.若直线4x﹣3y=0与圆x2+y2﹣2x+ay+1=0相切,则实数a的值为.10.若函数f(x)=e x﹣ax在(1,+∞)上单调增,则实数a的最大值为.11.已知F为椭圆C: +=1(a>b>0)的右焦点,A、B分别为椭圆C的左、上顶点,若BF的垂直平分线恰好过点A,则椭圆C的离心率为.12.若直线l与曲线y=x3相切于点P,且与直线y=3x+2平行,则点P的坐标为.13.在平面直角坐标系xOy中,已知圆(x﹣m﹣1)2+(y﹣2m)2=4上有且只有两个点到原点O的距离为3,则实数m的取值X围为.14.已知函数f(x)=a(x﹣1)2﹣lnx,g(x)=,若对任意的x0∈(0,e],总存在两个不同的x1,x2∈(0,e],使得f(x1)=f(x2)=g(x0).则实数a的取值X围为.二、解答题:本大题共6小题,共计90分.15.如图,在四棱锥P﹣ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:(1)PA∥平面MDB;(2)PD⊥BC.16.已知直线l与圆C:x2+y2+2x﹣4y+a=0相交于A,B两点,弦AB的中点为M(0,1).(1)若圆C的半径为,某某数a的值;(2)若弦AB的长为4,某某数a的值;(3)求直线l的方程及实数a的取值X围.17.如图,在直三棱柱ABC﹣A1B1C1中,已知A1C1⊥B1C1,CC1=2BC=2.(1)当AC=2时,求异面直线BC1与AB1所成角的余弦值;(2)若直线AB1与平面A1BC1所成角的正弦值为,求AC的长.18.如图,ABCD是长方形硬纸片,AB=80cm,AD=50cm,在硬纸片的四角切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸箱,设切去的小正方形的白边长为x(cm).(1)若要求纸箱的侧面积S(cm2)最大,试问x应取何值?(2)若要求纸箱的容积V(cm3)最大,试问x应取何值?19.在平面直角坐标系xOy中,椭圆C: +=1(a>b>0)的离心率为,连接椭圆C的四个顶点所形成的四边形面积为4.(1)求椭圆C的标准方程;(2)如图,过椭圆C的下顶点A作两条互相垂直的直线,分别交椭圆C于点M,N,设直线AM的斜率为k,直线l:y=x分别与直线AM,AN交于点P,Q,记△AMN,△APQ的面积分别为S1,S2,是否存在直线l,使得=?若存在,求出所有直线l的方程;若不存在,说明理由.20.已知函数f(x)=lnx﹣ax+1(a∈R).(1)当a=1时,求函数f(x)的极大值;(2)若对任意的x∈(0,+∞),都有f(x)≤2x成立,求a的取值X围;(3)设h(x)=f(x)+ax,对任意的x1,x2∈(0,+∞),且x1>x2,证明:>恒成立.2015-2016学年某某省某某市高二(上)期末数学试卷(理科)参考答案与试题解析一、填空题:(本大题共14小题,每小题5分,共计70分)1.抛物线y2=12x的焦点坐标是(3,0).【考点】抛物线的简单性质.【分析】确定抛物线的焦点位置,进而可确定抛物线的焦点坐标.【解答】解:抛物线y2=12x的焦点在x轴上,且p=6,∴=3,∴抛物线y2=12x的焦点坐标为(3,0).故答案为:(3,0).2.命题“∃x∈R,x2≤0”的否定为∀x∈R,x2>0 .【考点】命题的否定.【分析】直接利用特称命题的否定是全称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题“∃x∈R,x2≤0”的否定为:∀x∈R,x2>0.故答案为:∀x∈R,x2>0.3.底面边长为2,高为3的正三棱锥的体积为.【考点】棱柱、棱锥、棱台的体积.【分析】求出正三棱锥的底面面积,然后求解体积.【解答】解:底面边长为2,高为3的正三棱锥的体积为: =.故答案为:.4.已知椭圆+=1的两个焦点分别为F1,F2,点P是椭圆上一点,则△PF1F2的周长为18 .【考点】椭圆的简单性质.【分析】由题意知a=5,b=3,c=4,从而可得|PF1|+|PF2|=2a=10,|F1F2|=2c=8.【解答】解:由题意作图如右图,∵椭圆的标准方程为+=1,∴a=5,b=3,c=4,∴|PF1|+|PF2|=2a=10,|F1F2|=2c=8,∴△PF1F2的周长为10+8=18;故答案为:18.5.已知正方体的体积为64,则与该正方体各面均相同的球的表面积为16π.【考点】球内接多面体;球的体积和表面积.【分析】由已知求出正方体的棱长为4,所以正方体的内切球的半径为2,由球的表面积公式得到所求.【解答】解:因为正方体的体积为64,所以棱长为4,所以正方体的内切球的半径为2,所以该正方体的内切球的表面积为4π•22=16π.故答案为:16π.6.已知函数f(x)=xsinx,则f′(π)= ﹣π.【考点】导数的运算.【分析】直接求出函数的导数即可.【解答】解:函数f(x)=xsinx,则f′(x)=sinx+xcosx,f′(π)=sinπ+πcosπ=﹣π.故答案为:﹣π.7.双曲线﹣=1的焦点到渐近线的距离为 2 .【考点】双曲线的简单性质.【分析】求出双曲线的焦点坐标,渐近线方程,利用距离公式求解即可.【解答】解:双曲线﹣=1的一个焦点(,0),一条渐近线方程为:y=,双曲线﹣=1的焦点到渐近线的距离为: =2.故答案为:2.8.“m<”是“方程+=1表示在y轴上的椭圆”的必要不充分条件.(填写“充分不必要”、“必要不充分”、“充要”“既不充分也不必要”之一)【考点】必要条件、充分条件与充要条件的判断.【分析】根据椭圆的定义,求出m的X围,结合集合的包含关系判断充分必要性即可.【解答】解:若“方程+=1表示在y轴上的椭圆”,则,解得:1<m<,故“m<”是“方程+=1表示在y轴上的椭圆”的必要不充分条件,故答案为:必要不充分.9.若直线4x﹣3y=0与圆x2+y2﹣2x+ay+1=0相切,则实数a的值为﹣1或4 .【考点】圆的切线方程.【分析】把圆的方程化为标准方程后,找出圆心坐标和圆的半径,然后根据直线与圆相切得到圆心到直线的距离等于圆的半径,列出关于a的方程,求出方程的解即可得到a的值.【解答】解:把圆的方程化为标准方程得:(x﹣1)2+(y+)2=,所以圆心坐标为(1,﹣),半径r=||,由已知直线与圆相切,得到圆心到直线的距离d==r=||,解得a=﹣1或4.故答案为:﹣1或4.10.若函数f(x)=e x﹣ax在(1,+∞)上单调增,则实数a的最大值为 e .【考点】变化的快慢与变化率.【分析】根据导数和函数单调性的关系,再分离参数,求出最值即可.【解答】解:f′(x)=e x﹣a∵函数f(x)在区间(1,+∞)上单调递增⇔函数f′(x)=e x﹣a≥0在区间(1,+∞)上恒成立,∴a≤[e x]min在区间(1,+∞)上成立.而e x>e,∴a≤e.故答案为:e.11.已知F为椭圆C: +=1(a>b>0)的右焦点,A、B分别为椭圆C的左、上顶点,若BF的垂直平分线恰好过点A,则椭圆C的离心率为.【考点】椭圆的简单性质.【分析】利用线段垂直平分线的性质可得线段BF的垂直平分线的方程,进而得出.【解答】解:由已知可得:A(﹣a,0),B(0,b),F(c,0),线段BF的中点M,k BF=,可得线段BF的垂直平分线的斜率为.∴线段BF的垂直平分线的方程为:y﹣=,∵BF的垂直平分线恰好过点A,∴0﹣=,化为:2e2+2e﹣1=0,解得e=.故答案为:.12.若直线l与曲线y=x3相切于点P,且与直线y=3x+2平行,则点P的坐标为(1,1),(﹣1,﹣1).【考点】利用导数研究曲线上某点切线方程.【分析】利用直线平行斜率相等求出切线的斜率,再利用导数在切点处的值是曲线的切线斜率求出切线斜率,列出方程解得即可.【解答】解:设切点P(m,m3),由y=x3的导数为y′=3x2,可得切线的斜率为k=3m2,由切线与直线y=3x+2平行,可得3m2=3,解得m=±1,可得P(1,1),(﹣1,﹣1).故答案为:(1,1),(﹣1,﹣1).13.在平面直角坐标系xOy中,已知圆(x﹣m﹣1)2+(y﹣2m)2=4上有且只有两个点到原点O的距离为3,则实数m的取值X围为(﹣,﹣)∪(0,2).【考点】圆的标准方程.【分析】由已知得圆C:(x﹣m﹣1)2+(y﹣2m)2=4与圆O:x2+y2=9恰有两个交点,由此能求出实数m的取值X围.【解答】解:圆(x﹣m﹣1)2+(y﹣2m)2=4上有且只有两个点到原点O的距离为3,∴圆C:(x﹣m﹣1)2+(y﹣2m)2=4与圆O:x2+y2=9恰有两个交点,圆C的圆心C(m+1,2m),半径r1=2,圆O的圆心O(0,0),半径r2=3,圆心距离|OC|==,∴3﹣2<<3+2,解得﹣<m<﹣或0<m<2.∴实数m的取值X围为(﹣,﹣)∪(0,2).故答案为:(﹣,﹣)∪(0,2).14.已知函数f(x)=a(x﹣1)2﹣lnx,g(x)=,若对任意的x0∈(0,e],总存在两个不同的x1,x2∈(0,e],使得f(x1)=f(x2)=g(x0).则实数a的取值X围为a≥.【考点】导数在最大值、最小值问题中的应用;函数与方程的综合运用.【分析】求导数,确定函数的单调性,即可求函数f(x)的值域;g(x)∈(0,e],分类讨论,研究f(x)的单调性,即可求a的取值X围.【解答】解:g′(x)=,令=0,解得x=1,∵e x>0,∴x∈(0,1)时,g′(x)>0;x∈(1,e]时,g′(x)<0,g(x)在(0,1]上单调递增,在(1,e]单调单调递减,根据极大值的定义知:g(x)极大值是g(1)=1,又g(0)=0,g(e)=,所以g(x)的值域是(0,1].函数f(x)=a(x﹣1)2﹣lnx,x>0,f′(x)=2ax﹣2a﹣=,令h(x)=2ax2﹣2ax﹣1,h(x)恒过(0,﹣1),当a=0时,f′(x)<0,f(x)是减函数,不满足题意.h(x)=0,可得2ax2﹣2ax﹣1=0,△=4a2+8a,△>0解得a<﹣2或a>0.当﹣2<a<0时,h(x)的对称轴为:x=,h(x)<0恒成立,f′(x)<0,f(x)是减函数,不满足题意.当a<﹣2时,x∈(0,),h(x)<0恒成立,f′(x)<0,f(x)是减函数,x∈,f′(x)>0,f(x)是增函数,x∈,f′(x)<0,f(x)是减函数,若对任意的x0∈(0,e],总存在两个不同的x1,x2∈(0,e],使得f(x1)=f(x2)=g(x0).可知f(x)极大值≥1,f(x)极小值≤0.可得,,∵f(x)=a(x﹣1)2﹣lnx,,不等式不成立.当a>0时,x∈(0,),h(x)<0恒成立,f′(x)<0,f(x)是减函数,x∈,f′(x)>0,f(x)是增函数,因为x=1时,f(1)=0,只需f (e)≥1.可得:a(e﹣1)2﹣1≥1,解得a≥.综上:实数a的取值X围为:a≥.二、解答题:本大题共6小题,共计90分.15.如图,在四棱锥P﹣ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:(1)PA∥平面MDB;(2)PD⊥BC.【考点】直线与平面平行的判定.【分析】(1)连接AC,交BD与点O,连接OM,先证明出MO∥PA,进而根据线面平行的判定定理证明出PA∥平面MDB.(2)先证明出BC⊥平面PCD,进而根据线面垂直的性质证明出BC⊥PD.【解答】证明:(1)连接AC,交BD与点O,连接OM,∵M为PC的中点,O为AC的中点,∴MO∥PA,∵MO⊂平面MDB,PA⊄平面MDB,∴PA∥平面MDB.(2)∵平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,BC⊂平面ABCD,BC⊥CD,∴BC⊥平面PCD,∵PD⊂平面PCD,∴BC⊥PD.16.已知直线l与圆C:x2+y2+2x﹣4y+a=0相交于A,B两点,弦AB的中点为M(0,1).(1)若圆C的半径为,某某数a的值;(2)若弦AB的长为4,某某数a的值;(3)求直线l的方程及实数a的取值X围.【考点】直线与圆的位置关系.【分析】(1)利用配方法得到圆的标准方程,根据圆C的半径为,某某数a的值;(2)求出直线l的方程,求出圆心到直线的距离,根据弦AB的长为4,某某数a的值;(3)点与圆的位置关系即可求出a的取值X围.【解答】解:(1)圆的标准方程为(x+1)2+(y﹣2)2=5﹣a,则圆心C(﹣1,2),半径r=,∵圆C的半径为,∴=,∴a=2;(2)∵弦的中点为M(0,1).∴直线CM的斜率k=﹣1,则直线l的斜率k=1,则直线l的方程为y﹣1=x,即x﹣y+1=0.圆心C到直线x﹣y+1=0的距离d==,若弦AB的长为4,则2+4=5﹣a=6,解得a=﹣1;(3)由(2)可得直线l的方程为x﹣y+1=0.∵弦AB的中点为M(0,1).∴点M在圆内部,即<,∴5﹣a>2,即a<3.17.如图,在直三棱柱ABC﹣A1B1C1中,已知A1C1⊥B1C1,CC1=2BC=2.(1)当AC=2时,求异面直线BC1与AB1所成角的余弦值;(2)若直线AB1与平面A1BC1所成角的正弦值为,求AC的长.【考点】异面直线及其所成的角;直线与平面所成的角.【分析】(1)以C1为原点,C1A1为x轴,C1B1为y轴,C1C为z轴,建立空间直角坐标系,利用向量法能求出异面直线BC1与AB1所成角的余弦值.(2)设AC=a,求出平面A1C1B的法向量,由直线AB1与平面A1BC1所成角的正弦值为,利用向量法能求出AC.【解答】解:(1)∵在直三棱柱ABC﹣A1B1C1中,A1C1⊥B1C1,CC1=2BC=2,∴以C1为原点,C1A1为x轴,C1B1为y轴,C1C为z轴,建立空间直角坐标系,∵AC=2,∴B(0,2,2),C1(0,0,0),A(2,0,2),B1(0,2,0),∴=(0,﹣2,﹣2),=(﹣2,2,0),设异面直线BC1与AB1所成角为θ,则cosθ=|cos<,>|===,∴θ=60°,∴异面直线BC1与AB1所成角的余弦值为60°.(2)设AC=a,则A1(a,0,0),B(0,2,2),C1(0,0,0),B1(0,2,0),A(a,0,2),=(a,0,0),=(0,2,2),=(﹣a,2,﹣2),设平面A1C1B的法向量=(x,y,z),则,取y=1,得=(0,1,﹣1),∵直线AB1与平面A1BC1所成角的正弦值为,∴==,解得a=.∴AC=.18.如图,ABCD是长方形硬纸片,AB=80cm,AD=50cm,在硬纸片的四角切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸箱,设切去的小正方形的白边长为x(cm).(1)若要求纸箱的侧面积S(cm2)最大,试问x应取何值?(2)若要求纸箱的容积V(cm3)最大,试问x应取何值?【考点】基本不等式在最值问题中的应用.【分析】(1)求出纸箱的侧面积S,利用基本不等式,求最大值;(2)求出纸箱的容积V,利用导数,求最大值.【解答】解:(1)S=2x(50﹣2x+80﹣2x)=2x≤•=,当且仅当4x=130﹣4x,即x=cm,纸箱的侧面积S(cm2)最大;(2)V=x(50﹣2x)(80﹣2x)(0<x<12.5),V′=(50﹣2x)(80﹣2x)﹣2x(80﹣2x)﹣2x(50﹣2x)=4(3x﹣100)(x﹣10),∴0<x<10,V′>0,10<x<12.5,V′<0,∴x=10cm时,V最大.19.在平面直角坐标系xOy中,椭圆C: +=1(a>b>0)的离心率为,连接椭圆C的四个顶点所形成的四边形面积为4.(1)求椭圆C的标准方程;(2)如图,过椭圆C的下顶点A作两条互相垂直的直线,分别交椭圆C于点M,N,设直线AM的斜率为k,直线l:y=x分别与直线AM,AN交于点P,Q,记△AMN,△APQ的面积分别为S1,S2,是否存在直线l,使得=?若存在,求出所有直线l的方程;若不存在,说明理由.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程;椭圆的简单性质.【分析】(1)由椭圆的离心率公式及菱形的面积公式求得a和b的值,可求得椭圆的方程;(2)利用椭圆方程及直线AM,AN的方程求得x M、x N、x P及x Q的值根据三角形面积公式求得k的值,求得直线方程.【解答】解:(1)由题意可知:e===,且2ab=4,且a2﹣b2=c2,解得a=2,b=,∴椭圆的标准方程:,(2)由(1)可知,A(0,﹣),则直线AM的方程为y=kx﹣,将直线方程代入椭圆方程得:消去并整理得:(3+4k2)x2﹣8kx=0,解得x M=,直线AN的方程y=﹣﹣,同理可得:x N=﹣,解得x P=k,同理可得x Q=﹣,∴==丨丨==,即3k4﹣10k2+3=0,解得k2=3或k2=,所以=或﹣,故存在直线l:y=x,y=﹣x,满足题意.20.已知函数f(x)=lnx﹣ax+1(a∈R).(1)当a=1时,求函数f(x)的极大值;(2)若对任意的x∈(0,+∞),都有f(x)≤2x成立,求a的取值X围;(3)设h(x)=f(x)+ax,对任意的x1,x2∈(0,+∞),且x1>x2,证明:>恒成立.【考点】利用导数研究函数的极值;导数在最大值、最小值问题中的应用.【分析】(1)a=1时,f(x)=lnx﹣x+1,(x>0),f′(x)=﹣1=,对x分类讨论即可得出函数f(x)的单调性极值.(2)f(x)≤2x化为:a≥﹣2=g(x),利用导数研究函数g(x)的单调性极值最值即可得出.(3)h(x)=f(x)+ax=lnx+1,对任意的x1,x2∈(0,+∞),且x1>x2,>恒成立⇔>ln.令=t>1,上式等价于:>lnt.令=m>1,则上式等价于:u(m)=﹣2lnm>0.利用导数研究函数u(m)的单调性即可得出.【解答】(1)解:a=1时,f(x)=lnx﹣x+1,(x>0),f′(x)=﹣1=,∴0<x<1时,函数f(x)单调递增;1<x时,函数f(x)单调递减.因此x=1时函数f(x)取得极大值,f(1)=0.(2)解:f(x)≤2x化为:a≥﹣2=g(x),g′(x)=,可知:x∈(0,1)时,g′(x)>0,函数g(x)单调递增;x∈(1,+∞)时,g′(x)<0,函数g(x)单调递减.∴x=1时函数g(x)取得极大值即最大值,g(1)=1﹣2=﹣1.∴a≥﹣1,∴a的取值X围是[﹣1,+∞).(3)证明:h(x)=f(x)+ax=lnx+1,对任意的x1,x2∈(0,+∞),且x1>x2,>恒成立⇔>ln.令=t>1,上式等价于:>lnt.令=m>1,则上式等价于:u(m)=﹣2lnm>0.u′(m)=1+﹣==>0,因此函数u(m)在m∈(1,+∞)上单调递增,∴u(m)>u(1)=0,∴>恒成立.。
高二数学上学期第一次月考试题理含解析
HY中学2021-2021学年高二数学上学期第一次月考试题理〔含解析〕一、单项选择题〔此题有14小题,每一小题5分,一共70分.每一小题只有一个正确答案〕1.圆x2+y2﹣4x+6y=0的圆心坐标是〔〕A.〔2,3〕B.〔﹣2,3〕C.〔﹣2,﹣3〕D.〔2,﹣3〕2.过点A〔2,3〕且垂直于直线2x+y﹣5=0的直线方程为〔〕A.x﹣2y+4=0 B.2x+y﹣7=0 C.x﹣2y+3=0 D.x﹣2y+5=0 3.假设直线Ax+By+C=0〔A2+B2≠0〕经过第一、二、四象限,那么系数A,B,C满足条件为〔〕A.A,B,C同号B.AC>0,BC<0 C.AC<0,BC>0 D.AB>0,AC<0 4.一个几何体的三视图如下图,那么该几何体的外表积为〔〕A.3πB.4πC.2π+4 D.3π+45.F1〔﹣1,0〕,F2〔1,0〕是椭圆C的两个焦点,过F2且垂直x轴的直线交C于A,B两点,且|AB|=3,那么C的方程为〔〕A.+y2=1 B.+=1C.+=1 D.+=16.假设变量x,y满足约束条件,那么z=2x+y的最大值等于〔〕A.7 B.8 C.10 D.117.动直线l:x+my+2m﹣2=0〔m∈R〕与圆C:x2+y2﹣2x+4y﹣4=0交于点A,B,那么弦AB 的最短为〔〕A.2 B.2C.6 D.48.椭圆+=1〔a>5〕的两个焦点为F1、F2,且|F1F2|=8.弦AB过点F1,那么△ABF2的周长为〔〕A.10 B.20 C.2D.49.设a是直线,α是平面,那么以下选项里面,可以推出a∥α的是〔〕A.存在一条直线b,a∥b,b⊂αB.存在一条直线b,a⊥b,b⊥αC.存在一个平面β,a⊂β,α∥βD.存在一个平面β,a⊥β,α⊥β10.变量x,y满足约束条件,假设使z=ax+y获得最大值的最优解有无穷多个,那么实数a的取值集合是〔〕A.{﹣3,0} B.{3,﹣1} C.{0,1} D.{﹣3,0,1} 11.假设直线x﹣y+1=0与圆〔x﹣a〕2+y2=2有公一共点,那么实数a取值范围是〔〕A.[﹣3,﹣1] B.[﹣1,3]C.[﹣3,1] D.〔﹣∞,﹣3]∪[1,+∞〕12.点F1、F2是椭圆x2+2y2=2的两个焦点,点P是该椭圆上的一个动点,那么的最小值是〔〕A.0 B.1 C.2 D.13.椭圆E:+=1〔a>b>0〕的右焦点为F,短轴的一个端点为M,直线l:3x﹣4y =0交椭圆E于A,B两点,假设|AF|+|BF|=4,点M到直线l的间隔不小于,那么椭圆E的离心率的取值范围是〔〕A.〔0,] B.〔0,] C.[,1〕D.[,1〕14.N为圆x2+y2=1上的一个动点,平面内动点M〔x0,y0〕满足|y0|≥1且∠OMN=30°〔O 为坐标原点〕,那么动点M运动的区域面积为〔〕A.﹣2B.﹣C.+D.+二、填空题〔此题有4小题,每一小题5分,一共20分〕15.椭圆:的焦距为4,那么m为.16.假设x,y满足约束条件那么的最大值.17.由动点p〔x,y〕引圆x2+y2=4的两条切线PA,PB,切点分别为A,B,假设∠APB=90°,那么点P的轨迹方程为.18.椭圆的右焦点为F,P是椭圆上一点,点A〔0,2〕,当点P在椭圆上运动时,△APF的周长的最大值为三、解答题〔此题有5大题,每一小题12分,一共60分〕19.直线l1经过点A〔﹣1,5〕和点B〔﹣3,6〕,直线l2过点C〔2,4〕且与l1平行.〔1〕求直线l2的方程;〔2〕求点C关于直线l1的对称点D的坐标.〔要求写出求解过程〕20.设O为坐标原点,动点M在椭圆上,过M作x轴的垂线,垂足为N,点P满足.求点P的轨迹方程.21.如图,四棱柱ABCD﹣A1B1C1D1的所有棱长都是2,O是AC与BD的交点,A1O⊥AB,A1O⊥BC.〔Ⅰ〕证明:BD⊥平面A1CO;〔Ⅱ〕假设BD=2,求直线A1C与平面AA1D1D所成角正弦值.22.圆x2+y2+x﹣6y+m=0和直线x+2y﹣3=0交于P、Q两点,且OP⊥OQ〔O为坐标原点〕,求该圆的圆心坐标及半径.23.椭圆的离心率为,其左焦点到点P〔2,1〕的间隔为,不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.〔1〕求椭圆C的方程;〔2〕假设,求△ABP的面积.2021-2021学年一中高二〔上〕第一次月考数学试卷〔理科〕参考答案与试题解析一、单项选择题〔此题有14小题,每一小题5分,一共70分.每一小题只有一个正确答案〕1.圆x2+y2﹣4x+6y=0的圆心坐标是〔〕A.〔2,3〕B.〔﹣2,3〕C.〔﹣2,﹣3〕D.〔2,﹣3〕【解答】解:将圆x2+y2﹣4x+6y=0化成HY方程,得〔x﹣2〕2+〔y+3〕2=13∴圆表示以C〔2,﹣3〕为圆心,半径r=的圆应选:D.2.