2010年高考数学(理)试题及答案(安徽卷)

合集下载

2010年高考新课标全国卷理科数学试题(附答案)

2010年高考新课标全国卷理科数学试题(附答案)

2010年普通高等学校招生全国统一考试(新课标全国卷)理科数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{||2}A x R x =∈≤},{|4}B x Z x =∈≤,则A B ⋂=(A)(0,2) (B)[0,2] (C){0,2] (D){0,1,2} (2)已知复数23(13)iz i +=-,z 是z 的共轭复数,则z z ⋅= (A)14 (B)12(C) 1 (D)2 (3)曲线2xy x =+在点(1,1)--处的切线方程为(A)21y x =+ (B)21y x =- (C) 23y x =-- (D)22y x =-- (4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0(2,2)P -,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为tdπ42OA B C D(5)已知命题1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是(A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 (A)100 (B )200 (C)300 (D )400(7)如果执行右面的框图,输入5N =,则输出的数等于(A)54 (B )45(C)65 (D )56(8)设偶函数()f x 满足3()8(0)f x x x =-≥, 则{|(2)0}x f x ->=(A) {|24}x x x <->或 (B) {|04}x x x <>或 (C) {|06}x x x <>或 (D) {|22}x x x <->或(9)若4cos 5α=-,α是第三象限的角,则1tan21tan 2αα+=- (A) 12- (B) 12(C) 2 (D) 2-(10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为 (A) 2a π(B)273a π (C)2113a π (D) 25a π (11)已知函数|lg |,010,()16,10.2x x f x x x <≤⎧⎪=⎨-+>⎪⎩若,,a b c 互不相等,且()()(),f a f b f c ==则abc的取值范围是(A) (1,10) (B) (5,6)(C) (10,12)(D) (20,24)(12)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为(A)22136x y -= (B) 22145x y -= (C) 22163x y -= (D) 22154x y -=第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须做答,第(22)题~第(24)题为选考题,考试根据要求做答。

2010年安徽省高考数学试卷(理科)及解析

2010年安徽省高考数学试卷(理科)及解析

2010年安徽省高考数学试卷(理科)及解析第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)是虚数单位,i =+ii 33(A )(B )(C )(D )12341-i 12341-i 6321+i 6321-(2)若集合,则}21log |{21≥=x x A =A C R (A )(B )⎪⎪⎭⎫⎝⎛+∞⋃-∞,22]0,(⎪⎪⎭⎫⎝⎛+∞,22(C )(D )⎪⎪⎭⎫⎢⎣⎡+∞⋃-∞,22]0,(⎪⎪⎭⎫⎢⎣⎡+∞,22(3)设向量,则下列结论中正确的是)21,21(),0,1(==b a (A )(B )(C )垂直(D )||||b a =22=⋅b a b b a 与-ba //(4)若是R 上周期为5的奇函数,且满足则=)(x f ,2)2(,1)1(==f f )4()3(f f -(A )-1(B )1(C )-2(D )2(5)双曲线方程为,则它的右焦点坐标为1222=-y x (A )(B )(C )(D ))0,22()0,25()0,26()0,3((6)设,二次函数的图象可能是0>abc c bx ax x f ++=2)((7)设曲线C 的参数方程为(为参数),直线的方程为⎩⎨+-=θsin 31y θl ,则曲线C 到直线的距离为的点的个数为023=+-y x l 10107(A )1(B )2(C )3(D )4(8)一个几何全体的三视图如图,该几何体的表面积为(A )280(B )292(C )360(D )372(9)动点在圆上绕坐标原点沿逆时针方向匀速旋转,),(y x A 122=+y x 12秒旋转一周.已知定时t=0时,点A 的坐标是,则当)23,21(时,动点A 的纵坐标y 关于t (单位:秒)的函数的单调递120≤≤t 增区间是(A )[0,1](B )[1,7](C )[7,12](D )[0,1]和[7,12]、(10)设是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,}{n a 则下列等式中恒成立的是(A )(B )Y Z X 2=+)()(X Z Z X Y Y -=-(C )(D )XZY=2)()(X Z X X Y Y -=-第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.(11)命题“对任何”的否定是.3|4||2|,>-+-∈x x R x (12)的展开式中,的系数等于 .6⎪⎪⎭⎫ ⎝⎛-x y y x 3x(13)设满足约束条件若目标函数的最大y x ,⎪⎩⎪⎨≥≥≤--,0,0,048y x y x )0,0(>>+=b a y abx z 值为8,则的最小值为 .b a +(14)如图所示,程序框图(算法流程图)的输出值.=x (15)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是 (写出所有正确结论的编号).①;52)(1=B P ②;115)|(1=A B P ③事件B 与事件A 1相互独立;④A 1,A 2,A 3是两两互斥的事件;⑤的值不能确定,因为它与A 1,A 2,A 3中究竟哪一个发生有关.)(B P 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤,解答写在答题卡上的指定区域内.(16)(本小题满分12分)设是锐角三角形,分别是内角A ,B ,C 所对边长,并且ABC ∆c b a ,,.sin )3sin()3sin(sin 22B B B A +-+=ππ(Ⅰ)求角A 的值;(Ⅱ)若(其中).12,AB AC a ⋅==c b ,c b <(17)(本小题满分12分)设a 为实数,函数.,22)(R x a x e x f x∈+-= (I )求的单调区间与极值;)(x f (II )求证:当时,012ln >->x a 且.122+->ax x e x(18)(本小题满分13分)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF//AB ,EF ⊥FB ,AB=2EF ,BF=FC ,H 为BC 的中点.,90︒=∠BFC (I )求证:FH//平面EDB ; (II )求证:AC ⊥平面EDB ;(III )求二面角B —DE —C 的大小.(19)(本小题满分13分)已知椭圆E 经过点A (2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率.21=e (I )求椭圆E 的方程;(II )求的角平分线所在直线的方程;21AF F ∠l (III )在椭圆E 上是否存在关于直线对称的相异两点?若存在,l 请找出;若不存在,说明理由.(20)(本小题满分12分)设数列中的每一项都不为0.,,,21 a a ,n a 证明,为等差数列的充分必要条件是:}{n a 对任何,都有N n ∈.1111113221++=+++n n n a a na aa a a a ABCDEFH(21)(本小题满分13分)品酒师需要定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出n 瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序,经过一段时间,等其记忆淡忘之后,再让其品尝这n 瓶酒,并重新按品质优劣为它们排序,这称为一轮测试.根据一轮测试中的两次排序的偏离程度的高低为其评分.现设n=4,分别以表示第一次排序时被排为1,2,3,4的四种酒在4321,,,a a a a 第二次排序时的序号,并令则X 是对两.|4||3||2||1|4321a a a a X -+-+-+-=次排序的偏离程度的一种描述. (I )写出X 的可能值集合;(II )假设等可能地为1,2,3,4的各种排列,求X 的分布列;4321,,,a a a a (III )某品酒师在相继进行的三轮测试中,都有,2≤X (i )试按(II )中的结果,计算出现这种现象的概率(假定各轮测试相互独立); (ii )你认为该品酒师的酒味鉴别功能如何?说明理由.2010年高考安徽卷理科数学参考答案一、选择题:本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

