高二下学期期末文科数学及答案

合集下载

(完整版)高二下期末文科数学试题及答案,推荐文档

(完整版)高二下期末文科数学试题及答案,推荐文档

(Ⅱ)设点 P 在曲线 C 上,求点 P 到直线 l 的距离的最小值 .
19. (本题满分 12 分)一次考试中,5 名学生的数学、物理成绩如下
学生
A1
A2
A3
A4
A5
数学 x (分) 89
91
93
95
97
物理 y (分) 87
89
89
92
93
求 y 关于 x 的线性回归方程.
21.(本题满分 12 分)已知在长方体 ABCD A1B1C1D1 中, AD AA1 1 , AB 2 ,点 F 是
10
5
1
5
A.
B.
C. D.
11 11
6
36
3.已知点
F1,F2
为椭圆
x2 9
y2 25
1的两个焦点,则
F1, F2
的坐标为
A. (4, 0), (4, 0) B. (3, 0), (3, 0) C. (0, 4), (0, 4) D. (0, 3), (0,3)
4.命题 P: x 0, x3 0 ,那么 P 是
(Ⅱ) 在以 O 为极点, x 轴的正半轴为极轴建立极坐标系,设点 P 的极坐标为 2 2, 3 ,
4
求点 P 到线段 AB 中点 M 的距离.
18.(本题满分
12
分ห้องสมุดไป่ตู้已知曲线
C
:
x
3
3 cos ( 为参数),直线 l : (cos
3 sin ) 12 .
y 3 sin
(Ⅰ)求直线 l 的直角坐标方程及曲线 C 的普通方程;
AB 边上动点,点E是棱 B1B 的中点. (Ⅰ)求证: D1F A1D ; (Ⅱ)求多面体 ABCDED1 的体积.

高二文科数学第二学期期末考试试题及答案

高二文科数学第二学期期末考试试题及答案

复习试卷.答案一、选择题1-5 DABCB 6-10 DADDC 11-12 BC二、填空题.充分13.丁 142S?S=S ABC ΔΔΔBOCBDC n.3.15(n+1)(n+2) …(n+n)=2×1××…×(2n-1) 16 三、解答题2?)(1(1?tan A?tan B) 17.证明:由?tan A?tan?21?tan A4)?A?tan(?tan B??1??4?tan A1?tan A1A tantan1?4 (5)分可得??)Z k???A?k?(k?Z k)A?B???(B44即因为A,B都是钝角,?2B???A?,即?5??BA4所以10分.…………………………列联表如下:(Ⅰ)2218.解:及格不及格总计40 4 甲班 3640 24 16 乙班806020总计分………………62236)?24?16n(bcad?)?80?(429.6??K?6020?40?40?ac?)(b?d))((a?bc?d)((Ⅱ)20.005?7.879)(PK?由99.5%,所以有的把握认为“成绩与班级有关系”.…………………12分19.解:(Ⅰ)…………………2分11?????58x?4?5?6?3040?60?50?70?50?2y??55分...4,, (Ⅱ)50??1380?556.5?b?17.55???bx?50?6.5?ay25145?5?8分,…………………,y?6.5x?17.5.…………………10∴回归直线方程为分y?10?6.5?17.5?82.5y10x?分12.…………………的值为时,预报(Ⅲ)当20.(1)几何证明选讲解析:(Ⅰ)证明:连接BE,则△ABE为直角三角形,,,∠AEB=∠ACB因为∠ABE=∠ADC=90 ,所以△ABE∽△ADC 则=,ADAE. =即ABAC ,AB=BC又分ADAE. …………………6所以ACBC=的切线,FC是⊙O(Ⅱ)因为2AFBF. =所以FC ,CF=6又AF=4,5.=BF-AFBF=9,AB=则,CFB=∠AFC因为∠ACF=∠CBF,又∠,AFC∽△CFB所以△…………………12分则=,即AC==. (2)坐标系与参数方程20.解析:(Ⅰ)直线参数方程可以化为的直线.…………………6分根据直线参数方程的意义,这是一条经过点,倾斜角为60xly(Ⅱ)直线=的直角坐标方程为+,yx+=即0-,22=1,ρ=2cos的直角坐标方程为+极坐标方程l所以圆心到直线的距离d==,AB12分2|==.所以|………………… 3)不等式选讲20.(??3f?x3|?|x-a3a+-3?x?a.得,解:(Ⅰ)由,解得1,??a?3????3f?x5,3?a?5}?-1?x{x|?2a=,所以又已知不等式解得的解集为………………….6分??????5)+fxf=(fxxx=|x-2|g+2=a,(Ⅱ)当时,,设3,?1,x??2x?????2,?x?3|=5,?x3=|x-2|+|x+g??2,1,x?2x??于是??????55gx??5gxx=g2???x2x-3-x?3.;当所以当;当时,时,时,??xg5.综上可得,的最小值为??m?xf+x5)+f(,从而若??m?xg x即对一切实数恒成立,m 12分则.…………………的取值范围为(-∞,5] 1)几何证明选讲21.(CAD. =∠解析:(Ⅰ)证明:由已知条件,可得∠BAE AEB因为∠与∠ACB是同弧上的圆周角,ACD.所以∠AEB=∠ 6分ADC. 故△ABE∽△…………………,所以=,(Ⅱ)因为△ABE∽△ADCADAE. ABAC即= ADAEBACS又=ABACsin ∠,且S=,ADAE. 故BAC∠=ABACsin=1,BACsin 则∠ BAC又∠为三角形内角,所以∠1290. =BAC…………………分)坐标系与参数方程21.(2222?????yx?y?2?sin22sin?,即(Ⅰ)可得22yx?y?2的直角坐标方程为.…………………6分所以曲线C42)y??(x?l3,(Ⅱ)直线的普通方程为(0,1)(2,0)y?0M2x?,又曲线令C,即,可得C的圆心坐标为为圆,圆5?MC1r?.,则半径1??r?5?MN?MC分.…………………12 21.(3)不等式选讲1?2x-1||101?x?-1?2x-1?. 解(Ⅰ)由,解得得??1??M=xx|0.…………………所以6分10?b?b?M0?a?1a,.)和,可知(Ⅱ)由(Ⅰ-)=(a+1)-(a+b1)(b-1)?0(ab所以.b?a+ab+1…………………12分故.1)几何证明选讲22.(BCMMCMBEE,连接90于点,则∠解析:(Ⅰ)延长,交圆=EBCBMBE30=4,∠,又==2ACBCAB=2,又∵,∴=BCAB.∴==2ABACAF9. ==由切割线定理知=3AF分=3. …………………6∴ADFEDHEEHBCH与△(Ⅱ)证明:过点于点作相似,⊥,则△EDAD 3分. …………………从而有==,因此12=)坐标系与参数方程22.(2?2cos x????222sin y?4x?y??可得)由(I,???2??????)??4?4sin(cos?(sinsin)cos333由得,22224?y?1)2x?y?y?x23x(?3)?(,整理得分即.…………………6CC3,1)((II)圆表示圆心在原点,半径为的圆,,半径为22的圆,圆表示圆心为21CC3,1)(在圆12分的圆心又圆上,由几何性质可知,两圆相交.…………………12)不等式选讲(322.4??4||x?2?|x|2?a,解:(I)当时,1??4x2?2x?6x?时,得;当,解得4<2<x4?2时,得当,无解;5?4x2x?6?x?4当,解得时,得;5}x??x1或{x|故不等式的解集为6分.…………………222}?a?a?x?aaa|x?|?a{x|)(II可解得,226}?2?x??a?x?aa}?{x||{xa?因为,2?a??2?a?2?a?1????26?a?a2??a?3???2a???1解得所以即,1a?又因为,2a??112所以.…………………分。

高二文科数学第二学期期末考试试题及答案

高二文科数学第二学期期末考试试题及答案

复习试卷答案一、选择题1-5 6-10 11-12二、填空题13.丁 14.充分15.(n +1)(n +2) …(n +n)=2n ×1×3×…×(2n -1)16.2ΔABC ΔBOC ΔBDC S =S S ⋅三、解答题17.证明:由(1tan )(1tan )2A B ++= 可得tantan 21tan 4tan 1tan()1tan 1tan 41tan tan 4A A B A A A A π--π=-===-π+++…………………5分 ()4B A k k π=-+π∈Z 即()4A B k k π+=+π∈Z因为都是钝角,即2A B π<+<π, 所以54A B π+=.…………………………10分 18.解:(Ⅰ)22列联表如下:………………6分(Ⅱ)222()80(4241636)9.6()()()()40402060n ad bc K a b c d a c b d -⨯⨯-⨯===++++⨯⨯⨯ 由2(7.879)0.005P K ≥≈,所以有99.5%的把握认为“成绩与班级有关系”. …………………12分19.解:(Ⅰ)…………………2分(Ⅱ)()12456855x =++++=,()13040605070505y =++++=,…………4分213805550 6.514555b -⨯⨯==-⨯,50 6.5517.5a y bx =-=-⨯=,…………………8分 ∴回归直线方程为 6.517.5y x =+.…………………10分(Ⅲ)当10x =时,预报y 的值为10 6.517.582.5y =⨯+=.…………………12分20.(1)几何证明选讲解析:(Ⅰ)证明:连接,则△为直角三角形,因为∠=∠=90,∠=∠,所以△∽△,则=,即=.又=,所以=. …………………6分(Ⅱ)因为是⊙O 的切线,所以2=.又=4,=6,则=9,=-=5.因为∠=∠,又∠=∠,所以△∽△,则=,即==.…………………12分20.(2)坐标系与参数方程解析:(Ⅰ)直线参数方程可以化为根据直线参数方程的意义,这是一条经过点,倾斜角为60的直线.…………………6分(Ⅱ)直线l 的直角坐标方程为y =x +,即x -y +=0,极坐标方程ρ=2的直角坐标方程为2+2=1,所以圆心到直线l 的距离d ==,所以=2=.…………………12分20.(3)不等式选讲解:(Ⅰ)由()3f x ≤得,||3x a ≤-,解得33a x a ≤≤-+.又已知不等式()3f x ≤的解集为{|15}x x ≤≤-,所以31,35,a a -=-⎧⎨+=⎩解得2a =.…………………6分(Ⅱ)当2a =时,()|2|f x x =-,设()()(5)g x f x f x =++,于是()21,3,|2||3|5,32,21,2,x x g x x x x x x --<-⎧⎪-≤≤⎨⎪+>⎩=-++=所以当3x <-时,()5g x >;当32x ≤≤-时,()5g x =;当2x >时,()5g x >. 综上可得,()g x 的最小值为5.从而若()(5)f x f x m ≥++,即()g x m ≥对一切实数x 恒成立,则m 的取值范围为(-∞,5].…………………12分21.(1)几何证明选讲解析:(Ⅰ)证明:由已知条件,可得∠=∠.因为∠与∠是同弧上的圆周角,所以∠=∠.故△∽△. …………………6分(Ⅱ)因为△∽△,所以=,即=.又S = ∠,且S =,故 ∠=.则 ∠=1,又∠为三角形内角,所以∠=90. …………………12分21.(2)坐标系与参数方程(Ⅰ)2sin ρθ=可得22sin ρρθ=,即222x y y +=所以曲线C 的直角坐标方程为222x y y +=.…………………6分 (Ⅱ)直线l 的普通方程为4(2)3y x =--, 令0y =可得2x =,即(2,0)M ,又曲线C 为圆,圆C 的圆心坐标为(0,1), 半径1r =,则5MC =.51MN MC r ∴≤+=+.…………………12分21.(3)不等式选讲解 (Ⅰ)由|21|1x <-得1211x <<--,解得01x <<. 所以{}M |01x x <<=.…………………6分 (Ⅱ)由(Ⅰ)和M a b ∈,可知01a <<,01b <<. 所以(1)()(1)(1)0ab a b a b >+-+=--.故1ab a b >++.…………………12分22.(1)几何证明选讲解析:(Ⅰ)延长交圆E 于点M ,连接,则∠=90,又=2=4,∠=30,∴ =2,又∵ =,∴ ==.由切割线定理知2==3=9.∴ =3. …………………6分(Ⅱ)证明:过点E 作⊥于点H ,则△与△相似, 从而有==,因此=3. …………………12分22.(2)坐标系与参数方程(I )由2cos 2sin x y ϕϕ=⎧⎨=⎩可得224x y +=, 由4sin()3πρθ=+得24(sin cos cos sin )33ππρρθθ=+, 即22223x y y x +=+,整理得22(3)(1)4x y -+-=.…………………6分 ()圆1C 表示圆心在原点,半径为2的圆,圆2C 表示圆心为(3,1),半径为2的圆, 又圆2C 的圆心(3,1)在圆1C 上,由几何性质可知,两圆相交.…………………12分22.(3)不等式选讲解:(I )当2a =时,|2||4|4x x -+-≥,当2x ≤时,得264x -+≥,解得1x ≤;高二文科数学第二学期期末考试试题与答案11 / 11 当24x <<时,得24≥,无解;当4x ≥时,得264x -≥,解得5x ≥;故不等式的解集为{| 15}x x x ≤≥或.…………………6分()2||x a a -≤可解得22{|}x a a x a a -≤≤+, 因为22{|}{|26}x a a x a a x x -≤≤+⊆-≤≤, 所以2226a a a a ⎧-≤-⎪⎨+≤⎪⎩解得1232a a -≤≤⎧⎨-≤≤⎩即12a -≤≤,又因为1a >,所以12a <≤.…………………12分。

