人教版高一数学函数奇偶性教案范文整理
3.1.3 高中必修一数学教案《函数的奇偶性》
高中必修一数学教案《函数的奇偶性》教材分析函数的奇偶性是高中数学必修一人教版B版第三章第一单元第三节的内容,是函数的一条重要性质。
教材从学生熟知的函数入手,结合初中学生已经学习过的轴对称和中心对称,感受奇函数和偶函数的图象特征,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地学习函数的奇偶性。
从知识结构上而言,奇偶性既是函数概念的拓展和深化,又是后续研究基本初等函数的基础,起着承上启下的作用。
学情分析从学生的认知基础来看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。
同时,学生刚刚学习了函数的单调性,已经积累了研究函数的基本方法与初步经验。
从学生的思维发展来看,高一学生的思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题。
教学目标1、理解函数奇偶性的概念和图像特征,能判断一些简单函数的奇偶性。
2、经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。
3、通过自主探索,体会数形结合的思想,感受数学的对称美;通过分组讨论,培养合作交流的精神,学会认识事物的特殊性与一般性之间的关系,培养学生善于探索的思维品质。
教学重点函数奇偶性的概念及其建立过程,判断函数的奇偶性。
教学难点对函数奇偶性的概念理解与认识。
教学方法讲授法、讨论法、练习法教学过程一、复习导入初中时我们学习过有关轴对称和中心对称的知识,而且已经知道,在平面直角坐标系中,点(x,y)关于y轴的对称点为(-x,y),关于原点的对称点为(-x,-y)。
例如,(-2,3)关于y轴的对称点(2,3),关于原点的对称点(2,-3)二、学习新知1、偶函数填写下表,观察指定函数的自变量x互为相反数时,函数值之间具有什么关系,并分别说出函数图象应具有的特征。
不难发现,上述两个函数,当自变量取为相反数的两个值x和-x,对应的函数值相等。
f(-x)= (-x)2 = x2 = f(x)g(-x)= 1|−x| = 1|x|= g(x)一般地,设函数y = f(x)的定义域为D,如果对D内的任意一个x,都有-x∈D,且f(-x)= f(x)则称y = f(x)为偶函数。
高一数学的公开课获奖教案设计优秀9篇
高一数学的公开课获奖教案设计优秀9篇高一数学的教案篇一本文题目:高一数学教案:函数的奇偶性课题:1.3.2函数的奇偶性一、三维目标:知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。
过程与方法:通过设置问题情境培养学生判断、推断的能力。
情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操。
通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。
二、学习重、难点:重点:函数的奇偶性的概念。
难点:函数奇偶性的判断。
三、学法指导:学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。
对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。
四、知识链接:1、复习在初中学习的轴对称图形和中心对称图形的定义:2、分别画出函数f (x) =x3与g (x) = x2的图象,并说出图象的对称性。
五、学习过程:函数的奇偶性:(1)对于函数,其定义域关于原点对称:如果______________________________________,那么函数为奇函数;如果______________________________________,那么函数为偶函数。
(2)奇函数的图象关于__________对称,偶函数的图象关于_________对称。
(3)奇函数在对称区间的增减性;偶函数在对称区间的增减性。
六、达标训练:A1、判断下列函数的奇偶性。
(1)f(x)=x4;(2)f(x)=x5;(3)f(x)=x+ (4)f(x)=A2、二次函数( )是偶函数,则b=___________ 。
B3、已知,其中为常数,若,则_______ 。
B4、若函数是定义在R上的奇函数,则函数的图象关于( )(A) 轴对称(B) 轴对称(C)原点对称(D)以上均不对B5、如果定义在区间上的函数为奇函数,则=_____ 。
高中数学奇偶性教案
高中数学奇偶性教案
主题:奇偶性
教学目标:
1. 了解奇数和偶数的定义;
2. 掌握奇数加奇数、偶数加偶数、奇数加偶数的性质;
3. 能够应用奇偶性解决实际问题。
教学内容:
1. 奇数和偶数的定义;
2. 奇数加奇数、偶数加偶数、奇数加偶数的性质;
3. 奇偶性在数学计算中的应用。
教学步骤:
1. 引入:通过举例介绍奇数和偶数的定义,让学生理解奇偶性的概念;
2. 探究:让学生在小组内讨论奇数加奇数、偶数加偶数、奇数加偶数的性质,并总结规律;
3. 实践:设计一些奇偶性的练习题,让学生熟练运用奇偶性解决问题;
4. 应用:让学生通过实际问题应用奇偶性解决实际问题,加强对奇偶性的理解和应用能力;
5. 总结:对本节课学习的内容进行总结,强调奇偶性在数学计算中的重要性。
评价方式:
1. 学生在探究环节的讨论表现;
2. 学生在实践环节的练习成绩;
3. 学生在应用环节的解决问题能力;
4. 学生对奇偶性的理解和应用能力。
拓展活动:
1. 设计更复杂的奇偶性问题,让学生提升解决问题的能力;
2. 扩展奇偶性在其他数学知识领域的应用,如代数、几何等。
教学反思:
1. 教学内容是否能够引起学生的兴趣?
