青州市第一中学2018-2019学年下学期高二期中数学模拟题

合集下载

青州市一中2018-2019学年下学期高二期中数学模拟题

青州市一中2018-2019学年下学期高二期中数学模拟题

青州市一中2018-2019学年下学期高二期中数学模拟题一、选择题1.已知数列{}n a为等差数列,n S为前项和,公差为d,若201717100201717S S-=,则d的值为()A.120B.110C.10D.20 2.在△ABC中,角A,B,C所对的边分别是a,b,c,若﹣+1=0,则角B的度数是()A.60°B.120°C.150°D.60°或120°3.下列图象中,不能作为函数y=f(x)的图象的是()A.B.C.D.4.一个骰子由1~6六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是()A.6 B.3 C.1 D.25.已知{}n a是等比数列,25124a a==,,则公比q=()A.12-B.-2 C.2 D.12 6.设偶函数f(x)在[0,+∞)单调递增,则使得f(x)>f(2x﹣1)成立的x的取值范围是()A.(,1)B.(﹣∞,)∪(1,+∞)C.(﹣,)D.(﹣∞,﹣)∪(,+∞)7.已知集合23111{1,(),,}122iA i i ii-=-+-+(其中为虚数单位),2{1}B x x=<,则A B=()班级_______________座号______姓名_______________分数__________________________________________________________________________________________________________________A .{1}-B .{1}C .{1,}2- D .{}28. 已知角α的终边经过点(sin15,cos15)-,则2cos α的值为( )A .12 B .12- C. 34 D .0 9. 函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为( ) A .0<a ≤ B .0≤a ≤ C .0<a < D .a >10.某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( ) A .80 B .40 C .60 D .2011.如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )A . =B .∥ C . D .12.设F 1,F 2分别是椭圆+=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于P ,Q 两点,若∠F 1PQ=60°,|PF 1|=|PQ|,则椭圆的离心率为( )A .B .C .D .二、填空题13.若非零向量,满足|+|=|﹣|,则与所成角的大小为 .14.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .15.在正方形ABCD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN ⋅=时,则MN 的取值范围为 .【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.16.定义在(﹣∞,+∞)上的偶函数f (x )满足f (x+1)=﹣f (x ),且f (x )在[﹣1,0]上是增函数,下面五个关于f (x )的命题中: ①f (x )是周期函数;②f (x ) 的图象关于x=1对称; ③f (x )在[0,1]上是增函数; ④f (x )在[1,2]上为减函数;⑤f (2)=f (0). 正确命题的个数是 .17.【泰州中学2018届高三10月月考】设二次函数()2f x ax bx c =++(,,a b c 为常数)的导函数为()f x ',对任意x R ∈,不等式()()f x f x ≥'恒成立,则222b a c+的最大值为__________. 18.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()ln R xf x x a a x =+-∈,若曲线122e e 1x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00f f y y =,则实数a 的取值范围为__________.三、解答题19.已知函数f (x )=•,其中=(2cosx , sin2x ),=(cosx ,1),x ∈R .(1)求函数y=f (x )的单调递增区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=2,a=,且sinB=2sinC ,求△ABC 的面积.20.若函数f (x )=a x (a >0,且a ≠1)在[1,2]上的最大值比最小值大,求a 的值.21.已知函数f (x )=x ﹣alnx (a ∈R )(1)当a=2时,求曲线y=f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.22.已知等差数列{a n}的首项为a,公差为b,且不等式log2(ax2﹣3x+6)>2的解集为{x|x<1或x>b}.(Ⅰ)求数列{a n}的通项公式及前n项和S n公式;(Ⅱ)求数列{}的前n项和T n.23.已知函数f(x)=lnx﹣kx+1(k∈R).(Ⅰ)若x轴是曲线f(x)=lnx﹣kx+1一条切线,求k的值;(Ⅱ)若f(x)≤0恒成立,试确定实数k的取值范围.24.某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,n∈N)的函数解析式f(n);(单位:元),求X的分布列及数学期望.青州市一中2018-2019学年下学期高二期中数学模拟题(参考答案)一、选择题1. 【答案】B 【解析】试题分析:若{}n a 为等差数列,()()111212nn n na S d a n nn -+==+-⨯,则n S n ⎧⎫⎨⎬⎩⎭为等差数列公差为2d ,2017171100,2000100,201717210S S d d ∴-=⨯==,故选B. 考点:1、等差数列的通项公式;2、等差数列的前项和公式. 2. 【答案】A【解析】解:根据正弦定理有:=,代入已知等式得:﹣+1=0,即﹣1=,整理得:2sinAcosB ﹣cosBsinC=sinBcosC , 即2sinAcosB=sinBcosC+cosBsinC=sin (B+C ), 又∵A+B+C=180°, ∴sin (B+C )=sinA , 可得2sinAcosB=sinA , ∵sinA ≠0,∴2cosB=1,即cosB=, 则B=60°. 故选:A .【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.3. 【答案】B【解析】解:根据函数的定义可知,对应定义域内的任意变量x 只能有唯一的y 与x 对应,选项B 中,当x >0时,有两个不同的y 和x 对应,所以不满足y 值的唯一性.所以B 不能作为函数图象.故选B .【点评】本题主要考查函数图象的识别,利用函数的定义是解决本题的关键,注意函数的三个条件:非空数集,定义域内x 的任意性,x 对应y 值的唯一性.4. 【答案】A 【解析】试题分析:根据与相邻的数是1,4,3,而与相邻的数有1,2,5,所以1,3,5是相邻的数,故“?”表示的数是,故选A .考点:几何体的结构特征. 5. 【答案】D 【解析】试题分析:∵在等比数列}{a n 中,41,2a 52==a ,21,81q 253=∴==∴q a a . 考点:等比数列的性质.6. 【答案】A【解析】解:因为f (x )为偶函数,所以f (x )>f (2x ﹣1)可化为f (|x|)>f (|2x ﹣1|) 又f (x )在区间[0,+∞)上单调递增,所以|x|>|2x ﹣1|,即(2x ﹣1)2<x 2,解得<x <1,所以x 的取值范围是(,1), 故选:A .7. 【答案】D 【解析】考点:1.复数的相关概念;2.集合的运算 8. 【答案】B【解析】考点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义. 9. 