高二下学期期末考试数学(文)试卷 Word版含答案

高二下学期期末考试数学(文)试卷 Word版含答案

高二数学试题(文科)试卷说明:(1)命题范围:人教版选修1-2,必修1 (2)试卷共两卷(3)时间:120分钟 总分:150分第Ⅰ卷一.选择题:本大题共12小题,每小题5分,共60分.在每小题的四个选项中,只有一项是符合题目要求的.1.如果{}5,4,3,2,1=S ,{}3,2,1=M ,{}5,3,2=N ,那么()()N C M C S S 等于( ). A.φ B.{}3,1 C.{}4 D.{}5,2 2.下列函数中,是奇函数,又在定义域内为减函数的是( ).A.xy ⎪⎭⎫⎝⎛=21 B.x y 1= C.)(log 3x y -= D.3x y -=3. 若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则A .a=2,b=2B .a = 2 ,b=2C .a=2,b=1D .a= 2 ,b= 2 4. 对于10<<a ,给出下列四个不等式 ①)11(log )1(log aa a a +<+ ②)11(log )1(log aa a a +>+ ③aaaa111++<④aaaa111++>其中成立的是A .①与③B .①与④C .②与③D .②与④5、若函数的图象经过第二且)10(1)(≠>-+=a a b a x f x、三、四象限,则一定有 A .010><<b a 且 B .01>>b a 且C .010<<<b a 且D .01<>b a 且6、已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若A .21 B .-21 C .2D .-27.若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a=A.42 B.22 C.41 D.218、函数1(1)y x =≥的反函数是A .)1(222<+-=x x x y B .)1(222≥+-=x x x yC .)1(22<-=x x x yD .)1(22≥-=x x x y9.在映射:f A B →中,(){},|,A B x y x y R ==∈,且()():,,f x y x y x y →-+,则与A 中的元素()1,2-对应的B 中的元素为()A .()3.1-B .()1,3C .()1,3--D .()3,110.设复数2121),(2,1z z R b bi z i z 若∈+=+=为实数,则b = ( )A.2B.1C.-1D.-211.函数34x y =的图象是( )A .B .C .D .12、在复平面内,复数1i i++(1+3i )2对应的点位于 ( ) A. 第一象限 B. 第二象限 C. 第三象限 D.第四象限第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题纸中对应横线上. 13.已知复数122,13z i z i =-=-,则复数215z i z + =14.lg25+32lg8+lg5·lg20+lg 22= 15.若关于x 的方程04)73(32=+-+x t tx 的两实根21,x x ,满足21021<<<<x x ,则实数t 的取值范围是16.函数2()ln()f x x x =-的单调递增区间为三、解答题:本大题共6小题,共74分.前五题各12分,最后一题14分. 17.(本小题12分)计算 ()20251002i 1i 1i 1i i 21⎪⎭⎫⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-++18.(本小题12分) 在数列{a n }中,)(22,111++∈+==N n a a a a nnn ,试猜想这个数列的通项公式。

高二下学期文科数学期末复习试题含答案

高二下学期文科数学期末复习试题含答案

高二文科数学期末复习一、填空题:1.若复数z 满足()12i 34i z +=-+(i 是虚数单位),则=z . 答案:i 21+.2.设全集=U Z ,集合2{|20=--≥A x x x ,}∈x Z ,则U=A (用列举法表示).答案:{0,1}.3.若复数z 满足i iz 31+-=(i 是虚数单位),则=z .i +4.已知A ,B 均为集合{=U 2,4,6,8,10}的子集,且}4{=⋂B A ,}10{)(=⋂A B C U ,则=A .答案:{4,10}5.已知全集R U =,集合=A {32|≤≤-x x },=B {1|-<x x 或4>x },那么集合⋂A (UB )等于 .答案:{x|-1≤x≤3}解析:主要考查集合运算.由题意可得,UB ={x|-1≤x≤4},A ={x|-2≤x≤3},所以(⋂A U)B ={x|-1≤x≤3}.6.已知集合},3,1{m A =,}4,3{=B ,且}4,3,2,1{=B A ,则实数m = . 答案:27.命题“若b a >,则b a 22>”的否命题为 . 答案:若b a ≤,则ba22≤8.设函数()⎩⎨⎧=x xx f 2log 2 11>≤x x ,则()[]=2f f .答案:2 9.函数)23(log 5.0-=x y 的定义域是 .答案:]1,32(10.已知9.01.17.01.1,7.0log ,9.0log ===c b a ,则c b a ,,按从小到大依次为 .答案:c a b <<11.设函数)(x f 是定义在R 上的奇函数.若当),0(∞+∈x 时,x x f lg )(=,则满足0)(>x f 的x 的取值范围是 .答案:),1()0,1(∞+-12.曲线C :x x y ln =在点M (e ,e )处的切线方程为 . 答案:e x y -=213.已知函数211)(xx f -=的定义域为M ,)1(log )(2x x g -=(1-≤x )的值域为N ,则(RM )N ⋂等于 .答案:{x|x≥1}解析:考查定义域求解.可求得集合M ={x|-1<x<1},集合N ={g (x )|g (x )≥1},则RM ={x|x≤-1或x≥1},∴(RM )N ⋂={x|x≥1}.14.设⎪⎩⎪⎨⎧+--=,11,2|1|)(2x x x f 1||1||>≤x x ,则)]21([f f 等于 .答案:134解析:本题主要考查分段函数运算. ∵232|121|)21(-=--=f ,∴134)23(11)23()]21([2=-+=-=f f f .15.已知函数)1ln()(2++=x x x f ,若实数a ,b 满足0)1()(=-+b f a f ,则b a +等于 .答案:1解析:考查函数奇偶性.观察得)(x f 在定义域内是增函数, 而)1ln()(2++-=-x x x f )(11ln2x f x x -=++=,∴)(x f 是奇函数,则)1()1()(b f b f a f -=--=,∴b a -=1,即1=+b a .16.若函数)(log )(3ax x x f a -=(0>a ,1≠a )在区间(21-,0)上单调递增,则a 的范围是 .答案:143<≤a解析:本题考查复合函数单调性,要注意分类讨论.设ax x x u -=3)(,由复合函数的单调性,可分10<<a 和1>a 两种情况讨论:①当10<<a 时,ax x x u -=3)(在(21-,0)上单调递减,即03)('2≤-=a x x u 在(21-,0)上恒成立,∴43≥a ,∴143<≤a ;②当1>a 时,ax x x u -=3)(在(21-,0)上单调递增,即03)('2≥-=a x x u 在(21-,0)上恒成立,∴0≤a ,∴a 无解.综上,可知143<≤a .17.已知()f x 为偶函数,且)3()1(x f x f -=+,当02≤≤-x 时,xx f 3)(=,则=)2011(f . 答案:3118.函数221x xy =+的值域为 .答案:)1,0(19.已知函数)(x f 的定义域为A ,若其值域也为A ,则称区间A 为)(x f 的保值区间.若()ln g x x m x =++的保值区间是[,)e +∞ ,则实数m 的值为 .答案:1-20.若不等式0122<-+-m x mx 对任意]2,2[-∈m 恒成立,则实数x 的取值范围是 .答案:)213,217(+-21.直线1=y 与曲线a x x y +-=2有四个交点,则实数a 的取值范围是 . 答案:)45,1(22.已知函数0)(3(log 2≠-=a ax y a 且)1±≠a 在]2,0[上是减函数,则实数a 的取值范围是 . 答案:)23,1()0,1( -二、解答题: 1.已知函数132)(++-=x x x f 的定义域为A ,函数)1()]2)(1lg[()(<---=a x a a x x g 的定义域为B . (1)求A ;(2)若A B ⊆,求实数a 的取值范围. 解:(1)由0132≥++-x x ,得011≥+-x x ,∴1-<x 或1≥x , ……4分即),1[)1,(+∞--∞= A ; ……6分 (2)由0)2)(1(>---x a a x ,得0)2)(1(<---a x a x .∵1<a ,∴a a 21>+.∴)1,2(+=a a B . ……8分 ∵A B ⊆,∴12≥a 或11-≤+a ,即21≥a 或2-≤a . ……12分而1<a ,∴121<≤a 或2-≤a .故当A B ⊆时,实数a 的取值范围是)1,21[]2,( --∞. ……14分2.已知命题p :函数)2(log 25.0a x x y ++=的值域为R ,命题q :函数x a y )25(--= 是减函数.若p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.解:对命题p :∵函数)2(log 25.0a x x y ++=的值域为R ,∴1)1(222-++=++a x a x x 可以取到),0(+∞上的每一个值,∴01≤-a ,即1≤a ; ……4分命题q :∵函数xa y )25(--=是减函数,∴125>-a ,即2<a . ……8分 ∵p 或q 为真命题,p 且q 为假命题,∴命题p 与命题q 一真一假,若p 真q 假,则1≤a 且2≥a ,无解, ……10分 若p 假q 真,则21<<a , ……12分 ∴实数a 的取值范围是)2,1( ……14分3.某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为2.1万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为)10(<<x x ,则出厂价相应提高的比例为x 75.0,同时预计年销售量增加的比例为x 6.0.已知年利润=(出厂价–投入成本)⨯年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年有所增加,问投入成本增加的比例x 应在什么范围内? 解:(1)由题意得)10)(6.01(1000)]1(1)75.01(2.1[<<+⨯⨯+⨯-+⨯=x x x x y ,…5分 整理得 )10( 20020602<<++-=x x x y ;……7分(2)要保证本年度的利润比上年度有所增加,当且仅当⎩⎨⎧<<>⨯--.10,01000)12.1(x y …10分即⎩⎨⎧<<>+-.10,020602x x x 解不等式得 310<<x . ……13分答:为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 应满足33.00<<x .…14分 4.已知命题p :指数函数xa x f )62()(-=在R 上单调递减,命题Q :关于x 的方程012322=++-a ax x 的两个实根均大于3.若p 或q 为真,p 且q 为假,求实数a 的取值范围.解:若p 真,则f (x )=(2a -6)x在R 上单调递减,∴0<2a -6<1,∴3<a<72,若q 真,令f (x )=x 2-3ax +2a 2+1,则应满足⎩⎪⎨⎪⎧Δ= -3a 2-4 2a 2+1 ≥0--3a2>3f 3 =9-9a +2a 2+1>0,∴⎩⎪⎨⎪⎧a ≥2或a ≤-2a>2a<2或a>52,故a>52,又由题意应有p 真q 假或p 假q 真.①若p 真q 假,则⎩⎪⎨⎪⎧3<a<72a ≤52,a 无解.②若p 假q 真,则⎩⎪⎨⎪⎧a ≤3或a ≥72a>52,∴52<a ≤3或a ≥72.故a 的取值范围是{a|52<a ≤3或a ≥72}.5.已知函数)(x f 满足对任意实数y x ,都有1)()()(+++=+xy y f x f y x f ,且2)2(-=-f .(1)求)1(f 的值;(2)证明:对一切大于1的正整数t ,恒有t t f >)(;(3)试求满足t t f =)(的所有的整数t ,并说明理由.解:(1)令0==y x ,得1)0(-=f ;令1-==y x ,得2)1()1()2(+-+-=-f f f ,又2)2(-=-f ,∴2)1(-=-f ; 令1,1-==y x ,得)1()1()0(-+=f f f ,∴1)1(=f . ……4分 (2)令1=x ,得2)()1(+=-+y y f y f ①∴当N y ∈时,有0)()1(>-+y f y f ,由1)1(),()1(=>+f y f y f 知对*N y ∈有0)(>y f ,∴当*N y ∈时,111)(2)()1(+>+++=++=+y y y f y y f y f ,于是对于一切大于1的正整数t ,恒有t t f >)(. ……9分 (3)由①及(1)可知1)4(,1)3(=--=-f f ; ……11分下面证明当整数4-≤t 时,t t f >)(,∵4-≤t ,∴02)2(>≥+-t 由① 得0)2()1()(>+-=+-t t f t f ,即 0)4()5(>---f f ,同理0)5()6(>---f f , ……,0)2()1(>+-+t f t f ,0)1()(>+-t f t f , 将以上不等式相加得41)4()(->=->f t f ,∴当4-≤t 时,t t f >)(, ……15分 综上,满足条件的整数只有2,1-=t . ……16分6.如下图所示,图1是定义在R 上的二次函数)(x f 的部分图象,图2是函数)(log )(b x x g a +=的部分图象.(1)分别求出函数)(x f 和)(x g 的解析式;(2)如果函数)]([x f g y =在区间[1,m )上单调递减,求实数m 的取值范围. 解:(1)由题图1得,二次函数)(x f 的顶点坐标为(1,2), 故可设函数2)1()(2+-=x a x f ,又函数)(x f 的图象过点(0,0),故2-=a , 整理得x x x f 42)(2+-=.由题图2得,函数)(log )(b x x g a +=的图象过点(0,0)和(1,1),故有⎩⎨⎧=+=1)1(log 0log b b aa ,∴⎩⎨⎧==12b a ,∴)1(log )(2+=x x g (1->x ).(2)由(1)得)142(l og )]([22++-==x x x f g y 是由t y 2log =和1422++-=x x t 复合而成的函数,而t y 2log =在定义域上单调递增,要使函数)]([x f g y =在区间[1,m )上单调递减,必须1422++-=x x t 在区间[1,m )上单调递减,且有0>t 恒成立.由0=t 得262±=x ,又因为t 的图象的对称轴为1=x .所以满足条件的m 的取值范围为2621±<<m .7.已知1212)3(4)(234+-++-=x x m x x x f ,R m ∈.(1)若f 0)1('=,求m 的值,并求)(x f 的单调区间;(2)若对于任意实数x ,0)(≥x f 恒成立,求m 的取值范围.解:(1)由f ′(x )=4x 3-12x 2+2(3+m )x -12,得f ′(1)=4-12+2(3+m )-12=0,解得m =7.………2分所以 f ′(x )=4 x 3-12x 2+20x -12=4(x -1)(x 2-2x +3) .方程x 2-2x +3=0的判别式Δ=22-3×4=-8<0,所以x 2-2x +3>0. 所以f ′(x )=0,解得x =1.……………………………4分由此可得f (x )的单调减区间是(-∞,1),f (x )的单调增区间是(1,+∞).…8分(2)f (x )=x 4-4x 3+(3+m )x 2-12x +12=(x 2+3)(x -2)2+(m -4)x 2. 当m <4时,f (2)=4(m -4)<0,不合题意;……………12分当m≥4时,f (x )=(x 2+3)(x -2)2+(m -4)x 2≥0,对一切实数x 恒成立. 所以,m 的取值范围是[4,+∞).……………16分。