过点A〔2,3〕且垂直于直线2x+y﹣5=0的直线方程为〔〕A.x﹣2y+4=0 B.2x+y﹣7=0 C.x﹣2y+3=0 D.x﹣2y+5=0 【解答】解:过点A〔2,3〕且垂直于直线2x+y﹣5=0的直线的斜率为,由点斜式求得直线的方程为y﹣3=〔x﹣2〕,化简可得x﹣2y+4=0,应选:A.3.假设直线Ax+By+C=0〔A2+B2≠0〕经过第一、二、四象限,那么系数A,B,C满足条件为〔〕A.A,B,C同号B.AC>0,BC<0 C.AC<0,BC>0 D.AB>0,AC<0 【解答】解:假设B=0,方程化为:Ax+C=0,不满足条件,舍去.∴B≠0,直线方程化为:y=﹣x﹣,因此直线经过第一、二、四象限,那么系数A,B,C满足条件为:﹣<0,﹣>0,∴AB>0,AC<0.应选:D.4.一个几何体的三视图如下图,那么该几何体的外表积为〔〕A.3πB.4πC.2π+4 D.3π+4【解答】解:由中的三视图可得,该几何体是以俯视图为底面的半圆柱,底面半径为1,高为2,故该几何体的外表积S=2×π+〔2+π〕×2=3π+4,应选:D.5.F1〔﹣1,0〕,F2〔1,0〕是椭圆C的两个焦点,过F2且垂直x轴的直线交C于A,B两点,且|AB|=3,那么C的方程为〔〕A.+y2=1 B.+=1C.+=1 D.+=1【解答】解:F1〔﹣1,0〕,F2〔1,0〕是椭圆C的两个焦点,可得c=1,过F2且垂直x轴的直线交C于A,B两点,且|AB|=3,可得,2〔a2﹣c2〕=3a,即:2a2﹣2﹣3a=0解得a=2,那么b=,所求的椭圆方程为:+=1.应选:C.6.假设变量x,y满足约束条件,那么z=2x+y的最大值等于〔〕A.7 B.8 C.10 D.11【解答】解:作出不等式组对应的平面区域如图:由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B〔4,2〕时,直线y=﹣2x+z的截距最大,此时z最大,此时z=2×4+2=10,应选:C.7.动直线l:x+my+2m﹣2=0〔m∈R〕与圆C:x2+y2﹣2x+4y﹣4=0交于点A,B,那么弦AB 的最短为〔〕A.2 B.2C.6 D.4【解答】解:∵动直线l:x+my+2m﹣2=0〔m∈R〕,∴〔x﹣2〕+〔y+2〕m=0,∴动直线l:x+my+2m﹣2=0〔m∈R〕过定点M〔2,﹣2〕,∵圆C:x2+y2﹣2x+4y﹣4=0的圆心C〔1,﹣2〕,半径r==3,d=|MC|==1,∵圆C:x2+y2﹣2x+4y﹣4=0交于点A,B,∴弦AB的最短间隔为:2=2=4.应选:D.8.椭圆+=1〔a>5〕的两个焦点为F1、F2,且|F1F2|=8.弦AB过点F1,那么△ABF2的周长为〔〕A.10 B.20 C.2D.4【解答】解:由题意可得椭圆+=1的b=5,c=4,a==,由椭圆的定义可得|AF1|+|AF2|=|BF1|+|BF2|=2a,即有△ABF2的周长为|AB|+|AF2|+|BF2|=|AF1|+|AF2|+|BF1|+|BF2|=4a=4.应选:D.9.设a是直线,α是平面,那么以下选项里面,可以推出a∥α的是〔〕A.存在一条直线b,a∥b,b⊂αB.存在一条直线b,a⊥b,b⊥αC.存在一个平面β,a⊂β,α∥βD.存在一个平面β,a⊥β,α⊥β【解答】解:由线面平行的断定定理,必须指明直线a在平面α外,故排除A,a⊥b,b ⊥α,那么a可能在平面α内,故排除B,由面面平行的定义可知假设两个平面平行,那么其中一个平面内的任意一条直线都平行于另一个平面,故C正确;垂直于同一平面的一条直线与一个平面可能在一个面内,故排除D,应选:C.10.变量x,y满足约束条件,假设使z=ax+y获得最大值的最优解有无穷多个,那么实数a的取值集合是〔〕A.{﹣3,0} B.{3,﹣1} C.{0,1} D.{﹣3,0,1} 【解答】解:不等式对应的平面区域如图:由z=ax+y得y=﹣ax+z,假设a=0时,直线y=﹣ax+z=z,此时获得最大值的最优解只有一个,不满足条件.假设﹣a>0,那么直线y=﹣ax+z截距获得最大值时,z取的最大值,此时满足直线y=﹣ax+z与y=x﹣2平行,此时﹣a=1,解得a=﹣1.假设﹣a<0,那么直线y=﹣ax+z截距获得最大值时,z取的最大值,此时满足直线y=﹣ax+z与y=﹣3x+14平行,此时﹣a=﹣3,解得a=3.综上满足条件的a=3或者a=﹣1,故实数a的取值集合是{3,﹣1},应选:B.11.假设直线x﹣y+1=0与圆〔x﹣a〕2+y2=2有公一共点,那么实数a取值范围是〔〕A.[﹣3,﹣1] B.[﹣1,3]C.[﹣3,1] D.〔﹣∞,﹣3]∪[1,+∞〕【解答】解:∵直线x﹣y+1=0与圆〔x﹣a〕2+y2=2有公一共点∴圆心到直线x﹣y+1=0的间隔为∴|a+1|≤2∴﹣3≤a≤1应选:C.12.点F1、F2是椭圆x2+2y2=2的两个焦点,点P是该椭圆上的一个动点,那么的最小值是〔〕A.0 B.1 C.2 D.【解答】解:∵O为F1F2的中点,∴=2,可得=2||当点P到原点的间隔最小时,||到达最小值,同时到达最小值.∵椭圆x2+2y2=2化成HY形式,得=1∴a2=2且b2=1,可得a=,b=1因此点P到原点的间隔最小值为短轴一端到原点的间隔,即||最小值为b=1 ∴=2||的最小值为2应选:C.13.椭圆E:+=1〔a>b>0〕的右焦点为F,短轴的一个端点为M,直线l:3x﹣4y =0交椭圆E于A,B两点,假设|AF|+|BF|=4,点M到直线l的间隔不小于,那么椭圆E的离心率的取值范围是〔〕A.〔0,] B.〔0,] C.[,1〕D.[,1〕【解答】解:如下图,设F′为椭圆的左焦点,连接AF′,BF′,那么四边形AFBF′是平行四边形,∴4=|AF|+|BF|=|AF′|+|AF|=2a,∴a=2.取M〔0,b〕,∵点M到直线l的间隔不小于,∴,解得b≥1.∴e==≤=.∴椭圆E的离心率的取值范围是.应选:A.14.N为圆x2+y2=1上的一个动点,平面内动点M〔x0,y0〕满足|y0|≥1且∠OMN=30°〔O 为坐标原点〕,那么动点M运动的区域面积为〔〕A.﹣2B.﹣C.+D.+【解答】解:如图,过M作⊙O切线交⊙O于T,根据圆的切线性质,有∠OMT≥∠OMN=30°.反过来,假如∠OMT≥30°,那么⊙O上存在一点N使得∠OMN=30°.∴假设圆C上存在点N,使∠OMN=30°,那么∠OMT≥30°.∵|OT|=1,∴|OM|≤2.即〔|y0|≥1〕.把y0=1代入,求得A〔〕,B〔〕,∴,∴动点M运动的区域面积为2×〔〕=.应选:A.二、填空题〔此题有4小题,每一小题5分,一共20分〕15.椭圆:的焦距为4,那么m为4或者8 .【解答】解:由题意,焦点在x轴上,10﹣m﹣m+2=4,所以m=4;焦点在y轴上,m﹣2﹣10+m=4,所以m=8,综上,m=4或者8.故答案为:m=4或者8.16.假设x,y满足约束条件那么的最大值﹣1 .【解答】解:画出约束条件表示的平面区域,如下图;那么表示平面区域内的点P〔x,y〕与点M〔5,﹣3〕连线的斜率k的值;由图形知,当P点与A点重合时,k获得最大值;由,求得A〔1,1〕,所以k的最大值为=﹣1.故答案为:﹣1.17.由动点p〔x,y〕引圆x2+y2=4的两条切线PA,PB,切点分别为A,B,假设∠APB=90°,那么点P的轨迹方程为x2+y2=8 .【解答】解:∵∠APO〔O为圆心〕=∠APB=45°,∴PO=OA=2.∴P的轨迹是一个以原点为圆心,半径为2的圆,∴点P的轨迹方程为x2+y2=8.故答案为:x2+y2=8.18.椭圆的右焦点为F,P是椭圆上一点,点A〔0,2〕,当点P在椭圆上运动时,△APF的周长的最大值为14【解答】解:如下图设椭圆的左焦点为F′,,|AF|==4=|AF′|,那么|PF|+|PF′|=2a=6,∵|PA|﹣|PF′|≤|AF′|,∴△APF的周长=|AF|+|PA|+|PF|=|AF|+|PA|+6﹣|PF′|≤4+6+4=14,当且仅当三点A,F′,P一共线时取等号.∴△APF的周长最大值等于14.故答案为:14.三、解答题〔此题有5大题,每一小题12分,一共60分〕19.直线l1经过点A〔﹣1,5〕和点B〔﹣3,6〕,直线l2过点C〔2,4〕且与l1平行.〔1〕求直线l2的方程;〔2〕求点C关于直线l1的对称点D的坐标.〔要求写出求解过程〕【解答】解:〔1〕==﹣.∵直线l2过点C〔2,4〕且与l1平行,∴y﹣4=﹣〔x﹣2〕,化为:x+2y﹣10=0.〔2〕直线l1的方程为:y﹣5=﹣〔x+1〕,化为:x+2y﹣9=0.设点C关于直线l1的对称点D的坐标〔a,b〕,那么,解得a=,b=.可得D.20.设O为坐标原点,动点M在椭圆上,过M作x轴的垂线,垂足为N,点P满足.求点P的轨迹方程.【解答】解:设M〔x0,y0〕,由题意可得N〔x0,0〕,设P〔x,y〕,由点P满足.可得〔x﹣x0,y〕=〔0,y0〕,可得x﹣x0=0,y=y0,即有x0=x,y0=,代入椭圆方程+y2=1,可得=1,即有点P的轨迹方程为圆x2+y2=2;故答案为:x2+y2=2.21.如图,四棱柱ABCD﹣A1B1C1D1的所有棱长都是2,O是AC与BD的交点,A1O⊥AB,A1O⊥BC.〔Ⅰ〕证明:BD⊥平面A1CO;〔Ⅱ〕假设BD=2,求直线A1C与平面AA1D1D所成角正弦值.【解答】〔Ⅰ〕证明:∵A1O⊥AB,A1O⊥BC.又∵AB∩BC=B,AO,AB,BC⊂平面ABCD,∴A1O⊥平面ABCD;∵BD⊂平面ABCD,∴A1O⊥BD,∵四棱柱ABCD﹣A1B1C1D1的所有棱长都是2,∴CQ⊥BD,又∵A1O∩OC=O,AO,∴BD⊥平面A1CO,〔Ⅱ〕解:由〔Ⅰ〕可知OA,OB,OC两两垂直,那么以O为原点,建立空间直角坐标系,如图,∵BD=AB=AA1=2,∴OB═OD=1,AO=,OA1=1,那么A〔,0,0〕,D〔0,﹣1,0〕,C〔﹣,O,0〕,A1〔0,0,1〕,,,.设平面AA1D1D的法向量为,由,可取,那么cos=.∴直线A1C与平面AA1D1D所成角正弦值为.22.圆x2+y2+x﹣6y+m=0和直线x+2y﹣3=0交于P、Q两点,且OP⊥OQ〔O为坐标原点〕,求该圆的圆心坐标及半径.【解答】解:设P〔x1,y1〕,Q〔x2,y2〕,∵∴5y2﹣20y+12+m=0,∴y1+y2=4,y1y2=,x1x2=〔3﹣2y1〕〔3﹣2y2〕=9﹣6〔y1+y2〕+4y1y2=9﹣24+=;∵OP⊥OQ,∴x1x2+y1y2=0,∴+=0,∴5m=15,∴m=3;∴圆的方程为:x2+y2+x﹣6y+3=0,∴D=1,E=﹣6,F=3,∴圆心〔﹣,3〕,半径为=.23.椭圆的离心率为,其左焦点到点P〔2,1〕的间隔为,不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.〔1〕求椭圆C的方程;〔2〕假设,求△ABP的面积.【解答】解:〔1〕设椭圆左焦点为F〔﹣c,0〕,由题意可得,解得,∴椭圆C的方程为:=1;〔2〕设点A〔x1,y1〕,B〔x2,y2〕,线段AB的中点为M,当直线AB与x轴垂直时,直线AB的方程为x=0,与不过原点的条件不符,舍去,故可设直线AB的方程为y=kx+m〔m≠0〕,由消去y,整理得〔3+4k2〕x2+8kmx+4m2﹣12=0,那么△=64k2m2﹣4〔3+4k2〕〔4m2﹣12〕>0,x1+x2=﹣,x1x2=,所以线段AB的中点M〔﹣,〕,因为点M在直线OP上,所以=,解得m=0〔舍去〕或者k=﹣,此时x1+x2=m,x1x2=,所以AB=•|x1﹣x2|=×=,∴m=±2,所以直线,设点P到直线AB的间隔为d,那么d==,或者d==,所以△ABP的面积为:×=.励志赠言经典语录精选句;挥动**,放飞梦想。
2015-2016学年高二上学期期末考试数学(理)试卷及答案
2015-2016学年度 第一学期期末质量监测高二数学(理科)试卷一、选择题:本大题供8小题,每小题5分,供40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 直线023=+-y x 的倾斜角是A.6π B.3π C.23π D.56π 2. 直线l 过点(2,2)P -,且与直线032=-+y x 垂直,则直线l 的方程为 A. 220x y +-= B. 260x y --=C. 260x y --=D. 250x y -+=3. 一个几何体的三视图如图所示,如果该几何体的侧面面积为π12, 则该几何体的体积是A. π4B. 12πC. 16πD. 48π 4. 在空间中,下列命题正确的是 A. 如果直线m ∥平面α,直线α⊂n 内,那么m ∥n ;B. 如果平面α内的两条直线都平行于平面β,那么平面α∥平面βC. 如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m α⊥D. 如果平面α⊥平面β,任取直线m α⊂,那么必有m β⊥5. 如果直线013=-+y ax 与直线01)21(=++-ay x a 平行.那么a 等于A. -1B.31 C. 3 D. -1或316. 方程)0(0222≠=++a y ax x 表示的圆A. 关于x 轴对称B. 关于y 轴对称C. 关于直线x y =轴对称D. 关于直线x y -=轴对称7. 如图,正方体1111ABCD A BC D -中,点E ,F 分别是1AA ,AD 的中点,则1CD 与EF 所成角为A. 0︒B. 45︒C. 60︒D. 90︒8. 如果过点M (-2,0)的直线l 与椭圆1222=+y x 有公共点,那么直线l 的斜率k 的取值范围是A.]22,(--∞ B.),22[+∞ C.]21,21[-D. ]22,22[-二、填空题:本大题共6小题,每小题5分,共30分.9. 已知双曲线的标准方程为116422=-y x ,则该双曲线的焦点坐标为,_________________渐近线方程为_________________.10. 已知向量)1,3,2(-=a,)2,,5(--=y b 且a b ⊥ ,则y =________.11. 已知点),2,(n m A -,点)24,6,5(-B 和向量(3,4,12)a =-且AB ∥a .则点A 的坐标为________.12. 直线0632=++y x 与坐标轴所围成的三角形的面积为________. 13. 抛物线x y 82-=上到焦点距离等于6的点的坐标是_________________.14. 已知点)0,2(A ,点)3,0(B ,点C 在圆122=+y x 上,当ABC ∆的面积最小时,点C 的坐标为________.三、解答题:本大题共6小题,共80分,解答应写出文字说明,演算步骤或证明过程.15. (本小题共13分)如图,在三棱锥A BCD -中,AB ⊥平面BCD ,BC CD ⊥,E ,F ,G 分别是AC ,AD ,BC 的中点. 求证:(I )AB ∥平面EFG ;(II )平面⊥EFG 平面ABC .16. (本小题共13分)已知斜率为2的直线l 被圆0241422=+++y y x 所截得的弦长为求直线l 的方程.17. (本小题共14分)如图,在四棱锥P ABCD -中,平面⊥PAB 平面ABCD ,AB ∥CD ,AB AD ⊥,2CD AB =,E 为PA 的中点,M 在PD 上(点M 与D P ,两点不重合).(I ) 求证:PB AD ⊥;(II )若λ=PDPM,则当λ为何值时, 平面⊥BEM 平面PAB ?(III )在(II )的条件下,求证:PC ∥平面BEM .18. (本小题共13分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,平面PCD ⊥底面ABCD ,PD CD ⊥,PD CD =,E 为PC 的中点. (I ) 求证:AC ⊥PB ; (II ) 求二面角P --BD --E 的余弦值.19. (本小题共14分)已知斜率为1的直线l 经过抛物线22y px =(0)p >的焦点F ,且与抛物线相交于A ,B 两点,4=AB .(I ) 求p 的值;(II ) 设经过点B 和抛物线对称轴平行的直线交抛物线22y px =的准线于点D ,求证:DO A ,,三点共线(O 为坐标原点).20. (本小题共13分)已知椭圆2222:1(0)x y G a b a b +=>>的左焦点为F ,离心率为33,过点)1,0(M 且与x 轴平行的直线被椭圆G 截得的线段长为6. (I ) 求椭圆G 的方程;(II )设动点P 在椭圆G 上(P 不是顶点),若直线FP 的斜率大于2,求直线OP (O 是坐标原点)的斜率的取值范围.2015-2016学年度第一学期期末质量检测高二数学(理科)试卷参考答案2016.1一、ABB C BA CD二、9.(±52,0),2y x =±10. -411. (1,-2,0)12. 313. (-4,24±)14. (13133,13132) 说明:1.第9题,答对一个空给3分。
江苏省盐城市2018-2019学年高二上学期期末考试数学(理)试题-含答案解析
江苏省盐城市2018-2019学年高二上学期期末考试数学(理)试题一、填空题(本大题共14小题,共70.0分)1.已知复数z满足z⋅i=1+i(其中i是虚数单位),则z=______.【答案】1−i【解析】解:由z⋅i=1+i,得z=1+ii =(1+i)(−i)−i2=1−i.故答案为:1−i.把给出的等式两边同时乘以i,然后由复数代数形式的除法运算化简求值.本题考查了复数代数形式的除法运算,是基础的计算题.2.过抛物线y2=4x的焦点且与对称轴垂直的弦长为______.【答案】4【解析】解:抛物线y2=4x的焦点(1,0),可得:y2=4,解得y=±2.可得:对称轴垂直的弦长为:4.故答案为:4.求出抛物线的焦点坐标,然后求解对称轴垂直的弦长.本题考查抛物线的简单性质的应用,考查计算能力.3.命题“∀x>0,x2+3x+1>0“的否定为______.【答案】∃x∈R,x2+3x+1≤0【解析】解:∵命题“∀x>0,x2+3x+1>0”,∴命题“∀x>0,x2+3x+1>0”的否定为:∃x∈R,x2+3x+1≤0.故答案为:∃x∈R,x2+3x+1≤0.命题“∀x∈R,2x2−3x+4>0”,是一个全称命题,其否定命题一定是一个特称命题,由全称命题的否定方法,我们易得到答案.对命题“∃x∈A,P(X)”的否定是:“∀x∈A,¬P(X)”;对命题“∀x∈A,P(X)”的否定是:“∃x∈A,¬P(X)”,即对特称命题的否定是一个全称命题,对一个全称命题的否定是特称命题.4.点P(2,0)到双曲线x29−y216=1的渐近线的距离为______.【答案】85【解析】解:双曲线x29−y216=1的渐近线方程为y=±43x,即4x±3y=0,则点(2,0)到4x−3y=0的距离d=√42+(−3)2=85,故答案为:85先求出渐近线方程,再根据点到直线的距离公式即可求出.本题考查了双曲线的渐近线方程和点到直线的距离公式,属于基础题.5. 已知直线的参数方程为{x =1+12ty =1+√32t (t 为参数),则其倾斜角为______. 【答案】π3【解析】解:直线的参数方程为{x =1+12ty =1+√32t (t 为参数), 消去参数t ,化为普通方程是y −1=√3(x −1), 则该直线的斜率为√3,倾斜角为π3. 故答案为:π3.把直线的参数方程化为普通方程,求出它的斜率和倾斜角的大小. 本题考查了直线的参数方程与普通方程的转化问题,是基础题.6. 已知命题p 为真命题,命题q 为假命题,则在下列命题中:①¬q ;②p ∧q ;③p ∨q 是真命题的有______个. 【答案】2【解析】解:若命题p 为真命题,命题q 为假命题, 则¬q 是真命题,p ∧q 是假命题,p ∨q 是真命题, 则真命题的是①③,有2个, 故答案为:2根据复合命题真假关系进行判断即可.本题主要考查复合命题真假判断,根据¬p 与p 真假性相反,p ∧q 同真为真,其他为假,p ∨q 同假为假,其余为真的结论是解决本题的关键.7. p :“复数z =(m 2−m)+mi(m ∈R,i 为虚数单位)是纯虚数”是q :“m =1”的______条件.(请在“充分不必要”、“必要不充分”、“既不充分又不必要”、“充分必要”选择一个最为恰当的答案填写在横线上) 【答案】充要【解析】解:若复数z =(m 2−m)+mi(m ∈R,i 为虚数单位)是纯虚数,则{m ≠0m2−m=0,即{m ≠0m=1或m=0,得m =1,即p 是q 的充要条件, 故答案为:充要根据纯虚数的定义求出m 的取值,结合充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,结合纯虚数的定义求出m是解决本题的关键.8.已知直线a,b和平面α满足:①a//b,②a⊥α,③b⊥α,若从其中选出两个作为条件,余下一个作为结论,可以得到______个真命题.【答案】3【解析】解:构成的命题有①②⇒③,①③⇒②,②③⇒①,若a//b,a⊥α,则b⊥α成立,即①②⇒③是真命题,若a//b,b⊥α,则a⊥α成立,即①③⇒②是真命题若a⊥α,b⊥α,则a//b成立,即②③⇒①是真命题,故可以得到3个真命题,故答案为:3根据条件可以构成三个命题①②⇒③,①③⇒②,②③⇒①,根据空间直线和平面平行和垂直的性质进行判断即可.本题主要考查命题的真假关系,结合空间直线平行于直线平面垂直的性质和判定定理是解决本题的关键.9.从装有大小完全相同的2个白球、3个黑球的口袋中随机取出两个小球,记取出白球的个数为随机变量ξ,则P(ξ=1)的值为______.【答案】0.6【解析】解:从装有大小完全相同的2个白球、3个黑球的口袋中随机取出两个小球,基本事件总数n=C52=10,记取出白球的个数为随机变量ξ,ξ=1包含的基本事件个数m=C21C31=6,则P(ξ=1)=mn =610=0.6.故答案为:0.6.基本事件总数n=C52=10,记取出白球的个数为随机变量ξ,ξ=1包含的基本事件个数m=C21C31=6,由此能求出P(ξ=1).本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.10.已知正方体ABCD−A1B1C1D1的棱长为2,E,F,G,H分别是四条棱AB,BC,CD,DA上的中点,则四棱锥A1−EFGH体积为______.【答案】43【解析】解:∵正方体ABCD−A1B1C1D1的棱长为2,E,F,G,H分别是四条棱AB,BC,CD,DA上的中点,∴EFGH是边长为√2的正方形,点A1到平面EFGH的距离d=AA1=2,∴四棱锥A1−EFGH体积为:V A1−EFGH =13×d×S正方形EFGH=13×2×√2×√2=43.故答案为:43.推导出EFGH是边长为√2的正方形,点A1到平面EFGH的距离d=AA1=2,由此能求出四棱锥A1−EFGH体积.本题考查四棱锥的体积的求法,考查空间中线线、线面、面面间的关系等基础知识,考查运算求解能力,是中档题.11.已知抛物线y2=16x上任意一点到双曲线x2a2−y2b2=1右焦点的距离比到左准线的距离大1,则a2=______.