2010年全国统一高考数学试卷(理科)(新课标)及解析

2010年全国统一高考数学试卷(理科)(新课标)及解析

2010年全国统一高考数学试卷(理科)(新课标)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}2.(5分)已知复数,是z的共轭复数,则=()A.B.C.1 D.23.(5分)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣24.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P 0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.5.(5分)已知命题p1:函数y=2x﹣2﹣x在R为增函数,p2:函数y=2x+2﹣x在R为减函数,则在命题q:p1∨p2,q2:p1∧p2,q3:(¬p1)∨1p2和q4:p1∧(¬p2)中,真命题是()A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q46.(5分)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X 的数学期望为()A.100 B.200 C.300 D.4007.(5分)如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.8.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4} C.{x|x<0或x>6} D.{x|x<﹣2或x>2}9.(5分)若,α是第三象限的角,则=()A.B.C.2 D.﹣210.(5分)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B. C.D.5πa211.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)12.(5分)已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A. B. C. D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…x N和y1,y2,…y N,由此得到N个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N 1,那么由随机模拟方案可得积分的近似值为.14.(5分)正视图为一个三角形的几何体可以是(写出三种)15.(5分)过点A(4,1)的圆C与直线x﹣y=1相切于点B(2,1),则圆C的方程为.16.(5分)在△ABC中,D为边BC上一点,BD=DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=.三、解答题(共8小题,满分90分)17.(12分)设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.18.(12分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点(1)证明:PE⊥BC(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.19.(12分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:20.(12分)设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程.21.(12分)设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.2010年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•宁夏)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【分析】先化简集合A和B,注意集合B中的元素是整数,再根据两个集合的交集的意义求解.【解答】解:A={x∈R||x|≤2,}={x∈R|﹣2≤x≤2},故A∩B={0,1,2}.应选D.2.(5分)(2010•宁夏)已知复数,是z的共轭复数,则=()A.B.C.1 D.2【分析】因为,所以先求|z|再求的值.【解答】解:由可得.另解:故选A.3.(5分)(2010•宁夏)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣2【分析】欲求在点(﹣1,﹣1)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=﹣1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=,∴y′=,所以k=y′|x=﹣1=2,得切线的斜率为2,所以k=2;所以曲线y=f(x)在点(﹣1,﹣1)处的切线方程为:y+1=2×(x+1),即y=2x+1.故选A.4.(5分)(2010•新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P 0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故应选C.5.(5分)(2010•宁夏)已知命题p1:函数y=2x﹣2﹣x在R为增函数,p2:函数y=2x+2﹣x在R为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命题是()A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q4【分析】先判断命题p1是真命题,P2是假命题,故p1∨p2为真命题,(﹣p2)为真命题,p1∧(﹣p2)为真命题.【解答】解:易知p1是真命题,而对p2:y′=2x ln2﹣ln2=ln2(),当x∈[0,+∞)时,,又ln2>0,所以y′≥0,函数单调递增;同理得当x∈(﹣∞,0)时,函数单调递减,故p2是假命题.由此可知,q1真,q2假,q3假,q4真.故选C.6.(5分)(2010•宁夏)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100 B.200 C.300 D.400【分析】首先分析题目已知某种种子每粒发芽的概率都为0.9,现播种了1000粒,即不发芽率为0.1,故没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).又没发芽的补种2个,故补种的种子数记为X=2ξ,根据二项分布的期望公式即可求出结果.【解答】解:由题意可知播种了1000粒,没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).而每粒需再补种2粒,补种的种子数记为X故X=2ξ,则EX=2Eξ=2×1000×0.1=200.故选B.7.(5分)(2010•新课标)如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选D.8.(5分)(2010•新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4} C.{x|x<0或x>6}D.{x|x<﹣2或x>2}【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f (|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x ﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.9.(5分)(2010•宁夏)若,α是第三象限的角,则=()A.B.C.2 D.﹣2【分析】将欲求式中的正切化成正余弦,还要注意条件中的角α与待求式中角的差别,注意消除它们之间的不同.【解答】解:由,α是第三象限的角,∴可得,则,应选A.10.(5分)(2010•宁夏)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B. C.D.5πa2【分析】由题意可知上下底面中心连线的中点就是球心,求出球的半径,即可求出球的表面积.【解答】解:根据题意条件可知三棱柱是棱长都为a的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为,球的表面积为,故选B.11.(5分)(2010•新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选C.12.(5分)(2010•宁夏)已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A. B. C. D.【分析】已知条件易得直线l的斜率为1,设双曲线方程,及A,B 点坐标代入方程联立相减得x1+x2=﹣24,根据=,可求得a 和b的关系,再根据c=3,求得a和b,进而可得答案.【解答】解:由已知条件易得直线l的斜率为k=k PN=1,设双曲线方程为,A(x1,y1),B(x2,y2),则有,两式相减并结合x1+x2=﹣24,y1+y2=﹣30得=,从而==1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选B.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•宁夏)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…x N和y1,y2,…y N,由此得到N个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N1,那么由随机模拟方案可得积分的近似值为.【分析】要求∫f(x)dx的近似值,利用几何概型求概率,结合点数比即可得.【解答】解:由题意可知得,故积分的近似值为.故答案为:.14.(5分)(2010•宁夏)正视图为一个三角形的几何体可以是三棱锥、三棱柱、圆锥(其他正确答案同样给分)(写出三种)【分析】三棱锥一个侧面的在正视图为一条线段的情形;圆锥;四棱锥有两个侧面在正视图为线段的情形,即可回答本题.【解答】解:正视图为一个三角形的几何体可以是三棱锥、三棱柱(放倒的情形)、圆锥、四棱锥等等.故答案为:三棱锥、圆锥、三棱柱.15.(5分)(2010•宁夏)过点A(4,1)的圆C与直线x﹣y=1相切于点B(2,1),则圆C的方程为(x﹣3)2+y2=2.【分析】设圆的标准方程,再用过点A(4,1),过B,两点坐标适合方程,圆和直线相切,圆心到直线的距离等于半径,求得圆的方程.【解答】解:设圆的方程为(x﹣a)2+(y﹣b)2=r2,则,解得,故所求圆的方程为(x﹣3)2+y2=2.故答案为:(x﹣3)2+y2=2.16.(5分)(2010•宁夏)在△ABC中,D为边BC上一点,BD=DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=60°.【分析】先根据三角形的面积公式利用△ADC的面积求得DC,进而根据三角形ABC的面积求得BD和BC,进而根据余弦定理求得AB.最后在三角形ABC中利用余弦定理求得cos∠BAC,求得∠BAC的值.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°=,,则=.故∠BAC=60°.三、解答题(共8小题,满分90分)17.(12分)(2010•宁夏)设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.【分析】(Ⅰ)由题意得a n+1=[(a n+1﹣a n)+(a n﹣a n﹣1)+…+(a2﹣a1)]+a1=3(22n﹣1+22n﹣3+…+2)+2=22(n+1)﹣1.由此可知数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25++n•22n﹣1,由此入手可知答案.【解答】解:(Ⅰ)由已知,当n≥1时,a n+1=[(a n+1﹣a n)+(a n﹣a n)+…+(a2﹣a1)]+a1﹣1=3(22n﹣1+22n﹣3+…+2)+2=3×+2=22(n+1)﹣1.而a1=2,所以数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25+…+n•22n﹣1①从而22S n=1•23+2•25+…+n•22n+1②①﹣②得(1﹣22)•S n=2+23+25+…+22n﹣1﹣n•22n+1.即.18.(12分)(2010•宁夏)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点(1)证明:PE⊥BC(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.【分析】以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系.(1)表示,,计算,就证明PE⊥BC.(2)∠APB=∠ADB=60°,求出C,P的坐标,再求平面PEH的法向量,求向量,然后求与面PEH的法向量的数量积,可求直线PA与平面PEH所成角的正弦值.【解答】解:以H为原点,HA,HB,HP分别为x,y,z轴,线段HA 的长为单位长,建立空间直角坐标系如图,则A(1,0,0),B(0,1,0)(Ⅰ)设C(m,0,0),P(0,0,n)(m<0,n>0)则.可得.因为所以PE⊥BC.(Ⅱ)由已知条件可得m=,n=1,故C(﹣),设=(x,y,z)为平面PEH的法向量则即因此可以取,由,可得所以直线PA与平面PEH所成角的正弦值为.19.(12分)(2010•新课标)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:【分析】(1)由列联表可知调查的500位老年人中有40+30=70位需要志愿者提供帮助,两个数据求比值得到该地区老年人中需要帮助的老年人的比例的估算值.(2)根据列联表所给的数据,代入随机变量的观测值公式,得到观测值的结果,把观测值的结果与临界值进行比较,看出有多大把握说该地区的老年人是否需要帮助与性别有关.(3)从样本数据老年人中需要帮助的比例有明显差异,调查时,可以先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.【解答】解:(1)∵调查的500位老年人中有40+30=70位需要志愿者提供帮助,∴该地区老年人中需要帮助的老年人的比例的估算值为.(2)根据列联表所给的数据,代入随机变量的观测值公式,.∵9.967>6.635,∴有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.20.(12分)(2010•宁夏)设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程.【分析】(I)根据椭圆的定义可知|AF2|+|BF2|+|AB|=4a,进而根据|AF2|,|AB|,|BF2|成等差数表示出|AB|,进而可知直线l的方程,设A(x1,y1),B(x2,y2),代入直线和椭圆方程,联立消去y,根据韦达定理表示出x1+x2和x1x2进而根据,求得a和b的关系,进而求得a和c的关系,离心率可得.(II)设AB的中点为N(x0,y0),根据(1)则可分别表示出x0和y0,根据|PA|=|PB|,推知直线PN的斜率,根据求得c,进而求得a和b,椭圆的方程可得.【解答】解:(I)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得,l的方程为y=x+c,其中.设A(x1,y1),B(x2,y2),则A、B两点坐标满足方程组化简的(a2+b2)x2+2a2cx+a2(c2﹣b2)=0则因为直线AB斜率为1,|AB|=|x 1﹣x2|=,得,故a2=2b2所以E的离心率(II)设AB的中点为N(x0,y0),由(I)知,.由|PA|=|PB|,得k PN=﹣1,即得c=3,从而故椭圆E的方程为.21.(12分)(2010•宁夏)设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.【分析】(1)先对函数f(x)求导,导函数大于0时原函数单调递增,导函数小于0时原函数单调递减.(2)根据e x≥1+x可得不等式f′(x)≥x﹣2ax=(1﹣2a)x,从而可知当1﹣2a≥0,即时,f′(x)≥0判断出函数f(x)的单调性,得到答案.【解答】解:(1)a=0时,f(x)=e x﹣1﹣x,f′(x)=e x﹣1.当x∈(﹣∞,0)时,f'(x)<0;当x∈(0,+∞)时,f'(x)>0.故f(x)在(﹣∞,0)单调减少,在(0,+∞)单调增加(II)f′(x)=e x﹣1﹣2ax由(I)知e x≥1+x,当且仅当x=0时等号成立.故f′(x)≥x﹣2ax=(1﹣2a)x,从而当1﹣2a≥0,即时,f′(x)≥0(x≥0),而f(0)=0,于是当x≥0时,f(x)≥0.由e x>1+x(x≠0)可得e﹣x>1﹣x(x≠0).从而当时,f′(x)<e x﹣1+2a(e﹣x﹣1)=e﹣x(e x﹣1)(e x﹣2a),故当x∈(0,ln2a)时,f'(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f(x)<0.综合得a的取值范围为.22.(10分)(2010•新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC 是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)23.(10分)(2010•新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.24.(10分)(2010•新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).。

2010年高考试题及答案word版

2010年高考试题及答案word版

2010年高考试题及答案word版
2010年高考已经落下帷幕,希望大家都能考出理想的成绩,学习网XuexiFangfa高考频道将及时发布全国各地2010高考试题及答案,同时还提供了试题估分和志愿填报辅导等内容,以便广大考生更好的填报志愿。

本站提供的2010年高考试题及答案是我们和网友共同收集的结果。

如果您有我们没有收集到的内容,欢迎广大网友第一时间提供给我们,以便让大家能尽快共享到最新的试题和答案。

由于时间匆忙,所提供内容难免有疏漏,欢迎您的指正。

2010年高考试题及答案word版:(蓝色字体为已发布试题及答案) 全国卷 1语文英语数学(文)数学(理)文综理综试题及答案试题及答案试题及答案试题试题及答案试题及答案全国卷 2语文英语数学(文)数学(理)文综理综试题及答案试题及答案试题试题及答案试题及答案试题新课标全国卷语文英语数学(文)数学(理)文综理综试题试题及答案试题及答案试题及答案试题及答案试题安徽卷语文英语数学(文)数学(理)文综理综试题及答案试题及答案试题试题试题及答案试题北京卷语文英语数学(文)数学(理)文综理综试题及答案试题及答案试题及答案试题及答案试题及答案试题及答案上海卷语文英语数学(文)数学(理)化学物理试题及答案试题及答案试题及答案试题及答案试题及答案试题及答案文综政治生物历史地理试题及答案试题及答案试题试题及答案试题及答案辽宁卷语文英语数学(文)数学(理)文综理综试题及答案试题及答案试题及答案试题及答案试题及答案同陕。

2010年高考数学理科试题解析版(全国卷II)

2010年高考数学理科试题解析版(全国卷II)

2010年普通高等学校招生全国统一考试(全国卷II )(数学理)【教师简评】按照“保持整体稳定,推动改革创新,立足基础考查,突出能力立意”命题指导思想,本套试卷的总体印象是:题目以常规题为主,难度较前两年困难,得高分需要扎扎实实的数学功底.1.纵观试题,小题起步较低,难度缓缓上升,除了选择题11、12、16题有一定的难度之外,其他题目难度都比较平和.2.解答题中三角函数题较去年容易,立体几何难度和去年持平,数列题的难度较去年有所提升,由去年常见的递推数列题型转变为今年的数列求极限、数列不等式的证明,不易拿满分,概率题由去年背景是“人员调配”问题,转变为今年的与物理相关的电路问题,更体现了学科之间的联系.两道压轴题以解析几何和导数知识命制,和去年比较更有利于分步得分.3.要求考生有比较强的计算能力,例如立体几何问题,题目不难,但需要一定的计算技巧和能力.不管题目难度如何变化,“夯实双基(基础知识、基本方法)”,对大多数考生来说,是以不变应万变的硬道理.(1)复数231i i -⎛⎫= ⎪+⎝⎭(A )34i -- (B )34i -+ (C )34i - (D )34i + 【答案】A【命题意图】本试题主要考查复数的运算.【解析】231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. (2).函数1ln(1)(1)2x y x +-=>的反函数是(A ) 211(0)x y e x +=-> (B )211(0)x y e x +=+>(C )211(R )x y e x +=-∈ (D )211(R )x y ex +=+∈【答案】D【命题意图】本试题主要考察反函数的求法及指数函数与对数函数的互化。

【解析】由原函数解得,即,又;∴在反函数中,故选D.(3).若变量,x y 满足约束条件1,,325x y x x y -⎧⎪⎨⎪+⎩≥≥≤,则2z x y =+的最大值为(A )1 (B )2 (C )3 (D )4 【答案】C【命题意图】本试题主要考查简单的线性规划问题.【解析】可行域是由A (1,1),B(1,4),C(1,1)---构成的三角形,可知目标函数过C 时最大,最大值为3,故选C.(4).如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++= (A )14 (B )21 (C )28 (D )35 【答案】C【命题意图】本试题主要考查等差数列的基本公式和性质. 【解析】173454412747()312,4,7282a a a a a a a a a a a +++===∴+++===(5)不等式2601x x x --->的解集为(A ){}2,3x x x -<或> (B ){}213x x x -<,或<< (C ) {}213x x x -<<,或> (D ){}2113x x x -<<,或<<【答案】C【命题意图】本试题主要考察分式不等式与高次不等式的解法.【解析】利用数轴穿根法解得-2<x <1或x >3,故选C(6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种【答案】B【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力.【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.(7)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像(A )向左平移4π个长度单位 (B )向右平移4π个长度单位(C )向左平移2π个长度单位 (D )向右平移2π个长度单位【答案】B【命题意图】本试题主要考查三角函数图像的平移.【解析】s i n (2)6y x π=+=sin 2()12x π+,sin(2)3y x π=-=sin 2()6x π=-,所以将s i n (2)6y x π=+的图像向右平移4π个长度单位得到sin(2)3y x π=-的图像,故选B.(8)A B C V 中,点D 在A B 上,C D 平方A C B ∠.若CB a =u u r,C A b =uur ,1a =,2b =,则C D =uuu r(A )1233a b +(B )2133a b +(C )3455a b +(D )4355a b +【答案】B【命题意图】本试题主要考查向量的基本运算,考查角平分线定理. 【解析】因为C D 平分A C B ∠,由角平分线定理得A D C A 2=D BC B1=,所以D 为AB 的三等分点,且22A D A B (C B C A )33==- ,所以2121C D C A +A D C B C A a b 3333==+=+,故选B.(9)已知正四棱锥S A B C D -中,SA =,那么当该棱锥的体积最大时,它的高为(A )1 (B (C )2 (D )3【答案】C【命题意图】本试题主要考察椎体的体积,考察告辞函数的最值问题.【解析】设底面边长为a ,则高所以体积,设,则,当y 取最值时,,解得a=0或a=4时,体积最大,此时,故选C.(10)若曲线12y x -=在点12,a a -⎛⎫⎪⎝⎭处的切线与两个坐标围成的三角形的面积为18,则a = (A )64 (B )32 (C )16 (D )8 【答案】A【命题意图】本试题主要考查求导法则、导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力.. 【解析】332211',22y xk a--=-∴=-,切线方程是13221()2y aax a ---=--,令0x =,1232y a-=,令0y =,3x a =,∴三角形的面积是121331822s a a -=⋅⋅=,解得64a =.故选A.(11)与正方体1111ABC D A B C D -的三条棱A B 、1C C 、11A D 所在直线的距离相等的点 (A )有且只有1个 (B )有且只有2个 (C )有且只有3个 (D )有无数个【答案】D【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M ,N ,Q ,连PM ,PN ,PQ ,由三垂线定理可得,PN ⊥PM ⊥;PQ ⊥AB ,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ ,即P 到三条棱AB 、CC 1、A 1D 1.所在直线的距离相等所以有无穷多点满足条件,故选D.(12)已知椭圆2222:1(0)x y C a b ab+=>>的离心率为2,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =(A )1 (B (C (D )2【答案】B【命题意图】本试题主要考察椭圆的性质与第二定义.【解析】设直线l 为椭圆的有准线,e 为离心率,过A ,B 分别作AA 1,BB 1垂直于l ,A 1,B 为垂足,过B 作BE 垂直于AA 1与E ,由第二定义得,,由,得,∴即k=,故选B.第Ⅱ卷注意事项:1.用0.5毫米的黑色字迹签字笔在答题卡上作答。