高二下学期数学期末试卷及答案(文科)

高二下学期数学期末试卷及答案(文科)

下期高中二年级教学质量监测数学试卷(文科)(考试时间120分 满分150分)第Ⅰ卷 选择题(满分60分)一、选择题:本大题共12小题;每小题5分;满分60分;每小题只有一个选项符合题目要求;请将正确答案填在答题栏内。

1. 设集合M ={长方体};N ={正方体};则M ∩N =:A .MB .NC .∅D .以上都不是 2. “sinx =siny ”是“x =y ”的:A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 3. 下列函数是偶函数的是:A .)0()(2≥=x x x fB . )2cos()(π-=x x f C . x e x f =)(D . ||lg )(x x f =4. 从单词“equation ”中选取5个不同的字母排成一排;含有“qu ”(其中“qu ”相连且顺序不变)的不同排法共有()个: A .480 B . 840 C . 120 D . 7205. 72)12(xx +的展开式中倒数第三项的系数是:A .267CB . 6672CC . 2572CD . 5572C 6. 直线a ⊥平面α;直线b ∥平面α;则直线a 、b 的关系是:A .可能平行B . 一定垂直C . 一定异面D . 相交时才垂直7. 已知54cos ),0,2(=-∈x x π;则=x 2tan : A .274B . 274-C .724 D . 724-8. 抛物线的顶点在原点;焦点与椭圆14822=+x y 的一个焦点重合;则抛物线方程是:A .y x 82±=B . x y 82±=C . y x 42±=D . x y 42±=9. 公差不为0的等差数列}{n a 中;632,,a a a 成等比数列;则该等比数列的公比q 等于: A . 4 B . 3 C . 2 D . 110. 正四面体的内切球(与正四面体的四个面都相切的球)与外接球(过正四面体四个顶点的球)的体积比为: A .1:3 B . 1:9 C . 1:27 D . 与正四面体的棱长无关11. 从1;2;3;…;9这九个数中;随机抽取3个不同的数;这3个数的和为偶数的概率是:A .95 B . 94 C . 2111 D . 2110 12. 如图:四边形BECF 、AFED 都是矩形;且平面AFED ⊥平面BCDEF ;∠ACF =α;∠ABF =β;∠BAC =θ;则下列式子中正确的是: A .θβαcos cos cos •= B .θβαcos sin sin •=C .θαβcos cos cos •=D .θαβcos sin sin •=。

高二数学(文科)第二学期期末考试试题(含参考答案)

高二数学(文科)第二学期期末考试试题(含参考答案)

A.

B.

C.

D.

【答案】 C 【解析】设 A(x 1,y1),B(x 2,y2), 又 F(1,0), 则 =(1-x 1,-y1), =(x 2-1,y 2), 由题意知 =3 ,
因此

又由 A 、B 均在抛物线上知
解得
直线 l 的斜率为
=± ,
因此直线 l 的方程为 y= (x-1) 或 y=- (x-1). 故选 C.
【答案】 D
【解析】因为特称命题的否定是全称命题,
为奇函数 不为偶函数
所以 , 命题 p: ? a∈R,f(x) 为偶函数 , 则¬ p 为: ? a∈R,f(x) 不为偶函数
故选: D
7. 某种产品的广告费支出与校舍(单位元)之间有下表关系(

2
4
5
6
) 8
30
40
60
50
70
与 的线性回归方程为
2016-2017 学年第二学期期末检测
高二数学(文科)试题
第Ⅰ卷(共 60 分) 一、选择题:本大题共 12 个小题 , 每小题 5 分, 共 60 分 . 在每小题给出的四个选项中,只有一 项是符合题目要求的 .
1. 若复数
,则
()
A.
B.
C.
D.
【答案】 C
【解析】由题意得,
,故选 C.
2. 点 极坐标为
区分

.
5. 已知双曲线
的离心率为 2,则双曲线 的渐近线的方程为(

A.
B.
C.
D.
【答案】 B
【解析】根据题意 , 双曲线的方程为:

高二下学期期末考试数学(文)试题 Word版含答案

高二下学期期末考试数学(文)试题 Word版含答案

孝感高中—高二下学期期末考试数学(文)试题本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分 考试时间:120分钟 满分:150分 命题人:张享昌一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若(2z a ai =+为纯虚数,其中7,1+∈+a i a R ai则=( )A .iB .1C .i -D .-12.与极坐标2,6π⎛⎫- ⎪⎝⎭不表示同一点的极坐标是( ) A .72,6π⎛⎫ ⎪⎝⎭B .72,6π⎛⎫- ⎪⎝⎭C .112,6π⎛⎫--⎪⎝⎭ D .132,6π⎛⎫-⎪⎝⎭3.如图,ABC ∆是圆的内接三角形,BAC ∠的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F . 在上述条件下,给出下列四个结论: ①BD 平分CBF ∠; ②2;FB FD FA = ③;AE CE BE DE =④AF BD AB BF =.则所有正确结论的序号是( ) A .①②B .③④C .①②③D .①②④4.已知命题:p “存在[)01,,x ∈+∞使得()02log 31x≥”,则下列说法正确的是( ) A .p 是假命题;:p ⌝“任意[)1,x ∈+∞,都有()2log 31x<”B .p 是真命题;:p ⌝“不存在[)01,,x ∈+∞使得()02log 31x<”C .p 是真命题;:p ⌝“任意[)1,,x ∈+∞都有()2log 31x<”D .p 是假命题;:p ⌝“任意(),1,x ∈-∞都有()2log 31x<”5.设()f x 是定义在正整数集上的函数,且()f x 满足:“当()2f k k ≥成立时,总可推出()()211f k k +≥+成立”. 那么,下列命题总成立的是( ).A .若()39f ≥成立,则当1k ≥时,均有()2f k k ≥成立B .若()525f ≥成立,则当5k ≤时,均有()2f k k ≥成立.C .若()749f <成立,则当8k ≥时,均有()2f k k <成立.D .若()425f =成立,则当4k ≥时,均有()2f k k ≥成立.6.已知下列四个命题:1:p 若直线l 和平面α内的无数条直线垂直,则l α⊥;2:p 若()22,x xf x -=-则()(),x R f x f x ∀∈-=-;3:p 若()1,1f x x x =++则()()000,,1x f x ∃∈+∞=; 4:p 在ABC ∆中,若A B >,则sin sin A B >.其中真命题的个数是( ) A .1B .2C .3D .47.对具有线性相关关系的变量,,x y 测得一组数据如下表:x2 4 5 6 8 y2040607080根据上表,利用最小二乘法得它们的回归直线方程为ˆˆ10.5yx a =+,据此模型来预测当20x =时,y 的估计值为( ) A .210B .210.5C .211.5D .212.58.已知双曲线()222107y x a a -=>的一个焦点与抛物线2116y x =的焦点重合,则实数a =( ) A .1 B .2 C .3D .49.执行如图所示的程序框图,如果输入的100N =, 则输出的x = A .0.95B .0.98C .0.99D .1.0010.在同一直角坐标系中,函数22a y ax x =-+与()2322y a x ax x a a R =-++∈的图象不可能...的是( ) A .B .C .D .11.横梁的强度和它的矩形横断面的宽成正比,并和矩形横断面的高的平方成正比,要将直径为d 的圆木锯成强度最大的横梁,则横断面的高和宽分别为( ) A 33,3d d B .36,33d d C .6333d d D .633d d 12.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),……,则第60个数对是( ) A .(5,7)B .(7,5)C .(2,10)D .(10,1)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答案卡中的横线上) 13.如图,点D 在O 的弦AB 上移动,4,AB =连接OD ,过点D 作OD 的垂线交O 与点C ,则CD 的最大值为____________.14.若不等式2112222x x a a -++≥++对任意实数x 都成立,则实数a 的取值范围为____________.15.若函数()2sin f x x x =+任意的[]()()2,2,30m f mx f x ∈--+<恒成立,则x 的取值范围是_________.16.已知抛物线()240x py p =>的焦点为F ,直线2y x =+与该抛物线交于,A B 两点,M 是线段AB 的中点,过M 作x 轴的垂线,垂足为N ,若()215AF BF AF BF FN p ++=--,则p 的值为__________.三、解答题(本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤)17.如图,AB 是圆O 的直径,AC 是圆O 的切线,BC 交圆O 于点E . (1)若D 为AC 的中点,求证:DE 是圆O 的切线; (2)若3,OA CE =求ACB ∠的大小.18.已知函数()3f x x x a =---. (1)当2a =时,解不等式()1;2f x ≤-(2)若存在实数a ,使得不等式()f x a ≥成立,求实数a 的取值范围.19.已知直线l 的参数方程为31,2132x y t ⎧=--⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin 6πρθ⎛⎫=- ⎪⎝⎭. (1)求圆C 的直角坐标方程;(2)若(),P x y 是直线l 与圆面4sin 6πρθ⎛⎫≤- ⎪⎝⎭3x y +的取值范围.20.设命题:p 关于x 的方程2210x mx ++=有两个不相等的正实根,命题:q 关于x 的方程()2223100x m x m +--+=无实根. 若p q ∨为真命题,p q ∧为假命题,求实数m 的取值范围.21.已知12,F F 分别是椭圆2214x y +=的左、右焦点. (1)若P 是第一象限内该椭圆上的一点,125,4PF PF =-求点P 的坐标;(2)设过定点()0,2M 的直线l 与椭圆交于不同的两点,A B ,且AOB ∠为锐角(其中O为坐标原点),求直线l 的斜率k 的取值范围.22. 已知()32f x ax bx cx d =+++是定义在R 上的函数,其图象交x 轴于A B C 、、三点,若点B 的坐标为()2,0,且()f x 在[]1,0-和[]4,5上有相同的单调性,在[]0,2和[]4,5上有相反的单调性.(1)求ba的取值范围; (2)在函数()f x 的图象上是否存在点()0,0M x y ,使得曲线()y f x =在M 处的切线的斜率为3b ?若存在,求出点M 的坐标;若不存在,请说明理由.(3)求AC 的取值范围.孝感高中2015—2016学年度高二下学期期末考试高二数学(文)参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C B DCDBCCCBCA二、填空题 13.214.1[,0]2-15.(3,1)- 16.1217.(10分)(1)证明:连接,AE OE .由已知,得,AE BC AC AB ⊥⊥. 在Rt AEC ∆中,由已知得DE DC =, DEC DCE ∴∠=∠.,90OBE OEB ACB ABC ∠=∠∠+∠=, 90DEC OEB ∴∠+∠=,90,OED DE ∴∠=∴是圆O 的切线.(2)解:设1,CE AE x ==,由已知得AB BE == 由射影定理可得:2AE CE BE =.2x ∴=解得60x ACB =∴∠=.18.(12分)解:(1)当2a =时,1,2,()|3||2|52,23,1,3,x f x x x x x x ≤⎧⎪=---=-<<⎨⎪-≥⎩1()2f x ∴≤-等价于2,112x ≤⎧⎪⎨≤-⎪⎩或23,1522x x <<⎧⎪⎨-≤-⎪⎩或3,11,2x ≥⎧⎪⎨-≤-⎪⎩解得1134x ≤<或3x ≥,∴原不等式的解集为114x x ⎧⎫≥⎨⎬⎩⎭ (2)由绝对值三角不等式可知()|3||||(3)()||3|f x x x a x x a a =---≤---=-. 若存在实数a ,使得不等式()f a a ≥成立,则|3|a a -≥,解得32a ≤,∴实数a 的取值范围是3,2⎛⎤-∞ ⎥⎝⎦.19.(12分)解(1)因为圆C 的极坐标方程为4sin 6πρθ⎛⎫=-⎪⎝⎭,所以214sin 4cos 62πρρθρθθ⎫⎛⎫=-=-⎪ ⎪⎪⎝⎭⎝⎭. 又222,cos ,sin x y x y ρρθρθ=+==,所以222x y x +=-,所以圆C的直角坐标方程为2220x y x ++-=.(2)设z y =+.因为圆C的方程2220x y x ++-=可化为22(1)(4x y ++=,所以圆C的圆心是(-,半径是2.将1212x t y t ⎧=--⎪⎪⎨⎪=⎪⎩代入z y =+,得z t =-. 又直线l过(C -,圆C 的半径是2,所以22t -≤≤,y +的取值范围是[2,2]-.20.解:设方程2210x mx ++=的两根分别为12,x x ,由2112440,20m x x m ⎧∆=->⎨+=->⎩得1,m <-所以:1p m <-;由方程22(2)3100x m x m +--+=无实根,可得224(2)4(310)0m m ∆=---+<,知23m -<<,所以:23q m -<<.由p q ∨为真,p q ∧为假,可知命题,p q 一真一假,当p 真q 假时,1,32,m m m <-⎧⎨≥≤-⎩或此时2m ≤-;当p 假q 真时,1,23,m m ≥-⎧⎨-<<⎩此时13m -≤<,所以m 的取值范围是2m ≤-或13m -≤<.21.解(1)由椭圆方程为2214x y +=,知2,1,a b c ===12(F F ∴.设(,)(0,0)P x y x y >>,则22125(,),)34PF PF x y x y x y ⋅=--⋅-=+-=-,即2274x y +=. 又点P 在椭圆上,联立22227,41,4x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩解得221.3.4x y ⎧=⎪⎨=⎪⎩ 点P在第一象限,1,x y P ∴==∴. (2)显然0x =不满足题意,可设直线l 的方程为2y kx =+,设1122(,),(,)A x y B x y .联立221,42,x y y kx ⎧+=⎪⎨⎪=+⎩消去y 并整理,得22(14)16120k x kx +++=,1212221216,1414kx x x x k k∴=+=-++,且 2223(16)4(14)120,4k k k ∆=-+⋅>∴>.又AOB ∠为锐角,12120,0OA OB x x y y ∴⋅>∴+>,1212(2)(2)0x x kx kx ∴+++>,222121222212164(4)(1)2()4(1)240,141414k k k x x k x x k k k k k -⎛⎫∴++++=++-+=> ⎪+++⎝⎭24k ∴<.又223333,4,2,,244k k k ⎛⎫⎛⎫>∴<<∴∈-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 22.解:(1)依题意知,函数()f x 在[1,0]-和[0,2]上有相反的单调性,所以0x =是()f x 的一个极值点,故(0)0f '=,即2320ax bx c ++=的一个解为0x =,则0c =.此时,易得2()320f x ax bx '=+=的另一解为2.3b x a=-因为函数()f x 在[0,2]和[4,5]上有相反的单调性,所以223b a -≥且243b a-≤,则63b a-≤≤-,故ba 的取值范围为[6,3]--.(2)假设存在点00(,)M x y ,使得曲线()y f x =在点M 处的切线的斜率为3b .则0()3.f x b '=即2003230ax bx b +-=.22(2)43(3)4364(9)bb a b b ab ab a∆=-⨯⨯-=+=+,而63,0ba -≤≤-∴∆<.故不存在点00(,)M x y ,使得曲线()y f x =在点M 处的切线的斜率为3b .(3)依题意可令32()(2)()()[(2)(22)2]f x a x x a x a x x x βαβαβαβαβ=---=-+++++-.则(2),2b a d a αβαβ=-++⎧⎨=-⎩得2,2b ada αβαβ⎧+=--⎪⎪⎨⎪=-⎪⎩因为曲线()y f x =的图象交x 轴于点(2,0)B ,所以840a b d ++=, 即4(2)d b a =-+,于是4(2)d ba a=-+,||||AC αβ∴=-====因为63b a-≤≤-,所以当6ba =-时,||AC 取得最大值,max ||AC =3ba =-时,||AC 取得最小值,min ||3AC =.故3||AC ≤≤.。

