课题:§5.3一次函数的图象(1)

合集下载

《一次函数的图象》word教案 (公开课)2022年北师大版 (10)

《一次函数的图象》word教案 (公开课)2022年北师大版 (10)

教学目标:1.了解一次函数的图象是一条直线, 能熟练作出一次函数的图象.2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.3.函数的代数表达式作函数的图象,培养学生数形结合的意识和能力.教学重、难点重点:初步了解作函数图象的一般步骤:列表、描点、连线.难点:理解一次函数的代数表达式与图象之间的一一对应关系.教法及学法指导:本节课我运用多媒体演示教学手段,力求直观,高效,使本节课有趣、形象、事半功倍.在教学中注重培养学生的画图能力,主要是培养学生的看图、识图能力,培养思维能力.指导学生根据概念的直观表象,归纳出概念的性质,运用类比、归纳、数形结合等方法,培养学生分析问题、解决问题的能力.对于学生我采用自主探究、合作交流式教学,学生通过一些不同的问题,讨论、归纳,在与老师之间的交流中学习知识,体验学习的快乐,让学生更有时机体验自己与他人的想法,从而掌握知识.课前准备:多媒体课件,三角板等教具准备.教学过程:一、创设情境,引入新课师:我们已经认识了一次函数和正比例函数,现在老师这里有一题要考考同学们,请看题:〔课件演示〕一天,小明以80米/分的速度去上学,请问小明离家的距离S 〔米〕与小明出发的时间t 〔分〕之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗?〔t ≥0〕生:S =80t ,是一次函数也是正比例函数.师:很好!下面的图象能表示上面问题中的S 与t 的关系吗?生:能.师:我们说,上面的图象是函数S =80t 〔t ≥0〕的图象,这就是我们今天要学习的主要Ot 〔分〕S 〔米〕1内容:一次函数的图象的特殊情况即正比例函数的图象.教师板书课题4.3一次函数的图象〔1〕设计意图:通过学生比拟熟悉的生活情景,让学生在写函数关系式和认识图象的过程中,初步感受函数与图象的联系,激发其学习的欲望.效果:学生通过对上述情景的分析,初步感受到函数与图象的联系,激发了学生的求知欲望,感受图象的价值.二、合作交流,探究新知探究一:函数图象的定义:自学课本83页并能用自己的语言归纳函数图象概念.师:什么叫做函数的图象呢?你能用语言表达吗?生:把一个函数的自变量x 与对应的因变量y 的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.学生边说,老师边板书“函数的图象〞的概念并附属说明如一次函数2y x =,当1=x 时,对应2=y .那么我们可在直角坐标系内描出点〔1,2〕,再给x 另一值,对应又一个y .又可在直角坐标系内描出一个点来,所有这些点组成的图形叫2y x =的图象. 由此可知道:函数的图象是满足函数表达式所有的点的集合师:下面我们就通过具体的例子来真切的认识认识正比例函数图象的“真面目.〞探究二:正比例函数图象的画法例1 请作出正比例函数y=2x 的图象.解:1.列表: x … -2 -1 0 12 … y=2x … -4 -2 02 4 … 说明:(1)列表时教师要问学生x ,y 的取值范围是什么,并引导学生一般情况下x ,y 取哪些值最适宜.还要强调:应注意左右还有无数组数,因此左右应加省略号.(2)列表后教师追问学生列表的目的是什么,让学生明确列表是为了找自变量x 与因变量y 对应值.2.描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.(-2,-4) 〔-1,-2〕 〔0,0〕 〔1,2〕 〔2,4〕说明:描点要注意x的值作为横坐标,y的值作为纵坐标.3.连线:把这些点依次连结起来,得到y=2x的图象.说明:连线要注意按x的值从小到大的顺序连接.并由学生完成作图.y=2x 2.描点3.连线师:正比例函数图象的形状是什么?生:是一条直线.师:由例1我们发现作一个函数的图象需要哪些步骤?(小组内合作交流体会,教师巡视课堂,随时点拨,诱导学生的思维朝向“教学目标〞.) 师:请小组代表发言说自己小组的感受.〔学生边说老师边板书〕三大步:列表,描点,连线.师:如何列表?x如何取值?生:在函数关系式y=2x中,x的取值范围是全体实数〔包括正数、负数和0〕,为了方便画图,应用整数.设计意图:通过本环节的学习,让学生明确作一个函数图象的一般步骤,能做出一个函数的图象,同时感悟正比例函数图象是一条直线.三、动手操作,深化探究做一做〔1〕作出正比例函数y =-3x 的图象.〔2〕在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y =-3x .〔学生独立画图,教师巡视并及时纠正学生画图中的错误,比方将直线画成线段〕 设计意图:做一做“作出正比例函数y=-3x 的图象〞,意在让学生进一步熟悉如何作一个正比例函数的图象,同时要求学生在作这个函数的图象时,尽量准确,为后面研究函数与图象的对应关系和得出一次函数的图象是一条直线作好铺垫和准备.师:请同学们以小组为单位,讨论下面的问题,把得出的结论写出来.〔1〕满足关系式y =-3x 的x ,y 所对应的点〔x ,y 〕都在正比例函数y =-3x 的图象上吗?〔2〕正比例函数y =-3x 的图象上的点〔x ,y 〕都满足关系式y =-3x 吗?〔3〕正比例函数y=kx 的图象有什么特点?由学生讨论上面的问题.生1:满足关系式的x ,y 所对应(),x y 都在图像上.例如:满足关系式2x =,6y =-即〔2,-6〕就在图像上.满足关系式1x =-,3y =即〔-1,3〕也在图像上等等. 生2:图像上的点都满足关系式,例如:图像上的点〔-2,6〕即当x =-2时y =6就满足关系式,图像上的点(1,-3)即x=1,y =-3也满足关系式,等等.师:大家有什么发现?生3:图像与关系式是对应的.生4:正比例函数的关系式与它的图像是对应的. 师:大家说得非常正确.师生共同概括:由上面的讨论我们知道:正比例函数的代数表达式与图象是一一对应的,即满足正比例函数的代数表达式的x ,y 所对应的点〔x ,y 〕都在正比例函数的图象上;正比例函数的图象上的点〔x ,y 〕都满足正比例函数的代数表达式.正比例函数y=kx 的图象是一条直线,以后可以称正比例函数y=kx 的图象为直线y=kx .设计意图:教师对每位答案正确的学生都给予积极的评价和鼓励,进一步调动学生的积极性.通过三个问题的思考与解决,明确正比例函数的图象是一条直线,建立正比例函数的代数表达式与图象之间的“一一对应〞关系,培养了学生小组“合作探究〞的能力和“数形结合〞的意识这就突破了难点.议一议师:既然我们得出正比例函数y=kx的图象是一条直线.那么在画正比例函数图象时有没有什么简单的方法呢?生:因为“两点确定一条直线〞,所以画正比例函数y=kx的图象时可以只描出两个点就可以了.因为正比例函数的图象是一条过原点〔0,0〕的直线,所以只需再确定一个点就可以了,通常过〔0,0〕,〔1,k〕作直线.师:好!下面我们就用两点法作出函数图象.例2 在同一直角坐标系内作出y=x,y=3x,y=-12x,y=-4x的图象.解:1.列表x 0 1y=x 0 1y=3x 0 3y=-12x0 -12y= 4x0 -42.描点:过点〔0,0〕和〔1,1〕作直线,那么这条直线就是y=x的图象.过点〔0,0〕和〔1,3〕作直线,那么这条直线就是y=3x的图象.过点〔0,0〕和〔1,-12〕作直线,那么这条直线就是y=-12x的图象.过点〔0,0〕和〔1,-4〕作直线,那么这条直线就是y=-4x的图象.3.连线.设计意图:做一做“作出这几个正比例函数的图象〞,意在让学生进一步熟悉如何作一个正比例函数的图象,同时要求学生通过这几个函数的图象,分析正比例函数图象的性质,以及k的绝对值大小与直线倾斜程度的关系.效果:学生通过作出正比例函数的图象,明确了作函数图象的一般方法.在探究函数与图象的对应关系中加深了理解,并能很快地作出正比例函数的图象.议一议师:请大家先独思考立,再互相交流得出结论.上述四个函数中,随着x的增大,y的值分别如何变化?〔教师走进学生中间,对学生进行鼓励. 对于学生说的不透、不清的问题进行及时引导.学生四个人一组进行讨论交流,将自己确定的结论自己写在练习本上.不能确定的结论同组进行讨论.〕讨论结束,各小组交流得到的结论:生1:y=x , y=3x的图象从左向右是上升的,由此我想k>0时,y的值随x的增大而增大.生2:y= -0.5x, y=-4x的图象从左向右是下降的,由此我想k<0时,y的值随x的增大而减小.师:同学们分析的很好,通过上面的讨论你认为正比例函数y=kx图象有何特点?〔在表扬学生的观察力同时,鼓励学生大胆发言,并留给学生一点思考时间.〕生3:我发现当k>0时,函数图象位于第一、三象限内.如y=x ,y=3x的图象.生4:〔抢答〕当k <0时,函数图象位于第二、四象限内.如 y= -0.5x , y=-4x 的图象.生5:正比例函数y=kx 的图象是经过原点〔0,0〕的一条直线.师:大家都很有见解,从不同的角度,分析了正比例函数的图像和性质.师生总结出结论:在正比例函数y=kx 中,当k >0时,图象在第一、三象限,y 的值随着x 值的增大而增大(即从左向右观察图象时,直线是向上倾斜的);当k <0时, 图象在第二、四象限,y 的值随着x 值的增大而减小 (即从左向右观察图象时,直线是向下倾斜的).〔教师用多媒体展现正比例函数图象的性质.〕 函数 图象 k 大致图象所经象限 函数值变化正比例函数 直线 0k >一、三 y 随x 的增大而增大0k <二、四y 随x 的增大而减小设计意图:通过观察正比例函数图象,归纳概括正比例函数图象特征,探索正比例函数的主要性质.这样的设计能够调动学生学习的积极性,增强学生对知识的理解,同时也培养了学生的观察、归纳能力和合作交流能力.〕请你进一步思考:〔1〕正比例函数y=x 和y=3x 中,随着x 值的增大y 的值都增加了,其中哪一个增加得更快?你能说明其中的道理吗?〔2〕正比例函数y =-12x 和y=-4x 中,随着x 值的增大y 的值都减小了,其中哪一个减小得更快?你是如何判断的?生1:正比例函数y=x ,当x 增加1时y 增加1,而y=3x 中,当x 增加1时y 增加3,所以y=3x 增加得更快.x y O x y O生2:正比例函数y =-12x ,当x 增加1时y 减少12,而y=-4x 中,当x 增加1时y 减少4,所以y=-4x 减少得更快.师生结合图像总结得出:k 越大,直线越靠近y 轴.四、稳固练习,深化理解1.在同一直角坐标系中分别作出y =13x 与y =-3x 的图象. 设计意图:让学生熟练正比例函数图象的作法.2.以下哪一些点在函数y =-5x 的图象上?〔1,5〕、〔-1,5〕、(0.5,)、(-5,1)提示:逐个带入关系式试一下就可以发现〔-1,5〕(0.5,)这个点满足关系式,所以它在函数图象上.设计意图:通过这个题可以进一步印证“函数关系式和函数图象〞的“一 一对应〞关 系,给学生留下较深的印象.师生归纳:满足一次函数表达式的一组x 、y 所对应的点的坐标〔x 、y 〕就在函数图象上,函数图象上的点的坐标都会满足一次函数表达式.3.对于函数x y 3-=的两个确定的值1x 、2x 来说,当21x x <时,对应的函数值1y 与2y 的关系是( )A. 21y y <B. 21y y =C. 21y y >D. 无法确定设计意图:是明确正比例函数图象的性质,要注意自变量的取值范围.效果:学生通过练习,进一步熟练了正比例函数图象的作法,对正比例函数和正比例函数图象的一般特征有了清楚的认识.五、课时小结,回归系统师:本节课我们通过对正比例函数图象的研究的学习,你有哪些收获?还有那些迷惑? 大家回忆一下本节课所学的内容〔可以借助于板书对本节课所学的进行“梳理〞〕.生1:函数与图象之间是一一对应的关系;生2:正比例函数的图象是一条经过原点的直线;生3:作正比例函数图象时,只取原点外的另一个点,就能很快作出.生4:k >0时,函数图象位于第一、三象限内,y 的值随着x 值的增大而增大(即从左向右观察图象时,直线是向上倾斜的);当k<0时, 图象在第二、四象限, y的值随着x值的增大而减小 (即从左向右观察图象时,直线是向下倾斜的).设计意图:让学生在回忆的过程中,进一步加深对正比例函数图象的理解,同时对本节所学知识有一个总结性的认识.效果:学生通过对本节学习的回忆和小结,对所学知识更清楚,抓住了重点,明确了关键.六、课堂检测,矫正评价1.正比例函数5y x=-的图象位于象限,y随着x的增大而 .2.函数y=kx的函数值随x的增大而增大,那么函数的图象经过〔〕A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限3.写出一个具体的y随x的增大而减小的一次函数解析式____4.画出以下正比例函数图象.(1)y=4x; (2) y=-13x.七、布置作业,稳固知识必做题:课本P85 第2题.选做题:课本P85 第4题.设计意图:作业分层,让能力不同的每个学生都能各有所得.板书设计§一次函数的图像〔1〕函数图象的定义:把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.作函数图象的步骤:〔1〕列表〔2〕描点〔3〕连线图像特征:一条直线例1练习:教学设计反思成功之处:本节内容是学生利用数形结合的思想去研究正比例函数的图象,对函数与图象的对应关系有点陌生.在教学过程中我通过提供学生熟悉的生活素材作情景,激发了学生的学习兴趣,对函数与图象的对应关系让学生动手去实践,去发现,对正比例函数的图象是一条直线应让学生自己得出.在得出结论之后,让学生能运用“两点确定一条直线〞,很快作出正比例函数的图象.培养了学生“数形结合〞的意识,开展了合作探究和总结概括的能力.在稳固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力.缺乏之处:由于本节课容量今后应加强细节的设计和全面考虑.学生的讨论与合作学习还需加强,讨论问题还不够深入,多数时间还是以个别答复为主,不会的没有足够的耐心去“等待花开〞,虽然个别答复非常精彩,但仍需注意“让每一个学生都得到开展〞.[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。

