第1章线性规划详解只是分享

合集下载

线性规划讲义

线性规划讲义

线性规划讲义一、引言线性规划是一种数学优化方法,用于解决一类特定的优化问题。

它的基本思想是在一组线性约束条件下,找到使目标函数达到最大或者最小值的最优解。

线性规划广泛应用于工业、经济、管理、运筹学等领域,对于决策问题的求解具有重要意义。

二、线性规划的基本概念1. 目标函数:线性规划的目标是最大化或者最小化一个线性函数,称为目标函数。

目标函数通常表示为Z = c₁x₁ + c₂x₂ + ... + cₙxₙ,其中c₁、c₂、...、cₙ为常数,x₁、x₂、...、xₙ为决策变量。

2. 约束条件:线性规划的约束条件是一组线性等式或者不等式,用于限制决策变量的取值范围。

约束条件通常表示为:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ其中a₁₁、a₁₂、...、aₙₙ为常数,b₁、b₂、...、bₙ为常数,m为约束条件的个数。

3. 非负约束:线性规划中通常要求决策变量的取值非负,即x₁ ≥ 0,x₂≥ 0,...,xₙ ≥ 0。

三、线性规划的解法1. 图形法:对于二维线性规划问题,可以使用图形法求解。

首先,将目标函数和约束条件转化为直线或者半平面的图形表示,然后通过图形的分析找到最优解的位置。

2. 单纯形法:对于高维线性规划问题,单纯形法是一种常用的求解方法。

该方法通过不断迭代改进当前解,直到找到最优解为止。

单纯形法的基本思想是从一个可行解出发,通过改变决策变量的取值逐步挨近最优解。

3. 整数规划:当决策变量的取值限制为整数时,称为整数规划。

整数规划是线性规划的一个特例,解决整数规划问题的方法包括分支定界法、割平面法等。

四、线性规划的应用案例1. 生产计划问题:假设某工厂生产两种产品,产品A和产品B,每天可用的资源有限。

产品A每单位利润为10元,产品B每单位利润为15元。

运筹学第一章线性规划

运筹学第一章线性规划

0
X1
约束条件所组成的可行 域为空集,无可行解。
《运筹学》 第一章 线性规划
Slide 19
二、线性规划的标准形式
1、目标函数:max z c1x1 c2x2 cnxn
a x11 1 a x12 2 a x1n n b1 a x21 1 a x22 2 a x2n n b2
《运筹学》 第一章 线性规划
Slide 9
方案 根数
ABC
下料
3m 2 3 0
4m 1 0 2
合计 (m)
10
9
8
料头 (m)
0
1
2
P70 习题1-1: 设按这三种方案下料的原材料
根数分别为x1、x2、x3 。 min x1+x2+x3 S.t. 2x1+3x2>=90 x1+2x3>=60 Xi>=0
minz=2X1+3X2+5X3
s.t. X1+X2-X3>=-5 -6X1+7X2-9X3=15 ︱19X1-7X2+5X3︱<=13
X1>=0, X2>=0
令X3=X3`-X3`` -X1-X2+X3 `-X3`` +X4=5 -6X1+7X2-9X3`+9X3``=15 19X1-7X2+5X3`-5X3``+X5=13 -19X1+7X2-5X3 `+5X3``+X6=13 maxz=-2X1-3X2-5X3 `+5X3`` +0X4+0X5+0X6 X1,X2,X3`,X3``,X4,X5,X6>=0 三、线性规划的解的概念(参考P12例1.7) 1、可行解和最优解:满足约束条件的解(X1,X2, …,Xn)T称为线性规划的可行解。而使得目标函数达到 最优值的可行解称为最优解。 2、基:(注意课本P15的定义对“基”的定义有误) 设A是约束方程组m×n维的系数矩阵,其秩为m,B是 矩阵A中m×m阶非奇异子矩阵(B的行列式│B│≠0),则 称B是线性规划问题的一个基。