高二下学期期末(文科)数学试卷 (解析版)

高二下学期期末(文科)数学试卷 (解析版)

高二第二学期期末数学试卷(文科)一、选择题(共12小题).1.已知复数z满足iz=1﹣i(i是虚数单位),则z=()A.﹣1﹣i B.1﹣i C.﹣1+i D.1+i2.根据如下样本数据,得到回归方程=bx+a,则()x345678y 4.0 2.5﹣0.50.5﹣2.0﹣3.0 A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0 3.已知复数z=(i是虚数单位),则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限4.已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.45.执行如图所示的程序框图,若输出S的值为0.99,则判断框内可填入的条件是()A.i<100B.i≤100C.i<99D.i≤986.甲、乙、丙三人中,一人是工人,一人是农民,一人是知识分子.已知:丙的年龄比知识分子大;甲的年龄和农民不同;农民的年龄比乙小.根据以上情况,下列判断正确的是()A.甲是工人,乙是知识分子,丙是农民B.甲是知识分子,乙是农民,丙是工人C.甲是知识分子,乙是工人,丙是农民D.甲是知识分子,乙是农民,丙是工人7.为了判定两个分类变量X和Y是否有关系,应用k2独立性检验法算得k2的观测值为5,又已知P(k2≥3.841)=0.05,P(k2≥6.635)=0.01,则下列说法正确的是()A.有99%以上的把握认为“X和Y有关系”B.有99%以上的把握认为“X和Y没有关系”C.有95%以上的把握认为“X和Y有关系”D.有95%以上的把握认为“X和Y没有关系”8.某工厂某产品产量x(千件)与单位成本y(元)满足回归直线方程=77.36﹣1.82x,则以下说法中正确的是()A.产量每增加1000件,单位成本约下降1.82元B.产量每减少1000件,单位成本约下降1.82元C.当产量为1千件时,单位成本为75.54元D.当产量为2千件时,单位成本为73.72元9.已知i为虚数单位,复数z=,则以下命题为真命题的是()A.z的共轭复数为B.z的虚部为C.|z|=3D.z在复平面内对应的点在第一象限10.为了规定工时定额,需要确定加工某种零件所需的时间,为此进行了5次试验,得到5组数据:(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5),由最小二乘法求得回归直线方程为.若已知x1+x2+x3+x4+x5=250,则y1+y2+y3+y4+y5=()A.75B.155.4C.375D.44211.幻方,是中国古代一种填数游戏.n(n∈N*,n≥3)阶幻方是指将连续n2个正整数排成的正方形数阵,使之同一行、同一列和同一对角线上的n个数的和都相等.中国古籍《周易本义》中的《洛书》记载了一个三阶幻方(如图1),即现在的图2.若某3阶幻方正中间的数是2018,则该幻方中的最小数为()A.2013B.2014C.2015D.201612.对任意复数z=x+yi(x,y∈R),i为虚数单位,则下列结论正确的是()A.|z|≤|x|+|y|B.|z ﹣|≥2x C.z2=x2+y2D.|z ﹣|=2y二、填空题:本大题共5个小题,每小题5分,共25分.13.已知,若(a,b均为实数),请推测a =,b=.14.某次国际会议为了搞好对外宣传工作,会务组选聘了50名记者担任对外翻译工作,在如表“性别与会外语”的2×2列联表中,a+b+d=.会外语不会外语总计男a b20女6d总计185015.已知复数z满足(1+i)z=|+i|,i为虚数单位,则z等于.16.某设备的使用年数x与所支出的维修总费用y的统计数据如下表:使用年数x(单位:米)23456维修总费用y(单位:万1.5 4.5 5.5 6.57.5元)根据上表可得回归直线方程为=1.3x+.若该设备维修总费用超过12万元就报废,据此模型预测该设备最多可使用年.17.给出下列关于回归分析的说法:①残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高;②回归直线一定过样本中心点(,);③两个模型中残差平方和越小的模型拟合的效果越好;④甲、乙两个模型的相关指数R2分别约为0.88和0.80,则模型乙的拟合效果更好.其中错误的序号是.三、解答题:本大题共5小题,共65分,解答题应根据要求写出必要的文字说明,证明过程或演算步骤.18.已知复数(i是虚数单位)(1)复数z是实数,求实数m的值;(2)复数z是虚数,求实数m的取值范围;(3)复数z是纯虚数,求实数m的值.19.某医院治疗白血病有甲、乙两套方案,现就70名患者治疗后复发的情况进行了统计,得到其等高条形图如图所示(其中采用甲、乙两种治疗方案的患者人数之比为5:2)(1)补充完整2×2列联表中的数据,(2)判断是否有95%的把握认为甲、乙两套治疗方案对患者白血病复发有影响.复发未复发总计甲方案乙方案总计附:.P(K2≥k0)0.100.050.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.87910.82820.某企业坚持以市场需求为导向,合理配置生产资源,不断改革、探索销售模式.下表是该企业每月生产的一种核心产品的产量x(件)与相应的生产总成本y(万元)的五组对照数据:产量x(件)12345生产总成本y(万元)3781012(1)试求y与x的相关系数r,并利用相关系数r说明y与x是否具有较强的线性相关关系(若|r|>0.75,则线性相关程度很高,可用线性回归模型拟合);(2)建立y关于x的回归方程,并预测:当x为6时,生产总成本的估计值.参考公式:r=,=,=﹣.参考数据:.21.2020年寒假是特殊的寒假,因为疫情全体学生只能在家进行网上在线学习,为研究学生网上学习的情况,某校社团对男女各10名学生进行了网上在线学习的问卷调查,每名学生给出评分(满分100分),得到如图所示的茎叶图.(1)根据茎叶图判断男生组和女生组哪个组对网课的评价更高?并说明理由;(2)求该20名学生评分的中位数m,并将评分超过m和不超过m的学生数填入下面的列联表中,并根据列联表,判断能否有90%的把握认为男生和女生的评分有差异?超过m不超过m总计男生女生总计附:.P(K2≥k0)0.100.050.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.87910.82822.当前,短视频行业异军突起,抖音、快手、秒拍等短视频平台吸引了大量流量和网络博主的加入.红人榜的数据推出是体现各平台KOL网络博主商业价值的榜单,每周一期,红人榜能反应最近一周KOL网络的综合价值,以粉丝数、集均评论、集均赞,以及集均分享来进行综合衡量,红人榜单在统计时发现某平台一网络博主的累计粉丝数y(百万)与入驻平台周次x(周)之间的关系如图所示:设ω=lnx,数据经过初步处理得:=258,=160,=9.(其中x i,y i分别为观测数据中的周次和累计粉丝数)(1)求出y关于x的线性回归模型=x+的相关指数R12,若用非线性回归模型求得的相关指数R22=0.9998,试用相关指数R2判断哪种模型的拟合效果较好(相关指数越接近于1,拟合效果越好)(2)根据(1)中拟合效果较好的模型求出y关于x的回归方程,并由此预测入驻平台8周后,对应的累计粉丝数y为多少?附参考公式:相关指数R2=1﹣,=,=﹣.参考数据:ln2≈0.70.参考答案一、选择题(共12小题).1.已知复数z满足iz=1﹣i(i是虚数单位),则z=()A.﹣1﹣i B.1﹣i C.﹣1+i D.1+i解:由iz=1﹣i,得z=.故选:A.2.根据如下样本数据,得到回归方程=bx+a,则()x345678y 4.0 2.5﹣0.50.5﹣2.0﹣3.0 A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0解:由题意可知:回归方程经过的样本数据对应的点附近,是减函数,所以b<0,且回归方程经过(3,4)与(4,2.5)附近,所以a>0.故选:B.3.已知复数z=(i是虚数单位),则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解:∵z==,∴z在复平面内对应的点的坐标为(﹣1,﹣1),位于第三象限.故选:C.4.已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.4解:∵变量x与y正相关,∴可以排除C,D;样本平均数=3,=3.5,代入A符合,B不符合,故选:A.5.执行如图所示的程序框图,若输出S的值为0.99,则判断框内可填入的条件是()A.i<100B.i≤100C.i<99D.i≤98解:由程序框图知:算法的功能是求S=++…+=1﹣的值,∵输出的结果为0.99,即S=1﹣=0.99,∴跳出循环的i=100,∴判断框内应填i≤99或i<100.故选:A.6.甲、乙、丙三人中,一人是工人,一人是农民,一人是知识分子.已知:丙的年龄比知识分子大;甲的年龄和农民不同;农民的年龄比乙小.根据以上情况,下列判断正确的是()A.甲是工人,乙是知识分子,丙是农民B.甲是知识分子,乙是农民,丙是工人C.甲是知识分子,乙是工人,丙是农民D.甲是知识分子,乙是农民,丙是工人解:“甲的年龄和农民不同”和“农民的年龄比乙小”可以推得丙是农民,所以丙的年龄比乙小;再由“丙的年龄比知识分子大”,可知甲是知识分子,故乙是工人.故选:C.7.为了判定两个分类变量X和Y是否有关系,应用k2独立性检验法算得k2的观测值为5,又已知P(k2≥3.841)=0.05,P(k2≥6.635)=0.01,则下列说法正确的是()A.有99%以上的把握认为“X和Y有关系”B.有99%以上的把握认为“X和Y没有关系”C.有95%以上的把握认为“X和Y有关系”D.有95%以上的把握认为“X和Y没有关系”解:∵3.481<K2=5<6.635,而在观测值表中对应于3.841的是0.05,对应于6.635的是0.01,∴有1﹣0.05=95%以上的把握认为“X和Y有关系”.故选:C.8.某工厂某产品产量x(千件)与单位成本y(元)满足回归直线方程=77.36﹣1.82x,则以下说法中正确的是()A.产量每增加1000件,单位成本约下降1.82元B.产量每减少1000件,单位成本约下降1.82元C.当产量为1千件时,单位成本为75.54元D.当产量为2千件时,单位成本为73.72元解:由题意,该方程在R上为单调递减,函数模型是一个递减的函数模型,产量每增加1000件,单位成本下降1.82元.故选:A.9.已知i为虚数单位,复数z=,则以下命题为真命题的是()A.z的共轭复数为B.z的虚部为C.|z|=3D.z在复平面内对应的点在第一象限解:z==,z的共轭复数为,故A错误;z的虚部为,故B错误;,故C错误;z在复平面内对应的点的坐标为(),在第一象限,故D正确.故选:D.10.为了规定工时定额,需要确定加工某种零件所需的时间,为此进行了5次试验,得到5组数据:(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5),由最小二乘法求得回归直线方程为.若已知x1+x2+x3+x4+x5=250,则y1+y2+y3+y4+y5=()A.75B.155.4C.375D.442解:由x1+x2+x3+x4+x5=250,得,又,∴,∴y1+y2+y3+y4+y5=.