【答案】12【解析】解:抛物线y2=16x中,p=8,焦点为F(4,0),准线方程为x=−4;由题意知双曲线x2a2−y2b2=1的右焦点为F(4,0),左准线方程为x=−3,∴c=4,且−a2c=−3,解得a2=12.故答案为:12.利用抛物线方程求出焦点坐标与准线方程,由题意知双曲线的右焦点坐标与左准线方程,由此求出c和a2.本题考查了抛物线方程与双曲线方程的应用问题,是基础题.12.已知椭圆x2a2+y2b2=1(a>b>0)的左右两个焦点分别为F1、F2,以F1F2为斜边的等腰直角三角形PF1F2与椭圆有两个不同的交点M,N,且MN=13F1F2,则该椭圆的离心率为______.【答案】√5−√2【解析】解:∵以F1F2为斜边的等腰直角三角形PF1F2与椭圆有两个不同的交点M,N,且MN=13F1F2,∴N(13c,23c)∵PF1+PF2=√(c3−c)2+(2c3)2+√(c3+c)2+(2c3)2=2a.2√2c 3+2√5c3=2a,∴e=ca =√5+√2=√5−√2.故答案为:√5−√2.可得N(13c,23c),利用PF 1+PF 2=√(c 3−c)2+(2c 3)2+√(c 3+c)2+(2c 3)2=2a.可得2√2c 3+2√5c3=2a ,即可求解.本题考查了椭圆的离心率,属于中档题.13. 在三角形内,我们将三条边的中线的交点称为三角形的重心,且重心到任一顶点的距离是到对边中点距离的两倍类比上述结论:在三棱锥中,我们将顶点与对面重心的连线段称为三棱锥的“中线”,将三棱锥四条中线的交点称为它的“重心”,则棱锥重心到顶点的距离是到对面重心距离的______倍. 【答案】3【解析】解:在四面体ABCD 中,E 为CD 的中点,连接AE ,BE ,且M ,N 分别为△ACD ,△BCD 的重心,AN ,BM 交于点G , 在△ABE 中,M ,N 分别为AE ,BE 的三等分点,则EMAE =ENBE =13, 所以MN//AB ,AB =3MN , 所以AG =3GN ,故棱锥重心到顶点的距离是到对面重心距离的3倍, 故答案为:3由类比推理及线线平行的判定及运用可得:在△ABE 中,M ,N 分别为AE ,BE 的三等分点,则EMAE =ENBE =13,即MN//AB ,AB =3MN ,即AG =3GN ,故棱锥重心到顶点的距离是到对面重心距离的3倍,得解. 本题考查了类比推理及线线平行的判定及运用,属中档题.14. 已知椭圆x 24+y 23=1的右焦点为F ,A 为椭圆在第一象限内的点,连接AF 并延长交椭圆于点B ,连接AO(O 为坐原点)并延长交椭圆于点C ,若S △ABC =3,则点A 的坐标为______. 【答案】(1,32)【解析】解:由题意可得F(1,0),设AB 的方程为x =my +1, 联立椭圆方程可得(4+3m 2)y 2+6my −9=0, 设A(x 1,y 1),B(x 2,y 2),可得y 1+y 2=−6m4+3m 2,y 1y 2=−94+3m 2,|y 1−y 2|2=(y 1+y 2)2−4y 1y 2=36m 2(4+3m 2)2+364+3m 2, 由O 为AC 的中点,且△ABC 的面积为3, 可得△ABO 的面积为32,S △ABO =S △AOF +S △BOF =12⋅|OF|⋅|y 1−y 2|=32, 即有|y 1−y 2|=3, 可得36m 2(4+3m 2)2+364+3m 2=9, 化为9m 4+m 2=0,即m =0,则AB⊥x轴,可得A(1,32),故答案为:(1,32).求得F(1,0),),设AB的方程为x=my+1,联立椭圆方程,运用韦达定理,以及完全平方公式,结合题意可得S△ABO=S△AOF+S△BOF=12⋅|OF|⋅|y1−y2|=32,即有|y1−y2|=3,平方.后由韦达定理,解方程可得m=0,可得A的坐标本题考查椭圆的方程和运用,注意联立直线方程和椭圆方程,运用韦达定理和弦长公式,考查化简整理的运算能力,属于中档题.二、解答题(本大题共9小题,共130.0分)15.已知直线l:{y=1+2tx=1+t(t为参数),曲线C:ρ2−8ρsinθ+15=0.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)求曲线C上的点到直线l距离的最小值.【答案】解:(1)∵直线l:{y=1+2tx=1+t(t为参数),∴直线l的普通方程为2x−y−1=0,∵曲线C:ρ2−8ρsinθ+15=0.∴曲线C的直角坐标方程为x2+y2−8y+15=0.(2)曲线C是以C(0,4)为圆心,以r=12√64−60=1为半径的圆,圆心C(0,4)到直线l的距离d=|2×0−4−1|√4+1=√5,∴曲线C上的点到直线l距离的最小值为√5−1.【解析】(1)直线l的参数方程消去参数,能求出直线l的普通方程,由曲线C的极坐标方程能求出曲线C的直角坐标方程.(2)曲线C是以C(0,4)为圆心,以r=1为半径的圆,圆心C(0,4)到直线l的距离d=√5,由此能求出曲线C上的点到直线l距离的最小值.本题考查直线的普通方程、曲线的直角坐标方程的求法,考查极坐标方程、普通方程、直角坐标方程的互化等基础知识,考查运算求解能力,是中档题.16.如图所示,在直三棱柱ABC−A1B1C1中,CA=CB,点M,N分别是AB,A1B1的中点.(1)求证:BN//平面A1MC;(2)若A1M⊥AB1,求证:AB1⊥A1C.【答案】证明:(1)因为ABC−A1B1C1是直三棱柱,所以AB//A1B1,且AB=A1B1,又点M,N分别是AB、A1B1的中点,所以MB=A1N,且MB//A1N.所以四边形A1NBM是平行四边形,从而A1M//BN.又BN⊄平面A1MC,A1M⊂平面A1MC,所以BN//平面A1MC;(2)因为ABC−A1B1C1是直三棱柱,所以AA1⊥底面ABC,而AA1⊂侧面ABB1A1,所以侧面ABB1A1⊥底面ABC.又CA=CB,且M是AB的中点,所以CM⊥AB.则由侧面ABB1A1⊥底面ABC,侧面ABB1A1∩底面ABC=AB,CM⊥AB,且CM⊂底面ABC,得CM⊥侧面ABB1A1.又AB1⊂侧面ABB1A1,所以AB1⊥CM.又AB1⊥A1M,A1M、MC平面A1MC,且A1M∩MC=M,所以AB1⊥平面A1MC.又A1C⊂平面A1MC,所以AB⊥A1C.【解析】(1)欲证明BN//平面A1MC,只需推知A1M//BN;(2)根据直三棱柱的特征和线面垂直的判定与性质来证明线线垂直.本题考查的知识点是直线与平面垂直的性质,直线与平面平行的判定,其中熟练掌握空间直线与平面间垂直、平行的判定、性质、定义是解答本题的关键.17.设f(x)=x2−2ax+1,g(x)=sinx.(1)若∀x∈[0,1]都有f(x)≥0恒成立,求实数a的取值范围;],都有f(x1)≥g(x2)恒成立,求实数a的取值范围.(2)若∃x1∈(0,1],使得对∀x2∈[0,π2【答案】解:(1)∀x∈[0,1]都有f(x)≥0恒成立,故x2−2ax+1≥0对∀x∈[0,1]恒成立,①x=0时,1≥0恒成立,故a∈R,②x∈(0,1]时,2a≤x+1对∀x∈(0,1]恒成立,x故2a≤2(当且仅当x=1时“=”成立),故a≤1,综上,a≤1;],g(x)=sinx,(2)∵x2∈[0,π2故g(x2)的最大值是1,],都有f(x1)≥g(x2)恒成立,∵∃x1∈(0,1],使得对∀x2∈[0,π2∴∃x1∈(0,1],使得f(x1)≥1恒成立,即∃x1∈(0,1],使得x12−2ax1+1≥1恒成立,故∃x1∈(0,1],使得x1≥2a成立,即2a≤1,解得:a≤1.2【解析】(1)问题转化为x2−2ax+1≥0对∀x∈[0,1]恒成立,通过讨论x的范围,结合不等式的性质求出a 的范围即可;(2)求出g(x)的最大值,问题转化为∃x∈(0,1],使得x2−2ax+1≥1恒成立,求出a的范围即可.本题考查了函数的单调性,最值问题以及函数恒成立问题,考查转化思想,分类讨论思想,是一道综合题.18. 设(1+2x)n =a 0+a 1x +a 2x 2+⋯+a n x n ,若展开式中第4项与第5项二项式系数最大.(1)求n ;(2)求最大的系数a i ;(3)是否存在正整数m ,使得a m+2+4a m =4a m+1成立?若存在,求出m 的值;若不存在,请说明理由.【答案】解:(1)若展开式中第4项与第5项二项式系数最大,即C n 3=C n 4,则n =7. (2)设(1+2x)7展开式中第r +1项T r+1是系数最大的项,则T r+1=C 7r 2r x r , 由不等式组{C 7r 2r≥C 7r−12r−1C 7r 2r≥C 7r+12r+1,解得{r ≤163r≥133,且r ∈N ,∴r =5,所以a i =C 7525=672.(3)因为(1+2x)n =a 0+a 1x +a 2x 2+⋯+a n x n ,所以a m =C 7m 2m , 因为a m+2+4a m =4a m+1,所以C 7m+22m+2+4C 7m 2m =4C 7m+12m+1, 所以7!(m+2)!(5−m)!2m+2+47!m!(7−m)!2m =47!(m+1)!(6−m)!2m+1, 由此方程可得:1(m+1)(m+2)+1(6−m)(7−m)=2(m+1)(6−m), 解得:m =1或4.综上:存在m =1或4,使得a m+2+4a m =4a m+1成立. 【解析】(1)由题意利用二项式系数的性质,求得n 的值.(2)展开式中第r +1项T r+1是系数最大的项,列出不等式组求得r 的值,可得最大的系数a i . (3)假设存在正整数m ,使得a m+2+4a m =4a m+1成立,解出m 的值,可得结论.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,组合数的计算公式,属于中档题.19. (请用空间向量求解)已知正四棱柱ABCD −A 1B 1C 1D 1中,AB =1,AA 1=3,E ,F 分别是棱AA 1,CC 1上的点,且满足AE =2EA 1,CF =2FC 1. (1)求异面直线EC 1,DB 1所成角的余弦值; (2)求面EB 1C 1与面FAD 所成的锐二面角的余弦值.【答案】解:(1)在正四棱柱ABCD −A 1B 1C 1D 1中,DD 1⊥平面ABCD ,底面ABCD 是正方形, 所以AD ,DC ,DD 1两两垂直,以A 为原点,DA ,DC ,DD 1所在的直线分别为x ,y ,z 轴建立空间直角坐标系,……………………………………………………………………(2分)又因AB =1,AA 1=3,E ,F 分别是棱AA 1,CC 1上的点, 且满足AE =2EA 1,CF =2FC 1AB =1,AA 1=3,所以D(0,0,0),E(1,0,2),C 1(0,1,3),B(1,1,3),A(1,0,0),F(0,1,2),B 1(1,1,3),所以EC 1⃗⃗⃗⃗⃗⃗⃗ =(−1,1,1),DB 1⃗⃗⃗⃗⃗⃗⃗ =(1,1,3),…………………………………………………(4分) 设异面直线EC 1,DB 1所成角为θ,θ∈(0,π2], 所以cosθ=|cos〈EC 1⃗⃗⃗⃗⃗⃗⃗ ,DB 1⃗⃗⃗⃗⃗⃗⃗ 〉|=|−1+1+3|√3√1+1+9=√3311,………………………………(7分) 所以异面直线EC 1,DB 1所成角的余弦值为√3311. ………………………………………………(8分)(2)EC 1⃗⃗⃗⃗⃗⃗⃗ =(−1,1,1),EB 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,1),DA ⃗⃗⃗⃗⃗ =(1,0,0),DF ⃗⃗⃗⃗⃗ =(0,1,2), 设平面EB 1C 1的一个法向量为n 1⃗⃗⃗⃗ , 则{EB 1⃗⃗⃗⃗⃗⃗⃗ ⊥n 1⃗⃗⃗⃗ EC 1⃗⃗⃗⃗⃗⃗⃗ ⊥n 1⃗⃗⃗⃗ ,所以{−x 1+y 1+z 1=0y 1+z 1=0,令z 1=1,所以n 1⃗⃗⃗⃗ =(0,−1,1),……(10分)平面FAD 的一个法向量为n 2⃗⃗⃗⃗ ,则{DA ⃗⃗⃗⃗⃗ ⊥n 2⃗⃗⃗⃗ DF ⃗⃗⃗⃗⃗ ⊥n 2⃗⃗⃗⃗ ,所以{y 2+2z 2=0x 2=0,令z 2=1,所以n 1⃗⃗⃗⃗ =(0,−2,1),…………(12分) 所以cos〈n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ 〉=|0+2+1|√2√5=3√1010,………………………………………………(14分) 所以面EB 1C 1与面FAD 所成的锐二面角的余弦值为3√1010.………………………(15分) 【解析】(1)推导出AD ,DC ,DD 1两两垂直,以A 为原点,DA ,DC ,DD 1所在的直线分别为x ,y ,z 轴建立空间直角坐标系,利用向量法能求出异面直线EC 1,DB 1所成角的余弦值.(2)求出平面EB 1C 1的一个法向量和平面FAD 的一个法向量,利用向量法能求出面EB 1C 1与面FAD 所成的锐二面角的余弦值.本题考查异面直线所成角的余弦值的求法,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20. 甲乙二人进行定点投篮比赛,已知甲、乙两人每次投进的概率均为12,两人各投一次称为一轮投篮.(1)求乙在前3次投篮中,恰好投进2个球的概率;(2)设前3轮投篮中,甲与乙进球个数差的绝对值为随机变量ξ,求ξ的分布列与期望. 【答案】解:(1)乙在前3次投篮中,恰好投进2个球为事件A ,则P(A)=C 32(12)2(1−12)=38;……………………………………(3分)答:乙在前3次投篮中,恰好投进2个球的概率为38;………………………………(4分) (2)设前3轮投篮中,甲与乙进球个数差的绝对值为随机变量ξ, 则ξ的取值为0,1,2,3;设前3轮投篮中,甲进球个数为X ,则X 的取值为0,1,2,3,计算P(X =0)=(1−12)3=18,P(X =1)=C 31⋅12⋅(1−12)2=38, P(X =2)=C 32⋅(12)2⋅(1−12)=38,P(X =3)=(12)3=18;所以P(ξ=0)=(18)2+(38)2+(38)2+(18)2=516,………………………………(6分) P(ξ=1)=2×18×38+2×38×(18+38)=1532,……………………………………(8分) P(ξ=2)=4×18×38=316,………………………………………(10分) P(ξ=3)=2×18×18=132;………………………………………(12分)所以ξ的分布列为; ξ 0 12 3 P5161532316132数学期望为E(ξ)=1532+38+332=1516.………………………………………………(15分) 【解析】(1)利用n 次独立重复实验恰有k 次发生的概率公式计算即可; (2)由题意知随机变量ξ的取值,计算对应的概率值, 写出分布列,再求出数学期望值.本题考查了离散型随机变量的分布列与数学期望的计算问题,是中档题.21. 已知点P(1,2)是抛物线y 2=4x 上的一点,过点P 作两条直线l 1与l 2,分别与抛物线相交于异于点P 的A 、B 两点.(1)若直线AB 过点(2,0)且△PAB 的重心G 在x 轴上,求直线AB 的斜率; (2)若直线AB 的斜率为1且△PAB 的垂心H 在x 轴上,求直线AB 的方程.【答案】解:(1)设直线AB的方程为x=my+2,设A,B两点的坐标分别为(x1,y1),(x2,y2)因为△PAB的重心G在x轴上,所以y1+y2=−2,将直线AB代入抛物线y2=4x方程可得:y2−4my−8=0,所以y1+y2=4m=−2,解得:m=−12,所以直线AB的斜率是−2.(2)若直线AB的斜率为1,则直线PH的方程是y−2=−(x−1),所以H(3,0),若直线AB的斜率为1,则设直线AB的方程为x=y+t,将直线AB代入抛物线y2=4x方程可得:y2−4y−4t=0,所以y1+y2=4,y1y2=−4t,且△=16+16t>0,因为BH⊥AP,所以y2x2−3⋅y1−2x1−1=−1(∗),将x1=y1+t,x2=y2+t代入(∗)得2y1y2+(t−3)(y1+y2)+t2−4t+3=0,将y1+y2=4,y1y2=−4t代入上面方程可得:t2−8t−9=0,由此方程解得:t=9或t=−1(舍),所以直线AB的方程是x−y−9=0.【解析】(1)设直线AB的方程为x=my+2,设A,B两点的坐标分别为(x1,y1),(x2,y2),根据重心的性质,以及根与系数,根据斜率公式即可求出,(2)分类讨论,根据韦达定理和斜率公式即可求出.本题考查直线与抛物线的位置关系的应用,直线系方程的应用,考查分析问题解决问题的能力,属于中档题.22.已知A,B分别为椭圆C:x2a2+y2b2=1(a>b>0)右顶点和上顶点,且直线AB的斜率为−√22,右焦点F到直线AB的距离为√6−√33.(1)求椭圆C的方程;(2)若直线l:y=kx+m(m>1)与椭圆交于M,N两点,且直线BM、BN的斜率之和为1,求实数k的取值范围.【答案】解:(1)∵k AB=ba =√22,∴a=√2b,则b=c,直线AB:bx+ay−ab=0,∴|b−√2b|√3=√6−√33,∴a=√2,b=1.因此,椭圆C的方程为x22+y2=1;(2)设点M(x 1,y 1)、N(x 2,y 2),将直线l 的方程与椭圆C 的方程联立{y =kx +m x 22+y 2=1,消去y 并整理得(2k 2+1)x 2+4kmx +2m 2−2=0, ∴△>0,由韦达定理得x 1+x 2=−4km 2k 2+1,x 1x 2=2m 2−22k 2+1. ∵k BM +k BN =2kx 1x 2+(m−1)(x 1+x 2)x 1x 2=1,∴(2k −1)x 1x 2+(m −1)(x 1+x 2)=0,∴2k =m +1>2,∴k >1,又∵△>0,∴2k 2>m 2−1,综上所述,0<k <2.因此,实数k 的取值范围是(0,2).【解析】(1)先由直线AB 的斜率得出a =√2b ,于是得出c =b ,再由点F 到直线AB 的距离,得出b 的值,从而可求出a 的值,从而可写出椭圆C 的方程;(2)设点M(x 1,y 1)、N(x 2,y 2),将直线l 的方程与椭圆C 的方程联立,列出韦达定理,由直线BM 、BN 的斜率之和为1,结合韦达定理得出k 与m 所满足的关系式,结合m 的范围,可得出k 的范围,再由△>0,得出k 的另一个范围,两者取交集可得出实数k 的取值范围.本题考查直线与椭圆的综合问题,考查椭圆的方程以及韦达定理设而不求法在椭圆综合问题中的应用,考查计算能力,属于中等题.23. 已知平面上一个圆可以将平面分成两个部分,两个圆最多可以将平面分成4个部分,设平面上n 个圆最多可以将平面分成f(n)个部分.(1)求f(3),f(4)的值;(2)猜想f(n)的表达式并证明;(3)证明:2n ≥f(n).【答案】解:(1)由已知有:f(3)=8,f(4)=14,(2)f(n)=n 2−n +2下面用数学归纳法证明:①当n =1时,f(1)=12−1+2=2结论成立;②假设n =k 时,结论成立,即平面上k 个圆最多可以将平面分成k 2−k +2个部分,那么当n =k +1时,第k +1个圆与前k 个圆最多有2k 个交点,即此第k +1个圆最多被这2k 个交点分成2k 条圆弧段,由于每增加一个圆弧段,可将原来的区域分成两个区域,因此第k +1个圆使平面增加了2k 个区域,所以f(k +1)=f(k)+2k =k 2−k +2+2k =(k +1)2−(k +1)+2,综合①②得:即平面上n 个圆最多可以将平面分成n 2−n +2个部分,即命题得证(3)证明:①当n =1或2或3时,2n −n 2+n −2=0,即2n ≥f(n),②n ≥4且n ∈N ∗时,设a n =n 2−n+22n ,则a n+1−a n=(n+1)2−(n+1)+22n+1−n2−n+22n=−n2+3n2n+1,设g(n)=−n2+3n=−(n−32)2+94,因为n≥4,所以g(n)≤−42+3×4=−4<0,所以a n+1−a n=−n2+3n2n+1<0所以n≥4时,数列{a n}是单调递减数列,所以a n=n2−n+22n ≤42−4+224=1416<1,所以2n>n2+n−2,综合①②得:2n≥n2+n−2.故不等式得证.【解析】(1)由题意可知:f(3)=8,f(4)=14,(2)猜想f(n)=n2−n+2并用数学归纳法证明可得解:(3)证明:讨论①当n=1或2或3时,2n−n2+n−2=0,②n≥4且n∈N∗时,用数列单调性的证明方法定义法证明即可本题考查了归纳推理、数学归纳法及数列单调性的证明,属难度较大的题型.。
2022-2023学年高二上数学选择性必修第一册:直线与圆的位置关系(附答案解析)