一次函数的图象教案优秀7篇

一次函数的图象教案优秀7篇

一次函数的图象教案优秀7篇一次函数篇一教学目标:1、知道与正比例函数的意义。

2、能写出实际问题中正比例关系与关系的解析式。

3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。

4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。

教学重点:对于与正比例函数概念的理解。

教学难点:根据具体条件求与正比例函数的解析式。

教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。

顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。

教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。

)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。

一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。

特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)第 1 2 页一次函数篇二1、使学生初步理解与正比例函数的概念。

2、使学生能够根据实际问题中的条件,确定与正比例函数的解析式。

以及正比例函数的解析式一、复习提问: 1、什么是函数? 2、函数有哪几种表示方法?3、举出几个函数的例子。

二、新课讲解:可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。

然后让学生观察这些例子(实际上均是的解析式),y=x,s=3t等。

一次函数的图象北师大版(1)

一次函数的图象北师大版(1)

5、函数y=-0.5x的图象经过( C )
(A)一、二象限 (C) 二、四象限
(B) 一、三象限 (D) 二、三象限
5、函数y=kx+b(k≠0)的图象经过原点,且
y随x的增大而减小,则( B )
(A) k>0,b=0 (C) k>0,b≠0
(B) k<0,b=0 (D) k>0,b≠0
6、如果一次函数y=(m-3)x+m2-9的图象 经过原点,你会求m吗?试一试。
解:由图象经过原点,得b= m2-9=0, 从而解得m=±3, 但k=m-3≠0,因此m≠3,所以m=-3 。
1 23
作业
2、正比例函数y=-5x的图象经过点(0, 0 ) 与(1,-5 ),y随x的增大而 减小 ,图 象经过 二、四 象限。
1 3、已知点(3,1)在直线y=kx上,则k= 3 。
4、函数
y1x 2
的图象一定不经过(1, 1)
2
2
(C) (2,1) (D) (2,1)
复习:
1、设地面气温是25℃,如果每升高1km,气温下 降6 ℃ ,则气温t(℃)与高度h(km)的函数
关系式是( A )
( A) t 25 6h (B) t 25 6h
(C) t 6h 25 (D) t 6h 25
2、某厂有煤80吨,每天需烧煤5吨,求工厂剩 余煤量y(吨)与烧煤天数x(天)之间的函数 关系式,判断它是哪一种类型的函数,并求出 自变量x的取值范围。
(2)作y=kx的图象时,除原点外还需找 一点。 一般找(1,k)点 。
(3)当k>0时,函数图象经过一、三象 限,且y的值随x值的增大而增大;
k的值越大,函数图象与x轴正方向所成 的锐角越大。