第一章线性规划

第一章线性规划
所以运输问题的模型可记为 Min Z = 21x11 + 25x12 + 7x13 + 15x14 + 51x21 + 51x22 + 37x23 + 15x24 s.t.
x11 + x12 + x13 + x14 = 2000 x21 + x22 + x23 + x24 = 1100 x11 + x21 = 1700 x12 + x22 = 1100 x13 + x23 = 200 x14 + x24 = 100 xij ≥ 0(i = 1,2;j = 1,2,3,4).
其中c =(c1,c2,…,cn)为行向量,称为价值向量,
a11 a A = 21 a m1 a12 a22 am 2
C
单500
75
解:(1) 确定决策变量:设x1,x2为下一个 生产周期产品甲和乙的产量;
(2) 所满足的约束条件:
对资源A的限制:3x1 + 2x2 ≤ 65 对资源B的限制:2x1 + x2 ≤ 40
对资源C的限制: 3x2 ≤ 75
基本要求:x1,x2 ≥ 0 ; (3) 明确目标函数: 获利最大,即求Z= 1500x1 + 2500x2的最大值,用 max表示最大值,s.t.(subject to的简写)表示约束条件,则该模型 可记为: max Z = 1500 x1 + 2500 x2 s.t. 3 x1 + 2 x2 ≤ 65 2 x1 + x2 ≤ 40 3 x2 ≤ 75
标准形式
max z = c1 x1 + c2 x2 + … + cn xn (1.2a)

第一章1、线性规划问题的基本概念讲解

第一章1、线性规划问题的基本概念讲解
am1 x1 am2 x2 amn xn (, )bm x1 , x2 ,, xn 0
•通常称 x1, x2 ,, xn 为决策变量,c1,c2 ,,cn 为价值系数, a11, a12, , amn 为消耗系数,b1 , b2 ,, bm 为资源限制系数。
3
运筹学这一名词最早出现于1938年。当时英,美等国盟军 在与德国的战争中遇到了许多错综复杂的战略和战术问题难以 解决,比如
(1)防空雷达的布置问题:
(2)护航舰队的编队问题:
为了应付上述各种复杂问题,英美等国逐批召集不同专业 背景的科学家,在三军组织了各种研究小组,研究的问题都是 军事性质的,在英国称为“Operational Research”,其他英语 国家称为“Operations Research”,意思是军事行动研究。这 些研究小组运用系统优化的思想,应用数学技术分析军事问题, 取得了非常理想的效果。
例1:某制药厂生产甲、乙两种药品,生产这两种药品要消 耗某种维生素。生产每吨药品所需要的维生素量,所占用的 设备时间,以及该厂每周可提供的资源总量如下表所示:
维生素(公斤) 设备(台)
每吨产品的消耗


30
20
5
1
每周资源总量
160 15
已知该厂生产每吨甲、乙药品的利润分别为5万元和2万 元。但根据市场需求调查的结果,甲药品每周的产量不应超 过4吨。问该厂应如何安排两种药品的产量才能使每周获得 的利润最大?
8
4. 学习要求
掌握主要的优化模型的数学计算方法. 了解现代优化方法及其数学原理. 熟练掌握应用数学软件计算优化问题.
9
5. 参考书目
主要参考书目: 理论方面: (1) 解可新、韩健,《最优化方法》,天津大学出版社,2004 (2) 何坚勇, 《最优化方法》, 清华大学出版社, 2007 计算方面: (3) 马昌凤,《最优化方法及其MATLAB程序设计》,科学出版社, 2010 (4) 朱德通,《最优化模型与实验》, 同济大学出版社, 2003

第一章_线性规划

第一章_线性规划

第 一 节 线性规划问题及其数学模型
一、线性规划问题的数学模型
线性规划问题主要解决以下两类问题: 1、任务确定后,如何统筹安排,做到应用尽量少的人 力和物力资源来完成任务; 2、在一定量的人力、物力资源的条件下,如何安排、 使用他们,使完成的任务最多。
在生产管理和经济活动中,经常会遇到线性规划问 题,如何利用线性规划的方法来进行分析,下面举例 来加以说明。
表1-2
成分
产品来源
分析:很明显,该厂可以有多种不同的方案从A,B 两处采购原油,但最优方案应是使购买成本最小的一 个,即在满足供应合同单位的前提下,使成本最小的 一个采购方案。
解:设分别表示从A,B两处采购的原油量(单位:万 吨),建立的数学模型为:
m in S 200 x1 290 x2
3. 若存在无非负要求的变量。即有某一个变 量 xj 取正值或负值都可以。这时为了满足标准型 对变量的非负要求,可令 xj = xjˊ- xj〞, 其中: xjˊ、 xj〞 0 ,由于xjˊ可能大于也可能小于xj〞,故 xj 可以为正也可以为负。
上述的标准型具有如下特点: (1)目标函数求最大值; (2)所求的变量都要求是非负的; (3)所有的约束条件都是等式; (4)常数项非负。 综合以上的讨论可以说明任何形式的线
max Z x1 2x2 3x4 3x5 0x6 0x7
x1 x2 x4 x5 x6 7
x13x1x2
x4 x2
x5 2x4
x7 2 2x5 5
x1, x2, x4, , x7 0
第二节 线性规划问题的图解法及几何意义
例1-1:(计划安排问题)某工厂在计划期内安排 生产Ⅰ、Ⅱ两种产品,已知生产单位产品所占用的 设备A、B的台时、原材料的消耗及两种产品每件 可获利润见表所示:

运筹学第1章-线性规划

运筹学第1章-线性规划
凸集的数学定义:设K为n维欧氏空间的一个点集,若K中任意两个 点X1和X2连线上的所有点都属于K,即“X =αX1+(1-α) X2 ∈ K(0≤a ≤ 1)”,则称K为凸集。设X(x1,x2,…,xn),X1(u1, u2,...,un),X2(v1,v2,…,vn),如图1一5所示,“X =αX1+(1α) X2 ∈ K(0≤a ≤ 1)”的证明思路如下:
下一页 返回
图解法步骤:
(1)建立坐标系; (2)将约束条件在图上表示; (3)确立满足约束条件的解的范围; (4)绘制出目标函数的图形 (5)确定最优解
用图解法求解下列线性规划问题
max z 2x1 3x2
4x1 0x2 16
s.t
10xx11
4x2 2x2
12 8
x1, x2 0
1. 1.1问题举例
(1)生产计划问题。 生产计划问题是典型的已知资源求利润最大化的问题,对于此类
问题通常有三个假设:①在某一计划期内对生产做出的安排;②生产 过程的损失忽略不计;③市场需求无限制,即假设生产的产品全部 卖出。
下一页 返回
1.一般线性规划问题的数学模型
例1 用一块连长为a的正方形铁皮做一个容 器,应如何裁剪,使做成的窗口的容积为最 大?
解:设 x1, x2分别表示从A,B两处采购的原油量(单
位:吨),则所有的采购方案的最优方案为:
min z 200x1 290x2
0.15x1 0.50x2 150000
s.t
0.20x1 0.50x1
0.30x2 0.15x2
120000 120000
x1 0, x2 0
1. 1线性规划问题与模型
也可以写成模型(1-6)和模型(1-7)的形式,其中模型(1-7)较为常用。

第一章 线性规划

第一章 线性规划
第四节 线性规划的典型案例
线性规划
【开篇案例】
一、人力资源分配的问题
某旅行社为了迎接旅 游黄金周的到来,对一日 游导游人员的需求经过统 计分析如表所示。为了保 证导游充分休息,导游每 周工作 5天,休息两天, 并要求休息的两天是连续 的。问应该如何安排导游 人员的作息,既满足工作 需要,又使配备的导游人
下午5时14分
什么是规划?
• 以上问题无一例外都属于规划问题,涉及到求解最大值 和最小值
• 人们经常谈规划,比如国家有5年规划、10年规划、城市 有城市规划,个人有自己的人生规划.
• 规划是在现有的人力、物力水平下,使得目标达到最优 的全面、理性的计划
下午5时14分
线性规划
• 线性规划简介: • 运筹学中最成熟的一个分支 • 静态规划:单周期决策
第一节 下午5时14分 线性规划的一般模型
三、线性规划模型的特征
1. 模型隐含假定
作为严密的数学模型,线性规划蕴含着以下假定: (1)线性化假定
函数关系式f(x)= c1x1+c2x2+… +cnxn,称线性函数。 经济学中大多数函数都是非线性,通过偏导求最优。但在企业
运营决策中,经常考虑比较短时间内的计划安排,通过线性化 更便于应用。
乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?



资源限制
铸造工时(小时/件)
5
10
7
8000
机加工工时(小时/件)
6
4
8
12000
装配工时(小时/件)
3
2
2
10000
自产铸件成本(元/件)
3
5
4
外协铸件成本(元/件)

第1章 线性规划问题

第1章  线性规划问题

7连续加工问题
一工厂在第一车间用一单位M可加工成3单位产品 A,2单位产品B,A可以按每单位售价8元出售, 也可以在第二车间继续加工,每单位生产费用增 加6元,加工后每单位售价为16元;B可以按每 单位售价7元出售,也可以在第三车间继续加工, 每单位生产费用增加4元,加工后每单位售价为 12元.原料M的单位购入价为2元。上述生产费用 不包括工资在内.三个车间每月最多有20万工时, 每工时工资0.5元.每加工一单位M需1.5工时,如 A继续加工,每单位需3工时;如B继续加工,每 单位需1工时。每月最多能得到的原料M为10万 单位。问如何安排生产,使工厂获利最大?
23