2. 学生对奇偶性的理解是否透彻?
3. 学生能否灵活运用奇偶性解决应用问题?
以上是一份高中数学奇偶性教案范本,希望对您有帮助。
函数的奇偶性(教案)
函数的奇偶性课题名称函数的奇偶性时间学生年级高一1班课时1课时教师魏丹一、教材分析本节内容是人教版《数学必修1》第一章第三节的教学内容.函数的奇偶性是函数的一条重要性质,从知识结构上看,函数的奇偶性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、幂函数、三角函数等内容的基础,在研究各种具体函数的性质、解决各种问题中都有广泛的应用.二、教学目标1.知识与技能:使学生理解函数奇偶性的概念、图象和性质,并能判断一些简单函数的奇偶性.2.过程与方法:通过设置问题情境培养学生判断、观察、归纳、推理的能力.在概念形成过程中,同时渗透数形结合和特殊到一般的数学思想方法.3.情感、态度与价值观:通过绘制和展示优美的函数图像来陶冶学生的情操. 使学生学会认识事物的特殊性与一般性之间的关系,培养学生善于探索的思维品质.三、教学重难点分析教学重点:函数的奇偶性的概念及其建立过程,判断函数的奇偶性.教学难点:对函数奇偶性概念的理解与认识.四、学法指导学生对函数图像的对称性已具备了初步认识,教学中从观察实例开始,先观察函数图象的对称性,通过函数图象分析函数值表格,逐步领悟图形对称、点对称、数相等、式相等之间的关系,这样建立函数奇偶性的概念就水到渠成了.在课堂教学中,应该为学生创设宽容的课堂气氛,指导学生形成良好的学习习惯,激发学生的学习动机,培养学习兴趣,充分调动学生的学习积极性.五、教法指导为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、设疑诱导法为辅.教学中注意结合学生所熟悉的生活实例、已掌握的对称函数的图象,让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃.六、教学过程教学环节教学过程创设情境给出两组图片,让学生感受生活中的对称美.在函数中也有这样的对称美观察以上函数图象,请从图象对称的角度将这些函数图象分类. 教学环节教学过程自主探究问题1:对于上述函数图像①③,你能否从函数解析式的角度来说明这种对称性?问题2:判断下列函数是否为偶函数.问题3:如果一个函数是偶函数,它的定义域应该有什么特点?偶函数的定义:如果对于函数f(x)的定义域内任意一个x,都有f(-x)= f(x),那么函数f(x)就叫做偶函数。
高一数学教案函数的奇偶性5篇
高一数学教案函数的奇偶性5篇使学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数奇偶性的方法.高一数学教案函数的奇偶性1一、内容与解析 (一)内容:基本初等函数习题课(一)。
(二)解析:对数函数的性质的掌握,要先根据其图像来分析与记忆,这样更形像更直观,这是学习图像与性质的基本方法,在此基础上,我们要对对数函数的两种情况的性质做一个比较,使之更好的'掌握.二、目标及其解析:(一)教学目标(1)掌握指数函数、对数函数的概念,会作指数函数、对数函数的图象,并能根据图象说出指数函数、对数函数的性质,了解五个幂函数的图象及性质及其奇偶性.(二)解析(1)基本初等函数的学习重要是学习其性质,要掌握好性质,从图像上来理解与掌握是一个很有效的办法.(2)每类基本初类函数的性质差别比较大,学习时要有一个有效的区分.三、问题诊断分析在本节课的教学中,学生可能遇到的问题是不易区分各函数的图像与性质,不容易抓住其各自的特点。
四、教学支持条件分析在本节课一次递推的教学中,准备使用P5高一数学教案函数的奇偶性2【教学目标】【知识目标】:使学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.【能力目标】通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.【德育目标】通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程. 【教学重点】函数单调性的概念、判断及证明. 函数的单调性是学生第一次接触用严格的逻辑语言证明函数的性质,并在今后解决初等函数的性质、求函数的值域、不等式及比较两个数的大小等方面有广泛的实际应用,【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性. 由于判断或证明函数的单调性,常常要综合运用一些知识(如不等式、因式分解、配方及数形结合的思想方法等)所以判断或证明函数的单调性是本节课的难点.【教材分析】函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起,所以本节课在教材中的作用如下 (1)函数的单调性起着承前启后的作用。