2010年高考新课标全国卷理科数学试题(附答案)

2010年高考新课标全国卷理科数学试题(附答案)

2010年普通高等学校招生全国统一考试(新课标全国卷)理科数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符 合题目要求的。

(1)已知集合A{xR|x |2}},B{xZ|x4},则AB(A)(0,2)(B)[0,2](C){0,2](D){0,1,2} (2)已知复数 z3i2 (13i) ,z 是z 的共轭复数,则zz=(A)1 4(B)1 2(C)1(D)2x在点(1,1)处的切线方程为 (3)曲线yx2(A)y2x1(B)y2x1(C)y2x3(D)y2x2(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为d 2 tOπ 4ABCD(5)已知命题xxp :函数y22在R 为增函数, 1xxp :函数y22在R 为减函数, 2则在命题 q :p 1p 2,q 2:p 1p 2,q 3:p 1p 2和q 4:p 1p 2中,真命1 题是(A ) q ,1 q (B ) 3 q , 2 q (C ) 3 q , 1 q (D ) 4q , 2 q4(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再 补种2粒,补种的种子数记为X ,则X 的数学期望为 开始 (A)100(B )200 输入N (C)300(D )400k=1,S=0 (7)如果执行右面的框图,输入N5,则输出的数等于(A) 5 4 (B )4 5(C) 6 5 (D )5 61S=S+k(k+1) k<N 否 输出Sk=k+1 是(8)设偶函数f(x)满足 3 f(x)x8(x0),结束则{x|f(x 2)0}(A){x |x2或x4}(B){x |x0或x4} (C){x |x0或x6}(D){x |x2或x2}(9)若cos 45 ,是第三象限的角,则 1tan 1tan2 2(A)1 2(B)1 2(C)2(D)2(10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为(A) 2 a(B)7 3 2 a(C)11 3 2 a(D)2 5a|lgx|,0x10,(11)已知函数 f x ()12x6,x10.若a,b,c 互不相等,且f(a)f(b)f(c),则abc 的取值范围是(A)(1,10)(B)(5,6)(C)(10,12)(D)(20,24)(12)已知双曲线E 的中心为原点,P(3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (12,15),则E 的方程式为(A) 22 xy 36 1 (B) 22 xy 45 1 (C) 22 xy 63 1 (D) 22 xy 541第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都 必须做答,第(22)题~第(24)题为选考题,考试求做答。

2010年高考全国数学卷(全国Ⅱ.理)(含详解答案)

2010年高考全国数学卷(全国Ⅱ.理)(含详解答案)

2010年普通高等学校招生全国统一考试(全国卷II )数学(理科)【教师简评】按照“保持整体稳定,推动改革创新,立足基础考查,突出能力立意”命题指导思想,本套试卷的总体印象是:题目以常规题为主,难度较前两年困难,得高分需要扎扎实实的数学功底.1.纵观试题,小题起步较低,难度缓缓上升,除了选择题11、12、16题有一定的难度之外,其他题目难度都比较平和.2.解答题中三角函数题较去年容易,立体几何难度和去年持平,数列题的难度较去年有所提升,由去年常见的递推数列题型转变为今年的数列求极限、数列不等式的证明,不易拿满分,概率题由去年背景是“人员调配”问题,转变为今年的与物理相关的电路问题,更体现了学科之间的联系.两道压轴题以解析几何和导数知识命制,和去年比较更有利于分步得分.3.要求考生有比较强的计算能力,例如立体几何问题,题目不难,但需要一定的计算技巧和能力.不管题目难度如何变化,“夯实双基(基础知识、基本方法)”,对大多数考生来说,是以不变应万变的硬道理.(1)复数231i i -⎛⎫= ⎪+⎝⎭(A )34i -- (B )34i -+ (C )34i - (D )34i + 【答案】A【命题意图】本试题主要考查复数的运算.【解析】231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. (2).函数1ln(1)(1)2x y x +-=>的反函数是(A ) 211(0)x y e x +=-> (B )211(0)x y e x +=+> (C )211(R)x y e x +=-∈ (D )211(R)x y e x +=+∈【答案】D【命题意图】本试题主要考察反函数的求法及指数函数与对数函数的互化。

【解析】由原函数解得,即,又;∴在反函数中,故选D.(3).若变量,x y 满足约束条件1,,325x y x x y -⎧⎪⎨⎪+⎩≥≥≤,则2z x y =+的最大值为(A )1 (B )2 (C )3 (D )4 【答案】C【命题意图】本试题主要考查简单的线性规划问题.【解析】可行域是由A(1,1),B(1,4),C(1,1)---构成的三角形,可知目标函数过C 时最大,最大值为3,故选C.(4).如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++= (A )14 (B )21 (C )28 (D )35 【答案】C【命题意图】本试题主要考查等差数列的基本公式和性质. 【解析】173454412747()312,4,7282a a a a a a a a a a a +++===∴+++=== (5)不等式2601x x x --->的解集为 (A ){}2,3x x x -<或> (B ){}213x x x -<,或<<(C ) {}213x x x -<<,或> (D ){}2113x x x -<<,或<<【答案】C【命题意图】本试题主要考察分式不等式与高次不等式的解法.【解析】利用数轴穿根法解得-2<x <1或x >3,故选C(6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种【答案】B【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力.【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.(7)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像(A )向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位【答案】B【命题意图】本试题主要考查三角函数图像的平移.【解析】s i n (2)6y x π=+=sin 2()12x π+,sin(2)3y x π=-=sin 2()6x π=-,所以将s i n (2)6y x π=+的图像向右平移4π个长度单位得到sin(2)3y x π=-的图像,故选B.(8)ABC V 中,点D 在AB 上,CD 平方ACB ∠.若C B a =u u r ,CA b =uu r,1a =,2b =,则CD =u u u r(A )1233a b +(B )2133a b + (C )3455a b + (D )4355a b + 【答案】B【命题意图】本试题主要考查向量的基本运算,考查角平分线定理. 【解析】因为CD 平分ACB ∠,由角平分线定理得AD CA2=DBCB 1=,所以D 为AB 的三等分点,且22AD AB (CB CA)33==- ,所以2121CD CA+AD CB CA a b 3333==+=+,故选B.(9)已知正四棱锥S ABCD -中,SA =,那么当该棱锥的体积最大时,它的高为(A )1 (B (C )2 (D )3【答案】C【命题意图】本试题主要考察椎体的体积,考察告辞函数的最值问题.【解析】设底面边长为a ,则高所以体积,设,则,当y 取最值时,,解得a=0或a=4时,体积最大,此时,故选C.(10)若曲线12y x -=在点12,a a -⎛⎫ ⎪⎝⎭处的切线与两个坐标围成的三角形的面积为18,则a =(A )64 (B )32 (C )16 (D )8【答案】A【命题意图】本试题主要考查求导法则、导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力..【解析】332211',22y x k a --=-∴=-,切线方程是13221()2y a a x a ---=--,令0x =,1232y a -=,令0y =,3x a =,∴三角形的面积是121331822s a a -=⋅⋅=,解得64a =.故选A.(11)与正方体1111ABCD A BC D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点 (A )有且只有1个 (B )有且只有2个 (C )有且只有3个 (D )有无数个【答案】D【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M ,N ,Q ,连PM ,PN ,PQ ,由三垂线定理可得,PN ⊥PM ⊥;PQ ⊥AB ,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ ,即P 到三条棱AB 、CC 1、A 1D 1.所在直线的距离相等所以有无穷多点满足条件,故选D.(12)已知椭圆2222:1(0)x y C a b a b +=>>F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =(A )1 (B (C (D )2【答案】B【命题意图】本试题主要考察椭圆的性质与第二定义.【解析】设直线l 为椭圆的有准线,e 为离心率,过A ,B 分别作AA 1,BB 1垂直于l ,A 1,B 为垂足,过B 作BE 垂直于AA 1与E ,由第二定义得,,由,得,∴即k=,故选B.第Ⅱ卷注意事项:1.用0.5毫米的黑色字迹签字笔在答题卡上作答。

2010年高考安徽省数学试卷-理科(含详细答案)

2010年高考安徽省数学试卷-理科(含详细答案)

绝密★启用前启用前2010年普通高等学校招生全国统一考试(安徽卷) 数 学(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至第2页,第II 卷第3至第4页。

全卷满分150分钟,考试时间120分钟。

考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。

务必在答题卡背面规定的地方填写姓名和座位号后两位。

背面规定的地方填写姓名和座位号后两位。

2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

需改动,用橡皮擦干净后,再选涂其他答案标号。

3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡...上书写,要求字体工整、笔迹清晰。

作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。

必须在题号所指示的答题区域作答,超出答题区域书写的答案无效.............,在试题卷....、草稿纸上答题无效........。

4.考试结束,务必将试题卷和答题卡一并上交。

.考试结束,务必将试题卷和答题卡一并上交。

参考公式:如果事件A 与B 互斥,那么互斥,那么()()()P A B P A P B +=+ 如果如果A 与B 是两个任意事件,()0P A ¹,那么那么如果事件A 与B 相互独立,那么相互独立,那么 ()()()|P AB P A P B A = ()()()P AB P A P B =第Ⅰ卷(选择题,共50分)一、选择题:本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1、i 是虚数单位,33i i=+333333333i i+33i+3i -22225、双曲线方程为2221x y -=,则它的右焦点坐标为,则它的右焦点坐标为A 、2,02æöç÷ç÷èøB 、5,02æöç÷ç÷èøC 、6,02æöç÷ç÷èøD 、()3,05.C 【解析】双曲线的2211,2a b ==,232c =,62c =,所以右焦点为6,02æöç÷ç÷èø. 【误区警示】本题考查双曲线的交点,把双曲线方程先转化为标准方程,然后利用222c a b =+求出c 即可得出交点坐标.但因方程不是标准形式,很多学生会误认为21b =或22b =,从而得出错误结论. 6、设0a b c >,二次函数()2f x ax bx c =++的图象可能是的图象可能是6.D 【解析】当0a >时,b 、c 同号,(C )(D )两图中0c <,故0,02b b a<->,选项(D )符合. 【方法技巧】根据二次函数图像开口向上或向下,分0a >或0a <两种情况分类考虑另外还要注意c 值是抛物线与y 轴交点的纵坐标,还要注意对称轴的位置或定点坐标的位置等. 7、设曲线C 的参数方程为23cos 13sin x y q q=+ìí=-+î(q 为参数),直线l 的方程为320x y -+=,则曲线C 上到直线l 距离为71010的点的个数为的点的个数为A 、1 B 、2 C 、3 D 、4 7.B 【解析】化曲【解析】化曲线线C 的参数方程为普的参数方程为普通方程:通方程:22(2)(1)9x y -++=,圆心(2,1)-到直线320x y -+=的距离|23(1)2|71031010d -´-+==<,直线和圆相交,过圆心和l 平行的直线和圆的2个交点符合要求,又71071031010>-,在直线l 的另外一侧没有圆上的点符合要求,所以选B. 【方法总结】解决这类问题首先把曲线C 的参数方程为普通方程,然后利用圆心到直线的距离判断直线与圆的位置关系,这就是曲线C 上到直线l 距离为71010,然后再判断知71071031010>-,进而得出结论. 8、一个几何体的三视图如图,该几何体的表面积为、一个几何体的三视图如图,该几何体的表面积为A 、280 B 、292 C 、360 D 、372 8.C 【解析】该几何体由两个长方体组合而成,该几何体由两个长方体组合而成,其表面积等于下面长方体的全其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和。

2010年全国高考文科数学试题及答案-安徽

2010年全国高考文科数学试题及答案-安徽

2010年普通高等学校招生全国统一考试(安徽卷)数 学(文科)本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至2页,非选择题部分3至5页。