三、线性规划标准型及解的概念
• 线性规划的一般形式 max (min) z = c1 x1 + c2 x2 + … + cn xn s.t. a11 x1 + a12 x2 + … + a1n xn ≤ ( =, ≥ )b1 a21 x1 + a22 x2 + … + a2n xn ≤ ( =, ≥ )b2
xj 0
x j ; j 1,2,...,n
c (c1 , c 2 , , c n )
( j 1,2, , n)
为待定的决策变量,
为价值向量, c j ; j 1, 2,...,n 为价值系数,
b ( b1 , b 2 ,...,b m ) 为右端向量,
矩阵
a 11 a 21 A a m1 a 12 a 22 am2 a mn a1n a 2n
线性规划理论与模型应用
授课人 葛金辉

线性规划知识点总结

线性规划知识点总结

线性规划知识点总结
1.线性规划的有关概念:
①线性约束条件:
在上述问题中,不等式组是一组变量x,y 的约束条件,这组约束条件都是关于x,y的一次不等式,故又称线性约束条件.
②线性目标函数:
关于x,y的一次式z=2x+y是欲达到最大值或最小值所涉及的变量x,y的解析式,叫线性目标函数.
③线性规划问题:
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.
④可行解、可行域和最优解:
满足线性约束条件的解(x,y)叫可行解.由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.
2.用图解法解决简单的线性规划问题的基本步骤:
(1)寻找线性约束条件,线性目标函数;
(2)由二元一次不等式表示的平面区域做出可行域;
(3)在可行域内求目标函数的最优解
3.解线性规划实际问题的步骤:
(1)将数据列成表格;
(2)列出约束条件与目标函数;
(3)根据求最值方法:①画:画可行域;
②移:移与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值;?
(4)验证.
4.两类主要的目标函数的几何意义:
(1)-----直线的截距;
(2)-----两点的距离或圆的半径;
(3)-----直线的斜率。

第一 线性规划(共188张PPT)

第一 线性规划(共188张PPT)
个要求表述为
x1 ≥0, x2 ≥0
• 综上所述,该问题的数学模型表示为
maxZ= 3x1 +5 x2
x1
≤8
2x2 ≤12
3x1 +4 x2 ≤36
x1 ≥0, x2 ≥0
5
第一节 线性规划一般模型
• 例2. 运输问题 某名牌饮料在国内有三个生产厂,分布在城市A1、 A2、A3,其一级承销商有4个,分布在城市B1、B2、B3、 B4,已知各厂的产量、各承销商的销售量及从Ai到Bj 的每吨饮料运费为Cij,为发挥集团优势,公司要统 一筹划运销问题,求运费最小的调运方案。
(3)约束条件。产量之和等于销量之和,故要满足:
▪ 供应平衡条件
x11+x12+x13+x14=5 x21+x22+x23+x24=2 x31+x32+x33+x34 =3
§ 销售平衡条件
x11+x21+x31=2 x12+x22+x32=3 x13+x23+x33=1 x14+x24+x34=4
§ 非负性约束
29
第三节 线性规划的标准型
§ 标准化2
minZ= x1 +2 (x2′-x 2〃) +3 x3′
函数。可能是最大化,也可能是最小化。 • 线性规划一般模型的代数式 为:
max(min)Z=c1x1+c2x2+…+cnxn a11x1+a12x2+…+a1nxn ≤(≥,=)b1 a21x1+a22x2+…+a2nxn ≤(≥,=)b2 …………… am1x1+am2x2+…+amnxn≤(≥,=)bm x1,x2,…,xn ≥(≤)0

1第一章线性规划讲解

1第一章线性规划讲解

目录未找到目录项。

第一章 线性规划§1 线性规划在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。

此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。

自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。

特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。

1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。

生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。

若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足(目标函数)2134max x x z += (1)s.t.(约束条件)⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0,781022122121x x x x x x x (2)这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。

由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。

总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。

在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。

而选适当的决策变量,是我们建立有效模型的关键之一。

第一章 线性规划

第一章 线性规划
对于标准形式的线性规划问题若约束方程系数矩阵中不存在现成的初始可行基则不能简单的用上述单纯形法而通常采用所谓的人工变量法
第一章 线性规划
(Linear Programming, LP)
概述
• 线性规划问题的提出最早是1939年由前苏联 数学家康托洛维奇在研究铁路运输的组织问题、 工业生产的管理问题时提出来的。
(5)若bi < 0,则-bi > 0
举例: 化下列线性规划为标准形
max z=2x1+2x2-4x3 x1 + 3x2-3x3 ≥30 x1 + 2x2-4x3≤80 x1、x2≥0,x3无限制
max z=2x1+2x2-4x3’+4x3” x1 + 3x2-3x3’+3x3” –x4 = 30 x1 + 2x2-4x3+ 4x3” + x5 = 80 x1、x2 、x3’、x3” 、x4、x5 ≥0
称X0为该线性规划对应与基B的一个基本解。
同样,在A中任选m个线性无关的列向量都可以组成一个基, 对应基一个基本解。对于一个LP最多有多少呢?从n个中 选m个进行组合,即:
Cnm=n!/[(n-m)!m!] 因此,基本解是有限的。
举例:找出下列LP所有的基及其对应的基本解 max z=6x1+4x2 2x1 + 3x2≤100 4x1 + 2x2≤120 x1、x2≥0
资源
产品