2022-2023学年高二上数学选择性必修第一册:直线与圆的位置关系【考点梳理】考点一:直线Ax +By +C =0与圆(x -a )2+(y -b )2=r 2的位置关系位置关系相交相切相离公共点个数2个1个0个判断方法几何法:设圆心到直线的距离为d =|Aa +Bb +C |A 2+B 2d <r d =r d >r代数法:由Ax +By +C =0,(x -a )2+(y -b )2=r 2,消元得到一元二次方程,可得方程的判别式ΔΔ>0Δ=0Δ<0考点二:直线与圆的方程解决实际问题审题→建立数学模型→解答数学模型→检验,给出实际问题的答案.【题型归纳】题型一:判断直线与圆的位置关系1.(2021·全国高二单元测试)直线10mx y -+=与圆22(2)(1)5x y -+-=的位置关系是()A .相交B .相切C .相离D .与m 的值有关2.(2021·浙江高二期末)直线:1l y ax a =-+与圆224x y +=的位置关系是()A .相交B .相切C .相离D .与a 的大小有关3.(2021·北京房山·高二期末)已知直线10l kx y k -+-=:和圆C :2240x y x +-=,则直线l 与圆C 的位置关系为()A .相交B .相切C .相离D .不能确定题型二:由直线与圆的位置关系求参数4.(2021·云南省云天化中学高二期末(文))直线30x y a ++=是圆22240x y x y ++-=的一条对称轴,则a =()A .1-B .1C .3-D .35.(2021·内蒙古赤峰市·)若直线()200,0ax by a b --=>>被圆22 2210x y x y +-++=截得的弦长为2,则11a b+的最小值为()A .14B .4C .12D .26.(2020·大连市红旗高级中学)若直线:1l y kx =-与圆()()22:212C x y -+-=相切,则直线l 与圆()22:23D x y -+=的位置关系是()A .相交B .相切C .相离D .不确定题型三:圆的弦长问题7.(2021·汕头市澄海中学高二月考)若圆22:160C x x y m +++=被直线3440x y ++=截得的弦长为6,则m =()A .26B .31C .39D .438.(2021·湖南长沙市·长郡中学高二期中)圆22:(2)4C x y -+=与直线40x y --=相交所得弦长为()A .1B .2C .2D .229.(2021·湖北十堰市·高二期末)直线3410x y ++=被圆220x y x y +-+=所截得的弦长为()A .710B .57C .75D .145题型四:圆的弦长求参数或者切线方程10.(2021·上海闵行中学高二期末)圆()()22134x y -+-=截直线10ax y +-=所得的弦长为23,则a =()A .43-B .34-C .3D .211.(2021·广西河池市·高二期末(文))已知斜率为1-的直线l 被圆C :222430x y x y ++-+=截得的弦长为6,则直线l 的方程为()A .2210x y ++=或2230x y +-=B .0x y +=或20x y +-=C .2220x y +-=或22320x y ++=D .20x y +-=或220x y ++=12.(2021·长春市第二十九中学高二期末(理))直线220ax by -+=被222440x y x y ++--=截得弦长为6,则ab 的最大值是()A .9B .4C .12D .14题型五:直线与圆的应用13.(2021·广东深圳市·高三月考)一座圆拱桥,当水面在如图所示位置时,拱顶离水面3米,水面宽12米,当水面下降1米后,水面宽度最接近()A .13.1米B .13.7米C .13.2米D .13.6米14.(2021·渝中区·重庆巴蜀中学高一期中)如图,某个圆拱桥的水面跨度是20米,拱顶离水面4米;当水面下降1米后,桥在水面的跨度为()A .230米B .202米C .430米D .125米15.(2020·重庆市万州沙河中学高二月考)一艘海监船上配有雷达,其监测范围是半径为26km 的圆形区域,一艘外籍轮船从位于海监船正东40km 的A 处出发径直驶向位于海监船正北30km 的B 处岛屿,船速为10km/h 这艘外籍轮船能被海监船监测到且持续时间长约为()小时A .1B .2C .3D .4题型六:直线与圆的位置关系的综合应用16.(2021·贵州遵义市·高二期末(理))已知O 圆心在直线2y x =+上,且过点()1,0A 、()2,1B .(1)求O 的标准方程;(2)已知过点()3,1的直线l 被所截得的弦长为4,求直线l 的方程.17.(2020·永丰县永丰中学高二期中(文))已知圆C 经过点()()1,0,2,1A B ,且圆心在直线:l y x =上.(1)求圆C 的方程;(2)若(,)P x y 为圆C 上的动点,求22y x +-的取值范围.18.(2020·黑龙江哈尔滨·哈九中高二期中(文))已知线段AB 的端点B 的坐标是()6,8,端点A 在圆2216x y +=上运动,M 是线段AB 的中点,且直线l 过定点()1,0.(1)求点M 的轨迹方程;(2)记(1)中求得的图形的圆心为C ,(i )若直线l 与圆C 相切,求直线l 的方程;(ii )若直线l 与圆C 交于,P Q 两点,求CPQ 面积的最大值,并求此时直线l 的方程.【双基达标】一、单选题19.(2021·嘉兴市第五高级中学高二期中)直线:1l y x =-截圆22:1O x y +=所得的弦长是()A .2B .3C .2D .120.(2021·陆良县中枢镇第二中学高二月考)经过点()2,3P -作圆22:224C x y x ++=的弦AB ,使得点P 平分弦AB ,则弦AB 所在直线的方程为()A .50x y --=B .50x y +-=C .50x y -+=D .50x y ++=21.(2021·云南保山市·高二期末(文))若直线m :0kx y +=被圆()2224x y -+=所截得的弦长为2,则点()0,23A 与直线m 上任意一点P 的距离的最小值为()A .1B .3C .2D .2322.(2021·四川省乐至中学高二期末)圆222410x y x y ++-+=关于直线220ax by -+=(),a b R ∈对称,则ab 的取值范围是()A .1,4⎛⎤-∞ ⎥⎝⎦B .10,4⎛⎤⎥⎝⎦C .1,04⎛⎤- ⎥⎝⎦D .1,4⎛⎫-∞ ⎪⎝⎭23.(2021·全国高二专题练习)直线3y kx =+与圆()()22324x y -+-=相交于M ,N 两点,若23MN =,则k 的值是()A .34-B .0C .0或34-D .3424.(2021·广西桂林市·(理))圆222420x x y y -+++=到直线2220x y -+=的距离为1的点有()A .1个B .2个C .3个D .0个25.(2021·全国)已知圆C 的方程为22(3)(4)1x y -+-=,过直线:350l x ay +-=上任意一点作圆C 的切线.若切线长的最小值为15,则直线l 的斜率为()A .4B .-4C .34-D .43-26.(2021·全国高二期中)在平面直角坐标系中,动圆222:(1)(1)C x y r -+-=与直线1(2)()y m x m R +=-∈相切,则面积最大的圆的标准方程为()A .22(1)(1)4x y -+-=B .22(1)(1)5x y -+-=C .22(1)(1)6x y -+-=D .22(1)(1)8x y -+-=27.(2021·山西晋中·高二期末(理))已知圆22:20C x y x +-=,直线:10l x y ++=,P 为l 上的动点,过点P 作圆C 的两条切线PA 、PB ,切点分别A 、B ,当·PC AB 最小时,直线AB 的方程为()A .0x y +=B .0x y -=C .2210x y -+=D .2210x y ++=28.(2021·克拉玛依市第一中学高二月考)已知圆22:4210C x y x y +--+=及直线():2l y kx k k R =-+∈,设直线l 与圆C 相交所得的最长弦长为MN ,最短弦为PQ ,则四边形PMQN 的面积为()A .42B .22C .8D .82【高分突破】一:单选题29.(2021·全国高二专题练习)已知圆()()22224244100x y mx m y m m m +--++++=≠的圆心在直线70x y +-=上,则该圆的面积为()A .4πB .2πC .πD .2π30.(2021·南昌市豫章中学(文))若圆22224120x y ax y a +-++-=上存在到直线4320x y --=的距离等于1的点,则实数a 的取值范围是()A .2921,44⎡⎤-⎢⎥⎣⎦B .91,44⎡⎤-⎢⎥⎣⎦C .91,,44⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭D .2921,,44⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭31.(2021·浙江丽水·高二期中)已知圆22:1O x y +=,直线:20l x y ++=,点P 为l 上一动点,过点P 作圆O 的切线PA ,PB (切点为A ,B ),当四边形PAOB 的面积最小时,直线AB的方程为()A .10x y -+=B .20x y -+=C .10x y ++=D .20x y +-=32.(2021·云南师大附中(理))已知在圆()2222x y r ++=上到直线40x y +-=的距离为2的点恰有三个,则r =()A .23B .26C .42D .833.(2021·四川(理))已知圆221x y +=与直线310ax by ++=(a ,b 为非零实数)相切,则2213a b+的最小值为()A .10B .12C .13D .1634.(2021·黑龙江哈尔滨市·哈尔滨三中高二其他模拟(理))若过点()4,3A 的直线l 与曲线()()22231x y -+-=有公共点,则直线l 的斜率的取值范围为()A .3,3⎡⎤-⎣⎦B .()3,3-C .33,33⎡⎤-⎢⎥⎣⎦D .33,33⎛⎫- ⎪ ⎪⎝⎭35.(2021·全国高二专题练习)已知三条直线1:0l mx ny +=,2:30l nx my m n -+-=,3:0l ax by c ++=,其中m ,n ,a ,b ,c 为实数,m ,n 不同时为零,a ,b ,c 不同时为零,且2a c b +=.设直线1l ,2l 交于点P ,则点P 到直线3l 的距离的最大值是()A .52102+B .105822+C .58102+D .105222+二、多选题36.(2021·全国高二专题练习)已知直线:20l kx y k -+=和圆22:16O x y +=,则()A .直线l 恒过定点()2,0B .存在k 使得直线l 与直线0:220l x y -+=垂直C .直线l 与圆O 相交D .若1k =-,直线l 被圆O 截得的弦长为437.(2020·河北武强中学高二月考)直线l 经过点()5,5P ,且与圆22:25C x y +=相交,截得弦长为45,则直线l 的方程为()A .250x y --=B .250x y -+=C .250x y -+=D .250x y --=38.(2021·全国高二专题练习)设直线():1l y kx k =+∈R 与圆22:5C x y +=,则下列结论正确的为()A .l 与C 可能相离B .l 不可能将C 的周长平分C .当1k =时,l 被C 截得的弦长为322D .l 被C 截得的最短弦长为439.(2021·山东菏泽·高二期末)已知直线:(2)10l mx m y m --+-=,圆22:20C x y x +-=,则下列结论正确的是()A .直线l 与圆C 恒有两个公共点B .圆心C 到直线l 的最大距离是2C .存在一个m 值,使直线l 经过圆心CD .当1m =时,圆C 与圆22(1)1y x +-=关于直线l 对称三、填空题40.(2021·合肥百花中学高二期末(理))设直线1y x =+与圆22(1)4x y ++=交于,A B 两点,则AB =__________.41.(2021·绵阳市·四川省绵阳江油中学(文))已知点(),x y 在圆22(2)(3)1x y -++=上,则x y +的最大值是________.42.(2021·上海高二期中)在平面直角坐标系中,过点()2,2M 且与圆2220x y x +-=相切的直线方程为__________.43.(2021·江苏南京市·南京一中高二期末)已知直线1l :()0kx y k R +=∈与直线2l :220x ky k -+-=相交于点A ,点B 是圆()()22232x y +++=上的动点,则AB 的最大值为___________.四、解答题44.(2021·合肥百花中学高二期末(理))已知圆22:20C x y x my +-+=,其圆心C 在直线y x =上.(1)求m 的值;(2)若过点(1,1)-的直线l 与圆C 相切,求直线l 的方程.45.(2021·荆州市沙市第五中学高二期中)已知圆C 经过()2,4,()1,3两点,圆心C 在直线10x y -+=上,过点()0,1A 且斜率为k 的直线l 与圆C 相交于M ,N 两点.(1)求圆C 的方程;(2)若12OM ON ⋅=(O 为坐标原点),求直线l 的方程.46.(2021·台州市书生中学高二期中)已知圆()22:15C x y +-=,直线:10l mx y m -+-=.(1)求证:对m R ∈,直线l 与圆C 总有两个不同交点;(2)设l 与圆C 交与不同两点,A B ,求弦AB 的中点M 的轨迹方程;(3)若直线过点()1,1P ,且P 点分弦AB 为12AP PB =,求此时直线l 的方程.47.(2020·安徽六安市·立人中学高二期中(理))已知圆C 经过两点(1,3),(3,1)P Q ---,且圆心C 在直线240x y +-=上,直线l 的方程为(1)2530k x y k -++-=.(1)求圆C 的方程;(2)证明:直线l 与圆C 一定相交;(3)求直线l 被圆C 截得的弦长的取值范围.48.(2020·吉安县立中学(文))已知两个定点(0,4)A ,(0,1)B ,动点P 满足||2||PA PB =,设动点P 的轨迹为曲线E ,直线l :4y kx =-.(1)求曲线E 的轨迹方程;(2)若l 与曲线E 交于不同的C 、D 两点,且120COD ∠=︒(O 为坐标原点),求直线l 的斜率;(3)若1k =,Q 是直线l 上的动点,过Q 作曲线E 的两条切线QM 、QN ,切点为M 、N ,探究:直线MN 是否过定点,若存在定点请写出坐标,若不存在则说明理由.2022-2023学年高二上数学选择性必修第一册:直线与圆的位置关系【答案详解】1.A 【详解】10mx y -+=过定点()0,1,且()22(214501)+-=<-,故()0,1在圆内,故直线和圆相交.故选:A 2.A 【详解】直线l :1=-+y ax a ,即()11y a x =-+恒过()1,1,而221124+=<,故()1,1点在圆内,故直线与圆必然相交.故选:A .3.A 【详解】直线方程整理为(1)10k x y --+=,即直线过定点(1,1)P ,而22114120+-⨯=-<,P 在圆C 内,∴直线l 与圆C 相交.故选:A .4.B 【详解】由22240x y x y ++-=,得22(1)(2)5x y ++-=,则圆心坐标为(12)-,,又直线30x y a ++=是圆22240x y x y ++-=的一条对称轴,由圆的对称性可知,该圆的圆心(12)-,在直线30x y a ++=上,则3(1)121a =-⨯--⨯=,故选:B .5.D 【详解】由圆的方程22 2210x y x y +-++=,可得圆心坐标为(1,1)-,半径为1r =,因为直线20ax by --=被圆截得的弦长为2,可直线20ax by --=必过圆心(1,1)-,代入可得2a b +=,又因为0,0a b >>,则1111111()()(2)(22)2222b a b aa b a b a b a b a b+=⋅++=⋅++≥⋅+⋅=,当且仅当b aab=时,即1a b ==时,等号成立,所以11a b+的最小值为2.故选:D.6.A 【详解】由圆C 方程知其圆心()2,1C ,半径为2,直线l 与圆C 相切,221121k k --∴=+,解得:23k =±,由圆D 方程知其圆心()2,0D ,半径3r =,∴圆心D 到直线l 距离2211k d k -=+;当23k =+时,()()2222323330843231d r +-=-=-<+++,即d r <,此时圆D 与直线l 相交;当23k =-时,()()2222323330843231d r --=-=-<--+,即d r <,此时圆D 与直线l 相交;综上所述:圆D 与直线l 相交.故选:A.7.C 【详解】将圆化为22(8)64(64)x y m m ++=-<,所以圆心到直线3440x y ++=的距离d =24445-+=,该距离与弦长的一半及半径组成直角三角形,所以224364m +=-,解得39.m =8.D 【详解】圆22:(2)4C x y -+=的圆心坐标为()20,,半径为2,圆心到直线40x y --=的距离为204211d --==+,故弦长为:24222-=,故选:D.9.C 【详解】由220x y x y +-+=可得22111222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,则圆心坐标为11,22⎛⎫- ⎪⎝⎭,半径22r =,所以圆心到直线3410x y ++=的距离为22113412211034d ⎛⎫⨯+⨯-+ ⎪⎝⎭==+,所以所求弦长为22725r d -=.故选:C.10.B 【详解】由题意圆心到直线的距离为()()2222222222232241111a a a d r d a a a a +++=∴=-=-∴=∴=+++34-故选:B 11.B 【详解】圆C 的标准方程为22(1)(2)2x y ++-=,设直线l 的方程为0x y m ++=,可知圆心到直线l 的距离为2262(2)22⎛⎫-= ⎪ ⎪⎝⎭,有|1|222m +=,有0m =或2-,直线l 的方程为0x y +=或20x y +-=.故选:B【详解】将222440x y x y ++--=化为标准形式:22(1)(2)9x y ++-=,故该圆圆心为(1,2)-,半径为3.因为直线截圆所得弦长为6,故直线过圆心,所以2220a b --+=,即1a b +=,所以2124a b ab +⎛⎫≤= ⎪⎝⎭(当且仅当12a b ==时取等号),故选:D.13.C 【详解】如图建立平面直角坐标系,则圆心在y 轴上,设圆的半径为r ,则圆的方程为222(+)x y r r +=,∵拱顶离水面3米,水面宽12米,∴圆过点(6,3)-,∴2236(3+)r r +-=,∴152r =∴圆的方程为2215225(+)24x y +=,当水面下降1米后,可设水面的端点坐标为(,4)t -,则244t =,∴211t =±,∴当水面下降1米后,水面宽度为411,约为13.2,故选:C.14.C 【详解】以圆拱桥的顶点为坐标原点,建立如图所示的平面直角坐标系,则圆拱所在圆的圆心位于y 轴负半轴上,设该圆的圆心为()0,a -,0a >,则该圆的方程为()222x y a a ++=,记水面下降前与圆的两交点为A ,B ;记水面下降1米后与圆的两交点为C ,D ;由题意可得,()10,4A --,则()()222104a a -+-+=,解得292a =,所以圆的方程为222292922x y ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭,水面位下降1米后,可知C 点纵坐标为5y =-,所以2222929522x ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,解得2120x =,则此时的桥在水面的跨度为22120430CD x ===米.故选:C.15.B根据题意以海监船的位置为坐标原点,其正东方向为x 轴,正北方向为y 轴,所以()()40,0,0,30A B ,圆22:676O x y +=,记从N 处开始被监测,到M 处监测结束,所以:14030AB x y l +=,即:341200AB l x y +-=,因为O 到:341200AB l x y +-=的距离为221202434OO -'==+,所以22220MN MO OO '=-=,所以监测时间持续2010=2小时,故选:B.16.(1)()2225x y +-=;(2)1y =或34130x y +-=.由点()1,0A 、()2,1B 可得AB 中点坐标为31,22⎛⎫⎪⎝⎭,10121AB k -==-,所以直线AB 的垂直平分线的斜率为1-,可得直线AB 的垂直平分线的方程为:1322y x ⎛⎫-=-- ⎪⎝⎭即20x y +-=,由202x y y x +-=⎧⎨=+⎩可得:02x y =⎧⎨=⎩,所以圆心为()0,2O ,()()2210025r OA ==-+-=,所以O 的标准方程为()2225x y +-=,(2)设直线的方程为()13y k x -=-即310kx y k --+=,圆心()0,2O 到直线的距离2131k d k --=+,则()2222134521k k ⎛⎫--⎛⎫=- ⎪ ⎪⎝⎭+⎝⎭可得()222135211k k +=-=+,即2430k k +=,解得:0k =或34k =-,所以直线l 的方程为10y -=或()3134y x -=--,即1y =或34130x y +-=17.(1)22(1)(1)1x y -+-=;(2)4,3⎛⎤-∞- ⎥⎝⎦.【详解】(1)设所求圆的方程为222()()x a y b r -+-=由题意得222222(1)(0)(2)(1)a b r a b r b a ⎧-+-=⎪-+-=⎨⎪=⎩,解得1a b r ===所以,圆的方程为22(1)(1)1x y -+-=(2)由(1)得()()22111x y -+-=,则圆心为()1,1,半径为1;而22y x +-表示圆上的点(,)P x y 与定点()2,2M -连线的斜率,当过点()2,2M -的直线与圆相切时,不妨设直线方程为:()22y k x +=-,即220kx y k ---=,则圆心()1,1到直线220kx y k ---=的距离为212211k k k ---=+,解得43k =-,因此22y x +-的取值范围是4,3⎛⎤-∞- ⎥⎝⎦;18.【详解】(1)设(),M x y ,()00,A x y ,M 是线段AB 中点,006282x x y y+⎧=⎪⎪∴⎨+⎪=⎪⎩,整理可得:002628x x y y =-⎧⎨=-⎩,A 在圆2216x y +=上,()()22262816x y ∴-+-=,整理可得M 点轨迹方程为:()()22344x y -+-=.(2)(i )由(1)知:圆心()3,4C ,半径2r =,当直线l 斜率不存在时,方程为1x =,是圆的切线,满足题意;当直线l 斜率存在时,设其方程为()1y k x =-,即kx y k 0--=,∴圆心到直线l 距离23421k k d k --==+,解得:34k =,:3430l x y ∴--=;综上所述:直线l 的方程为1x =或3430x y --=;(ii )由直线l 与圆C 交于,P Q 两点知:直线l 斜率存在且不为0,设其方程为:()1y k x =-,即kx y k 0--=,∴圆心到直线l 距离22342411k k k d k k ---==++,()2222222144222CPQd d S PQ d d r d d d⎡⎤-+=⋅=-=-≤=⎢⎥⎣⎦(当且仅当224d d -=,即22d =时取等号),由22d=得:()222421k k -=+,解得:1k =或7k =,∴CPQ 面积的最大值为2,此时l 方程为:10x y --=或770x y --=.19.C圆心(0,0)到直线10x y --=的距离|1|122d -==,因为圆的半径为1,则弦长为2212122⎛⎫-= ⎪⎝⎭.故选:C.20.A 【详解】由题意,圆22:224C x y x ++=,可得圆心坐标为(1,0)C -,点()2,3P -在圆C 内,则过点P 且被点P 平分的弦所在的直线和圆心与P 的连线垂直,又由3012(1)CP k --==---,所以所求直线的斜率为1,且过点()2,3P -,可得所求直线方程为(3)1(2)y x --=-⨯-,即50x y --=.故选:A 21.B 【详解】根据题意,圆()2224x y -+=的圆心为()2,0,半径为2,设圆心到直线0kx y +=的距离为d ,则221k d k =+,若直线0kx y +=被圆()2224x y -+=所截得的弦长为2,则2222r d =-,所以214d +=,又0d >,解得3d =,所以2321k d k==+,解得3k =±,点()0,23A 与直线m 上任意一点P 的最小值为点到直线的距离122331d k ==+,故选:B .22.A 【详解】解:把圆的方程化为标准方程得:22(1)(2)4x y ++-=,∴圆心坐标为(1,2)-,半径2r =,根据题意可知:圆心在已知直线220ax by -+=上,把圆心坐标代入直线方程得:2220a b --+=,即1b a =-,则设2211(1)24m ab a a a a a ⎛⎫==-=-+=--+ ⎪⎝⎭,∴当12a =时,m 有最大值,最大值为14,即ab 的最大值为14,则ab 的取值范围是(-∞,1]4.