【答案】B【解析】解:当a=0时,f (x )=﹣2x+2,符合题意当a ≠0时,要使函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数 ∴⇒0<a ≤综上所述0≤a≤故选B【点评】本题主要考查了已知函数再某区间上的单调性求参数a的范围的问题,以及分类讨论的数学思想,属于基础题.10.【答案】B【解析】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,∴三年级要抽取的学生是×200=40,故选:B.【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.11.【答案】D【解析】解:由图可知,,但不共线,故,故选D.【点评】本题考查平行向量与共线向量、相等向量的意义,属基础题.12.【答案】D【解析】解:设|PF1|=t,∵|PF1|=|PQ|,∠F1PQ=60°,∴|PQ|=t,|F1Q|=t,由△F1PQ为等边三角形,得|F1P|=|F1Q|,由对称性可知,PQ垂直于x轴,F2为PQ的中点,|PF2|=,∴|F1F2|=,即2c=,由椭圆定义:|PF1|+|PF2|=2a,即2a=t=t,∴椭圆的离心率为:e===.故选D.二、填空题13.【答案】 90° .【解析】解:∵∴=∴∴α与β所成角的大小为90° 故答案为90°【点评】本题用向量模的平方等于向量的平方来去掉绝对值.14.【答案】12 【解析】考点:分层抽样 15.【答案】[2,2](02x #,02y #)上的点(,)x y 到定点(2,2)22,故MN 的取值范围为[2,2].22yxB16.【答案】 3个 .【解析】解:∵定义在(﹣∞,+∞)上的偶函数f (x ),∴f (x )=f (﹣x );∵f (x+1)=﹣f (x ),∴f (x+1)=﹣f (x ),∴f (x+2)=﹣f (x+1)=f (x ),f (﹣x+1)=﹣f (x ) 即f (x+2)=f (x ),f (﹣x+1)=f (x+1),周期为2,对称轴为x=1 所以①②⑤正确, 故答案为:3个17.【答案】2【解析】试题分析:根据题意易得:()'2f x ax b =+,由()()'f x f x ≥得:()220ax b a x c b +-+-≥在R上恒成立,等价于:0{ 0a >≤,可解得:()22444b ac a a c a ≤-=-,则:222222241441c b ac a aa c a c c a ⎛⎫- ⎪-⎝⎭≤=++⎛⎫+ ⎪⎝⎭,令1,(0)c t t a =->,24422222t y t t t t==≤=++++,故222b ac +的最大值为2. 考点:1.函数与导数的运用;2.恒成立问题;3.基本不等式的运用 18.【答案】1,e⎛⎤-∞ ⎥⎝⎦【解析】结合函数的解析式:122e e 1x x y +=+可得:()()122221'1x x x e e y e +-=+, 令y ′=0,解得:x =0,当x >0时,y ′>0,当x <0,y ′<0,则x ∈(-∞,0),函数单调递增,x ∈(0,+∞)时,函数y 单调递减, 则当x =0时,取最大值,最大值为e , ∴y 0的取值范围(0,e ],结合函数的解析式:()()R lnxf x x a a x =+-∈可得:()22ln 1'x x f x x-+=, x ∈(0,e ),()'0f x >, 则f (x )在(0,e )单调递增, 下面证明f (y 0)=y 0.假设f (y 0)=c >y 0,则f (f (y 0))=f (c )>f (y 0)=c >y 0,不满足f (f (y 0))=y 0. 同理假设f (y 0)=c <y 0,则不满足f (f (y 0))=y 0. 综上可得:f (y 0)=y 0.令函数()ln xf x x a x x =+-=. 设()ln x g x x =,求导()21ln 'xg x x -=,当x ∈(0,e ),g ′(x )>0, g (x )在(0,e )单调递增, 当x =e 时取最大值,最大值为()1g e e=, 当x →0时,a →-∞, ∴a 的取值范围1,e⎛⎤-∞ ⎥⎝⎦.点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.而解答本题(2)问时,关键是分离参数k ,把所求问题转化为求函数的最小值问题.(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.三、解答题19.【答案】【解析】解:(1)f (x )=•=2cos 2x+sin2x=sin2x+cos2x+1=2sin (2x+)+1,令﹣+2k π≤2x+≤+2k π,解得﹣+k π≤x ≤+k π,函数y=f (x )的单调递增区间是[﹣+k π,+k π],(Ⅱ)∵f (A )=2∴2sin (2A+)+1=2,即sin (2A+)= ….又∵0<A <π,∴A=.…∵a=,由余弦定理得a 2=b 2+c 2﹣2bccosA=(b+c )2﹣3bc=7 ①…∵sinB=2sinC ∴b=2c ②…由①②得c2=.…∴S△ABC=.…20.【答案】【解析】解:由题意可得:∵当a>1时,函数f(x)在区间[1,2]上单调递增,∴f(2)﹣f(1)=a2﹣a=a,解得a=0(舍去),或a=.∵当0<a<1时,函数f(x)在区间[1,2]上单调递减,∴f(1)﹣f(2)=a﹣a2=,解得a=0(舍去),或a=.故a的值为或.【点评】本题主要考查指数函数的单调性的应用,体现了分类讨论的数学思想,属于中档题.21.【答案】【解析】解:函数f(x)的定义域为(0,+∞),.(1)当a=2时,f(x)=x﹣2lnx,,因而f(1)=1,f′(1)=﹣1,所以曲线y=f(x)在点A(1,f(1))处的切线方程为y﹣1=﹣(x﹣1),即x+y﹣2=0(2)由,x>0知:①当a≤0时,f′(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x=a.又当x∈(0,a)时,f′(x)<0,当x∈(a,+∞)时,f′(x)>0.从而函数f(x)在x=a处取得极小值,且极小值为f(a)=a﹣alna,无极大值.综上,当a≤0时,函数f(x)无极值;当a>0时,函数f(x)在x=a处取得极小值a﹣alna,无极大值.22.【答案】【解析】解:(Ⅰ)∵不等式log2(ax2﹣3x+6)>2可转化为ax2﹣3x+2>0,所给条件表明:ax2﹣3x+2>0的解集为{x|x<1orx>b},根据不等式解集的意义可知:方程ax2﹣3x+2=0的两根为x1=1、x2=b.利用韦达定理不难得出a=1,b=2.由此知a n=1+2(n﹣1)=2n﹣1,s n=n2…(6分)(Ⅱ)令则=…(12分)【点评】本小题主要考查数列的求和、数列与函数的综合等基础知识,考查运算求解能力,化归与转化思想.属于基础题.23.【答案】【解析】解:(1)函数f(x)的定义域为(0,+∞),f′(x)=﹣k=0,∴x=,由ln﹣1+1=0,可得k=1;(2)当k≤0时,f′(x)=﹣k>0,f(x)在(0,+∞)上是增函数;当k>0时,若x∈(0,)时,有f′(x)>0,若x∈(,+∞)时,有f′(x)<0,则f(x)在(0,)上是增函数,在(,+∞)上是减函数.k≤0时,f(x)在(0,+∞)上是增函数,而f(1)=1﹣k>0,f(x)≤0不成立,故k>0,∵f(x)的最大值为f(),要使f(x)≤0恒成立,则f()≤0即可,即﹣lnk≤0,得k≥1.【点评】本题考查导数的几何意义,考查函数单调区间的求法,确定实数的取值范围,渗透了分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.24.【答案】【解析】解:(I)当n≥20时,f(n)=500×20+200×(n﹣20)=200n+6000,当n≤19时,f(n)=500×n﹣100×(20﹣n)=600n﹣2000,∴.(II)由(1)得f(18)=8800,f(19)=9400,f(20)=10000,f(21)=10200,f(22)=10400,∴P(X=8800)=0.1,P(X=9400)=0.2,P(X=10000)=0.3,P(X=10200)=0.3,P(X=10400)=0.1,X。