故选:D.11.幻方,是中国古代一种填数游戏.n(n∈N*,n≥3)阶幻方是指将连续n2个正整数排成的正方形数阵,使之同一行、同一列和同一对角线上的n个数的和都相等.中国古籍《周易本义》中的《洛书》记载了一个三阶幻方(如图1),即现在的图2.若某3阶幻方正中间的数是2018,则该幻方中的最小数为()A.2013B.2014C.2015D.2016解:根据题意,3阶幻方是将9个连续的正整数排成的正方形数阵,则这9个数成等差数列,设这个数列为{a n},且其公差为1,其同一行、同一列和同一对角线上的3个数的和都相等,则幻方中最中间的数是这9个数中的最中间的1个,若3阶幻方正中间的数是2018,即a5=2018,则其最小的数a1=a5﹣4d=2014;故选:B.12.对任意复数z=x+yi(x,y∈R),i为虚数单位,则下列结论正确的是()A.|z|≤|x|+|y|B.|z﹣|≥2x C.z2=x2+y2D.|z﹣|=2y解:∵z=x+yi(x,y∈R),∴|z|2=x2+y2≤x2+y2+2|x||y|=(|x|+|y|)2,∴|z|≤|x|+|y|,即A正确,C错误;又|z﹣|=2|y|,可排除B与D,故选:A.二、填空题:本大题共5个小题,每小题5分,共25分.13.已知,若(a,b均为实数),请推测a=6,b=35.解:观察各个等式可得,各个等式左边的分数的分子与前面的整数相同、分母是分子平方减1,等式右边的分数与左边的分数相同,前面的整数与左边的整数相同,∴等式中的a=6、b=36﹣1=35,故答案为:6;35.14.某次国际会议为了搞好对外宣传工作,会务组选聘了50名记者担任对外翻译工作,在如表“性别与会外语”的2×2列联表中,a+b+d=44.会外语不会外语总计男a b20女6d总计1850解:由题意填写列联表如下,会外语不会外语总计男12820女62430总计183250所以a=12,b=8,d=24,a+b+d=12+8+24=44.故答案为:44.15.已知复数z满足(1+i)z=|+i|,i为虚数单位,则z 等于1﹣i.解:∵(1+i)z=|+i|=,∴z =.故答案为:1﹣i.16.某设备的使用年数x与所支出的维修总费用y 的统计数据如下表:使用年数x(单位:米)23456维修总费用y(单位:万1.5 4.5 5.5 6.57.5元)根据上表可得回归直线方程为=1.3x+.若该设备维修总费用超过12万元就报废,据此模型预测该设备最多可使用10年.解:根据表中数据,计算=×(2+3+4+5+6)=4,=×(1.5+4.5+5.5+6.5+7.5)=5.1,且回归直线方程=1.3x+过样本中心点(,),∴5.1=1.3×4+,解得=﹣0.1;∴回归直线方程为=1.3x﹣0.1;令=1.3x﹣0.1≥12,解得x≥9.308,据此模型预测该设备最多可使用10年,其维修总费用超过12万元,就应报废.故答案为:10.17.给出下列关于回归分析的说法:①残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高;②回归直线一定过样本中心点(,);③两个模型中残差平方和越小的模型拟合的效果越好;④甲、乙两个模型的相关指数R2分别约为0.88和0.80,则模型乙的拟合效果更好.其中错误的序号是①④.解:①残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高,不正确.②线性回归直线必过样本数据的中心点(,),正确;③如果两个变量的相关性越强,则相关性系数r就越接近于1,正确,应为相关性系数r的绝对值就越接近于1;④甲、乙两个模型的R2分别约为0.88和0.80,则模型乙的拟合效果更好,不正确,应为模型甲的拟合效果更好.故答案为:①④.三、解答题:本大题共5小题,共65分,解答题应根据要求写出必要的文字说明,证明过程或演算步骤.18.已知复数(i是虚数单位)(1)复数z是实数,求实数m的值;(2)复数z是虚数,求实数m的取值范围;(3)复数z是纯虚数,求实数m的值.解:(1)若复数z是实数,则,得,即m=5;(2)复数z是虚数,则,即,即m≠5且m≠﹣3;(3)复数z是纯虚数,则,得,即m=3,或﹣219.某医院治疗白血病有甲、乙两套方案,现就70名患者治疗后复发的情况进行了统计,得到其等高条形图如图所示(其中采用甲、乙两种治疗方案的患者人数之比为5:2)(1)补充完整2×2列联表中的数据,(2)判断是否有95%的把握认为甲、乙两套治疗方案对患者白血病复发有影响.复发未复发总计甲方案乙方案总计附:.P(K2≥k0)0.100.050.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.87910.828解:(1)根据题意知,70名患者中采用甲种治疗方案的患者为50人,采用乙种治疗方案的患者有20人,填写2×2列联表如下;复发未复发总计甲方案203050乙方案21820总计224870(2)由列联表中数据,计算K2=≈5.966>3.841,所以有95%的把握认为甲、乙两套治疗方案对患者白血病复发有影响.20.某企业坚持以市场需求为导向,合理配置生产资源,不断改革、探索销售模式.下表是该企业每月生产的一种核心产品的产量x(件)与相应的生产总成本y(万元)的五组对照数据:产量x(件)12345生产总成本y(万元)3781012(1)试求y与x的相关系数r,并利用相关系数r说明y与x是否具有较强的线性相关关系(若|r|>0.75,则线性相关程度很高,可用线性回归模型拟合);(2)建立y关于x的回归方程,并预测:当x为6时,生产总成本的估计值.参考公式:r=,=,=﹣.参考数据:.解:(1),,,,.∴相关系数r=≈0.98.∵|r|>0.75,∴y与x具有较强的线性相关关系,可用线性回归方程拟合y与x的关系;(2),.∴y关于x的线性回归方程为.取x=6,求得.∴预测当x为6时,生产总成本的估计值为14.3万元.21.2020年寒假是特殊的寒假,因为疫情全体学生只能在家进行网上在线学习,为研究学生网上学习的情况,某校社团对男女各10名学生进行了网上在线学习的问卷调查,每名学生给出评分(满分100分),得到如图所示的茎叶图.(1)根据茎叶图判断男生组和女生组哪个组对网课的评价更高?并说明理由;(2)求该20名学生评分的中位数m,并将评分超过m和不超过m的学生数填入下面的列联表中,并根据列联表,判断能否有90%的把握认为男生和女生的评分有差异?超过m不超过m总计男生女生总计附:.P(K2≥k0)0.100.050.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.87910.828解:(1)男生对问题的评价更高,理由如下:①由茎叶图知,评价分数不低于70分的男生比女生多2人(33.3%),因此男生对网课的评价更高;②由茎叶图知,男生评分的中位数是77,女生评分的中位数是72,因此男生对网课的评价更高;③由茎叶图知,男生评分的平均数为×(68+69+70+74+77+78+79+83+86+96)=78,女生评分的平均数为×(55+58+63+64+71+73+75+76+81+86)=70.2,因此男生对网课的评价更高;(以上三条理由给出一条理由,即可得到满分)(2)由茎叶图知,该20名学生评分的中位数是m==74.5,由此填写列联表如下;超过m不超过m总计男生6410女生4610总计101020计算K2==0.8<2.706,所以没有90%的把握认为男生和女生的评分有差异.22.当前,短视频行业异军突起,抖音、快手、秒拍等短视频平台吸引了大量流量和网络博主的加入.红人榜的数据推出是体现各平台KOL网络博主商业价值的榜单,每周一期,红人榜能反应最近一周KOL网络的综合价值,以粉丝数、集均评论、集均赞,以及集均分享来进行综合衡量,红人榜单在统计时发现某平台一网络博主的累计粉丝数y(百万)与入驻平台周次x(周)之间的关系如图所示:设ω=lnx,数据经过初步处理得:=258,=160,=9.(其中x i,y i分别为观测数据中的周次和累计粉丝数)(1)求出y关于x的线性回归模型=x+的相关指数R12,若用非线性回归模型求得的相关指数R22=0.9998,试用相关指数R2判断哪种模型的拟合效果较好(相关指数越接近于1,拟合效果越好)(2)根据(1)中拟合效果较好的模型求出y关于x的回归方程,并由此预测入驻平台8周后,对应的累计粉丝数y为多少?附参考公式:相关指数R2=1﹣,=,=﹣.参考数据:ln2≈0.70.解:(1)由已知可得R12=1﹣,R22=0.9998,∵R12<R22,∴的拟合效果较好;(2)由题意,=1,.=,.∴回归方程为y=10lnx+4.6.当x=8时,y=10ln8+4.6=30ln2+4.6≈25.6.∴预测入驻平台8周后,对应的累计粉丝数y为25.6百万=2560万.。

第二学期高二文科数学期末试题及答案

第二学期高二文科数学期末试题及答案

第二学期学期期末考试高二数学试题(文科)一、填空题:本大题共14小题;每小题5分;共70分。

请把答案填写在答题卡相应位置上{1,0,1,2},{|(1)0}M N x x x =-=-=;则=N M _________.2.命题“2,x R x x ∀∈>”的否定是 .3. 已知复数a+bi=错误!(i 是虚数单位;a ; b ∈R);则a+b= .4.若实数a ;b ;c 满足:数列1;a ;b ;c ;4是等比数列;则b 的值为 .5.双曲线9x 2-16y 2=144的渐近线方程为___________.6. “a=1”是“函数2()2x x af x a-=+在其定义域上为奇函数”的_________条件.(填充分不必要、必要不充分、充分必要、既不充分也不必要) 7.函数x x f ln 1)(-=的定义域为_______.8.已知α;β是不重合的两个平面;则下列条件中;可推出α∥β的是_______(填序号) . ①,l m 是α内的两条直线且∥β;m ∥β; ②α内有不共线的三点到β的距离相等; ③α;β都与直线成等角; ④,l m 是异面直线且∥α;m ∥α;∥β;m ∥β.9. 已知函数⎩⎨⎧>≤+=-,2,3,2),1()(x x x f x f x则)2(log 3f 的值为 . 10.已知不等式2691x xx k对一切实数x (,1]∈-∞恒成立; 则实数k 的取值范围为___.11.由“若直角三角形两直角边长分别为a 、b ;则其外接圆半径 类比可得“若三棱锥三条侧棱两两垂直; 侧棱长分别为a 、b 、c ;则其外接球半径r =_____________” . 12.设直线y=a分别与曲线2y x =和xy e =交于点M 、N ;则当线段MN 取得最小值时a的值为___________.13.下列说法:①当101ln 2ln x x x x>≠+≥且时,有;②函数x y a =的图象可以由函数2x y a =(其中01a a >≠且)平移得到;③若对R x ∈;有)(),()1(x f x f x f 则-=-的周期为2;④ “若260,2x x x +-≥≥则”的逆否命题为真命题;⑤函数(1)y f x =+与函数(1)y f x =-的图象关于直线1x =对称.其中正确的命题的序号 .2x-1=0的解可视为函数y =x的图象与函数y =1x的图象交点的横坐标.若4x +ax -9=0的各个实根1x ;2x ;…;k x (k ≤4)所对应的点9()i ix x ,(i =1;2;…;k)均在直线y =x 的同侧;则实数a 的取值范围是 .二、解答题:本大题共6小题;共90分。