第五章一次函数5.3一次函数的图象(1)

第五章一次函数5.3一次函数的图象(1)

主备人:备课组成员签名:课题:§5.3一次函数的图象(1)教学目标1、知道一次函数的图象是一条直线,会选取适当的点画一次函数的图象。

2、经历作图过程,初步了解作函数图象的一般步骤。

3、理解一次函数的代数表达式与图象之间的对应关系。

4、能较熟练作出一次函数的图象。

教学重点1、能熟练地作出一次函数的图象。

2、归纳作函数图象的一般步骤。

3、理解一次函数的代数表达式与图象之间的对应关系。

教学过程1、情境创设点燃一支香,感受它的长度随着时间的变化而变化,帮助学生理解课本图片提供的信息,探索一次函数的图象。

书P192(1)图中共有几支香?(2)图片是怎样表示时间变化的?(3)这支香点燃5分钟后缩短了多少?点燃10分钟后呢?(4)用y(cm)表示香的长度,x(min)表示香燃烧的时间,你能写出y与x之间的函数关系式吗?(5)依次连接图片中香的顶端,你有什么发现?(6)你能利用平面直角坐标系,将图片揭示的信息以及你的发现告诉大家吗?2、作一次函数的图象例1:作出一次函数y=2x+1的图象解:1、列表(写出自变量x与函数值的对应表)先确定x的若干个值,对应的y值作为点的纵坐标,便可画出一个点。

也就是由表中给出的有序实数对,在直角坐标系中描出相应的点。

3、连线:按照横坐标由小到大的顺序把相邻两点用线段连结起来,得到的图形就是函数式y=2x+1的图象,它是一条直线。

小结:从刚才作图的情况来总结一下作一次函数图象有哪些步骤:(1)列表;(2)描点;(3)连线。

做一做(1)作出一次函数y=-2x+5的图象,(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足关系式y=-2x+5。

123、连线:把这些点依次连接起来,得到y=-2x+5的图象,它是一条直线。

图象:3、议一议一次函数的图象是什么?是否可以简化作一次函数的图象的过程?小结:一次函数的图象是一条直线,由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了,一次函数y=kx+b的图象也称为直线y-kx+b。

一次函数的图象(第1课时)课件

一次函数的图象(第1课时)课件
上的点(x,y)都满足关系式y=–2x+5吗?
y
9 8 7 6 5 4 3 2 1
–7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8
x
–1
A
–2
–3
B
–4
–5
–6
–7
答:(1)点B坐标(4,-3) 当x=4时,y=-2x4+5=-3
故(4,-3)满足关系式 y=-2x+5
(2)一次函数y=–2x+5的 图象上的点(x,y)满足关系 式y=–2x+5
北师大版 八年级 上册(第四章)
3.一次函数的图象
(第1课时)
引例
已知一次函数y=2x , <1> 当x= 1 时,y = 2
当x= 2 时,y = 4 <2> 当x= –3时,y = – 6
当x= –4时,y = – 8 <3>以x为点的横坐标,相应的y的值为点 的纵坐标,可得点
(1, 2) ;(2,4) ;(-3,-6);(-4,-8) <4>再找一些满足同样要求的点
<4>作函数的一般步骤应怎样?
答: A:一次函数y=-3x的图象应是一条直线
B:作函数的一般步骤:列表,描点,连线
例 作出一次函数y=-3x的图象
解: x … -2 -1 0 1 2 … y
y=2x+1 … 6 3 0 -3 -6 … 5
4
作函数图象的一般步骤: 列表:找到一些满足条件的点。 描点:以表中各组对应值作为点的坐
1 2 34567 8
A
B
答: (1)当x=3, y=–2x3+5=-1 所对应的点(3,–1)在一次函数 y=–2x+5的图象上。

一次函数的图像(1) 课件

一次函数的图像(1) 课件
1 (A) m 3
1 (B) m 3
(C) m > 1
(D)m < 1
4、若函数 y 2 x
m 2
为正比例函数,则m=(
-1
),
5、在正比例函数y=4x中, y随x的增大而( 增大 )。在 正比例函数
1 y x 3
中, y随的增大而( 减小 )。
6、任意写一个图象经过二、四象限的正比例函数的解 析式为 ( y=-6x )。
例函数的解析式为 y = 2x 。
达标测试 1.函数y=kx的图象经过点P(3,-1),则k的值为 (D) A .3 B.-3
1 C. 3 1 D.3
2.下列函数中,图象经过原点的为( C ) A.y=5x+1
x C.y=- 5
B.y=-5x-1
x 1 D.y= 5
3.如果函数y=(3m-1)x是正比例函数,且y随x的增 大而增大,那么m的取值范围是( A )
x y=-3x 0 0 -1 3 (-1.5,4.5) 满足

5 4

(-0.5,1.5)
3

• 0
2 1
-3
-2
-1
-1 1
2
3
x
议一议 ( 1 ) 满足关系式y=-3x的x,y所对应的点(x,y)是 否都在它的图象上? 在
( 2 ) 正比例函数y=-3x的图象上的点(x,y)都满足 它的关系式吗? 满足
y=3x增加的更快,因为 |k|值更大 1
2 • (2)正比例函数y=-0.5x和y=-4x中,随着x值的增
大y的值都减小了,其中哪一个减小得更快?你是
如何判断的? y=-4x减小的更快,因为|k|值更大

一次函数的图像教案

一次函数的图像教案

一次函数的图象教学设计(第一课时)一、教学设计思想本节课共两课时,第1课时本节交代了函数图象的概念和作图的一般步骤,目的是为后继学习反比例函数、二次函数的图像作必要的知识准备。