乙 资源限制
A
1
B
2
C
0
单位产品利润(元/件) 50
1
300kg
1
400kg
1
250kg
100
• 决策变量:x1、x2——分别代表甲、乙两

第一章:线性规划基础

第一章:线性规划基础

表1.5 效率表
工作 A 人员 甲 乙 丙 丁 X11 0.6 X21 0.7 X31 0.8 X41 0.7 X42 0.7 X32 1.0 X43 0.5 X22 0.4 X33 0.7 X44 0.4 B X12 0.2 X23 0.3 X34 0.3
s.t.
C X13 0.3
D X14 0.1 X24 0.2
6
三、合理下料问题建模:寻求最佳下料方式, 使余料最少. 合理下料问题建模:寻求最佳下料方式, 使余料最少. 有一批长度为180公分的钢管,需截成70 52和35公分三种管料 180公分的钢管 70、 公分三种管料。 例 有一批长度为180公分的钢管,需截成70、52和35公分三种管料。它们的需求量应分别不少于 100、150和100个 问应如何下料才能使钢管的余料为最少? 100、150和100个。问应如何下料才能使钢管的余料为最少? 解:
s.t.
5
二、人员分派问题建模: 合理分派人员, 使总效率最大. 人员分派问题建模: 合理分派人员, 使总效率最大. 设有四件工作分派给四个人来做,每项工作只能由一人来做,每个人只能做一项工作。 例:设有四件工作分派给四个人来做,每项工作只能由一人来做,每个人只能做一项工作。 希望适当安排人选,发挥各人特长又能使总的效率最大(或完成最快,或费用最少) 希望适当安排人选,发挥各人特长又能使总的效率最大(或完成最快,或费用最少)。 表示各人对各项工作所具有的工作效率。 表1.5表示各人对各项工作所具有的工作效率。

k •
ο •h • ο a ④ ③ 3 ο ② X1 ⑤
四、L.P. 的一般形式
Max(Min) Z = c1 · x1 + c2 · x2 + --- + cn · xn a11 · x1 + a12 · x2 + --- + a1n · xn ≤(≥, =) b1 a21 · x1 + a22 · x2 + --- + a2n · xn ≤(≥, =) b2 s.t. ------------------------------------------ ---- --am1 · x1 + am2 · x2 + --- + amn · xn ≤(≥, =) bm xj ≥ 0 , j=1, ~, n

线性规划知识点总结

线性规划知识点总结

线性规划知识点总结一、概述线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。

它的目标是找到使目标函数达到最大或最小值的变量取值。

线性规划广泛应用于经济学、工程学、管理学等领域,可以帮助优化资源分配和决策制定。

二、基本概念1. 变量:线性规划中的变量表示需要优化的决策变量,可以是实数或非负数。

2. 目标函数:线性规划的目标是最大化或最小化一个线性函数,该函数称为目标函数。

3. 约束条件:线性规划的解必须满足一系列线性等式或不等式,这些等式或不等式称为约束条件。

4. 可行解:满足所有约束条件的解称为可行解。

5. 最优解:在所有可行解中,使目标函数达到最大或最小值的解称为最优解。

三、标准形式线性规划问题可以通过标准形式来表示,其形式如下:最小化:C^T * X约束条件:A * X <= BX >= 0其中,C是目标函数的系数向量,X是变量向量,A是约束条件的系数矩阵,B是约束条件的常数向量。

四、常见解法1. 图形法:适用于二维或三维的线性规划问题,通过绘制约束条件的图形,并找到最优解所在的顶点。

2. 单纯形法:适用于高维的线性规划问题,通过不断迭代改进当前解,直到找到最优解。

3. 整数线性规划:当变量需要取整数值时,可以使用整数线性规划方法求解,如分支定界法、割平面法等。

五、常见应用1. 生产计划:线性规划可以帮助确定最佳的生产计划,以最大化产量或最小化成本。

2. 运输问题:线性规划可以解决运输问题,如确定最佳的运输路径和运输量,以最小化总运输成本。

3. 资源分配:线性规划可以优化资源的分配,如确定最佳的人力、物力和财力分配方案。

4. 投资组合:线性规划可以帮助确定最佳的投资组合,以最大化收益或最小化风险。

六、注意事项1. 线性假设:线性规划只适用于目标函数和约束条件均为线性的问题,不适用于非线性问题。

2. 敏感性分析:线性规划的解对目标函数系数和约束条件右端常数的变化具有一定的敏感性,需要进行敏感性分析。

第1章线性规划(1-2)