故选:A .23.C由题意,知23MN =,圆心为(3,2).设圆的半径为r ,则2r =,所以圆心到直线的距离224312MN d r ⎛⎫=-=-= ⎪⎝⎭.由点到直线的距高公式,得232311k k -+=+,解得0k =或34k =-.故选:C.24.B 【详解】由222420x x y y -+++=,得22(1)(2)3x y -++=,则圆心为(1,2)-,半径3r =,因为圆心(1,2)-到直线2220x y -+=的距离为22222243381d +++==>+,且2242243333133d ++--=-=<,所以圆222420x x y y -+++=到直线2220x y -+=的距离为1的点有2个,故选:B25.C 【详解】解:由22(3)(4)1x y -+-=,得圆心(3,4)C ,过直线:350l x ay +-=上任意一点作圆C 的切线,要使切线长最小,即要使圆心到直线l 的距离最小,根据题意作图,如图所示:圆的半径为1,切线长为15,∴圆心到直线l 的距离等于221(15)4+=,∴由点到直线的距离公式得2|3345|49a a ⨯+-=+,解得4a =,此时直线l 的斜率为34-.故选:C .26.B 【详解】解:根据题意,直线1(2)y m x +=-,恒过定点(2,1)-,动圆222:(1)(1)C x y r -+-=,其圆心为(1,1),半径为r ,若圆的面积最大,即圆心到直线l 的距离最大,且其最大值22(12)(11)5CP =-++=,即圆的面积最大时,圆的半径5r =,此时圆的方程为:22(1)(1)5x y -+-=,故选:B .27.A 【详解】圆C 的标准方程为()2211x y -+=,圆心为()1,0,半径为1r =.依圆的知识可知,四点P ,A ,B ,C 四点共圆,且AB ⊥PC ,所以14422PAC PC AB S PA AC PA ⋅==⨯⨯⋅=△,而21PA PC =-,当直线PC ⊥l 时,PA 最小,此时PC AB ⋅最小.结合图象可知,此时切点为()()0,0,1,1-,所以直线AB 的方程为y x =-,即0x y +=.故选:A28.A 【详解】将圆C 方程整理为:()()22214x y -+-=,则圆心()2,1C ,半径2r =;将直线l 方程整理为:()12y k x =-+,则直线l 恒过定点()1,2,且()1,2在圆C 内;最长弦MN 为过()1,2的圆的直径,则4MN =;最短弦PQ 为过()1,2,且与最长弦MN 垂直的弦,21112MN k -==-- ,1PQ k ∴=,∴直线PQ 方程为21y x -=-,即10x y -+=,∴圆心C 到直线PQ 的距离为21122-+==d ,22224222PQ r d ∴=-=-=;∴四边形PMQN 的面积114224222S MN PQ =⋅=⨯⨯=.故选:A.29.A 【详解】圆的方程可化为()()()222210x m y m m m -+--=≠,其圆心为(),21m m +.依题意得,2170m m ++-=,解得2m =,∴圆的半径为2,面积为4π,故选:A 30.A 【详解】解:将圆的方程化为标准形式得圆()()22216x a y -++=,所以圆心坐标为(),2a -,半径为4r =因为圆22224120x y ax y a +-++-=上存在到直线4320x y --=的距离等于1的点,所以圆心到直线的距离d 满足15d r ≤+=,即4455a d +=≤,解得:2921,44a ⎡⎤∈-⎢⎥⎣⎦故选:A31.C 【详解】设四边形PAOB 的面积为S ,2||||||PAO S S AO AP AP === ,222||||||||1AP OP OA OP =-=-,所以,当||OP 最小时,||AP 就最小,|002|||22min o l OP d -++===,所以||211min min S AP ==-=.此时OP l ⊥.所以||||||||1OA AP PB OB ====,四边形PAOB 是正方形,由题得直线OP 的方程为y x =,联立20y x x y =⎧⎨++=⎩得(1,1)--P ,所以线段OP 的中点坐标为11(,)22--,由题得直线AB 的斜率为1,-所以直线AB 的方程为11()[()]22y x --=---,化简得直线AB 的方程为10x y ++=.故选:C 32.C 【详解】解:因为圆()2222x y r ++=的圆心为()2,0-,半径为r ,圆心()2,0-到直线40x y +-=的距离22432d --==,因为在圆()2222x y r ++=上到直线40x y +-=的距离为2的点恰有三个,所以32242r =+=.故选:C .33.D 【详解】因为圆221x y +=与直线310ax by ++=相切,所以2200113a b++=+,所以2231a b +=,所以()2222222222222213133310616310a b a b a b ab b a b b a a ⎛⎫+=+=++≥+⋅= ⎪⎭+⎝,取等号时2214a b ==,所以2213a b +的最小值为16.故选:D.34.C 【详解】由题意,易知,直线l 的斜率存在,设直线l 的方程为()34y k x -=-,即340kx y k -+-=曲线()()22231x y -+-=表示圆心()2,3,半径为1的圆,圆心()2,3到直线340kx y k -+-=的距离应小于等于半径1,2233411k kk-+-∴≤+,即221k k -≤+,解得3333k -≤≤.故选:C.35.D 【详解】由于1:0l mx ny +=,2:30l nx my m n -+-=,且()0mn n m +⋅-=,12l l ∴⊥,易知直线1l 过原点,将直线2l 的方程化为()()130n x m y ---=,由1030x y -=⎧⎨-=⎩,解得13x y =⎧⎨=⎩,所以,直线2l 过定点()1,3M ,所以10OM =,因为2a c b +=,则2a cb +=,直线3l 的方程为02a c ax y c +++=,直线3l 的方程可化为1022y y a x c ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,由02102y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得12x y =⎧⎨=-⎩,所以,直线3l 过定点()1,2N -,如下图所示:设线段OM 的中点为点E ,则13,22E ⎛⎫⎪⎝⎭,若点P 不与O 或M 重合,由于OP PM ⊥,由直角三角形的性质可得EP EO EM ==;若点P 与O 或M 重合,满足12l l ⊥.由上可知,点P 的轨迹是以OM 为直径的圆E ,该圆圆心为13,22E ⎛⎫ ⎪⎝⎭,半径为102.设点E 到直线3l 的距离为d ,当3EN l ⊥时,d EN =;当EN 不与3l 垂直时,d EN <.综上,22135212222d EN ⎛⎫⎛⎫≤=-+--=⎪ ⎪⎝⎭⎝⎭.所以,点P 到直线3l 的距离的最大值为521022OM EN ++=.故选:D.36.BC 【详解】解:对于A 、C ,由:20l kx y k -+=,得(2)0k x y +-=,令200x y +=⎧⎨-=⎩,解得20x y =-⎧⎨=⎩,所以直线l 恒过定点(2,0)-,故A 错误;因为直线l 恒过定点(2,0)-,而()2220416-+=<,即(2,0)-在圆22:16O x y +=内,所以直线l 与圆O 相交,故C 正确;对于B ,直线0:220l x y -+=的斜率为12,则当2k =-时,满足直线l 与直线0:220l x y -+=垂直,故B 正确;对于D ,1k =-时,直线:20l x y ++=,圆心到直线的距离为22002211d ++==+,所以直线l 被圆O 截得的弦长为()22222242214r d -=-=,故D 错误.故选:BC.37.BD 【详解】圆心为原点,半径为5,依题意可知直线l 的斜率存在,设直线l 的方程为()55y k x -=-,即550kx y k -+-=,所以()2225552521k k k -=-⇒=+或12k =.所以直线l 的方程为25520x y -+-⨯=或1155022x y -+-⨯=,即250x y --=或250x y -+=.故选:BD38.BD 【详解】对于A 选项,直线l 过定点()0,1,且点()0,1在圆C 内,则直线l 与圆C 必相交,A 选项错误;对于B 选项,若直线l 将圆C 平分,则直线l 过原点,此时直线l 的斜率不存在,B 选项正确;对于C 选项,当1k =时,直线l 的方程为10x y -+=,圆心C 到直线l 的距离为22d =,所以,直线l 被C 截得的弦长为2225322⎛⎫-= ⎪ ⎪⎝⎭,C 选项错误;对于D 选项,圆心C 到直线l 的距离为2111d k =≤+,所以,直线l 被C 截得的弦长为2254d -≥,D 选项正确.故选:BD.39.AD 【详解】解:由直线:(2)10l mx m y m --+-=,即(1)210m x y y +--+=,得10210x y y +-=⎧⎨-+=⎩,解得1212x y ⎧=⎪⎪⎨⎪=⎪⎩,则直线l 过定点1(2P ,1)2,圆22:20C x y x +-=化为22(1)1x y -+=,圆心坐标为(1,0)C ,22112||(1)(0)1222PC =-+-=< ,点P 在圆C 内部,∴直线l 与圆C 恒有两个公共点,故A正确;圆心C 到直线l 的最大距离为2||2PC =,故B 错误; 直线系方程(2)10mx m y m --+-=不包含直线10x y +-=(无论m 取何值),而经过1(2P ,1)2的直线只有10x y +-=过(1,0)C ,故C 错误;当1m =时,直线l 为0x y -=,圆C 的圆心坐标为(1,0),半径为1,圆22(1)1y x +-=的圆心坐标为(0,1),半径为1,两圆的圆心关于直线0x y -=对称,半径相等,则当1m =时,圆C 与圆22(1)1y x +-=关于直线l 对称,故D 正确.故选:AD .40.22【详解】圆22(1)4x y ++=的圆心为()0,1-,半径为2,则圆心()0,1-到直线的距离为()22011211++=+-,所以()2222222AB =-=,故答案为:2241.21-【详解】令t x y =+,则y x t =-+,t 表示直线在y 轴上的截距,所以x y +的最大值是直线在y 轴上截距的最大值,此时直线与圆相切,则圆心到直线的距离等于半径,即2312td --==,解得21t =-.故答案为:21-42.x =2或3420x y +=-.【详解】圆2220x y x +-=的标准式为:()2211x y -+=,容易验证x =2与圆相切,若切线的斜率存在,则设其方程为:()22220y k x kx y k -=-⇒-+-=,于是圆心到直线的距离2|2|3141k d k k -+==⇒=+,则切线:310342042x y x y -+=⇒-+=.故答案为:x =2或3420x y +=-.43.522+解:因为直线1l :()0kx y k R +=∈恒过定点(0,0)O ,直线2l :220x ky k -+-=恒过定点(2,2)C ,且12l l ⊥,所以两直线的交点A 在以OC 为直径的圆D 上,且圆的方程为22:(1)(1)2D x y -+-=,要求AB 的最大值,转化为在22:(1)(1)2D x y -+-=上找上一点A ,在()()22232x y +++=上找一点B ,使AB 最大,根据题意可知两圆的圆心距为22(12)(13)5+++=,所以AB 的最大值为522+,故答案为:522+44.(1)2m =-;(2)20x y -+=或0x y +=.【详解】解:(1)圆C 的标准方程为:222(1)()124m m x y -++=+,所以,圆心为(1,)2m -由圆心C 在直线y x =上,得2m =-.所以,圆C 的方程为:22(1)(1)2x y -+-=.(2)由题意可知直线l 的斜率存在,设直线l 的方程为:1(1)y k x -=+,即10kx y k -++=,由于直线l 和圆C 相切,得2|2|21k k =+解得:1k =±所以,直线方程为:20x y -+=或0x y +=.45.(1)()()22231x y -+-=;(2)1y x =+.【详解】解:(1)设圆C 的方程为()()222x a y b r -+-=,则依题意,得()()()()22222224,13,10,a b r a b r a b ⎧-+-=⎪⎪-+-=⎨⎪-+=⎪⎩解得2,3,1,a b r =⎧⎪=⎨⎪=⎩∴圆C 的方程为()()22231x y -+-=(2)设直线l 的方程为1y kx =+,设11(,)M x y ,22(,)N x y ,将1y kx =+,代入22(2)(3)1x y -+-=并整理,得22(1)4(1)70k x k x +-++=,∴1224(1)1k x x k++=+,12271x x k =+∴()()()212121212241118121k k OM ON x x y y k x x k x x k +⋅=+=++++=+=+ ,即()24141k k k +=+,解得1k =,又当1k =时0∆>,∴1k =,∴直线l 的方程为1y x =+46.(1)圆()22:15C x y +-=的圆心()0,1C ,半径为5,所以圆心()0,1C 到直线l 的距离为22151m m d m m --=<=<+,所以直线l 与圆C 相交,故对m R ∈,直线l 与圆C 总有两个不同交点;(2)当M 与P 不重合时,连接,CM CP ,则CM MP ⊥,所以222CM MP CP +=,设()(),1M x y x ≠,则()()()22221111x y x y +-+-+-=,整理得()222101x y x y x +--+=≠,当M 与P 重合时,1x y ==也满足22210x y x y +--+=,故弦AB 的中点M 的轨迹方程为22210x y x y +--+=;(3)设()()1122,,,A x y B x y ,由12AP PB =,得12AP PB = ,所以()121112x x -=-,即2132x x =-,又()221015mx y m x y -+-=⎧⎪⎨+-=⎪⎩,消去y 得()22221250m x m x m +-+-=,所以212221m x x m +=+,()()4222441516200m m m m ∆=-+-=+>,由2121223221x x m x x m =-⎧⎪⎨+=⎪+⎩得21231m x m +=+,将21231m x m+=+带入()22221250m x m x m +-+-=得1m =±,所以此时直线l 的方程为0x y -=或20x y +-=.47.(1)因为(1,3),(3,1)P Q ---,所以PQ 的中垂线为11(2)2y x +=+上,由24011(2)2x y y x +-=⎧⎪⎨+=+⎪⎩,解得21x y =⎧⎨=⎩,所以圆心为()2,1C ,又半径||5r PC ==,∴圆C 的方程为22(2)(1)25x y -+-=.(2)直线l 的方程可化为(3)(25)0k x x y ----=,令30250x x y -=⎧⎨--=⎩可得3x =,1y =-,∴直线l 过定点(3,1)M -,由22(32)(11)25-+--<可知M 在圆内,∴直线l 与圆C 一定相交.(3)设圆心C 到直线l 的距离为d ,弦长为L ,则2222225L r d d =-=-,∵0||d CM ≤≤,即05d ≤≤,∴4510L ≤≤,即弦长的取值范围是[45,10].48.(1)224x y +=;(2)15±;(3)存在,(1,1)-.(1)由题,设点P 的坐标为(,)x y ,因为||2||PA PB =,即2222(4)2(1)x y x y +-=+-,整理得224x y +=,所以所求曲线E 的轨迹方程为224x y +=.(2)依题意,2OC OD ==,且120COD ∠= ,由圆的性质,可得点O 到边CD 的距离为1,即点(0,0)O 到直线:40l kx y --=的距离为2411k =+,解得15k =±,所以所求直线l 的斜率为15±.(3)依题意,,ON QN OM QM ⊥⊥,则,M N 都在以OQ 为直径的圆F 上,Q 是直线:4l y x =-上的动点,设(,4)Q t t -,则圆F 的圆心为4(,)22t t -,且经过坐标原点,即圆的方程为22(4)0x y tx t y +---=,又因为,M N 在曲线22:4E x y +=上,由22224(4)0x y x y tx t y ⎧+=⎨+---=⎩,可得(4)40tx t y +--=,即直线MN 的方程为(4)40tx t y +--=,由t R ∈且()440t x y y +--=,可得0440x y y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,所以直线MN 过定点(1,1)-.。
2016-2017学年江苏省南京市高二(上)期末数学试卷(理科)
2016-2017学年江苏省南京市高二(上)期末数学试卷(理科)1.填空题:本大题共14小题,每小题5分,共70分。
请将答案填写在答题卡相应位置上。
1.(5分) 命题“若a=b,则|a|=|b|”的逆命题是“若|a|≠|b|,则a≠b”。
2.(5分) 双曲线的离心率大于1.3.(5分) 已知复数z=1的渐近线方程是y=x。
4.(5分) 在平面直角坐标系xOy中,点(4,3)到直线3x-4y+a=0的距离为1,则实数a的值是-5.5.(5分) 曲线y=x^4与直线y=4x+b相切,则实数b的值是4.6.(5分) 已知实数x,y满足条件x+y=1,则z=2x+y的最大值是2.7.(5分) 在平面直角坐标系xOy中,抛物线C:y^2=4x的焦点为F,P为抛物线C上一点,且PF=5,则点P的横坐标是9.8.(5分) 在平面直角坐标系xOy中,圆O:x^2+y^2=r^2(r>0)与圆M:(x-3)^2+(y+4)^2=4相交,则r的取值范围是1<r<3.9.(5分) 观察下列等式:sin^(-2)+sin^(-2)+sin^(-2)+。
+sin^(-2)=n(n+1)/2照此规律。
sin^(-2)+sin^(-2)+sin^(-2)+sin^(-2)+sin^(-2)+。
=110.(5分) 若“∃x∈R,x^2+ax+a=0”是真命题,则实数a的取值范围是a≤0.11.(5分) 已知函数f(x)=(x^2+x+m)ex(其中m∈R,e为自然对数的底数)。
若在x=-3处函数f(x)有极大值,则函数f(x)的极小值是f(-2)。
12.(5分) 有下列命题:①“m>0”是“方程x^2+my^2=1表示椭圆”的充要条件;②“a=1”是“直线l1:ax+y-1=0与直线l2:x+ay-2=0平行”的充分不必要条件;③“函数f(x)=x^3+mx单调递增”是“m>0”的充要条件;④已知p,q是两个不等价命题,则“p或q是真命题”是“p 且q是真命题”的必要不充分条件。
2020届高三上学期期末教学质量检测数学理试题含答案及评分标准
理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
全卷满分150分,考试时间120分钟。
考生注意事项: 1.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.答第Ⅱ卷时,必须答题卡上作答.在试题卷上作答无效. 参考公式:如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么()()()P AB P A P B =棱柱的体积公式V Sh =,其中S 、h 分别表示棱柱的底面积、高.第Ⅰ卷(选择题 共40分)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个选项符合题目要求. 1.12i i +=A .i --2B .i +-2C .i -2D .i +22.集合{||2|2}A x x =-≤,2{|,12}B y y x x ==--≤≤,则A B =IA .RB .{|0}x x ≠C .{0}D .∅3.若抛物线22y px =的焦点与双曲线22122x y -=的右焦点重合,则p 的值为 A .2- B .2 C .4- D .44.不等式10x x->成立的一个充分不必要条件是 A .10x -<<或1x > B .1x <-或01x << C .1x >- D .1x > 5.对于平面α和共面的两直线m 、n ,下列命题中是真命题的为 A .若m α⊥,m n ⊥,则//n α B .若//m α,//n α,则//m nC .若m α⊂,//n α,则//m nD .若m 、n 与α所成的角相等,则//m n6.平面四边形ABCD 中0AB CD +=u u u r u u u r r ,()0AB AD AC -=⋅u u u r u u u r u u u r,则四边形ABCD 是A .矩形B .菱形C .正方形D .梯形 7.等比数列{}n a 中5121=a ,公比21-=q ,记12n n a a a ∏=⨯⨯⨯L (即n ∏表示 数列{}n a 的前n 项之积),8∏ ,9∏,10∏,11∏中值为正数的个数是 A . 1 B . 2 C . 3 D . 48.定义域R 的奇函数()f x ,当(,0)x ∈-∞时()'()0f x xf x +<恒成立,若3(3)a f =,(log 3)(log 3)b f ππ=⋅,()c f =-2-2,则A .a c b >>B .c b a >>C .c a b >>D . a b c >>第Ⅱ卷(非选择题,共110分)二 填空题:本题共6小题,共30分,把答案填在答题卷相应的位置上.9.某校有4000名学生,各年级男、女生人数如表,已知在全校学生中随机抽取一名奥运火炬手,抽到高一男生的概率是0.2,现用分层抽样的方法在全校抽取100名奥运志愿者,则在高二抽取的学生人数为______.10.如果实数x 、y 满足条件101010x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩,那么2x y -的最大值为______.11.在ABC ∆中角A 、B 、C 的对边分别是a 、b 、c ,若(2)cos cos b c A a C -=, 则cos A =________. 12.右图给出的是计算201614121+⋅⋅⋅+++的值 的一个程序框图,其中判断框内应填入的条件是i >___?13.由数字0、1、2、3、4组成无重复数字的 五位数,其中奇数有 个. 14.若一个正三棱柱的三视图如下图所示,则这 个正三棱柱的体积为__________.三.解答题(本大题共6小题,共80分 解答应写出文字说明、证明过程或演算步骤) 15.