22.1一元二次方程导学案
一元二次方程(导学案)
21.1一元二次方程(1)学习目标:1.理解一元二次方程的概念,根据一元二次方程的一般式,确定各项系数;2.灵活应用一元二次方程的概念解决有关问题;3.理解一元二次方程的解的概念,并能解决相关问题 .学习重点:一元二次方程的相关概念及应用.学习难点:一元二次方程的相关概念及应用.【回顾旧知】问题:什么是一元一次方程?练习:1.下列方程是一元一次方程的有 .(填序号)(1)123-=+x x ; (2) x y x 25-=+; (3)0542=--x x ; (4)123=+x ; (5)()为常数m mx 02=+; (6)322=+y x . 2.若()031=++m x m 是一元一次方程,则m= .【探究新知】一.一元二次方程的定义和一般形式定义: . 一般形式: .【注】:例1:判断下列方程是不是一元二次方程,如果不是,请说明理由.(1)12-=x ; (2)01=+xy ; (3)3212=+x x ; (4)()1232-=+x x x x ; (5)()21x x x =+; (6)()为常数m x mx 012=++.【注意】: .练习:1.若关于x 的方程2232x x mx =+是一元二次方程,则m .2.若关于x 的方程()04222=-+--x x m m 是一元二次方程,则m = .例2:把方程()()12323=-+y y 化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.练习: 把下列方程化成一元二次方程的一般形式,并写出它的二次项、一次项和常数项.(1)()0122=--x x ; (2)()()()1313322-+=+x x x变式训练:已知一元二次方程()()01142=++-+c x b x 化成一般形式为02342=++x x , 若a,b,c 是直角三角形的三边长,试求a 的值.二.一元二次方程的解(根)定义: . 例3: 若关于x 的一元二次方程()045222=-+++m x x m 有一个根为0=x ,求m 的值.练习:1.方程01242=-+x x 的根为 ( )A. -2B. 2或 -6C. 6D. -2或62.若()0≠=c c x 是关于x 的一元二次方程02=++c bx x 的根,则=+b c . 例4:若m 是方程012=-+x x 的根,(1)=--m m 222 ;(2)=-m m 1 ; (3)求2017223++m m 的值.练习:已知a 是方程0120182=+-x x 的一个根,求12018201722++-a a a 的值.【总结归纳】本节课主要学习了哪些内容?你有什么收获?还有哪些困惑?【当堂检测】1.已知方程:①;0322=-x ②;1112=-x ③;0131212=+-y y ④;022=++c y ay ⑤;5)3)(1(2+=-+x x x ⑥.02=-x x 其中是一元二次方程的有 (只需填序号).2.若方程2243x x mx =-+是关于x 的一元二次方程,则m 的取值范围是 .3.方程x x 212=-化成一般形式为 , 二次项系数为 , 一次项系数为 ,常数项为 ;4.已知关于x 的方程01322=+-kx x 有一个根为2,则k 的值是 .5.若a 是方程0152=+-x x 的一个根,求221aa +的值.。
2014秋季新人教版九年级上数学第二十一章一元二次方程导学案【定稿】
x 22.1 一元二次方程(1)学习目标:了解一元二次方程的概念;一般式ax 2+bx+c=0(a ≠0)及其派生的概念;•应用一元二次方程概念解决一些简单题目.1.通过设置问题,建立数学模型,•模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重点难点:重点:一元二次方程的概念及其一般形式、和一元二次方程的有关概念并用这些概念解决问题.难点:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.一、一元二次方程定义:问题1 要设计一座2m 高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为多高?分析:设雕像下部高x m ,则上部高________,得方程_____________________________整理得_____________________________ ①问题2 如图,有一块长方形铁皮,长100cm ,宽50cm ,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒。
如果要制作的无盖方盒的底面积为3600c ㎡,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm ,则盒底的长为________________,宽为_____________.得方程_____________________________整理得_____________________________ ②问题 3 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。
根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为___________设应邀请x 个队参赛,每个队要与其他_________个队各赛1场,所以全部比赛共_________________场。
一元二次方程导学案.doc
年级:九年级课题:§22.1一元二次方程课型:新授课时:第一课时主备人:岳冰心审核:审批:学习目标:(1)进一步体会方程是刻画现实世界中数量关系的一个有效数学模型;(2)正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
(3)培养学生的观察、类别、归纳能力。
学习重点:理解一元二次方程的定义,熟练地运用它解决实际问题。
学习难点:由一元二次方程来确定一些字母的值及取值范围。
学习方法:自主学习,合作学习。
学习过程:一、【复习引入】(2分钟)下列哪些是一元一次方程?(1)5x+3=0 (2) 2x+y=3 (3)221x=3 (4)x2 -2x+1=0二、新课【探究新知】填空:(15分钟)(1)我校为丰富校园文化氛围,要设计一座2米高的人体雕像,使雕像的上部(腰以上)与全部高度的乘积,等于下部(腰以下)高度的平方,求雕像下部的高度 .分析:设雕像下部高xm,列方程,化简方程得。
(2)有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒底面积为3600cm2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为xcm,则盒底的长为 cm,宽为 cm,根据方盒的底面积为3600cm2,列方程。
化简方程得。
(3)要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,依据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,请问全校有多少个队参赛?分析:全部比赛的场数为,设应邀请x个队参赛,每个队要与其他个队各赛1场,由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共场。
列方程,化简方程得。
思考:(1)上述方程有什么共同点?①;②;③。
(2)类比一元一次方程的概念给上述方程下一个恰当的定义。
等号两边都是_____,只含有___个未知数,并且未知数的最高次数是___的方程叫做一元二次方程。
九年级数学上册第22章一元二次方程22.1一元二次方程教案华东师大版(2021年整理)
重庆市沙坪坝区虎溪镇九年级数学上册第22章一元二次方程22.1 一元二次方程教案(新版)华东师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(重庆市沙坪坝区虎溪镇九年级数学上册第22章一元二次方程 22.1 一元二次方程教案(新版)华东师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为重庆市沙坪坝区虎溪镇九年级数学上册第22章一元二次方程 22.1 一元二次方程教案(新版)华东师大版的全部内容。
一元二次方程课题名称 一元二次方程三维目标 1.知道一元二次方程的定义,能熟练地把一元二次方程整理成一般形式02=++c bx ax (a ≠0)2.在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识3。
会用试验的方法估计一元二次方程的解重点目标 一元二次方程的意义及一般形式,会正确识别一般式中的“项”及“系数"难点目标 理解用试验的方法估计一元二次方程的解的合理性导入示标 1。
知道一元二次方程的定义,能熟练地把一元二次方程整理成一般形式02=++c bx ax (a ≠0)2。
会用试验的方法估计一元二次方程的解目标三导 学做思一:问题 1 绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?问题2学校图书馆去年年底有图书5万册,预计到明年年底增加到7。
2万册。
求这两年的年平均增长率。
思考、讨论:这样,问题1和问题2分别归结为解方程(1)和(2)。
一元二次方程(第1课时) 教案 说课稿 课件 教学反思
22.1 一元二次方程(第1课时)保太中学高勇【教学任务分析】【教学环节安排】自主探究合作交流【问题3】综合以上两个方程思考:(1)方程两边是否都是整式.(2)方程中有几个未知数?(3)未知数的最高次数是几次?【问题4】总结一元二次方程的概念.一元二次方程的一般形式:ax2+bx+c=0(a≠0)其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.【问题5】指出下列一元二次方程中的各项并说出一次项和二次项的系数.1.3t2+12t-2=02.-2y2-y-2=03.7x-3x2-2=0学生认真观察方程①②看有何特点.讨论交流并得出结论.教师指导学生总结一元二次方程的概念.(概念的几个要点:1、是整式方程2、只含有一个未知数3、未知数的最高次数是一次)学生看课本弄清一元二次方程的一般形式并思考:为什么规定a≠0?学生可适当讨论,交流.学生练习,教师指名回答.尝试应用例1.将方程3(1)5(2)x x x-=+化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.【分析】把一元二次方程化成一元二次方程的一般形式时,经常要利用去括号、移项、合并同类项等步骤,同时注意项与项的系数.例2.若关于x的方程2(3)10k x kx+-+=是一元二次方程,求k的取值范围.练习1.下列方程是一元二次方程的是:(只填序号)2(1)481x=(6)40xy+=2(7)0ax bx c++=让学生尝试着利用去括号、移项、合并同类项等步骤完成例1.一名学生到黑板板书过程.在例2的学习中,主要考查一元二次方程的定义,可让学生说说自己的体会.学生回答并说出不是的理由,可适当让学生讨论.【当堂达标自测题】一、填空题1.一元二次方程x x 3122=-的二次项系数是 ,一次项系数是 ,常数项是 .2.已知关于x 的一元二次方程012)1(2=-++x x m ,则m 应满足 .3.一元二次方程12)3)(31(2+=-+x x x 化为一般形式为: ,二次项系数为 ,一次项系数为 ,常数项为 .二、选择题1.下列方程中,是一元二次方程的是( )A 13722+=-y x B 02652=--y xC x x x +=-25372 D 05)3(2=++-+c x b ax 2.把方程)2(5)2(-=+x x x 化成一般式,则a 、b 、c 的值分别是( ) A 10,3,1- B 10,7,1- C 12,5,1- D 2,3,1三、解答题1.将下列方程化为一元二次方程的一般形式,并指出它们的二次项系数、一次项系数和常数项. (1)x 2+5x+7=3x+11 (2)x(2x-5)=4x-10(3)(2x-1)2=(3-x)2(4)12)3)(31(2+=-+x x x2.根据下列问题列方程,并将它化成一元二次方程的一般形式.(1)一张桌子的桌面长为6米,宽为4米.台布面积是桌面面积的2倍.如果将台布铺在桌子上各边垂下的长度相同,求这块台布的长和宽.(2)足协组织部分足球队比赛,按照比赛规则,要求每两个队都要在自己的主场踢一场,最后按积分排名次,结果本次比赛共踢了30场,问有几个队参加了比赛?。
一元二次方程导学案
《《一元二次方程》(1)》导学案
导学案序号:课型:总课时:分课时:主备人:审核人:
《《一元二次方程》(2)》导学案
导学案序号:课型:总课时:分课时:主备人:审核人:
《《用直接开平方法解一元二次方程》》导学案导学案序号:课型:总课时:分课时:主备人:审核人:
《《用配方法解一元二次方程》》导学案
导学案序号:课型:总课时:分课时:主备人:审核人:
的方法,叫做配方法。
,把化为来解。
、方程二次项系数不是时,可让方程的,将方程的二次项系数化
、用配方法解二次项系数是1的一元二次方程的一般步骤是:
;
《《用公式法解一元二次方程》》导学案
导学案序号:课型:总课时:分课时:主备人:审核人:。
最新人教版九年级数学上册全册导学案