高二数学下学期期末考试试卷 文含解析 试题

高二数学下学期期末考试试卷 文含解析 试题

2021—2021学年第二学期高二期末考试文科数学试题一、选择题:本大题一一共12小题,每一小题5分,一共60分。

在每一小题给出的四个选项里面,选出符合题目要求的一项。

,,那么A. B. C. D.【答案】C【解析】【分析】先化简集合A,再判断选项的正误得解.【详解】由题得集合A=,所以,A∩B={0},故答案为:C【点睛】此题主要考察集合的化简和运算,意在考察学生对这些知识的掌握程度和分析推理才能.2.(为虚数单位) ,那么A. B. C. D.【答案】B【解析】【分析】由题得,再利用复数的除法计算得解.【详解】由题得,故答案为:B【点睛】此题主要考察复数的运算,意在考察学生对该知识的掌握程度和分析推理计算才能.是定义在上的奇函数,当时,,那么A. B. C. D.【答案】D【解析】【分析】利用奇函数的性质求出的值.【详解】由题得,故答案为:D【点睛】(1)此题主要考察奇函数的性质,意在考察学生对该知识的掌握程度和分析推理计算才能.(2)奇函数f(-x)=-f(x).4.以下命题中,真命题是A. 假设,且,那么中至少有一个大于1B.C. 的充要条件是D.【答案】A【解析】【分析】逐一判断每一个选项的真假得解.【详解】对于选项A,假设x≤1,y≤1,所以x+y≤2,与矛盾,所以原命题正确.当x=2时,2x=x2,故B错误.当a=b=0时,满足a+b=0,但=﹣1不成立,故a+b=0的充要条件是=﹣1错误,∀x∈R,e x>0,故∃x0∈R,错误,故正确的命题是A,故答案为:A【点睛】〔1〕此题主要考察命题的真假的判断,考察全称命题和特称命题的真假,考察充要条件和反证法,意在考察学生对这些知识的掌握程度和分析推理才能.〔2〕对于含有“至少〞“至多〞的命题的证明,一般利用反证法.,那么该抛物线的焦点坐标为( )A. B. C. D.【答案】C【解析】【分析】先求出p的值,再写出抛物线的焦点坐标.【详解】由题得2p=4,所以p=2,所以抛物线的焦点坐标为〔1,0〕.故答案为:C【点睛】〔1〕此题主要考察抛物线的简单几何性质,意在考察学生对该知识的掌握程度和分析推理才能.(2)抛物线的焦点坐标为.是增函数,而是对数函数,所以是增函数,上面的推理错误的选项是A. 大前提B. 小前提C. 推理形式D. 以上都是【答案】A【解析】【分析】由于三段论的大前提“对数函数是增函数〞是错误的,所以选A. 【详解】由于三段论的大前提“对数函数是增函数〞是错误的,只有当a>1时,对数函数才是增函数,故答案为:A【点睛】(1)此题主要考察三段论,意在考察学生对该知识的掌握程度和分析推理才能.(2)一个三段论,只有大前提正确,小前提正确和推理形式正确,结论才是正确的.,,,那么A. B. C. D.【答案】C【解析】【分析】先证明c<0,a>0,b>0,再证明b>1,a<1,即得解.【详解】由题得,a>0,b>0.所以.故答案为:C【点睛】(1)此题主要考察指数函数对数函数的单调性,考察实数大小的比拟,意在考察学生对这些知识的掌握程度和分析推理才能.〔2〕实数比拟大小,一般先和“0〞比,再和“±1〞比.,,假设∥,那么A. B. C. D.【答案】D【解析】【分析】根据∥得到,解方程即得x的值.【详解】根据∥得到.故答案为:D【点睛】(1)此题主要考察向量平行的坐标表示,意在考察学生对该知识的掌握程度和分析推理计算才能.(2) 假如=,=,那么||的充要条件是.那么的值是.A. B. C. D.【答案】C【解析】【分析】先计算出f(2)的值,再计算的值.【详解】由题得f(2)=,故答案为:C【点睛】(1)此题主要考察分段函数求值,意在考察学生对该知识的掌握程度和分析推理计算才能.(2)分段函数求值关键是看自变量在哪一段.10.为等比数列,,,那么〔〕A. B. C. D.【答案】D【解析】试题分析:,由等比数列性质可知考点:等比数列性质视频11.某几何体的三视图(单位:cm)如下图,那么该几何体的体积是( )A. 72 cm3B. 90 cm3C. 108 cm3D. 138 cm3【答案】B【解析】由三视图可知:原几何体是由长方体与一个三棱柱组成,长方体的长宽高分别是:6,4,3;三棱柱的底面直角三角形的直角边长是4,3;高是3;其几何体的体积为:V=3×4×6+×3×4×3=90〔cm3〕.故答案选:B.上的奇函数满足,且在区间上是增函数.,假设方程在区间上有四个不同的根,那么A. -8B. -4C. 8D. -16【答案】A【解析】【分析】由条件“f〔x﹣4〕=﹣f〔x〕〞得f〔x+8〕=f〔x〕,说明此函数是周期函数,又是奇函数,且在[0,2]上为增函数,由这些画出示意图,由图可解决问题.【详解】f(x-8)=f[(x-4)-4]=-f(x-4)=-·-f(x)=f(x),所以函数是以8为周期的函数,函数是奇函数,且在[0,2]上为增函数,综合条件得函数的示意图,由图看出,四个交点中两个交点的横坐标之和为2×〔﹣6〕=-12,另两个交点的横坐标之和为2×2=4,所以x1+x2+x3+x4=﹣8.故答案为:A【点睛】(1)此题主要考察函数的图像和性质〔周期性、奇偶性和单调性〕,考察函数的零点问题,意在考察学生对这些知识的掌握程度和数形结合分析推理才能.(2)解答此题的关键是求出函数的周期,画出函数的草图,利用数形结合分析解答.二、填空题:本大题一一共4小题,每一小题5分,一共20分。

高二期末下学期(文科)数学试卷 (解析版)

高二期末下学期(文科)数学试卷 (解析版)

高二第二学期期末数学试卷(文科)一、选择题(共10小题).1.若集合A={x|﹣2≤x≤3},B={x|x<﹣1或x>4},则集合A∩B等于()A.{x|x≤3或x>4}B.{x|﹣1<x≤3}C.{x|﹣2≤x<﹣1}D.{x|3≤x<4} 2.“(2x﹣1)x=0”是“x=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.下列命题中,真命题是()A.∃x0∈R,≤0B.∀x∈R,2x>x2C.a+b=0的充要条件是=﹣1D.a>1,b>1是ab>1的充分条件4.若复数z=,其中i为虚数单位,则=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i5.在极坐标系中,已知点,则|P1P2|等于()A.9B.10C.14D.26.直线和圆x2+y2=16交于A,B两点,则AB的中点坐标为()A.(3,﹣3)B.C.D.7.已知函数f(x)=﹣x3+ax2﹣x﹣1在(﹣∞,+∞)上是单调函数,则实数a的取值范围是()A.B.C.D.8.函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.9.已知,则f'(x)=()A.B.C.1﹣lnx D.10.数列的第10项是()A.B.C.D.二、填空题11.曲线(θ为参数)两焦点间的距离是.12.已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为.13.已知实数x,y满足方程x2+y2﹣4x+1=0,则x2+y2的最大值和最小值分别为、.14.若曲线y=ax2﹣lnx在点(1,a)处的切线平行于x轴,则a=.三、解答题[选修4-4:坐标系与参数方程]15.已知在直角坐标系xOy中,直线l的参数方程为是(t为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4sinθ.(1)判断直线l与曲线C的位置关系;(2)在曲线C上求一点P,使得它到直线l的距离最大,并求出最大距离.16.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数).(1)将直线l的参数方程化为极坐标方程;(2)设直线l与椭圆C相交于A,B两点,求线段AB的长.17.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.附:P(K2≥K)0.0500.0100.001K 3.841 6.63510.828K2=.18.已知函数.(Ⅰ)若f(x)在点(2,f(2))处的切线与直线x﹣2y+1=0垂直,求实数a的值;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)讨论函数f(x)在区间[1,e2]上零点的个数.参考答案一、选择题(共10小题).1.若集合A={x|﹣2≤x≤3},B={x|x<﹣1或x>4},则集合A∩B等于()A.{x|x≤3或x>4}B.{x|﹣1<x≤3}C.{x|﹣2≤x<﹣1}D.{x|3≤x<4}解:集合A={x|﹣2≤x≤3},B={x|x<﹣1或x>4},集合A∩B={x|﹣2≤x<﹣1}.故选:C.2.“(2x﹣1)x=0”是“x=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解:若(2x﹣1)x=0 则x=0或x=.即(2x﹣1)x=0推不出x=0.反之,若x=0,则(2x﹣1)x=0,即x=0推出(2x﹣1)x=0所以“(2x﹣1)x=0”是“x=0”的必要不充分条件.故选:B.3.下列命题中,真命题是()A.∃x0∈R,≤0B.∀x∈R,2x>x2C.a+b=0的充要条件是=﹣1D.a>1,b>1是ab>1的充分条件解:因为y=e x>0,x∈R恒成立,所以A不正确;因为x=﹣5时2﹣5<(﹣5)2,所以∀x∈R,2x>x2不成立.a=b=0时a+b=0,但是没有意义,所以C不正确;a>1,b>1是ab>1的充分条件,显然正确.故选:D.4.若复数z=,其中i为虚数单位,则=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i解:∵z===1+i,∴=1﹣i,故选:B.5.在极坐标系中,已知点,则|P1P2|等于()A.9B.10C.14D.2解:已知点,所以,∴△P1OP2为直角三角形,由勾股定理可得|P1P2|==10.故选:B.6.直线和圆x2+y2=16交于A,B两点,则AB的中点坐标为()A.(3,﹣3)B.C.D.解:直线即y=,代入圆x2+y2=16化简可得x2﹣6x+8=0,∴x1+x2=6,即AB的中点的横坐标为3,∴AB的中点的纵坐标为3﹣4=﹣,故AB的中点坐标为,故选:D.7.已知函数f(x)=﹣x3+ax2﹣x﹣1在(﹣∞,+∞)上是单调函数,则实数a的取值范围是()A.B.C.D.解:由f(x)=﹣x3+ax2﹣x﹣1,得到f′(x)=﹣3x2+2ax﹣1,因为函数在(﹣∞,+∞)上是单调函数,所以f′(x)=﹣3x2+2ax﹣1≤0在(﹣∞,+∞)恒成立,则△=,所以实数a的取值范围是:[﹣,].故选:B.8.函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,故选:D.9.已知,则f'(x)=()A.B.C.1﹣lnx D.解:,故选:D.10.数列的第10项是()A.B.C.D.解:从分子上看,2,4,6,8,对应的通项为2n,从分母上看,3,5,7,9,对应的通项为2n+1,所以该数列的通项公式,所以.故选:D.二、填空题11.曲线(θ为参数)两焦点间的距离是2.解:曲线(θ为参数),转换为普通方程是,故.故答案为:12.已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为(﹣1,﹣).解:∵函数f(x)的定义域为(﹣1,0),∴由﹣1<2x+1<0,解得:﹣1.∴函数f(2x+1)的定义域为(﹣1,﹣).故答案为:(﹣1,﹣).13.已知实数x,y满足方程x2+y2﹣4x+1=0,则x2+y2的最大值和最小值分别为7+4、7﹣4.解:根据题意,实数x,y满足方程x2+y2﹣4x+1=0,则点(x,y)是圆x2+y2﹣4x+1=0上的点,设t=x2+y2,其几何意义为圆上的一点与原点距离的平方,而圆x2+y2﹣4x+1=0,即(x﹣2)2+y2=3,其圆心为(2,0),半径r=,又圆心到原点的距离为=2,则圆x2+y2﹣4x+1=0上的点到原点距离最大值为2+,最小值为2﹣,所以x2+y2的最大值是,x2+y2的最小值是;故答案为:7+4,7﹣4.14.若曲线y=ax2﹣lnx在点(1,a)处的切线平行于x轴,则a=.解:由y=ax2﹣lnx,得:,∴y′|x=1=2a﹣1.∵曲线y=ax2﹣lnx在点(1,a)处的切线平行于x轴,∴2a﹣1=0,即a=.故答案为:.三、解答题[选修4-4:坐标系与参数方程]15.已知在直角坐标系xOy中,直线l的参数方程为是(t为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4sinθ.(1)判断直线l与曲线C的位置关系;(2)在曲线C上求一点P,使得它到直线l的距离最大,并求出最大距离.解:(1)根据题意得:直线l的方程为x﹣y﹣1=0,曲线C的方程为x2+(y﹣2)2=4,即圆心C(0,2),半径r=2,∵圆心C到直线l的距离d==>2=r,∴直线l与曲线C相离;(2)根据题意得:点P到直线l的最大距离为d+r=+2,过圆心且垂直于直线l的直线方程为y=﹣x+2,联立得:,消去y得:x2=4,解得:x=﹣(正值不合题意,舍去),则在曲线C上存在一点P(﹣,2+),使得它到直线l的距离最大为+2.16.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数).(1)将直线l的参数方程化为极坐标方程;(2)设直线l与椭圆C相交于A,B两点,求线段AB的长.解:(1)直线l的参数方程为(t为参数),可得l的普通方程为y=(x﹣1),再由x=ρcosθ,y=ρsinθ,可得极坐标方程:ρcosθ﹣ρsinθ﹣=0;(2)由椭圆C的参数方程为(θ为参数),由sin2θ+cos2θ=1,可得椭圆C的普通方程为x2+=1,将直线l的参数方程为(t为参数),代入x2+=1,得(1+t)2+=1,即7t2+16t=0,解得t1=0,t2=﹣,所以|AB|=|t1﹣t2=.17.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.附:P(K2≥K)0.0500.0100.001K 3.841 6.63510.828K2=.解:(1)根据题意,由旧养殖法的频率分布直方图可得:P(A)=(0.012+0.014+0.024+0.034+0.040)×5=0.62;(2)根据题意,补全列联表可得:箱产量<50kg箱产量≥50kg总计旧养殖法6238100新养殖法3466100总计96104200则有K2=≈15.705>6.635,故有99%的把握认为箱产量与养殖方法有关;(3)由频率分布直方图可得:旧养殖法100个网箱产量的平均数1=(27.5×0.012+32.5×0.014+37.5×0.024+42.5×0.034+47.5×0.040+52.5×0.032+57.5×0.02+62.5×0.012+67.5×0.012)×5=5×9.42=47.1;新养殖法100个网箱产量的平均数2=(37.5×0.004+42.5×0.020+47.5×0.044+52.5×0.054+57.5×0.046+62.5×0.010+67.5×0.008)×5=5×10.47=52.35;比较可得:1<2,故新养殖法更加优于旧养殖法.18.已知函数.(Ⅰ)若f(x)在点(2,f(2))处的切线与直线x﹣2y+1=0垂直,求实数a的值;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)讨论函数f(x)在区间[1,e2]上零点的个数.解:(Ⅰ)f(x)的定义域是(0,+∞),∵f(x)=lnx﹣ax2,∴f′(x)=﹣ax=,∵只需x﹣2y+1=0的斜率是,∴×=﹣1,∴a=;(Ⅱ)由(Ⅰ)得f′(x)=,当a≤0时,f′(x)>0,∴f(x)在(0,+∞)递增,a>0时,由f′(x)>0,得x<,由f′(x)<0,解得:x>,∴f(x)在(0,)递增,在(,+∞)等价,综上,当a≤0时,函数f(x)的递增区间是(0,+∞),a>0时,函数f(x)的递增区间是(0,),递减区间是(,+∞),(Ⅲ)法一:由f(x)=0,得a=,令g(x)=,则g′(x)=,由g′(x)>0得,1<x<,由g′(x)<0,得<x<e2,∴g(x)在区间[1,]递增,在区间[,e2]递减,又∵g(1)=0,g()=,g(e2)=,∴当0≤a<或a=时,f(x)在[1,e2]上有一个零点,当≤a<时,f(x)在[1,e2]上有2个零点,当a<0或a>时,f(x)在[1,e2]上没有零点;法二:由(Ⅱ)可知:当a<0时,f(x)在[1,e2]递增,∵f(1)=﹣a>0,∴f(x)在[1,e2]上有一个零点,当a>0时,①若≤1,即a≥1时,f(x)在[1,e2]递减,∵f(1)=﹣a<0,∴f(x)在[1,e2]上没有零点;②若1<<e2,即<a<1时,f(x)在[1,]上递增,在[,e2]递减,∵f(1)=﹣a<0,f()=﹣lna﹣,f(e2)=2﹣ae4,若﹣lna﹣<0,即a>时,f(x)在[1,e2]上没有零点,若﹣lna﹣=0,即a=时,f(x)在[1,e2]上有一个零点,若lna﹣>0,即a<时,由f(e2)=2﹣ae4>0得a<,此时f(x)在[1,e2]有一个零点,由f(e2)=2﹣ae4≤0,得a≥,此时在[1,e2]上有2个零点,③若≥e2,即0<a≤时,f(x)在[1,e2]单调递增,∵f(1)=﹣a<0,f(e2)=2﹣ae4>0,∴f(x)在[1,e2]上有1个零点,综上,当0≤a<或a=时,f(x)在[1,e2]上有1个零点;当≤a<时,f(x)在[1,e2]上有2个零点,当a<0或a>时,f(x)在[1,e2]没有零点,(法三:本题还可以转化为lnx=ax2,再转化为y=lnx与y=ax2的图象的交点个数问题,可用数形结合的方法求解).。