(本小题共12分)已知函数()sin cos f x x x =+,()f x '是()f x 的导函数. (1)求函数()()'()g x f x f x =⋅的最小值及相应的x 值的集合; (2)若()2()f x f x '=,求tan()4x π+的值.16.(本题满分12分)近年来,政府提倡低碳减排,某班同学利用寒假在两个小区逐户调查人们的生活习惯是否符合低碳观念.若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳题12图 主视图 俯视图左视图族”.数据如下表(计算过程把频率当成概率).(1)如果甲、乙来自A小区,丙、丁来自B小区,求这4人中恰有2人是低碳族的概率;(2)A小区经过大力宣传,每周非低碳族中有20%的人加入到低碳族的行列.如果2周后随机地从A小区中任选25个人,记X表示25个人中低碳族人数,求()E X.17.(本小题满分14分)已知点(4,0)M、(1,0)N,若动点P满足6||MN MP NP=⋅u u u u r u u u r u u u r.(1)求动点P的轨迹C;(2)在曲线C上求一点Q,使点Q到直线l:2120x y+-=的距离最小.18.(本小题满分14分)已知梯形ABCD中,AD∥BC,2π=∠=∠BADABC,42===ADBCAB,E、F分别是AB、CD上的点,EF∥BC,xAE=.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).G是BC的中点,以F、B、C、D为顶点的三棱锥的体积记为()f x.(1)当2=x时,求证:BD⊥EG;(2)求()f x的最大值;(3)当()f x取得最大值时,求异面直线AE与BD所成的角的余弦值.19.(本题满分14分)数列{}na中112a=,前n项和2(1)n nS n a n n=--,1n=,2,….(1)证明数列1{}nnSn+是等差数列;(2)求nS关于n的表达式;(3)设3n nnb S=1,求数列{}nb的前n项和nT.20.(本题满分14分)二次函数()f x满足(0)(1)0f f==,且最小值是14-.A小区低碳族非低碳族频率p0.50.5B小区低碳族非低碳族频率p0.80.2(1)求()f x 的解析式;(2)设常数1(0,)2t ∈,求直线l : 2y t t =-与()f x 的图象以及y 轴所围成封闭图形的面积是()S t ;(3)已知0m ≥,0n ≥,求证:211()()24m n m n +++≥.答案及评分标准:8~1:CCDD ;CBB A ;9.30;10.1;11.12;12.10;13.36;14.以下是各题的提示:1.21222i i i i i i+-+==-.2.[0,4]A =,[4,0]B =-,所以{0}A B =I .3.双曲线22122x y -=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =.4.画出直线y x =与双曲线1y x=,两图象的交点为(1,1)、(1,1)--,依图知10x x->10x ⇔-<<或1x >(*),显然1x >⇒(*);但(*)⇒/1x >.5.考查空间中线、面的平行与垂直的位置关系的判断.6.由0AB CD +=u u u r u u u r r ,得AB CD DC =-=u u u r u u u r u u u r,故平面四边形ABCD 是平行四边形,又()0AB AD AC -=⋅u u u r u u u r u u u r ,故0DB AC =⋅u u u r u u u r,所以DB AC ⊥,即对角线互相垂直.7.等比数列{}n a 中10a >,公比0q <,故奇数项为正数,偶数项为负数,∴110∏<,100∏<,90∏>,80∏>,选B .8.设()()g x xf x =,依题意得()g x 是偶函数,当(,0)x ∈-∞时()'()0f x xf x +<,即'()0g x <恒成立,故()g x 在(,0)x ∈-∞单调递减,则()g x 在(0,)+∞上递增,3(3)(3)a f g ==,(log 3)(log 3)(log 3)b f g πππ==⋅,2(2)(2)(2)c f g g =--=-=.又log 3123π<<<,故a c b >>. 9.依表知400020002000x y z ++=-=,0.24000x=,于是800x =, 1200y z +=,高二抽取学生人数为112003040⨯=.10.作出可行域及直线l :20x y -=,平移直线l 至可行域的点(0,1)-时2x y -取得最大值.11.由(2)cos cos b c A a C -=,得2cos cos cos b A c A a C =+,2sin cos sin cos sin cos B A C A A C =+,故2sin cos sin()B A A C =+,又在ABC ∆中sin()sin 0A C B +=>,故1cos 2A =,12.考查循环结构终止执行循环体的条件.13.1132336636C C A =⨯=⋅⋅.14.由左视图知正三棱柱的高2h =,设正三棱柱的底面边长a ,=,故4a =,底面积142S =⨯⨯=,故2V Sh === 15.解:(1)∵()sin cos f x x x =+,故'()cos sin f x x x =-, …… 2分∴()()'()g x f x f x =⋅(sin cos )(cos sin )x x x x =+-22cos sin cos 2x x x =-=, ……… 4分∴当22()x k k Z ππ=-+∈,即()2x k k Z ππ=-+∈时,()g x 取得最小值1-,相应的x 值的集合为{|,}2x x k k Z ππ=-+∈. ……… 6分评分说明:学生没有写成集合的形式的扣1分. (2)由()2()f x f x '=,得sin cos 2cos 2sin x x x x +=-,∴cos 3sin x x =,故1tan 3x =, …… 10分 ∴11tan tan34tan()2141tan tan 143x x x πππ+++===--. …… 12分 16.解:(1)设事件C 表示“这4人中恰有2人是低碳族”. …… 1分2222112222222222()0.50.20.50.50.20.80.50.8P C C C C C C C =+⨯⨯⨯+⋅⋅⋅⋅⋅⋅⋅⋅0.010.160.160.33=++=. …… 4分 答:甲、乙、丙、丁这4人中恰有2人是低碳族的概率为0.33; …… 5分(2)设A 小区有a 人,两周后非低碳族的概率20.5(120%)0.32a P a⨯⨯-==.故低碳族的概率10.320.68P =-=. ………… 9分 随机地从A 小区中任选25个人,这25个人是否为低碳族相互独立,且每个 人是低碳族的概率都是0.68,故这25个人中低碳族人数服从二项分布,即17~(25,)25X B ,故17()251725E X =⨯=. ………… 12分 17.解:(1)设动点(,)P x y ,又点(4,0)M 、(1,0)N ,∴(4,)MP x y =-u u u r ,(3,0)MN =-u u u u r ,(1,)NP x y =-u u u r. ……… 3分由6||MN MP NP =⋅u u u u r u u u r u u u r,得3(4)x --= ……… 4分∴222(816)4(21)4x x x x y -+=-++,故223412x y +=,即22143x y +=, ∴轨迹C 是焦点为(1,0)±、长轴长24a =的椭圆; ……… 7分 评分说明:只求出轨迹方程,没有说明曲线类型或交代不规范的扣1分. (2)椭圆C 上的点Q 到直线l 的距离的最值等于平行于直线l :2120x y +-=且与椭圆C 相切的直线1l 与直线l 的距离.设直线1l 的方程为20(12)x y m m ++=≠-. ……… 8分由22341220x y x y m ⎧+=⎨++=⎩,消去y 得2242120x mx m ++-= (*). 依题意得0∆=,即0)12(16422=--m m ,故216m =,解得4m =±.当4m =时,直线1l :240x y ++=,直线l 与1l 的距离5d ==当4m =-时,直线1l :240x y +-=,直线l 与1l 的距离d ==由于55<,故曲线C 上的点Q 到直线l 的距离的最小值为5.…12分 当4m =-时,方程(*)化为24840x x -+=,即2(1)0x -=,解得1x =.由1240y +-=,得32y =,故3(1,)2Q . ……… 13分 ∴曲线C 上的点3(1,)2Q 到直线l 的距离最小. ……… 14分18.(法一)(1)证明:作EF DH ⊥,垂足H ,连结BH ,GH , ∵平面AEFD ⊥平面EBCF ,交线EF ,DH ⊂平面EBCF , ∴⊥DH 平面EBCF ,又⊂EG 平面EBCF ,故DH EG ⊥, ∵12EH AD BC BG ===,//EF BC ,90ABC ∠=o . ∴四边形BGHE 为正方形,故BH EG ⊥.又BH 、DH ⊂平面DBH ,且BH DH H =I ,故⊥EG 平面DBH . 又⊂BD 平面DBH ,故BD EG ⊥.(2)解:∵AE EF ⊥,平面AEFD ⊥平面EBCF ,交线EF ,AE ⊂平面AEFD .∴AE ⊥面EBCF .又由(1)⊥DH 平面EBCF ,故//AE DH ,∴四边形AEHD 是矩形,DH AE =,故以F 、B 、C 、D 为顶点的三棱 锥D BCF - 的高DH AE x ==,又114(4)8222BCF S BC BE x x ∆==⨯⨯-=-⋅. ∴三棱锥D BCF -的体积()f x =13BFC S DH ∆⋅13BFC S AE ∆=⋅2128(82)333x x x x =-=-+2288(2)333x =--+≤.∴当2x =时,()f x 有最大值为83.(3)解:由(2)知当()f x 取得最大值时2AE =,故2BE =,由(2)知//DH AE ,故BDH ∠是异面直线AE 与BD 所成的角. 在Rt BEH ∆中222422BH BE EH AD =+=+=,由⊥DH 平面EBCF ,BH ⊂平面EBCF ,故DH BH ⊥ 在Rt BDH ∆中222823BD BH DH AE =+=+=,∴3cos 323DH BDH BD ∠===. ∴异面直线AE 与BD 所成的角的余弦值为33. 法二:(1)证明:∵平面AEFD ⊥平面EBCF ,交线EF ,AE ⊂平面AEFD ,EF AE ⊥,故AE ⊥平面EBCF ,又EF 、BE ⊂平面EBCF ,∴AE ⊥EF ,AE ⊥BE ,又BE ⊥EF ,取EB 、EF 、EA 分别为x 轴、y轴、z 轴,建立空间坐标系E xyz -,如图所示. 当2x =时,2AE =,2BE =,又2AD =,122BG BC ==. ∴(0,0,0)E ,(0,0,2)A ,(2,0,0)B ,(2,2,0)G ,(0,2,2)D .∴(2,2,2)BD =-u u u r ,(2,2,0)EG =u u u r,∴440BD EG ⋅=-+=u u u r u u u r.∴BD EG ⊥u u u r u u u r,即BD EG ⊥;(2)解:同法一;(3)解:异面直线AE 与BD 所成的角θ等于,AE BD <>u u u r u u u r或其补角.又(0,0,2)AE =-u u u r , 故3cos ,3|||2444|AE BD AE BD AE BD <>===-++⋅⋅u u u r u u u ru u u r u u u r u u u r u u u r ∴3cos 3θ=,故异面直线AE 与BD 所成的角的余弦值为33. 19.(1)证明:由2(1)n n S n a n n =--,得21()(1)(2)n n n S n S S n n n -=---≥.∴221(1)(1)n n n S n S n n ---=-,故111(2)1n n n nS S n n n -+-=≥-.…2分 ∴数列由1{}n n S n+是首项11221S a ==,公差1d =的等差数列; …… 4分 (2)解:由(1)得112(1)11n n S S n d n n n+=+-=+-=.……… 6分∴21n n S n =+; ………8分(3)由(2),得3n n nb S =1=321n n n +g 1=111(1)1n n n n =-++.…… 10分∴数列{}n b 的前n 项和1211111111122311n n n T b b b b n n n n -=++++=-+-++-+--+L L …12分 1111n n n =-=++. ……… 14分 20.解:(1)由二次函数()f x 满足(0)(1)0f f ==.设()(1)(0)f x ax x a =-≠,则221()()24af x ax ax a x =-=--. ……………… 2分 又()f x 的最小值是14-,故144a -=-.解得1a =.∴2()f x x x =-; ………………4分(2)依题意,由22x x t t -=-,得x t =,或1x t =-.(1t -p t)……6分由定积分的几何意义知3232222002()[()()]()|3232t tx x t t S t x x t t dx t x tx =---=--+=-+⎰…… 8分(3)∵()f x 的最小值为14-,故14m -,14n ≥-. …… 10分∴12m n +-≥-,故12m n ++. ……… 12分∵1()02m n +,102m n ++≥≥, ……… 13分∴11()()22m n m n +++≥=,∴211()()24m n m n +++≥. ……… 14分。
江苏省南京市某高级中学2021-2022学年高二上学期第一次月考数学试卷 Word版含答案
2021-2022学年第一学期第一次月考高二数学(总分160分,考试时间120分钟)一、填空题:共14小题,每小题5分,共70分.把答案填在答题卡中相应题的横线上.1.抛物线24y x =的准线方程为____________. 【答案】1x =-【解析】抛物线)0(22>=p px y 的准线方程为2p x =-2.双曲线29x -24y =1的渐近线方程是 .【答案】 230x y ±=.【解析】由29x -24y =0得230x y ±=.3.若()xf x e x =-,则=)0('f ____________. 【答案】0【解析】由于'()()'()'11x x xf x e x e e =-=-=-,所以=)0('f 1-1=0.4.在平面直角坐标系xOy 中,若曲线y =ln x 在x =e(e 为自然对数的底数)处的切线与直线ax -y +3=0垂直,则实数a 的值为________. 【答案】-e【解析】由于y ′=1x ,所以曲线y =ln x 在x =e 处的切线的斜率k =y ′x =e =1e.又该切线与直线ax -y +3=0垂直,所以a ·1e =-1,所以a =-e.5.圆心在直线x =2上的圆C 与y 轴交于两点A (0,-4),B (0,-2),则圆C 的方程为________. 【答案】(x -2)2+(y +3)2=5【解析】由圆的几何意义知圆心坐标为(2,-3),半径r =(2-0)2+(-3+2)2= 5. ∴圆的方程为(x -2)2+(y +3)2=5.6.已知实数,x y 满足⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x ,则2z x y =+的最小值 .【答案】3【解析】如图:作出可行域yABx目标函数:y x z +=2,则 z x y +-=2当目标函数的直线过点B(1,1)时,Z 有最小值32min =+=y x Z .7.已知p :0322≤-+x x ,q :a x ≥.若p 是q 的充分不必要条件,则实数a 的最大值为__________.【答案】3-【解析】由0322≤-+x x 知13≤≤-x ,当3-≤a 时p 是q 的充分不必要条件,所以实数a 的最大值为3-.8.已知椭圆192522=+y x 上一点P 到左焦点的距离为4,则点P 到右准线的距离为_________.【答案】215【解析】由题102=a ,由于点P 到左焦点的距离为4,所以点P 到右焦点的距离为6.设点P 到右准线的距离为d ,则有546==e d,即215=d . 9.设M 是圆22(5)(3)9x y -+-=上一点,则M 到直线l :3420x y +-=的距离的最大值为 .【答案】8【解析】圆心到直线距离为2555d ==,最大距离为538d r +=+=.10.若命题“存在x ∈R ,ax 2+4x +a ≤0”为假命题,则实数a 的取值范围是________. 【答案】(2,+∞)【解析】“存在x ∈R ,ax 2+4x +a ≤0”为假命题,则其否定“对任意x ∈R ,ax 2+4x +a >0”为真命题,当a=0,4x >0不恒成立,故不成立;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ=16-4a 2<0,解得a >2,所以实数a 的取值范围是(2,+∞).11.x ,y 满足约束条件20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,则22x y +的取值范围为____________.【答案】[]0,8【解析】作出可行域如图:22x y +表示可行域内的点与原点的距离的平方,由图可知2208x y ≤+≤.12.如图,已知1F ,2F 是椭圆的左右两个焦点,过1F 且与椭圆 长轴垂直的直线交椭圆与A ,B 两点.若2ABF ∆是正三角形, 则椭圆的离心率为 .【答案】33【解析】设m AF =1,则m AF 22=,a m 23=,即m a 23=,又c m F F 2321==,即mc 23=,所以33==a c e .13.已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为 . 【答案】6【解析】由图可知,圆C 上存在点P 使∠APB =90°,即圆C 与以AB 为直径的圆有公共点,所以32+42-1≤m ≤32+42+1,即4≤m ≤6.14.如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,长轴长为4,过椭圆的左顶点A 作直线l ,分别交椭圆和圆x 2+y 2=a 2于相异两点P ,Q . 若PQ =λAP ,则实数λ的取值范围为 .【答案】0<λ<1【解析】 解法1 λ=PQ AP =AQ -AP AP =AQAP-1,设直线l :y =k (x +2),由⎩⎪⎨⎪⎧x 2+2y 2=4,y =k (x +2)得(2k 2+1)x 2+8k 2x +8k 2-4=0, 即(x +2)[](2k 2+1)x +(4k 2-2)=0,所以x A =-2, x P =2-4k 22k 2+1,得P ⎝ ⎛⎭⎪⎫2-4k 22k 2+1,4k 2k 2+1.所以AP 2=⎝ ⎛⎭⎪⎫2-4k 22k 2+1+22+⎝⎛⎭⎫4k 2k 2+12=16+16k 2(2k 2+1)2,即AP =4k 2+12k 2+1.同理AQ =4k 2+1.所以λ=AQ AP -1=4k 2+14k 2+12k 2+1-1=1-1k 2+1.由于k 2>0,所以0<λ<1. 解法2 由⎩⎪⎨⎪⎧x 2+y 2=4,y =k (x +2)消去x 得(k 2+1)y 2-4ky =0,所以y Q =4k k 2+1,同理y P =4k2k 2+1,由解法1知,λ=AQ AP -1=y Q y P -1=4kk 2+14k 2k 2+1-1=1-1k 2+1. 由于k 2>0,所以0<λ<1。
2022年江苏省南京市区中学高二数学理联考试题含解析
2021-2022学年江苏省南京市区中学高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知函数,则函数f(x)的图象在处的切线的斜率为()A. -21B. -27C. -24D. -25参考答案:A【分析】由导数的运算可得:,再由导数的几何意义,即函数的图象在处的切线的斜率为,求解即可.【详解】由题得,所以,解得,所以. 故选A【点睛】本题考查了导数的运算及导数的几何意义,属基础题.2. 数列满足:,则其前10项的和()A.100B.101C.110D.111参考答案:C3. 设P(x,y)是曲线C:(θ为参数,0≤θ<2π)上任意一点,则的取值范围是()A.[-,] B.(-∞,)∪[,+∞]C.[-,] D.(-∞,)∪[,+∞]参考答案:C略4. 已知函数f(x)的导函数的图像如图所示,那么函数f(x)的图像最有可能的是( )参考答案:A5. 某袋中有9个大小相同的球,其中有5个红球,4个白球,现从中任意取出1个,则取出的球恰好是白球的概率为()A. B. C. D.参考答案:C6. 函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点 ( )A 1个B 2个C 3个D 4个参考答案:A7. 已知集合,则()A、 B、 C、 D、参考答案:A8. 如果命题“p∧q”是假命题,“¬p”是真命题,那么()A.命题p一定是真命题B.命题q一定是真命题C.命题q一定是假命题D.命题q可以是真命题也可以是假命题参考答案:D【考点】复合命题的真假.【分析】根据复合命题的真假,判断出p,q的真假即可.【解答】解:命题“p∧q”是假命题,“¬p”是真命题,则p假,q可假可真,故选:D.9. 在△ABC中,角A,B,C的对边分别为a,b,c,若,,则()A.1 B.C.D.参考答案:D由正弦定理,故选D.10. 在中,,,,则三角形的面积为()A. B. C.D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 函数在区间[-1,2]上的值域是.参考答案:[,8]略12. 方程表示焦点在y轴上的椭圆,则实数m的取值范围______________.参考答案:m<且m≠0略13. 将3名男生和4名女生排成一行,甲、乙两人必须站在两头,则不同的排列方法共有种。
人教版高二(理科)第一学期期末考试数学试题-含答案