第二十一章一元二次方程21.1一元二次方程——一元二次方程的相关概念一、新课导入1.导入课题:情景:要设计一座高2m的人体雕像,使它的上部(腰以上)与下部(腰以下)的高度比等于下部与全部(全身)的高度比,则雕像的下部应设计多少米高?问题1:列方程解应用题的一般步骤是什么?(导出审题的关键是寻找等量关系)问题2:你能画出示意图表示这个问题吗?(用线段AB表示雕像的高度,雕像上部的高度表示为AC,下部的高度表示为BC,在黑板上画出示意图,把这个问题转化为数学问题)问题3:能反映问题的等量关系的是哪一句话?(根据题意导出关系式BC2=2AC)问题4:设雕像下部高BC=x m,请说出你所列的方程,并化简.这个方程是一元一次方程吗?它有什么特点?这个方程就是本节课我们将要学习的一元二次方程.(板书课题)2.学习目标:(1)会设未知数,列一元二次方程.(2)了解一元二次方程及其根的概念.(3)能熟练地把一元二次方程化成一般形式,并准确地指出各项系数.3.学习重、难点:重点:一元二次方程的一般形式及相关概念.难点:寻找等量关系.二、分层学习1.自学指导:(1)自学内容:教材第1页到第2页的问题1、问题2.(2)自学时间:5分钟.(3)自学方法:先寻找问题中的等量关系,再根据等量关系列出方程.(4)自学参考提纲:①问题1中,要制作一个无盖的方盒,四角都要剪去一个相同的正方形,我们设正方形边长为x cm,则盒底的宽为(50-2x) cm,盒底的长为(100-2x) cm,根据矩形的面积公式及方盒的底面积3600 cm2可列方程为(100-2x)(50-2x)=3600,你能把它整理为课本上的方程②吗?试说明具体经过哪几步变形得到.先去括号5000-100x-200x+4x2=3600移项合并同类项4x2-300x+1400=0系数化为1(两边同除以4) x2-75x+350=0②问题2中,本次排球比赛的总比赛场数为28场.设邀请x支队参赛,则每支队与其余(x-1) 支队都要赛一场.整个比赛中总比赛场数是多少?你是怎样算出来的?本题的等量关系是什么?你列出的方程是x(x-1)=28.你能把它整理为课本上的方程③吗?试说明具体经过哪几步变形得到.去括号x2-12x=28系数化为1(两边同乘以2) x2-x=562.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:观察了解学生是否会寻找等量关系,是否会化简方程.②差异指导:简要说明问题2中单循环比赛与双循环比赛的区别,对不会寻找等量关系的学生给予辅导,说明化简方程的基本要求.(2)生助生:同桌之间、小组内交流、研讨.4.强化:(1)总结寻找等量关系的策略,简要指出哪些公式经常被我们作为寻找等量关系的依据.(2)练习:根据下列问题列方程①一个圆的面积是2πm2,求半径.πr2=2π②一个直角三角形的两条直角边相差3cm,面积为9cm2,求较长的直角边的长.1x(x-3)=92③4个完全相同的正方形面积之和是25,求正方形的边长x. 4x2=25④一个长方形的长比宽多2,面积是100,求长方形的长x. x(x-2)=100⑤把长为1的木条分成两段,使较短一段的长与全长的积等于较长一段的长的平方,求较短一段的长x.x=(1-x)21.自学指导:(1)自学内容:教材第3页的内容.(2)自学时间:5分钟.(3)自学方法:观察方程①②③,从方程所含的未知数的个数及其次数等方面找出它们共同的特点.(4)自学参考提纲:①结合一元一次方程的定义,请对一元二次方程进行定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.②一元二次方程的一般形式是a x2+b x+c=0(a≠0),为什么要规定a≠0?因为a=0时,未知数的最高次数小于2.③同桌之间相互说说方程①②③的二次项,二次项系数,一次项,一次项系数,常数项各是什么.方程①x2+2x-4=0 二次项:x2二次项系数:1 一次项:2x 一次项系数:2常数项:-4方程②x2-75x+350=0 二次项:x2二次项系数:1 一次项:-75x 一次项系数:-75 常数项:350方程③x2-x=56 二次项:x2二次项系数:1 一次项:-x 一次项系数:-1常数项:-56④举例说明什么是一元二次方程的根.⑤自学例题,说说把一元二次方程化为一般形式,要经过哪些变形?去括号,移项,合并同类项.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:观察学生在回答一元二次方程各项及各项系数时,是否注意了符号.②差异指导:提醒学生一元二次方程的每一项(系数)都应包括它前面的符号.(2)生助生:生生互动交流、订正错误.4.强化:(1)交流总结:确定一元二次方程各项的系数时,若方程不是一般形式,要先经过去括号、移项、合并同类项等步骤把它化成一般形式,通常习惯把二次项系数化为正数,且各项系数均为整数且互质,在指出各项系数时,一定要带上各项前面的符号.(2)练习:①将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数,一次项系数及常数项:5x2-1=4x;4x2=81;解:原式化为5x2-4x-1=0解:原式化为4x2-81=0二次项系数:5一次项系数:-4常数项:-1二次项系数:4一次项系数:0常数项:-81 4x(x+2)=25;(3x-2)(x+1)=8x-3.解:原式化为4x2+8x-25=0解:原式化为3x2-7x+1=0二次项系数:4一次项系数:8常数项:-25二次项系数:3一次项系数:-7常数项:1②若方程(m-1)x2+x=1是关于x的一元二次方程,则m的取值范围是m≥0且m≠1.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?还有什么困惑?2.教师对学生的评价:(1)表现性评价:点评学生参与学习的情况,回答问题,小组互动情况以及存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)注重知识的前后联系,在温故而知新的过程中孕育新知,按照由特殊到一般的规律,降低学生理解的难度.(2)教师创设情境,给出实例,学生积极主动探究,教师引导与启发、点拨与设疑相结合,师生互动,体现教师的组织者、引导者与合作者的地位.(3)增设例题难度,让学生产生困惑,避免今后犯类似错误,增加课堂练习,巩固知识.(4)对于一元二次方程的根的概念形成过程,要让学生大胆猜测,经过思考、讨论、分析的过程,让学生在交流中体会成功.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)一元二次方程3x2=5x的二次项系数和一次项系数分别是(C)A. 3,5B. 3,0C. 3,-5D. 5,02.(10分)下列哪些数是方程x2+x-12=0的根?-4,-3,-2,-1,0,1,2,3, 4.解:-4,33.(20分)将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.(1)3x2+1=6x;(2)4x2=81-5x;解:原式化为3x2-6x+1=0 解:原式化为4x2+5x-81=0二次项系数:3 二次项系数:4一次项系数:-6 一次项系数:5常数项:1 常数项:-81(3)x(x+5)=5x-10; (4)(3x-2)(x+1)=x(2x-1).解:原式化为x2+10=0 解:原式化为x2+2x-2=0二次项系数:1 二次项系数:1一次项系数:0 一次项系数:2常数项:10 常数项:-24.(30分)根据下列问题列方程,并将其化成一元二次方程的一般形式.(1)一个长方形的长比宽多1cm,面积是132cm2,长方形的长和宽各是多少?解:设长方形的长为x cm,则宽为(x-1)cm,根据题意,得x(x-1)=132,整理,得x2-x-132=0.(2)有一根1m长的铁丝,怎样用它围一个面积为0.06m2的平方的长方形?解:设长方形的长为x m,则宽为(0.5-x)m.根据题意,得x(0.5-x)=0.06,整理,得50x2-25x+3=0.(3)参加一次聚会的每两人都握了一次手,所有人共握手10次.有多少人参加这次聚会?解:设有x人参加了这次聚会,根据题意,得x(x-1)=10整理,得x2-x-20=0二、综合应用(20分)5.(20分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为x cm,则x满足的方程是(B)A. x2+130x-1400=0B. x2+65x-350=0C. x2-130x-1400=0D. x2-65x-350=0三、拓展延伸(10分)6.(10分)如果2是方程x2-c=0的一个根,求常数c及方程的另一个根.解:将2代入原方程中,得22-c=0,得c=4.将c=4代入原方程,得x2-4=0.解得x=±2.即方程的另一个根为-2.21.2解一元二次方程21.2.1配方法第1课时直接开平方法一、导学1.导入课题:情景:一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,求盒子的棱长.问题1:本题的等量关系是什么?问题2:设正方体的棱长为x dm,请列出方程并化简.问题3:根据平方根的意义解方程x2=25.由此导入并板书课题直接开平方法.2.学习目标:(1)能根据平方根的意义解形如x2=p及a x2+c=0的一元二次方程.(2)能运用开平方法解形如(m x+n)2=p(p≥0)的方程.(3)体会“降次”的数学思想.3.学习重、难点:重点:运用开平方法解形如(m x+n)2=p(p≥0)的方程.难点:降次的数学思想.4.自学指导:(1)自学内容:教材第5页到第6页“练习”之前的内容.(2)自学时间:10分钟.(3)自学方法:完成探究提纲.(4)探究提纲:①根据平方根的意义,解方程:x2=36;2x2-4=0;3x2-4=8.x=±6,x2=2,x2=4,x1=6,x2= -6. x=±2,x2=±2,x1=,x2= -. x1=2,x2= -2.②当p>0时,方程x2=p有两个不等的实数根x1= -x2=.当p=0时,方程x2=p有两个相等的实数根x1=x2=0.当p<0时,方程x2=p无实数根.③探究方程(x+3)2=5的根:因为(x+3)2=5,所以x+3是5的平方根,所以x+3等于5或-5.即x+3=,或x+3= -.解x+3=,得x1=-3;解x+3=-,得x2= --3.于是,方程(x+3)2=5的根为x1=-3, x2= --3.解方程(x+3)2=5的过程实质上是把一个一元二次方程降次,转化为两个一元一次方程,再解两个一元一次方程即得原方程的解.二、自学学生可参考自学指导进行自学.三、助学1.师助生:(1)明了学情:看学生能否顺利解决所给问题,注意书写格式方面存在的问题.(2)差异指导:注意帮助学困生复习平方根等知识,紧扣平方根讨论p的符号与方程的解的个数的关系.2.生助生:同桌之间互相批改,相互讨论改正错误.四、强化1.教师示范:解方程x2+4x+4=1.分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.解:由已知,得:(x+2)2=1直接开平方,得:x+2=±1即x+2=1或x+2=-1所以,方程的两根为x1= -1,x2= -3.2.练习:解下列方程:3.上面的方程都能化成x2=p或(m x+n)2=p(p≥0)的形式,那么可由“降次”得到x=±或m x+n=±p≥0)求解.4.以师生对话的形式讨论(m x+n)2=p的解的个数问题.五、评价1.学生的自我评价(围绕三维目标):你会解哪些形式的一元二次方程?怎样解?2.教师对学生的评价:(1)表现性评价:点评学生的学习态度、方法、积极性及存在的不足之处等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)本课时通过创设问题情景,激发学生探究新知的欲望.(2)本课时还通过回忆旧知识为新知学习作好铺垫.(3)教师引导学生自主、合作、探究、验证,培养学生分析问题、解决问题的能力.(时间:12分钟满分:100分)一、基础巩固(80分)1.(10分)一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是(D)A. x-6= -4B. x-6=4C. x+6=4D. x+6= -42.(10分)方程3x2+9=0的根为(D)A. 3B. -3C. ±3D. 无实数根3.(10分)若8x2-16=0,则x的值是±2.4.(10分)已知方程2(x-3)2=72,那么这个一元二次方程的两根是x1=9,x2= -3.5.(40分)解下列方程:(1) 4x2=81;(2) (x+6)2-9=0;解:由已知,得:x2=,解:由已知,得:(x+6)2=9,直接开平方,得x=±,直接开平方,得x+6=±3,所以方程的两根为x1=,x2= -. 所以方程的两根为x1= -3, x2= -9.(3) x2+2x+1=4;(4) 9x2+6x+1=4.解:由已知,得:(x+1)2=4,解:由已知,得:(3x+1)2=4,直接开平方,得x+1=±2,直接开平方,得3x+1=±2,所以方程的两根为x1=1, x2= -3. 所以方程的两根为x1= -1, x2=.二、综合应用(10分)6.(10分)如果x=3是一元二次方程a x2=c的一个根,则方程的另一根是(B)A. 3B. -3C. 0D. 1三、拓展延伸(10分)7.(10分)解关于x的方程(x+m)2=n.解:①当n>0时,此时方程两边直接开方.得x+m=±,方程的两根为x1=-m,x2= --m.②当n=0时,此时(x+m)2=0,直接开方得x+m=0,方程的两根为x1=x2= -m.