第1章线性规划(1-2)

1.1线性规划的模型结构 1.1线性规划的模型结构
实际问题中线性的含义: 一是严格的比例性, 生产某产品对资源的消耗量和 可获取的利润,同其生产数量严格成比例; 二是可叠加性,如生产多种产品时,可获取的总利 润是各项产品的利润之和,对某项资源的消耗量应等 于各产品对该项资源的消耗量的和。在实际处理不符 合条件的问题时,为方便可将其看作近似满足线性条 件。
【问题导入】 生产优化—产品组合问题 问题导入】 生产优化—
如果征得管理部门的同意,不盈利的产品要 停止生产并撤出生产能力来生产研发部刚开 发的两个新产品:绿色时尚系列茶几A 发的两个新产品:绿色时尚系列茶几A 和餐 桌B。现在管理部门要考虑下列两个问题: 1.公司是否应该生产这两个新产品? 1.公司是否应该生产这两个新产品? 2.如果生产,两个新产品的产品生产组合如 2.如果生产,两个新产品的产品生产组合如 何?——每周分别生产多少数量? 何?——每周分别生产多少数量?
线性规划问题的解可能出现下列情况: 4. 可行域无界 这里,线性规划问题的可行域无界是指最大化问题 的目标函数值可以无限增大,或最小化问题的目标 函数值可以无限减小。
1.3应用Excel求解线性规划问题 1.3应用 应用Excel求解线性规划问题
图解法 单纯形法 Excel的 规划求解” Excel的“规划求解”
1.3应用Excel求解线性规划问题 1.3应用 应用Excel求解线性规划问题
首先,根据问题建立电子表格模型具体步骤如下:
1.收集问题的数据。 1.收集问题的数据。 2.在电子表格的数据单元格中输入数据。 2.在电子表格的数据单元格中输入数据。 3.确定对活动水平需要作出的决策并且指定可变单元显示这些 3.确定对活动水平需要作出的决策并且指定可变单元显示这些 决策。 4.确定对这些决策的约束条件并引入需具体化这些约束条件的 4.确定对这些决策的约束条件并引入需具体化这些约束条件的 输出单元格。 5.选择要输入目标单元格的完全绩效测度。 5.选择要输入目标单元格的完全绩效测度。 6.使用SUMPRODUCT函数为每个输出单元格(包括目标单元格) 6.使用SUMPRODUCT函数为每个输出单元格(包括目标单元格) 输入合适的值。

第1章线性规划引论详解

第1章线性规划引论详解
④ 根据决策变量的物理性质研究变量是否有非负性或上下 界。
资源分配问题
▪ 资源分配(resource-allocation)问题是将有限的资源
▪ 分配到各种活动中去的线性规划问题。这一类问题的
▪ 共性是在线性规划模型中每一个函数限制均为资源限
▪ 制(resource constraint) , 并且每一种有限资源都可以表
资源分配问题一般形式
资源分配问题一般形式
▪ 我们用表示xj第j种活动的数量(水平),则目标 函数 最大化。
▪ 对于第i种资源, 我们有约束条件:
▪ 即资源消耗量不超过的资源总量
资源分配问题一般形式
▪ 因此,这类问题的数学模型为:
成本效益平衡问题一般形式
▪ 以上所讨论的成本效益平衡问题是通过选择 各种活动水平的组合,从而以最小的成本实 现最低可接受的各种效益水平。该问题的一 般形式可描述为:
一般形式
▪ 线性规划的一般形式为:
资源分配问题一般形式
▪ 资源分配问题是将有限的资源分配从事各种 活动的线性规划问题,其一般形式可以描述 为:
▪ 管理层计划用m种资源去从事n种活动,通过 收集每种资源的总量和每种活动单位资源使 用量以及单位贡献等数据如下表所示,来确 定活动的数量使得在资源许可的条件下贡献 最大。
▪ f14 + f24 + f34 = f45 + f46 ▪ 对仓库v5、v6,运进的产品数量等于其需求
量 ▪ f15 + f25+ f45 = 120 ▪ f46+ f36 = 130
物流网络配送问题
▪ 此外,对网络中有运输容量限制的路线的约 束是:该路线上的运输产品数量不超过该线 路的运输能力,即:

管理运筹学讲义 第1 章 线性规划

管理运筹学讲义  第1 章  线性规划

(3)约束条件:产量之和等于销量之和,故要满足:
供应平衡条件
x11+x12+x13+x14=50 x21+x22+x23+x24=20 x31+x32+x33+x34 =30
x11+x21+x31=20 x12+x22+x32=30 x13+x23+x33=10 x14+x24+x34=40
xij≥0 (i=1,2,3;j=1,2,3,4)
决策变量对目标函数和约束方程的影响是独立于其他变量的。 目标函数值是决策变量对目标函数贡献的总和。
(4)连续性假定
决策变量取值连续。
(5)确定性假定
所有参数都是确定的,不包含随机因素。
9 OR:SM
第一节 线性规划的一般模型
三、线性规划模型的特征
2、一般数学模型
• 用一组非负决策变量表示的一个决策问题; • 存在一组等式或不等式的线性约束条件; • 有一个希望达到的目标,可表示成决策变量的极值线性函数。
4 2 6
8
O
2
4
6
8
x1
OR:SM
23
• 当决策变量是三维的,如何求解? • 当维数再高时,又如何求解?
24
OR:SM
第二节 线性规划的一般模型
一、线性规划的标准型式
1、标准型表达方式
1)代数式
max Z c j x j
j 1 n
2)向量式
max Z CX
i 1,2,, m j 1,2,, n
20
OR:SM
第一节 线性规划的一般模型

第1章线性规划

第1章线性规划

(0,6)
3x1+2x2=18 x1=4
(2,6) (4,6)
2x2=12
(4,3)
3x1+5x2=50
(0,0)
(4,0) (6,0)
x2=0 x1
无可行解
若线性规划问题的决策变量超过2个时, 应用图解法求解时便会显得很困难。这里需 要解决线性规划问题的更一般的代数的方 法——单纯形法。
单纯形法可以解决成千上万个变量或约 束条件的线性规划问题。
x1 ,x2 ,x3 ,x4 ,x5 ≥ 0
需要指出的是:线性规划问题的标准形 式与其原始形式是等价的,即一个线性规划 问题的最优解与其标准形式的最优解的值是 一样的。一个问题的标准形式并不改变问题 的本质,它只是改变对问题约束条件的写法。
我们已经说过,单纯形法需要标准形式。但对 于单纯形法,我们不做深入探讨,这里只给出几个 必要的基本概念。
在使用单纯形法解决问题中,必须对线 性规划的一般形式进行变形,化为标准形式。
线性规划的标准形式: n
max z = c j x j
j 1
s.t.
n j 1
aij x j
bi
(i 1,2, m)
x j 0
( j 1,2, n)
①目标函数取极大化, ②约束条件全为等式,
③约束条件右端常数项均为非负值,④变量
令非基变量x1=x2=0,解得x3=4, x4=12, x5=18,则x=(0,0,4,12,18)T是一个基解。因该基解 中所有变量取值为非负,满足线性规划问题的所有 约束条件,故也是基可行解。
1.2 对偶问题
例1.3(委托加工)对于例1.1的产品组合问 题,公司从交易市场上得到另一信息:某中 间商得到一笔生产与公司相同产品的合同。 但该中间商并没有生产这些产品的设备,欲 委托该公司为其加工产品。现在的问题是公 司应该让中间商至少付出多少代价,才能放 弃这两种新产品的生产,为中间商委托生产?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求得的最优解为 x1 = 6.4286, x2 = 0.5714,x3 = 0,对应 的最优值z = 14.5714。
14/39
数学 建模
例1.3 求解线性规划问题
min z = 2x1 + 3x2 + x3 ,
min w = - 2x1 - 3x2 + 5x3,
s.t.
轾 犏- 2 犏 臌1
5 3
-1 1
轾 犏x1 犏 犏x2 犏 臌x3
£
轾 犏- 10 犏 臌12