根据教学目标,结合学生心理特点,这节课采用在教师引导下,学生主动探索发现的教学方法.即教师创设问题情景,引导学生观察、比较、自学、思考并展开讨论,使学生作为学习主体参与知识发生、发展的全过程,体验揭示规律,发现真理的乐趣,从而产生巨大的内驱力,提高课堂教学效率,充分发挥教师主导作用和学生的主体作用.二、教学目标知识与技能1.总结作一次函数图像的一般步骤,能熟练作出一次函数图像.2.总结归纳出一次函数的性质———k>0或k<0时图像变化的情况.过程与方法经历作图过程,归纳总结作作函数图像的一般步骤,发展总结概括能力,培养数形结合的意识.情感态度与价值观加强新旧知识的联系,促进新的认知结构的建构.三、教学重点1.能熟练地作出一次函数的图象.2.归纳作函数图象的一般步骤.3.理解一次函数的代数表达式与图象之间的对应关系.四、教学难点理解一次函数的代数表达式与图象之间的对应关系.五、教学方法讲、议结合法.六、教具准备投影片两张:第一张:补充练习(§6.3.1 A );第二张:补充练习(§6.3.1 B).七、教学过程Ⅰ.导入新课[师]上节课我们学习了一次函数及正比例函数的概念,正比例函数与一次函数的关系,并能根据已知信息列出x与y的函数关系式,本节课我们来研究一下一次函数的图象及性质.Ⅱ.讲授新课 一、函数图象的概念[师]要研究一次函数的图象,首先应知道什么叫图象?把一个函数的自变量x 与对应的因变量y 的值作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph ). 假设在代数表达式y =2x 中,自变量x 取1时,对应的因变量y =2,则我们可在直角坐标系内或描出表示(1,2)的点,再给x 的另一个值,对应又一个y ,又可知直角坐标系内描出一个点,所有这些点组成的图形叫该函数y =2x 的图象.由此看来,函数图象是满足函数表达式的所有点的集合.那么应如何作函数的图象呢? 二、作一次函数的图象 [例1]作出一次函数y =21x +1的图象. [师]根据图象的定义,需要先找点.所以要先列表,找满足条件的点,再描点,连线. 解:列表x … -2 -1 0 1 2 …y =21x +1 021 123 2 …描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点. 连线:把这些点依次连接起来,得到y =21x +1的图象如下,它是一条直线.[师]从刚才我们作图的情况来总结一下,作一次函数的图象有哪些步骤呢? [生]①列表;②描点;③连线. 三、做一做(1)作出一次函数y =-2x +5的图象.(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足关系式y =-2x +5.[生]列表x …-2 -1 0 1 2 …y=-2x+5 …9 7 5 3 1 …描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:把这些点依次连接起来,得到y=-2x+5的图象,它是一条直线.图象如下:在图象上找点A(3,-1),B(4,-3)当x=3时,y=-2×3+5=-1.当x=4时,y=-2×4+5=-3.∴(3,-1),(4,-3)满足关系式y=-2x+5.四、议一议(1)满足关系式y=-2x+5的x、y所对应的点(x,y)都在一次函数y=-2x+5的图象上吗?(2)一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5吗?(3)一次函数y=kx+b的图象有什么特点?[师]请大家分组讨论,然后回答.[生]满足关系式y=-2x+5的x,y所对应的点(x,y)都在一次函数y=-2x+5的图象上.(2)一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5.[师]由此看来,满足函数关系式y=-2x+5的x,y所对应的点(x,y)都在一次函数y= -2x+5的图象上;反过来,一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5.所以,一次函数的代数表达式与图象是一一对应的.即满足一次函数的代数表达式的点在图象上,图象上的每一点的横坐标x,纵坐标y都满足一次函数的代数表达式.(3)[生]一次函数的图象是一条直线.[师]非常正确.一次函数的图象是一条直线.由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了,一次函数y =kx +b 的图象也称为直线y =kx +b .Ⅲ.课堂练习 分别作出一次函数y =31x 与y =-3x +9的图象. [师]根据刚才的讨论可知,我们在画一次函数的图象时,只要确定两个点就可以了. [生]作函数y =31x 的图象时,找点(3,1),(6,2)图象如下.作函数y =-3x +9的图象时,找点(1,6),(2,3) 图象如下:补充练习投影片(§6.3.1A )(1)作出一次函数y =-x +21的图象. (2)在所作的图象上取几个点,找出它们的坐标,并验证其是否都满足关系式y =-x +21. [生](1)作一次函数y =-x +21的图象时,取点(0, 21)和(1,-21),然后过这两点作直线即可.图象如下:(2)在图象上取点A (23,-1),B (-1,23) 当x =23时,y =-23+ 21=-1 当x =-1时,y =1+21=23∴A 、B 两点的坐标都满足关系式y =-x +21. 投影片(§6.3.1 B ) (1)作出一次函数y =4x +3的图象;(2)判断下列各对数是不是满足关系式y =4x +3,如果是,请验证一下以这些数对为坐标的点是否在你所作出的函数图象上. (0,3),(-1,-1),(21,5),(1,7),(-23,-3) [生]解:(1)作一次函数y =4x +3的图象时,找点(0,3),(1,7),然后过这两点作直线即可.图象如下:(2)当x =0时,y =4×0+3=3; 当x =-1时,y =4×(-1)+3=-1; 当x =21时,y =4×21+3=5; 当x =1时,y =4×1+3=7;当x =-23时,y =4×(-23)+3=-3. ∴每对数都满足关系式y =4x +3.由前面的议一议可知,以这些数对为坐标的点在所作的函数图象上. Ⅳ.课时小结本节课主要学习了以下内容: 1.函数图象的概念;2.作一次函数图象的步骤以及熟练地作出一次函数的图象,并能验证某些数对是否在函数图象上. 3.明确一次函数的图象是一条直线,因此在作一次函数的图象时,不需要列表,只要确定两点就可以了.Ⅴ.课后作业 习题6.3 Ⅵ.活动与探究1.已知函数y =(m -2)x 552+-m m+m -4,问当m 为何值时,它是一次函数?解:根据一次函数的定义,有⎩⎨⎧≠-=+-021552m m m 解得⎩⎨⎧≠==241m m m 或∴m =1或m =42.如果y +3与x +2成正比例,且x =3时,y =7. ①写出y 与x 之间的函数关系式; ②求当x =-1时,y 的值; ③求当y =0时,x 的值.分析:①y +3与x +2成正比例,就是y +3=k ·(x +2),根据x =3时,y =7,求k 的值,从而确定y 与x 之间的函数关系式.②把x =-1代入所求函数关系式,求出y 的值. ③把y =0代入函数关系式,求出x 的值. 解:①∵y +3与x +2成正比例 ∴y +3=k (x +2)把x =3,y =7代入得:7+3=k (3+2) ∴k =2,∴y =2x +1②把x =-1代入y =2x +1中,得y =-2+1=-1③把y =0代入y =2x +1中,得 0=2x +1,∴x =-21. 说明:若y 与x 成一次函数关系式,那么函数关系式要写成y =kx +b (k ≠0)的形式. 3.如果y =mx 82-m是正比例函数,而且对于它的每一组非零的对应值(x ,y )有xy <0,求m 的值.分析:按正比例函数y =kx (k ≠0)中对于k 及x 的指数的要求决定m 的值. 解:根据题意得,y =mx 82-m 是正比例函数,故有:m 2-8=1且m ≠0即m =3或m =-3又∵xy <0,∴x ,y 是异号. ∴m =xy<0 ∴m =3不合题意,舍去. ∴m =-3.常见错误:忽略m ≠0的要求,在解题过程不写这一条件. 4.已知y +b 与x +a (a ,b 是常数)成正比例. 求证:y 是x 的一次函数.分析:由y +b 与x +a 成正比例,设立解析式,分析此解析式为x 的一次函数. 解:∵y +b 与x +a 成正比例 ∴可设y +b =k (x +a )(k ≠0) 整理,得y =kx +ka -b =kx +(ka -b ) ∵k ,a ,b 都是常数. ∴ka -b 也是常数. 又∵k ≠0∴y 是x 的一次函数.常见错误:整理得到y =kx +ka -b 时不会把ka -b 看作一个整式.说明:在叙述函数的,一定要说清楚谁是谁的什么名称函数,否则容易发生混淆现象.如本题中,y +b 是x +a 的正比例这个说法是正确的,同时,y 是x 的一次函数的说法也是正确的.八、板书设计§6.3.1 一次函数的图象(一)一、函数图象的概念二、如何作一次函数的图象归纳步骤三、做一做(作一次函数的图象)四、议一议(函数y=-2x+5的图象与满足y=-2x+5的x,y所对应的点(x,y)之间的关系)五、课堂练习六、课时小节七、课后作业。

53一次函数的图象(1)精品PPT课件

53一次函数的图象(1)精品PPT课件
画一次函数y=-2x+5的图象;
方法小结:
明确一次函数的图象是一条直线,因此在作 图时,不需要列表,只要确定两点即点
(0,b),点( -,bk 0)就可以了。
正比例函数y=kx的图象是经过原点(0,0) 的一条直线。
1、作一次函数图象的步骤 ⑴列表; ⑵描点; .⑶连线.
2、正比例函数的图象是一条经过__原__点____的直线
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
16
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
讲师:XXXXXX XX年XX月XX日
10
(10,8)
8
y=16-0.8x
6
(15,4)
4
2
(20,0)
0
5
10
15
20 x
y (0,16)
16
14 12
(5,12) y=16-0.8x
10
(10,8)
8
6
(15,4)
4 2
(20,0)
0
5
10 15 20 x
这些点有什么特征函数y=2x+1的图象?
(3)一次函数y=kx+b的图象有什么特点?
结论:
一次函数y=kx+b(k≠0)的图象是 一条直线;
一次函数y=kx+b(k≠0)的图象也称为 直线y=kx+b(k≠0).
议一议
既然我们得出一次函数y=kx+b的图象 是一条直线.那么在画一次函数图象时 有没有什么简单的方法呢?

