2018高考数学一轮复习第1章集合与常用逻辑用语第2节命题充分条件与必要条件课时分层训练文

合集下载

(新)江苏专用2018版高考数学大一轮复习第一章集合与常用逻辑用语1_2命题及其关系充分条件与必要条件教师

(新)江苏专用2018版高考数学大一轮复习第一章集合与常用逻辑用语1_2命题及其关系充分条件与必要条件教师

第一章集合与常用逻辑用语 1.2 命题及其关系、充分条件与必要条件教师用书理苏教版1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,同时q是p的必要条件;(2)如果p⇒q,且q⇏p,则p是q的充分不必要条件;(3)如果p⇒q,且q⇒p,则p是q的充要条件;(4)如果q⇒p,且p⇏q,则p是q的必要不充分条件;(5)如果p⇏q,且q⇏p,则p是q的既不充分又不必要条件.【知识拓展】从集合角度理解充分条件与必要条件若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可以叙述为(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A B,则p是q的充分不必要条件;(5)若A B,则p是q的必要不充分条件;(6)若A B且A⊉B,则p是q的既不充分又不必要条件.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)“x2+2x-3<0”是命题.( ×)(2)命题“若p,则q”的否命题是“若p,则綈q”.(×)(3)若一个命题是真命题,则其逆否命题也是真命题.( √)(4)当q是p的必要条件时,p是q的充分条件.( √)(5)当p是q的充要条件时,也可说成q成立当且仅当p成立.( √)(6)若p是q的充分不必要条件,则綈p是綈q的必要不充分条件.( √)1.下列命题中为真命题的是________.(填序号)①命题“若x>y,则x>|y|”的逆命题;②命题“若x>1,则x2>1”的否命题;③命题“若x=1,则x2+x-2=0”的否命题;④命题“若x2>0,则x>1”的逆否命题.答案①解析对于①,其逆命题是若x>|y|,则x>y,是真命题,这是因为x>|y|≥y,必有x>y.2.(教材改编)命题“若x2>y2,则x>y”的逆否命题是________________________.答案若x≤y,则x2≤y2解析根据原命题和其逆否命题的条件和结论的关系,得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.3.(教材改编)给出下列命题:①命题“若b 2-4ac <0,则方程ax 2+bx +c =0(a ≠0)无实根”的否命题; ②命题“如果△ABC 中,AB =BC =CA ,那么△ABC 为等边三角形”的逆命题; ③命题“若a >b >0,则3a >3b >0”的逆否命题;④命题“若m >1,则不等式mx 2-2(m +1)x +(m -3)>0的解集为R ”的逆命题. 其中真命题的序号为________. 答案 ①②③解析 ①命题“若b 2-4ac <0,则方程ax 2+bx +c =0(a ≠0)无实根”的否命题为:“若b 2-4ac ≥0,则方程ax 2+bx +c =0(a ≠0)有实根”,根据一元二次方程根的判定知其为真命题. ②命题“如果△ABC 中,AB =BC =CA ,那么△ABC 为等边三角形”的逆命题为:“如果△ABC 为等边三角形,那么AB =BC =CA ”,由等边三角形的定义可知其为真命题.③原命题“若a >b >0,则3a >3b >0”为真命题,由原命题与其逆否命题有相同的真假性可知其逆否命题为真命题.④原命题的逆命题为:“若不等式mx 2-2(m +1)x +(m -3)>0的解集为R ,则m >1”,不妨取m =2验证,当m =2时,有2x 2-6x -1>0,Δ=(-6)2-4×2×(-1)>0,其解集不为R ,故为假命题.4.(2016·北京改编)设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的______________条件. 答案 既不充分又不必要解析 若|a |=|b |成立,则以a ,b 为邻边构成的四边形为菱形,a +b ,a -b 表示该菱形的对角线,而菱形的对角线不一定相等,所以|a +b |=|a -b |不一定成立;反之,若|a +b |=|a -b |成立,则以a ,b 为邻边构成的四边形为矩形,而矩形的邻边不一定相等,所以|a |=|b |不一定成立,所以“|a |=|b |”是“|a +b |=|a -b |”的既不充分又不必要条件. 5.在下列三个结论中,正确的是________.(写出所有正确结论的序号) ①若A 是B 的必要不充分条件,则綈B 也是綈A 的必要不充分条件;②“⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac ≤0”是“一元二次不等式ax 2+bx +c ≥0的解集为R ”的充要条件;③“x ≠1”是“x 2≠1”的充分不必要条件. 答案 ①②解析 易知①②正确.对于③,若x =-1,则x 2=1,充分性不成立,故③错误.题型一命题及其关系例1 (2016·扬州模拟)下列命题:①“若a2<b2,则a<b”的否命题;②“全等三角形面积相等”的逆命题;③“若a>1,则ax2-2ax+a+3>0的解集为R”的逆否命题;④“若3x(x≠0)为有理数,则x为无理数”的逆否命题.其中正确的命题是________.(填序号)答案③④解析对于①,否命题为“若a2≥b2,则a≥b”,为假命题;对于②,逆命题为“面积相等的三角形是全等三角形”,为假命题;对于③,当a>1时,Δ=-12a<0,原命题正确,从而其逆否命题正确,故③正确;对于④,原命题正确,从而其逆否命题正确,故④正确.思维升华(1)写一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.(1)命题“若x>0,则x2>0”的否命题是__________.(2)(2016·徐州模拟)已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是______________________________.答案(1)若x≤0,则x2≤0(2)若a+b+c≠3,则a2+b2+c2<3解析(2)由于一个命题的否命题既否定题设又否定结论,因此原命题的否命题为“若a+b +c≠3,则a2+b2+c2<3”.题型二充分必要条件的判定例2 (1)(2016·江苏南京学情调研)已知直线l,m,平面α,m⊂α,则“l⊥m”是“l⊥α”的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)(2)(2016·泰州模拟)给出下列三个命题:①“a>b”是“3a>3b”的充分不必要条件;②“α>β”是“cos α<cos β”的必要不充分条件;③“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充要条件.其中正确命题的序号为________.答案(1)必要不充分(2)③解析(1)根据直线与平面垂直的定义:若直线与平面内的任意一条直线都垂直,则称这条直线与这个平面垂直.现在是直线与平面内给定的一条直线垂直,而不是任意一条,故由“l⊥m”推不出“l⊥α”,但是由定义知“l⊥α”可推出“l⊥m”,故填必要不充分.(2)因为函数y=3x在R上为增函数,所以“a>b”是“3a>3b”的充要条件,故①错;由余弦函数的性质可知“α>β”是“cos α<cos β”的既不充分又不必要条件,故②错;当a=0时,f(x)=x3是奇函数,当f(x)是奇函数时,由f(-1)=-f(1)得a=0,所以③正确.思维升华充分条件、必要条件的三种判定方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断,适用于定义、定理判断性问题.(2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母的范围的推断问题.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题.(1)函数f (x )=13x -1+a (x ≠0),则“f (1)=1”是“函数f (x )为奇函数”的________条件.(用“充分不必要”“必要不充分”“充要”“既不充分又不必要”填写)(2)(2017·镇江质检)已知p :关于x 的不等式x 2+2ax -a ≤0有解,q :a >0或a <-1,则p 是q 的________条件.(用“充分不必要”“必要不充分”“充要”“既不充分又不必要”填写)答案 (1)充要 (2)必要不充分 解析 (1)f (x )=13x-1+a (x ≠0)为奇函数,则f (-x )+f (x )=0,即13-x -1+a +13x -1+a =0,所以a =12,此时f (1)=13-1+12=1,反之也成立,因此填“充要”.(2)关于x 的不等式x 2+2ax -a ≤0有解,则4a 2+4a ≥0⇒a ≤-1或a ≥0,从而q ⇒p ,反之不成立,故p 是q 的必要不充分条件. 题型三 充分必要条件的应用例3 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.解 由x 2-8x -20≤0,得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P .则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3]. 引申探究1.若本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解 若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,方程组无解,即不存在实数m ,使x ∈P 是x ∈S 的充要条件.2.本例条件不变,若x ∈綈P 是x ∈綈S 的必要不充分条件,求实数m 的取值范围. 解 由例题知P ={x |-2≤x ≤10}, ∵綈P 是綈S 的必要不充分条件, ∴P ⇒S 且S ⇏P .∴[-2,10][1-m ,1+m ].∴⎩⎪⎨⎪⎧1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.∴m ≥9,即m 的取值范围是[9,+∞).思维升华 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意: (1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.(2016·盐城期中)设集合A ={x |x 2+2x -3<0},集合B ={x ||x +a |<1}.(2)设p :x ∈A ,q :x ∈B ,若p 是q 成立的必要不充分条件,求实数a 的取值范围. 解 (1)解不等式x 2+2x -3<0, 得-3<x <1,故A =(-3,1). 当a =3时,由|x +3|<1, 得-4<x <-2,故B =(-4,-2), 所以A ∪B =(-4,1).(2)因为p 是q 成立的必要不充分条件,所以集合B 是集合A 的真子集. 又集合A =(-3,1),B =(-a -1,-a +1),所以⎩⎪⎨⎪⎧-a -1≥-3,-a +1<1或⎩⎪⎨⎪⎧-a -1>-3,-a +1≤1,解得0≤a ≤2,即实数a 的取值范围是0≤a ≤2.1.等价转化思想在充要条件中的应用典例 (1)已知p ,q 是两个命题,那么“p ∧q 是真命题”是“綈p 是假命题”的__________条件.(2)已知条件p :x 2+2x -3>0;条件q :x >a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是________.思想方法指导 等价转化是将一些复杂的、生疏的问题转化成简单的、熟悉的问题,在解题中经常用到.本题可将题目中条件间的关系和集合间的关系相互转化.解析 (1)因为“p ∧q 是真命题”等价于“p ,q 都为真命题”,且“綈p 是假命题”等价于“p 是真命题”,所以“p ∧q 是真命题”是“綈p 是假命题”的充分不必要条件. (2)由x 2+2x -3>0,得x <-3或x >1,由綈q 的一个充分不必要条件是綈p ,可知綈p 是綈q 的充分不必要条件,等价于q 是p 的充分不必要条件. 所以{x |x >a }{x |x <-3或x >1},所以a ≥1.答案 (1)充分不必要 (2)[1,+∞)1.下列命题中的真命题为________.(填序号) ①若1x =1y,则x =y ;②若x 2=1,则x =1;④若x <y ,则x 2<y 2. 答案 ①2.(教材改编)命题“若a >b ,则2a>2b-1”的否命题为________________. 答案 若a ≤b ,则2a≤2b-1解析 ∵“a >b ”的否定是“a ≤b ”,“2a>2b-1”的否定是“2a≤2b-1”,∴原命题的否命题是“若a ≤b ,则2a≤2b-1”.3.(2016·南京模拟)给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是________. 答案 1解析 原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y =f (x )的图象不过第四象限,则函数y =f (x )是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个. 4.(2015·重庆改编)“x >1”是“12log (x +2)<0”的____________条件.答案 充分不必要解析 由x >1⇒x +2>3⇒12log (x +2)<0,12log (x +2)<0⇒x +2>1⇒x >-1,故“x >1”是“12log (x +2)<0”的充分不必要条件.5.(2016·山东改编)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的______________条件. 答案 充分不必要解析 若直线a 和直线b 相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b 可能平行或异面或相交.6.已知集合A ={x ∈R |12<2x<8},B ={x ∈R |-1<x <m +1},若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是__________. 答案 (2,+∞)解析 A ={x ∈R |12<2x<8}={x |-1<x <3},∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2.7.设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的________条件. 答案 充要解析 由Venn 图易知充分性成立.反之,A ∩B =∅时,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.*8.(2015·湖北改编)设a 1,a 2,…,a n ∈R ,n ≥3.若p :a 1,a 2,…,a n 成等比数列;q :(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=(a 1a 2+a 2a 3+…+a n -1a n )2,则下列说法正确的是________.(填序号)①p 是q 的必要条件,但不是q 的充分条件; ②p 是q 的充分条件,但不是q 的必要条件; ③p 是q 的充分必要条件;④p 既不是q 的充分条件,也不是q 的必要条件. 答案 ②解析 若p 成立,设a 1,a 2,…,a n 的公比为q ,则(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=a 21(1+q 2+…+q2n -4)·a 22(1+q 2+…+q2n -4)=a 21a 22(1+q 2+…+q2n -4)2,(a 1a 2+a 2a 3+…+a n -1a n )2=(a 1a 2)2(1+q 2+…+q2n -4)2,故q 成立,故p 是q 的充分条件.取a 1=a 2=…=a n =0,则q成立,而p 不成立,故p 不是q 的必要条件.9.(2016·无锡模拟)设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的__________条件. 答案 充要解析 设f (x )=x |x |,则f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以f (x )是R 上的增函数,所以“a >b ”是“a |a |>b |b |”的充要条件. 10.有三个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题;②“若a >b ,则a 2>b 2”的逆否命题;③“若x ≤-3,则x 2+x -6>0”的否命题.其中真命题的序号为____________.答案 ①解析 命题①为“若x ,y 互为相反数,则x +y =0”是真命题;因为命题“若a >b ,则a 2>b 2”是假命题,故命题②是假命题;命题③为“若x >-3,则x 2+x -6≤0”,因为x 2+x -6≤0⇔-3≤x ≤2,故命题③是假命题.综上知只有命题①是真命题.11.已知f (x )是定义在R 上的偶函数,且以2为周期,则“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”)答案 充要解析 ∵x ∈[0,1]时,f (x )是增函数,又∵y =f (x )是偶函数,∴当x ∈[-1,0]时,f (x )是减函数.当x ∈[3,4]时,x -4∈[-1,0],∵T =2,∴f (x )=f (x -4).故x ∈[3,4]时,f (x )是减函数,充分性成立.反之,若x ∈[3,4]时,f (x )是减函数,此时x -4∈[-1,0],∵T =2,∴f (x )=f (x -4),则当x ∈[-1,0]时,f (x )是减函数.∵y =f (x )是偶函数,∴当x ∈[0,1]时,f (x )是增函数,必要性也成立.故“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的充要条件.12.若x <m -1或x >m +1是x 2-2x -3>0的必要不充分条件,则实数m 的取值范围是________. 答案 [0,2]解析 由已知易得{x |x 2-2x -3>0}{x |x <m -1或x >m +1},又{x |x 2-2x -3>0}={x |x <-1或x >3},∴⎩⎪⎨⎪⎧-1≤m -1,m +1<3,或⎩⎪⎨⎪⎧ -1<m -1,m +1≤3,∴0≤m ≤2. 13.若“数列a n =n 2-2λn (n ∈N *)是递增数列”为假命题,则λ的取值范围是___________.答案 [32,+∞) 解析 若数列a n =n 2-2λn (n ∈N *)是递增数列,则有a n +1-a n >0,即2n +1>2λ对任意的n ∈N *都成立,于是可得3>2λ,即λ<32. 故所求λ的取值范围是[32,+∞). *14.下列四个结论中:①“λ=0”是“λa =0”的充分不必要条件;②在△ABC 中,“AB 2+AC 2=BC 2”是“△ABC 为直角三角形”的充要条件;③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 全不为零”的充要条件;④若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为零”的充要条件.正确的是________.答案 ①④解析 由λ=0可以推出λa =0,但是由λa =0不一定推出λ=0成立,所以①正确; 由AB 2+AC 2=BC 2可以推出△ABC 是直角三角形,但是由△ABC 是直角三角形不能确定哪个角是直角,所以②不正确;由a 2+b 2≠0可以推出a ,b 不全为零,反之,由a ,b 不全为零可以推出a 2+b 2≠0,所以“a 2+b 2≠0”是“a ,b 不全为零”的充要条件,而不是“a ,b 全不为零”的充要条件,所以③不正确,④正确.15.已知数列{a n }的前n 项和为S n =p n +q (p ≠0,且p ≠1).求证:数列{a n }为等比数列的充要条件为q =-1.证明 充分性:当q =-1时,a 1=p -1;当n ≥2时,a n =S n -S n -1=pn -1(p -1), 当n =1时也成立.∴a n =p n -1(p -1),n ∈N *. 又a n +1a n =p n p -1p n -1p -1=p , ∴数列{a n }为等比数列.必要性:当n =1时,a 1=S 1=p +q ;当n ≥2时,a n =S n -S n -1=p n -1(p -1).∵p ≠0,且p ≠1,{a n }为等比数列,∴a 2a 1=a n +1a n =p . ∴p p -1p +q=p ,即p -1=p +q ,∴q =-1. 综上所述,q =-1是数列{a n }为等比数列的充要条件.。