满分150分,考试时间120分钟。

参考公式:如果事件A ,B 互斥,那么 P (A +B )=P A+P B. 如果事件A ,B 相互独立,那么 P (A ·B )=P A·P B.如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k n k k n n P P C k P --=)1()(),,2,1,0(n k =台体的体积公式)(312211S S S S h V ++=,其中1S ,2S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式 Sh V =,其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式Sh V 31=,其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24R S π= 球的体积公式334R V π=,其中R 表示球的半径第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.若A={}|10x x +>,B={}|30x x -<,则A B = ( ) A.(-1,+∞) B.(-∞,3) C.(-1,3) D.(1,3)2.已知21i =-,则i(1-)= ( )A.i i C.i D.i3.设向量(1,0)a =,11(,)22b =,则下列结论中正确的是 ( )A.a b =B.2a b ⋅=B.//a b D.a b -与b 垂直4.过点(1,0)且与直线x-2y-2=0平行的直线方程是 ( ) A.x-2y-1=0 B.x-2y+1=0 B.2x+y-2=0 D.x+2y-1=05.设数列{}n a 的前n 项和2n S n =,则8a 的值为A. 15B. 16 B. 49 D.64 6.设0abc >,二次函数2()f x ax bx c =++的图像可能是A. B.C. D.7.设2535a ⎛⎫= ⎪⎝⎭,3525b ⎛⎫= ⎪⎝⎭,2525c ⎛⎫= ⎪⎝⎭,则,,a b c 的大小关系是 ( )A. a c b >>B.a b c >>C. c a b >>D. b c a >>8.设x,y 满足约束条件260,260,0,x y x y y +-≥⎧⎪+-≤⎨⎪≥⎩则目标函数z x y =+的最大值是( )A.3B. 4 (C ) 6 D.8 9.一个几何体的三视图如图,该几何体的表面积是 ( )A.372 C.292B.360 D.28010.甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( )A.318B.418C.518D.618第Ⅱ卷(非选择题 共100分)二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置· 11.命题“存在x ∈R ,使得x 2+2x+5=0”的否定是 12.抛物线y 2=8x 的焦点坐标是13.如图所示,程序框图(算法流程图)的输出值x= .14.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 .15.若0,0,2a b a b >>+=,则下列不等式对一切满足条件的,a b 恒成立的是 . (写出所有正确命题的编号).①1ab ≤; ≤ ③ 222a b +≥;④333a b +≥; ⑤112ab+≥三、解答题:本大题共6小题.共75分.解答应写出文字说明、证明过程或演算步骤. 16. (本小题满分12分)A B C ∆的面积是30,内角,,A B C 所对边长分别为,,a b c ,12cos 13A =.(Ⅰ)求AB AC ⋅ ;(Ⅱ)若1c b -=,求a 的值.17. (本小题满分12分)椭圆E 经过点()2,3A ,对称轴为坐标轴,焦点12,F F 在x 轴上,离心率12e =.(Ⅰ)求椭圆E 的方程;(Ⅱ)求12F AF ∠的角平分线所在直线的方程。