③当n<0时,因为对任意实数x,都有(x+m)2≥0,所以方程无实数根.21.2.1配方法第2课时配方法一、新课导入1.导入课题:情景:请把方程(x+3)2=5化成一般形式,并由一名学生口答.问题:(追问)那么你能将方程x2+6x+4=0转化为(x+3)2=5的形式吗?由此导入课题.(板书课题)2.学习目标:(1)知道用配方法解一元二次方程的一般步骤,会用配方法解一元二次方程.(2)通过配方进一步体会“降次”的转化思想.3.学习重、难点:重点:用配方法解一元二次方程.难点:配方的方法.二、分层学习1.自学指导:(1)自学内容:教材第6页“探究”到第7页例1上面的部分.(2)自学时间:6分钟.(3)自学方法:完成下面的探究提纲,如果觉得有困难就先完成②,③,再完成①.(4)探究提纲:①解方程x2+6x+4=0.移项:把常数项移到方程的右边,得x2+6x= -4;配方:两边都加9,使得左边配成x2+2b x+b2的形式,得x2+6x+9=;变形:把左边写成完全平方形式,得(x+3)2=5;降次:运用平方根的定义把方程转化为两个一元一次方程,得x+3=±;求解:解两个一元一次方程,得x1=-3, x2= --3.②回忆完全平方公式填空:a2+2ab+b2=(a+b )2,x2+6x+9=(x+3)2.③为什么要在x2+6x=-4两边加9而不是其他数?因为两边加9,式子左边可以恰好凑成完全平方式.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生配方时的难点和易错点.②差异指导:根据具体情况指导学生配方.(2)生助生:小组内相互交流研讨,订正错误.4.强化:(1)配方的依据和步骤.(2)试一试:对下列各式进行配方:1.自学指导:(1)自学内容:教材第7页到第9页的例1.(2)自学时间:10分钟.(3)自学方法:认真阅读分析和解答过程,注意把方程转化为你能解的形式.(4)自学参考提纲:①仿照方程x2+6x+4=0的解法解方程(1),然后对照课本纠错.②方程(2)、(3)中是怎样化二次项系数为1的?方程两边同除以原二次项的系数③方程(3)没有实数根的依据是什么?实数的平方是非负数.④用配方法解一元二次方程时,移项时要注意些什么?移项时需注意改变符号.⑤请小结用配方法解一元二次方程的一般步骤.①移项,二次项系数化为1;②左边配成完全平方式;③左边写成完全平方形式;④降次;⑤解一次方程.⑥解方程(x+n)2=p.①当p>0时,则x+n=±,方程的两个根为x1=-n, x2= --n.②当p=0时,则(x+n)2=0,开平方得x+n=0,方程的两个根为x1=x2= -n.③当p<0时,则方程(x+n)2= p无实数根.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:主要了解学生解方程配方时是否存在困难,计算是否错误,书写格式是否规范.②差异指导:针对学生在学习中出现的问题予以指导.(2)生助生:生生互动,交流研讨.4.强化:(1)用配方法解一元二次方程的一般步骤.(2)用配方法解方程:三、评价1.学生的自我评价(围绕三维目标):你会用配方法解一元二次方程吗?本节课你学习了哪些知识?2教师对学生的评价:(1)表现性评价:点评学生的学习参与情况、小组交流协作状况、学习效果及不足等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)本节课,重在让学生自主参与,进而获得成功的体验,在数学方法上,仍突出数学研究中转化的思想,激发学生产生合理的认知冲突,激发兴趣,建立自信心.(2)在练习内容上,有所改进,加强了核心知识的理解与巩固,提高了自己解决问题的能力,感受数学创造的乐趣,提高教学效果.(3)用配方法解一元二次方程是学习解一元二次方程的基本方法,后面的求根公式是在配方法的基础上推出的,配方法在使用时又与原来学习的完全平方式联系密切,用配方法解一元二次方程既是对原来知识的巩固,又是对后面学习内容的铺垫.在二次函数顶点坐标的求解中也同样使用的是配方法,因此配方法是一种基本的数学解题方法.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)用配方法解方程-x2+6x+7=0时,配方后得的方程为(B)A. (x+3)2=16B. (x-3)2=16C. (x+3)2=2D. (x-3)2=22.(20分)填空.(1) 4x2+4x+1=(2x+1)2(2) x2-x+=(x-)23.(40分)用配方法解下列方程.(1)x2+10x+9=0;(2)4x2-12x-7=0;解:移项,x2+10x=-9, 解:移项,4x2-12x=7,配方,x2+10x+25=16, 系数化为1,x2-3x=,(x+5)2=16, 配方,x2-3x+=4,x+5=±4, ( x-2=4,方程的两个根为x1=-1,x2= -9. x-=±2,方程的两个根为x1=72,x2= -12.(3) x2+4x-9=2x-11; (4) x(x+4)=8x+12解:移项,x2+2x= -2, 解:化简移项,x2-4x=12,配方,x2+2x+1= -1, 配方,x2-4x+4=16,(x+1)2= -1, (x-2)2=16,方程没有实数根. x-2=±4,方程的两个根为x1=6,x2= -2.二、综合应用(10分)4.(10分)用配方法解方程4x2-x-9=0.三、拓展延伸(20分)5.(20分) 当a为何值时,多项式a2+2a+18有最小值?并求出这个最小值. 解:对原式进行配方,则原式=(a+1)2+17∵(a+1)2≥0,∴当a= -1时,原式有最小值为17.21.2.2公式法——根的判别式及求根公式一、新课导入1.导入课题:(1)用配方法解一元二次方程的步骤是什么?(2)你能用配方法解一般形式的一元二次方程a x2+b x+c=0(a≠0)吗?我们继续学习另一种解一元二次方程的方法——公式法.2.学习目标:(1)知道一元二次方程根的判别式,能运用根的判别式直接判断一元二次方程的根的情况.(2)会用公式法解一元二次方程.3.学习重、难点:重点:用求根公式解一元二次方程.难点:计算时的符号处理.二、分层学习1.自学指导:(1)自学内容:教材第9页到11页例2之前的内容.(2)自学时间:15分钟.(3)自学方法:认真阅读书上的内容,并动手推导出求根公式.(4)自学参考提纲:②Δ=b2-4ac叫做一元二次方程a x2+b x+c=0(a≠0)的根的判别式.当b2-4ac>0时,方程a x2+b x+c=0(a≠0)有两个不等的实数根;当b2-4ac=0时,方程a x2+b x+c=0(a≠0)有两个相等的实数根;当b2-4ac<0时,方程a x2+b x+c=0(a≠0)无实数根.注意:上述的叙述,反过来也成立.③当Δ≥0时,一元二次方程a x2+b x+c=0(a≠0)的实数根可写为的形式,这个式子叫做一元二次方程a x2+b x+c=0(a≠0)的求根公式.④不解方程,利用判别式判断下列方程的根的情况.x2+5x+6=0;9x2+12x+4=0;Δ=b2-4ac=52-4×1×6=1>0 Δ=b2-4ac=122-4×9×4=0方程有两个不等的实数根. 方程有两个相等的实数根.2x2+4x-3=2x-4;x(x+4)=8x+12.方程化为2x2+2x+1=0 方程化为x2-4x-12=0Δ=b2-4ac=22-4×2×1=-4<0 Δ=b2-4ac=(-4)2-4×(-12)=64>0方程无实数根. 方程有两个不等的实数根.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生配方的过程以及配方后是否讨论.②差异指导:指导学生配方变形;指导学生对b2-4ac的符号进行讨论.(2)生助生:小组内相互交流、研讨.4.强化:(1)公式的推导,判别式定义解读;(2)练习:不解方程,利用判别式判断下列方程的根的情况.1.自学指导:(1)自学内容:教材第11页到第12页的例2.(2)自学时间:8分钟.(3)自学方法:阅读解答过程,注意解题步骤和格式.(4)自学参考提纲:①先独立运用公式法解所给方程,然后对照课本找错误、分析错因.x2-4x-7=0;2x2-22x+1=0;5x2-3x=x+1;x2+17=8x.x1=2+x1=x2=x1=1 无实数根x2=2-x2= -②说说运用公式法解一元二次方程的一般步骤,有哪些易错点?先将方程化为一般形式,确定a,b,c的值;计算判别式Δ=b2-4ac的值,判断方程是否有解;若Δ≥0,利用求根公式计算方程的根,若Δ<0,方程无实数根.计算Δ时,注意a,b,c符号的问题.③解答本章引言中的问题.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:看学生能否从例2的学习中总结出用公式法解方程的一般步骤及注意事项.②差异指导:注意强调运用公式法解方程的前提条件.(2)生助生:同桌之间互相找错,分析错因.4.强化:(1)用公式法解一元二次方程的一般解题步骤及注意事项.(2)解下列方程:三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?有何收获或不足?你知道一元二次方程a x2+b x+c=0(a≠0)的根的判别式与其根的个数有什么关系吗?2.教师对学生的评价:(1)表现性评价:点评学生的学习态度、积极性、学习效果、方法及不足之处等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)本课时容量较大,难度较大,计算的要求较高,因此教学设计各环节均围绕着利用公式法解一元二次方程这一重点内容展开,问题设计、课堂学习有利于学生强化运算能力、掌握基本技能,也有利于教师发现教学中存在的问题.(2)在教学设计中,引导学生自主探究一元二次方程的求根公式,在师生讨论中发现求根公式,并学会利用公式法解一元二次方程.(3)整个课堂都以学生动手训练为主,让学生积极介入探究活动,体验到成功的喜悦.(4)公式法是在配方法的基础上推出的一种解一元二次方程的基本方法,它使解一元二次方程更加简便,在公式的运用中,涉及到根的判别式,使公式法解一元二次方程得到延续和深化.(时间:12分钟满分:100分)一、基础巩固(80分)1.(10分)一元二次方程a x2+b x+c=0(a≠0)有两个不相等的实数根,则b2-4ac满足的条件是(B)A. b2-4ac=0B. b2-4ac>0C. b2-4ac<0D. b2-4ac≥02.(10分)已知一元二次方程:①x2+2x+3=0,②x2-2x-3=0.下列说法正确的是(B)A. ①②都有实数解B. ①无实数解,②有实数解C. ①有实数解,②无实数解D. ①②都无实数解3.(10分)利用求根公式求5x2+=6x的根时,a,b,c的值分别是(C)A. 5,,6B. 5,6,C. 5,-6,D. 5,-6,-4.(20分)不解方程,利用判别式判断下列方程的根的情况:(1)x2-3x-32=0;(2) 16x2-24x+9=0;方程有两个不等的实数根. 方程有两个相等的实数根.(3)x2-42x+9=0;(4)3x2+10=2x2+8x.解:Δ=b2-4ac=(-4)2-4×1×9= -4<0, 解:方程化为x2-8x+10=0方程无实数根. Δ=b2-4ac=(-8)2-4×1×10=24>0方程有两个不等的实数根.5.(30分)用公式法解下列方程:二、综合应用(10分)6.(10分)解方程x2=3x+2时,有一位同学解答如下:请你分析以上解答有无错误,如有错误,请指出错误的地方,并写出正确的解题过程.解:有错误,方程化为标准形式x2-3x-2=0, ∴a=1,b= -3,c= -2, b2-4ac=17.三、拓展延伸(10分)7.(10分)无论p取何值,方程(x-3)(x-2)-p2=0总有两个不等的实数根吗?给出你的答案并说明理由.解:方程化简为x2-5x+6-p2=0.∴b2-4ac=(-5)2-4×1×(6-p2)=4p2+1≥1,∴Δ>0.∴无论p取何值,方程(x-3)(x-2)-p2=0总有两个不等的实数根.21.2.3 因式分解法一、新课导入1.导入课题:根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s后物体离地面的高度(单位:m)为:10x-4.9x2.问题1:你能根据上述规律求出物体经过多少秒落回地面吗?问题2:设物体经过x s落回地面,请说说你列出的方程.问题3:你能用配方法或公式法解这个方程吗?是否还有更简单的方法呢?(板书课题)2.学习目标:(1)会用因式分解法解一元二次方程.(2)能选用合适的方法解一元二次方程.3.学习重、难点:重点:用因式分解法解一元二次方程.难点:选择合适的方法解一元二次方程.二、分层学习1.自学指导:(1)自学内容:教材第12页到第13页的内容.(2)自学时间:5分钟.(3)自学方法:可先解答②,再解答①.(4)自学参考提纲:①解方程10x-4.9x2=0.分解因式:左边提公因式,得x(10-4.9x)=0,降次:把方程化为两个一次方程,得x=0或10-4.9x=0,求解:解这两个一次方程,得x1=0, x2=.②将一个多项式进行因式分解,通常有哪几种方法?提公因式法,公式法,十字相乘法用因式分解法解一元二次方程的依据是:如果ab=0,则a=0或u.③请小结因式分解法解一元二次方程的步骤:移项,合并同类项,因式分解,写出一元二次方程的根.④解下列方程:(x-2)·(x-3)=0;4x2-11x=0.x1=2, x2=3 x1=0, x2=2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:是否理解用因式分解法解一元二次方程的依据,是否掌握用因式分解法解方程的步骤.②差异指导:根据学情进行个别或分类指导.(2)生助生:小组内互相交流、研讨.4.强化:(1)用因式分解法解方程的一般步骤:第一步,把方程变形为x2+p x+q=0的形式;第二步,把方程变形为(x-x1)(x-x2)=0的形式;第三步,把方程降次为两个一次方程x-x1=0或x-x2=0的形式;第四步,解两个一次方程,求出方程的根.(2)点两名学生板演第④题,并点评.1.自学指导:(1)自学内容:教材第14页例3及“归纳”.(2)自学时间:5分钟.(3)自学方法:先独立作业,然后小组互相改正.(4)自学参考提纲:①方程x(x-2)+x-2=0左边可用提公因式法进行因式分解,分解为(x+1)(x-2).②方程5x2-2x-=x2-2x+左右两边都有含未知数的项,无法因式分解,因此,可先将其化为一般形式4x2-1=0,再用平方差公式法对左边进行因式分解.③说说运用因式分解法解一元二次方程要注意哪些问题.④解下列方程:2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生对运用因式分解法解一元二次方程的方法是否掌握.②差异指导:指导学生观察题目特点,选用适当的方法分解因式.(2)生助生:同桌之间互相改错、分析错因.4.强化:(1)点6名学生板演自学参考提纲第④题,并点评.(2)说说运用因式分解法解一元二次方程要注意的问题.1.自学指导:(1)自学内容:选择合适的方法解一元二次方程.(2)自学时间:15分钟.(3)自学方法:完成探究提纲.(4)探究提纲:①直接开平方法适用于哪种形式的方程?x2=p;配方法适用于哪种形式的方程?(m x+n)2=p;公式法适用于哪种形式的方程?a x2+b x+c=0(a≠0);因式分解法适用于哪种形式的方程?x2-(m+n)x+mn=0.②前面这些解法各有什么优缺点?③解一元二次方程的基本思想是什么?④选择适当的方法解下列方程:。