一次函数的图象课件ppt

一次函数的图象课件ppt

一次函数与其他数学知识的结合应用
一次函数与二次函数的结合
在解决某些数学问题时,可能需要将一次函数和二次函数结合起来,例如求函数 的极值点。
一次函数与微积分的结合
在解决某些物理问题时,可能需要将一次函数和微积分结合起来,例如求物体的 运动轨迹。
04
CATALOGUE
一次函数的变体
一次函数的平移
01
关于y轴对称
一次函数y=kx+b关于y轴对称的函数 为y=kx+b。
05
CATALOGUE
习题与解答
习题
题目1
已知一次函数 y = kx + b (k ≠ 0),若 k > 0,b > 0,则该函数的图象经过哪些象限?
题目2
已知一次函数 y = kx + b (k ≠ 0),若 k < 0,b > 0,则该函数的图象经过哪些象限?
02
CATALOGUE
一次函数的图象
一次函数图象的形状
一次函数图象是一条直线
一次函数的一般形式为y=kx+b,其中k和b为常数,当k≠0时,函数的图象是 一条直线。
斜率与函数图象的关系
斜率k决定了直线图象的倾斜程度,当k>0时,图象从左下到右上倾斜;当k<0 时,图象从左上到右下倾斜。
一次函数图象的特点
确定函数的参数
根据已知条件,求出一次函数表达式中的参数k和 b。
检验作图结果
通过代入特殊值的方法检验作图结果的正确性。
03
CATALOGUE
一次函数的应用
一次函数在实际生活中的应用
速度与时间的关系
一次函数可以表示速度与时间的 关系,例如汽车的速度随时间的

5.3一次函数的图象(1)

5.3一次函数的图象(1)

5.3 一次函数的图象(作图象)教学目标:1.经历作图过程,初步了解作函数图象的一般步骤2.理解一次函数的代数表达式与图象之间的对应关系教学重点难点:1.能熟练地作出一次函数的图象,归纳作函数图象的一般步骤2.理解一次函数的代数表达式与图象之间的对应关系教学过程:一. 复习导入一次函数的定义:正比例函数的定义:二.讲授新课1.函数图象的概念把一个函数的自变量x与对应的因变量y的值作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.即函数图象是的集合.2. 作一次函数的图象(1)点燃一枝香,感受它的长度随着燃烧时间的变化而变化,帮助学生理解课本图片提供的信息,然后让学生观察课本上151页的图片,探索一次函数的图象.(2)作一次函数的图象例1.作出一次函数y=2x+1的图象描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。

连线:把这些点依次连接起来,得到y=2x+1的图象,它是一条,与x轴交于,与y轴交于,它经过象限.小结:作一次函数图象的步骤:思考:过(0,3),(1,0)两点能确定一次函数的图象吗?若能,请在坐标系中画出图象,它的解析式是.练习:1. 直线y =2x 与坐标轴交于点 ,直线y=2x-1与坐标轴交于点 ,直线y=2x+1与坐标轴交于点 ,在同一直角坐标系中画出下列函数的图象,这三条直线的位置关系是 , 从中你发现: .2.如图,直线的解析式是 它不经过 象限,△AOB 的面积是 .例2.已知矩形的周长为10cm ,一边长为xcm ,另一边长为ycm ,列出用x 表示y 的函数关系式,求出自变量x 取值范围并画出此函数的图象.课堂练习:⒈一次函数y=2x+3的图象不经过的象限是 ( )A .第一象限B .第二象限C .第三象限D .第四象限 ⒉一次函数y=kx+b 的图象如图.则 ( A .k=21,b=1 B .k=21,b=-1C .k=-21,b=1 D .k=-21,b=-1⒊ 一次函数y=2x -1图象是 ( )O 1 2 3 -1 -2 -3 -4 -4-3-2 -14 3 2 1yxxy2.1.0 xy 1 0.5 0 Axy -1 0.5 0 Bxy-1 -0.50 Cxy-10.5D课后练习: 班级: 姓名: 3.直线y=kx+b 与直线y=32x -平行,且与直线y=312+-x 交于y 轴上同一点,则该直线的解析式为________________________________.4.过点(0,-2)且与直线y = 3x 平行的直线是 ( ) A .y = 3x+2 B .y = 3x- 2 C . y = -3x+2 D .y = -3x-25.下列点中,不在一次函数y=-2x+1的图象上的点是 ( )A .(1,-1 )B . (0,1)C . (2,0)D . (-1,3)6.一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩下的水的立方数Q (m 3)与放水时间t (时)的函数关系用图表示为( )7.早晨,小强从家出发,以v 1的速度前往学校,途中在一饮食店吃早点,之后以v 2的速度向学校走去,且v 1>v 2,则表示小强从家到学校的时间t (分钟)与路程S (千米)之间的关系用图表示为( )8. 已知一次函数y=2x -4与y=-x+2.⑴在同一坐标系中画出它们的图象; ⑵求出它们的图象的交点坐标.1.一次函数y=5x+2的图象是一条经过第__________象限的直线,它与x 轴的交点坐标为__________________,与y 轴的交点坐标为_________________. 2.一次函数y=kx+3的图象经过点(-1,5),则k=___________.9.已知直线y=21x+1与直线a 关于y 轴对称,在同一坐标系中画出它们的图象,并求出直线a 的解析式.10.已知一次函数y=-2x -2 (1)画出函数的图象.(2)求图象与x 轴、y 轴的交点A 、B 的坐标. (3)求A 、B 两点间的距离.(4)求△AOB 的面积.(5)利用图象,求当x 为何值时,y ≥0.11.夏日的一个周末,小华跟着爸爸来到肉联厂.他看到叔叔们把一块又一块的猪肉搬进冷库,不一会儿冷库里装满了猪肉.这时爸爸告诉小华,冷库中现在的温度是1℃,开动制冷机,它能使冷库的温度每小时下降3℃.请小华帮忙算一算:(1)开动制冷机1小时,2小时,3小时,冷库的温度各是多少?冷库温度y(℃)与开机时间x(小时)有什么关系?并用数学表达式表示出来. (2)要使冷库温度为零下20℃,制冷机需开动几个小时?(3)冷库温度y 与开机时间x 的关系能用图形表示出来吗?怎样用图形表示?。

浙教版八年级上册数学《5.4一次函数的图像(1)》课件

浙教版八年级上册数学《5.4一次函数的图像(1)》课件

交点是(0,2)
3
例1、在同一坐标系中作出下列函数的图象,并
求它们与坐标轴的交点坐标: y=3x, y=-3x+2
想一想:
y y=3x
你能直接利用函数的表达式求 函数图像与坐标轴交点的坐标 吗?
令x=0,解出y的值即直线与y 轴交点的纵坐标;
令y=0,解出x的值即直线与x轴 交点的横坐标。
3 2 1
了函数y=3x的图象,其图象与坐标轴的交
点是原点(0,0)
-2 -1
3 2 1
01 2 3 x
对于函数y=-3x+2,
-1
取x=0,得y=2,得到点(0,2);
-2 y=-3x+2
取x=1,得y=-1,得到点(1,-1)
过点(0,2),(1,-1)画直线,就得到了函数y=-
3x+2的图象,其图象与x轴的交点是(2 ,0),与y轴
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月2021/11/82021/11/82021/11/811/8/2021
•7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观察是 思考和识记之母。”2021/11/82021/11/8November 8, 2021
一.从这节课中你学到了哪些知识? 1、什么是函数的图象?它有哪些意义? 2、怎样画一次函数的图象?它有哪些步骤? 3、一次函数的图象特征是什么? 4、怎样求函数的图象与坐标轴交点的坐标? 有哪些方法?
二.你还有哪些疑问?
x y=2x+1
…. -2 -1 0 1 2 …. …. -3 -1 1 3 5 ….
(-2,-3) (-1,-1) (0,1) (1,3) (2,5)……

一次函数的图象数学教案

一次函数的图象数学教案

一次函数的图象数学教案
标题:一次函数的图象数学教案
一、教学目标
(这部分需要描述您希望学生通过这节课学习达到的目标)
二、教学重难点
(在这里列出本节课程的重点和难点)
三、教学过程
1. 导入新课
(在这里介绍如何引导学生进入新课程的学习)
2. 讲授新知
2.1 一次函数的定义
(在这里详细介绍一次函数的定义)
2.2 一次函数的图像
(这里详细解释一次函数图像的特点,并可能包括实例分析)
3. 实践操作
(设计一些练习或者实验让学生自己动手画出一次函数的图像,加深理解)
4. 总结与反馈
(总结本节课的内容,收集学生的反馈信息)
四、作业布置
(在这里为学生布置课后的作业,以巩固他们在课堂上学到的知识)
五、教学反思
(在这一部分,您可以对本次的教学效果进行反思,看看哪些地方做得好,哪些地方还需要改进)。