青州市一中2018-2019学年高二上学期第二次月考试卷数学

青州市一中2018-2019学年高二上学期第二次月考试卷数学

青州市一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 直线: (为参数)与圆:(为参数)的位置关系是( )A .相离B .相切C .相交且过圆心D .相交但不过圆心 2. 某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天. 甲说:我在1日和3日都有值班; 乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是( )A .2日和5日B .5日和6日C .6日和11日D .2日和11日3. 利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )A .①②B .①C .③④D .①②③④ 4. 已知α,[,]βππ∈-,则“||||βα>”是“βαβαcos cos ||||->-”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力. 5. 设集合M={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R},N={(x ,y )|x 2﹣y=0,x ∈R ,y ∈R},则集合M ∩N 中元素的个数为( ) A .1B .2C .3D .46. 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A .(2,+∞)B .(0,2)C .(4,+∞)D .(0,4)7. 2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7 D.10【命题意图】本题主要考查分层抽样的方法的运用,属容易题.8. 下列说法正确的是( )A .命题“若x 2=1,则x=1”的否命题为“若x 2=1,则x ≠1”B .命题“∃x 0∈R ,x+x 0﹣1<0”的否定是“∀x ∈R ,x 2+x ﹣1>0”C .命题“若x=y ,则sin x=sin y ”的逆否命题为假命题D .若“p 或q ”为真命题,则p ,q 中至少有一个为真命题9. 已知椭圆C :+=1(a >b >0)的左、右焦点为F 1、F 2,离心率为,过F 2的直线l 交C 于A 、B两点,若△AF1B 的周长为4,则C 的方程为( )A .+=1B .+y 2=1C .+=1D .+=110.设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A .1B .2C .4D .611.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,a=5,b=4,cosC=,则△ABC 的面积是( ) A .16B .6C .4D .812.一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为( )A.4πB.25πC. 5πD. 225π+π【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力.二、填空题13.△ABC 中,,BC=3,,则∠C=.14.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ﹣ABC 的体积的最大值为 .15.设x ∈(0,π),则f (x )=cos 2x+sinx 的最大值是 .16.曲线y=x+e x在点A (0,1)处的切线方程是 .17.在等差数列}{n a 中,20161-=a ,其前n 项和为n S ,若2810810=-S S ,则2016S 的值等于 . 【命题意图】本题考查等差数列的通项公式、前n 项和公式,对等差数列性质也有较高要求,属于中等难度. 18.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.三、解答题19.2015年第7届女足世界杯在加拿大埃德蒙顿联邦体育场打响,某连锁分店销售某种纪念品,每件纪念品的成本为4元,并且每件纪念品需向总店交3元的管理费,预计当每件纪念品的售价为x元(7≤x≤9)时,一年的销售量为(x﹣10)2万件.(Ⅰ)求该连锁分店一年的利润L(万元)与每件纪念品的售价x的函数关系式L(x);(Ⅱ)当每件纪念品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值.20.已知f(x)=log3(1+x)﹣log3(1﹣x).(1)判断函数f(x)的奇偶性,并加以证明;(2)已知函数g(x)=log,当x∈[,]时,不等式f(x)≥g(x)有解,求k的取值范围.21.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()2ln R f x x ax x a =-+-∈.(1)若函数()f x 是单调递减函数,求实数a 的取值范围; (2)若函数()f x 在区间()0,3上既有极大值又有极小值,求实数a 的取值范围.22.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述 发言,设发言的女士人数为X ,求X 的分布列和期望.参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,()n a b c d =+++23.已知集合P={x|2x 2﹣3x+1≤0},Q={x|(x ﹣a )(x ﹣a ﹣1)≤0}.(1)若a=1,求P∩Q;(2)若x∈P是x∈Q的充分条件,求实数a的取值范围.24.在极坐标系中,圆C的极坐标方程为:ρ2=4ρ(cosθ+sinθ)﹣6.若以极点O为原点,极轴所在直线为x 轴建立平面直角坐标系.(Ⅰ)求圆C的参数方程;(Ⅱ)在直角坐标系中,点P(x,y)是圆C上动点,试求x+y的最大值,并求出此时点P的直角坐标.青州市一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】【知识点】直线与圆的位置关系参数和普通方程互化 【试题解析】将参数方程化普通方程为:直线:圆:圆心(2,1),半径2. 圆心到直线的距离为:,所以直线与圆相交。