第22章:一元二次方程第一课时:§22.1一元二次方程导学案-福建省华东师大版九年级数学上册(无答案)
第一课时:§22.1一元二次方程班级___________ 姓名__________________ 号数__________一、引入1.初一、初二年时我们已经学习了用方程(即:一元一次方程、二元一次方程组)的方法解决实际问题,初三年我们将继续学习方程(即:一元二次方程)的方法解决实际问题. 2.实际问题问题1:某小区在每两幢楼之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,则绿地的长和宽各为多少?分析:设绿地的宽为x 米,则长为_______米.依题意,可列方程__________________________整理得__________________________(提示:整理成按.x .的降幂排列.....的方程形式) 问题2:一块面积为600平方厘米的长方形纸片,把它的一边剪短10厘米,恰好得到一个正方形求这个正方形的边长.分析:设正方形的边长为x 厘米,则长方形的长为_______厘米.依题意,可列方程__________________________整理得__________________________(提示:整理成按.x .的降幂排列.....的方程形式) 二、新课概括:上述两个整式方程....中都只含有一个未知数(一元),并且未知数的最高次数是2(二次),这样 的方程,叫做一元二次方程.一般地,任何一个关于x 的一元二次方程,•经过整理,•都能化成一般形式....:ax 2 + bx + c = 0(a 、b 、c 是已知数,且a ≠ 0). 其中,a 是二次项系数,b 是一次项系数,c 是常数项.注:二次项系数0a ≠是一个重要条件,不能漏掉,为什么?_____________________________. 三、例题1.下列方程中,哪些是关于x 的一元二次方程?_________________.(1)250x -=; (2223x x x -=; (3)21230x x+-=; (4)20ax bx c ++= 一元二次方程 一般式 二次项系数 一次项系数 常数项(5)330x x -=; (6)230x xy +-=; (7)2221x x x +=-.2.把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项: 3.根据题意,列出方程(不必求解):(1)有一面积为54m 2的长方形,将它的一边剪短5m ,另一边剪短2m ,恰好变成一个正方形,那么这个正方形的边长是多少?解:设剪后的正方形边长为x m ,那么原来长方形长是________m ,宽是________m.依题意得:___________________________, 整理得:___________________________.(2)有一块矩形铁皮,长100cm 、宽50cm ,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖长方体盒子. 如果要制作的无盖长方体盒子底面积为3600cm 2,那么铁皮各角应切去边长多大的正方形? (注:解题格式模仿上题)四、归纳小结(1)一元二次方程的概念; (2)一元二次方程的一般形式....:ax 2 + bx + c = 0(a ≠ 0),二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用. ★ 课后作业 一、选择题1.在下列方程中,一元二次方程的个数是( ).① 3x 2 + 7 = 0 ② ax 2 + bx + c = 0 ③ (x –2)(x + 5) = x 2 -1 ④ 3x2 -5x= 0 A .1个 B .2个 C .3个 D .4个 2.px 2 -3x + p 2 – q = 0是关于x 的一元二次方程,则( ). A .p = 1 B .p > 0 C .p ≠ 0 D .p 为任意实数 3.方程)1(4)1(-=-x x x 的一次项是( ). A .4 B .-4 C .x 5 D .x 5- 4.||(2)10m m xmx -+-=是关于x 的一元二次方程,则m 的值为( ).A .2m =±B .2m =C .2m =-D .2m ≠±5.已知关于x 的方程260x kx --=的一个根为3x =,则实数k 的值为( ).2351x x =- (2)(1)6x x +-= 2470x -=A .1B .1-C .2D .2-6.已知m 是方程22310x x --=的一个根,则代数式2463m m -+的值为( ). A .2 B .3 C .4 D .5 二、填空题7.方程3x 2 –3 = 2x + 1的二次项系数为________,一次项系数为_________,常数项为_________. 8.将方程2(21)(3)(21)6x x x -+--=化成一般形式为______________________,它的二次项系数为_______,一次项系数为_______,常数项为_______. 9.当a =_______时,关于x 的方程||1(1)350a a x x +-+-=是一元二次方程.10.如图,如果AC CBAB AC=,那么点C 叫做线段AB 的黄金分割点. 如果假设AB = 1,AC = x ,那么BC =________,根据题意,得:____________________,整理得:____________________. 三、解答题11.已知关于x 的方程2()3(1)a x x x x +=-.(1)当a 满足什么条件时,方程为一元二次方程? (2)当a 满足什么条件时,方程为一元一次方程?12.根据题意,列出方程(不必求解)(1)学校中心大草坪上准备建两个相等的圆形花坛,要使花坛的面积是余下草坪面积的一半. 已知草坪是长和宽分别为80米和60米的矩形,求花坛的半径.(2)已知两个连续奇数的积是255,求这两个奇数.13.根据题意列出方程,比较两题的联系与区别;并找出(2)小题列方程的规律(1)学校图书馆去年年底有图书5万册,预计到今年年底增加到6万册. 求今年的增长率.(2)学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册. 求这两年的平均增长率.(2)题“连续两年增长率一样”的列方程规律:_____________________.14.某企业去年生产总值500万元,因经济危机,预计明年生产总值剩下300万元. 求这两年的平均降低率.(只列方程,不必求解)。
第21章《一元二次方程》教案
分析:要想确定上述方程的根的情况,只需算出“△”, 确定它的符号情况即可. 例 2. 当 k 取什么值时, 关于 x 的方程 2x -(4k+1)x+2k -1=0 (1)有两个不相等的实数根;(2)有两个相等实数根;(3) 方程没有实数根. 例 3. 求证关于 x 的方程(k2+1)x2-2kx+(k2+4)=0 没有实数根.
页
课题 学习目标
22.2 解一元二次方程(求根公式法) 1.使学生掌握一般一元二次方程的求根公式的推导过程, 并由此培养学生的分析、综合和计算能力. 2.使学生掌握公式法解一元二次方程的方法. 要求学生正确运用求根公式解一元二次方程. 1.求根公式的推导过程. 2.含有字母参数的一元二次方程的公式解法. 学习流程 讨论完善
讨论完善
同时指导学生把学过的方程分为两大类:
2.一元二次方程的一般形式 注意引导学生考虑方程 x2-70x+825=0 和方程 x(x+5)=150,即 x2+5x=150, 可化为:x2+5x-150=0. 从而引导学生认识到:任何一个一元二次方程,经过 整理都可以化为 ax2+bx+c=0(a≠0)的形式.并称之为一元二次方程的一 般形式. 其中 ax2,bx,c 分别称为二次项、一次项、常数项;a, b 分别称为二次项系数、一次项系数. 【注意】二次项系数 a 是不等于 0 的实数(a=0 时,方程化 为 bx+c=0,不再是二次方程了);b,c 可为任意实数. 例 把方程 5x(x+3)=3(x-1)+8 化成一般形式.并写出 它的二次项系数、一次项系数及常数项. 课堂练习 P4 练习 1、2 题
第二十一章 一元二次方程 第 3
22.1一元二次方程(1)导学案
22.1一元二次方程(1)导学案一 学前准备:1._______________ _____________________________叫方程;______________________________ _______________叫一元一次方程。
__________________________ ___________________叫二元一次方程。
___________________________ __________________叫分式方程。
2.下列方程是一元一次方程的有___ ___;是分式方程的有___ __;二元一次方程的有____ _. ①3x-2=0;②x 2x 1=+;③x +2y=3;④1y 3y 221y +=-++;⑤s+t=8; ⑥;04x 2x 2=-+⑦;0350x 75x 2=+-⑧.56x x 2=- 二 探究活动(一) 独立思考·解决问题1、剪一块面积为1502cm 的长方形铁片,使它的长比宽多5cm ,这块铁皮该怎么剪呢?如果铁皮的宽为x (cm ),那么铁皮的长为_____ ____cm .根据题意,可得方程是:______________ ________6,求这两个数。
设其中较小的一个数位x ,请列出满足题意的方程____ ______________.3、正方形的面积是22cm ,求它的边长?_______________________________________.4、矩形花圃一面靠墙,另外三面所围得栅栏的总长度是19m ,如果花圃的面积是242m ,求花圃的长和宽。
__________________ ______________ _________.(二) 师生探究·合作交流议一议:1、上面的方程有哪些共同的特点呢?你知道什么是一元二次方程了吗?2、结合上面的方程的特点你能够用一个式子表示一元二次方程的一般形式吗?3、20(0)ax bx c a ++= ≠其中_____ _叫做二次项,a 叫做_____ _, bx 叫做_____ __,b 叫做_____ __, c 是常数项。
22.1配方法学案
一、课前准备:
填上适当的数,使下列等式成立:
(1) +____ = (2) ____ = ( ___)
(3) ____ = ( ____) (4) - x+_____=(x-____)2
由上面等式的左边可知,常数项和一次项系数的关系是:
_____________________________________________________
重点难点
1.重点:讲清配方法的解题步骤.
2.难点与关键:把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方.
【学习范围】31页-34页
【学习目标】
1.本节课主要学习运用配方法,即通过变形运用开平方法降次解方程。
2.探索利用配方法解一元二次方程的一般步骤;能够利用配方法解一元二次方程。渗透配方法是解决某些代数问题的一个很重要的方法.
【】5.已知方程 可以配方成 的形式,那么 可以配方成下列的
A. B.
C. D.
二、填空题
1.填上适当的数,使下列等式成立:
(1) (2)
(3) (4)
2.无论x、y取任何实数,多项式x2+y2-2x-4y+16的值总是_______数.