[配套K12]2018版高考数学一轮复习 第一章 集合与常用逻辑用语 第2讲 命题及其关系、充分条件与必要条件 理

[配套K12]2018版高考数学一轮复习 第一章 集合与常用逻辑用语 第2讲 命题及其关系、充分条件与必要条件 理

第2讲 命题及其关系、充分条件与必要条件一、选择题1.若a ∈R ,则“a=1”是“|a|=1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件解析 若a =1,则有|a|=1是真命题,即a =1⇒|a|=1,由|a|=1可得a =±1,所以若|a|=1,则有a =1是假命题,即|a|=1⇒a =1不成立,所以a =1是|a|=1的充分而不必要条件.答案 A2.命题“若一个数是负数,则它的平方是正数”的逆命题是( )A .“若一个数是负数,则它的平方不是正数”B .“若一个数的平方是正数,则它是负数”C .“若一个数不是负数,则它的平方不是正数”D .“若一个数的平方不是正数,则它不是负数”解析 原命题的逆命题是:若一个数的平方是正数,则它是负数.答案 B3.已知集合A ={x ∈R|12<2x<8},B ={x ∈R|-1<x<m +1},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是( )A .m≥2B .m≤2C .m>2D .-2<m<2解析 A ={x ∈R|12<2x<8}={x|-1<x<3} ∵x ∈B 成立的一个充分不必要条件是x ∈A ∴∴m +1>3,即m>2.答案 C4.命题:“若x2<1,则-1<x<1”的逆否命题是( )A .若x2≥1,则x≥1或x≤-1B .若-1<x<1,则x2<1C .若x>1或x<-1,则x2>1D .若x≥1或x≤-1,则x2≥1解析 x2<1的否定为:x2≥1;-1<x<1的否定为x≥1或x≤-1,故原命题的逆否命题为:若x≥1或x≤-1,则x2≥1.答案 D5.命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题是( ).A .若f (x )是偶函数,则f (-x )是偶函数B .若f (x )不是奇函数,则f (-x )不是奇函数C .若f (-x )是奇函数,则f (x )是奇函数D .若f (-x )不是奇函数,则f (x )不是奇函数解析 否命题既否定题设又否定结论,故选B.答案 B6.方程ax 2+2x +1=0至少有一个负实根的充要条件是( ).A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0 解析 法一 (直接法)当a =0时,x =-12符合题意. 当a ≠0时,若方程两根一正一负(没有零根),则⎩⎪⎨⎪⎧ Δ=4-4a >0,1a <0⇔⎩⎪⎨⎪⎧ a <1,a <0⇔a <0;若方程两根均负,则⎩⎪⎨⎪⎧ Δ=4-4a ≥0,-2a<0,1a >0⇔⎩⎪⎨⎪⎧ a ≤1,a >0⇔0<a ≤1.综上所述,所求充要条件是a ≤1.法二 (排除法)当a =0时,原方程有一个负实根,可以排除A ,D ;当a =1时,原方程有两个相等的负实根,可以排除B ,所以选C.答案 C二、填空题7.已知a 与b 均为单位向量,其夹角为θ,有下列四个命题p1:|a +b|>1⇔θ∈⎣⎢⎡⎭⎪⎫0,2π3 p2:|a +b|>1⇔θ∈⎝ ⎛⎦⎥⎤2π3,π p3:|a -b|>1⇔θ∈⎣⎢⎡⎭⎪⎫0,π3 p4:|a -b|>1⇔θ∈⎝ ⎛⎦⎥⎤π3,π其中真命题的个数是____________.解析 由|a +b|>1可得a2+2a·b+b2>1,因为|a|=1,|b|=1,所以a·b>-12,故θ∈⎣⎢⎡⎭⎪⎫0,2π3.当θ∈⎣⎢⎡⎭⎪⎫0,2π3时,a·b>-12,|a +b|2=a2+2a·b+b2>1,即|a +b|>1,故p1正确.由|a -b|>1可得a2-2a·b+b2>1,因为|a|=1,|b|=1,所以a·b<12,故θ∈⎝ ⎛⎦⎥⎤π3,π,反之也成立,p4正确. 答案 28.若“x2>1”是“x<a”的必要不充分条件,则a 的最大值为________.解析 由x2>1,得x<-1或x>1,又“x2>1”是“x<a”的必要不充分条件,知由“x<a”可以推出“x2>1”,反之不成立,所以a≤-1,即a 的最大值为-1.答案 -19.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12<2x<8,x ∈R ,B ={x|-1<x<m +1,x ∈R },若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析 A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12<2x <8,x ∈R ={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B ,∴m +1>3,即m >2.答案 (2,+∞)10.“m <14”是“一元二次方程x 2+x +m =0有实数解”的________条件. 解析 x 2+x +m =0有实数解等价于Δ=1-4m ≥0,即m ≤14. 答案 充分不必要三、解答题11.写出命题“已知a ,b ∈R ,若关于x 的不等式x2+ax +b≤0有非空解集,则a2≥4b”的逆命题、否命题、逆否命题,并判断它们的真假.解 (1)逆命题:已知a ,b ∈R ,若a2≥4b,则关于x 的不等式x2+ax +b≤0有非空解集,为真命题.(2)否命题:已知a ,b ∈R ,若关于x 的不等式x2+ax +b≤0没有非空解集,则a2<4b ,为真命题.(3)逆否命题:已知a ,b ∈R ,若a2<4b ,则关于x 的不等式x2+ax +b≤0没有非空解集,为真命题.12.求方程ax2+2x +1=0的实数根中有且只有一个负实数根的充要条件.解 方程ax2+2x +1=0有且仅有一负根.当a =0时,x =-12适合条件. 当a≠0时,方程ax2+2x +1=0有实根,则Δ=4-4a≥0,∴a≤1,当a =1时,方程有一负根x =-1.当a<1时,若方程有且仅有一负根,则x1x2=1a<0, ∴a<0.综上,方程ax2+2x +1=0有且仅有一负实数根的充要条件为a≤0或a =1.13.分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.(1)若ab =0,则a =0或b =0;(2)若x2+y2=0,则x ,y 全为零.解 (1)逆命题:若a =0或b =0,则ab =0,真命题.否命题:若ab≠0,则a≠0且b≠0,真命题.逆否命题:若a≠0且b≠0,则ab≠0,真命题.(2)逆命题:若x ,y 全为零,则x2+y2=0,真命题.否命题:若x2+y2≠0,则x ,y 不全为零,真命题.逆否命题:若x ,y 不全为零,则x2+y2≠0,真命题.14.已知p :x2-8x -20≤0,q :x2-2x +1-a2≤0(a>0).若p 是q 的充分不必要条件,求实数a 的取值范围.解 p :x2-8x -20≤0⇔-2≤x≤10,q :x2-2x +1-a2≤0⇔1-a≤x≤1+a.∵p ⇒q ,q ⇒/ p ,∴{x |-2≤xx |1-a ≤x ≤1+a }. 故有⎩⎪⎨⎪⎧ 1-a ≤-2,1+a ≥10,a >0,且两个等号不同时成立,解得a ≥9.因此,所求实数a 的取值范围是[9,+∞).15.已知集合M ={x|x<-3,或x>5},P ={x|(x -a)·(x-8)≤0}.(1)求M∩P={x|5<x≤8}的充要条件;(2)求实数a 的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件.解 (1)由M∩P={x|5<x≤8},得-3≤a≤5,因此M∩P={x|5<x≤8}的充要条件是-3≤a≤5;(2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件,就是在集合{a|-3≤a≤5}中取一个值,如取a=0,此时必有M∩P={x|5<x≤8};反之,M∩P ={x|5<x≤8}未必有a=0,故a=0是M∩P={x|5<x≤8}的一个充分不必要条件.。