青县一中2018-2019学年下学期高二期中数学模拟题

青县一中2018-2019学年下学期高二期中数学模拟题

青县一中2018-2019学年下学期高二期中数学模拟题一、选择题1. i 是虚数单位,计算i+i 2+i 3=( )A .﹣1B .1C .﹣iD .iA .甲B .乙C .丙D .丁 3. 边长为2的正方形ABCD 的定点都在同一球面上,球心到平面ABCD 的距离为1,则此球的表面积为( ) A .3π B .5πC .12πD .20π4. 已知e 为自然对数的底数,若对任意的1[,1]x e∈,总存在唯一的[1,1]y ∈-,使得2ln 1yx x a y e -++= 成立,则实数a 的取值范围是( )A.1[,]e eB.2(,]e eC.2(,)e +∞D.21(,)e e e+【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力.5. 设k=1,2,3,4,5,则(x+2)5的展开式中x k的系数不可能是()A .10B .40C .50D .806. 设复数z满足(1﹣i )z=2i ,则z=( )A .﹣1+iB .﹣1﹣iC .1+iD .1﹣i7. 将y=cos (2x+φ)的图象沿x 轴向右平移个单位后,得到一个奇函数的图象,则φ的一个可能值为( ) A .B .﹣C .﹣D .8. 若如图程序执行的结果是10,则输入的x 的值是( )A .0B .10C .﹣10D .10或﹣109. 已知函数f (x )=a x ﹣1+log a x 在区间[1,2]上的最大值和最小值之和为a ,则实数a 为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A. B. C .2 D .410.已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦点的距离为3,则|OM|=( )A. B. C .4 D.11.《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布. A.B.C.D.12.如图,设全集U=R ,M={x|x >2},N={0,1,2,3},则图中阴影部分所表示的集合是( )A .{3}B .{0,1}C .{0,1,2}D .{0,1,2,3}二、填空题13.若函数f (x )=x 2﹣2x (x ∈[2,4]),则f (x )的最小值是 .14.若与共线,则y= . 15.在三棱柱ABC ﹣A 1B 1C 1中,底面为棱长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD=1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是 .16.已知数列{a n }的前n 项和为S n ,a 1=1,2a n+1=a n ,若对于任意n ∈N *,当t ∈[﹣1,1]时,不等式x 2+tx+1>S n 恒成立,则实数x 的取值范围为 .17.定义)}(),(min{x g x f 为)(x f 与)(x g 中值的较小者,则函数},2m in{)(2x x x f -=的取值范围是 18.已知z 是复数,且|z|=1,则|z ﹣3+4i|的最大值为 .三、解答题19.(本小题满分10分)选修4-1:几何证明选讲 如图,点,,,A B D E 在O 上,ED 、AB 的延长线交于点C ,AD 、BE 交于点F ,AE EB BC ==.(1)证明:DE BD =;(2)若2DE =,4AD =,求DF 的长.20.设数列{a n }的前n 项和为S n ,a 1=1,S n =na n ﹣n (n ﹣1).(1)求证:数列{a n }为等差数列,并分别求出a n 的表达式;(2)设数列的前n 项和为P n ,求证:P n <;(3)设C n =,T n =C 1+C 2+…+C n ,试比较T n 与的大小.21.(本小题满分10分)已知曲线C 的极坐标方程为2sin cos 10ρθρθ+=,将曲线1cos :sin x C y θθ=⎧⎨=⎩,(α为参数),经过伸缩变换32x xy y '=⎧⎨'=⎩后得到曲线2C .(1)求曲线2C 的参数方程;(2)若点M 的在曲线2C 上运动,试求出M 到曲线C 的距离的最小值.22.设命题p :实数x 满足x 2﹣4ax+3a 2<0,其中a >0;命题q :实数x 满足x 2﹣5x+6≤0(1)若a=1,且q ∧p 为真,求实数x 的取值范围; (2)若p 是q 必要不充分条件,求实数a 的取值范围.23.某游乐场有A、B两种闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为,丙、丁两人各自闯关成功的概率均为.(1)求游戏A被闯关成功的人数多于游戏B被闯关成功的人数的概率;(2)记游戏A、B被闯关总人数为ξ,求ξ的分布列和期望.24.已知三棱柱ABC﹣A1B1C1,底面三角形ABC为正三角形,侧棱AA1⊥底面ABC,AB=2,AA1=4,E为AA1的中点,F为BC的中点(1)求证:直线AF∥平面BEC1(2)求A到平面BEC1的距离.青县一中2018-2019学年下学期高二期中数学模拟题(参考答案)一、选择题1.【答案】A【解析】解:由复数性质知:i2=﹣1故i+i2+i3=i+(﹣1)+(﹣i)=﹣1故选A【点评】本题考查复数幂的运算,是基础题.2.【答案】C【解析】解:∵甲、乙、丙、丁四人的平均环数乙和丙均为8.8环,最大,甲、乙、丙、丁四人的射击环数的方差中丙最小,∴丙的射击水平最高且成绩最稳定,∴从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是丙.故选:C.【点评】本题考查运动会射击项目比赛的最佳人选的确定,是基础题,解题时要认真审题,注意从平均数和方差两个指标进行综合评价.3.【答案】C【解析】解:∵正方形的边长为2,∴正方形的对角线长为=2,∵球心到平面ABCD的距离为1,∴球的半径R==,则此球的表面积为S=4πR2=12π.故选:C.【点评】此题考查了球的体积和表面积,求出球的半径是解本题的关键.4.【答案】B【解析】5.【答案】 C【解析】二项式定理.【专题】计算题.【分析】利用二项展开式的通项公式求出展开式的x k的系数,将k的值代入求出各种情况的系数.【解答】解:(x+2)5的展开式中x k的系数为C5k25﹣k当k﹣1时,C5k25﹣k=C5124=80,当k=2时,C5k25﹣k=C5223=80,当k=3时,C5k25﹣k=C5322=40,当k=4时,C5k25﹣k=C54×2=10,当k=5时,C5k25﹣k=C55=1,故展开式中x k的系数不可能是50故选项为C【点评】本题考查利用二项展开式的通项公式求特定项的系数.6.【答案】A【解析】解:∵复数z满足z(1﹣i)=2i,∴z==﹣1+i故选A.【点评】本题考查代数形式的除法运算,是一个基础题,这种题目若出现一定是一个送分题目,注意数字的运算.7.【答案】D【解析】解:将y=cos(2x+φ)的图象沿x轴向右平移个单位后,得到一个奇函数y=cos=cos(2x+φ﹣)的图象,∴φ﹣=kπ+,即φ=kπ+,k∈Z,则φ的一个可能值为,故选:D.8.【答案】D【解析】解:模拟执行程序,可得程序的功能是计算并输出y=的值,当x<0,时﹣x=10,解得:x=﹣10当x≥0,时x=10,解得:x=10故选:D.9.【答案】A【解析】解:分两类讨论,过程如下:①当a>1时,函数y=a x﹣1和y=log a x在[1,2]上都是增函数,∴f(x)=a x﹣1+log a x在[1,2]上递增,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a2=﹣1,得a=,舍去;②当0<a<1时,函数y=a x﹣1和y=log a x在[1,2]上都是减函数,∴f(x)=a x﹣1+log a x在[1,2]上递减,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a2=﹣1,得a=,符合题意;故选A.10.【答案】B【解析】解:由题意,抛物线关于x轴对称,开口向右,设方程为y2=2px(p>0)∵点M(2,y0)到该抛物线焦点的距离为3,∴2+=3∴p=2∴抛物线方程为y2=4x∵M(2,y0)∴∴|OM|=故选B.【点评】本题考查抛物线的性质,考查抛物线的定义,解题的关键是利用抛物线的定义求出抛物线方程.11.【答案】D【解析】解:设从第2天起每天比前一天多织d尺布m则由题意知,解得d=.故选:D.【点评】本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的通项公式的求解.12.【答案】C【解析】解:由图可知图中阴影部分所表示的集合∁M∩N,∵全集U=R,M={x|x>2},N={0,1,2,3},∴∁M={x|x≤2},∴∁M∩N={0,1,2},故选:C【点评】本题主要考查集合的基本运算,根据条件确定集合的基本关系是解决本题的关键.二、填空题13.【答案】0.【解析】解:f(x))=x2﹣2x=(x﹣1)2﹣1,其图象开口向上,对称抽为:x=1,所以函数f(x)在[2,4]上单调递增,所以f(x)的最小值为:f(2)=22﹣2×2=0.故答案为:0.【点评】本题考查二次函数在闭区间上的最值问题,一般运用数形结合思想进行处理.14.【答案】﹣6.【解析】解:若与共线,则2y﹣3×(﹣4)=0解得y=﹣6故答案为:﹣6【点评】本题考查的知识点是平面向量共线(平行)的坐标表示,其中根据“两个向量若平行,交叉相乘差为零”的原则,构造关于y的方程,是解答本题的关键.15.【答案】.【解析】解:如图所示,分别取AC,A1C1的中点O,O1,连接OO1,取OE=1,连接DE,B1O1,AE.∴BO⊥AC,∵侧棱AA1⊥底面ABC,∴三棱柱ABC﹣A1B1C1是直棱柱.由直棱柱的性质可得:BO⊥侧面ACC1A1.∴四边形BODE是矩形.∴DE⊥侧面ACC1A1.∴∠DAE是AD与平面AA1C1C所成的角,为α,∴DE==OB.AD==.在Rt△ADE中,sinα==.故答案为:.【点评】本题考查了直棱柱的性质、空间角、空间位置关系、等边三角形的性质,考查了推理能力与计算能力,属于中档题.16.【答案】(﹣∞,]∪[,+∞).【解析】解:数列{a n}的前n项和为S n,a1=1,2a n+1=a n,∴数列{a n}是以1为首项,以为公比的等比数列,S n==2﹣()n﹣1,对于任意n∈N*,当t∈[﹣1,1]时,不等式x2+tx+1>S n恒成立,∴x2+tx+1≥2,x2+tx﹣1≥0,令f(t)=tx+x2﹣1,∴,解得:x≥或x≤,∴实数x的取值范围(﹣∞,]∪[,+∞).17.【答案】(],1-∞ 【解析】试题分析:函数(){}2min 2,f x x x =-的图象如下图:观察上图可知:()f x 的取值范围是(],1-∞。

青县高中2018-2019学年高二上学期数学期末模拟试卷含解析

青县高中2018-2019学年高二上学期数学期末模拟试卷含解析

青县高中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则实数a 的取值范围是( ) A .RB .[1,+∞)C .(﹣∞,1]D .[2,+∞)2. 已知全集I={1,2,3,4,5,6},A={1,2,3,4},B={3,4,5,6},那么∁I (A ∩B )等于( ) A .{3,4} B .{1,2,5,6} C .{1,2,3,4,5,6} D .∅3. 已知正方体被过一面对角线和它对面两棱中点的平面截去一个三棱台后的几何体的主(正)视图和俯视图如下,则它的左(侧)视图是( )A .B .C .D .4. △ABC 中,A (﹣5,0),B (5,0),点C 在双曲线上,则=( )A .B .C .D .±5. 函数f (x )=lnx ﹣+1的图象大致为( )A .B .C .D .6. 《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。