3.如果16(x-y)2+40(x-y)二、自主探究:请阅读教材第32页,解方程 ,完成下面框图
x2+4x-5=0
【小试牛刀】解方程:
(1)x2-8x+7=0(2)x2+4x+1=0
【自我尝试】
解下列方程:(同桌相互查找问题,进行纠正)
(1)x2-8x+ 1 = 0;(2) ;(3) .
【归纳概括】(请认真阅读,小组内交流,互相提问)
第22章 一元二次方程教案全章
教学时间: 教学课题:22.1 一元二次方程 教学课型:新授课 教学目标1.理解一元二次方程概念是以未知数的个数和次数为标准的.2.掌握一元二次方程的一般形式以及三种特殊形式,能将一个一元二次方程化为一般形式3.理解二次根式的根的概念,会判断一个数是否是一个一元二次方程的根4.通过根据实际问题列方程,向学生渗透知识来源于生活.5通过观察,思考,交流,获得一元二次方程的概念及其一般形式和其它三种特殊形式. 教学重点:一元二次方程的一般形式和一元二次方程的根的概念 教学难点:通过提出问题,建立一元二次方程的数学模型 教学过程 一、复习引入小学学习过简易方程,上初中后学习了一元一次方程,二元一次方程组,可化为一元一次方程的分式方程,运用方程方法可以解决众多代数问题和几何求值问题,是非常常见的一种数学方法。
从这节课开始学习一元二次方程知识.先来学习一元二次方程的有关概念. 二、探究新知 (一)探究课本问题2 分析:1.参赛的每两个队之间都要比赛一场是什么意思?2.全部比赛场数是多少?若设应邀请x 个队参赛,如何用含x 的代数式表示全部比赛场数? 整理所列方程后观察:1.方程中未知数的个数和次数各是多少?2.下列方程中和上题的方程有共同特点的方程有哪些?4x+3=0;0422=-+x x ;042=-+y x ;0350752=+-x x ;0621=-+x x(二)概念归纳: 1.一元二次方程定义:首先它是整式方程,然后未知数的个数是1,最高次数是2. 2.一元二次方程的一般形式: ①为什么规定a ≠0?②方程左边各项之间的运算关系是什么?关于x 的一元二次方程()002≠=--a c bx ax 的各项分别是什么?各项系数是什么?3.特殊形式:()002≠=+a bx ax ;()002≠=+a c ax ;()002≠=a ax (三)课本例题类比一元一次方程的去括号,移项,合并同类项,进行同解变形,化为一般形式后再写出各项系数,注意方程一般形式中的“-”是性质符号负号,不是运算符号减号. (四)一元二次方程的根的概念1.类比一元一次方程的根的概念获得一元二次方程的根的概念2.下面哪些数是方程x 2+5x+6=0的根?-4,-3,-2,-1,0,1,2,3,4. 3.你能用以前所学的知识求出下列方程的根吗?(1)x 2-64=0(2)x 2+1=0 (3)x 2-3x=0 (4)0122=++x x 4.思考:一元一次方程一定有一个根,一元二次方程呢?5.排球邀请赛问题中,所列方程562=-x x 的根是8和-7,但是答案只能有一个,应该是哪个? 归纳:①一元二次方程的根的情况 ②一元二次方程的解要满足实际问题 三、课堂训练 1.课本练习 2补充:1).在下列方程中①3x 2+7=0 ②ax 2+bx+c=0 ③(x-2)(x+5)=x 2-1 ④3x 2-5x=0,一元二次方程的个数是( )A .1个B .2个C .3个D .4个2).关于x 的方程(a-1)x 2+3x=0是一元二次方程,则a 范围________. 3).已知方程5x 2+mx-6=0的一个根是x=3,则m 的值为________ 4).关于x 的方程(2m 2+m )x m+1+3x=6可能是一元二次方程吗? 四、小结归纳1.一元二次方程的概念及其一般形式,能将一个一元二次方程化为一般形式,并正确指出其各项系数.2.一元二次方程的根的概念,能判断一个数是否是一个一元二次方程的根. 五、作业设计 必做:P28:1-7 选做:.P29:8、9教学时间:教学课题:22.2.1配方法(1) 教学课型:新授课教学目标1.理解一元二次方程“降次”的转化思想.2.根据平方根的意义解形如x2=p(p≥0)的一元二次方程,然后迁移到解(mx+n)2=p(p≥0)型的一元二次方程.3.把一般形式的一元二次方程(二次项系数是1,一次项系数是偶数)与左边是含有未知数的完全平方式右边是非负常数的一元二次方程对比,引入配方法,并掌握.4.通过根据实际问题列方程,向学生渗透知识来源于生活.5.通过观察,思考,对比获得一元二次方程的解法-----直接开平方法,配方法教学重点:1.运用开平方法解形如(mx+n)2=p(p≥0)的方程;领会降次──转化的数学思想.2用配方法解二次项是1,一次项系数是偶数的一元二次方程教学难点:降次思想,配方法教学过程一、复习引入已经学习了一元二次方程的概念,本节课开始学习其解法,首先学习直接开平方法,配方法.二、探究新知(一)探究课本问题11.用列方程方法解题的等量关系是什么?2.解方程的依据是什么?3.方程的解是什么?问题的答案是什么?4.该方程的结构是怎样的?归纳:可根据数的开方的知识解形如x2=p(p≥0)的一元二次方程,方程有两个根,但是不一定都是实际问题的解.(二)解决课本思考1如何理解降次?2本题中的一元二次方程是通过什么方法降次的?3能化为(x+m)2=n(n≥0)的形式的方程需要具备什么特点?归纳:1运用平方根知识将形如x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程降次,转化为两个一元一次方程,解一元一次方程即可;2左边是含有未知数的完全平方式,右边是非负常数的一元二次方程可化为(x+m)2=n(n≥0).(三)探究课本问题21.根据题意列方程并整理成一般形式.2.将方程x2+6x-16=0和x2+6x+9=2对比,怎样将方程x2+6x-16=0化为像x2+6x+9=2一样,左边是含有未知数的完全平方式,右边是非负常数的方程?①完成填空:x2+6x+ =(x+ )2②方程移项之后,两边应加什么数,可将左边配成完全平方式?归纳:用配方法解二次项系数是1且一次项系数是偶数的一元二次方程的一般步骤及注意事项:先将常数项移到方程右边,然后给方程两边都加上一次项系数的一半的平方,使左边配成完全平方式的三项式形式,再将左边写成平方形式,右边完成有理数加法运算,到此,方程变形为(x+m)2=n(n≥0)的形式.三、课堂训练课本练习: P31页练习,P34页练习1,2(1)四、小结归纳1.根据平方根的意义,用直接开平方法解形如(mx+n)2=p(p≥0)的一元二次方程.2.用配方法解二次项系数是1,一次项系数是偶数的一元二次方程,特别地,移项后方程两边同加一次项系数的一半的平方.3.在用方程解决实际问题时,方程的根一定全实际是问题的解,但是实际问题的解一定是方程的根.五、作业设计必做:P42:1、2、3(1)(2)选做:下面补充作业补充作业:1.若8x2-16=0,则x的值是_________.2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.3.若x2-4x+p=(x+q)2,那么p、q的值分别是().A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-24.方程3x2+9=0的根为().A.3 B.-3 C.±3 D.无实数根5.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是().A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1 C.x2+8x+42=1 D.x2-4x+4=-116.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),•另三边用木栏围成,木栏长40m.(1)鸡场的面积能达到180m2吗?能达到200m吗?(2)鸡场的面积能达到210m2吗?教学时间: 教学课题:22.2.1配方法(2) 教学课型:新授课 教学目标:1.进一步理解配方法和配方的目的.2.掌握运用配方法解一元二次方程的步骤.3.会利用配方法熟练灵活地解二次项系数不是1的一元二次方程.4.通过对比用配方法解二次项系数是1的一元二次方程,解二次项系数不是1的一元二次方程,经历从简单到复杂的过程,对配方法全面认识 教学重点:用配方法解一元二次方程 教学难点:用配方法解二次项系数不是1的一元二次方程,首先方程两边都除以二次项系数,将方程化为二次项系数是1的类型 教学过程 一、复习引入我们在上节课,已经学习了用直接开平方法解形如x 2=p (p≥0)或(mx+n )2=p (p≥0)的一元二次方程,以及用配方法解二次项系数是1,一次项系数是偶数的一元二次方程,这节课继续学习配方法解一元二次方程. 二、探究新知 1.填空: ①()22________8+=++x x x②()22________-=+-x x x③()22____4___+=++x x ④()22____49___-=+-x x 2.填空: ①a x x++82是完全平方式,a=②92++mx x是完全平方式,m =3.解下列方程:①x 2-8x+7=0 ②2x 2+8x-2=0 ③2x 2+1=3x ④3x 2-6x+4=0 分析:(1)解方程①,复习用配方法解二次项系数为1的一元二次方程步骤;(2)对比○1的解法得到方程○2的解法,总结出用配方法解二次项系数不为1的一元二次方程的一般步骤: ①.把常数项移到方程右边;②.方程两边同除以二次项系数,化二次项系数为1; ③.方程两边都加上一次项系数一半的平方; ④.原方程变形为(x+m )2=n 的形式;⑤.如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.(3)运用总结的配方法步骤解方程○3,先观察将其变形,即将一次项移到方程的左边,常数项移到方程的右边;解方程○4配方后右边是负数,确定原方程无解. (4) 不写出完整的解方程过程,到哪一步就可以确定方程的解得情况? 三、课堂训练1.方程()的形式,正确的是化为b a x x x =+=+-2202344( )A.()4532=-x B.()4532-=-x C.41232=⎪⎪⎭⎫ ⎝⎛-x D.3232=⎪⎪⎭⎫⎝⎛-x 2.配方法解方程2x 2-43x-2=0应把它先变形为( ). A .(x-13)2=89 B .(x-23)2=0 C .(x-13)2=89 D .(x-13)2=1093.下列方程中,一定有实数解的是( ).A .x 2+1=0B .(2x+1)2=0C .(2x+1)2+3=0D .(12x-a )2=a4.解决课本练习2(2)到(6)5.已知x 2+y 2+z 2-2x+4y-6z+14=0,则x+y+z 的值是( ). A .1 B .2 C .-1 D .-26. a ,b ,c 是ABC ∆的三条边①当bc c ab a 2222+=+时,试判断ABC ∆的形状. ②证明02222<-+-ac c b a四、小结归纳:用配方法解一元二次方程的步骤 1.把原方程化为()002≠=++a c bx ax 的形式, 2.把常数项移到方程右边;3.方程两边同除以二次项系数,化二次项系数为1;4.方程两边都加上一次项系数一半的平方;5.原方程变形为(x+m )2=n 的形式;6.如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.不写出完整的解方程过程,原方程变形为(x+m )2=n 的形式后,若n 为0,原方程有两个相等的实数根;若n 为正数,原方程有两个不相等的实数根;若n 为负数,则原方程无实数根. 五、作业设计必做:P42:3(3)(4) 选做:P43:8、9教学时间: 教学课题:22.2.2公式法 教学课型:新授课 教学目标1.理解一元二次方程求根公式的推导过程.2.掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况.3.会利用求根公式解简单数字系数的一元二次方程.4.经历从用配方法解数字系数的一元二次方程到解字母系数的一元二次方程,探索求根公式,发展学生合情合理的推理能力,并认识到配方法是理解公式的基础.;5.通过对公式的推导,认识到一元二次方程的求根公式适用于所有的一元二次方程,操作简单. 教学重点:求根公式的推导,公式的正确使用 教学难点:求根公式的推导 教学过程 一、复习引入我们学习了用配方法解数字系数的一元二次方程,能否用配方法解一般形式的一元二次方程()002≠=++a c bx ax二、探究新知活动1.学生观察下面两个方程思考它们有何异同?①6x 2-7x+1=0 ②()002≠=++a c bx ax 活动2.按配方法一般步骤同时对两个方程求解: 1.移项得到6x 2-7x=-1,c bx ax -=+22.二次项系数化为1得到ac x a b x x x -=+-=-22,6167 3.配方得到 x 2-76x+(712)2=-16+(712)2 x 2+b a x+(2b a )2=-c a+(2ba )24.写成(x+m )2=n 形式得到(x-712)2=25144,(x+2b a)2=2244b ac a - 5.直接开平方得到x-712=±512,注意:(x+2ba)2=2244b ac a -是否可以直接开平方? 