教学设计_5_3一次函数的图象_1_陈金炎

教学设计_5_3一次函数的图象_1_陈金炎

究竟是多长时间呢?于是他就做了以下这个实验: 观察课本 1. 知道一次函数的图象是一条直线; 会选取两个适当的点画 炷香” (如下图所示 ) : 第 151 页 一次函数的图象。 2.理解一次函数的函数关系式与图象之间的对应关系。 3.能较熟练作出一次函数的图象。 【过程与方法】 1.经历作图过程, 初步了解作函数图象的一般步骤。 2.经历一般规律的探索过程 、 发展学生的观察 、 比较 、 抽象和 概括能力。 价值观】 【情感态度、 通过探索新知的过程, 培养学生分析问题 、 解决问题的能力, 激发学生学习数学的兴趣。
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
在实施高效课堂的时候还有其他许多需要注意的地方, 这里没有 讲到。 参考文献: [1] 吴伟国.谈谈高效的初中物理课堂教学之路 [J] . 数理化解 [2] 刘名江.如何创设高效愉悦的初中物理课堂教学 [J] . 科技
教学实践
2011 年 2 月 28 日
的运用、 平面镜能成等大的像等等。因此在进行教学设计时, 就必 教师预设的方案进行,在这样的课堂上,学生的主体性得不到发 新课程强调过程和方法, 教师应在教学活动中传授和指导学习 须要了解到学生当前的认知实际,然后在根据学生的现有基础与 展。 因此在教学的过程中教师要 关注学生掌握知识技能的过程。 实际能力进行教学设计,在进行教学设计时还应该考虑到学生之 方法, 听学生发言, 听学生讨论, 从他们的发言和讨论中发现 间的个体差异。因此在进行教学设计时要注意以下的几个方面: 多听少讲, (1 ) 学生对即将要学习的内容到底了解到什么程度了, 他们是否已 他们的弱点以及他们还没有掌握的知识。然后在一旁以引导为主 经具备学习新知识所必须掌握的知识技能; (2 ) 他们掌握的程度如 对学生进行教育。 这样有助于学生构建自己的知识体系, 提高他们 ) 即将教学的物理知识中有哪些可以联系到学生已有的生活 的能力。 何; (3 经验, 其中又有哪些超出了学生的生活实际; (4 ) 即将教学的物理知 总之, 物理教学方法、 手段多样, 教师需要从教材与学生的实 ) 哪 际进行考虑。 只有根据学生的认知规律 、 教材的特点进行教学, 才 识中有哪些需要利用现实情境和实验场景让学生加深理解; (5 些知识学生可以通过自学就能掌握, 哪些需要教师进行点拨; (6 ) 对 能够让课堂教学更加的有效率,让学生在课堂上得到全方位的发 于处于不同层次的学生需要采用何种教学策略,从而让他们都能 展。 在这里所讲的打造高校课堂的策略只是一些个人的意见, 此外 够获得发展。 4.教学方式多样、 全员参与 课堂教学方式应该多种多样。有效的教学方式是让物理课堂 教学保持良好状态的保证, 教师应该根据教学内容、 学校现有的教 在教学的过程中, 教师应该结合学生的实 地选取合适的教学方法。 物理课堂教学, 要灵活 让所有学生都能够参与到教学活动实践中。 地运用好各种教学方法, 最大限度地发挥作用, 在教学方法上就要 注意张弛结合, 动静结合。 对重点、 难点、 关键性知识要讲精、 讲透, 引导学生讨论, 思路要宽, 言语要广, 讨论要透, 使课堂气氛既深刻 又热烈。 5.多听少讲 在课堂教学中, 要为学生留下充足的空间和时间, 保证学生的 在传统的教学过程中, 课堂上基本都是教师说了 自主探究和思考。 算, 学生基本没有多少动脑、 动手的时间。学生的一切活动都按照

一次函数图像(一)

一次函数图像(一)

模块二:合作探究(10分钟左右)
⑴独立探究(5分钟)⑵小组内部答疑(2分钟)(3)展示(3分钟) 要求:①独立思考并完成探究任务 ②组内交流。1号了解情况,并安排展示准备 ③ 展示要求:⑴读重点 ⑵讲理由 ⑶现过程
模块三:形成提升(10分钟左右)
要求:独立完成,统一订证
模块四:小结反思(3分钟左右)
成都市青白江区祥福中学校
附:思维拓展训练
(1)y=5×15x/100, 【解析】 3 即 y x x 0 4 . (2)列表 描点 连线 x 0 4
y/元 6 5 4 3 2 1 O 1 2 3 4 5 6 7 8 x/km
y
0
3
(3)当 x 220 时,
3 y 220 165 (元). 4 答:该汽车行驶220 km所需油费是165元.
1 x … 0 2
1 1
… …
x … 0 y=3x … 0
1 3
… …
2 … y=- x … 0 -1 …
x … 0 1 … y=-4x … 0 -4 …
成都市青白江区祥福中学校
模块二 合作探究
成都市青白江区祥福中学校
模块二 合作探究
归纳: • 上述四个函数中,随着自变量x值的增大,y的 • 值分别如何变化? • 在正比例函数y=kx中, • 当k>0时,y的值随着x值得增大而 增大 ; 一、三 图象经过第 象限。 • 当k<0时,y的值随着x值得增大而 减小 ; 图象经过第 象限。 二、四
4.正比例函数y=(k+1)x的图象中y随x 的增大 K>-1 而增大,则k的取值范围是____________.
成都市青白江区祥福中学校
附:思维拓展训练

初中数学《一次函数的图像》教案

初中数学《一次函数的图像》教案

初中数学《一次函数的图像》教案教学课题:5.3.2一次函数的图像教学时刻(日期、课时):教材分析:学情分析:教学目标:1、明白得一次函数及其图象的有关性质。

2、能熟练地作出一次函数的图象。

3、进一步培养学生数形结合的意识和能力。

教学预备《数学学与练》集体备课意见和要紧参考资料页边批注教学过程一.新课导入上节课我们学习了如何画一次函数的图象,步骤为①列表;②描点;③连线。

通过讨论我们又明白了画一次函数的图象不需要许多点,只要找两点即可,还明确了一次函数的代数表达式与图象之间的对应关系。

本节课我们进一步来研究一次函数的图象的其他性质。

二.新课讲授(1)第一我们来研究一次函数的特例正比例函数有关性质。

请大伙儿在同一坐标系内作出正比例函数y= x,y=x,y=3x,y=-2x的图象。

图:3、议一议(1)正比例函数y=kx的图象有什么特点?(2)你作正比例函数y=kx的图象时描了几个点?(3)直线y= x,y=x,y= 3x中,哪一个与x轴正方向所成的锐角最大?哪一与x轴正方向所成的锐角最小?4、小结:正比例函数的图象有以下特点:(1)正比例函数的图象都通过坐标原点。