高一年级数学人教版必修一3.2.2函数的奇偶性教案
高一年级人教版必修一3.2.2函数的奇偶性教案年级:高一年级版本:人教版模块:必修一【教材分析】在“函数的奇偶性”这一节中,“数”与“形”有着密切的联系。
它既是函数概念的拓展和深化,是继函数单调性后的又一个重要性质,又是后续研究指数函数、对数函数、幂函数、三角函数等函数的必备知识。
因此本节课起着承上启下的重要作用。
奇偶性的教学无论在知识上还是在能力上对学生的教育起着非常重要的作用。
【核心素质培养目标】1.结合具体函数的图像和解析式,深刻理解奇函数、偶函数的定义。
2.通过画图,分析图像了解奇函数、偶函数图象的特征,培养直观想象核心素养。
3.通过例题学习,归纳并掌握判断(证明)函数奇偶性的方法,培养逻辑推理核心素养。
【教学重难点】教学重点:函数奇偶性的概念及函数奇偶性的判定教学难点:判断函数奇偶性的方法与格式【教学方法】师生共同探究,从代数的角度来严格推证。
【教学过程】一、情景引入,提出问题对称美是大自然的一种美,对称美在数学中随处可见,今天我们学习数学中的对称美。
师:复习函数的三要素和三种表示法。
生:三要素是:定义域、值域、对应关系;三种表示方法是:解析法、图象法、列表法。
师:结合的三要素和三种表示方法想一想(1)这个函数图象有什么特征?生:答定义域关于原点对称且图像关于y轴对称。
(2)当自变量x取一对相反数时,相应的两个函数值什么关系?生:从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相等。
(3)你能尝试用函数解析式描述图象的对称特征吗?生:对于定义域内任意一个x,都有f(-x)=f(x)。
师:这时我们称f(x)=x2为偶函数,设计意图:启发学生由图象获取函数性质的直观认识,从而引入新课。
二、获取新知,生成概念(板书)偶函数:一般地,如果对于函数f(x)的定义域内的任意一个x都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
师:研究函数优先考虑定义域,把f(x)=x2定义域改成(0,+∞),仍然是偶函数吗?生:不是师:判断函数是偶函数的前提什么?生:函数的定义域关于原点对称。
高一数学函数教案5篇
高一数学函数教案5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、个人总结、教师总结、学生总结、企业总结、活动总结、党建总结、心得体会、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, personal summaries, teacher summaries, student summaries, enterprise summaries, activity summaries, party building summaries, reflections, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一数学函数教案5篇认真准备好教案帮助我们更好地掌握学生的学习进度和学习效果,及时调整教学策略和方法,成功的教案应该能够引导学生形成批判性思维和解决问题的能力,下面是本店铺为您分享的高一数学函数教案5篇,感谢您的参阅。
函数奇偶性的教案
函数奇偶性的教案【篇一:《函数的奇偶性》教案】1.3.2《函数的奇偶性》一、教材分析1.教材所处的地位和作用“奇偶性”是人教a版第一章“集合与函数概念”的第3节“函数的基本性质”的第2小节。
奇偶性是函数的一条重要性质,教材从学生熟悉的及数、三角函数的基础。
因此,本节课起着承上启下的重要作用。
2.学情分析从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。
同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。
从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题.3.教学目标基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:【知识与技能】1.能判断一些简单函数的奇偶性。
2.能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。
【过程与方法】经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。
【情感、态度与价值观】通过自主探索,体会数形结合的思想,感受数学的对称美。
从课堂反应看,基本上达到了预期效果。
4、教学重点和难点重点:函数奇偶性的概念和几何意义。
几年的教学实践证明,虽然“函数奇偶性”这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。