高考数学大一轮复习 第一章 集合与常用逻辑用语 第2讲 命题及其关系、充分条件与必要条件教师用书 理

高考数学大一轮复习 第一章 集合与常用逻辑用语 第2讲 命题及其关系、充分条件与必要条件教师用书 理

2018版高考数学大一轮复习第一章集合与常用逻辑用语第2讲命题及其关系、充分条件与必要条件教师用书理新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学大一轮复习第一章集合与常用逻辑用语第2讲命题及其关系、充分条件与必要条件教师用书理新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学大一轮复习第一章集合与常用逻辑用语第2讲命题及其关系、充分条件与必要条件教师用书理新人教版的全部内容。

第一章集合与常用逻辑用语第2讲命题及其关系、充分条件与必要条件教师用书理新人教版(建议用时:25分钟)一、选择题1.(2015·山东卷)设m∈R, 命题“若m〉0,则方程x2+x-m=0有实根”的逆否命题是()A.若方程x2+x-m=0有实根,则m>0B。

若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0解析根据逆否命题的定义,命题“若m〉0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0".答案D2。

“x=1"是“x2-2x+1=0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析因为x2-2x+1=0有两个相等的实数根为x=1,所以“x=1"是“x2-2x+1=0"的充要条件.答案A3。

设α,β是两个不同的平面,m是直线且m⊂α,则“m∥β”是“α∥β”的( )A.充分不必要条件B。

必要不充分条件C。

充分必要条件 D.既不充分也不必要条件解析m⊂α,m∥βα∥β,但m⊂α,α∥β⇒m∥β,∴“m∥β”是“α∥β”的必要不充分条件。

2018年高考数学一轮复习第一章集合与常用逻辑用语第2讲命题及其关系充分条件与必要条件课件理

2018年高考数学一轮复习第一章集合与常用逻辑用语第2讲命题及其关系充分条件与必要条件课件理

• 4.用集合关系判断充分条件、必要条件 • 以p:x∈A,q:x∈B的形式出现.
• (1)若p是q的充分条件,则A____⊆____B. • (2)若p是q的必要条件,则B____⊆____A.
• (3)若p是q的充分不必要条件,则A___________A. • (5)若p是q的充要条件,则A________B.
分值:5分
1.判断命题的真假.
2.写出一个命题的逆命题、否命题、 逆否命题等.
3.常以函数、不等式等其他知识为载 体,考查一个命题是另一个命题的什 么条件.
4.求一个命题的充要条件、充分不必 要条件、必要不充分条件,或已知充 要条件求参数的取值范围等.
5.考题多以选择题、填空题形式出现.
栏目导 航
只需举出反例. • (3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一
性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真 假.
• 【例1】 (1)命题“若a>b,则a-1>b-1”的否命题是( C) • A.若a>b,则a-1≤b-1B.若a>b,则a-1<b-1 • C.若a≤b,则a-1≤b-1 D.若a<b,则a-1<b-1 • (2)(2017·宁夏银川模拟)命题“若x2+y2=0,x,y∈R,则x
B.若 α=π4,则 tan α≠1
C.若 tan α≠1,则 α≠π4
D.若 tan α=1,则 α=π4
解析:以否定的结论作条件、否定的条件作结论得出的命题为逆否命题,即“若
tan α≠1,则 α≠π4”,故选 C.
• 4.设集合A,B,则“A⊆B”是“A∩B=A”成 立的( C)
• A.充分不必要条件

18高考数学大一轮复习第一章集合与常用逻辑用语第二节命题及其关系、充分条件与必要条件课件文

18高考数学大一轮复习第一章集合与常用逻辑用语第二节命题及其关系、充分条件与必要条件课件文

解析:①命题“若x+y=0,则x,y互为相反数”的逆命 题为“若x,y互为相反数,则x+y=0”,显然①为真命 题;②不全等的三角形的面积也可能相等,故②为假命 题;③原命题正确,所以它的逆否命题也正确,故③为 真命题;④若ab是正整数,但a,b不一定都是正整数, 例如a=-1,b=-3,故④为假命题. 答案:①③
[由题悟法]
充要条件的3种判断方法 (1)定义法:根据p⇒q,q⇒p进行判断; (2)集合法:根据p,q成立的对象的集合之间的包含关系进 行判断; (3)等价转化法:根据一个命题与其逆否命题的等价性,把 判断的命题转化为其逆否命题进行判断.这个方法特别适合以 否定形式给出的问题,如“xy≠1”是“x≠1或y≠1”的某种条 件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.
[小题纠偏]
1.设a,b均为非零向量,则“a∥b”是“a与b的方向相 同”的________条件.
答案:必要不充分 2.“在△ABC中,若∠C=90° ,则∠A,∠B都是锐角”
的否命题为:________________.
解析:原命题的条件:在△ABC 中,∠C=90° , 结论:∠A,∠B 都是锐角.否命题是否定条件和结论.
2.(2017· 衡阳联考)设p:x2-x-20>0,q:log2(x-5)<2,则p 是q的 A.充分不必要条件 C.充要条件 B.必要不充分条件 D.既不充分也不必要条件 ( )
解析:∵x2-x-20>0,∴x>5或x<-4,∴p:x>5或x< -4.∵log2(x-5)<2,∴0<x-5<4,即5<x<9,∴q: 5<x<9,∵{x|5<x<9} {x|x>5或x<-4},∴p是q的必要不 充分条件.故选B. 答案:B