2010年安徽省高考数学试卷(理科)答案与解析

2010年安徽省高考数学试卷(理科)答案与解析

2010年安徽省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2010•安徽)i是虚数单位,=()A.﹣i B.i C.D.【考点】复数代数形式的乘除运算.【分析】通常分子与分母同时乘以分母的共轭复数,然后利用复数的代数运算,结合i2=﹣1得结论.【解答】解:===+,故选B.【点评】本题考查复数的分式形式的化简问题,主要是乘除运算,是基础题.2.(5分)(2010•安徽)若集合A={x|x≥},则∁R A=()A.(﹣∞,0]∪(,+∞)B.(,+∞)C.(﹣∞,0]∪[,+∞)D.[,+∞)【考点】补集及其运算;对数函数的单调性与特殊点.【专题】计算题.【分析】欲求A的补集,必须先求集合A,利用对数的单调性求集合A,然后得结论,【解答】解:∵x≥,∴x≥,∴0<x,∴∁R A=(﹣∞,0]∪(,+∞).故选A.【点评】本题主要考查补集及其运算,这里要注意对数中真数的范围,否则容易出错.3.(5分)(2010•安徽)设向量,则下列结论中正确的是()A.B.C.与垂直D.【考点】向量的模;数量积判断两个平面向量的垂直关系.【专题】计算题.【分析】本题考查的知识点是向量的模,及用数量积判断两个平面向量的垂直关系,由,我们易求出向量的模,结合平面向量的数量坐标运算,对四个答案逐一进行判断,即可得到答案.【解答】解:∵,∴=1,=,故不正确,即A错误∵•=≠,故B错误;∵﹣=(,﹣),∴(﹣)•=0,∴与垂直,故C正确;∵,易得不成立,故D错误.故选C【点评】判断两个向量的关系(平行或垂直)或是已知两个向量的关系求未知参数的值,要熟练掌握向量平行(共线)及垂直的坐标运算法则,即“两个向量若平行,交叉相乘差为0,两个向量若垂直,对应相乘和为0”.4.(5分)(2010•安徽)若f(x)是R上周期为5的奇函数,且满足f(1)=1,f(2)=2,则f(3)﹣f(4)=()A.1 B.2 C.﹣2 D.﹣1【考点】函数奇偶性的性质;函数的周期性.【专题】计算题.【分析】利用函数奇偶性以及周期性,将3或4的函数值问题转化为1或2的函数值问题求解即可.【解答】解:∵若f(x)是R上周期为5的奇函数∴f(﹣x)=﹣f(x),f(x+5)=f(x),∴f(3)=f(﹣2)=﹣f(2)=﹣2,f(4)=f(﹣1)=﹣f(1)=﹣1,∴f(3)﹣f(4)=﹣2﹣(﹣1)=﹣1.故选D.【点评】本题考查函数奇偶性的应用,奇(偶)函数的定义:一般地,如果对于函数f (x)的定义域内任意一个x,都有f(﹣x)=﹣f(x))(或f(﹣x)=f(x)),那么函数f(x)是奇(偶)函数.5.(5分)(2010•安徽)双曲线方程为x2﹣2y2=1,则它的右焦点坐标为()A.B.C.D.【考点】双曲线的简单性质.【专题】计算题.【分析】把双曲线方程化为标准方程可分别求得a和b,进而根据c=求得c,焦点坐标可得.【解答】解:双曲线的,,,∴右焦点为.故选C【点评】本题考查双曲线的焦点,把双曲线方程先转化为标准方程,然后利用c2=a2+b2求出c即可得出交点坐标.但因方程不是标准形式,很多学生会误认为b2=1或b2=2,从而得出错误结论.6.(5分)(2010•安徽)设abc>0,二次函数f(x)=ax2+bx+c的图象可能是()A.B.C.D.【考点】函数的图象.【专题】综合题;分类讨论.【分析】当a>0时,二次函数开口向上,判断C、D中c的符号,再确定b的符号,判断C、D的正误,当a<0时,同样的方法判断A、B的正误.【解答】解:当a>0时,因为abc>0,所以b、c同号,由(C)(D)两图中可知c<0,故b<0,∴,即函数对称轴在y轴右侧,C不正确,选项(D)符合题意.显然a<0时,开口向下,因为abc>0,所以b、c异号,对于A、由图象可知c<0,则b>0,对称轴,A不正确;对于 B,c>0,对称轴,B选项不正确.故选D.【点评】根据二次函数图象开口向上或向下,分a>0或a<0两种情况分类考虑.另外还要注意c值是抛物线与y轴交点的纵坐标,还要注意对称轴的位置或定点坐标的位置等.是常考题.7.(5分)(2010•安徽)设曲线C的参数方程为(θ为参数),直线l的方程为x﹣3y+2=0,则曲线C上到直线l距离为的点的个数为()A.1 B.2 C.3 D.4【考点】圆的参数方程.【专题】计算题;压轴题.【分析】由题意将圆C和直线l先化为一般方程坐标,然后再计算曲线C上到直线l距离为的点的个数.【解答】解:化曲线C的参数方程为普通方程:(x﹣2)2+(y+1)2=9,圆心(2,﹣1)到直线x﹣3y+2=0的距离,直线和圆相交,过圆心和l平行的直线和圆的2个交点符合要求,又,在直线l的另外一侧没有圆上的点符合要求,故选B.【点评】解决这类问题首先把曲线C的参数方程为普通方程,然后利用圆心到直线的距离判断直线与圆的位置关系,这就是曲线C上到直线l距离为,然后再判断知,进而得出结论.8.(5分)(2010•安徽)一个几何体的三视图如图,该几何体的表面积是()A.372 B.360 C.292 D.280【考点】由三视图求面积、体积.【专题】计算题;压轴题.【分析】三视图很容易知道是两个长方体的组合体,得出各个棱的长度.即可求出组合体的表面积.【解答】解:该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和.S=2(10×8+10×2+8×2)+2(6×8+8×2)=360.故选B.【点评】把三视图转化为直观图是解决问题的关键.又三视图很容易知道是两个长方体的组合体,得出各个棱的长度.把几何体的表面积转化为下面长方体的全面积加上面长方体的4个侧面积之和.9.(5分)(2010•安徽)动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是()A.[0,1]B.[1,7]C.[7,12]D.[0,1]和[7,12]【考点】函数单调性的判断与证明.【专题】压轴题.【分析】由动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,可知与三角函数的定义类似,由12秒旋转一周能求每秒钟所转的弧度,画出单位圆,很容易看出,当t在[0,12]变化时,点A的纵坐标y关于t(单位:秒)的函数的单调性的变化,从而得单调递增区间.【解答】解:设动点A与x轴正方向夹角为α,则t=0时,每秒钟旋转,在t∈[0,1]上,在[7,12]上,动点A的纵坐标y关于t都是单调递增的.故选D.【点评】本题主要考查通过观察函数的图象确定函数单调性的问题.10.(5分)(2010•安徽)设{a n}是任意等比数列,它的前n项和,前2n项和与前3n项和分别为X,Y,Z,则下列等式中恒成立的是()A.X+Z=2Y B.Y(Y﹣X)=Z(Z﹣X)C.Y2=XZ D.Y(Y﹣X)=X(Z﹣X)【考点】等比数列.【专题】压轴题.【分析】取一个具体的等比数列验证即可.【解答】解:取等比数列1,2,4,令n=1得X=1,Y=3,Z=7代入验算,只有选项D满足.故选D【点评】对于含有较多字母的客观题,可以取满足条件的数字代替字母,代入验证,若能排除3个选项,剩下唯一正确的就一定正确;若不能完全排除,可以取其他数字验证继续排除.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2010•安徽)命题“对任何x∈R,使得|x﹣2|+|x﹣4|>3”的否定是存在x∈R,使得|x﹣2|+|x﹣4|≤3.【考点】命题的否定.【专题】阅读型.【分析】全称命题的否定是特称命题,只须将全称量词“任何”改为存在量词“存在”,并同时把“|x﹣2|+|x﹣4|>3”否定.【解答】解:全称命题的否定是特称命题,∴命题“对任何x∈R,使得|x﹣2|+|x﹣4|>3”的否定是:存在x∈R,使得|x﹣2|+|x﹣4|≤3.故填:存在x∈R,使得|x﹣2|+|x﹣4|≤3.【点评】本题主要考查了命题的否定,属于基础题之列.这类问题常见错误是,没有把全称量词改为存在量词,或者对于“>“的否定改成了”<“,而不是“≤”.12.(5分)(2010•安徽)(﹣)6展开式中,x3的系数等于15.【考点】二项式系数的性质.【专题】计算题.【分析】根据题意,易得其二项展开式,分析可得,当r=2时,有C62•()4•(﹣)2=15x3,即可得答案.【解答】解:根据题意,易得其二项展开式的通项为T r+1=C6r•()6﹣r•(﹣)r,当r=2时,有C62•()4•(﹣)2=15x3,则x3的系数等于15,故答案为15.【点评】本题考查二项式定理的应用,注意二项式的展开式的形式,特别要区分某一项的系数与二项式系数.13.(5分)(2010•安徽)设x,y满足约束条件,若目标函数z=abx+y(a>0,b>0)的最大值为8,则a+b的最小值为4.【考点】简单线性规划的应用.【专题】压轴题.【分析】本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件,画出满足约束条件的可行域,再根据目标函数z=abx+y(a>0,b>0)的最大值为8,求出a,b的关系式,再利用基本不等式求出a+b的最小值.【解答】解:满足约束条件的区域是一个四边形,如下图4个顶点是(0,0),(0,2),(,0),(1,4),由图易得目标函数在(1,4)取最大值8,即8=ab+4,∴ab=4,∴a+b≥2=4,在a=b=2时是等号成立,∴a+b的最小值为4.故答案为:4【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.14.(5分)(2010•安徽)如图所示,程序框图(算法流程图)的输出值x为12【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的x的值,当x=12时满足条件x>8,退出循环,输出x的值为12.【解答】解:模拟执行程序框图,可得x=1满足条件x是奇数,x=2不满足条件x是奇数,x=4,不满足条件x>8,x=5满足条件x是奇数,x=6,不满足条件x>8,x=7满足条件x是奇数,x=8,不满足条件x>8,x=9满足条件x是奇数,x=10,不满足条件x是奇数,x=12,满足条件x>8,退出循环,输出x的值为12.【点评】本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的x的值是解题的关键,属于基础题.15.(5分)(2010•安徽)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是②④(写出所有正确结论的编号).①;②;③事件B与事件A1相互独立;④A1,A2,A3是两两互斥的事件;⑤P(B)的值不能确定,因为它与A1,A2,A3中哪一个发生有关.【考点】互斥事件的概率加法公式.【专题】压轴题.【分析】本题是概率的综合问题,掌握基本概念,及条件概率的基本运算是解决问题的关键.本题在A1,A2,A3是两两互斥的事件,把事件B的概率进行转化P(B)=P(B|•A1)+P(B•A2)+P(B•A3),可知事件B的概率是确定的.【解答】解:易见A1,A2,A3是两两互斥的事件,.故答案为:②④【点评】概率的综合问题,需要对基本概念和基本运算能够熟练掌握.三、解答题(共6小题,满分75分)16.(12分)(2010•安徽)设△ABC是锐角三角形,a,b,c分别是内角A,B,C所对边长,并且.(Ⅰ)求角A的值;(Ⅱ)若,求b,c(其中b<c).【考点】余弦定理的应用;两角和与差的正弦函数.【专题】计算题.【分析】(1)先根据两角和与差的正弦公式展开得到角A的正弦值,再由角A的范围确定角A的值.(2)先根据向量数量积的运算和角A的值得到cb=24,再由a=2和余弦定理可求出b,c的值.【解答】解:(1)因为sin2A=(()+sin2B==所以sinA=±.又A为锐角,所以A=(2)由可得,cbcosA=12 ①由(1)知A=,所以cb=24 ②由余弦定理知a2=b2+c2﹣2bccosA,将a=2及①代入可得c2+b2=52③③+②×2,得(c+b)2=100,所以c+b=10因此,c,b是一元二次方程t2﹣10t+24=0的两根解此方程并由c>b知c=6,b=4【点评】本题主要考查两角和与差的正弦公式和余弦定理的应用.属基础题.17.(12分)(2010•安徽)设a为实数,函数f(x)=e x﹣2x+2a,x∈R.(Ⅰ)求f(x)的单调区间与极值;(Ⅱ)求证:当a>ln2﹣1且x>0时,e x>x2﹣2ax+1.【考点】利用导数研究函数的极值;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【专题】导数的综合应用.【分析】(Ⅰ)由f(x)=e x﹣2x+2a,x∈R,知f′(x)=e x﹣2,x∈R.令f′(x)=0,得x=ln2.列表讨论能求出f(x)的单调区间区间及极值.(Ⅱ)设g(x)=e x﹣x2+2ax﹣1,x∈R,于是g′(x)=e x﹣2x+2a,x∈R.由(1)知当a>ln2﹣1时,g′(x)最小值为g′(ln2)=2(1﹣ln2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.由此能够证明e x>x2﹣2ax+1.【解答】(Ⅰ)解:∵f(x)=e x﹣2x+2a,x∈R,∴f′(x)=e x﹣2,x∈R.令f′(x)=0,得x=ln2.于是当x变化时,f′(x),f(x)的变化情况如下表:x (﹣∞,ln2)ln2 (ln2,+∞)f′(x)﹣0 +f(x)单调递减2(1﹣ln2+a)单调递增故f(x)的单调递减区间是(﹣∞,ln2),单调递增区间是(ln2,+∞),f(x)在x=ln2处取得极小值,极小值为f(ln2)=e ln2﹣2ln2+2a=2(1﹣ln2+a),无极大值.(Ⅱ)证明:设g(x)=e x﹣x2+2ax﹣1,x∈R,于是g′(x)=e x﹣2x+2a,x∈R.由(1)知当a>ln2﹣1时,g′(x)最小值为g′(ln2)=2(1﹣ln2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.于是当a>ln2﹣1时,对任意x∈(0,+∞),都有g(x)>g(0).而g(0)=0,从而对任意x∈(0,+∞),g(x)>0.即e x﹣x2+2ax﹣1>0,故当a>ln2﹣1且x>0时,e x>x2﹣2ax+1.【点评】本题考查函数的单调区间及极值的求法和不等式的证明,具体涉及到导数的性质、函数增减区间的判断、极值的计算和不等式性质的应用.解题时要认真审题,仔细解答.18.(12分)(2010•安徽)如图,在多面体ABCDEF中,四边形ABCD是正方形,EF∥AB,EF⊥FB,AB=2EF,∠BFC=90°,BF=FC,H为BC的中点.(1)求证:FH∥平面EDB;(2)求证:AC⊥平面EDB;(3)求二面角B﹣DE﹣C的大小.【考点】直线与平面平行的判定;直线与平面垂直的判定;与二面角有关的立体几何综合题.【专题】综合题.【分析】(1)设AC于BD交于点G,则G为AC的中点,连接EG,GH,又H为BC的中点,可得四边形EFHG为平行四边形,然后利用直线与平面平行判断定理进行证明;(2)因为四边形ABCD为正方形,有AB⊥BC,又EF∥AB,可得EF⊥BC,要证FH⊥平面ABCD,FH⊥平面ABCD,从而求解.(3)在平面CDEF内过点F作FK⊥DE交DE的延长线与k,可知∠FKB为二面角B﹣DE ﹣C的一个平面角,然后设EF=1,在直角三角形中进行求证.【解答】证明:(1)设AC于BD交于点G,则G为AC的中点,连接EG,GH,又H为BC的中点,∴GH∥AB且GH=AB,又EF∥AB且EF=AB,∴EF∥GH且EF=GH,∴四边形EFHG为平行四边形∴EG∥FH,而EG⊂平面EDB,∴FH∥平面EDB.(2)由四边形ABCD为正方形,有AB⊥BC,又EF∥AB,∴EF⊥BC而EF⊥FB,∴EF⊥平面BFC,∴EF⊥FH,∴AB⊥FH,又BF=FC,H为BC的中点,∴FH⊥BC∴FH⊥平面ABCD,∴FH⊥BC,FH⊥AC,又FH∥EG,∴AC⊥EG又AC⊥BD,EG∩BD=G,∴AC⊥平面EDB,(3)EF⊥FB,∠BFC=90°,∴BF⊥平面CDEF,在平面CDEF内过点F作FK⊥DE交DE的延长线与k,则∠FKB为二面角B﹣DE﹣C的一个平面角,设EF=1,则AB=2,FC=,DE=,又EF∥DC,∴∠KEF=∠EDC,∴sin∠EDC=sin∠KEF=,∴FK=EFsin∠KEF=,tan∠FKB==,∴∠FKB=60°,∴二面角B﹣DE﹣C为60°.【点评】此题考查直线与平面平行的判断及平面与平面垂直的判断,此类问题一般先证明两个面平行,再证直线和面平行,这种做题思想要记住,此类立体几何题是每年高考必考的一道大题,同学们要课下要多练习.19.(13分)(2010•安徽)已知椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率.(1)求椭圆E的方程;(2)求∠F1AF2的平分线所在直线l的方程;(3)在椭圆E上是否存在关于直线l对称的相异两点?若存在,请找出;若不存在,说明理由.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【专题】综合题;圆锥曲线的定义、性质与方程.【分析】(1)设出椭圆方程,根据椭圆E经过点A(2,3),离心率,建立方程组,求得几何量,即可得到椭圆E的方程;(2)求得AF1方程、AF2方程,利用角平分线性质,即可求得∠F1AF2的平分线所在直线l的方程;(3)假设存在B(x1,y1)C(x2,y2)两点关于直线l对称,设出直线BC方程代入,求得BC中点代入直线2x﹣y﹣1=0上,即可得到结论.【解答】解:(1)设椭圆方程为∵椭圆E经过点A(2,3),离心率∴,∴a2=16,b2=12∴椭圆方程E为:;(2)F1(﹣2,0),F2(2,0),∵A(2,3),∴AF1方程为:3x﹣4y+6=0,AF2方程为:x=2设角平分线上任意一点为P(x,y),则.得2x﹣y﹣1=0或x+2y﹣8=0∵斜率为正,∴直线方程为2x﹣y﹣1=0;(3)假设存在B(x1,y1)C(x2,y2)两点关于直线l对称,∴∴直线BC方程为代入得x2﹣mx+m2﹣12=0,∴BC中点为代入直线2x﹣y﹣1=0上,得m=4.∴BC中点为(2,3)与A重合,不成立,所以不存在满足题设条件的相异的两点.【点评】本题考查椭圆的标准方程,考查直线方程,考查对称性,考查学生分析解决问题的能力,属于中档题.20.(13分)(2010•安徽)设数列a1,a2,…,a n,…中的每一项都不为0.证明:{a n}为等差数列的充分必要条件是:对任何n∈N,都有++…+=.【考点】等差数列的性质;必要条件、充分条件与充要条件的判断;数学归纳法.【专题】证明题;压轴题.【分析】先证必要性;设数列a n的公差为d,若d=0,则所述等式显然成立.若d≠0,则==.再用数学归纲法证明充分性:对任何n∈N,都有++…+=,{a n}是公差为d的等差数列.【解答】证明:先证必要性设数列a n的公差为d,若d=0,则所述等式显然成立.若d≠0,则===.再证充分性:用数学归纳法证明:①设所述的等式对一切n∈N都成立,首先在等式①两端同时乘a1a2a3,即得a1+a3=2a2,所以a1,a2,a3成等差数列,记公差为d,则a2=a1+d.②假设a k=a1+(k﹣1)d,当n=k+1时,观察如下二等式=②,=,将②代入③得,在该式两端同时乘a1a k a k+1,得(k﹣1)a k+1+a1=ka k,把a k=a1+(k﹣1)d代入后,整理得a k+1=a1+kd.由数学归纳法原理知对任何n∈N,都有++…+=.所以,{a n}是公差为d的等差数列.【点评】本题考查等差数列、数学归纳法与充要条件等有关知识,考查推理论证、运算求解能力.21.(13分)(2010•安徽)品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出n瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶酒,并重新按品质优劣为它们排序,这称为一轮测试.根据一轮测试中的两次排序的偏离程度的高低为其评分.现设n=4,分别以a1,a2,a3,a4表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令X=|1﹣a1|+|2﹣a2|+|3﹣a3|+|4﹣a4|,则X是对两次排序的偏离程度的一种描述.(Ⅰ)写出X的可能值集合;(Ⅱ)假设a1,a2,a3,a4等可能地为1,2,3,4的各种排列,求X的分布列;(Ⅲ)某品酒师在相继进行的三轮测试中,都有X≤2,①试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);②你认为该品酒师的酒味鉴别功能如何?说明理由.【考点】离散型随机变量及其分布列;分布列对于刻画随机现象的重要性.【专题】压轴题.【分析】(1)X的可能取值集合为{0、2、4、6、8},在1、2、3、4中奇数与偶数各有两个,a2,a4中的奇数个数等于a1,a3中的偶数个数,得到|1﹣a1|+|3﹣a3|与|2﹣a2|+|4﹣a4|的奇偶性相同,得到结论.(2)可以用列表或者树状图列出1、2、3、4的一共24种排列,计算每种排列下的X的值,算出概率,写出分布列.(3)做出三轮测试都有X≤2的概率,记做P,做出概率的值和已知量进行比较,得到结论,【解答】解:(1)X的可能取值集合为{0、2、4、6、8}∵在1、2、3、4中奇数与偶数各有两个,∴a2,a4中的奇数个数等于a1,a3中的偶数个数,∴|1﹣a1|+|3﹣a3|与|2﹣a2|+|4﹣a4|的奇偶性相同,∴X=(|1﹣a1|+|3﹣a3|)+(|2﹣a2|+|4﹣a4|)必为偶数,X的值非负,且易知其值不大于8,∴X的可能取值集合为{0、2、4、6、8}(2)可以用列表或者树状图列出1、2、3、4的一共24种排列,计算每种排列下的X的值,在等可能的假定下,得到P(X=0)=P(X=2)=P(X=4)=P(X=6)=P(X=8)=(3)①首先P(X≤2)=P(X=0)+P(X=2)==将三轮测试都有X≤2的概率记做P,有上述结果和独立性假设得P==,②由于P=<是一个很小的概率,这表明仅凭随机猜测得到三轮测试都有X≤2的结果的可能性很小,∴我们认为该品酒师确实有良好的鉴别功能,不是靠随机猜测.【点评】本题主要考查分布列和期望的简单应用,求离散型随机变量的分布列和期望是近年来理科高考必出的一个问题,题目做起来不难,运算量也不大,只要注意解题格式就问题不大.。