问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽AD =3丈,长AB =4丈,上棱EF =2丈,EF ∥平面ABCD .EF 与平面ABCD 的距离为1丈,问它的体积是( ) A .4立方丈B .5立方丈C .6立方丈D .8立方丈7. 江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( )A .10米B .100米C .30米D .20米8. 已知复合命题p ∧(¬q )是真命题,则下列命题中也是真命题的是( )A .(¬p )∨qB .p ∨qC .p ∧qD .(¬p )∧(¬q )9. 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信 息,可确定被抽测的人数及分数在[]90,100内的人数分别为( )A .20,2B .24,4C .25,2D .25,4 10.在空间中,下列命题正确的是( ) A .如果直线m ∥平面α,直线n ⊂α内,那么m ∥nB .如果平面α内的两条直线都平行于平面β,那么平面α∥平面βC .如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m ⊥αD .如果平面α⊥平面β,任取直线m ⊂α,那么必有m ⊥β11.若集合M={y|y=2x ,x ≤1},N={x|≤0},则 N ∩M ( )A .(1﹣1,]B .(0,1]C .[﹣1,1]D .(﹣1,2]12.执行如图所示的程序框图,若输入的分别为0,1,则输出的( )A .4B .16C .27D .36二、填空题13.由曲线y=2x 2,直线y=﹣4x ﹣2,直线x=1围成的封闭图形的面积为 .14.在矩形ABCD 中,=(1,﹣3),,则实数k= . 15.若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数1212||z z z +在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力. 16.已知tan()3αβ+=,tan()24πα+=,那么tan β= .17.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .18.已知椭圆+=1(a >b >0)上一点A 关于原点的对称点为B ,F 为其左焦点,若AF ⊥BF ,设∠ABF=θ,且θ∈[,],则该椭圆离心率e 的取值范围为 .三、解答题19.如图,直四棱柱ABCD ﹣A 1B 1C 1D 1的底面是等腰梯形,AB=CD=AD=1,BC=2,E ,M ,N 分别是所在棱的中点.(1)证明:平面MNE ⊥平面D 1DE ; (2)证明:MN ∥平面D 1DE .20.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.21.一块边长为10cm 的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V 与x 的函数关系式,并求出函数的定义域.22.(本小题满分13分)设1()1f x x=+,数列{}n a 满足:112a =,1(),n n a f a n N *+=∈.(Ⅰ)若12,λλ为方程()f x x =的两个不相等的实根,证明:数列12n n a a λλ⎧⎫-⎨⎬-⎩⎭为等比数列;(Ⅱ)证明:存在实数m ,使得对n N *∀∈,2121222n n n n a a m a a -++<<<<.)23.已知圆C :(x ﹣1)2+y 2=9内有一点P (2,2),过点P 作直线l 交圆C 于A ,B 两点. (1)当l 经过圆心C 时,求直线l 的方程;(2)当弦AB 被点P 平分时,求直线l 的方程.24.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段,,,,,进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下).(Ⅰ)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;(Ⅱ)为分析学生平时的体育活动情况,现从体育成绩在和的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在的概率;(Ⅲ)假设甲、乙、丙三人的体育成绩分别为,且分别在,,三组中,其中.当数据的方差最大时,写出的值.(结论不要求证明)(注:,其中为数据的平均数)青县高中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】解:由于f(x)=x2﹣2ax的对称轴是直线x=a,图象开口向上,故函数在区间(﹣∞,a]为减函数,在区间[a,+∞)上为增函数,又由函数f(x)=x2﹣2ax,x∈[1,+∞)是增函数,则a≤1.故答案为:C2.【答案】B【解析】解:∵A={1,2,3,4},B={3,4,5,6},∴A∩B={3,4},∵全集I={1,2,3,4,5,6},∴∁I(A∩B)={1,2,5,6},故选B.【点评】本题考查交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.3.【答案】A【解析】解:由题意可知截取三棱台后的几何体是7面体,左视图中前、后平面是线段,上、下平面也是线段,轮廓是正方形,AP是虚线,左视图为:故选A.【点评】本题考查简单几何体的三视图的画法,三视图是常考题型,值得重视.4.【答案】D【解析】解:△ABC中,A(﹣5,0),B(5,0),点C在双曲线上,∴A与B为双曲线的两焦点,根据双曲线的定义得:|AC ﹣BC|=2a=8,|AB|=2c=10,则==±=±.故选:D .【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目.5. 【答案】A【解析】解:∵f (x )=lnx ﹣+1,∴f ′(x )=﹣=,∴f (x )在(0,4)上单调递增,在(4,+∞)上单调递减; 且f (4)=ln4﹣2+1=ln4﹣1>0; 故选A .【点评】本题考查了导数的综合应用及函数的图象的应用.6. 【答案】 【解析】解析:选B.如图,设E 、F 在平面ABCD 上的射影分别为P ,Q ,过P ,Q 分别作GH ∥MN ∥AD 交AB 于G ,M ,交DC 于H ,N ,连接EH 、GH 、FN 、MN ,则平面EGH 与平面FMN 将原多面体分成四棱锥E -AGHD 与四棱锥F -MBCN 与直三棱柱EGH -FMN .由题意得GH =MN =AD =3,GM =EF =2,EP =FQ =1,AG +MB =AB -GM =2,所求的体积为V =13(S 矩形AGHD +S 矩形MBCN )·EP +S △EGH ·EF =13×(2×3)×1+12×3×1×2=5立方丈,故选B.7. 【答案】C【解析】解:如图,过炮台顶部A 作水平面的垂线,垂足为B ,设A 处观测小船C 的俯角为45°,设A 处观测小船D 的俯角为30°,连接BC 、BD Rt △ABC 中,∠ACB=45°,可得BC=AB=30米Rt △ABD 中,∠ADB=30°,可得BD=AB=30米在△BCD 中,BC=30米,BD=30米,∠CBD=30°,由余弦定理可得:CD2=BC2+BD2﹣2BCBDcos30°=900∴CD=30米(负值舍去)故选:C【点评】本题给出实际应用问题,求炮台旁边两条小船距的距离.着重考查了余弦定理、空间线面的位置关系等知识,属于中档题.熟练掌握直线与平面所成角的定义与余弦定理解三角形,是解决本题的关键.8.【答案】B【解析】解:命题p∧(¬q)是真命题,则p为真命题,¬q也为真命题,可推出¬p为假命题,q为假命题,故为真命题的是p∨q,故选:B.【点评】本题考查复合命题的真假判断,注意p∨q全假时假,p∧q全真时真.9.【答案】C【解析】考点:茎叶图,频率分布直方图.10.【答案】C【解析】解:对于A,直线m∥平面α,直线n⊂α内,则m与n可能平行,可能异面,故不正确;对于B,如果平面α内的两条相交直线都平行于平面β,那么平面α∥平面β,故不正确;对于C,根据线面垂直的判定定理可得正确;对于D,如果平面α⊥平面β,任取直线m⊂α,那么可能m⊥β,也可能m和β斜交,;故选:C.【点评】本题主要考查命题的真假判断与应用,考查了空间中直线与平面之间的位置关系、平面与平面之间的位置关系,同时考查了推理能力,属于中档题.11.【答案】B【解析】解:由M中y=2x,x≤1,得到0<y≤2,即M=(0,2],由N中不等式变形得:(x﹣1)(x+1)≤0,且x+1≠0,解得:﹣1<x≤1,即N=(﹣1,1],则M∩N=(0,1],故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.12.【答案】D【解析】【知识点】算法和程序框图【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是,则输出的36。