【小初高学习】2018高考数学一轮复习第1章集合与常用逻辑用语第2节命题充分条件与必要条件教师用书文

【小初高学习】2018高考数学一轮复习第1章集合与常用逻辑用语第2节命题充分条件与必要条件教师用书文

第二节命题、充分条件与必要条件[考纲传真] 1.理解命题的概念;了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的意义.1.命题的概念可以判断真假、用文字或符号表述的语句叫作命题,其中判断为真的语句叫作真命题,判断为假的语句叫作假命题.2.四种命题及其相互关系(1)四种命题之间的关系图1­2­1(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或否命题,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念pq且q1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“x2+2x-3<0”是命题.( )(2)命题“若p,则q”的否命题是“若p,则綈q”.( )(3)当q是p的必要条件时,p是q的充分条件.( )(4)“若p不成立,则q不成立”等价于“若q成立,则p成立”.( )[解析] (1)错误.该语句不能判断真假,故该说法是错误的. (2)错误.否命题既否定条件,又否定结论.(3)正确.q 是p 的必要条件说明p ⇒q ,所以p 是q 的充分条件. (4)正确.原命题与逆否命题是等价命题. [答案] (1)× (2)× (3)√ (4)√2.(教材改编)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4C [“若p ,则q ”的逆否命题是“若綈q ,则 綈p ”,显然綈q :tan α≠1,綈p :α≠π4,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.]3.已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件A [a =3时,A ={1,3},显然A ⊆B . 但A ⊆B 时,a =2或3.∴“a =3”是“A ⊆B ”的充分不必要条件.]4.命题“若a >-3,则a >-6”以及它的逆命题、否命题、逆否命题中假命题的个数为( )【导学号:66482007】A .1B .2C .3D .4B [原命题正确,从而其逆否命题也正确;其逆命题为“若a >-6,则a >-3”是假命题,从而其否命题也是假命题.因此4个命题中有2个假命题.]5.(2016·天津高考)设x >0,y ∈R ,则“x >y ”是“x >|y |”的( ) A .充要条件 B .充分而不必要条件 C .必要而不充分条件D .既不充分也不必要条件C [当x =1,y =-2时,x >y ,但x >|y |不成立; 若x >|y |,因为|y |≥y ,所以x >y . 所以x >y 是x >|y |的必要而不充分条件.]A .“若x =4,则x 2-3x -4=0”为真命题 B .“若x ≠4,则x 2-3x -4≠0”为真命题 C .“若x ≠4,则x 2-3x -4≠0”为假命题 D .“若x =4,则x 2-3x -4=0”为假命题(2)原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )【导学号:66482008】A .真,假,真B .假,假,真C .真,真,假D .假,假,假(1)C (2)B [(1)根据逆否命题的定义可以排除A ,D ,由x 2-3x -4=0,得x =4或-1,所以原命题为假命题,所以其逆否命题也是假命题.(2)由共轭复数的性质,原命题为真命题,因此其逆否命题也为真命题.当z 1=1+2i ,z 2=2+i 时,显然|z 1|=|z 2|,但z 1与z 2不共轭,所以逆命题为假命题,从而它的否命题亦为假命题.][规律方法] 1.已知原命题写出该命题的其他命题时,先要分清命题的条件与结论.特别注意的是,如果命题不是“若p ,则q ”形式的命题,需先改写为“若p ,则q ”的形式.2.给出一个命题,要判断它是真命题,需经过严格的推理证明;而要说明它是假命题,只需举一反例即可.3.由于原命题与其逆否命题的真假性相同,所以有时可以利用这种等价性间接地证明命题的真假.[变式训练1] 原命题为“若a n +a n +12<a n ,n ∈N *,则{a n }为递减数列”,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是( )A .真,真,真B .假,假,真C .真,真,假D .假,假,假A [由a n +a n +12<a n ,得a n +a n +1<2a n ,即a n +1<a n .所以当a n +a n +12<a n 时,必有a n +1<a n ,则{a n }是递减数列.反之,若{a n }是递减数列,必有a n +1<a n , 从而有a n +a n +12<a n .所以原命题及其逆命题均为真命题,从而其否命题及其逆否命题也均是真命题.](1)(2014·全国卷Ⅱ)函数f (x )在x =x 0处导数存在.若p :f ′(x 0)=0;q :x =x 0是f (x )的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件 (2)设x ∈R ,则“1<x <2”是“|x -2|<1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件(1)C (2)A [(1)当f ′(x 0)=0时,x =x 0不一定是f (x )的极值点,比如,y =x 3在x =0时,f ′(0)=0,但在x =0的左右两侧f ′(x )的符号相同,因而x =0不是y =x 3的极值点.由极值的定义知,x =x 0是f (x )的极值点必有f ′(x 0)=0. 综上知,p 是q 的必要条件,但不是充分条件. (2)|x -2|<1⇔1<x <3.由于{x |1<x <2}是{x |1<x <3}的真子集,所以“1<x <2”是“|x -2|<1”的充分不必要条件.] [规律方法] 充分条件、必要条件的三种判断方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断,适用于定义、定理判断性问题.(2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母的范围的推断问题.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题.[变式训练2] (2016·武汉模拟)设集合M ={1,2},N ={a 2},则“a =1”是“N ⊆M ”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件B [若a =1,则集合N ={1},此时满足N ⊆M .若N ⊆M ,则a 2=1或2,所以a =±1或a =± 2.故“a =1”是“N ⊆M ”的充分不必要条件.]已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x∈S 的必要条件,求m 的取值范围.[解] 由x 2-8x -20≤0得 -2≤x ≤10,∴P ={x |-2≤x ≤10}. 3分 ∵x ∈P 是x ∈S 的必要条件, 则S ⊆P , ∴⎩⎪⎨⎪⎧1-m ≥-2,1+m ≤10,1-m ≤1+m ,∴0≤m ≤3. 8分综上,可知0≤m ≤3时,x ∈P 是x ∈S 的必要条件. 12分[迁移探究1] 本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. [解] 由例题知P ={x |-2≤x ≤10}. 2分 若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,8分∴⎩⎪⎨⎪⎧m =3,m =9,这样的m 不存在. 12分[迁移探究2] 本例条件不变,若綈P 是綈S 的必要不充分条件,求实数m 的取值范围. [解] 由例题知P ={x |-2≤x ≤10}.∵綈P 是綈S 的必要不充分条件,∴P 是S 的充分不必要条件, ∴P ⇒S 且SP ,4分∴[--m,1+m ],∴⎩⎪⎨⎪⎧1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10,8分∴m ≥9,即m 的取值范围是[9,+∞). 12分[规律方法] 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解.(2)要注意区间端点值的检验.[变式训练3] (1)(2017·长沙模拟)已知命题p :a ≤x ≤a +1,命题q :x 2-4x <0,若p 是q 的充分不必要条件,则a 的取值范围是________.【导学号:66482009】(2)方程ax 2+2x +1=0(a ∈R ,a 为常数)的解集只有一个负实根的充要条件是________. (1)(0,3) (2)a ≤0或a =1 [(1)令M ={x |a ≤x ≤a +1},N ={x |x 2-4x <0}={x |0<x <4}.∵p 是q 的充分不必要条件,∴MN ,∴⎩⎪⎨⎪⎧a >0,a +1<4,解得0<a <3.(2)当a =0时,原方程为2x +1=0, ∴原方程有一个负实根x =-12.当a ≠0时,ax 2+2x +1=0只有一个负实根.∴方程有一个正根和一个负根或方程有两个相等的负根,当方程有一正一负根时,则x 1x 2<0,∴1a<0,且Δ=4-4a >0,解得a <0.当方程有两个相等的负根时,Δ=4-4a =0,a =1,此时方程的根为-1,符合题意, 综上,方程的解集只有一个负实根的充要条件是a ≤0或a =1.][思想与方法]1.写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断原命题及其逆命题、否命题以及逆否命题的真假时,要借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判定.2.充分条件、必要条件的几种判断方法(1)定义法:直接判断“若p,则q”“若q,则p”的真假.(2)等价法:利用A⇒B与綈B⇒綈A;B⇒A与綈A⇒綈B;A⇔B与綈B⇔綈A的等价关系,对于条件或结论是否定形式的命题,一般运用等价法.(3)利用集合间的包含关系判断:设A={x|p(x)},B={x|q(x)},若A⊆B,则p是q 的充分条件或q是p的必要条件;若A B,则p是q的充分不必要条件,若A=B,则p是q的充要条件.[易错与防范]1.当一个命题有大前提而要写出其他三种命题时,必须保留大前提.2.判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p,则q”的形式.3.判断条件之间的关系要注意条件之间关系的方向,正确理解“p的一个充分而不必要条件是q”等语言的含义.。

2018版高考数学(理)一轮复习文档:第一章集合与常用逻辑用语1.2含解析

2018版高考数学(理)一轮复习文档:第一章集合与常用逻辑用语1.2含解析

1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,同时q是p的必要条件;(2)如果p⇒q,但q⇏p,则p是q的充分不必要条件;(3)如果p⇒q,且q⇒p,则p是q的充要条件;(4)如果q⇒p,且p⇏q,则p是q的必要不充分条件;(5)如果p⇏q,且q⇏p,则p是q的既不充分也不必要条件.【知识拓展】从集合角度理解充分条件与必要条件若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可以叙述为(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A B,则p是q的充分不必要条件;(5)若A B,则p是q的必要不充分条件;(6)若A B且A⊉B,则p是q的既不充分也不必要条件.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)“x2+2x-3〈0”是命题.( ×)(2)命题“若p,则q”的否命题是“若p,则綈q”.(×)(3)若一个命题是真命题,则其逆否命题也是真命题.(√)(4)当q是p的必要条件时,p是q的充分条件.(√)(5)当p是q的充要条件时,也可说成q成立当且仅当p成立.(√)(6)若p是q的充分不必要条件,则綈p是綈q的必要不充分条件.(√)1.下列命题中为真命题的是()A.命题“若x>y,则x>|y|"的逆命题B.命题“若x>1,则x2>1"的否命题C.命题“若x=1,则x2+x-2=0"的否命题D.命题“若x2〉0,则x>1”的逆否命题答案A解析对于A,其逆命题是若x〉|y|,则x>y,是真命题,这是因为x>|y|≥y,必有x〉y。

2018年高考数学一轮温习第一章集合与经常使用逻辑用语课时达标2命题及其关系充分条件与必要条件理

2018年高考数学一轮温习第一章集合与经常使用逻辑用语课时达标2命题及其关系充分条件与必要条件理
6.以下四个选项中错误的选项是( B )
A.命题“假设x≠1,那么x2-3x+2≠0”的逆否命题是“假设x2-3x+2=0,那么x=1”
B.假设p∨q为真命题,那么p,q均为真命题
C.假设命题p:∀x∈R,x2+x+1≠0,那么¬p:∃x0∈R,x +x0+1=0
D.“x>2”是“x2-3x+2>0”的充分没必要要条件
9.以下四个命题中,真命题的序号是①②③④.(写出所有真命题的序号)
①若a,b,c∈R,那么“ac2>bc2”是“a>b”成立的充分没必要要条件;
②命题“∃x0∈R,x +x0+1<0”的否定是“∀x∈R,x2+x+1≥0”;
③命题“假设|x|≥2,那么x≥2或x≤-2”的否命题是“假设|x|<2,那么-2<x<2”;
4.(2017·安徽合肥八中月考)已知a,b是两个非零向量,给定命题p:|a+b|=|a|+|b|;命题q:∃t∈R,使得a=tb;那么p是q的( A )
A.充分没必要要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
解析:|a+b|=|a|+|b|⇔a与b同向,∃t∈R,使得a=tb⇔a与b同向或反向,显然p⇒q,q p,应选A.
解析:关于A,显然是正确的;关于B,依照复合命题的真值表知,有p真q假、p假q真、p真q真三种情形,应选项B是错误的;关于C,由全称命题的否定形式知选项C是正确的;关于D,x2-3x+2>0的解是x>2或x<1,应选项D是正确的.
二、填空题
7.(2017·山东邹城模拟)已知命题p:“假设a>b>0,那么 a< b+1”,命题p的原命题、逆命题、否命题、逆否命题中真命题的个数为2.
8.记不等式x2+x-6<0的解集为集合A,函数y=lg(x-a)的概念域为集合B.假设“x∈A”是“x∈B”的充分条件,那么实数a的取值范围为(-∞,-3].