2015~2016学年度第一学期期末考试试卷 高二(理) 数学 座位号第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1、向量(1,2,2),(2,4,4)a b =-=--,则a b 与 ( ) A 、相交 B 、垂直 C 、平行 D 、以上都不对2、如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是 ( )A 、32B 、62C 、32D 、23、已知命题:,sin 1,p x R x ∀∈≤则p ⌝是 ( ) A 、,sin 1x R x ∃∈≥ B 、,sin 1x R x ∀∈≥ C 、,sin 1x R x ∃∈> D 、,sin 1x R x ∀∈>4、若向量)0,2,1(=a ,)1,0,2(-=b ,则( )A 0120,cos >=<b aB b a ⊥C b a //D ||||b a =5、若原命题“0,0,0a b ab >>>若则”,则其逆命题、否命题、逆否命题中( ) A 、都真 B 、都假 C 、否命题真 D 、逆否命题真6、 “2320x x -+≠”是“1x ≠” 的( )条件 ( ) A 、充分不必要 B 、必要不充分 C 、充要 D 、既不充分也不必要 7、若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A 、-9<m <25B 、8<m <25C 、16<m <25D 、m >88、已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是( )A .1203622=+y x (x ≠0)B .1362022=+y x (x ≠0)C .120622=+y x (x ≠0)D .162022=+y x (x ≠0)9、一位运动员投掷铅球的成绩是14m ,当铅球运行的水平距离是6m 时,达到最大高度4m .若铅球运行的路线是抛物线,则铅球出手时距地面的高度是( ) A . 1.75m B . 1.85mC . 2.15mD . 2.25m 10、设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件 11.抛物线281x y -=的准线方程是 ( ) A . 321=x B . 2=y C . 321=y D . 2-=y12. 若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( ) A .不等边锐角三角形 B .直角三角形C .钝角三角形D .等边三角形第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13、经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 。
2022-2021学年上学期高二数学寒假作业 07(人教A版选修2-1第三章空间向量与立体几何)
作业范围:选修2-1第三章空间向量与立体几何姓名:_______ 学校:_______ 班级:_________时间: 100分钟分值:120分第Ⅰ卷一、选择题(本题共14小题,每小题4分,共56分,在每小题给出的四个选项中,只有一项是符合题目要求的)题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14答案1.已知向量()1,1,0a=,()1,0,2b=-,且ka b+与2a b-相互垂直,则k的值为()A.B.15C.35D.75】2021-2022学年广西桂林市一中高二下期中数学试卷【答案】D考点:空间向量垂直的充要条件.【题型】选择题【难度】较易2.若()()2,3,,2,6,8a mb n==且,a b为共线向量,则m n+的值为()A.7 B.52 C.6 D.】2021-2022学年广西桂林市一中高二下期中数学试卷【答案】C【解析】由,a b为共线向量得23268mn==,解得4,2m n==,则6m n+=.故选C.考点:空间向量平行的充要条件.【题型】选择题【难度】较易3.向量=(2,4,x),=(2,y,2),若||=6,且⊥,则x+y的值为()A.-3 B.1 C.-3或1 D.3或1】2021-2022学年新疆兵团农二师华山中学高二下学前考试理科数学试卷【答案】C考点:空间向量的坐标运算及垂直的性质.【题型】选择题【难度】较易4.已知A(2,-5,1),B(2,-2,4),C(1,-4,1),则AC与AB的夹角为()A.30° B.45° C.60° D.90°】2021-2022学年福建省晋江市季延中学高二上学期期末理科数学试卷【答案】C【解析】设AC与AB的夹角为θ,()1,1,0AC=-,()0,3,3AB=,cosθ∴312232AC ABAC AB⋅==⨯,60θ∴=︒.考点:向量夹角.【题型】选择题【难度】较易5.已知()1,2,1A-,()5,6,7B,则直线AB与平面xOz交点的坐标是()A.()0,1,1B.()0,1,3-C.()1,0,3-D.()1,0,5--】2021-2022学年福建省三明市A片高二上学期期末理科数学试卷【答案】D【解析】直线AB与平面xOz交点的坐标是()0,M x z,,则()1,2,1A zM x-=-+,又AB=(4,4,8),AM与AB 共线,∴AM AB λ=,即14,24,18,x z λλλ-=⎧⎪-=⎨⎪+=⎩解得1x =-,5z =-,∴点()1,0,5M --.考点:空间中的点的坐标. 【题型】选择题 【难度】较易6.若平面α的一个法向量为()()()1,2,2,1,0,2,0,1,4,,n A B A α=-∉B α∈,则点A 到平面α的距离为()A .1B .2C .13D .23】【百强校】2022-2021学年黑吉两省八校高二上期中数学(理)试卷 【答案】C 【解析】由于()()1,0,2,0,1,4A B -,所以(1,1,2)AB =--,所以点A 到平面α的距离为22212413122AB n d n⋅--+===++,故选C .考点:空间向量的应用. 【题型】选择题 【难度】较易7.在四棱锥O ABCD -中,底面ABCD 是平行四边形,设,,OA a OB b OC c ===,则OD 可表示为() A .a c b +- B .2a b c +- C .b c a +- D .2a c b +-】【百强校】2022-2021学年黑吉两省八校高二上期中数学(理)试卷 【答案】A考点:空间向量的线性运算. 【题型】选择题 【难度】较易8.点()2,3,4关于xOz 平面的对称点为()A.()2,3,4-B.()2,3,4-C.()2,3,4-D.()2,3,4-- 】2021-2022学年陕西延川县中学高一下学期期中数学(理)试卷 【答案】C考点:空间中点的坐标. 【题型】选择题【难度】较易9.已知)1,2,2(=−→−AB ,)3,5,4(=−→−AC ,则下列向量中是平面ABC 的法向量的是()A.)6,2,1(-B.)1,1,2(-C.)2,2,1(-D.)1,2,4(-】2021-2022学年陕西延川县中学高二下学期期中数学(理)试卷 【答案】C【解析】设平面ABC 的法向量为()z y x n ,,= ,则,,n AB n AC ⎧⊥⎪⎨⊥⎪⎩那么220,4530,x y z x y z ++=⎧⎨++=⎩那么2:)2(:1::-=z y x ,满足条件的只有C ,故选C. 考点:空间向量. 【题型】选择题 【难度】较易10.已知(2,1,3)a →=-,(1,4,2)b →=--,(7,5,)c λ→=,若c b a ,,三向量共面,则实数λ等于() A .627 B .637 C .647 D .657】2021-2022学年安徽省淮南二中高二下学期期中理科数学试卷【答案】D考点:空间向量共面的性质及方程思想. 【题型】选择题 【难度】较易11.已知)2,0,4(A ,)2,6,2(-B ,点M 在轴上,且到B A ,的距离相等,则M 的坐标为() A .)0,0,6(- B .)0,6,0(- C .)6,0,0(- D .)0,0,6( 】【百强校】2021-2022学年福建省厦门一中高一6月月考数学试卷 【答案】A【解析】由于点M 在轴上,所以可设(),0,0M x ,又MA MB=,所以()()()()()()2222224000220602x x -+-+-=-+-+-,解得6x =-,所以(6,0,0)M -.考点:空间两点间距离公式.【题型】选择题 【难度】一般12.在四周体ABCD 中,E 、G 分别是CD 、BE 的中点,若AC z AD y AB x AG ++=,则x +y +z =()A .31B .21C . 1D .2】2021-2022学年山西省孝义市高二上学期期末考试理科数学试卷 【答案】C【解析】()1122AG AB BG AB BE AB AE AB AB=+=+=+-=()1122AC AD AB ⎡⎤++-⎢⎥⎣⎦,整理得AD AC AB AG 414121++=,所以21=x ,41==z y ,所以1=++z y x ,故选C.考点:空间向量的运算. 【题型】选择题 【难度】一般13.若平面α、β的法向量分别为1n =(2,3,5),2n =(-3,1,-4),则( )A .α∥βB .α⊥βC .α,β相交但不垂直D .以上均有可能】【百强校】2021-2022学年海南省文昌中学高二上期末理科数学试卷 【答案】C考点:两平面的位置关系,用向量推断两平面的位置关系. 【题型】选择题 【难度】一般14.如图,在平行六面体1111ABCD A B C D -中,M 为11AC 与11B D 的交点,若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是()MC1CB1D1A1ABDA.1122a b c-++B.1122a b c++C.1122a b c--+D.1122a b c-+】2021-2022学年河南三门峡市陕州中学高二上其次次对抗赛理科数学卷 【答案】A【解析】依据向量加法的运算法则,可得111=2BM BB B McBD c 111222BA BC a b c .考点:空间向量的表示. 【题型】选择题 【难度】一般 第II 卷二、填空题(本题共6个小题,每小题4分,共24分) 15.已知向量()()(),12,1,4,5,1,,10,1OA k OB OC k ===-,且A 、B 、C 三点共线,则=k ________.】【百强校】2021-2022学年山西太原五中高二上学期期末理科数学试卷【答案】32-【解析】由于()()(),12,1,4,5,1,,10,1OA k OB OC k ===-,所以(4,7,0),(2,2,0)AB k AC k =--=--,又由于A 、B 、C 三点共线,所以存在实数λ使得AB AC λ=,所以42,72,k k λλ-=-⎧⎨-=-⎩解得7,22,3k λ⎧=⎪⎪⎨⎪=-⎪⎩所以=k 32-.考点:向量的坐标运算和向量共线定理. 【题型】填空题 【难度】较易16.设点B 是A (2,-3, 5)关于平面xOy 对称的点,则线段AB 的长为 . 】2022-2021学年广东省广州六中高一上学期期末考试数学试题 【答案】10考点:空间中点的坐标和两点之间的距离. 【题型】填空题【难度】较易17.在如图所示的长方体ABCD -A 1B 1C 1D 1中,||8DA =,||6DC =,1||3DD =,则11D B 的中点M 的坐标为__________,||DM =_______.】2021-2022学年福建省八县一中高一上学期期末考试数学试卷 【答案】(4,3,3);34考点:中点坐标公式,空间中两点的距离公式. 【题型】填空题 【难度】较易18.已知空间单位向量1231223134,,,,,5⊥⊥⋅=e e e e e e e e e ,若空间向量123x y z =++m e e e 满足:14⋅=m e ,233,5⋅=⋅=m e m e ,则x y z ++=________,=m ________.】【百强校】2021-2022学年浙江省金华十校高二上学期调研数学试卷 【答案】34【解析】由于1223134,,5⊥⊥⋅=e e e e e e ,空间向量123x y z =++m e e e 满足:14⋅=m e ,233,5⋅=⋅=m e m e ,所以123112321233()4,()3,()5,x y z x y z x y z ++⋅=⎧⎪++⋅=⎨⎪++⋅=⎩e e e e e e e e e e e e 即44,53,45,5x z y x z ⎧+=⎪⎪=⎨⎪⎪+=⎩解得0,3,5,x y z =⎧⎪=⎨⎪=⎩所以8x y z ++=,=m 34考点:向量的数量积的运算及向量的模的计算. 【题型】填空题【难度】一般19.若直线的方向向量()1,1,1a =,平面α的一个法向量()2,1,1n=-,则直线与平面α所成角的正弦值等于_________。
2017-2018学年高二年级数学期末试卷(理数)含答案
2.若 x 2m2 3 是 1 x 4 的必要不充分条件,则实数 m 的取值范围是( )
10.已知函数 f x 1 x3 1 mx2 4x 3 在区间 1,2上是增函数,则实数 m 的取值范围是(
32
A . 3,3
B . ,3 3, C . ,1 1,
,则满足
11.已知函数
f
x
3|x1| , x2 2x
x 1,
0, x
0
若关于
x
的方程 f
x2
a
1f
x
a
0有
7
个不
等实根,则实数 a 的取值范围是(
)
A . 2,1
B .2,4
C . 2,1
D . ,4
12.
已知函数
A . loga c logb c B . logc a logc b C . a c bc
D . ca cb
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是 9.已知函数 f x 2 xm 1 为偶函数,记 a f log0.5 3 , b f log2 5 , c f 2m,则
由题设知
,
则
解得 的横坐标分别是 则 有 又
,又 于是
, ,
,
,即 l 与直线 平行, 一定相交,分别联立方
设
是平面
的法向量,则
,即
。
对任意
,要使
与
的面积之比是常数,只需 t 满足
可取
,故,所以 与平面
20. (1)依题意可得
所成角的正弦值为 ---------12 分 ,
高二数学上学期期末考试试卷含解析试题
局部区2021-2021学年高二上学期期末考试创作人:历恰面日期:2020年1月1日数学试卷一、选择题.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.1.双曲线﹣y2=1的焦点坐标为〔〕A. 〔﹣3,0〕,〔3,0〕B. 〔0,﹣3〕,〔0,3〕C. 〔﹣,0〕,〔,0〕D. 〔0,﹣〕,〔0,〕【答案】C【解析】【分析】利用双曲线的HY方程直接计算。
【详解】由双曲线﹣y2=1可得:,那么所以双曲线﹣y2=1的焦点坐标为:〔﹣,0〕,〔,0〕应选:C【点睛】此题主要考察了双曲线的简单性质,属于根底题。
2.命题“∃x0∈〔0,+∞〕,使得<〞的否认是〔〕A. ∃x0∈〔0,+∞〕,使得B. ∃x0∈〔0,+∞〕,使得C. ∀x∈〔0,+∞〕,均有e x>xD. ∀x∈〔0,+∞〕,均有e x≥x【答案】D【解析】【分析】由特称命题的否认直接写出结果即可判断。
【详解】命题“∃x0∈〔0,+∞〕,使得<〞的否认是:“x∈〔0,+∞〕,使得〞应选:D【点睛】此题主要考察了特称命题的否认,属于根底题。
3.假设复数〔为虚数单位〕,那么的一共轭复数〔〕A. B. C. D.【答案】B【解析】因为,所以,应选答案B。
R,那么“>1”是“>1”的〔〕A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【详解】试题分析:由可得成立,反之不成立,所以“〞是“〞的充分不必要条件考点:充分条件与必要条件5.设公比为﹣2的等比数列{a n}的前n项和为S n,假设S5=,那么a4等于〔〕A. 8B. 4C. ﹣4D. ﹣8【答案】C【解析】【分析】由S5=求出,再由等比数列通项公式求出即可。
【详解】由S5=得:,又解得:,所以应选:C【点睛】此题主要考察了等比数列的前n项和公式及等比数列通项公式,考察计算才能,属于根底题。
6.函数f〔x〕=lnx﹣,那么f〔x〕〔〕A. 有极小值,无极大值B. 无极小值有极大值C. 既有极小值,又有极大值D. 既无极小值,又无极大值【答案】B【解析】【分析】求出,对的正负分析,即可判断函数的极值情况。
江苏省南京市第十三中学红山校区2019-2020学年高二数学文测试题含解析
江苏省南京市第十三中学红山校区2019-2020学年高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数的一个单调递增区间为 ( )A. B. C. D.参考答案:D2. 以的焦点为顶点,顶点为焦点的椭圆的方程为()A. B.C. D.参考答案:A3. 执行如图的程序框图,若输入的N是6,则输出p的值是()A.120 B.720 C.1 440 D.5 040参考答案:B【考点】循环结构.【分析】根据输入的N是6,然后判定k=1,满足条件k<6,则执行循环体,依此类推,当k=6,不满足条件k<6,则退出执行循环体,求出此时p的值即可.【解答】解:若输入的N是6,则:k=1,p=1,执行循环体,p=1,满足条件k<6,k=2,p=2,满足条件k<6,k=3,p=6,满足条件k<6,k=4,p=24,满足条件k<6,k=5,p=120,满足条件k<6,k=6,p=720,不满足条件k<6,则退出执行循环体,此时p=720.故选B.4. △ABC的三内角A、B、C的对边边长分别为a、b、c.若a=b,A=2B,则cos B=()A.B.C.D.参考答案:【考点】正弦定理的应用.【分析】通过正弦定理得出sinA和sinB的方程组,求出cosB的值.【解答】解:∵△ABC中,,∴根据正弦定理得∴故选B.5. 已知f(x)=x2+2xf′(﹣1),则f′(0)等于()A.4 B.0 C.﹣2 D.2参考答案:A【考点】导数的运算.【分析】把给出的函数求导得其导函数,在导函数解析式中取x=﹣1可求2f′(﹣1)的值.【解答】解:由f(x)=x2+2xf′(﹣1),得:f′(x)=2x+2f′(﹣1),取x=﹣1得:f′(﹣1)=﹣2×1+2f′(﹣1),所以f′(﹣1)=2.故f′(0)=2f′(﹣1)=4,故选:A.6. 某工厂的三个车间在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a、b、c,且a、b、c构成等差数列,则第二车间生产的产品数为()A.800 B.1000 C.1200 D.1500参考答案:【考点】分层抽样方法;等差数列的通项公式.【分析】根据等差数列的性质求出a,b,c的关系,结合分层抽样的定义建立比例关系即可得到结论.【解答】解:∵a、b、c构成等差数列,∴a+c=2b,则第二车间生产的产品数为=1200,故选:C7. 图1和图2中所有的正方形都全等,将图1中的正方形放在图2中的①②③④某一位置,所组成的图形能围成正方体的概率是()(A)(B)(C)(D)1参考答案:C由图共有4种等可能结果,其中将图1的正方形放在图2中①的位置出现重叠的面,不能围成正方体,则所组成的图形能围成正方体的概率是.故选:C.8. 设复数z满足i(z﹣2)=3(i为虚数单位),则z=()A.2+3i B.2﹣3i C.3+2i D.3﹣2i参考答案:B【考点】A5:复数代数形式的乘除运算.【分析】把复数z看作未知数,解方程即可.【解答】解:复数z满足i(z﹣2)=3(i为虚数单位),∴z﹣2=,∴z=2+=2﹣3i.故选:B.【点评】本题考查了复数的化简与运算问题,是基础题.9. 在同一坐标系中,将曲线变为曲线的伸缩变换是()A. B.C. D.参考答案:B略10. 若抛物线的准线方程为x=–7, 则抛物线的标准方程为()(A)x2=–28y(B)y2=28x( C)y2=–28x(D)x2=28y 参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 若函数的反函数为,则________.参考答案:12. 函数f(x)=log a (a>0且a≠1),f(2)=3,则f(-2)的值为_________.参考答案:∵f(-x)=log a =-log a =-f(x),∴函数为奇函数.∴f(-2)=-f(2)=-3.13. 函数的图像在点处的切线方程是,则等于_________.参考答案:214. 在△ABC中,a,b,c分别是角A,B,C的对边,若a+b=,a b=2,A+B=60°,则边c=________.参考答案:略15. 计算__________________,参考答案:略16. 设x+y=1,x≥0,y≥0,则x2+y2的取值范围是.参考答案:[,1]【考点】直线与圆的位置关系.【专题】数形结合;数形结合法;圆锥曲线的定义、性质与方程.【分析】由式子的几何意义,数形结合可得.【解答】解:∵x+y=1,x≥0,y≥0表示线段AB,x2+y2表示线段AB上的点到原点的距离平方,数形结合可得最小值为=,最大值为OA或OB=1,故答案为:[,1].【点评】本题考查式子的最值,数形结合是解决问题的关键,属基础题.17. 已知复数满足,则复数的模是▲.参考答案:三、解答题:本大题共5小题,共72分。
江苏省南京市第六十七中学2022年高二数学文期末试卷含解析