青州市高中2018-2019学年高二上学期数学期末模拟试卷含解析

青州市高中2018-2019学年高二上学期数学期末模拟试卷含解析

青州市高中2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.函数y=的图象大致是()A.B.C.D.2.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.已知集合M={0,1,2},则下列关系式正确的是()∉⊆A.{0}∈M B.{0}M C.0∈M D.0M4.在△ABC中,若2cosCsinA=sinB,则△ABC的形状是()A.直角三角形B.等边三角形C.等腰直角三角形D.等腰三角形5.如图,在平面直角坐标系中,锐角α、β及角α+β的终边分别与单位圆O交于A,B,C三点.分别作AA'、BB'、CC'垂直于x轴,若以|AA'|、|BB'|、|CC'|为三边长构造三角形,则此三角形的外接圆面积为()A.B.C.D.π6.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为()A .B .C .D .7. 如图是一个多面体的三视图,则其全面积为()A .B .C .D .8. 如图所示,阴影部分表示的集合是()A .(∁UB )∩A B .(∁U A )∩BC .∁U (A ∩B )D .∁U (A ∪B )9. 以的焦点为顶点,顶点为焦点的椭圆方程为()A .B .C .D .10.已知,,则“”是“”的( )α[,]βππ∈-||||βα>βαβαcos cos ||||->-A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.11.设a ,b ∈R ,i 为虚数单位,若=3+b i ,则a -b 为( )2+a i1+iA .3B .2C .1D .012.若是两条不同的直线,是三个不同的平面,则下列为真命题的是( ),m n ,,αβγA .若,则,m βαβ⊂⊥m α⊥B .若,则,//m m n αγ= //αβC .若,则,//m m βα⊥αβ⊥D .若,则,αγαβ⊥⊥βγ⊥二、填空题13.正六棱台的两底面边长分别为1cm ,2cm ,高是1cm ,它的侧面积为 .14.已知满足,则的取值范围为____________.,x y 41y xx y x ≥⎧⎪+≤⎨⎪≥⎩22223y xy x x -+15.在中,已知角的对边分别为,且,则角ABC ∆C B A ,,c b a ,,B c C b a sin cos +=B 为 .16.某辆汽车每次加油都把油箱加满,如表记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为 升.17.若双曲线的方程为4x 2﹣9y 2=36,则其实轴长为 .18.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)= .三、解答题19.解关于x 的不等式12x 2﹣ax >a 2(a ∈R ).20.(本小题12分)在多面体中,四边形与是边长均为正方形,平面ABCDEFG ABCD CDEF a CF ⊥,平面,且.ABCD BG ⊥ABCD 24AB BG BH ==(1)求证:平面平面;AGH ⊥EFG (2)若,求三棱锥的体积.4a =G ADE -【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,间在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.21.在长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=1,AA 1=2,E 为BB 1中点.(Ⅰ)证明:AC ⊥D 1E ;(Ⅱ)求DE 与平面AD 1E 所成角的正弦值;(Ⅲ)在棱AD 上是否存在一点P ,使得BP ∥平面AD 1E ?若存在,求DP 的长;若不存在,说明理由.22.已知数列{a n }满足a 1=,a n+1=a n +(n ∈N *).证明:对一切n ∈N *,有(Ⅰ)<;(Ⅱ)0<a n <1. 23.(本小题满分12分)已知平面向量,,.(1,)a x = (23,)b x x =+-()x R ∈(1)若,求;//a b ||a b -(2)若与夹角为锐角,求的取值范围.24.已知函数f (x )=a x (a >0且a ≠1)的图象经过点(2,).(1)求a 的值;(2)比较f (2)与f (b 2+2)的大小;(3)求函数f (x )=a(x ≥0)的值域.青州市高中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】A【解析】解:∵函数∴函数的零点呈周期性出现,且法自变量趋向于正无穷大时,函数值在x轴上下震荡,幅度越来越小,而当自变量趋向于负无穷大时,函数值在x轴上下震荡,幅度越来越大,A选项符合题意;B选项振幅变化规律与函数的性质相悖,不正确;C选项是一个偶函数的图象,而已知的函数不是一个偶函数故不正确;D选项最高点离开原点的距离的变化趋势不符合题意,故不对.综上,A选项符合题意故选A2.【答案】D【解析】解:∵P(sinθcosθ,2cosθ)位于第二象限,∴sinθcosθ<0,cosθ>0,∴sinθ<0,∴θ是第四象限角.故选:D.【点评】本题考查了象限角的三角函数符号,属于基础题.3.【答案】C【解析】解:对于A、B,是两个集合的关系,不能用元素与集合的关系表示,所以不正确;对于C,0是集合中的一个元素,表述正确.对于D,是元素与集合的关系,错用集合的关系,所以不正确.故选C【点评】本题考查运算与集合的关系,集合与集合的关系,考查基本知识的应用4.【答案】D【解析】解:∵A+B+C=180°,∴sinB=sin(A+C)=sinAcosC+sinCcosA=2cosCsinA,∴sinCcosA﹣sinAcosC=0,即sin(C﹣A)=0,∴A=C 即为等腰三角形.故选:D.【点评】本题考查三角形形状的判断,考查和角的三角函数,比较基础.5.【答案】A【解析】(本题满分为12分)解:由题意可得:|AA'|=sinα、|BB'|=sinβ、|CC'|=sin(α+β),设边长为sin(α+β)的所对的三角形内角为θ,则由余弦定理可得,cosθ==﹣cosαcosβ=﹣cosαcosβ=sinαsinβ﹣cosαcosβ=﹣cos(α+β),∵α,β∈(0,)∴α+β∈(0,π)∴sinθ==sin(α+β)设外接圆的半径为R,则由正弦定理可得2R==1,∴R=,∴外接圆的面积S=πR2=.故选:A.【点评】本题主要考查了余弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,正弦定理,圆的面积公式在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题.6. 【答案】C【解析】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C 选项.故选:C .【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义. 7. 【答案】C【解析】解:由三视图可知几何体是一个正三棱柱,底面是一个边长是的等边三角形,侧棱长是,∴三棱柱的面积是3××2=6+,故选C .【点评】本题考查根据三视图求几何体的表面积,考查由三视图确定几何图形,考查三角形面积的求法,本题是一个基础题,运算量比较小. 8. 【答案】A【解析】解:由图象可知,阴影部分的元素由属于集合A ,但不属于集合B 的元素构成,∴对应的集合表示为A ∩∁U B .故选:A . 9. 【答案】D 【解析】解:双曲线的顶点为(0,﹣2)和(0,2),焦点为(0,﹣4)和(0,4).∴椭圆的焦点坐标是为(0,﹣2)和(0,2),顶点为(0,﹣4)和(0,4).∴椭圆方程为.故选D .【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质. 10.