他们往往流于表面形式,只根据奇偶性的定义检验f(-x)=-f(x)或f(-x)=f(x)成立即可,而忽视了考虑函数定义域的问题。
因此,在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。
因此,我把“函数的奇偶性概念”设计为本节课的重点。
在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。
难点:奇偶性概念的数学化提炼过程。
由于,学生看待问题还是静止的、片面的,抽象概括能力比较薄弱,这对建构奇偶性的概念造成了一定的困难。
因此我把“奇偶性概念的数学化提炼过程”设计为本节课的难点。
函数的奇偶性 精品教案
课题:1.3.2函数的奇偶性一、教材内容分析“奇偶性”是人教A版必修1第一章“集合与函数概念”的第3节“函数的基本性质”的第2小节,本节的主要内容是研究函数的又一条重要性质---函数的奇偶性。
教材从学生熟悉的特殊函数入手,从特殊到一般,从具体到抽象,比较系统地介绍了函数的奇偶性.从知识结构看,它既是函数概念的拓展和深化,又是为后续研究指数函数、对数函数、幂函数、三角函数的基础。
因此,本节课起着承上启下的重要作用。
学习函数的奇偶性,能使学生再次体会到数形结合的思想,培养了学生观察、分析、归纳的能力;初步学会用数学的眼光看待事物,感受数学的对称美。
二、学生学情分析学生是刚从初中进入高中的高一学生,虽然学生在初中已经学习了轴对称图形和中心对称图形,但由于这节课主要是将学生的直观认识提高为抽象理解,抽象的过程往往是高一学生感觉比较困难的地方。
我校是一所县城普通高中,学生基础非常薄弱,要让学生通过感官认识上升为概念的概括,这是一件很困难的问题,因此在教学设计上针对学生的特点,注意从特殊、直观方面出发,多角度引发学生的思考和探究。
三、教学目标知识目标:了解奇函数与偶函数的概念,会用函数的奇偶性定义来判断函数奇偶性。
能力目标:引导学生探究函数奇偶性的形式化定义的过程,培养学生抽象的概括能力和严谨的逻辑思维能力。
情感目标:通过自主探索,体会数形结合的思想,感受生活中的数学美。
教学重点形成函数奇偶性的形式化定义。
教学难点:利用函数的奇偶性定义判断函数的奇偶性。
四、教学策略设计在内容处理上,本节课充分利用画函数图像的过程(列表、描点、连线),让学生通过观察图像特征,结合函数值对应表,具体可分为三个步骤:第一,学生动手列表、画图;第二,观察描绘函数的图像特征;第三,结合函数值对应表,利用函数解析式来描述这种变化特征。
教学中重视从学生熟悉的函数入手,从特殊到一般性质的概括过程。
由于函数图像是发现函数性质的直观载体,因此本节课充分借助信息技术创设教学情境,以利于学生通过观察函数图像特征,探究出其定义。
高一数学必修一教案8篇
高一数学必修一教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、述职报告、合同协议、心得体会、规章制度、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, work plans, job reports, contract agreements, personal experiences, rules and regulations, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高一数学必修一教案8篇教案写好了,教师规划好课堂纪律和行为规范,营造良好的学习氛围,实用的教案有助于教师制定明确的教学计划,提高教学的系统性和连贯性,以下是本店铺精心为您推荐的高一数学必修一教案8篇,供大家参考。
奇偶性教案高中数学
奇偶性教案高中数学
教学目标:
1. 学习了解奇偶性的概念,掌握奇数和偶数的特点。
2. 能够灵活运用奇偶性的性质解决实际问题。
3. 培养学生的逻辑思维能力和数学推理能力。
教学重点:
1. 奇数和偶数的定义及性质。
2. 奇偶数的加减乘除规律。
教学难点:
1. 综合运用奇偶性的性质解决问题。
2. 能够进行判断和推理。
教学准备:
1. 教师准备教学课件和练习题。
2. 学生准备纸笔和课本。
教学过程:
Step 1:导入
教师通过一个小游戏或趣味问题引入奇偶性的概念,让学生思考并互相讨论。
Step 2:概念讲解
1. 奇数和偶数的定义及性质:奇数是指能够被2整除余1的数,偶数是指能够被2整除余0的数。
2. 奇数加偶数等于奇数,偶数加偶数等于偶数,奇数乘偶数等于偶数。
Step 3:练习
让学生进行一些简单的奇偶性练习,帮助他们巩固所学知识。
Step 4:拓展
通过一些挑战性的问题或应用题,让学生灵活运用奇偶性的性质解决问题,培养他们的逻辑思维能力。
Step 5:归纳总结
让学生总结奇偶性的性质及运用方法,加深他们对奇偶性的理解。