(2)作正比例函数y=kx的图象时,除原点外,还需找一点,一样找(1,k)点。

(3)在正比例函数y=kx图象中,当k0时,k的值越大,函数图象与x轴正方向所成的锐角越大。

(4)在正比例函数y=kx的图象中,当k0时,y的值随x值的增大而增大;当k0时,y的值随x值的增大而减小。

5、做一做在同一直角坐标系内作出一次函数y=2x+6,y=-x,y=-x+6,y=5x的图象。

一次函数y=kx+b的图象的特点:分析:在函数y=2x+6中,k0,y的值随x值的增大而增大;在函数y=-x+6中,y的值随x值的增大而减小。

由上可知,一次函数y=kx+b中,y的值随x的变化而变化的情形跟正比例函数的图象的性质相同。

对比正比例函数图象的性质,可知一次函数的图象只是原点,然而和两个坐标轴相交。

一次函数图

一次函数图

一次函数图班级_____________姓名_____________课题:§5.3一次函数的图像(1)(初二数学上050)A版课型:新课学习目标:(学习重点)会画一次函数的图象,能对一次函数的图象和其函数关系式y=kx+b (k≠0)进行探索,并初步预测常数k 与b的取值对于直线的位置所产生的影响.补充例题:例1.在同一平面直角坐标系中作出下列函数的图象.(1)y=12x;(2)y=12x+2;(3)y=-3x;(4)y=-3x+2.解:列表x……y=12x……y=12x+2……y=-3xy=-3x+2小结:一次函数 (k、b为常数,k≠0)的图象是;一般地,直线y=kx+b(k≠0)的图象经过点(0,)和(,0);正比例函数y=kx(k≠0)的图象是经过(0,)和(1,)的 ______.例2.画出直线y=-12x+1(1)结合图像观察,图像分布在哪些象限?(2) 试判断A(12,34),B(-1,2)是否在你所画的函数图像上.(3)当x取何值时,函数y=-12x+1的值大于0?例3.画出直线y=-2x+3,借助图象找出:(1)直线上横坐标是2的点;(2)直线上纵坐标是-3的点;(3)直线上到y轴距离等于2的点.(4)当x取何值时,函数y=-2x+3的值小于0?例4.函数y=-5x+2与x轴的交点坐标是 ____ ,与y轴的交点坐标是 ________ , 图象与两坐标轴围成的三角形面积是 .例5.正方形ABCD的边长为2,点P是AD边上一动点,设AP=x.⑴设梯形BCDP的面积为s,写出s与x的函数关系式.⑵求x的取值范围.⑶画出函数的图象后续助:一、填空题:1.已知一次函数y=2x+4的图像经过点(m,8),则m=________2.已知直线y=3x-8与x轴的交点坐标是 ____ ,与y轴的交点坐标是 . 图象与两坐标轴围成的三角形面积是.若一次函数y=k(x+2)的图象与y轴的交点为(0,),则它的图象与x轴的交点坐标是_____________.4.当x 时,函数y=13x+1的值等于0,当x 时,函数y=13x+1的值小于0,当x 时,函数y=13x+1的值大于0.二、选择题:1.直线y=2x+3一定通过的两点是()A.(0, 0)和(1,5) B.(-1.5,0)和(2,3)C.(0,3)和(2,0) D.(-1.5,0)和(0,3) 2.一次函数y=x-2的大致图象是()D3.一根蜡烛长20 cm,点燃后每小时燃烧5 cm,燃烧时剩下的高度y(cm)与燃烧时间x(小时)的函数关系图象表示为三、解答题1.在同一平面直角坐标系中画出函数y=x+2、y=x-2、y=-x+2 、y=-x-2的图象,这四条直线围成的是什么图形?2.画出函数y=-3x+2的图象,借助图象找出:(1)直线上横坐标是2的点,它的坐标是(,)(2)直线上纵坐标是-1的点,它的坐标是(,)(3)直线上到x轴的距离等于1的点,它的坐标是_______________(4)直线上到y轴的距离等于2的点,它的坐标是_______________(5)点(3、7)______(填“在”或“不在”)此图象上求函数y=32x-2与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.已知一次函数y=2x+4与y=bx-2的图象在x轴上相交于同一点,求b 的值.。

5.3一次函数图像(1)翟赛花

5.3一次函数图像(1)翟赛花

§5.3一次函数的图象(1)【指导思想与理论依据】本节课的主要内容是规律原理的探索和技能的形成,因此本节课归为探究型教学目标类型。

基于这一原则,我对本节课教学设计的指导思想如下:(1)以实现教学目标为前提:根据《数学课程标准》的要求,发展学生的思想素质和能力素质,培养学生创新意识和创造能力,力求体现以学生发展为本。

(2)以现代教育理论为依据:注重学生的心理活动过程,强调教学过程的有序性。

(3)以基本的教学原则作指导:坚持启发式教学,充分发挥学生学习的主观能动性,面向全体、因材施教,加强学法指导,使学生在学习中学会学习,学会认知,为他们的终身学习奠定基础。

(4)以现代信息技术为手段:适当地辅以电脑多媒体技术,演示运动变化规律、揭示事物本质特征;提供典型现象和过程,供学生作为分析、思考、探究、发现的对象,以帮助学生理解原理,并掌握分析和解决问题的步骤和方法;同时注意将现代信息技术和传统教学有机结合,以实现教学最优化,从而提高教与学的质量。

【教材分析】一、教材分析(一)教学内容:本课是苏科版八年级上册第五章第3节本节内容知识结构如下:该课时主要内容是:一次函数的图象主要包括的知识点:一次函数图象的画法(二)本节内容在教材中的所处的地位和作用从数学之深的发展角度看,变量和函数的引入,标志着数学从初等数学向变量数学的迈进,而一次函数是初中阶段研究的第一个函数关系,他的研究方法具有一般性和代表性。

本课时内容安排在一次函数的概念之后。

通过这一节课的学习使学生会用两点法画一次函数图象。

它既是正比例函数的图象和性质的拓展,也为后面反比例函数、二次函数的研究奠定基础,并在今后学习高中代数、解析几何及其他数学分支打好伏笔。

同时,在整个初中阶段:一次函数的图象和性质的学习还是一元一次方程、二元一次方程组、一元一次不等式及不等式组的解法提供新的途径。

本节内容起着承上启下的作用。

更是学生进一步学习“数形结合”这一数学思想方法的很好素材。

专题5.3一次函数的图象与性质(举一反三)(浙教版)(原卷版)

专题5.3一次函数的图象与性质(举一反三)(浙教版)(原卷版)