高考数学2010年全国卷1理科试题答案及解析

高考数学2010年全国卷1理科试题答案及解析

高考数学试卷第I 卷一.选择题 (1)复数3223ii+=- (A)i (B)i - (C)12-13i (D) 12+13i1.A 【命题意图】本小题主要考查复数的基本运算,重点考查分母实数化的转化技巧.【解析】32(32)(23)694623(23)(23)13i i i i i i i i i +++++-===--+. (2)记cos(80)k -︒=,那么tan100︒=B. C.D.2.B 【命题意图】本小题主要考查诱导公式、同角三角函数关系式等三角函数知识,并突出了弦切互化这一转化思想的应用.【解析】222sin801cos 801cos (80)1k =-=--=-,所以tan100tan80︒=-sin 80cos80k=-=-(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力.【解析】画出可行域(如右图),由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.x +20y -=(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a = (A) 52 (B) 7 (C) 6 (D) 424.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a ===,37897988()a a a a a a a ===10,所以132850a a =, 所以13336456465528()()(50)52a a a a a a a a a ===== (5)353(12)(1)x x +-的展开式中x 的系数是 (A) -4 (B) -2 (C) 2 (D) 45.B 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】35533(12)(1)(16128)(1)x x x x x x x +-=+++-故353(12)(1)x x +-的展开式中含x 的项为3303551()1210122C x xC x x x ⨯-+=-+=-,所以x 的系数为-2.(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 (A) 30种 (B)35种 (C)42种 (D)48种6.A 【命题意图】本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想.【解析】:可分以下2种情况:(1)A 类选修课选1门,B 类选修课选2门,有1234C C 种不同的选法;(2)A 类选修课选2门,B 类选修课选1门,有2134C C 种不同的选法.所以不同的选法共有1234C C +2134181230C C =+=种.AB C DA 1B 1C 1D 1 O(7)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A23 B 33 C 23D 637.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD ∆∆⋅=⋅.设DD 1=a, 则12211133sin 60(2)2222ACD S AC AD a a ∆==⨯⨯=,21122ACD S AD CD a ∆==. 所以1312333ACD ACD S DD a DO a S a∆∆===,记DD 1与平面AC 1D 所成角为θ,则13sin 3DO DD θ==,所以6cos 3θ=. (8)设a=3log 2,b=In2,c=125-,则A a<b<c Bb<c<a C c<a<b D c<b<a8.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用. 【解析】 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b, c=125-=15,而2252log 4log 3>=>,所以c<a,综上c<a<b. (9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1F p 2F =060,则P到x 轴的距离为(A)32 (B)62(C) 3 (D) 69.B 【命题意图】本小题主要考查双曲线的几何性质、第二定义、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.【解析】不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000||[()]12a PF e x a ex x c =--=+=+,22000||[)]21a PF e x ex a x c=-=-=-.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +-,即cos 0602220000(12)(21)(22)2(12)(21)x x x x ++--=+-,解得2052x =,所以2200312y x =-=,故P 到x 轴的距离为06||2y =(10)已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是 (A)(22,)+∞ (B)[22,)+∞ (C)(3,)+∞ (D)[3,)+∞10.A 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+2b 222a a=+>,从而错选A,这也是命题者的用苦良心之处.【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+2b=2a a+ 又0<a<b,所以0<a<1<b ,令2()f a a a=+,由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+21=3,即a+2b 的取值范围是(3,+∞). (11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB •的最小值为(A) 42-+ (B)32-+ (C) 422-+ (D)322-+11.D 【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力.【解析】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,21x +,2sin 1xα=+PA BO||||cos 2PA PB PA PB α•=⋅=22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令PA PB y •=,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得322y ≤--或322y ≥-+.故min ()322PA PB •=-+.此时21x =-.(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A)233 (B)433 (C) 23 (D) 83312.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,22max 22123h =-=,故max 433V =.绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修II)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

高中数学集合历届高考题及答案解析

高中数学集合历届高考题及答案解析

(A) {1,2} (B) {0,1,2} (C){x|0 ≤x<3} (D) {x|0 ≤x ≤3}(C) { x -1≤ x ≤1}(D) { x -1≤ x <1}3. ( 2010辽宁文)(1)已知集合 U 1,3,5,7,9 , A 1,5,7 ,则C U A7. ( 2010山东文)(1)已知全集 U R ,集合 M x x 24 0 ,则 C U M =A.x 2 x 2B.x 2 x 2C .x x 2或 x 2 D. x x 2或 x 228. ( 2010北京理)(1) 集合 P {x Z 0 x 3},M {x Z x 29},则 PI M =第一章 集合与常用逻辑用语 一、选择题 1. ( 2010浙江理)(1)设 P={x ︱x <4},Q={x ︱ x 2<4},则 A ) p QB )Q P (C )p CR Q (D ) Q CR P2. (2010 陕西文) 1. 集合 A ={x -1≤ x ≤2}, B ={ x x<1},则 A ∩B =( (A){ x x< 1}B ){x -1≤ x≤2} A ) 1,3 B ) 3,7,9C ) 3,5,9D ) 3,94. ( 2010辽宁理) 1.已知 A ,B 均为集合 U={1,3,5,7,9} 的子集,且 A ∩B={3}, eu(A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9}5. ( 2010 江 西 理 ) 2. 若 集 合 A= x| x 1, xR ,A. x| 1 x 1B. x|x 0C. x|0 x 1D.6. ( 2010浙江文)(1)设 P {x|x 1}, Q {x|x 24},则 P Q(A) {x| 1 x 2} (B) {x| 3 x 1} (C) { x|1 x 4}(D){x| 2 x 1}9. (2010 天津文)(7)设集合A x||x-a|<1,x R ,B x|1 x 5,x R .若A B ,则实数 a 的取值范围是(A)a|0 a 6 (B)a|a 2,或a 4(C)a|a 0,或a 6 (D)a|2 a 410. (2010天津理)(9)设集合A= x||x a| 1,x R ,B x||x b| 2,x R .若 A B,则实数a,b 必满足(A)|a b| 3 (B)|a b| 3(C)|a b| 3 (D)|a b| 311. (2010广东理) 1.若集合A={ x -2< x <1} ,B={ x 0< x <2}则集合 A ∩ B=()A. { x -1<x<1}B. { x -2< x<1}C. { x -2< x<2}D. { x 0< x <1}12. (2010广东文)10. 在集合a,b,c,d 上定义两种运算○+ 和○* 如下那么d ○* (a ○+ c)A. aB. bC. cD. d13. (2010广东文) 1.若集合A 0,1,2,3 ,B 1,2,4 则集合A BA. 0,1,2,3,4B. 1,2,3,4C. 1,2D. 01. 设集合M={1,2,4,8},N={x|x 是2 的倍数} ,则M∩ N=14. (2010 湖北文)A.{2, 4}B.{1,2,4}C.{2,4,8}D{1,2,8}15. (2010山东理) 1.已知全集 U=R ,集合 M={x||x-1| 2}, 则C U M= x 3} (C){x|x<-1 或 x>3} (D){x|x -1 或 x 3}2、若集合 A x log 1 x 1,则 e R A2R集的个数是二、填空题k=2k1 2k2 12k n1,则(1) a 1,,a 3 是 E 的第 __ 个子集; (2)E 的第 211个子集是 ____4. ( 2010 重庆理) (12) 设 U= 0,1,2,3 ,A= x U x 2mx 0 ,若 U A 1,2 ,则实数m= ________ .5. ( 2010江苏卷) 1、设集合 A={-1,1,3} ,B={a+2,a 2+4},A ∩B={3} ,则实数 a = .6. ( 2010重庆文)(11)设 A x|x 1 0 ,B x|x 0 ,则 A B = ______________ .A ) {x|-1<x<3} (B){x|-1 16. (2010 安徽理)17. A . C . 18. A 、( ,0]2010 湖南理) M N B.B 、221. 已知集合 M={1,2,3} , NMM N {2,3} D. M N{1,4}2010 湖北理)C 、 ( ,0] [22, ) D 、[ 22, )N={2,3,4} ,则 222.设集合A { x, y |x4 1y 61} , B {( x, y)| y 3x } ,则 A B 的子A . 4B .3C .2D .12. ( 2010 湖南文) 15. 若规定 E=a 1,a 2...a 10 的子集 a k 1a k 2..., a k n为 E 的第 k个子集,其中、选择题1. (2009 年广东卷文 )已知全集 U R ,则正确表示集合 M { 1,0,1} 和 N x|x2x 集合 u(A IB) 中的元素共有 (A. 3 个B. 4 个C. 5 个D. 6 个答案 A3. ( 2009浙江理) 设U R , A {x|x 0}, B {x|x 1} ,则 A e U B ( )A .{x|0 x1} B .{x|0 x 1} C .{x|x 0} D .{x|x 1}5. ( 2009 浙 江 文 ) 设 U R , A {x|x 0} , B {x|x 1} , 则 A e U B A .{x|0x 1} B .{x|0 x 1} C .{x|x 0} D .{x|x 1}6. ( 2009北京文) 设集合 A {x|1 x 2}, B {x x 21} ,则 A B (21A .{x 1 x 2}B .{x| x 1}2C .{x|x 2}D .{x|1 x 2}7. (2009 山东卷理 )集合 A 0,2,a , B 1,a 2,若 A B 0,1,2,4,16 ,则 a 的值 为 A.0 B.1 C.2 D.49. ( 2009全国卷Ⅱ文) 已知全集 U ={1,2,3,4,5,6,7,8} ,M ={1,3,5,7},N ={5 ,6,7} ,则 C u ( M N )=( )10. ( 2009 广东 卷 理 ) 已知全集 U R ,集合 M {x 2 x 1 2} 和2009 年高考题0 关系2. (2009 全国卷Ⅰ理) 设集合 A={ 4,5,7,x 2k 1,k 1,2, } 的关系的韦恩( Venn )图如图 1 所示,则阴影部分所示的集合的元A. mn14.(2009 湖北卷理 ) 已知P {a|a (1,0) m(0,1), m R},Q {b|b (1,1) n( 1,1),n R} 是两个向量集合,则P I Q ( )A .{〔1,1〕} B. {〔-1 ,1〕}C. {〔1,0〕}D. { 〔0,1〕}15. (2009 四川卷文) 设集合 S={x | x 5 }, T ={ x |(x 7)(x 3) 0}.则 S T =()A. { x |-7< x <-5 }B. {x | 3 < x < }C.{x | -5 < x <3}D.{x |-7< x <5 }x116. (2009 全国卷Ⅱ理) 设集合 A x|x 3 ,B x| 0 ,则 A B = x4A. B. 3,4 C. 2,1 D. 4.18. ( 2009 辽宁卷文) 已知集合 M =﹛ x| -3<x 5﹜ ,N =﹛ x|x <- 5 或 x >5﹜,则 M NN {x 素共有 A. 3个C. 1B.2 D.个 无穷多11. 2009 安徽卷理) 若集合 A x |2x 1| 3 ,B2x 10 ,则 A ∩B 是 3xA.1x 1 x1或2 x 3 B.x2 x 3 C. x1x 2 D. 212. 2009 安徽卷文) 若集合,则 是13. A .{1 ,2,3}C. {4 ,5}B. {1 ,2} D. {1 ,2,3,4,5}2009 江西卷理) 已知全集 U A B 中有 m 个元素, (痧UA ) ( UB )中有 n 个元素.若AI B 非空,则 AI B 的元素个数为 mn=A. ﹛x|x <-5 或x>-3﹜B. ﹛x| -5<x<5﹜C.﹛x| -3<x<5﹜D. ﹛x|x <-3 或x>5﹜220. (2009 陕西卷文)设不等式x2 x 0 的解集为M,函数f(x) ln(1 |x |)的定义域为N 则M N 为()A.[0 ,1)B. (0,1)C.[0 ,1]D.(-1,0]21. (2009 四川卷文)设集合S={ x|x 5 },T ={ x|(x 7)(x 3) 0 } 则S T()A. { x|-7< x <-5 }B. {x|3 < x<5 }C.{ x|-5 < x<3}D. {x|-7< x <5 }22.(2009 全国卷Ⅰ文)设集合A={4,5,6,7,9},B={3,4,7,8,9},全集=A B,则集合[u (A B)中的元素共有A.3 个B.4 个C. 5 个D. 6 个24. (2009 四川卷理)设集合S x| x 5 ,T x|x2 4x 21 0 ,则S TA.x| 7 x 5 B.x|3 x 5 C.x| 5 x 3 D.x| 7 x 525. (2009 福建卷文)若集合A x|x 0. B x|x 3 ,则A B 等于A.{x|x 0}B{x|0 x 3}C{x|x 4}D R二、填空题26.(2009年上海卷理)已知集合A x|x 1 ,B x|x a ,且A B R ,则实数a的取值范围是__________________ .27.(2009重庆卷文)若U {n n是小于9 的正整数} ,A {n U n 是奇数} ,B {n U n是3的倍数} ,则e U (A B).28..(2009 重庆卷理)若A x R x 3 ,B x R 2x 1 ,则A B .29..(2009 上海卷文)已知集体A={x| x≤1},B={x | ≥a},且A∪ B=R ,则实数 a 的取值范围是____________ .30.(2009 北京文)设 A 是整数集的一个非空子集,对于k A ,如果k 1 A且k 1 A,那么k 是 A 的一个“孤立元” ,给定S {1,2,3,4,5,6,7,8,} ,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有个.31..(2009 天津卷文)设全集U A B x N *|lgx 1 ,若B m|m 2n 1,n 0,1,2,3,4 ,则集合B= __________ .A CU【考点定位】本试题主要考查了集合的概念和基本的运算能力。

2010年高考数学试题(新课程卷)分类解析(七)--算法初步与框图

2010年高考数学试题(新课程卷)分类解析(七)--算法初步与框图
建 议
文理试题 要求不 同的试 卷有广东卷 、山东卷 、湖南卷 、陕
西 卷 、天 津 卷 和 辽 宁 卷 , 这 些 试 卷 ( 湖 南 卷 外 ) 的文 理 试题 除
本 专题是高 中数 学课程 中新增 的教学 内容 .2 1 高考数 考 查 的知 识 点 基 本 相 同 , 只 是 理 科 试 题 的难 度 比文 科 试 题 的难 0 0年 学试题 中出现算法试 题的试卷有 广东卷 、山东 卷 、新课 程全 国 度大 ,主要表 现在所涉及 的算法的循环次数 或循环体 中所 执行 卷 、江苏卷 、浙江卷 、福建卷 、天津卷 、安徽 卷 、辽宁卷 、湖 的 步 骤上 . 南卷 、北京卷 、陕西卷和上海 卷. 文的 目的 ,在于对 2 1 本 0 0年 的复习提出建议.