Step 6:作业布置
布置相关的作业,让学生巩固所学知识。
教学评价:
通过课堂练习和作业检查,来评价学生对奇偶性概念的掌握情况,及时发现并解决问题。
函数的奇偶性教学设计-优秀
函数的奇偶性教学设计一.教材分析1 . 教材的地位与作用内容选自人教版《高中课程标准实验教科书》A版必修1第一章第三节;函数奇偶性是研究函数的一个重要策略,因此成为函数的重要性质之一,它的研究也为今后幂函数、三角函数的性质等后续内容的深入起着铺垫的作用;奇偶性的教学无论是在知识还是在能力方面对学生的教育起着非常重要的作用,因此本节课充满着数学方法论的渗透教育,同时又是数学美的集中体现。
2 . 学情分析已经学习了函数的单调性,对于研究函数的性质的方法已经有了一定的了解。
尽管他们尚不知函数奇偶性,但学生在初中已经学习过图形的轴对称与中心对称,对图象的特殊对称性早已有一定的感性认识;在研究函数的单调性方面,学生懂得了由形象到具体,然后再由具体到一般的科学处理方法,具备一定数学研究方法的感性认识;高一学生具备一定的观察能力,但观察的深刻性及稳定性也都还有待于提高;高一学生的学习心理具备一定的稳定性,有明确的学习动机,能自觉配合教师完成教学内容。
二.目的分析教学目标知识与技能目标:……理解函数奇偶性的概念……能利用定义判断函数的奇偶性过程与方法目标:……培养学生的类比,观察,归纳能力……渗透数形结合的思想方法,感悟由形象到具体,再从具体到一般的研究方法情感态度与价值观目标:……对数学研究的科学方法有进一步的感受……体验数学研究严谨性,感受数学对称美重点与难点重点:函数奇偶性概念的形成和函数奇偶性的判断难点:函数奇偶性概念的探究与理解三.教法、学法教法借助多媒体和几何画板软件以引导发现法为主,直观演示法、设疑诱导法为辅的教学模式 遵循研究函数性质的三步曲学法根据自主性和差异性原则以促进学生发展为出发点着眼于知识的形成和发展着眼于学生的学习体验四.过程分析(一)情境导航、引入新课问题提出源于生活,那么我们现在正在学习的函数图象,是否也会具有对称的特性呢?是否也体现了图象对称的美感呢? (二)构建概念、突破难点考察下列两个函数:(1) (2) 思考1:这两个函数的图象有何共同特征?思考2:对于上述两个函数,f(1)与f(-1),f(2)与f(-2),f(a)与f(-a)有什么关系?一般地,若函数y=f(x)的图象关于y 轴对称,当自变量x 任取定义域中的一对相反数时,对应的函数值相等。
高一数学《函数的奇偶性》教学设计
课题:函数的奇偶性教学设计1.教学内容解析(1)函数的奇偶性是部分特殊函数所具有的性质,并非所有函数都具有奇偶性。
学习函数的奇偶性对于整体把握函数的特征有很大的帮助。
奇偶性所描述的特征,可以从两个方面来认识。
从图象来看,奇偶性反映的是函数图象整体的对称性(中心对称或轴对称图形);从函数符号来看,奇偶性所反映的是对应点的坐标之间的关系。
因此,学习函数的奇偶性,最重要的是抓住图象与符号之间的联系,做到“数形结合”,这也是本节课的重要思想。
本节课的重点应该定位为函数奇偶性的概念,包括概念的由来,概念的内涵以及概念的应用。
(2)本节课中教学内容中所包含的主要知识分类,概念性知识:函数的奇偶性的概念;程序性知识:函数奇偶性的判断;元认知知识:整体认识函数奇偶性所描述的函数的特征。
(3)本章主要学习函数的两个性质,单调性和奇偶性。
在此之前,学生已经学习了函数的单调性,单调性所描述的是函数的变化规律,由变化规律可以求函数的最值等重要内容。
而函数的奇偶性所描述的是函数的对称规律,由对称规律可以知道函数的整体特征。
再接下来的第二章的基本初等函数的学习中,也将重点研究函数的单调性和奇偶性。
可以说,第一章是学习研究函数的内容和方法,而第二章则是研究函数的实践。
(4)函数的图象是研究函数的重要载体,一旦对函数图象有了整体把握,自然对函数的规律心中有数。
因此,在思维教学过程中,学生应该是从直观的图象出发,通过归纳总结,得出函数的抽象符号特征。
2.教学目标设置(1)知道函数的奇偶性所描述的是函数整体的对称规律。
(2)知道函数奇偶性的图象定义和符号定义(3)掌握判断函数奇偶性的方法和步骤(4)会根据函数的奇偶性特征,求解对应点的函数值3.学生学情分析(1)学生已经在初中学习了一次函数、二次函数和反比例函数的图象和基本规律,已经具备了基本的作图能力,可以处理本节课需要的函数图象问题。
(2)学生知道轴对称图形和中心对称图形的含义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高一数学《函数奇偶性》教案
指对数的运算
一、反思数学符号:“”“”出现的背景
数学总是在不断的发明创造中去解决所遇到的问题。
方程的根是多少?;
①.这样的数存在却无法写出来?怎么办呢?你怎样向别
人介绍一个人?描述出来。
②..那么这个写不出来的数是一个什么样的数呢?怎样
描述呢?