高二文科下学期期末考试数学试题(含答案)

高二文科下学期期末考试数学试题(含答案)

高二文科下学期期末考试数学试题一、单选题1.设集合U={-1,0,1,2,3,4,5}, A={1,2,3}, B={-1,0,1,2},则A∩(C U B)=A. {1,2,3}B. {3}C.D. {2}2.已知iA. 1+iB. 1-iC.D. 3.设:12,:21x p x q <><,则p 是q 成立的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4.已知抛物线24x y =上一点A 纵坐标为4,则点A 到抛物线焦点的距离为( )A. B. 4 C. 5 D. 5.正项数列{a n }成等比数列,a 1+a 2=3,a 3+a 4=12,则a 4+a 5的值是A. -24B. 21C. 48D. 246 cos (等于A. B. C. D. 7.设f′(x )是函数f (x )的导函数,y=f′(x )的图象如图所示,则y=f (x )的图象最有可能的是( )A. B.C. D.8 A. 有最大值3,最小值-1 B. 有最大值2,最小值-2C. 有最大值2,最小值0D. 有最大值3,最小值029.执行如图程序框图,输出的 为( )A. B. C. D. 10.若函数f(x) = x 3-ax-2在区间(1,+∞)内是增函数,则实数a 的取值范围是 A. (],3-∞ B. (],9-∞ C. (-1, +∞) D. (-∞,3)11.如图,三棱柱A 1B 1C 1 - ABC 中,侧棱AA 1丄底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E 是BC 中点,则下列叙述正确的是A. CC 1与B 1E 是异面直线B. AC 丄平面ABB 1A 1C. A 1C 1∥平面AB 1ED. AE 与B 1C 1为异面直线,且AE 丄B 1C 112.过椭圆A 且斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F 2C 的离心率的取值范围是A.B.C.D.二、填空题13.已知向量a =(1,-1) , b =(6,-4).若a 丄(t a +b ),则实数t 的值为____________.14.若x , y∈ R,且满足1{230 x x y y x≥-+≥≥,则z=2x+3y 的最大值等于_____________.15.已知ABC ∆三内角,,A B C 对应的边长分别为,,a b c,又边长3b c =,那么sin C = __________.16.已知函数()()3,0{ 1,0x x f x ln x x ≤=+>,若()()22f x f x ->,则实数x 的取值范围是____________.三、解答题17.选修44-:坐标系与参数方程选讲 在直角坐标系xoy 中,直线l 的参数方程为(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为 (Ⅰ)求圆C 的圆心到直线l 的距离;(Ⅱ)设圆C 与直线l 交于点A B 、,若点P 的坐标为18.在等差数列{a n }中,a 1 =-2,a 12 =20.(1)求数列{a n }的通项a n ;(2)若b n a n ++,求数列{3n b}的前n 项和.419.如图所示,已知AB 丄平面BCD ,M 、N 分别是AC 、AD 的中点,BC 丄 CD.(1)求证:MN//平面BCD ;(2)若AB=1,AC 与平面BCD 所成的角.20.已知椭圆C 1: ,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.(1)求椭圆Q 的方程;(2)设0为坐标原点,点A ,B 分别在椭圆C 1和C 2上,,求直线AB 的方程.21.已知函数()()3x f x a bx e =-,()f x 的图象在点()1,e 处的切线与直线210ex y +-=平行.(1)求,a b ;(2)求证:当()0,1x ∈时, ()()2f x g x ->.1参考答案1.B2.B3.A4.C5.D6.D7.C8.D9.A10.A11.D12.B13.-514.151516.(-2,1)17.(1(218.(1)24n a n =-;(219.(1)见解析;(2)30°.20.(1) ;(2) 或 .21.(1)a 2,b 1==;(2)见解析.。

高二下学期数学期末考试题解析版文科

高二下学期数学期末考试题解析版文科
A. B. C. D.
【答案】B
【解析】
【分析】
先由题意得到 的坐标,再由四边形 为菱形求出点 坐标,代入椭圆方程即可求解.
【详解】由题意, ,
因为四边形 为菱形,所以 ,
将点 坐标代入 可得: ,整理得 ,
所以 ,因 ,故解方程得, .
【点睛】本题主要考查椭圆的简单性质,属于基础题型.
11.若直线 没有交点,则过点 的直线与椭圆 的交点个数为()
【详解】(1)由题意: , ,


故回归直线方程为: .
(2)当 时, ,
当 时, ,所以(1)中所得的回归直线方程是可靠的.
【点睛】本题主要考查线性回归方程的求解与应用,属于中档题.求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算 的值;③计算回归系数 ;④写出回归直线方程为 ;回归直线过样本点中心 是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.
A. 2个B.至多一个C. 1个D. 0个
【答案】A
【解析】
【详解】直线 没有交点,故
点P(m,n)在以原点为圆心,半径为2的圆内,故圆 =2内切于椭圆,,故点P(m,n)在椭圆内,则过点 的直线与椭圆 的交点个数为2个
12.已知双曲线 ,过其左焦点 作 轴的垂线,交双曲线于 , 两点,若双曲线的右顶点在以 为直径的圆内,则此双曲线离心率的取值范围是( )
【详解】∵抛物线C:y2=4x的焦点为F(1,0),点A坐标为(0,2),
∴抛物线的准线方程为l:x=﹣1,直线AF的斜率为k=﹣2,
过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|,
∵Rt△MPN中,tan∠NMP=﹣k=2,