活动3.对(x+2b a)2=2244b ac a -观察,分析,在0≠a 时对2244b ac a -的值与0的关系进行讨论活动4.归纳出一元二次方程的根的判别式和求根公式,公式法. 活动5.初步使用公式解方程6x 2-7x+1=0.活动6.总结使用公式法的一般步骤:①把方程整理成一般形式,确定a,b,c 的值,注意符号②求出ac b 42-的值,方程()002≠=++a c bx ax ,当Δ>0时,有两个不等实根;Δ=0时有两个相等实根;Δ<0时无实根.③在ac b 42-≥0的前提下把a ,b ,c 的值带入公式.三、课堂训练1.利用一元二次方程的根的判别式判断下列方程的根的情况 (1)2x 2-4x-1=0 (2)5x+2=3x 2 (3)(x-2)(3x-5)=0 (4)4x 2-3x+1=02.课本例2 四、小结归纳1.用根的判别式判断一个一元二次方程是否有实数根2.用求根公式求一元二次方程的根3. 一元二次方程求根公式适用于任意一个一元二次方程. 五、作业设计 必做:P42:4、5 选做:P43:11、12某电厂规定:该厂家属区的每户居民一个月用电量不超过A 千瓦时,•那么这户居民这个月只交10元电费,如果超过A 千瓦时,那么这个月除了交10•元用电费外超过部分还要按每千瓦时100A 元收费.(1)若某户2月份用电90千瓦时,超过规定A 千瓦时,则超过部分电费为多少元?(•用A 表示) (2)下表是这户居民3月、4月的用电情况和交费情况根据上表数据,求电厂规定的A 值为多少?教学时间: 教学课题:22.2.3因式分解法 教学课型:新授课 教学目标1.了解因式分解法的概念.2.会用提公因式法和运用乘法公式将整理成一般形式的方程左边因式分解,根据两个因式的积等于0,必有因式为0,从而降次解方程.3.经历探索因式分解法解一元二次方程的过程,发展学生合情合理的推理能力.4.体验解决问题方法的多样性,灵活选择解方程的方法.教学重点:会用提公因式法和运用乘法公式将整理成一般形式的方程左边因式分解,从而降次解方程 教学难点:将整理成一般形式的方程左边因式分解 教学过程 一、复习引入我们学习了用配方法和公式法解一元二次方程,这节课我们来学习一种新的方法. 二、探究新知 1.因式分解x 2-5x ;; 2x(x-3)-5(x-3); 25y 2-16; x 2+12x+36;4x 2+4x+1 2.若ab=0,则可以得到什么结论? 3.试求下列方程的根 :x(x-5)=0; (x-1)(x+1)=0;(2x-1)(2x+1)=0;(x+1)2 =0; (2x-3)2=0.分析:解左边是两个一次式的积,右边是0的一元二次方程,初步体会因式分解法解方程实现降次的方法特点,只要令每个因式分别为0,得到两个一元一次方程,解这两个一元一次方程,它们的解就都是原方程的解. 4. 试求下列方程的根①、4x 2-11x =0 x(x-2)+ (x-2)=0 (x-2)2 -(2x-4)=0 ②、25y 2-16=0 (3x+1)2 -(2x-1)2 =0 (2x-1)2 =(2-x)2 ③、x 2+10x+25=0 9x 2-24x+16=0; ④、5x 2-2x-41= x 2-2x+432x 2+12x+18=0; 分析:观察①②③三组方程的结构特点,在方程右边为0的前提下,对左边灵活选用合适的方法因式分解,并体会整体思想.总结用因式分解法解一元二次方程的一般步骤:首先使方程右边为0,其次将方程的左边分解成两个一次因式的积,再令两个一次因式分别为0,从而实现降次,得到两个一元一次方程,最后解这两个一元一次方程,它们的解就都能是原方程的解.这种解法叫做因式分解法. ④中的方程结构较复杂,需要先整理.5.选用合适方法解方程x2+x+41=0 x2+x-2=0 (x-2)2 =2-x 2x2-3=0.分析:四个方程最适合的解法依次是:利用完全平方公式,求根公式法,提公因式法,直接开平方法或利用平方差公式.归纳:配方法要先配方,再降次;公式法直接利用求根公式;因式分解法要先使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.配方法、公式法适用于所有一元二次方程,因式分解法用于某些一元二次方程. 解一元二次方程的基本思路:化二元为一元,即降次.三、课堂训练1.完成课本练习2.补充练习:①已知(x+y)2 –x-y=0,求x+y的值.②下面一元二次方程解法中,正确的是().A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x 两边同除以x,得x=1③今年初,湖北武穴市发生禽流感,某养鸡专业户在禽流感后,打算改建养鸡场,建一个面积为150m2的长方形养鸡场.为了节约材料,鸡场的一边靠着原有的一条墙,墙长am,另三边用竹篱围成,如果篱笆的长为35m,问鸡场长与宽各为多少?(其中a≥20m)四、小结归纳本节课应掌握:1.用因式分解法解一元二次方程2.归纳一元二次方程三种解法,比较它们的异同,能根据方程特点选择合适的方法解方程五、作业设计必做:P43:6、10选做:P43:13、14教学时间:教学课题:22.2.4一元二次方程的根与系数关系教学课型:新授课教学目标:1.熟练掌握一元二次方程的根与系数关系.2.灵活运用一元二次方程的根与系数关系解决实际问题.3.提高学生综合运用基础知识分析解决较复杂问题的能力.4.学生经历探索,尝试发现韦达定理,感受不完全归纳验证以及演绎证明教学重点:一元二次方程的根与系数关系教学难点:对根与系数关系的理解和推导教学过程一、复习引入一元二次方程的根与系数有着密切的关系,早在16世纪法国的杰出数学家韦达发现了这一关系,你能发现吗?二、探究新知1.课本思考分析:将(x- x1)(x-x2)=0化为一般形式x2-( x1 +x2)x+ x1 x2=0与x2+px+ q=0对比,易知p=-( x1 +x2),q= x1 x2. 即二次项系数是1的一元二次方程如果有实数根,则一次项系数等于两根和的相反数,常数项等于两根之积.2.跟踪练习求下列方程的两根x1、x2. 的和与积.x2+3x+2=0;x2+2x-3=0; x2-6x+5=0; x2-6x-15=03. 方程2x2-3x+1=0的两根的和、积与系数之间有类似的关系吗?分析:这个方程的二次项系数等于2,与上面情形有所不同,求出方程两根,再通过计算两根的和、积,检验上面的结论是否成立,若不成立,新的结论是什么?4.一般的一元二次方程ax2+bx+c=0(a≠0)中的a不一定是1,它的两根的和、积与系数之间有第3题中的关系吗?分析:利用求根公式,求出方程两根,再通过计算两根的和、积,得到方程的两个根x1、x2和系数a,b,c的关系,即韦达定理,也就是任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根之积等于常数项与二次项系数的比. 求根公式是在一般形式下推导得到,根与系数的关系由求根公式得到,因此,任何一个一元二次方程化为一般形式后根与系数之间都有这一关系.5.跟踪练习求下列方程的两根x1、x2. 的和与积.①3x2+7x+2=0;3x2+7x-2=0; 3x2-7x+2=0;3x2-7x-2=0;②5x-1=4x2;5x2-1=4x2+x6.拓展练习①已知一元二次方程2x 2+bx+c=0的两个根是-1,3,则b= ,c= .②已知关于x 的方程x 2+kx-2=0的一个根是1,则另一个根是 ,k 的值是 .③若关于x 的一元二次方程x 2+px+q=0的两个根互为相反数,则p= ; 若两个根互为倒数,则q= . 分析:方程中含有一个字母系数时利用方程一根的值可求得另一根和这个字母系数;方程中含有两个字母系数时利用方程的两根的值可求得这两个字母系数.二次项系数是1时,若方程的两根互为相反数或互为倒数,利用根与系数的关系可求得方程的一次项系数和常数项.④两个根均为负数的一元二次方程是( )A.4x 2+21x+5=0B.6x 2-13x-5=0C.7x 2-12x+5=0D.2x 2+15x-8=0⑤.两根异号,且正根的绝对值较大的方程是( )A.4x 2-3=0B.-3x 2+5x-4=0C.0.5x 2-4x-3=0D.2x 2+53x-6=0⑥.若关于x 的一元二次方程2x 2-3x+m=0,当m 时方程有两个正根;当m 时方程有两个负根;当m 时方程有一个正根一个负根,且正根的绝对值较大.三、课堂训练1.完成课本练习2.补充练习:x 1 ,x 2是方程3x 2-2x-4=0的两根,利用根与系数的关系求下列各式的值:①2111x x +; ②221212x x x x + ③2221x x +; ④()221x x -;⑤2112x x x x + 四、小结归纳本节课应掌握:1. 韦达定理二次项系数不是1的方程根与系数的关系2. 运用韦达定理时,注意隐含条件:二次项系数不为0,△≥0;3.韦达定理的应用常见题型:①不解方程,判断两个数是否是某一个一元二次方程的两根;②已知方程和方程的一根,求另一个根和字母系数的值;③由给出的两根满足的条件,确定字母系数的值;④判断两个根的符号;○5不解方程求含有方程的两根的式子的值. 五、作业设 计必做:P43:7选做:补充作业:已知一元二次方程x 2+3x+1=0的两个根是βα、,求αββα+的值.教学时间:教学课题:22.3实际问题与一元二次方程(1)教学课型:新授课教学目标:1.使学生会列出一元二次方程解应用题,初步掌握利用一元二次方程解决生活中的实际问题.2.培养学生的阅读能力.3.通过根据实际问题列方程,向学生渗透知识来源于生活.4.通过观察,思考,交流,进一步提高逻辑思维和分析问题解决问题能力.5.经历观察,归纳列一元二次方程的一般步骤教学重点:建立数学模型,找等量关系,列方程教学难点:找等量关系,列方程教学过程一、复习引入同一元一次方程,二元一次方程(组)等一样,一元二次方程和实际问题,也有紧密的联系,本节课就来讨论如何利用一元二次方程来解决实际问题.二、探究新知●探究课本30页问题1分析:设正方体的棱长是xdm,则一个正方体的表面积是多少?10个呢?等量关系是什么?●探究课本38页问题分析:设物体经过xs落回地面,这时它离地面的高度是多少?●某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.(利息税为利息的20%)分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其它依此类推●课本46页探究2分析:设甲种药品的成本年平均下降率为x,则一年后甲种药品成本是多少?两年后甲种药品成本是多少?相关的等量关系是什么?类似的乙甲种药品成本的年平均下降率是多少?相关的等量关系是什么?方程的解都是该问题的解吗?如果不是,如何选择?为什么?如何回答课本46页思考?归纳:通过解决以上问题,列一元二次方程解实际问题的基本步骤是什么?与以前学过的列方程解实际问题的步骤有何异同?●某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少?分析:设平均增长率是x ,则二月份生产电视机的台数是多少?三月份生产电视机的台数是多少?第一季度生产电视机的总台数还可以怎样表示?等量关系是什么?归纳:以上这几道题与我们以前所学的一元一次、二元一次方程(组)、分式方程等为背景建立数学模型是一样的,而我们借助的是一元二次方程为背景建立数学模型来分析实际问题和解决问题的类型.三、课堂训练补充练习:①.一台电视机成本价为a 元,销售价比成本价增加25%,因库存积压,•所以就按销售价的70%出售,那么每台售价为( ).A .(1+25%)(1+70%)a 元B .70%(1+25%)a 元C .(1+25%)(1-70%)a 元D .(1+25%+70%)a 元②.某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成本,•售价的折扣(即降低的百分数)不得超过d%,则d 可用p 表示为( ).A .100p p +B .pC .1001000p p -D .100100p p+ ③. 2009年一月份越南发生禽流感的养鸡场100家,后来二、•三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x ,依题意列出的方程是( ).A .100(1+x )2=250B .100(1+x )+100(1+x )2=250C .100(1-x )2=250D .100(1+x )2四、小结归纳1.列一元二次方程解应用题的一般步骤2.利用一元二次方程解决实际生活中的百分率问题五、作业设计必做:P48:1、2、3选做:P49:9补充作业:上海甲商场七月份利润为100万元,九月份的利率为121万元,乙商场七月份利率为200万元,九月份的利润为288万元,那么哪个商场利润的年平均上升率较大?教学时间:教学课题:22.3实际问题与一元二次方程(2)教学课型:新授课教学目标:1.能根据○1以流感为问题背景,按一定传播速度逐步传播的问题;○2以封面设计为问题背景,边衬的宽度问题中的数量关系列出一元二次方程,体会方程刻画现实世界的模型作用.2.培养学生的阅读能力与分析能力.3.能根据具体问题的实际意义,检验结果是否合理.4.通过自主探究,独立思考与合作交流,使学生弄清实际问题的背景,挖掘隐藏的数量关系,把有关数量关系分析透彻,找出可以作为列方程依据的主要相等关系,正确的建立一元二次方程教学重点:建立数学模型,找等量关系,列方程教学难点;找等量关系,列方程教学过程:一、复习引入通过上节课的学习,谈谈列一元二次方程解决实际问题的一般步骤及应注意的问题.二、探究新知●课本45页探究1分析:①设每轮传染中平均一个人传染x了个人.这里的一轮指一个传染周期.②第一轮的传染源有几个人?第一轮后有几个人被传染了流感?包括传染源在内,共有几个人患着流感?③第二轮的传染源有几个人?第二轮后有几个人被传染了流感?包括第二轮的传染源在内,共有几个人患着流感?④本题用来列方程的相等关系是什么?列出方程.拓展:课本思考.四轮呢?归纳:本题一流感为问题背景,讨论按一定传播速度逐步传播的问题,,特别需要注意的是,在第二轮传染中,在实际生活中,类似原型很多,比如细胞分裂,信息传播,传染病扩散,害虫繁殖等,一般就考虑两轮传播,这些问题有通性,在解题时有规律可循.●课本47页探究3分析:①正中央的长方形与整个封面的长宽比例相同,是什么含义?②上下边衬与左右边衬的宽度相等吗?如果不相等,应该有什么关系?③若设正中央的长方形的长和宽分别为9a㎝,7a㎝,尝试表示边衬的长度,并探究上下边衬与左右边衬的宽度的数量关系?④“应如何设计四周边衬的宽度?”是要求四周边衬的宽度,除了根据上下边衬与左右边衬的宽度比为,设上下边衬宽为与左右边衬宽为.还可以根据正中央的长方形长与宽的比为9:7,设正中央的长方形的长为。