例 1 ( 东卷 ・ 1)某城 市缺水 问题 比较 突 出,为 了制 广 理 3
出现的算 法试题进行分 析 ,得 出命 题特点 ,并对 这一部分 内容 定节水管理办法 ,对全市居 民某 年的月均用水量 进行 了抽样调 查 ,其 中 n 居民的月均用水量分别 为 位
根据 图 1 所示 的程序框 图 ,若 n=2 ,且
的作 用 。
② 结构 图:了解结构 图;会运用结构图梳理 已学过 的知识 、
整理收集到的资料信息. 2 从 出现的试题 看考试 内容与要求 . () 1 出现 的试题均是选择题或填空题 ,并且 都是用程序框 图 表示算法 ,要求学生能读懂算法并选择答案或填空.
() 2 试题着重考查算 法基本逻辑结构 ,并且 除北京卷 与湖南


图2 所示 的程序框图 ,若
则输 出的结果 s 为
分别为 1 .,1 ,2 ,1 5 . , 5

2010年高考新课标全国卷理科数学试题(附答案)

2010年高考新课标全国卷理科数学试题(附答案)

x2 y2
(A)
1
36
x2
(B)
4
y2 1
5
x2
(C)
6
y2 1
3
x2
(D)
5
y2 1
4
第Ⅱ卷
本卷包括必考题和选考题两部分,第( 13)题 ~第( 21)题为必考题,每个试题考生都 必须做答,第( 22)题 ~第( 24)题为选考题,考试根据要求做答。 二、填空题:本大题共 4 小题,每小题 5 分.
y

sin
为参数).
(Ⅰ)当 = 3 时,求 C1 与 C2 的交点坐标: (Ⅱ)过坐标原点 O 做 C1 的垂线,垂足为 A 、 P 为 OA 的中点,当
变化时,求
P 点轨迹的参数方程,并指出它是什么曲线。
(24)(本小题满分 10 分)选修 4— 5:不等式选讲
设函数 f ( x) = 2 x 4 1. (Ⅰ)画出函数 y f ( x) 的图像: (Ⅱ)若不等式 f (x) , ax 的解集非空,求 a 的取值范围
( 3)根据( 2)的结论,能否提供更好的调查方法来估计该地区老年人,需要志愿帮助
的老年人的比例?说明理由
附: K 2
n(ad bc)2
(a b)( c d)( a c)(b d)
P(K 2 …k)
0.050 0.010
0.001
k
3.841 6.635 10.828
(20)(本小题满分 12 分)
( 1)求数列 an 的通项公式;
( 2)令 bn nan ,求数列的前 n 项和 Sn
(18)(本小题满分 12 分)
如图,已知四棱锥 P ABCD 的底面为等腰梯形, AB ∥ CD , AC BD ,垂足为 H , PH 是四棱锥的高 , E 为 AD 中点 ( 1)证明: PE BC

历年高考数学试题解析

历年高考数学试题解析

历年高考数学试题解析高考数学试题一直以来都是考生比较关注的重点,因为高考数学占比比较大,而且对于理科或工科上大学来说,数学更是一个非常重要的基础课程。

本文将结合历年高考数学试题,对一些重点和难点进行解析,帮助考生更好的备考。

一、数列与数列极限高考数学中的数列、数列极限是考试中的重点,也是难点,通过历年高考试题可以看出其在高考数学中所占内容比例较高,同时考察频率很高,因此在考前的复习备考中,这部分的知识点一定要重点复习。

以下是历年高考数学试题中的数列、数列极限题型:1. 2004年高考真题(安徽卷)已知 $a_1=1$, $a_{n+1}=a_n+\frac{1}{n^2}$($n∈N^*$), 求$\lim\limits_{n→+∞} a_n$.解析:对这道题,我们发现一个比较显著的特点是数列递推公式比较特殊,没有固定的形式。

对于考生们来说,一定要避免死记硬背数列递推公式,要理解公式背后的本质含义。

对于这道题来说,首先不难发现,随着 $n$ 的增大, $a_{n+1}$ 与 $a_n$ 之差逐渐趋近于 $0$ ,因此假设数列的极限为 $L$ 。

由数列极限的定义可得到:$$\lim\limits_{n→+∞} (a_{n+1}-a_n)=\lim\limits_{n→+∞}\frac{1}{n^2}=0$$因此有:$$L=\lim\limits_{n→+∞} a_n=\lim\limits_{n→+∞} (a_n-a_{n-1}+a_{n-1}·····+a_2-a_1+a_1)= \lim\limits_{n→+∞} (a_n-a_{n-1}) + a_{n-1}·····+1=\lim\limits_{n→+∞} \frac{1}{n^2} +\lim\limits_{n→+∞} \frac{1}{(n-1)^2}·····+ \lim\limits_{n→+∞}\frac{1}{2^2}+1=a$$2.2017年高考真题(福建卷)已知数列 $\{a_n\}$ 的前 $n$ 项和为 $S_n$, 且 $a_1=2$,$a_{n+1}=3a^2_n-2$($n∈N^*$).(1)求 $S_n$;(2)试求 $\lim\limits_{n→+∞} \frac{S_n}{a_n}$.解析:这道题是康拓奇异形式题,考察点主要在于数列的和,和数列的递推公式之间的关系,以及对数列递推公式的转化。

2010年成人高考高起点数学(理工类)考试真题试题及答案

2010年成人高考高起点数学(理工类)考试真题试题及答案

时代学习网——职业人士网上考试辅导学习的家园 ,资料由本站网上收集整理。
时代学习网——职业人士网上考试辅导学习的家园 ,资料由本站网上收集整理。
时代学习网——职业人士网上考试辅导学习的家园 ,资料由本站网上收集整理。
时代学习网——职业人士网上考试辅导学习的家园 ,资料由本站网上收集整理。
时代学习网——职业人士网上考试辅导学习的家园 ,资料由本站网上收集整理。
时代学习网——职业人士网上考试辅导Байду номын сангаас习的家园 ,资料由本站网上收集整理。

2010年高考理科数学试题(全国卷1)

2010年高考理科数学试题(全国卷1)

填空题(共15题,每题1分)1.楼板层通常由以下三部分组成(B)。

A、面层、楼板、地坪B、面层、楼板、顶棚C、支撑、楼板、顶棚D、垫层、梁、楼板2.当预制板在楼层布置出现较大缝隙,板缝宽度≤120mm时,可采用(D)的处理方法。

A、用水泥砂浆填缝B、灌注细石混凝土填缝C、重新选择板的类型D、沿墙挑砖或挑梁填缝3.踢脚板的高度一般为(B)mm。

A、80~120B、120~150C、150~180D、180~2004.防水混凝土的设计抗渗等级是根据(D)确定的。

A、防水混凝土的壁厚B、混凝土的强度等级C、工程埋置深度D、最大水头与混凝土壁厚的比值5.砖基础采用等高式大放脚时,一般每两皮砖挑出( B )砌筑。

A、1皮砖B、3/4皮砖C、1/2皮砖D、1/4皮砖6.门窗洞口与门窗实际尺寸之间的预留缝隙大小与(B)无关。

A、门窗本身幅面大小B、外墙抹灰或贴面材料种类C、门窗有无假框D、门窗种类(木门窗、钢门窗或铝合金门窗)7.下列关于散水的构造做法表述中,(C)是不正确的。

A、在素土夯实上做60~l00mm厚混凝土,其上再做5%的水泥砂浆抹面B、散水宽度一般为600~1000mmC、散水与墙体之间应整体连接,防止开裂D、散水宽度应比采用自由落水的屋顶檐口多出200mm左右8.下列哪种砂浆既有较高的强度又有较好的和易性(C)A. 水泥砂浆B. 石灰砂浆C. 混合砂浆D. 粘土砂浆9.屋顶的设计应满足( D )、结构和建筑艺术三方面的要求。

A、经济B、材料C、功能D、安全10.预制钢筋混凝土楼板间留有缝隙的原因是(B)。

A、有利于预制板的制作B、板宽规格的限制,实际尺寸小于标志尺寸C、有利于加强板的强度D、有利于房屋整体性的提高11.下列建筑屋面中,(D)应采用有组织的排水形式。

A、高度较低的简单建筑B、积灰多的屋面C、有腐蚀介质的屋面D、降雨量较大地区的屋面12.(D)开启时不占室内空间,但擦窗及维修不便;(D)擦窗安全方便,但影响家具布置和使用。