江苏省南京市第六十七中学2021-2022学年高二数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数f(x)=x+eln x的单调递增区间为( )A.(0,+∞)B.(-∞,0)C.(-∞,0)和(0,+∞)D.R参考答案:A函数定义域为(0,+∞),f′(x)=1+>0,故单调增区间是(0,+∞).2. 如果执行右面的程序框图,那么输出的()A.2450 B.2500 C.2550 D.2652参考答案:C3. 已知曲线在处的切线垂直于直线,则实数的值为()A.B.C.10 D.-10参考答案:A函数的导数,则在点处的切线斜率直线的斜率∵直线和切线垂直,.故选A4. 已知两组数据x1,x2,…,x n与y1,y2,…,y n,它们的平均数分别是和,则新的一组数据2x1﹣3y1+1,2x2﹣3y2+1,…,2x n﹣3y n+1的平均数是()A.B.C.D.参考答案:B考点:众数、中位数、平均数.专题:计算题.分析:平均数的计算方法是求出所有数据的和,然后除以数据的总个数.解答:解:由已知,(x1+x2+…+x n)=n,(y1+y2+…+y n)=n,新的一组数据2x1﹣3y1+1,2x2﹣3y2+1,…,2x n﹣3y n+1的平均数为(2x1﹣3y1+1+2x2﹣3y2+1+…+2x n﹣3y n+1)÷n=[2(x1+x2+…+x n)﹣3(y1+y2+…+y n)+n]÷n=故选B点评:本题考查平均数的计算,属于基础题.5. P,Q,R为正方体表面上的三点,在正方体三个两两垂直的面上的射影如下图,则下列关于过点P,Q,R三点的截面结论正确的是 ( )A.这个截面是一个三角形B.这个截面是四边形C.这个截面是六边形D.这个截面过正方体的一个顶点参考答案:C6. 设,则的最小值是()A.B.C.D.参考答案:C7. 读程序甲:INPUT i=1 乙:INPUT I=1000S=0 S=0WHILE i≤1000 DOS=S+i S=S+Ii=i+l I = I一1WEND Loop UNTIL I<1PRINT S PRINT SEND END对甲乙两程序和输出结果判断正确的是 ( )A.程序不同结果不同 B.程序不同,结果相同C.程序相同结果不同 D.程序相同,结果相同参考答案:B 8. 函数的定义域是()A. [-1,+∞)B. (-∞,0)∪(0,+∞)C. [-1,0)∪(0,+∞)D. R参考答案:C试题分析:,解得或,表示区间为:,故选C.考点:函数的定义域9. 是f(x)的导函数,的图象如下图所示,则f(x)的图象只可能是()(A)(B)(C)(D参考答案:D略10. 已知直线mx﹣y+1=0交抛物线y=x2于A、B两点,则△AOB()A.为直角三角形B.为锐角三角形C.为钝角三角形D.前三种形状都有可能参考答案:A【考点】三角形的形状判断.【专题】计算题.【分析】根据A和B都为抛物线上的点,设出A和B的坐标,把直线与抛物线解析式联立,消去y得到关于x的一元二次方程,利用韦达定理求出两根之积,然后利用A和B的坐标表示出和,利用平面向量的数量积运算法则,计算得出?为0,从而得出两向量互相垂直,进而得到三角形为直角三角形.【解答】解:设A (x 1,x 12),B (x 2,x 22),将直线与抛物线方程联立得,消去y 得:x 2﹣mx ﹣1=0, 根据韦达定理得:x 1x 2=﹣1, 由=(x 1,x 12),=(x 2,x 22),得到?=x 1x 2+(x 1x 2)2=﹣1+1=0, 则⊥,∴△AOB 为直角三角形. 故选A【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直.二、 填空题:本大题共7小题,每小题4分,共28分11. 命题“若a >2,则a2>4”的逆否命题可表述为:参考答案:略12. 若抛物线y 2=2px 的焦点与双曲线﹣y 2=1的右焦点重合,则抛物线上一点P (2,b )到抛物线焦点的距离是 .参考答案:4【考点】抛物线的简单性质;双曲线的简单性质.【分析】根据双曲线方程可得它的右焦点坐标,结合抛物线y 2=2px 的焦点坐标得p=4,利用抛物线的定义,即可得出结论.【解答】解:∵双曲线﹣y 2=1中a 2=3,b 2=1∴c=2,得双曲线的右焦点为F (2,0)因此抛物线y 2=2px 的焦点(,0)即F (2,0) ∴=2,即p=4,∴抛物线上一点P (2,b )到抛物线焦点的距离是2+2=4 故答案为4.13. 某人向边长分别为的三角形区域内随机丢一粒芝麻,假设芝麻落在区域内的任意一点是等可能的,则其恰落在离三个顶点距离都大于2的地方的概率为_ 参考答案:略14. 某篮球运动员在三分投球的命中率是,他投球5次,恰好投进2个的概率是参考答案:15. 若某几何体的三视图(单位:)如图所示,则此几何体的体积是 ▲ ;参考答案: 18 略16. 已知,,则__________.参考答案:分析:先根据条件解出再根据两角和正弦公式化简求结果.详解:因,,所以,因此点睛:三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.17. 已知函数f(x)是上的偶函数,若对于,都有,且当时,,则的值为_______________.参考答案:1三、解答题:本大题共5小题,共72分。
江苏省南京市第十四中学2022年高二数学理月考试题含解析
江苏省南京市第十四中学2021-2022学年高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数的值域是()A.B.C.D.参考答案:B2. 为了在运行下面的程序之后得到输出y=16,键盘输入x应该是()A.或 B. C.或D.或参考答案:C3. 恒成立,则n的最大值为()A. 2B.3C.4D.5参考答案:C4. 已知一几何体三视图如右,则其体积为()A. B. C.1 D.2参考答案:A略5.参考答案:B 解析:由于二面角C1-AB-D的平面角为450,所以在这个二面角及它的“对顶”二面角内,不存在过点P且与面ABCD和面ABC1D l均成300角的直线.转而考虑它的补二面角,易知过点P有且仅有两条直线与面ABCD和面ABC l D l均成300角.故满足条件的直线l有2条,选B;6. 设,则的最小值等于()A. B. C.D.参考答案:B提示:取则7. 若正实数a,b满足a+b=1,则( )A. 有最大值4 B.ab有最小值C. 有最大值 D.a2+b2有最小值参考答案:C8. 斜率为2的直线l过双曲线C:﹣=1(a>0,b>0)的右焦点,且与双曲线的左右两支都相交,则双曲线的离心率e的取值范围是()A.[2,+∞) B.(1,)C.D.(,+∞)参考答案:D【考点】双曲线的简单性质.【分析】根据已知直线的斜率,求出渐近线的斜率范围,推出a,b的关系,然后求出离心率的范围.【解答】解:依题意,斜率为2的直线l过双曲线C:﹣=1的右焦点且与双曲线的左右两支分别相交,结合图形分析可知,双曲线的一条渐近线的斜率必大于2,即b>2a,因此该双曲线的离心率e===>=.故选D.9. 已知函数y=f(x)对任意的x∈(﹣,)满足f′(x)cosx+f(x)sinx>0(其中f′(x)是函数f(x)的导函数),则下列不等式成立的是()A. f(﹣)<f(﹣)B. f()<f()C.f(0)>2f()D.f(0)>f()参考答案:A【考点】利用导数研究函数的单调性.【专题】导数的综合应用.【分析】根据条件构造函数g(x)=,求函数的导数,利用函数的单调性和导数之间的关系即可得到结论.【解答】解:构造函数g(x)=,则g′(x)==(f′(x)cosx+f(x)sinx),∵对任意的x∈(﹣,)满足f′(x)cosx+f(x)sinx>0,∴g′(x)>0,即函数g(x)在x∈(﹣,)单调递增,则g(﹣)<g(﹣),即,∴,即f(﹣)<f(﹣),故A正确.g(0)<g(),即,∴f(0)<2f(),故选:A.【点评】本题主要考查函数单调性的应用,利用条件构造函数是解决本题的关键,综合性较强,有一点的难度.10. 如图,矩形长为5,宽为3,在矩形内随机撒100颗黄豆,数得落在椭圆内的黄豆数为60颗,以此实验数据为依据可以估算椭圆的面积约为()A.11 B.9 C.12 D.10参考答案:B【考点】几何概型.【分析】欲估计出椭圆的面积,可利用概率模拟,只要利用平面图形的面积比求概率即可.【解答】解:由题意,以面积为测度,则,∴S椭圆=15×=9,故选:B.二、填空题:本大题共7小题,每小题4分,共28分11. 已知焦点在x轴上的双曲线的虚轴长等于半焦距,则双曲线的渐近线方程是___________. 参考答案:12. 已知△ABC的三边长分别为AB=5,BC=4,AC=3,M是AB边上的点,P是平面ABC外一点.给出下列四个命题:①若PM⊥平面ABC,且M是AB边中点,则有PA=PB=PC;②若PC=5,PC⊥平面ABC,则△PCM面积的最小值为;③若PB=5,PB⊥平面ABC,则三棱锥P﹣ABC的外接球体积为;④若PC=5,P在平面ABC上的射影是△ABC内切圆的圆心,则三棱锥P﹣ABC的体积为;其中正确命题的序号是(把你认为正确命题的序号都填上).参考答案:①④【考点】命题的真假判断与应用.【分析】运用三棱锥的棱长的关系,求解线段,面积,体积,把三棱锥镶嵌在长方体中,求解外接圆的半径,【解答】解:对于①,∵△ABC的三边长分别为AB=5,BC=4,AC=3,∴PM丄平面ABC,且M是AB边中点,∴MA=MB=MC∴Rt△PMA≌Rt△PMB≌Rt△PMC,∴PA=PB=PC,∴①正确,对于②,∵当PC⊥面ABC,∴△PCM面积=×PC×CM=×5×CM又因为CM作为垂线段最短=,△PCM面积的最小值为=6,∴②不正确.对于③,∵若PB=5,PB⊥平面ABC,AB=5,BC=4,AC=3,∴三棱锥P﹣ABC的外接球可以看做3,4,5为棱长的长方体,∴2R=5,∴体积为,故③不正确.对于④,∵△ABC的外接圆的圆心为O,PO⊥面ABC,∵P2=PO2+OC2,r==1,OC=,PO2=25﹣2=23,PO=,××3×4×=2,故④正确故答案为:①④13. 若函数在上单调递增,则实数的取值范围是.参考答案:14. 在中,,则= .参考答案:略15. y=2e x sinx,则y′=_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省南京市2017-2018学年高二数学上学期期末考试试题理一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.......上.1. 命题“若ab=0,则b=0”的逆否命题是______.【答案】“若b≠0,则ab≠0”【解析】因为一个命题的逆否命题,是将原命题逆命题的条件与结论同时否定得到,所以命题“若ab=0,则b=0”的逆否命题是“若b≠0,则ab≠0”.故答案为:“若b≠0,则ab≠0”.2. 已知复数z满足z(1+i)=i,其中i是虚数单位,则 |z| 为______.【答案】【解析】复数z满足z(1+i)=i,所以.所以.故答案为:.3. 在平面直角坐标系xOy中,抛物线y2=4x的焦点坐标是______.【答案】(1,0)【解析】抛物线y2=4x,满足y2=2p x,其中p=2.所以抛物线y2=4x的焦点坐标是(1,0).故答案为:(1,0).4. “x2-3x+2<0”是“-1<x<2”成立的______条件(在“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”中选一个填写).【答案】充分不必要【解析】由x2-3x+2<0,解得1<x<2,因为1<x<2是“-1<x<2”成立的充分不必要条件,所以“x2-3x+2<0”是“-1<x<2”成立的充分不必要条件.故答案为:充分不必要.5. 已知实数x,y满足条件则z=3x+y 的最大值是______.【答案】7【解析】作出不等式的可行域如图所示:作直线经过点A(2,1)时,z取最大值7.故答案为:7.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.6. 函数f(x)=x e x 的单调减区间是______.【答案】(-∞,-1)或(-∞,-1]【解析】函数f(x)=x e x,求导得:.令,解得.所以函数f(x)=x e x 的单调减区间是(-∞,-1)( (-∞,-1]也可以).故答案为: (-∞,-1)或(-∞,-1].7. 如图,直线l经过点(0,1),且与曲线y=f(x) 相切于点(a,3).若f ′(a)=,则实数a的值是______.【解析】由导数的几何意义知f ′(a)=,即为切线斜率为.所以,解得.故答案为:3.8. 在平面直角坐标系xOy中,若圆 (x-a)2+(y-a)2=2 与圆x2+(y-6)2=8相外切,则实数a的值为______.【答案】3【解析】圆 (x-a)2+(y-a)2=2 与圆x2+(y-6)2=8相外切,则圆心距等于半径之和,即,解得.故答案为:3.点睛:这个题目考查的是两圆的位置关系;两圆的位置关系有相交,外切,内切,内含,外离这几种情况。
判断两圆的位置关系时的常用方法是找两圆心距和两半径之和或差的关系。
常考的题型是已知位置关系求参或者找公切线的条数。
9. 如图,在三棱锥P—ABC中, M是侧棱PC的中点,且,则x+y+z 的值为______.【答案】0【解析】在三棱锥P—ABC中, M是侧棱PC的中点,所以.又,.所以.所以.故答案为0.10. 在平面直角坐标系xOy中,若双曲线-y2=1的渐近线与抛物线x2=4y的准线相交于A,B两点,则三角形OAB的面积为______.【解析】双曲线-y2=1的渐近线为:,抛物线x2=4y的准线为:.联立两直线得:.三角形OAB的面积为.故答案为:.11. 在平面直角坐标系xOy中,若点A到原点的距离为2,到直线x+y-2=0的距离为1,则满足条件的点A的个数为______.【答案】3【解析】点A到原点的距离为2,所以点A在以原点为圆心,2为半径的圆上,圆心O(0,0)到直线x+y-2=0的距离为:.所以圆上到直线x+y-2=0的距离为1的点共3个.故答案为:3.12. 若函数f(x)=x3-3x2+mx在区间 (0,3) 内有极值,则实数m的取值范围是______.【答案】(-9,3)【解析】函数f(x)=x3-3x2+mx求导得:,有对称轴为.若函数f(x)=x3-3x2+mx在区间 (0,3) 内有极值,则,解得.故答案为:(-9,3).13. 在平面直角坐标系xOy中,已知椭圆 (a>b>0) 的左、右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A,B两点,直线AF2与椭圆的另一个交点为C.若,则该椭圆的离心率为______.【答案】【解析】由题意,,∵,∴,.∴代入椭圆 (a>b>0),得,即解得.故答案为:.14. 已知函数f(x)=x|x2-3|.若存在实数m,m∈(0,],使得当x∈[0,m] 时,f(x)的取值范围是[0,am],则实数a的取值范围是______.【答案】[1,3)【解析】f(x)=x|x2-3|,作出函数图像如图所示:根据题意知m∈(0,],x∈[0,m].当m∈(0,1]时,f(x)在[0,m]上单调递增,此时f(x)的取值范围是.所以,即,得;当m∈(1,2]时,此时f(x)的取值范围是.所以,得;当m∈(2,]时,此时f(x)的取值范围是.所以,即,得.综上:实数a的取值范围是[1,3).故答案为:[1,3).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤.15. 已知复数z=,(m∈R,i是虚数单位).(1)若z是纯虚数,求m的值;(2)设是z的共轭复数,复数+2z在复平面上对应的点在第一象限,求m的取值范围.【答案】(1) (2)【解析】试题分析:(1)化简z=1-2m+(2m+1)i,若z是纯虚数,只需1-2m=0且2m+1≠0即可;(2)求得1-2m-(2m+1)i,得+2z=3-6m+(2m+1)i,只需即可.试题解析:(1)z===1-2m+(2m+1)i.因为z是纯虚数,所以1-2m=0且2m+1≠0,解得m=.(2)因为是z的共轭复数,所以=1-2m-(2m+1)i.所以+2z=1-2m-(2m+1)i+2[1-2m+(2m+1)i]=3-6m+(2m+1)i.因为复数+2z在复平面上对应的点在第一象限,所以解得-<m<,即实数m的取值范围为(-,).点睛:形如的数叫复数,其中a叫做复数的实部,b叫做复数的虚部.当时复数为实数,当时复数为虚数,当时复数为纯虚数.16. 如图,在正方体ABCD – A1B1C1D1中,点E,F,G分别是棱BC,A1B1,B1C1的中点.(1)求异面直线EF与DG所成角的余弦值;(2)设二面角A—BD—G的大小为θ,求 |cosθ| 的值.【答案】(1) (2)【解析】试题分析:(1)建立空间直角坐标系,进而通过计算即可得解;(2)计算得平面DBG和平面ABD的法向量n1和n2,通过计算cos<n1,n2>即可得解.试题解析:如图,以{,, }为正交基底建立坐标系D—xyz.设正方体的边长为2,则D(0,0,0),A(2,0,0),B(2,2,0),E(1,2,0),F(2,1,2),G(1,2,2).(1)因为=(2,1,2)-(1,2,0)=(1,-1,2),= (1,2,2),所以·=1×1+(-1)×2+2×2=3,||==,||=3.从而cos<,>===,即向量与的夹角的余弦为,从而异面直线EF与DG所成角的余弦值为.(2)=(2,2,0),= (1,2,2).设平面DBG的一个法向量为n1=(x,y,z ).由题意,得取x=2,可得y=-2,z=1.所以n1=(2,-2,1).又平面ABD的一个法向量n2==(0,0,2),所以cos<n1,n2>===.因此 |cosθ|=.点睛:用向量法解决立体几何问题的注意点:(1)建立空间直角坐标系时要判断是否具备了两两垂直的三条直线,否则要先给出证明;..................17. 如图,圆锥OO1的体积为π.设它的底面半径为x,侧面积为S.(1)试写出S关于x的函数关系式;(2)当圆锥底面半径x为多少时,圆锥的侧面积最小?【答案】(1) (2) 当圆锥底面半径为时,圆锥的侧面积最小.【解析】试题分析:(1)设圆锥OO1的高为h,母线长为l,根据体积为π得π,解得h,进而得l=,从而得;(2)令f(x)=,求导,利用函数的单调性求最值即可.试题解析:(1)设圆锥OO1的高为h,母线长为l.因为圆锥的体积为π,即πx2h=π,所以h=.因此l==,从而S=πxl=πx=π,(x>0).(2)令f(x)=x4+,则f ′(x)=4x3-,(x>0).由f ′(x)=0,解得x=.当0<x<时,f ′(x)<0,即函数f(x)在区间(0,)上单调递减;当x>时,f ′(x)>0,即函数f(x)在区间(,+∞)上单调递增.所以当x=时,f(x)取得极小值也是最小值.答:当圆锥底面半径为时,圆锥的侧面积最小.18. 在平面直角坐标系xOy中,已知圆C经过点A(1,3) ,B(4,2),且圆心在直线l:x-y -1=0上.(1)求圆C的方程;(2)设P是圆D:x2+y2+8x-2y+16=0上任意一点,过点P作圆C的两条切线PM,PN,M,N为切点,试求四边形PMCN面积S的最小值及对应的点P坐标.【答案】(1) x2+y2-4x-2y=0 (2) S最小10,P(-3,1)【解析】试题分析:(1)设圆C的方程为x2+y2+Dx+Ey+F=0,根据条件得,即可得解;(2)依题意,S=2S△PMC=PM×MC =,当PC最小时,S最小,求PC最小即可. 试题解析:(1)设圆C的方程为x2+y2+Dx+Ey+F=0,其圆心为(-,-).因为圆C经过点A(1,3) ,B(4,2),且圆心在直线l:x-y-1=0上,所以解得所求圆C的方程为x2+y2-4x-2y=0.(2)由(1)知,圆C的方程为(x-2)2+(y-1)2=5.依题意,S=2S△PMC=PM×MC =×.所以当PC最小时,S最小.因为圆M:x2+y2+8x-2y+16=0,所以M(-4,1),半径为1.因为C(2,1),所以两个圆的圆心距MC=6.因为点P∈M,且圆M的半径为1,所以PC min=6-1=5.所以S min=×=10.此时直线MC:y=1,从而P(-3,1).19. 在平面直角坐标系xOy中,已知椭圆C: (a>b>0)的一条准线方程为x=,离心率为.(1)求椭圆C的方程;(2)如图,设A为椭圆的上顶点,过点A作两条直线AM,AN,分别与椭圆C相交于M,N两点,且直线MN垂直于x轴.① 设直线AM,AN的斜率分别是k1, k2,求k1k2的值;② 过M作直线l1⊥AM,过N作直线l2⊥AN,l1与l2相交于点Q.试问:点Q是否在一条定直线上?若在,求出该直线的方程;若不在,请说明理由.【答案】(1) +y2=1.(2) ①② 点Q在一条定直线y=-1上【解析】试题分析:(1)根据题中条件得:,即可得解;(2)①根据椭圆的性质,M,N两点关于x轴对称,故可设M(x0,y0),N(x0,-y0)( x0≠0,y0≠0),由k1k2=,及点在椭圆上即可得解;②设Q(x1,y1),用坐标表示斜率,通过垂直得斜率之积为-1,可得(y0-1)(y1-y0)=-x0 (x1-x0),(-y0-1)(y1+y0)=-x0 (x1-x0),化得(y1+1) y0=0,所以y1=-1,得证.试题解析:(1)设椭圆C:+=1的半焦距为c.由题意,得解得从而b=1.所以椭圆C的方程为+y2=1.(2)①根据椭圆的性质,M,N两点关于x轴对称,故可设M(x0,y0),N(x0,-y0)( x0≠0,y0≠0),从而k1k2=·=.因为点M在椭圆C上,所以+y02=1,所以1-y02=,所以k1k2==.②设Q(x1,y1),依题意A(0,1).因为l1⊥AM,所以·=-1,即(y0-1)(y1-y0)=-x0 (x1-x0);因为l2⊥AN,所以·=-1,即(-y0-1)(y1+y0)=-x0 (x1-x0),故 (y0-1)(y1-y0)-(-y0-1)(y1+y0)=0,化得(y1+1) y0=0.从而必有y1+1=0,即y1=-1.即点Q在一条定直线y=-1上.20. 设函数f(x)=ax2-1-ln x,其中a∈R.(1)若a=0,求过点(0,-1)且与曲线y=f(x)相切的直线方程;(2)若函数f(x)有两个零点x1,x2,①求a的取值范围;②求证:f ′(x1)+f ′(x2)<0.【答案】(1) y=-x-1 (2) ① (0,e).②见解析【解析】试题分析:(1)设切点为T(x0,-1-ln x0),得切线:y+1+ln x0=- ( x-x0),将点(0,-1)代入求解即可;(2)①求导f ′(x)=,讨论a≤0,和a>0时函数的单调性求解即可;②由x1,x2是函数f(x)的两个零点(不妨设x1<x2),得,两式作差得a(x1+x2)=,代入要证得式子得2ln+->0,令h(x)=2ln x+-x,x∈(0,1),求导利用单调性求最值即可证得.试题解析:(1)当a=0时,f(x)=-1-ln x,f ′(x)=-.设切点为T(x0,-1-ln x0),则切线方程为:y+1+ln x0=- ( x-x0).因为切线过点(0,-1),所以-1+1+ln x0=-(0-x0),解得x0=e.所以所求切线方程为y=-x-1.(2)① f ′(x)=ax-=,x>0.(i) 若a≤0,则f ′(x)<0,所以函数f(x)在(0,+∞)上单调递减,从而函数f(x)在(0,+∞)上至多有1个零点,不合题意.(ii)若a>0,由f ′(x)=0,解得x=.当0<x<时, f ′(x)<0,函数f(x)单调递减;当x>时, f ′(x)>0,f(x)单调递增,所以f(x)min=f()=-ln-1=--ln.要使函数f(x)有两个零点,首先--ln<0,解得0<a<e.当0<a<e时,>>.因为f()=>0,故f()·f()<0.又函数f(x)在(0,)上单调递减,且其图像在(0,)上不间断,所以函数f(x)在区间(0,)内恰有1个零点.考察函数g(x)=x-1-ln x,则g′(x)=1-=.当x∈(0,1)时,g′(x)<0,函数g(x)在(0,1)上单调递减;当x∈(1,+∞)时,g′(x)>0,函数g(x)在(1,+∞)上单调递增,所以g(x)≥g(1)=0,故f()=-1-ln≥0.因为-=>0,故>.因为f()·f()≤0,且f(x)在(,+∞)上单调递增,其图像在(,+∞)上不间断,所以函数f(x)在区间(,] 上恰有1个零点,即在(,+∞)上恰有1个零点.综上所述,a的取值范围是(0,e).②由x1,x2是函数f(x)的两个零点(不妨设x1<x2),得两式相减,得a(x12-x22)-ln=0,即a(x1+x2) (x1-x2)-ln=0,所以a(x1+x2)=.f ′(x1)+f ′(x2)<0等价于ax1-+ax2-<0,即a(x1+x2)--<0,即--<0,即2ln+->0.设h(x)=2ln x+-x,x∈(0,1).则h′(x)=--1==-<0,所以函数h(x)在(0,1)单调递减,所以h(x)>h(1)=0.因为∈(0,1),所以2ln+->0,即f ′(x1)+f ′(x2)<0成立.点睛:导数背景下的零点问题,需结合函数的极值符号、函数的单调性及零点存在定理去考虑.而零点满足的不等式则需要通过构建新的不等式去证明,新的不等式对应的函数是一元函数,我们可以用导数去证明这个新的不等式.。