高二下学期期末考试数学文科试题答案试题

高二下学期期末考试数学文科试题答案试题

2021—2021学年下期期末统一检测高二数学试题(文科)参考答案及评分意见一、选择题〔50分〕CBCDD BDABB二、填空题〔25分〕11.二 12. (2,3) 13. -2 14. 4x -y -4=0. 15. ①②④三、解答题〔75分〕16. 〔12分〕解:(1)M ={x |2x -3>0}=⎩⎨⎧⎭⎬⎫x |x >32…………………………………………………..3分 N =⎩⎨⎧⎭⎬⎫x |1-2x -1≥0={x |x ≥3或者x <1};………………………………………..6分 (2)M ∩N ={x |x ≥3}…………………………………………………………………..9分 M ∪N ={x |x <1或者x >32}.………………………………………………………………….12分17. 〔12分〕解:∵函数y =c x 在R 上单调递减,∴0<c <1. ……………………………………2分即p :0<c <1,∵c >0且c ≠1,∴非p :c >1. ……………………………………3分又∵f (x )=x 2-2cx +1在⎝ ⎛⎭⎪⎫12,+∞上为增函数,∴c ≤12. 即q :0<c ≤12,∵c >0且c ≠1,∴非q :c >12且c ≠1. …………………………5分 又∵“p 或者q 〞为真,“p 且q 〞为假,∴p 真q 假或者p 假q 真.[6分]①当p 真,q 假时,{c |0<c <1}∩⎩⎨⎧⎭⎬⎫c |c >12且c ≠1=⎩⎨⎧⎭⎬⎫c |12<c <1.………………………………………8分 ②当p 假,q 真时,{c |c >1}∩⎩⎨⎧⎭⎬⎫c |0<c ≤12=∅. ……………………………10分 综上所述,实数c 的取值范围是⎩⎨⎧⎭⎬⎫c |12<c <1.………………………………………12分18.〔12分〕解: ∵y ′=2ax +b ,…………………………………………………………………2分∴抛物线在点Q (2,-1)处的切线斜率为k =y ′|x =2=4a +b .∴4a +b =1.①…………………………………………………………………………4分 又∵点P (1,1)、Q (2,-1)在抛物线上,∴a +b +c =1,②4a +2b +c =-1.③…………………………………………………..………………8分联立①②③解方程组,得⎩⎪⎨⎪⎧ a =3,b =-11,c =9.∴实数a 、b 、c 的值分别为3、-11、9. …………………………………………………12分19.〔12分〕解: (1)由图象知A =3,以M ⎝ ⎛⎭⎪⎫π3,0为第一个零点,N ⎝ ⎛⎭⎪⎫5π6,0为第二个零点.……………………………2分 列方程组⎩⎪⎨⎪⎧ ω·π3+φ=0,ω·5π6+φ=π, 解之得⎩⎪⎨⎪⎧ ω=2,φ=-2π3.…………………4分∴所求解析式为y =3sin ⎝⎛⎭⎪⎫2x -2π3.………………………………………………6分(2)f (x )=3sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π6-2π3 =3sin ⎝⎛⎭⎪⎫2x -π3,…………………………………………………………………8分 令2x -π3=π2+k π(k ∈Z ),那么x =512π+k π2(k ∈Z ),………………………10分 ∴f (x )的对称轴方程为x =512π+k π2(k ∈Z ).……………………………………12分20.〔13分〕解: (1)由,得f ′(x )=3x 2-a . …………………………………………………2分因为f (x )在(-∞,+∞)上是单调增函数,所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立,即a ≤3x 2对x ∈(-∞,+∞)恒成立.因为3x 2≥0,所以只需a ≤0. ………………………………………………………6分 又a =0时,f ′(x )=3x 2≥0,f (x )在实数集R 上单调递增,所以a ≤0. …………7分(2)假设f ′(x )=3x 2-a ≤0在(-1,1)上恒成立,那么a ≥3x 2在x ∈(-1,1)时恒成立.…………………………………………………9分 因为-1<x <1,所以3x 2<3,所以只需a ≥3. ………………………………………11分 当a =3时,在x ∈(-1,1)上,f ′(x )=3(x 2-1)<0,……………………………12分 即f (x )在(-1,1)上为减函数,所以a ≥3.故存在实数a ≥3,使f (x )在(-1,1)上单调递减………………………………………13分21.〔14分〕解:(1)令x =y =0,得f (0+0)=f (0)+f (0),即f (0)=0. …………………………………………………………………………3分(2)令y =-x ,得f (x -x )=f (x )+f (-x ),又f (0)=0,那么有0=f (x )+f (-x ),即f (-x )=-f (x )对任意x ∈R 成立,所以f (x )是奇函数.…………………………………………………………………8分(3)解〔方法一〕因为f (x )在R 上是增函数,又由(2)知f (x )是奇函数.f (k ·3x )<-f (3x -9x -2)=f (-3x +9x +2),所以k ·3x <-3x +9x+2………………………………………………………………10分由k ·3x <-3x +9x +2,得k <3x +23x -1. u =3x +23x -1≥22-1,3x =2时,取“=〞,即u 的最小值为22-1,要使对x ∈R ,不等式k <3x +23x -1恒成立, 只要使k <22-1. …………………………………………………………………………14分〔方法二〕因为f (x )在R 上是增函数,又由(2)知f (x )是奇函数.f (k ·3x )<-f (3x -9x -2)=f (-3x +9x +2),所以k ·3x <-3x +9x +2,……………………………………………………………10分32x -(1+k )·3x+2>0对任意x ∈R 成立.令t =3x >0,问题等价于t 2-(1+k )t +2>0对任意t >0恒成立.令f (t )=t 2-(1+k )t +2,其对称轴为x =1+k 2,………………………12分 当1+k 2<0即k <-1时,f (0)=2>0,符合题意;当1+k2≥0即k≥-1时,对任意t>0,f(t)>0恒成立⇔⎩⎪⎨⎪⎧1+k2≥0,Δ=1+k2-4×2<0,解得-1≤k<-1+2 2.综上所述,当k<-1+22时,f(k·3x)+f(3x-9x-2)<0对任意x∈R恒成立.…14分励志赠言经典语录精选句;挥动**,放飞梦想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二文科 数学试卷【完卷时间:120分钟;满分150分】一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求.)1.设集合{}{}d c b B b a A ,,,,==, ,则B A Y ( )A .{}d c b a ,,,B .{}d c b ,,C .{}d c a ,,D . {}b2.命题“∃x ∈R ,x 3-2x +1=0”的否定是( )A .∃x ∈R ,x 3-2x +1≠0B .不存在x ∈R ,x 3-2x +1≠0C .∀x ∈R ,x 3-2x +1≠0D . ∀x ∈R ,x 3-2x +1=0 3.函数11)(-+=x x x f 的定义域是( ) A .(1,)-+∞ B .[1,)-+∞ C .(1,1)(1,)-+∞U D .[1,1)(1,)-+∞U 4. 将指数函数()x f 的图象向右平移一个单位,得到如图的()x g 的图象,则()=x f ( )A .x⎪⎭⎫ ⎝⎛21 B .x⎪⎭⎫ ⎝⎛31 C .x2 D .x3 5.下列函数中,既是偶函数又在区间()+∞,0上单调递减的是( ) A .1y x=B .21y x =-+C .xy e -=D . lg ||y x =6. 函数()log (43)a f x x =-过定点( )A .(3,14) B .(3,04) C .(1,1) D .(1, 0) 7. 已知2.12=a ,8.0)21(-=b ,2log 25=c ,则c b a ,,的大小关系为( )A .a b c <<B .b a c <<C .c a b <<D .a c b <<8. 函数x x x f -=ln )(在区间],0(e 的最大值为( ))(x gA .e -1B . e - C. -1 D .09. 已知函数⎩⎨⎧>-≤=)0()3()0(2)(x x f x x f x ,则=)2013(f ( )A . 2B . 1 C.21 D .41 10.已知a 是x x f x 2log )21()(-=的零点,若000,()x a f x <<则的值满足( )A .0()0f x =B .0()0f x <C .0()0f x >D .0()f x 的符号不确定11.定义一种运算:=a a b b ⎧⊗⎨⎩ <a ba b ≥已知函数()=2(3-)x f x x ⊗,那么函数=()y f x 的图像大致是 ( )12.某同学在研究函数2()1xf x x =+()x ∈R 时,给出下列结论: ①()()0f x f x -+=对任意x ∈R 成立; ②函数()f x 的值域是(2,2)-;③若12x x ≠,则一定有12()()f x f x ≠; ④函数()()2g x f x x =-在R 上有三个零点.则正确结论的序号是( )A .②③④B .①②③C . ①③④D .①②③④二、填空题:(本大题共4小题,每小题4分,共16分。

把答案填在答题卡的相应位置.)13. 幂函数的图象过点1(3,)9,则其解析式为14.已知关于x 的不等式02≥+-m mx x 在R 上恒成立,则实数m 的取值范围是______15.函数)(x f 是定义在R 上的偶函数,且满足(2)()f x f x +=.当[0,1]x ∈时,()2f x x =.若在区间[2,2]-上方程()0ax a f x +-=恰有三个不相等的实数根,则实数a 的取值范围是_______.16.若直角坐标平面内两点P 、Q 满足条件:①P 、Q 都在函数()f x 的图象上;②P 、Q 关于原点对称,则称点对(P ,Q )是函数()f x 的一个“友好点对”(点对(P ,Q )与(Q ,P )看作同一个“友好点对”).已知函数⎪⎩⎪⎨⎧<+≥=-)0(,2)0(,2)(2x x x x e x f x ,则()f x 的 “友好点对”有 个.三、解答题:(本大题共6小题,共74分。

解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分12分)已知集合}2{≥=x x A ,}0))(2({<+-=a x a x x B . 0>a (Ⅰ)当3=a 时,求集合A ∩B ;(Ⅱ)命题p :x ∈A ,命题q :x ∈B ,若⌝p 是q 的充分条件,求实数a 的取值范围.18.(本小题满分12分)已知命题p :函数xa y =在R 上单调递增;q :函数2)(+=ax x f 在(-1,2)上存在一个零点.如果“p 或q ”为真,且“p 且q ”为假,求实数a 的范围.19.(本小题满分12分) 已知函数b ax e x f x+-=)((1)若)(x f 在2=x 有极小值21e -,求实数b a ,的值; (2)若)(x f 在定义域R 内单调递增,求实数a 的取值范围.20.(本小题满分12分) 已知函数)1,0(,11log )(≠>-+=a a xxx f a且 (1)求)(x f 的定义域;(2)证明)(x f 为奇函数;(3)求使0)(>x f 成立的的取值范围.21.(本小题满分12分)某小商品公司开发一种亚运会纪念品,每件产品的成本是15元,销售价是20元,月平均销售a 件,通过改进工艺,产品的成本不变,质量和技术含金提高,市场分析的结果表明:如果产品的销售价提高的百分率为(01)x x <<,那么月平均销售量减少的百分率为2x ,记改进工艺后,该公司销售纪念品的月平均利润是y (元)。

(1)写出y 与x 的函数关系式;(2)改进工艺后,确定该纪念品的售价,使该公司销售该纪念品的月平均利润最大。

22.(本小题满分14分)已知函数()ln f x ax x =+()a ∈R . (Ⅰ)若2a =,求曲线()y f x =在1x =处切线的斜率; (Ⅱ)求()f x 的单调区间;(Ⅲ)设2()22g x x x =-+,若对任意1(0,)x ∈+∞,均存在[]20,1x ∈,使得12()()f x g x <,求a 的取值范围.高二文科数学答卷一、选择题:1~5:ACDCB 6~10: DACBC 11~12:AB二、填空题:13:2-=x y 14:[]4,0 15:[)1,0 16:2 三、解答题:17. (Ⅰ)解:因为集合}22{}2{≥-≤=≥=x x x x x A 或, ………… 2分 当3=a 时,集合{|(6)(3)0}{|36}B x x x x x =-+<=-<<, ………… 4分 所以A ∩,23{-≤<-=x x B 或26}x ≤<. …………… 6分(Ⅱ)∵⌝p 是q 的充分条件∴⌝q p ⇒即B A C R ⊆ …………… 7分 ∵{}22<<-=x x A C R{}a x a x a x a x x B 2}0))(2({<<-=<+-= , 0>a ……… 9分∴⎪⎩⎪⎨⎧≥≥>∴⎪⎩⎪⎨⎧≥-≤->1202220a a a a a a ………………………… 11分 解得 2≥a . 故实数a 的取值范围为[)+∞,2 …………………… 12分 18.解:∵命题p :函数xa y =在R 上单调递增∴p :1>a ………… 2分∵命题q :函数2)(+=ax x f 在(-1,2)上存在一个零点. ∴0)2()1(<⋅-f f 即0)22()2(<+⋅+-a a ………… 4分 ∴q : 1-<a 或2>a ………… 6分 由“p 或q ”为真,且 “p 且q ”为假, 得“p 真q 假”或“p 假q 真”. ………… 7分 若p 真q 假,则⎩⎨⎧≤≤->211a a 得21≤<a ;………… 9分 若p 假q 真,则⎩⎨⎧>-<≤211a a a 或得1-<a ………… 11分综上所述,实数a 的取值范围为(]2,1()1,Y -∞-………… 12分 19.解:(1)a e x f x-=')( …………1分依题意得⎪⎩⎪⎨⎧-=+-=-⎩⎨⎧-=='22221201)2(0)2(eb a e a e e f f 即…………4分 解得⎩⎨⎧==12b e a ,故所求的实数1,2==b e a …………6分(2)由(1)得a e x f x-=')(∵)(x f 在定义域R 内单调递增 ∴0)(≥-='a e x f x在R 上恒成立…………8分 即R x e a x∈≤,恒成立∵),0(+∞∈∈xe R x 时, …………10分 ∴0≤a 所以实数a 的取值范围为(]0,∞- …………12分 20.解:(1)由011>-+xx得0)1)(1(<-+x x ∴11<<-x所以)(x f 的定义域为()1,1- …………3分 (2)∵)(x f 的定义域为()1,1-关于原点对称 …………4分又)(11log 11log 11log )(1x f xxx x x x x f aa a -=-+-=⎪⎭⎫⎝⎛-+=+-=--…………6分 ∴)(x f 为奇函数 …………7分 (3)当1>a 时,由1log 011log a axx=>-+得 012111>-∴>-+xxx x 即0)1(2<-x x ∴10<<x …………9分 当10<<a 时,由1log 011log a axx=>-+得 012111<-∴<-+xxx x 即0)1(2>-x x ∴10><x x 或 ∵11<<-x ∴01<<-x …………11分综上所述,当1>a 时,原不等式的解集为()1,0当10<<a 时,原不等式的解集为()0,1- …………12分21.解:(1)改进工艺后,每件产品的销售价为20(1)x +元,月平均销售量为2(1)a x -件, ………………………………………………………2分则月平均利润2(1)[20(1)15]y a x x =-⋅+-(元),y x ∴与的函数关系式为235(144)(01)y a x x x x =+--<< …………5分(2)由212125(4212)0,23y a x x x x '=--===-得(舍), …………6分 110,0;1,0.22x y x y ''∴<<><<<当时当时 …………9分∴函数2315(144)(01)2y a x x x x x =+--<<=在处取得最大值。

相关文档
最新文档