2010年安徽高考数学文科试卷带详解

2010年安徽高考数学文科试卷带详解

2010年普通高等学校招生全国统一考试(安徽卷)第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.若{10}A x x =+>,{30}B x x =-<,则A B = ( ) A.(1,)-+∞ B. (,3)-∞ C. (1,3)- D.(1,3) 【测量目标】集合的基本运算.【考查方式】通过求解集合进而判断集合的大小. 【参考答案】C【试题解析】(1,),(,3)A B =+∞=-∞,(1,3)A B =- ,故选C.2.已知2i 1=-,则i(1 ( )i c.i D. 【测量目标】复数代数形式的四则运算. 【考查方式】通过计算来考查. 【参考答案】B【试题解析】i(1i =,选B. .3.设向量11=(1,0),=(,)22a b ,则下列结论中正确的是 ( )A. a =b B =a b . C. a b D -a b 与b 垂直【测量目标】平面向量的坐标运算,位置关系.【考查方式】给出向量坐标值来判断向量之间的关系. 【参考答案】D【试题解析】11(,)22--a b =,()- a b b ,所以-a b 与b 垂直.4.过点(1,0)且与直线220x y --=平行的直线方程是 ( ) A. 210x y --= B. 210x y -+= C. 2+20x y -= D.+210x y -=【测量目标】两条直线的位置关系.【考查方式】给出点和直线求平行直线的方程. 【参考答案】A【试题解析】设直线方程为20x y c -+=,又经过(1,0),故1c =-,所求方程为210x y --=.5.设数列{}n a 的前n 项和2n S n =,则8a 的值为 ( ) A.15 B. 16 C. 49 D.64 【测量目标】数列前n 项和的掌握.【考查方式】给出前n 项和的公式,求哪一项. 【参考答案】A【试题解析】887644915a S S =-=-=.6.设20,()abc f x ax bx c >=++二次函数的图像可能是 ( )A B C D 【测量目标】二次函数的图象与性质. 【考查方式】利用数行集合的方法. 【参考答案】D【试题解析】当0a >时,b 、c 同号,C ,D 两图中0c <,故0,02bb a<->,选项(D )符合.7.设232555322555a b c ===(),(),(),则a ,b ,c 的大小关系是 ( )A.a c b >>B.a b c >>C. c a b >>D. b c a >> 【测量目标】幂函数与指数函数.【考查方式】将幂函数与指数函数放在一起进行比较大小从而考查对函数单调性的掌握. 【参考答案】A【试题解析】25y x =在0x >时是增函数,所以a c >,2()5xy =在0x >时是减函数,所以c b >.故选A.8.设,x y 满足约束条件260260,0x y x y y +-⎧⎪+-⎨⎪⎩………则目标函数Z x y =+的最大值是 ( )A. 3B. 4C. 6D. 8【测量目标】二元线性规划求目标函数的最值.【考查方式】给出约束条件判断可行域,并利用可行域求出目标函数最值. 【参考答案】C【试题解析】不等式表示的区域是一个三角形,3个顶点是(3,0),(6,0),(2,2),目标函数z x y =+在(6,0)取最大值6.故选C.9.一个几何体的三视图如图,该几何体的表面积是 ( ) A. 372 B.360 C. 292D. 280【测量目标】三视图的判断.【考查方式】通过求物体的侧面积来考察对三视图的掌握情况. 【参考答案】B 【试题解析】该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和.2(10810282)2(6882)360S =⨯+⨯+⨯+⨯+⨯=.故选B.10.甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是 ( ) A.318 B.418 C.518 D.618【测量目标】排列,组合的综合应用.【考查方式】利用几何体的本身性质来考察概率. 【参考答案】C【试题解析】正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个基本事件.两条直线相互垂直的情况有5种(4组邻边和对角线)包括10个基本事件,所以概率等于518. 第Ⅱ卷(非选择题共100分)二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置· 11.命题“存在x ∈R ,使得2250x x ++=”的否定是 .【测量目标】命题的否定.【考查方式】给出命题写出命题的否定形式. 【参考答案】任意x ∈R ,使得2250x x ++=.【试题解析】特称命题的否定是全称命题,“存在”对应“任意”. 12.抛物线28y x =的焦点坐标是 【测量目标】抛物线的几何性质.【考查方式】通过给出标准方程求焦点坐标. 【参考答案】(2,0)【试题解析】抛物线28y x =,所以4p =,所以焦点(2,0) 13.如图所示,程序框图(算法流程图)的输出值x =【测量目标】顺序结构框图,循环结构框图的执行结果. 【考查方式】给出程序框图求出目标值. 【参考答案】12【试题解析】程序运行如下:1,2,4,5,6,8,9,10,12x x x x x x x x x =========,输出1214.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 .【方法总结】本题分层抽样问题,首先根据拥有3套或3套以上住房的家庭所占的比例,得出100 000户,居民中拥有3套或3套以上住房的户数,它除以100 000得到的值,为该地拥有3套或3套以上住房的家庭所占比例的合理估计. 【测量目标】分层抽样.【考查方式】将分层抽样应用于实际生活中. 【参考答案】5.7%.【试题解析】该地拥有3套或3套以上住房的家庭可以估计有:50709900010005700990100⨯+⨯=户,所以所占比例的合理估计是5700100000 5.7%÷=15.若0,0,2a b a b >>+=,则下列不等式对一切满足条件的,a b 恒成立的是 (写出所有正确命题的编号).①1ab …; ; ③ 222a b +…;④333a b +…; ⑤112a b+…. 【测量目标】基本不等式求值.【考查方式】通过给出限定条件判断给出的不等式是否满足要求. 【参考答案】①③⑤.【试题解析】令1a b ==,排除②;由1a b ab +厔,命题①正确;由222()2422a b a b ab ab +=+-=-…,命题③正确;1122a b a b ab ab++==…,命题⑤正确.三、解答题:本大题共6小题.共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内. 16.(本小题满分12分)ABC △的面积是30,内角,,A B C 所对边长分别为,,a b c ,12cos 13A =. (Ⅰ)求AB AC;(Ⅱ)若1c b -=,求a 的值.【测量目标】向量的数量积运算和解三角形. 【考查方式】给出三角形的部分性质来解三角形. 【试题解析】(1)根据同角三角函数关系,由12cos 13A =得sin A 的值,再根据ABC △面积公式得156bc =;直接求数量积AB AC .由余弦定理2222cos a b c bc A =+-,代入已知条件1c b -=,及156bc =求a 的值.解:由12cos 13A =,得5sin 13A ==. (步骤1) 又1sin 302bc A =,∴156bc =. (步骤2) (Ⅰ)12cos 15614413AB AC bc A ⋅==⨯= . (步骤3) (Ⅱ)2222cos a b c bc A =+-212()2(1cos )12156(1)2513c b bc A =-+-=+⨯⨯-=,∴5a =. (步骤4)17.(本小题满分12分)椭圆E 经过点(2,3)A ,对称轴为坐标轴,(第17题图)焦点12,F F 在x 轴上,离心率12e =. (Ⅰ)求椭圆E 的方程;(Ⅱ)求12F AF ∠的角平分线所在直线的方程.【测量目标】椭圆的定义和几何性质.【考查方式】给出椭圆几何图像和部分信息求椭圆标准方程. 【试题解析】解:(Ⅰ)设椭圆E 的方程为22222222222222221212121.11,,3, 1.2243131,2,1.16123()(2,0),(2,0),(2),43460. 2.x y a b c x y e b a c c a c cA c c c x y E F AF x x y AF x E AF +====-=∴+=+==∴+=∏I -+-+==∠由得将(2,3)代入,有解得:椭圆的方程为由()知所以直线的方程为y=即直线的方程为由椭圆的图形知,的角平分线所在直线的斜率为正F F 121234625346510,280,x y AF x x y x x y AF -+∠=--+=-+-=∠数。

2010年全国1卷高考真题(含答案)数学理

2010年全国1卷高考真题(含答案)数学理

绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷1至2页,第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并帖好条形码.请认真核准条形码的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........3.第I 卷共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B )=P (A )+P (B ) 24R S π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A ·B )=P (A )·P (B ) 球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 334R V π=球n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径 一、选择题 (1)复数=-+i i3223(A )i(B )i - (C )i 1312- (D )i 1312+ (2)记k =︒-)80cos(,那么=︒100tan(A )k k 21-(B )-kk 21- (C )21kk - (D )-21kk -(3)若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤--≥+≤.02,0,1y x y x y 则y x z 2-=的最大值为 (A )4 (B )3 (C )2 (D )1(4)已知各项均为正数的等比数列}{n a 中,634987321,10,5a a a a a a a a a 则===(A )25(B )7(C )6(D )24(5)533)1()21(x x -+的展开式中x 的系数是(A )-4 (B )-2 (C )2 (D )4(6)某校开设A 类选修课3门,B 类选择题4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 (A )30种 (B )35种 (C )42种 (D )48种 (7)正方体ABCD —A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为(A )32 (B )33 (C )32 (D )36 (8)设2135,2ln ,2log -===c b a ,则(A )c b a <<(B )a c b << (C )b a c << (D )a b c <<(9)已知F 1、F 2为双曲线1:22=-y x C 的左、右焦点,点P 在C 上,︒=∠6021PF F ,则P到x 轴的距离为(A )23 (B )26 (C )3 (D )6(10)已知函数)()(,0.|lg |)(b f a f b a x x f =<<=且若,则b a 2+的取值范围是(A )),22(+∞(B )[)+∞,22(C )),3(+∞(D )[)+∞,3(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PB PA ⋅的最小值为(A )24+-(B )23+-(C )224+-(D )223+-(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AC=CD=2,则四面体ABCD 的体积的最大值为(A )332 (B )334 (C )32 (D )338 绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用并使用完毕前
2010年普通高等学校招生全国统一考试(安徽卷)
理科数学测试
第Ⅰ卷(选择题 共50分)
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有
一项是符合题目要求的.
(1)i 是虚数单位,=+i i
33
(A )12341- (B )i 12341- (C )i 6321+ (D )i 6
321- (2)若集合}2
1log |{21≥=x x A ,则=A C R
(A )⎪⎪⎭
⎫ ⎝⎛+∞⋃-∞,22]0,(
(B )⎪⎪⎭⎫ ⎝⎛+∞,22 (C )⎪⎪⎭
⎫⎢⎣⎡+∞⋃-∞,22]0,( (D )⎪⎪⎭⎫⎢⎣⎡+∞,22 (3)设向量)21
,21(),0,1(==b a ,则下列结论中正确的是
(A )||||b a = (B )2
2=⋅b a (C )b b a 与-垂直 (D )b a // (4)若)(x f 是R 上周期为5的奇函数,且满足,2)2(,1)1(==f f 则)4()3(f f -=
(A )-1
(B )1 (C )-2 (D )2 (5)双曲线方程为1222=-y x ,则它的右焦点坐标为
(A ))0,22( (B ))0,25( (C ))0,26( (D ))0,3(
(6)设0>abc ,二次函数c bx ax x f ++=2)(的图象可能是
(7)设曲线C 的参数方程为⎩⎨⎧+-=+=θ
θsin 31cos 32y x (θ为参数),
直线l 的方程为023=+-y x ,则曲线C 到直线l 的距 离为10
107的点的个数为 (A )1 (B )2
(C )3 (D )4
(8)一个几何全体的三视图如图,该几何体的表面积为
(A )280 (B )292
(C )360 (D )372 (9)动点),(y x A 在圆122=+y x 上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.
已知定时t=0时,点A 的坐标是)2
3,21(,则当120≤≤t 时,动点A 的纵坐标y 关于t (单位:秒)的函数的单调递增区间是 (A )[0,1] (B )[1,7] (C )[7,12]
(D )[0,1]和[7,12]、 (10)设}{n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,
则下列等式中恒成立的是
(A )Y Z X 2=+ (B ))()(X Z Z X Y Y -=- (C )XZ Y =2
(D ))()(X Z X X Y Y -=- (在此卷上答题无效)
绝密★启用并使用完毕前
2010年普通高等学校招生全国统一考试(安徽卷)
数 学(理科)
第Ⅱ卷(非选择题 共100分)
考生注意事项:
请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.........
. 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.
(11)命题“对任何3|4||2|,>-+-∈x x R x ”的否定是 .
(12)6⎪⎪⎭
⎫ ⎝⎛-x y y x 的展开式中,3x 的系数等于 . (13)设y x ,满足约束条件⎪⎩
⎪⎨⎧≥≥≤--≥+-,0,0,048,022y x y x y x 若目标函数)0,0(>>+=b a y abx z 的最大值
为8,则b a +的最小值为 .
(14)如图所示,程序框图(算法流程图)的输出值=x .
(15)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红
球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,
分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球
的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球
是红球的事件,则下列结论中正确的是 (写出所有正确结
论的编号).
①52)(1=
B P ; ②115)|(1=A B P ;
③事件B 与事件A 1相互独立;
④A 1,A 2,A 3是两两互斥的事件; ⑤)(B P 的值不能确定,因为它与A 1,A 2,A 3中究竟哪一个发生有关. 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤,解
答写在答题卡上的指定区域内.
(16)(本小题满分12分)
设ABC ∆是锐角三角形,c b a ,,分别是内角A ,B ,C 所对边长,并且
.sin )3sin()3sin(sin 22B B B A +-+=π
π
(Ⅰ)求角A 的值;
(Ⅱ)若72,12==⋅a ,求c b ,(其中c b <).
(17)(本小题满分12分)
设a 为实数,函数.,22)(R x a x e x f x
∈+-=
(I )求)(x f 的单调区间与极值;
(II )求证:当012ln >->x a 且时,.122+->ax x e x
(18)(本小题满分13分)
如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF//AB ,EF ⊥FB ,AB=2EF ,
,90︒=∠BFC BF=FC ,H 为BC 的中点.
(I )求证:FH//平面EDB ;
(II )求证:AC ⊥平面EDB ;
(III )求二面角B —DE —C 的大小.
(19)(本小题满分13分)
已知椭圆E 经过点A (2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率.2
1=e (I )求椭圆E 的方程;
(II )求21AF F ∠的角平分线所在直线l 的方程;
(III )在椭圆E 上是否存在关于直线l 对称的相异两点?若存在,请找出;若不存在,
说明理由.
(20)(本小题满分12分)
设数列,,,21 a a ,n a 中的每一项都不为0.
证明,}{n a 为等差数列的充分必要条件是:对任何N n ∈,都有.1111
113221++=+++n n n a a n a a a a a a
(21)(本小题满分13分)
品酒师需要定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出n 瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序,经过一段时间,等其记忆淡忘之后,再让其品尝这n 瓶酒,并重新按品质优劣为它们排序,这称为一轮测试.根据一轮测试中的两次排序的偏离程度的高低为其评分.
现设n=4,分别以4321,,,a a a a 表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令
.|4||3||2||1|4321a a a a X -+-+-+-=
则X 是对两次排序的偏离程度的一种描述.
(I )写出X 的可能值集合;
(II )假设4321,,,a a a a 等可能地为1,2,3,4的各种排列,求X 的分布列; (III )某品酒师在相继进行的三轮测试中,都有2≤X ,
(i )试按(II )中的结果,计算出现这种现象的概率(假定各轮测试相互独立); (ii )你认为该品酒师的酒味鉴别功能如何?说明理由.。

相关文档
最新文档