高考一轮复习第1章集合与常用逻辑用语第2讲命题及其关系充分条件与必要条件

高考一轮复习第1章集合与常用逻辑用语第2讲命题及其关系充分条件与必要条件

第二讲命题及其关系、充分条件与必要条件知识梳理·双基自测知识点一命题及四种命题之间的关系1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①若两个命题互为逆否命题,则它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.知识点二充分条件与必要条件若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且qpp是q的必要不充分条件pq且q⇒pp是q的充要条件p⇔qp是q的既不充分又不必要条件pq且qp重要结论1.若A={x|p(x)},B={x|q(x)},则(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A B,则p是q的充分不必要条件;(5)若A B,则p是q的必要不充分条件;(6)若A B且AB,则p是q的既不充分也不必要条件.2.充分条件与必要条件的两个特征:(1)对称性:若p是q的充分条件,则q是p的必要条件,即“p⇒q”⇔“q⇐p”.(2)传递性:若p 是q 的充分(必要)条件,q 是r 的充分(必要)条件,则p 是r 的充分(必要)条件,即“p ⇒q 且q ⇒r ”⇒“p ⇒r ”(“p ⇐q 且q ⇐r ”⇒“p ⇐r ”).注意:不能将“若p ,则q”与“p ⇒q ”混为一谈,只有“若p ,则q”为真命题时,才有“p ⇒q ”,即“p ⇒q ”⇔“若p ,则q”为真命题.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)语句x 2-3x +2=0是命题.( × )(2)命题“三角形的内角和是180°”的否命题是“三角形的内角和不是180°”.( × ) (3)已知集合A ,B ,则A∪B=A∩B 的充要条件是A =B .( √ ) (4)“α=β”是“tan α=tan β”的充分不必要条件.( × ) (5)“若p 不成立,则q 不成立”等价于“若q 成立,则p 成立”.( √ )[解析] (4)当α=β=π2时,tan α、tan β都无意义.因此不能推出tan α=tan β,当tan α=tan β时,α=β+k π,k∈Z,不一定α=β,因此是既不充分也不必要条件.题组二 走进教材2.(选修2-1P 8T3改编)下列命题是真命题的是( A ) A .矩形的对角线相等 B .若a>b ,c>d ,则ac>bd C .若整数a 是素数,则a 是奇数 D .命题“若x 2>0,则x>1”的逆否命题3.(选修2-1P 10T4改编)x 2-3x +2≠0是x≠1的充分不必要条件. [解析] x =1是x 2-3x +2=0的充分不必要条件. 题组三 走向高考4.(2020·天津,2,5分)设a∈R,则“a>1”是“a 2>a ”的( A ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件[解析] 易知a>1⇒a 2>a ,而a 2>a ⇒a<0或a>1,所以“a>1”是“a 2>a ”的充分不必要条件. 5.(2015·山东,5分)设m∈R,命题“若m>0,则方程x 2+x -m =0有实根”的逆否命题是( D ) A .若方程x 2+x -m =0有实根,则m>0 B .若方程x 2+x -m =0有实根,则m≤0 C .若方程x 2+x -m =0没有实根,则m>0 D .若方程x 2+x -m =0没有实根,则m≤0 [解析] 由原命题和逆否命题的关系可知D 正确.6.(2018·北京,5分)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是f(x)=sin_x(答案不唯一).[解析]这是一道开放性试题,答案不唯一,只要满足f(x)>f(0)对任意的x∈(0,2]都成立,且函数f(x)在[0,2]上不是增函数即可.如f(x)=sin x,答案不唯一.考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU考点一命题及其关系——自主练透例1 (1)(2021·新高考八省联考)关于x的方程x2+ax+b=0,有下列四个命题:甲:x=1是该方程的根;乙:x=3是该方程的根;丙:该方程两根之和为2;丁:该方程两根异号.如果只有一个假命题,则该命题是( A )A.甲B.乙C.丙D.丁(2)(2021·长春模拟)已知命题α:如果x<3,那么x<5,命题β:如果x≥3,那么x≥5,则命题α是命题β的( A )A.否命题B.逆命题C.逆否命题D.否定形式(3)(多选题)下列命题为真命题的是( CD )A.“若a2<b2,则a<b”的否命题B.“全等三角形面积相等”的逆命题C.“若a>1,则ax2-2ax+a+3>0的解集为R”的逆否命题D.“若3x(x≠0)为有理数,则x为无理数”的逆否命题(4)命题“若a+b=0,则a,b中最多有一个大于零”的否定形式为若a+b=0,则a,b都大于零,否命题为若a+b≠0,则a,b都大于零.[解析](1)若乙、丙、丁正确,显然x1=-1,x2=3,两根异号,x1+x2=2,故甲错,因此选A.(2)命题α:如果x<3,那么x<5,命题β:如果x≥3,那么x≥5,则命题α是命题β的否命题.(3)对于A ,否命题为“若a 2≥b 2,则a≥b”,为假命题;对于B ,逆命题为“面积相等的三角形是全等三角形”,是假命题;对于C ,当a>1时,Δ=-12a<0,原命题正确,从而其逆否命题正确,故C 正确;对于D ,原命题正确,因此该命题的逆否命题也正确,D 正确.故选C 、D .(4)否定形式:若a +b =0,则a ,b 都大于零.否命题:若a +b ≠0,则a ,b 都大于零. 名师点拨 MING SHI DIAN BO(1)由原命题写出其他三种命题,关键要分清原命题的条件和结论,如果命题不是“若p ,则q”的形式,应先改写成“若p ,则q”的形式;如果命题有大前提,写其他三种命题时需保留大前提不变.(2)判断一个命题为真命题,要给出严格的推理证明;判断一个命题为假命题,只需举出反例. (3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.考点二 充分必要条件考向1 充分条件与必要条件的判断——师生共研 方法1:定义法判断例2 ( 2020·北京,9,4分)已知α,β∈R,则“存在k∈Z 使得α=k π+(-1)kβ”是“sinα=sin β”的( C )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解析] (1)充分性:已知存在k∈Z 使得α=k π+(-1)kβ,(ⅰ)若k 为奇数,则k =2n +1,n∈Z,此时α=(2n +1)π-β,n∈Z,sin α=sin(2n π+π-β)=sin(π-β)=sin β;(ⅱ)若k 为偶数,则k =2n ,n∈Z,此时α=2n π+β,n∈Z,sin α=sin(2n π+β)=sin β. 由(ⅰ)(ⅱ)知,充分性成立.(2)必要性:若sin α=sin β成立,则角α与β的终边重合或角α与β的终边关于y 轴对称,即α=β+2m π或α+β=2m π+π,m∈Z,即存在k∈Z 使得α=k π+(-1)kβ,必要性也成立,故选C . 方法2:集合法判断例3 (2020·天津一中高三月考)设x∈R,则“|x-1|<4”是“x -52-x >0”的( B )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解析] 解绝对值不等式可得-4<x -1<4,即-3<x<5, 将分式不等式变形可得x -5x -2<0,解得2<x<5,因为(2,5)(-3,5),所以“|x-1|<4”是“x -52-x >0”的必要而不充分条件.方法3 等价转化法判断例4 (1)给定两个条件p ,q ,若¬ p 是q 的必要不充分条件,则p 是¬q 的( A ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件(2)“已知命题p :cos α≠12,命题q :α≠π3”,则命题p 是命题q 的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] (1)因为¬ p 是q 的必要不充分条件,则q ⇒¬ p ,但¬pq ,其逆否命题为p ⇒¬q ,但¬qp ,所以p 是¬q 的充分不必要条件.(2) ¬p :cos α=12,¬q :α=π3,显然¬q ⇒¬p ,¬p ¬q ,∴¬q 是¬p 的充分不必要条件,从而p 是q 的充分不必要条件,故选A .另解:若cos α≠12,则α≠2kπ±π3(k∈Z),则α也必然不等于π3,故p ⇒q ;若α≠π3,但α=-π3时,依然有cos α=12,故q p.所以p 是q 的充分不必要条件.故选A . 名师点拨 MING SHI DIAN BO有关充要条件的判断常用的方法(1)根据定义判断:①弄清条件p 和结论q 分别是什么;②尝试p ⇒q ,q ⇒p.若p ⇒q ,则p 是q 的充分条件;若q ⇒p ,则p 是q 的必要条件;若p ⇒q ,qp ,则p 是q 的充分不必要条件;若pq ,q ⇒p ,则p 是q 的必要不充分条件;若p ⇒q ,q ⇒p ,则p 是q 的充要条件.(2)利用集合判断 记法 A ={x|p(x)},B ={x|q(x)} 关系 ABBAA =BAB 且BA结论p 是q 的充分不必要条件p 是q 的必要不充分条件p 是q 的充要条件p 是q 的既不充分也不必要条件断¬q 是¬p 的什么条件.〔变式训练1〕(1)指出下列各组中,p 是q 的什么条件(在“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”中选出一种作答).①非空集合A ,B 中,p :x∈(A∪B),q :x∈B;②已知x ,y∈R,p :(x -1)2+(y -2)2=0,q :(x -1)(y -2)=0; ③在△ABC 中,p :A =B ,q :sin A =sin B ; ④对于实数x ,y ,p :x +y≠8,q :x≠2或y≠6.(2)(2020·天津部分区期末)设x∈R,则“x 2-2x<0”是“|x-1|<2”的( A ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件[解析] (1)①显然x∈(A∪B)不一定有x∈B,但x∈B 一定有x∈(A∪B),所以p 是q 的必要不充分条件.②条件p :x =1且y =2,条件q :x =1或y =2,所以p ⇒q 但qp ,故p 是q 的充分不必要条件. ③在△ABC 中,A =B ⇒sin A =sin B ;反之,若sin A =sin B ,因为A 与B 不可能互补(三角形三个内角之和为180°),所以只有A =B ,故p 是q 的充要条件.④易知¬p :x +y =8,¬q :x =2且y =6,显然¬q ⇒¬p ,但¬p ¬q ,所以¬q 是¬p 的充分不必要条件,根据原命题和逆否命题的等价性知,p 是q 的充分不必要条件.(2)解不等式x 2-2x<0得0<x<2,解不等式|x -1|<2得-1<x<3,所以“x 2-2x<0”是“|x-1|<2”的充分不必要条件.故选A .考向2 充要条件的应用——多维探究 角度1 充要条件的探究例 5 (多选题)下列函数中,满足“x 1+x 2=0”是“f(x 1)+f(x 2)=0”的充要条件的是( BC )A .f(x)=tan xB .f(x)=3x -3-xC .f(x)=x 3D .f(x)=log 3|x|[解析] 因为f(x)=tan x 是奇函数,所以x 1+x 2=0⇒f(x 1)+f(x 2)=0,但f ⎝ ⎛⎭⎪⎫π4+f ⎝ ⎛⎭⎪⎫3π4=0时,π4+3π4≠0,不符合要求,所以A 不符合题意;因为f(x)=3x -3-x 和f(x)=x 3均为单调递增的奇函数,所以满足“x 1+x 2=0”是“f(x 1)+f(x 2)=0”的充要条件,符合题意;对于选项D ,由f(x)=log 3|x|的图象易知不符合题意,故选BC .注:满足条件的函数是奇函数且单调. 角度2 利用充要条件求参数的值或取值范围例6 已知P ={x|x 2-8x -20≤0},非空集合S ={x|1-m ≤x ≤1+m}.若x ∈P 是x∈S 的必要条件,则m 的取值范围是[0,3].[解析] 由x 2-8x -20≤0,得-2≤x≤10, 所以P ={x|-2≤x≤10},由x∈P 是x∈S 的必要条件,知S ⊆P.则⎩⎪⎨⎪⎧1-m≤1+m ,1-m≥-2,1+m≤10,所以0≤m≤3. 所以当0≤m≤3时,x∈P 是x∈S 的必要条件,即所求m 的取值范围是[0,3].[引申1]若本例将条件“若x∈P 是x∈S 的必要条件”改为“若x∈P 是x∈S 的必要不充分条件”,则m 的取值范围是[0,3].[解析] 解法一:由(1)若x∈P 是x∈S 的必要条件,则0≤m ≤3,当m =0时,S ={1},不充分;当m =3时,S ={x|-2≤x≤4}也不充分,故m 的取值范围为[0,3].解法二:若x∈P 是x∈S 的必要且充分条件,则P =S ,即⎩⎪⎨⎪⎧1-m =-2,1+m =10⇒m 无解,∴m 的取值范围是[0,3].[引申2]若本例将条件“若x∈P 是x∈S 的必要条件”变为“若非P 是非S 的必要不充分条件”,其他条件不变,则m 的取值范围是[9,+∞).[解析] 由(1)知P ={x|-2≤x≤10), ∵非P 是非S 的必要不充分条件, ∴S 是P 的必要不充分条件,∴P ⇒S 且SP. ∴[-2,10] [1-m ,1+m].∴⎩⎪⎨⎪⎧1-m≤-2,1+m>10或⎩⎪⎨⎪⎧1-m<-2,1+m≥10. ∴m ≥9,即m 的取值范围是[9,+∞). 名师点拨 MING SHI DIAN BO充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)一定要注意端点值的取舍,处理不当容易出现漏解或增解的现象.(3)注意区别以下两种不同说法:①p 是q 的充分不必要条件,是指p ⇒q 但qp ;②p 的充分不必要条件是q ,是指q ⇒p 但pq.(4)注意下列条件的等价转化:①p 是q 的什么条件等价于¬q 是¬p 的什么条件,②p 是¬q 的什么条件等价于q 是¬ p 的什么条件.〔变式训练2〕(1)(角度1)(多选题)(2020·江西赣州十四县市高三上期中改编)角A ,B 是△ABC 的两个内角.下列四个条件下,“A>B”的充要条件是( ABD )A .sin A>sinB B .cos A<cos BC .tan A>tan BD .cos 2A<cos 2B(2)(角度2)(2021·山东省实验中学高三诊断)已知p :x≥k,q :(x +1)(2-x)<0.如果p 是q 的充分不必要条件,那么实数k 的取值范围是( B )A .[2,+∞)B .(2,+∞)C .[1,+∞)D .(-∞,-1][解析] (1)当A>B 时,根据“大边对大角”可知,a>b ,由于a sin A =bsin B ,所以sin A>sin B ,则A 是“A>B”的充要条件;由于0<B<A<π,余弦函数y =cos x 在区间(0,π)内单调递减,所以cos A<cosB ,则B 是“A>B”的充要条件;当A>B 时,若A 为钝角,B 为锐角,则tan A<0<tan B ,则C 不是“A>B”的充要条件;当cos 2A<cos 2B ,即1-sin 2A<1-sin 2B ,所以sin 2A>sin 2B ,所以D 是“A>B”的充要条件;故选A 、B 、D .(2)由q :(x +1)(2-x)<0,可知q :x<-1或x>2.因为p 是q 的充分不必要条件,所以x≥k ⇒x<-1或x>2,即[k ,+∞)是(-∞,-1)∪(2,+∞)的真子集,故k>2.故选B .名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG抽象命题间充要条件的判定例7 已知p 是r 的充分不必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,现有下列命题:①r 是q 的充要条件;②p 是q 的充分不必要条件;③r 是q 的必要不充分条件;④¬p 是¬s 的必要不充分条件;⑤r 是s 的充分不必要条件,则正确命题的序号是( B )A .①④⑤B .①②④C .②③⑤D .②④⑤[分析] 本题涉及命题较多,关系复杂,因此采用“图解法”.[解析] 由题意得p,显然q ⇒r 且r ⇒s ⇒q ,即q ⇔r ,①正确;p ⇒r ⇒s ⇒q 且qp ,②正确;r⇔q ,③错误;由p ⇒s 知¬ s ⇒¬ p ,但sp ,∴¬ p ¬ s ,④正确;r ⇔s ,⑤错误.故选B .名师点拨 MING SHI DIAN BO命题较多、关系复杂时,画出各命题间关系图求解,简洁直观,一目了然. 〔变式训练3〕若p 是r 的必要不充分条件,q 是r 的充分条件,则p 是q 的必要不充分条件. [解析] 由题意可知q ⇒rp ,∴p 是q 的必要不充分条件.。