22.1一元二次方程教案
一元二次方程(1)教案【学习目标】:1.使学生了解整式方程、一元二次方程的意义.2.使学生知道并能认识一元二次方程的一般形式,正确认识一元二次方程中二次项系数、一次项系数,常数项.3.会把一元二次方程化成一般形式.4.培养抽象、概括、分析和解决问题的能力.【重点】:使学生知道并能认识一元二次方程的一般形式,会把一元二次方程化成一般形式.【难点】:使学生掌握什么是一元二次方程的二次项和系数、一次项和系数以及常数项.一、自主学习课本,并完成以下练习:问题:绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?1、分析:现设长方形绿地的宽为x米,则长为米,可列方程x()=去括号得①2、试一试:你能概括吗?上面①这种整式方程中只含有个未知数,并且未知数的最高次数是,这样的方程叫做(仿照一元一次方程的定义给它下个定义)(这样与一元一次方程对比,以加深学生的印象,也可使学生深刻了解一元二次方程的意义。
)练习:每人仿照上述定义再写2个新方程3、总结该方程的一般形式:(x为未知数a、b、c是已知数,a≠0)其中a叫做二次项系数、b叫一次项系数,c叫常数项.(只有当a≠0时,才叫一元二次方程。
如果a=0,b≠0,就是一元一次方程了。
所以在一般形式中,必须包含a≠0这个条件。
)4、根据上述2和3得出的结论和定义,你有什么启示?与小组内同学交流一下.例1 把方程3x(x-1)=2(x+2)+8化成一般形式,并写出它的二次项系数、一次项系数及常数项。
解:去括号,得3 x2;-3 x=2x+4+8移项,合并同类项,得x 2-5 x -12=0二次项系数是3;一次项系数是-5;常数项是-12。
二、合作探究 展示提升:1、判断下列方程是否是一元二次方程;(1)0233122=--x x ( ) (2)0522=+-y x ( )(3) 02=++c bx ax ( ) (4)07142=+-x x ( )2、将下列方程化为一元二次方程的一般形式,并分别指出它们的二次项系数、一次项系数和常数项:(1)3x 2-x =2; (2)7x -3=2x 2;解: 解:(3)(2x -1)-3x (x -2)=0 (4)2x (x -1)=3(x +5)-4.解: 解:3、判断下列方程后面所给出的数,那些是方程的解;(1))()(1412+=+x x x ±1 ±2;(2)0822=-+x x ±2, ±44、填空:(1)0232=++x x 的二次项系数是 ,一次项系数是 ,常数项是(2)0432=+-x x 的二次项系数是 ,一次项系数是 ,常数项是(3)0232=-+x x 的二次项系数是 ,一次项系数是 ,常数项是(4)02342=-+x x 的二次项系数是 ,一次项系数是 ,常数项是三、巩固性练习:1、写出下列一元二次方程的二次项系数、一次项系数和常数项:(1)02=++d cx abx ()0≠ab(2)()02=++-n m x n m ()n m ≠1、已知关于x 的方程1222-=--x kx x k )(。
华师大版数学九年级上册22.1《一元二次方程》教学设计
华师大版数学九年级上册22.1《一元二次方程》教学设计一. 教材分析华师大版数学九年级上册22.1《一元二次方程》是整个初中数学的重要内容,也是学生首次接触二次方程。
本节课的内容包括一元二次方程的定义、解法、判别式等,为学生后续学习函数、不等式等数学知识打下基础。
教材通过丰富的例题和练习题,帮助学生掌握一元二次方程的解法,培养学生的数学思维能力和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,能够熟练运用一次方程和不等式解决问题。
但一元二次方程较为抽象,学生可能难以理解其本质。
同时,学生对于解方程的技巧和方法还不够熟练,需要通过大量的练习来提高。
三. 教学目标1.知识与技能:理解一元二次方程的定义,掌握一元二次方程的解法,能够运用一元二次方程解决实际问题。
2.过程与方法:通过合作交流,学会用代数方法解决实际问题,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,感受数学与生活的联系,培养学生的团队合作意识。
四. 教学重难点1.重点:一元二次方程的定义,一元二次方程的解法。
2.难点:一元二次方程的解法,判别式的应用。
五. 教学方法1.情境教学法:通过生活实例引入一元二次方程,让学生感受数学与生活的联系。
2.合作学习法:引导学生分组讨论,共同探索一元二次方程的解法,培养学生的团队合作意识。
3.练习法:通过大量的练习题,巩固学生对一元二次方程的理解和掌握。
六. 教学准备1.教学PPT:制作精美的PPT,展示一元二次方程的定义、解法、判别式等知识点。
2.练习题:准备一定数量的一元二次方程练习题,用于课堂练习和课后作业。
3.教学视频:准备一元二次方程的解法教学视频,用于引导学生直观地理解解法过程。
七. 教学过程1.导入(5分钟)利用生活实例引入一元二次方程,激发学生的学习兴趣。
例如,讲解一个实际问题:一个二次函数的图像与x轴相交于A、B两点,已知A点坐标为(1,0),求B点的坐标。
22.1一元二次方程数学教案
22.1一元二次方程数学教案
教案名称:《一元二次方程》
一、教学目标:
1. 知识与技能:理解并掌握一元二次方程的概念,能够解基本的一元二次方程;学会使用因式分解法、公式法等方法解决相关问题。
2. 过程与方法:通过观察、思考、讨论、合作等方式,提高学生分析问题、解决问题的能力。
3. 情感态度价值观:培养学生的数学思维,激发学生对数学的兴趣,增强学生的学习自信心。
二、教学重难点:
重点:理解和掌握一元二次方程的概念,学会使用因式分解法、公式法解一元二次方程。
难点:理解和运用一元二次方程的解法,解决实际问题。
三、教学过程:
1. 导入新课:通过生活实例或者历史故事引出一元二次方程的概念,激发学生的学习兴趣。
2. 新知探究:首先介绍一元二次方程的概念,然后引导学生学习如何用因式分解法解一元二次方程,再进一步介绍公式法,并举例说明。
在这个过程中,鼓励学生主动参与,提出自己的见解和疑问。
3. 实践应用:设计一些练习题让学生独立完成,以此来检验他们对新知识的理解和掌握程度。
同时,还可以设置一些实际问题,让学生利用所学知识去解决,以提升他们的应用能力。
4. 总结归纳:带领学生回顾本节课的主要内容,强调重要知识点,解答学生在课堂上提出的疑问。
5. 布置作业:布置适量的习题,让学生在课后巩固和复习所学知识。
四、教学评价:
通过课堂观察、小组讨论、练习反馈等方式,评价学生对一元二次方程的理解和掌握程度,以及他们的问题解决能力。
五、教学反思:
在课程结束后,教师需要反思本次教学的效果,包括教学设计是否合理,教学方法是否有效,学生的学习效果如何等等,以便于下次改进教学。
华师大版-数学-九年级上册-22.1 一元二次方程 教案
22.1一元二次方程教学目标:1.知道一元二次方程的定义,能熟练地把一元二次方程整理成一般形式(≠0)2.在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.3.会用试验的方法估计一元二次方程的解.教学重难点:1.一元二次方程的意义及一般形式,会正确识别一般式中的“项”及“系数”.2.理解用试验的方法估计一元二次方程的解的合理性.教学过程:一做一做:1.问题1绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?【解析】我们可以运用方程解决实际问题.现设长方形绿地的宽为x 米,不难列出方程 x (x +10)=900整理可得x 2+10x -900=0. (1)2.问题2学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.【解析】设这两年的年平均增长率为x ,我们知道,去年年底的图书数是5万册,则今年年底的图书数是5(1+x )万册;同样,明年年底的图书数又是今年年底的(1+x )倍,即5(1+x )(1+x )=5(1+x )2万册.可列得方程5(1+x )2=7.2,整理可得 5x 2+10x -2.2=0. (2)3.思考、讨论这样,问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元一次方程.02=++c bx ax那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?(学生分组讨论,然后各组交流)共同特点:(1)都是整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2.二、一元二次方程的概念上述两个整式方程中都只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程).通常可写成如下的一般形式:ax 2+bx +c =0(a 、b 、c 是已知数,a ≠0). 其中叫做二次项,叫做二次项系数;叫做一次项,叫做一次项系数,叫做常数项.三、例题讲解与练习巩固例1.下列方程中哪些是一元二次方程?试说明理由. (1)(2)(3)(4)【答案】(2)是一元二次方程.例2. 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:(1); (2)(x -2)(x +3)=8; (3)【解析】一元二次方程的一般形式(≠0)具有两个特征:一是方程的右边为0;二是左边的二次项系数不能为0.此外要使学生意识到:二次项、二次项系数、一次项、一次项系数、常数项都是包括符号的.例3. 方程(2a —4)x 2—2bx +a =0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?本题先由同学讨论,再由教师归纳.【答案】当a ≠2时是一元二次方程;当a =2,b ≠0时是一元一次方程;例4. 已知关于x 的一元二次方程(m -1)x 2+3x -5m +4=0有一根为2,求m .【解析】一根为2即x =2,只需把x =2代入原方程.练习:1.将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项(1); (2) 2x (x -1)=3(x -5)-4;(3)【答案】(1)2x 2+3x -2=0; 二次项系数2、一次项系数3和常数项-2(2)2x 2-5x +19=0 二次项系数2、一次项系数-5和常数项192ax bx 3523-=+x x 42=x 2112x x x =-+-22)2(4+=-x x y y =262)2()43)(3(+=-+x x x 02=++c bx ax x x 3222-=()()()()2311222-+=+--y y y y(3)2y 2-7y +6=0 二次项系数2、一次项系数-7和常数项62.关于的方程,在什么条件下是一元二次方程?在什么条件下是一元一次方程?【答案】在m ≠3时是一元二次方程;在m =3且n ≠0时是一元一次方程3.已知x =0是关于的一元二次方程(k - 1)x 2+3kx +4 -4︱k ︳=0的解,求k .【答案】k =-1.四、小结1.只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.2.一元二次方程的一般形式为(≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的.3.在实际问题转化为数学模型(一元二次方程)的过程中,体会学习一元二次方程的必要性和重要性.五、作业:0)3(2=++-m nx x m 02=++c bx ax。
广东省陆丰市内湖中学九年级数学上册 22.1 一元二次方程教学案 新人教版