[1, 1, 1]?[ x1, x2, x3]T 7.
11/39
数学 建模
(2)求解的 Matlab 程序如下 f=[-2; -3; 5]; a=[-2,5,-1;1,3,1]; b=[-10;12]; aeq=[1,1,1]; beq=7; [x,y]=linprog(f,a,b,aeq,beq,zeros(3,1)); x, y=-y
第1章线性规划详解
数学 建模
1.1 线性规划问题
在人们的生产实践中,经常会遇到如何利用现有资源 来安排生产,以取得最大经济效益的问题。此类问题构成 了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记 LP)则是数学规划的一个重要分支。自 从 1947 年 G. B. Dantzig 提出求解线性规划的单纯形方法 以来,线性规划在理论上趋向成熟,在实用中日益广泛与 深入。特别是在计算机能处理成千上万个约束条件和决策 变量的线性规划问题之后,线性规划的适用领域更为广泛 了,已成为现代管理中经常采用的基本方法之一。
j= 1
(1.3)
s.t.
åìïïïïíïïïïî
n
aij x j
j= 1
xj ? 0
= j
bi i = 1, 2,L 1, 2,L , n.
,m,
其中bi ³ 0,i = 1, 2,L , m 。
(1.4)
6/39
数学 建模
可行解 满足约束条件(1.4)的解 x = [x1,L , xn]T , 称为线性规划问题的可行解,而使目标函数(1.3)达 到最大值的可行解叫最优解。
可行域 所有可行解构成的集合称为问题的可行 域,记为 R。
7/39
数学 建模
1.1.3 线性规划的Matlab标准形式及软件求解
线性规划的目标函数可以是求最大值,也可以是求最
小值,约束条件的不等号可以是小于号也可以是大于号。
为了避免这种形式多样性带来的不便,Matlab 中规定线
性规划的标准形式为
@for(row(i):@sum(col(j):a(i,j)*x(j))<b(i));
@sum(col:x)=7;
13/39
end
数学 建模
例 1.2 求解下列线性规划问题 max z = 2x1 + 3x2 - 5x3, s.t. x1 + x2 + x3 = 7, 2x1 - 5x2 + x3 ? 10, x1 + 3x2 + x3 ? 12, x1, x2 , x3 ³ 0.
min f T x,
x
s.t.
ìïïïíïïïïî
A祝x Aeq ?x lb #x
b, beq, ub.
其中 f , x,b,beq,lb,ub为列向量, f 称为价值向量,b称为
资源向量, A, Aeq为矩阵。
8/39
数学 建模
Matlab 中求解线性规划的命令为 [x,fval] = linprog(f,A,b) [x,fval] = linprog(f,A,b,Aeq,beq) [x,fval] = linprog(f,A,b,Aeq,beq,lb,ub) 其中 x 返回的是决策向量的取值,fval 返回的是目标函 数的最优值,f 为价值向量,A,b 对应的是线性不等式 约束,Aeq,beq 对应的是线性等式约束,lb 和 ub 分 别对应的是决策向量的下界向量和上界向量。
12/39
数学 建模
(3)求解的Lingo程序如下
model:
sets:
row/1..2/:b;
col/1..3/:c,x;
links(row,col):a;
endsets
data:
c=2 3 -5;
a=-2 5 -1 1 3 1;
b=-10 12;
enddata
max=@sum(col:c*x);
变量 x1, x2称之为决策变量,(1.1)式被称为问题的目
标函数,(1.2)中的几个不等式是问题的约束条件,记为
s.t.(即 subject to)。
4/39
数学 建模
目标函数及约束条件均为线性函数,故被称为线性 规划问题。线性规划问题是在一组线性约束条件的限制 下,求一线性目标函数最大或最小的问题。
2/39
数学 建模
1.1.1 线性规划的实例与定义 例 1.1 某机床厂生产甲、乙两种机床,每台销售后的 利润分别为 4 千元与 3 千元。生产甲机床需用 A、B机器加 工,加工时间分别为每台 2 小时和 1 小时;生产乙机床需用 A、B、C 三种机器加工,加工时间为每台各一小时。若每天 可用于加工的机器时数分别为 A机器 10 小时、B机器 8 小 时和C 机器 7 小时,问该厂应生产甲、乙机床各几台,才能 使总利润最大? Nhomakorabea9/39
数学 建模
例 1.2 求解下列线性规划问题 max z = 2x1 + 3x2 - 5x3, s.t. x1 + x2 + x3 = 7, 2x1 - 5x2 + x3 ? 10, x1 + 3x2 + x3 ? 12, x1, x2 , x3 ³ 0.
10/39
数学 建模
解 (1)化成 Matlab 标准型
3/39
数学 建模
上述问题的数学模型:设该厂生产 x1台甲机床和 x2乙
机床时总利润 z 最大,则 x1, x2应满足
max z = 4x1 + 3x2,
s.t.ìïïïïïíïïïïïî
2 x1 + x2 ? 10, x1 + x2 ? 8, x2 £ 7, x1, x2 ³ 0.
(1.1) (1.2)
在解决实际问题时,把问题归结成一个线性规划数 学模型是很重要的一步,往往也是很困难的一步,模型 建立得是否恰当,直接影响到求解。而选适当的决策变 量,是我们建立有效模型的关键之一。
5/39
数学 建模
1.1.2 线性规划问题的解的概念
一般线性规划问题的(数学)标准型为
n
å max z = c j x j ,
相关文档
最新文档