【答案】A.【解析】,设,,||||cos cos ||cos ||cos αβαβααββ->-⇔->-()||cos f x x x =-[,]x ππ∈-显然是偶函数,且在上单调递增,故在上单调递减,∴,()f x [0,]π()f x [,0]π-()()||||f f αβαβ>⇔>故是充分必要条件,故选A.11.【答案】【解析】选A.由=3+b i 得,2+a i1+i2+a i =(1+i )(3+b i )=3-b +(3+b )i ,∵a ,b ∈R ,∴,即a =4,b =1,∴a -b =3(或者由a =3+b 直接得出a -b =3),选A.{2=3-b a =3+b)12.【答案】C 【解析】试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A 不正确;两个平面平行,两个平面内的直线不一定平行,所以B 不正确;垂直于同一平面的两个平面不一定垂直,可能相交,也可能平行,所以D 不正确;根据面面垂直的判定定理知C 正确.故选C .考点:空间直线、平面间的位置关系.二、填空题13.【答案】 cm 2 .【解析】解:如图所示,是正六棱台的一部分,侧面ABB 1A 1为等腰梯形,OO 1为高且OO 1=1cm ,AB=1cm ,A 1B 1=2cm .取AB 和A 1B 1的中点C ,C 1,连接OC ,CC 1,O 1C 1,则C 1C 为正六棱台的斜高,且四边形OO 1C 1C 为直角梯形.根据正六棱台的性质得OC=,O 1C 1==,∴CC 1==.又知上、下底面周长分别为c=6AB=6cm ,c ′=6A 1B 1=12cm .∴正六棱台的侧面积:S=.==(cm 2).故答案为:cm 2.【点评】本题考查正六棱台的侧面积的求法,是中档,解题时要认真审题,注意空间思维能力的培养.2,614.【答案】[]【解析】考点:简单的线性规划.【方法点睛】本题主要考查简单的线性规划.与二元一次不等式(组)表示的平面区域有关的非线性目标函数的最值问题的求解一般要结合给定代数式的几何意义来完成.常见代数式的几何意义:(1表示点与原点的距离;(2与点间的距离;(3)可表示点(),x y ()0,0(),x y (),a b y x与点连线的斜率;(4)表示点与点连线的斜率.(),x y ()0,0y b x a --(),x y (),a b 15.【答案】4π【解析】考点:正弦定理.【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用三角形的三角和是,消去多余的变量,从而解出角.三角函数题目在高考中的难度逐渐增加,以考查三︒180B 角函数的图象和性质,以及三角形中的正余弦定理为主,在年全国卷()中以选择题的压轴题出2016现.16.【答案】 8 升.【解析】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量48÷6=8.故答案是:8.17.【答案】 6 .【解析】解:双曲线的方程为4x 2﹣9y 2=36,即为:﹣=1,可得a=3,则双曲线的实轴长为2a=6.故答案为:6.【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题.18.【答案】 0.3 .【解析】离散型随机变量的期望与方差.【专题】计算题;概率与统计.【分析】确定正态分布曲线的对称轴为x=500,根据对称性,可得P (550<ξ<600).【解答】解:∵某校高三学生成绩(总分750分)ξ近似服从正态分布,平均成绩为500分,∴正态分布曲线的对称轴为x=500,∵P (400<ξ<450)=0.3,∴根据对称性,可得P (550<ξ<600)=0.3.故答案为:0.3.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,正确运用正态分布曲线的对称性是关键.三、解答题19.【答案】【解析】解:由12x 2﹣ax ﹣a 2>0⇔(4x+a )(3x ﹣a )>0⇔(x+)(x ﹣)>0,①a >0时,﹣<,解集为{x|x <﹣或x >};②a=0时,x 2>0,解集为{x|x ∈R 且x ≠0};③a <0时,﹣>,解集为{x|x <或x >﹣}.综上,当a >0时,﹣<,解集为{x|x <﹣或x >};当a=0时,x 2>0,解集为{x|x ∈R 且x ≠0};当a <0时,﹣>,解集为{x|x <或x >﹣}.20.【答案】【解析】(1)连接,由题意,知,,∴平面.FH CD BC ⊥CD CF ⊥CD ⊥BCFG 又∵平面,∴.GH ⊂BCFG CD ⊥GH 又∵,∴……………………………2分EF CD A EF GH ⊥由题意,得,,,∴,14BH a =34CH a =12BG a =2222516GH BG BH a =+=,,22225()4FG CF BG BC a =-+=22222516FH CF CH a =+=则,∴.……………………………4分222FH FG GH =+GH FG ⊥又∵,平面.……………………………5分EF FG F = GH ⊥EFGGH⊂AGH AGH⊥EFG∵平面,∴平面平面.……………………………6分21.【答案】【解析】(Ⅰ)证明:连接BD∵ABCD﹣A1B1C1D1是长方体,∴D1D⊥平面ABCD,又AC⊂平面ABCD,∴D1D⊥AC…1分在长方形ABCD中,AB=BC,∴BD⊥AC…2分又BD∩D1D=D,∴AC⊥平面BB1D1D,…3分而D1E⊂平面BB1D1D,∴AC⊥D1E…4分(Ⅱ)解:如图建立空间直角坐标系Dxyz,则A(1,0,0),D1(0,0,2),E(1,1,1),B(1,1,0),∴…5分设平面AD1E的法向量为,则,即令z=1,则…7分∴…8分∴DE与平面AD1E所成角的正弦值为…9分(Ⅲ)解:假设在棱AD上存在一点P,使得BP∥平面AD1E.设P的坐标为(t,0,0)(0≤t≤1),则∵BP∥平面AD1E∴,即,∴2(t﹣1)+1=0,解得,…12分∴在棱AD上存在一点P,使得BP∥平面AD1E,此时DP的长.…13分. 22.【答案】【解析】证明:(Ⅰ)∵数列{a n}满足a1=,a n+1=a n+(n∈N*),∴a n>0,a n+1=a n+>0(n∈N*),a n+1﹣a n=>0,∴,∴对一切n∈N*,<.(Ⅱ)由(Ⅰ)知,对一切k∈N*,<,∴,∴当n≥2时,=>3﹣[1+]=3﹣[1+]=3﹣(1+1﹣)=,∴a n <1,又,∴对一切n ∈N *,0<a n <1.【点评】本题考查不等式的证明,是中档题,解题时要注意裂项求和法和放缩法的合理运用,注意不等式性质的灵活运用.23.【答案】(1)2或2).(1,0)(0,3)- 【解析】试题分析:(1)本题可由两向量平行求得参数,由坐标运算可得两向量的模,由于有两解,因此模有两个值;(2)两向量的夹角为锐角的充要条件是且不共线,由此可得范围.,a b 0a b ⋅> ,a b 试题解析:(1)由,得或,//a b 0x =2x =-当时,,,0x =(2,0)a b -=- ||2a b -=当时,,.2x =-(2,4)a b -=- ||a b -= (2)与夹角为锐角,,,,0a b ∙> 2230x x -++>13x -<<又因为时,,0x =//a b 所以的取值范围是.(1,0)(0,3)- 考点:向量平行的坐标运算,向量的模与数量积.【名师点睛】由向量的数量积可得向量的夹角公式,当为锐角时,,但当cos a b a b θ⋅= cos 0θ>cos 0θ>时,可能为锐角,也可能为0(此时两向量同向),因此两向量夹角为锐角的充要条件是且不同0a b a b⋅> ,a b 向,同样两向量夹角为钝角的充要条件是且不反向.0a b a b⋅< ,a b 24.【答案】【解析】解:(1)f (x )=a x (a >0且a ≠1)的图象经过点(2,),∴a 2=,∴a=(2)∵f(x)=()x在R上单调递减,又2<b2+2,∴f(2)≥f(b2+2),(3)∵x≥0,x2﹣2x≥﹣1,∴≤()﹣1=3∴0<f(x)≤(0,3]。