22.1 一元二次方程一、教学目标1、了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;2、通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.3、通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.二、教学重难点1、重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2、难点:探索一元二次方程的解,培养估算意识能力.三、教学过程(一)自主学习学生活动:列方程.问题1 有一块长方形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为xcm,则盒底的长为______________,宽为_____________.得方程_______________________________整理得____ ___________________________解:问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为______________.设应邀请x个队参赛,每个队要与其他____________个队各赛1场,所以全部比赛共_______________场.列方程____________________________化简整理得________________________解:(二)课堂点拨1.学生活动:请口答下面问题.(1)上面三个方程式整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?小结一元二次方程三要素:①;②;③2.一元二次方程是3.一元二次方程的一般形式: .其中ax2是,是二次项系数;bx是,是一次项系数;是常数项.4.一元一次方程的解(根):5.范例学习例1:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:(三)当堂训练1.将方程2(x+1)+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.解:去括号,得: 移项,合并得: 其中:二次项 ,二次项系数 ;一次项 ,一次项系数 ;常数项 .2.判断下列方程是否为一元二次方程:(1)1-x 2 =0 (2)2( x 2 -1) =3y (3)2x 2 -3x-1=0(4)(x-3) 2 = (x+3) 2 (5)9x 2 =5-4x3.将下列方程化成一元二次方程的一般形式,并指出各项系数 .(1)(2x-1)(x-2)=7 (2)3x 2 +5(2x+1)=04.三个连续整数两两相乘,再求和,结果为242,这三个数分别是多少?5.以-2为根的一元二次方程是 ( )A .x 2+2x-x=0B .x 2-x-2=0C .x 2+x+2=0D .x 2+x-2=06.求方程322+x =422-x 的二次项系数,一次项系数及常数项.(四)归纳小结本节课你要掌握知识:(五)布置作业1.教材P27习题1、2.2.完成课本28页习题22.1四、教学反思:。
一元二次方程全章导学案(不分版本,通用)
1 反思:【学习目标】1、体会方程是刻画现实世界中数量关系的一个有效数学模型;2、理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项. 【学习重点】由实际问题列出一元二次方程和一元二次方程的概念. 【学习过程】【活动一】知识链接(5分钟)(1) 多项式2321x y x --是 次 项式,其中最高次项是 ,二次项系数为 ,一次项系数为 ,常数项为 .(2) 叫方程,我们学过的方程类型有 . 【活动二】自主交流 探究新知(25分钟)1.自学教材P17——19,回答以下问题.(1)一元二次方程的定义:只含有 个求知数(一元),并且求知数的最高次数是 (二次)的 方程,叫做一元二次方程. (2)一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下形式: (a ≠0),这种形式叫做一元二次方程的一般形式.其中 是二次项, 是二次项系数, 是一次项, 是一次项系数, 是常数项.【注意】①方程20ax bx c ++=只有当a ≠0时才叫一元二次方程,如果a=0,b ≠0时就是 方程了.所以在一般形式中,必须包含a ≠0这个条件.②二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.2. 一元二次方程的解:一元二次方程的解也叫做一元二次方程的_____,即使一元二次方程等号左右两边值相等的_______________的值. 【活动三】课内小结 (学生归纳总结) (3分钟)【活动四】快乐达标(学生先独立完成5分钟,后组内互查2分钟.)1.下列方程是一元二次方程的是有 :(1)3239x x +=,(2)(1)(1)0x x +-=,(3)220y =,(4)01122=-+xx ,(5)232m =, (6)05322=-+y x .2.把方程()()11212=+-y y 化为一般形式为: ;其二次项系数是 ;一次项系数是 ;常数项是 .3.若033)3(2=++--nx x m n 是关于x 的一元二次方程,则m= ,n= .4.下面哪些数是方程260x x --=的根? -4, -3, -2, -1, 0, 1, 2, 3, 4.5. 已知m 是方程260x x --=的一个根,则代数式2m m -=________.6.已知:关于x 的方程()()021122=-++-x k x k . (1)当k 取何值时,此方程为一元一次方程. (2)当k 取何值时,此方程为一元二次方程.【活动五】拓展延伸(独立完成3分钟,班级展示2分钟)1.当a______时,关于x 的方程22()(1)a x x x +=-+是一元二次方程.2.若关于x 的方程27(3)(5)50m m x m x -++-+=是一元二次方程,试求m 的值,•并指出这个方程的各项系数.3.关于x 的方程21()36m m m x x +-+=可能是一元二次方程吗?为什么?2 反思:§22.2.1《一元二次方程的解法——直接开平方法》导学案【学习目标】1、理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.2、提出问题,列出缺一次项的一元二次方程ax 2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a (ex+f )2+c=0型的一元二次方程. 【学习重点】运用开平方法解形如(x+m )2=n (n ≥0)的方程;领会降次──转化的数学思想. 【学习过程】【活动一】知识链接(5分钟) 1.我们知道x 2=25,根据平方根的意义,直接开平方得x= ,如果x 换元为2x-1,即2(21)5x -=,也用直接开平方的方法可以这样求解. 2.(1) 解:由方程 2(21)5x -=,得21x -=_______即 21x -=____,21x -=_____∴ 1x =_______, 2x =_____(2) 解:由方程 2692x x ++=,得(_________)2=2∴ ______________=_______ 即 ____________, ____________ ∴ 1x =_______, 2x =_____ 【活动二】自主交流 探究新知(15分钟) 仿照知识链接中的方法解下列方程:(1) 28x = (2) 22(1)4x -=(3) 2694x x++=(4)2490m -= (5)291241x x ++=【活动三】课内小结 (学生归纳总结) (3分钟)1、形如2x p =(0)p ≥或2()mx n p +=(0)p ≥的一元二次方程可利用平方根的定义用开平方的方法直接求解,这种解方程的方法叫做直接开平方法.2、如果方程能化成2x p =或2()mx n p +=(0)p ≥的形式,那么可得x =mx n +=【活动四】快乐达标(学生先独立完成5分钟,后组内互查2分钟.) 1.若224()x x p x q-+=+,那么p 、q 的值分别是( ).A .p=4,q=2B .p=4,q=-2C .p=-4,q=2D .p=-4,q=-2 2.方程2390x +=的根为( ).A .3 B .-3 C .±3 D .无实数根 3.解方程:(1)28160x -=(2)22(3)72x -=【活动五】拓展延伸(独立完成8分钟,班级展示2分钟) 1.如果a 、b 21236b b -+=0,求ab 的值.2.用直接开平方法解方程:22(1)180x --=3.解关于x 的方程2()(0)x m n n +=≥.4. 已知关于x 的一元二次方程043)2(22=-++-m x x m 有一个解是0,求m 的值.3 反思:§22.2.2《一元二次方程的解法——因式分解法》导学案【学习目标】1.正确理解因式分解法的实质.2.熟练掌握运用因式分解法解一元二次方程. 【学习重点】用因式分解法解一元二次方程. 【学习过程】【活动一】知识链接(5分钟)1.分解因式:(1)2832x - (2)244x x -+ (3)228x x --2.填空:填上适当的数,使下列等式成立:(1) 25____(____x x x ++=+2) (2) 21____(____2x x x ++=+2) (3) 2____(____x x +=-2) (4) 2____(____bx x x a++=+2) 【活动二】自主交流 探究新知(20分钟)仿照知识链接中的方法解下列方程:(1)2410x -= (2)22150x x --=【活动三】课内小结 (学生归纳总结) (3分钟)总结因式分解的步骤: ①通过___________把一元二次方程右边化为0; ②将方程左边分解为两个一次因式的______;③令每个因式分别为______,得到两个一元一次方程; ④解 ,它们的解就是原方程的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第22章《一元二次方程》§22.1一元二次方程导学案
学习目标:1.掌握一元二次方程的定义,能正确区分不同类型的方程。
2.能熟练把方程化为一元二次方程的一般形式。
3.会判断一个未知数的值是否是方程的解。
重点:能熟练把方程化为一元二次方程的一般形式。
难点:.掌握一元二次方程的定义,能正确区分不同类型的方程。
前置测试:
1.含有__未知数,并且未知数的最高次数是_ 次的整式方程叫做一元二次方程。
它的一般形式是_________.
2、判断下列方程,是一元二次方程的有____________.(填序号) (1)3
2250x x -+=; (2)2
1x =; (3)5
3
2412522+-=--x x x x ;
(4)
2
2(1)3(1)
x x +=+;(5)2
221x
x x -=+;(6)2
0ax bx c ++=.
3、方程)2(5)1(32+=-x x 的二次项系数___;一次项系数____;常数项___.
课堂达标测试: 1、下列各数是方程
2)2(3
12
=+x 解的是( )A 、6 B 、2 C 、4 D 、0
2、根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式. (1)4个完全相同的正方形的面积之和是25,求正方形的边长x . (2)一个矩形的长比宽多2,面积是100,求矩形的长x .
(3)一直角三角形的斜边长为10,两条直角边相差2,求较长的直角边长x . 3、下列方程一定是一元二次方程的是( )
A 、0
1232
=-+
x
x B 、03652=--y x
C 、2
20ax x -+= D 、2
2
(1)0a x bx c +++=
4、
103
21
2=++-m x x m 是关于x 的一元二次方程,则x 的值应为( )
A 、m =2
B 、3
2=m C 、2
3=
m
D 、无法确定
5、根据下列表格对应值:
x
3.24
3.25 3.26 2
ax bx c
++
-0.02
0.01
0.03
判断关于x 的方程2
0,(0)
ax
bx c a ++=≠的一个解x 的范围是( )
A 、x <3.24
B 、3.24<x <3.25
C 、3.25<x <3.26
D 、3.25<x <3.28 6、若一元二次方程
2
0,(0)
ax bx c a ++=≠有一个根为1,则=++c b a ____;若有
一个根是-1,则b 与a 、c 之间的关系为____;若有一个根为0,则c=_______. 7、后面哪些数是方程2
20x x --=的根?(-3、-2、-1、0、1、2、3)
6、若关于x
的一元二次方程0
12)1(2
2
=-++-m x x m 的常数项为0,求m 的值?
●体验中考
1、(2009,武汉)已知2
x =是一元二次方程2
20x mx ++=的一个解,则m
的值
是( ) A .-3 B .3 C .0 D .0或3 2、(2009年,日照)若(0)n n ≠是关于x 的方程2
20
x
mx n ++=的根,则m n +的
值为( ) A .1 B .2 C .-1 D .-2 作业:p28页习题22.1 1,2 ,5,6。