2018年高考数学总复习 第一章 集合与常用逻辑用语 1.3 命题及其关系、充要条件

2018年高考数学总复习 第一章 集合与常用逻辑用语 1.3 命题及其关系、充要条件

题(1)均D为真(2)命A 题.
解析 答案
考点1 考点2 考点3
-11-
思考由原命题写出其他三种命题应注意什么?如何判断命题的真 假?
解题心得1.写一个命题的其他三种命题时,需注意: (1)对于不是“若p,则q”形式的命题,需先改写; (2)若命题有大前提,则写其他三种命题时需保留大前提. 2.判断一个命题为真命题,要给出推理证明;判断一个命题为假命 题,只需举出反例即可. 3.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假” 这一性质,当一个命题直接判断不易进行时,可转化为判断其等价 命题的真假.
-4-
知识梳理 考点自测
3.充分条件、必要条件与充要条件的概念
p⇒q
p⇒q 且 q p p q 且 q⇒p p⇔q p q,且 q p
p是q的
充分
条件,
q是p的
必要
条件
p 是 q 的 充分不必要 条件
p 是 q 的 必要不充分 条件
p 是 q 的 充要 条件
p 是 q 的 既不充分也不必要 条件
-5-
的( )
关闭
A.充分不必要条件 B.必要不充分条件 (1)因C.为充���要���p条是件q 的D必.既要不不充充分分也条不件必,则要条q⇒件������p,但������p q,其逆否命题为
p⇒(���2���q)函,但数������qf(xp),=所l-以o2g������p2+���是���,���������������,>������q��� ≤的0,0充有分且不只必有要一条个件零. 点的充分不必要条
a>1.又因为{a|a<0}⫋{a|a≤0
或 关闭
解析 答案
考点1 考点2 考点3