专题5.3 一次函数的图象与性质【十大题型】【浙教版】【题型1 判定一次函数的图像】 (2)【题型2 根据一次函数解析式判断其经过的象限】 (4)【题型3 根据函数经过的象限判断参数取值范围】 (4)【题型4 一次函数的图像与坐标轴的交点问题】 (5)【题型5 一次函数的平移问题】 (5)【题型6 判断一次函数的增减性】 (6)【题型7 根据一次函数的增减性求参数或最值】 (7)【题型8 根据一次函数的增减性判断自变量的变化情况】 (7)【题型9 比较一次函数值的大小】 (7)【题型10 一次函数的规律探究问题】 (8)【题型1 判定一次函数的图像】【例1】(2022春•牡丹江期末)直线y1=mx+n2+1和y2=﹣mx﹣n的图象可能是()A.B.C.D.【变式11】(2022春•喀什地区期末)直线y=kx+b的图象如图所示,则直线y=bx﹣k的图象是()A.B.C.D.【变式12】(2022春•安阳县期末)一次函数y=mx+n的图象如图所示,则y=﹣2mx+n的图象可能是()A.B.C.D.【变式13】(2022•萧山区模拟)若实数a ,b ,c 满足a +b +c =0,且a <b <c ,则函数y =﹣cx ﹣a 的图象可能是( )A .B .C .D .【题型2 根据一次函数解析式判断其经过的象限】【例2】 (2022•海门市校级模拟)已知关于x 的一次函数为y =mx +4m +3,那么这个函数的图象一定经过( ) A .第一象限B .第二象限C .第三象限D .第四象限【变式21】(2022春•集贤县期末)一次函数y =2(x +1)﹣1不经过第( )象限. A .一B .二C .三D .四【变式22】(2022秋•九龙坡区校级期末)如图,点A ,B 在数轴上分别表示数﹣2a +3,1,则一次函数y =(1﹣a )x +a ﹣2的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【变式23】(2022•萧山区一模)已知y ﹣3与x +5成正比例,且当x =﹣2时,y <0,则y 关于x 的函数图象经过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【题型3 根据函数经过的象限判断参数取值范围】【例3】(2022•黄州区校级自主招生)已知过点(2,3)的直线y =ax +b (a ≠0)不经过第四象限,设s =a ﹣2b ,则s 的取值范围是( ) A .32≤s <6B .﹣3<s ≤3C .﹣6<s ≤32D .32≤s ≤5【变式31】(2022春•丰都县期末)若关于x 的不等式组{5x −k >0x −3≤0有且只有四个整数解,且一次函数y =(k +2)x +k +3的图象不经过第一象限,则符合题意的整数k 的和为( ) A .﹣12B .﹣14C .﹣9D .﹣15【变式32】(2022•泰兴市一模)过点(﹣1,2)的直线y=mx+n(m≠0)不经过第三象限,若p=3m﹣n,则p的范围是()A.﹣10≤p≤﹣2B.p≥﹣10C.﹣6≤p≤﹣2D.﹣6≤p<﹣2【变式33】(2022•辽宁)如图,在同一平面直角坐标系中,一次函数y=k1x+b1与y=k2x+b2的图象分别为直线l1和直线l2,下列结论正确的是()A.k1•k2<0B.k1+k2<0C.b1﹣b2<0D.b1•b2<0【题型4 一次函数的图像与坐标轴的交点问题】【例4】(2022春•镇巴县期末)已知直线l1:y=﹣x+b与x轴交于点(1,0),直线l2与直线l1关于y轴对称,则关于直线l2,下列说法正确的是()A.y的值随着x的增大而减小B.函数图象经过第二、三、四象限C.函数图象与x轴的交点坐标为(1,0)D.函数图象与y轴的交点坐标为(0,b)【变式41】(2022春•双阳区月考)若直线y=kx﹣k(k>0)与两个坐标轴所围成的三角形的面积为4,则k=.【变式42】(2022春•卧龙区期中)若一次函数y=(k+2)x﹣k﹣3与y轴的交点在x轴的下方,则k的取值范围是.x+12【变式43】(2022•遵义模拟)平面直角坐标系xOy中,点P的坐标为(3m,﹣4m+4),一次函数y=43的图象与x轴、y轴分别相交于点A、B,若点P在△AOB的内部,则m的取值范围为()A.m>一1或m<0B.﹣3<m<1C.﹣1<m<0D.﹣1≤m≤1【题型5 一次函数的平移问题】【例5】(2022秋•宣州区校级期中)将直线y=2x+3平移后经过点(2,﹣1),求:(1)平移后的直线解析式;(2)沿x轴是如何平移的.x+1,它的图象与x轴交于点A,与y轴交于【变式51】(2022秋•雁塔区校级月考)已知一次函数y=−12点B.(1)点A的坐标为,点B的坐标为;(2)画出此函数图象;(3)画出该函数图象向下平移3个单位长度后得到的图象;x+1图象向下平移3个单位长度后所得图象对应的表达式.(4)写出一次函数y=−12【变式52】.(2022春•安岳县期中)已知直线y=(m+1)x|m|﹣1+(2m﹣1),当x1>x2时,y1>y2,求该直线的解析式.并求该直线经过怎么的上下平移就能过点(2,5)?【变式53】(2022春•武昌区期末)已知一次函数y=kx+b的图象过点A(﹣4,﹣2)和点B(2,4)(1)求直线AB的解析式;(2)将直线AB平移,使其经过原点O,则线段AB扫过的面积为.【题型6 判断一次函数的增减性】【例6】(2022秋•射阳县期末)下列一次函数中,y随x增大而增大的是()A.y=﹣3x B.y=x﹣2C.y=﹣2x+3D.y=3﹣x【变式61】(2022春•巴州区校级期中)一次函数y=4x﹣2的函数值y随自变量x值的增大而(填“增大”或“减小”).【变式62】(2022春•柳南区校级期末)正比例函数y=﹣k2x(k≠0),下列结论正确的是()A.y>0B.y随x的增大而增大C.y<0D.y随x的增大而减小【变式63】(2022春•马山县期末)已知正比例函数y=kx(k≠0)的图象经过点(﹣6,2),那么函数值y随自变量x的值的增大而.(填“增大”或“减小”)【题型7 根据一次函数的增减性求参数或最值】【例7】(2022•潮南区模拟)已知一次函数y=﹣0.5x+2,当1≤x≤4时,y的最大值是()A.1.5B.2C.2.5D.﹣6【变式71】(2022•萧山区模拟)已知正比例函数y=(m+1)x+m2﹣4,若y随x的增大而减小,则m的值是.【变式72】(2022春•饶平县校级期末)若正比例函数y=(2﹣m)x|m﹣2|,y随x的增大而减小,则m的值是.【变式73】(2022秋•沭阳县校级期末)一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则k的值是.【题型8 根据一次函数的增减性判断自变量的变化情况】【例8】(2022•兴平市模拟)在平面直角坐标系中,若一次函数y=kx+3的y值随x的增大而减小,则该一次函数的图象可能经过的点的坐标是()A.(1,1)B.(1,3)C.(1,4)D.(1,5)【变式81】(2022•连山区一模)一次函数y=kx+3(k≠0)的函数值y随x的增大而减小,它的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【变式82】(2022•东坡区模拟)若一次函数y=(2m+1)x﹣1的值随x的增大而增大,则常数m的取值范围.【变式83】(2022春•巨野县期末)已知一次函数y=(m+2)x﹣(m+3),y随x的增大而减小,且图象与y轴的交点在x轴下方,则实数m的取值范围是.【题型9 比较一次函数值的大小】【例9】(2022春•芜湖期末)已知直线y=﹣2022x+2021经过点(﹣2,y1),(﹣1,y2),(1,y3),则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y2【变式91】(2022秋•南山区校级期中)在函数y=kx(k>0)的图象上有点A1(x1,y1),A2(x2,y2),已知x1<x2,则下列各式中正确的是()A.y1<y2B.y2<y1C.y2=y1D.y1=y2=0【变式92】(2022春•同江市期末)若点A(x1,﹣1),B(x2,﹣2),C(x3,3)在一次函数y=﹣2x+m (m是常数)的图象上,则x1,x2,x3的大小关系是()A.x1>x2>x3B.x2>x1>x3C.x1>x3>x2D.x3>x2>x1【变式93】(2022•绍兴)已知(x1,y1),(x2,y2),(x3,y3)为直线y=﹣2x+3上的三个点,且x1<x2<x3,则以下判断正确的是()A.若x1x2>0,则y1y3>0B.若x1x3<0,则y1y2>0C.若x2x3>0,则y1y3>0D.若x2x3<0,则y1y2>0【题型10 一次函数的规律探究问题】【例10】(2022秋•市南区期末)如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0),…,直线l n⊥x轴于点(n,0)(其中n为正整数).函数y=x的图象与直线l1,l2,l3,…,l n分别交于点A1,A2,A3,…A n;函数y=2x的图象与直线l1,l2,l3,…,l n分别交于点B1,B2,B3,…,B n,如果△OA1B1的面积记作S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S3,…,四边形A n﹣1A n B n B n﹣1的面积记作S n,那么S2022=.【变式101】(2022春•巴中期末)如图,直线l1:y=x+1与直线l2:y=x2+12相交于点P,直线l1与y轴交于点A,一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动…照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,B2020,A2020……则A2022B2022的长度为()A.22021B.22022C.2022D.4044【变式102】(2022春•石家庄期中)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示方式放置,点A1,A2,A3,…和C1,C2,C3,…分别在直线y=x+1和x轴上,则点B4的坐标是,B2020的纵坐标是.【变式103】(2022春•庆云县期末)如图,在平面直角坐标系中,点A1(1,1)在直线y=x图象上,过A1点作y轴平行线,交直线y=﹣x于点B1,以线段A1B1为边在右侧作正方形A1B1C1D1,C1D1所在的直线交y=x的图象于点A2,交y=﹣x的图象于点B2,再以线段A2B2为边在右侧作正方形A2B2C2D2…依此类推.按照图中反映的规律,则点A n的坐标是;第2020个正方形的边长是.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:§5.3一次函数的图象(1)
教学目标
1、知道一次函数的图象是一条直线,会选取适当的点画一次函数的图象。

2、经历作图过程,初步了解作函数图象的一般步骤。

3、理解一次函数的代数表达式与图象之间的对应关系。

4、能较熟练作出一次函数的图象。

教学重点
1、能熟练地作出一次函数的图象。

2、归纳作函数图象的一般步骤。

3、理解一次函数的代数表达式与图象之间的对应关系。

教学过程
1、情境创设
点燃一支香,感受它的长度随着时间的变化而变化,帮助学生理解课本图片提供的信息,探索一次函数的图象。

书P192
(1)图中共有几支香?
(2)图片是怎样表示时间变化的?
(3)这支香点燃5分钟后缩短了多少?点燃10分钟后呢?
(4)用y(cm)表示香的长度,x(min)表示香燃烧的时间,你能写出y与x之间的函数关系式吗?
(5)依次连接图片中香的顶端,你有什么发现?
(6)你能利用平面直角坐标系,将图片揭示的信息以及你的发现告诉大家吗?
2、作一次函数的图象
例1:作出一次函数y=2x+1的图象
解:1、列表(写出自变量x与函数值的对应表)先确定x的若干个值,
对应的y值作为点的纵坐标,便可画出一个点。

也就是由表中给出的有序实数对,在直角坐标系中描出相应的点。

3、连线:按照横坐标由小到大的顺序把相邻两点用线段连结起来,得到的图形就是函数式y=2x+1的图象,它是一条直线。

小结:从刚才作图的情况来总结一下作一次函数图象有哪些步骤:
(1)列表;(2)描点;(3)连线。

做一做
(1)作出一次函数y=-2x+5的图象,
(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足关系式y=-2x+5。

1
2
3、连线:把这些点依次连接起来,得到y=-2x+5的图象,它是一条直线。

图象:
3、议一议
一次函数的图象是什么?是否可以简化作一次函数的图象的过程?
小结:一次函数的图象是一条直线,由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了,一次函数y=kx+b的图象也称为直线y-kx+b。

4、课堂练习
在同一直角坐标系中画出下列函数式的图象:
(1)y=-3x;(2)y=-3x+2; (3)y=-3x-3
总结:
1、作一次函数的步骤。

2、明确一次函数的图象是一条直线,因此在作图时,不需要列表,只要确定两点就可以了。

补充练习:
1、书P153 1,2
2、请同学们在同一平面直角坐标系中画出下列函数的图象.
(1)y=-x、y=-x+1与y=-x-2;
(2)y=2x、y=2x+1与y=2x-2.
3、画出直线y=-2x+3,借助图象找出:
(1)直线上横坐标是2的点;
(2)直线上纵坐标是-3的点;
(3)直线上到y轴距离等于1的点。

相关文档
最新文档