①我们发明了新的公认符号“”作为这样数的“标志”的形式.即是一个平方等于三的数.
②推广:则.
③后又常用另一种形式分数指数幂形式
方程的根又是多少?①也存在却无法写出来??同样也
发明了新的公认符号“”专门作为这样数的标志,的形式.
即是一个2为底结果等于3的数.
②推广:则.
二、指对数运算法则及性质:
幂的有关概念:
:).
零指数幂:=.正整数指数幂
负整数指数幂:正分数指数幂:
负分数指数幂:0的正分数指数幂等于0,负分指数幂没意义.
根式:
如果一个数的n次方等于a,那么这个数叫做a的n次方根.如果,那么x叫做a的次方根,则x=0的任何次方根都是0,记作.式子叫做根式,n叫做根指数,a叫做被开方数.
当n为奇数时,=.当n为偶数时,==.
指数幂的运算法则:
=.=.3)=.4)=.
二.对数
对数的定义:如果,那么数b叫做以a为底N的对数,记作,其中a叫做,叫做真数.
特殊对数:
=;=.=.;;.
==.=.=;=
三、经典体验:
化简根式:;;;
解方程:;;;;
化简求值:
;
求函数的定义域。
16.高一期中】09-10【徐州六县一区
四、经典例题
例:1画出函数草图:.
练习:1.“等式log3x2=2成立”是“等式log3x=1成立”的▲.必要不充分条
例:2.若则▲.
练习:1.已知函数求的值▲..
例3:函数f=lg是函数。
点拨:
为奇函数。
练习:已知则.
练习:已知则的值等于
练习:已知定义域为R的函数在是增函数,满足且,求不等式的解集。
例:4解方程.
解:设,则,代入原方程,解得,或.由,得.经检验知,为原方程的解.
练习:解方程.
练习:解方程.
练习:解方程:.
练习:设,求实数、的值。
解:原方程等价于,显然,我们考虑函数,显然,即是原
方程的根.又和都是减函数,故也是减函数.
当时,;当时,,因此,原方程只有一个解.分析:注意到,,故倒数换元可求解.
解:原方程两边同除以,得.设,原方程化为,化简整理,得.,,即..
解析:令,则,∴原方程变形为,解得,。
由得,∴,即,∴,∴。
由得,∴,∵,∴此方程无实根。
故原方程的解为。
评注:将指数方程转化为基本型求解,是解决该类问题的关键。
解析:由题意可得,,,原方程可化为,即。
∴,∴。
∴由非负数的性质得,且,∴,。
评注:通过拆项配方,使问题巧妙获解。
例5:已知关于的方程有实数解,求的取值范围。
已知关于的方程的实数解在区间,求的取值范围。
反思提炼:1.常见的四种指数方程的一般解法
方程的解法:
方程的解法:
方程的解法:
方程的解法:
.常见的三种对数方程的一般解法
方程的解法:
方程的解法:
方程的解法:
.方程与函数之间的转化。
.通过数形结合解决方程有无根的问题。
课后作业:
对正整数n,设曲线在x=2处的切线与y轴交点的纵坐标为,则数列的前n项和的公式是
[答案] 2n+1-2
[解析] ∵y=xn,∴y′=′+′?xn=n?xn-1-xn. f′=-n?2n-1-2n=?2n-1.
在点x=2处点的纵坐标为y=-2n.
∴切线方程为y+2n=?2n-1.
令x=0得,y=?2n,
∴an=?2n,
∴数列ann+1的前n项和为22-1=2n+1-2.
.在平面直角坐标系中,已知点P是函数的图象上的动点,该图象在P处的切线交y轴于点,过点P作的垂线交y轴于点N,设线段N的中点的纵坐标为t,则t的最大值是
_____________
解析:设则,过点P作的垂线
所以,t在上单调增,在单调减,。