高考数学第一章集合与常用逻辑用语第二节命题及其关系、充分条件与必要条件教案文

高考数学第一章集合与常用逻辑用语第二节命题及其关系、充分条件与必要条件教案文

第二节命题及其关系、充分条件与必要条件1.命题2(1)四种命题间的相互关系:(2)四种命题中真假性的等价关系:原命题等价于逆否命题,原命题的否命题等价于逆命题.在四种形式的命题中真命题的个数只能是0,2,4.3.充分条件与必要条件1.(2019·昆山中学检测)下列有关命题的说法不正确的有________个.①命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”;②“x=-1”是“x2-5x-6=0”的必要不充分条件;③命题“∃x0∈R,x20+x0+1<0”的否定是“∀x∈R,x2+x+1<0”;④命题“若x=y,则sin x=sin y”的逆否命题为真命题.答案:32.设A,B是两个集合,则“A∩B=A”是“A⊆B”的________条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).答案:充要3.(2019·南通中学检测)命题“若x2+y2≤1,则x+y<2”的否命题为________________.答案:若x 2+y 2>1,则x +y ≥24.“x ≥1”是“x +1x≥2”的________条件.解析:若x >0,则x +1x≥2x ·1x=2,当且仅当x =1时取等号,显然[1,+∞) (0,+∞),所以x ≥1是x +1x≥2的充分不必要条件.答案:充分不必要1.易混淆否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.易忽视A 是B 的充分不必要条件(A ⇒B 且B ⇒/A )与A 的充分不必要条件是B (B ⇒A 且AB )两者的不同.[小题纠偏]1.(2019·海门中学检测)已知α,β表示两个不同平面,直线m 是α内一条直线,则“α∥β”是“m ∥β”的________条件.答案:充分不必要2.“在△ABC 中,若∠C =90°,则∠A ,∠B 都是锐角”的否命题为:________________. 解析:原命题的条件:在△ABC 中,∠C =90°, 结论:∠A ,∠B 都是锐角.否命题是否定条件和结论. 即“在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角”. 答案:在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角 考点一 四种命题相互关系及真假判断基础送分型考点——自主练透[题组练透]1.(2018·启东中学期末检测)能够说明“设a ,b 是任意实数,若a 2<b 2,则a <b ”是假命题的一组整数a ,b 的值依次为________.解析:可令a =1,b =-2,满足a 2<b 2,但a >b . 答案:1,-2(答案不唯一)2.(2019·常州一中测试)命题“若α=π4,则tan α=1”的逆否命题是________________.解析:命题的条件是p :α=π4,结论是q :tan α=1.由命题的四种形式,可知命题“若p ,则q ”的逆否命题是“若非q ,则非p ”,显然非q :tan α≠1,非p :α≠π4,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.答案:若tan α≠1,则α≠π43.给出以下四个命题:①“若xy =1,则x ,y 互为倒数”的逆命题; ②(易错题)“全等三角形的面积相等”的否命题; ③“若q ≤-1,则x 2+x +q =0有实根”的逆否命题; ④若ab 是正整数,则a ,b 都是正整数. 其中真命题是________.(写出所有真命题的序号)解析:①命题“若xy =1,则x ,y 互为倒数”的逆命题为“若x ,y 互为倒数,则xy =1”,显然①为真命题;②不全等的三角形的面积也可能相等,故②为假命题;③原命题正确,所以它的逆否命题也正确,故③为真命题;④若ab 是正整数,但a ,b 不一定都是正整数,例如a =-1,b =-3,故④为假命题.答案:①③[谨记通法]1.判断命题真假的2种方法(1)直接判断:判断一个命题是真命题,需经过严格的推理证明;而要说明它是假命题,只需举一反例即可.(2)间接判断(等价转化):由于原命题与其逆否命题为等价命题,如果原命题的真假不易直接判断,那么可以利用这种等价性间接地判断命题的真假.2.谨防3类失误(1)如果原命题是“若p ,则q ”,则否命题是“若綈p ,则綈q ”,而命题的否定是“若p ,则綈q ”,即否命题是对原命题的条件和结论同时否定,命题的否定仅仅否定原命题的结论(条件不变).(2)对于不是“若p ,则q ”形式的命题,需先改写. (3)当命题有大前提时,写其他三种命题时需保留大前提. 考点二 充分、必要条件的判定重点保分型考点——师生共研[典例引领]1.(2019·泰州中学高三学情调研)“a =0”是“函数f (x )=x 3+ax 2(x ∈R)为奇函数”的________条件.解析:当a =0时,f (x )=x 3,所以函数f (x )是奇函数,当函数f (x )=x 3+ax 2(x ∈R)为奇函数时,f (-x )=-x 3+ax 2=-f (x )=-x 3-ax 2,所以2ax 2=0恒成立,所以a =0.所以“a =0”是“函数f (x )=x 3+ax 2(x ∈R)为奇函数”的充要条件.答案:充要2.已知条件p :x +y ≠-2,条件q :x ,y 不都是-1,则p 是q 的____________条件. 解析:因为p :x +y ≠-2,q :x ≠-1或y ≠-1,所以綈p :x +y =-2, 綈q :x =-1且y =-1, 因为綈q ⇒綈p 但綈p 綈綈q ,所以綈q 是綈p 的充分不必要条件,即p 是q 的充分不必要条件. 答案:充分不必要[由题悟法]充分、必要条件的3种判断方法 (1)定义法:根据p ⇒q ,q ⇒p 进行判断;(2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy ≠1”是“x ≠1或y ≠1”的某种条件,即可转化为判断“x =1且y =1”是“xy =1”的某种条件.[即时应用]1.(2018·苏州新区实验中学测试)在△ABC 中,“A ≠60°”是“cos A ≠12”的________条件.解析:当A =60°时,可以推得cos A =12;当cos A =12时,由于A ∈(0,π),也可以推得A =60°,故“A =60°”是“cos A =12”的充要条件. 即“A ≠60°”是“cos A ≠12”的充要条件.答案:充要2.设p :x 2-x -20>0,q :log 2(x -5)<2,则p 是q 的______条件.解析:因为x 2-x -20>0,所以x >5或x <-4,所以p :x >5或x <-4.因为log 2(x -5)<2,所以0<x -5<4,即5<x <9,所以q :5<x <9,因为{x |5<x <9}{x |x >5或x <-4},所以p 是q 的必要不充分条件.答案:必要不充分3.设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的________________条件.解析:因为m =λn ,所以m ·n =λn ·n =λ|n|2. 当λ<0,n ≠0时,m ·n <0.反之,由m ·n =|m||n|cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝ ⎛⎦⎥⎤π2,π, 当〈m ,n 〉∈⎝ ⎛⎭⎪⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分不必要条件. 答案:充分不必要考点三 充分、必要条件的应用重点保分型考点——师生共研 [典例引领]1.已知集合A ={x |y =lg(4-x )},集合B ={x |x <a },若“x ∈A ”是“x ∈B ”的充分不必要条件,则实数a 的取值范围是________.解析:由题意知A ={x |x <4},且A B ,所以a >4. 答案:(4,+∞)2.(2019·响水中学检测)设p :x 2-2x <0,q :(x -m )(x -m -3)≤0,若p 是q 的充分不必要条件,则实数m 的取值范围是________.解析:由x 2-2x <0,得0<x <2,即p :0<x <2, 由(x -m )(x -m -3)≤0,得m ≤x ≤m +3, 即q :m ≤x ≤m +3,若p 是q 的充分不必要条件,则⎩⎪⎨⎪⎧m ≤0,m +3≥2,即-1≤m ≤0.答案:[-1,0][由题悟法]根据充分、必要条件求参数的值或范围的关键点(1)先合理转化条件,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或取值范围.(2)求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.[即时应用]1.(2018·兴化三校联考)已知p :x ≥a ,q :x 2-2x -3≥0,若p 是q 的充分不必要条件,则实数a 的取值范围是________.解析:由x 2-2x -3≥0,得x ≤-1或x ≥3, 若p 是q 的充分不必要条件,则{x |x ≥a }⊆{x |x ≤-1或x ≥3},所以a ≥3. 答案:[3,+∞)2.已知“命题p :(x -m )2>3(x -m )”是“命题q :x 2+3x -4<0”成立的必要不充分条件,则实数m 的取值范围为________________.解析:命题p :x >m +3或x <m , 命题q :-4<x <1.因为p 是q 成立的必要不充分条件, 所以m +3≤-4或m ≥1, 故m ≤-7或m ≥1.答案:(-∞,-7]∪[1,+∞)3.(2019·高邮中学检测)若关于x 的不等式x 2-2x +3-a <0成立的一个充分条件是1<x <4,则实数a 的取值范围是________.解析:∵不等式x 2-2x +3-a <0成立的一个充分条件是1<x <4, ∴当1<x <4时,不等式x 2-2x +3-a <0成立. 设f (x )=x 2-2x +3-a ,则满足⎩⎪⎨⎪⎧f1≤0,f4≤0,即⎩⎪⎨⎪⎧1-2+3-a ≤0,16-8+3-a ≤0,解得a ≥11.答案:[11,+∞)一抓基础,多练小题做到眼疾手快1.(2019·张家港外国语学校检测)命题“若x 2-4x +3=0,则x =3”的逆否命题是________________________.答案:若x≠3,则x2-4x+3≠02.(2019·苏州实验中学检测)在△ABC中,角A,B,C的对边分别为a,b,c.命题甲:A+C=2B,且a+c=2b;命题乙:△ABC是正三角形,则命题甲是命题乙的________条件.答案:充要3.“m=3”是“两直线l1:mx+3y+2=0和l2:x+(m-2)y+m-1=0平行”的________条件.答案:充要4.(2018·南京模拟)有下列命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.解析:①原命题的否命题为“若a≤b,则a2≤b2”,假命题.②原命题的逆命题为:“若x,y互为相反数,则x+y=0”,真命题.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,真命题.答案:②③5.若x>5是x>a的充分条件,则实数a的取值范围为____________.解析:由x>5是x>a的充分条件知,{x|x>5}⊆{x|x>a},所以a≤5.答案:(-∞,5]6.(2018·苏州中学检测)已知集合A={x|x(x-3)<0},B={x||x-1|<2},则“x∈A”是“x∈B”的________条件.解析:因为集合A=(0,3),集合B=(-1,3),所以“x∈A”是“x∈B”的充分不必要条件.答案:充分不必要二保高考,全练题型做到高考达标1.命题“若一个数是负数,则它的平方是正数”的逆命题是________________.解析:依题意得,原命题的逆命题是“若一个数的平方是正数,则它是负数”.答案:“若一个数的平方是正数,则它是负数”2.(2018·南通中学高三测试)已知a,b都是实数,命题p:a+b=2;命题q:直线x +y=0与圆(x-a)2+(y-b)2=2相切,则p是q的________条件.解析:圆(x -a )2+(y -b )2=2的圆心为(a ,b ),半径r =2,直线x +y =0与圆相切,则圆心到直线的距离d =|a +b |1+1=2,解得|a +b |=2.即a +b =±2,所以p 是q 的充分不必要条件.答案:充分不必要3.(2018·南通模拟)设a ,b 都是不等于1的正数,则“3a >3b>3”是“log a 3<log b 3”的________条件.解析:因为3a >3b>3,所以a >b >1,此时log a 3<log b 3;反之,若log a 3<log b 3,则不一定得到3a >3b >3,例如当a =12,b =13时,log a 3<log b 3成立,但推不出a >b >1.故“3a>3b>3”是“log a 3<log b 3”的充分不必要条件.答案:充分不必要4.(2019·无锡一中检测)给出下列说法:①“若x +y =π2,则sin x =cos y ”的逆命题是假命题;②“在△ABC 中,sin B >sin C 是B >C 的充要条件”是真命题; ③x ≤3是|x |≤3的充分不必要条件;④命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0”. 以上说法正确的是________(填序号). 解析:对于①,“若x +y =π2,则sin x =cos y ”的逆命题是“若sin x =cos y ,则x +y =π2”,当x =0,y =3π2时,有sin x =cos y 成立,但x +y =3π2,故逆命题为假命题,①正确;对于②,在△ABC 中,由正弦定理得sin B >sin C ⇔b >c ⇔B >C ,②正确;对于③,因为|x |≤3x ≤3,所以x ≤3是|x |≤3的必要不充分条件,故③错误;对于④,根据否命题的定义知④正确.答案:①②④5.(2018·南通一中高三测试)已知命题p :a ≤x ≤a +1,命题q :x 2-4x <0,若p 是q 的充分不必要条件,则a 的取值范围是________.解析:令M ={x |a ≤x ≤a +1},N ={x |x 2-4x <0}={x |0<x <4}. 因为p 是q 的充分不必要条件,所以MN ,所以⎩⎪⎨⎪⎧a >0,a +1<4,解得0<a <3.答案:(0,3)6.设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p是q 的________条件.解析:p 表示以点(1,1)为圆心,2为半径的圆面(含边界),如图所示.q 表示的平面区域为图中阴影部分(含边界).由图可知,p 是q 的必要不充分条件. 答案:必要不充分7.在命题“若m >-n ,则m 2>n 2”的逆命题、否命题、逆否命题中,假命题的个数是________.解析:若m =2,n =3,则2>-3,但22<32,所以原命题为假命题,则逆否命题也为假命题,若m =-3,n =-2,则(-3)2>(-2)2,但-3<2,所以逆命题是假命题,则否命题也是假命题.故假命题的个数为3.答案:38.(2018·常熟中学测试)给定下列命题: ①若k >0,则方程x 2+2x -k =0有实数根; ②若x +y ≠8,则x ≠2或y ≠6;③“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件; ④“若xy =0,则x ,y 中至少有一个为零”的否命题. 其中真命题的序号是________.解析:①因为Δ=4-4(-k )=4+4k >0,所以①是真命题;②其逆否命题为真;故②是真命题;③“a =±1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件,故③是假命题;④否命题:“若xy ≠0,则x ,y 都不为零”是真命题.答案:①②④9.(2018·天一中学期末)已知p :|x -1|>2,q :x 2-2x +1-a 2≥0(a >0),若q 是p 的必要不充分条件,则实数a 的取值范围是________.解析:由|x -1|>2,得x -1>2或x -1<-2,即x >3或x <-1. 由x 2-2x +1-a 2≥0(a >0),得[x -(1-a )][x -(1+a )]≥0, 即x ≥1+a 或x ≤1-a ,a >0. 若q 是p 的必要不充分条件,则⎩⎪⎨⎪⎧a >0,1+a ≤3,1-a ≥-1,解得0<a ≤2.答案:(0,2]10.设等比数列{a n }的公比为q ,前n 项和为S n ,则“|q |=1”是“S 4=2S 2”的________条件.解析:因为等比数列{a n }的前n 项和为S n ,又S 4=2S 2, 所以a 1+a 2+a 3+a 4=2(a 1+a 2),所以a 3+a 4=a 1+a 2,所以q 2=1⇔|q |=1,所以“|q |=1”是“S 4=2S 2”的充要条件. 答案:充要11.(2019·南师大附中检测)设p :实数x 满足x 2+2ax -3a 2<0(a >0),q :实数x 满足x 2+2x -8<0,且綈p 是綈q 的必要不充分条件,求a 的取值范围.解:由x 2+2ax -3a 2<0(a >0),得-3a <x <a ,即p :-3a <x <a . 由x 2+2x -8<0,得-4<x <2,即q :-4<x <2. 因为綈p 是綈q 的必要不充分条件, 所以p 能推出q ,q 不能推出p , 所以{x |-3a <x <a }{x |-4<x <2}, 即⎩⎪⎨⎪⎧-3a ≥-4,a <2,a >0或⎩⎪⎨⎪⎧-3a >-4,a ≤2,a >0,解得0<a ≤43,故a 的取值范围是⎝ ⎛⎦⎥⎤0,43.12.已知集合A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫mx -1x <0,B ={x |x 2-3x -4≤0},C ={x |log 12x >1},命题p :实数m 为小于6的正整数,q :A 是B 成立的充分不必要条件,r :A 是C 成立的必要不充分条件.若命题p ,q ,r 都是真命题,求实数m 的值.解:因为命题p 是真命题, 所以0<m <6,m ∈N ,① 所以A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫mx -1x <0=⎩⎨⎧x ⎪⎪⎪⎭⎬⎫0<x <1m .由题意知,B ={x |x 2-3x -4≤0}={x |-1≤x ≤4},C =⎩⎨⎧⎭⎬⎫x |log 12x >1=⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫0<x <12.因为命题q ,r 都是真命题,所以A B ,C A ,所以⎩⎪⎨⎪⎧ 1m ≤4,1m >12.②由①②得m =1.三上台阶,自主选做志在冲刺名校1.设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的________条件. 解析:当等比数列{a n }的首项a 1<0,公比q >1时,如a n =-2n是递减数列,所以充分性不成立;反之,若等比数列{a n }为递增数列,则⎩⎪⎨⎪⎧ a 1<0,0<q <1或⎩⎪⎨⎪⎧ a 1>0,q >1,所以必要性不成立,即“q >1”是“{a n }为递增数列”的既不充分也不必要条件.答案:既不充分也不必要2.(2018·苏州木渎中学测试)若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围为________.解析:由题意知ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,由⎩⎪⎨⎪⎧ a <0,Δ=4a 2+12a ≤0,得-3≤a <0,综上,实数a 的取值范围为[-3,0].答案:[-3,0]3.已知集合A ={x |x 2-6x +8<0},B ={x |(x -a )(x -3a )<0}.(1)若x ∈A 是x ∈B 的充分条件,求a 的取值范围;(2)若A ∩B =∅,求a 的取值范围.解:A ={x |x 2-6x +8<0}={x |2<x <4}, B ={x |(x -a )(x -3a )<0}.(1)当a =0时,B =∅,不合题意.当a >0时,B ={x |a <x <3a },要满足题意,则⎩⎪⎨⎪⎧ a ≤2,3a ≥4,解得43≤a ≤2. 当a <0时,B ={x |3a <x <a },要满足题意, 则⎩⎨⎧ 3a ≤2,a ≥4,无解.综上,a 的取值范围为⎣⎢⎡⎦⎥⎤43,2. (2)要满足A ∩B =∅,当a >0时,B ={x |a <x <3a }则a ≥4或3a ≤2,即0<a ≤23或a ≥4. 当a <0时,B ={x |3a <x <a },则a ≤2或a ≥43,即a <0. 当a =0时,B =∅,A ∩B =∅.综上,a 的取值范围为⎝ ⎛⎦⎥⎤-∞,23∪[4,+∞).。

2018版高考数学一轮复习第一章集合与常用逻辑用语1.2命题及其关系、充分条件与必要条件课件理新人教A版

2018版高考数学一轮复习第一章集合与常用逻辑用语1.2命题及其关系、充分条件与必要条件课件理新人教A版

①綈 q 是綈 p 的充分不必要条件⇔p 是 q 的充分不必要条件; ②綈 q 是綈 p 的必要不充分条件⇔p 是 q 的必要不充分条件; ③綈 q 是綈 p 的充要条件⇔p 是 q 的充要条件.
1.[2017· 山东淄博模拟]“a = 2”是“函数 f(x) = x2- 2ax -3 在区间[2,+∞)上为增函数”的( A A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 )
由 x2-8x-20≤0 得-2≤x≤10,
∴P={x |-2≤x≤10}, 由 x∈P 是 x∈S 的必要条件,知 S⊆ P. 1-m≤1+m, 则1-m≥-2, 1+m≤10,
∴0≤m≤3.
所以当 0≤m≤3 时,x∈ P 是 x∈S 的必要条件,即所求 m 的取值范围是[0,3].
考点2
充分条件、必要条件 的判定
充要条件
答案: 充分 子集 充要
必要
充分不必要
真子集 包含
必要不充分

A =B
既不充分也不必要
1.充要条件的易混点:混淆条件的充分性和必要性.
必要不充分 条件. “x(x-1)=0”是“x=1”的_____________
解析:x(x-1)=0⇒x=0 或 x=1;反之,由 x= 1 可得 x(x -1)=0.故“x(x-1)=0”是“x=1”的必要不充分条件.
解析: 若 “(a - b)a2≥0” ,则 “a≥b” 不成立,故 “(a - b)a2≥0” 不 是 “a≥b” 的 充 分 条 件 ; 若 “a≥b” , 则 “(a - b)a2≥0”成立, 故“(a-b)a2≥0”是“a≥b”的必要条件, 故选 B.
考点3
充分条件、必要条件 的应用

2018年高考数学一轮复习 第一章 集合与常用逻辑用语 第2讲 命题及其关系、充分条件与必要条件实战

2018年高考数学一轮复习 第一章 集合与常用逻辑用语 第2讲 命题及其关系、充分条件与必要条件实战

2018年高考数学一轮复习 第一章 集合与常用逻辑用语 第2讲 命题及其关系、充分条件与必要条件实战演练 理1.(2016·北京卷)设a ,b 向量,则“|a |=|b |”是“|a +b |=|a -b |”的( D )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.(2015·安徽卷)设p :1<x <2,q :2x >1,则p 是q 成立的( A )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:q :2x >1⇔x >0,且(1,2)⊆(0,+∞),所以p 是q 的充分不必要条件,故选A .3.(2015·重庆卷)“x >1”是“log 12(x +2)<0”的( B ) A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件解析:由log 12(x +2)<0,得x +2>1,解得x >-1,所以“x >1”是“log 12(x +2)<0”的充分而不必要条件,故选B .4.(2015·陕西卷)“sin α=cos α”是“cos 2α=0”的( A )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:∵sin α=cos α⇒tan α=1⇒α=k π+π4,k ∈Z , 又cos 2α=0⇒2α=2k π+π2或2k π+3π2(k ∈Z )⇒α=k π+π4或k π+3π4(k ∈Z ),∴sin α=cos α成立能保证cos 2α=0成立,∴“sin α=cos α”是“cos 2α=0”的充分不必要条件,故选A .。

2018届高三数学一轮复习第一章集合与常用逻辑用语第二节命题及其关系充分条件与必要条件课件理

2018届高三数学一轮复习第一章集合与常用逻辑用语第二节命题及其关系充分条件与必要条件课件理
理数
课标版
第二节 命题及其关系、充分条件与必要条件
教材研读
1.命题的概念 用语言、符号或式子表达的,可以① 判断真假 的陈述句叫做命题. 其中判断为真的语句叫做② 真命题 ,判断为假的语句叫做③ 假命题 .
2.四种命题及其关系 (1)四种命题间的相互关系
(2)四种命题的真假关系 (i)两个命题互为逆否命题,它们有⑦ 相同 的真假性; (ii)两个命题互为逆命题或互为否命题,它们的真假性⑧ 没有关系 .
A.必要不充分条件
) B.充分不必要条件
C.充要条件 D.既不充分也不必要条件
(2)(2015天津,4改编)设x∈R,则“x2+x-2>0”是“|x-2|<1”的 ( )
1-2 (2017河南开封二十五中月考)下列命题中为真命题的是 ( ) A.命题“若x>1,则x2>1”的否命题 B.命题“若x>y,则x>|y|”的逆命题 C.命题“若x=1,则x2+x-2=0”的否命题
D.命题“若 1 >1,则x>1”的逆否命题
x
答案 B 对于A,命题“若x>1,则x2>1”的否命题为“若x≤1,则x2≤ 1”,易知当x=-2时,x2=4>1,故为假命题;对于B,命题“若x>y,则x>|y|”的 逆命题为“若x>|y|,则x>y”,分析可知为真命题;对于C,命题“若x=1,则x 2+x-2=0”的否命题为“若x≠1,则x2+x-2≠0”,易知当x=-2时,x2+x-2=0,
1.(2015山东,5,5分)设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的 逆否命题是 ( ) A.若方程x2+x-m=0有实根,则m>0 B.若方程x2+x-m=0有实根,则m≤0 C.若方程x2+x-m=0没有实根,则m>0 D.若方程x2+x-m=0没有实根,则m≤0 答案 D 命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若 方程x2+x-m=0没有实根,则m≤0”,故选D.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时分层训练(二) 命题、充分条件与必要条件
A组基础达标
(建议用时:30分钟)
一、选择题
1.(2015·山东高考)设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是( )
A.若方程x2+x-m=0有实根,则m>0
B.若方程x2+x-m=0有实根,则m≤0
C.若方程x2+x-m=0没有实根,则m>0
D.若方程x2+x-m=0没有实根,则m≤0
D[根据逆否命题的定义,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.]
2.(2017·杭州调研)设α,β是两个不同的平面,m是直线且m α.则“m∥β”是“α∥β”的( )
【导学号:66482010】A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
B[m α,m∥βα∥β,但m α,α∥β⇒m∥β,∴“m∥β”是“α∥β”的
必要不充分条件.]
3.“x=1”是“x2-2x+1=0”的( )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件
A[因为x2-2x+1=0有两个相等的实数根,为x=1,所以“x=1”是“x2-2x+1=0”的充要条件.]
4.给出下列命题:
①“若a2<b2,则a<b”的否命题;
②“全等三角形面积相等”的逆命题;
③“若a>1,则ax2-2ax+a+3>0的解集为R”的逆否命题;
④“若3x(x≠0)为有理数,则x为无理数”的逆否命题.
其中正确的命题是( )
【导学号:66482011】
A .③④
B .①③
C .①②
D .②④
A [对于①,否命题为“若a 2
≥b 2
,则a ≥b ”,为假命题;对于②,逆命题为“面积相等的三角形是全等三角形”,是假命题;对于③,当a >1时,Δ=-12a <0,原命题正确,从而其逆否命题正确,故③正确;对于④,原命题正确,从而其逆否命题正确,故④正确,故命题③④为真命题.]
5.(2017·南昌调研)m =-1是直线mx +(2m -1)y +1=0和直线3x +my +9=0垂直的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
A [由直线mx +(2m -1)y +1=0与3x +my +9=0垂直可知3m +m (2m -1)=0,∴m =0或m =-1,∴m =-1是两直线垂直的充分不必要条件.]
6.设p :1<x <2,q :2x
>1,则p 是q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件
D .既不充分也不必要条件
A [由2x
>1,得x >0,所以p ⇒q ,但q ⇒/ p ,所以p 是q 的充分不必要条件.] 7.已知条件p :x 2
-2ax +a 2
-1>0,条件q :x >2,且q 是p 的充分不必要条件,则a 的取值范围是( )
A .a ≥1
B .a ≤1
C .a ≥-3
D .a ≤-3
B [条件p :x >a +1或x <a -1,条件q :x >2, 又q 是p 的充分不必要条件,
故q ⇒p ,pD ⇒/q ,所以a +1≤2,即a ≤1.] 二、填空题
8.已知a ,b ,c 都是实数,则在命题“若a >b ,则ac 2
>bc 2
”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是________.
【导学号:66482012】
2 [由a >b ac 2
>bc 2
,但ac 2
>bc 2
⇒a >b .
所以原命题是假命题,它的逆命题是真命题. 从而否命题是真命题,逆否命题是假命题.]
9.“m <14
”是“一元二次方程x 2
+x +m =0有实数解”的________条件.
【导学号:66482013】
充分不必要 [x 2
+x +m =0有实数解等价于Δ=1-4m ≥0, 即m ≤14,因为m <14⇒m ≤1
4
,反之不成立.
故“m <14”是“一元二次方程x 2
+x +m =0有实数解”的充分不必要条件.]
10.已知集合A ={x |y =lg(4-x )},集合B ={x |x <a },若“x ∈A ”是“x ∈B ”的充分不必要条件,则实数a 的取值范围是________.
(4,+∞) [A ={x |x <4},由题意知A B ,所以a >4.]
B 组 能力提升 (建议用时:15分钟)
1.(2017·西安调研)“sin α=cos α”是“cos 2α=0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件
D .既不充分也不必要条件
A [cos 2α=0等价于cos 2
α-sin 2
α=0,即cos α=±sin α.由cos α=sin α可得到cos 2α=0,反之不成立.]
2.(2016·四川高考)设p :实数x ,y 满足x >1,且y >1,q :实数x ,y 满足x +y >2,则p 是q 的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件 A [∵⎩⎪⎨


x >1,y >1,
∴x +y >2,即p ⇒q .
而当x =0,y =3时,有x +y =3>2,但不满足x >1且y >1,即qD ⇒/p .故p 是q 的充分不必要条件.]
3.有下列几个命题:
①“若a >b ,则a 2
>b 2
”的否命题;
②“若x +y =0,则x ,y 互为相反数”的逆命题; ③“若x 2
<4,则-2<x <2”的逆否命题. 其中真命题的序号是________.
【导学号:66482014】
②③ [①原命题的否命题为“若a ≤b ,则a 2
≤b 2
”错误. ②原命题的逆命题为:“若x ,y 互为相反数,则x +y =0”正确. ③原命题的逆否命题为“若x ≥2或x ≤-2,则x 2
≥4”正确.]
4.已知不等式|x -m |<1成立的充分不必要条件是13<x <1
2,则实数m 的取值范围是
________.
⎣⎢⎡⎦
⎥⎤-12,43 [由|x -m |<1得-1+m <x <1+m ,
由题意知⎩⎪⎨⎪⎧⎭
⎪⎬⎪
⎫x ⎪⎪⎪
13
<x <
12 {x |-1+m <x <1+m }, 所以⎩⎪⎨⎪⎧
-1+m ≤1
3,1+m ≥1
2
,解得-12≤m ≤4
3

所以实数m 的取值范围是⎣⎢⎡⎦
⎥⎤-12,43.]。

相关文档
最新文档