青州市一中2018-2019学年下学期高二期中数学模拟题

青州市一中2018-2019学年下学期高二期中数学模拟题

a 1 1 1 3 , q 5 , q . a2 8 2 4
考点:1.复数的相关概念;2.集合的运算 8. 【答案】B 【解析】
考 点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义. 9. 【答案】B 【解析】解:当 a=0 时,f(x)=﹣2x+2,符合题意 当 a≠0 时,要使函数 f(x)=ax2+2(a﹣1)x+2 在区间(﹣∞,4]上为减函数 ∴ ⇒0<a≤
7. 已知集合 A {1 i, (
1 i 2 3 1 1 ) , i , i } (其中为虚数单位), B {x x 2 1} ,则 A I B ( 1 i 2 2

第 1 页,共 12 页
Байду номын сангаас
A. {1} D. {
B. {1}
C. {1,
2 } 2
2 } 2
o o
2
A.
=
B.
∥ +
C.
D.
12.设 F1,F2 分别是椭圆
=1(a>b>0)的左、右焦点,过 F2 的直线交椭圆于 P,Q 两点,若∠ )
F1PQ=60°,|PF1|=|PQ|,则椭圆的离心率为( A. B. C. D.
二、填空题
13.若非零向量 , 满足| + |=| ﹣ |,则 与 所成角的大小为 . 14.某公司对 140 名新员工进行培训,新员工中男员工有 80 人,女员工有 60 人,培训结束后用分层抽样的方 法调查培训结果. 已知男员工抽取了 16 人,则女员工应抽取人数为 的取值范围为 和基本运算能力. 16.定义在(﹣∞,+∞)上的偶函数 f(x)满足 f(x+1)=﹣f(x),且 f(x)在[﹣1,0]上是增函数,下面五 个关于 f(x)的命题中: ①f(x)是周期函数; ②f(x) 的图象关于 x=1 对称; . . 15.在正方形 ABCD 中, AB AD 2 , M , N 分别是边 BC , CD 上的动点,当 AM AN 4 时,则 MN 【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想

青州市第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

青州市第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

青州市第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.已知a,b是实数,则“a2b>ab2”是“<”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件2.设D为△ABC所在平面内一点,,则()A.B.C.D.3.“”是“A=30°”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也必要条件4.已知向量||=,•=10,|+|=5,则||=()A.B.C.5D.255.已知AC⊥BC,AC=BC,D满足=t+(1﹣t),若∠ACD=60°,则t的值为()A.B.﹣C.﹣1D.6.如图所示是一个几何体的三视图,其中正视图是一个正三角形,则这个几何体的表面积是()A.B.C.+D.++17.两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为()A.akm B.akm C.2akm D.akm8.双曲线的焦点与椭圆的焦点重合,则m的值等于()A .12B .20C .D .9. △ABC 的三内角A ,B ,C 所对边长分别是a ,b ,c ,设向量,,若,则角B 的大小为( )A .B .C .D .10.设等比数列{a n }的公比q=2,前n 项和为S n ,则=( )A .2B .4C .D .11.如图,为正方体,下面结论:① 平面;② ;③ 平1111D C B A ABCD -//BD 11D CB BD AC ⊥1⊥1AC 面.其中正确结论的个数是()11D CBA .B .C .D .12.某几何体的三视图如图所示,则该几何体为()A .四棱柱B .四棱锥C .三棱台D .三棱柱二、填空题13.设函数有两个不同的极值点,,且对不等式32()(1)f x x a x ax =+++1x 2x 12()()0f x f x +≤恒成立,则实数的取值范围是.14.若函数的定义域为,则函数的定义域是 .()f x []1,2-(32)f x -15.抛物线y 2=﹣8x 上到焦点距离等于6的点的坐标是 .16.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= .17.若的展开式中含有常数项,则n 的最小值等于 .18.一个总体分为A ,B ,C 三层,用分层抽样的方法从中抽取一个容量为15的样本,若B 层中每个个体被抽到的概率都为,则总体的个数为 .三、解答题19.如图,四边形ABCD 与A ′ABB ′都是边长为a 的正方形,点E 是A ′A 的中点,AA ′⊥平面ABCD .(1)求证:A ′C ∥平面BDE ;(2)求体积V A ′﹣ABCD 与V E ﹣ABD 的比值.20.【淮安市淮海中学2018届高三上第一次调研】已知函数.()133x x af x b+-+=+(1)当时,求满足的的取值;1a b ==()3xf x =x (2)若函数是定义在上的奇函数()f x R ①存在,不等式有解,求的取值范围;t R ∈()()2222f t t f t k -<-k ②若函数满足,若对任意,不等式恒成立,()g x ()()()12333xx f x g x -⎡⎤⋅+=-⎣⎦x R ∈()()211g x m g x ≥⋅-求实数的最大值.m21.已知直线l1:(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立直角坐标系,圆C1:ρ2﹣2ρcosθ﹣4ρsinθ+6=0.(1)求圆C1的直角坐标方程,直线l1的极坐标方程;(2)设l1与C1的交点为M,N,求△C1MN的面积.22.已知函数f(x)=ax3+bx2﹣3x在x=±1处取得极值.求函数f(x)的解析式.23.已知f(x)=(1+x)m+(1+2x)n(m,n∈N*)的展开式中x的系数为11.(1)求x2的系数取最小值时n的值.(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和.24.已知函数,.3()1xf x x =+[]2,5x ∈(1)判断的单调性并且证明;()f x (2)求在区间上的最大值和最小值.()f x []2,5青州市第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】解:由a2b>ab2得ab(a﹣b)>0,若a﹣b>0,即a>b,则ab>0,则<成立,若a﹣b<0,即a<b,则ab<0,则a<0,b>0,则<成立,若<则,即ab(a﹣b)>0,即a2b>ab2成立,即“a2b>ab2”是“<”的充要条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键.2.【答案】A【解析】解:由已知得到如图由===;故选:A.【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为.3.【答案】B【解析】解:“A=30°”⇒“”,反之不成立.故选B【点评】本题考查充要条件的判断和三角函数求值问题,属基本题.4.【答案】C【解析】解:∵;∴由得,=;∴;∴.故选:C.5.【答案】A【解析】解:如图,根据题意知,D在线段AB上,过D作DE⊥AC,垂足为E,作DF⊥BC,垂足为F;若设AC=BC=a,则由得,CE=ta,CF=(1﹣t)a;根据题意,∠ACD=60°,∠DCF=30°;∴;即;解得.故选:A.【点评】考查当满足时,便说明D,A,B三点共线,以及向量加法的平行四边形法则,平面向量基本定理,余弦函数的定义.6.【答案】D【解析】解:由三视图可知:该几何体是如图所示的三棱锥,其中侧面PAC⊥面ABC,△PAC是边长为2的正三角形,△ABC是边AC=2,边AC上的高OB=1,PO=为底面上的高.于是此几何体的表面积S=S△PAC+S△ABC+2S△PAB=××2+×2×1+2×××=+1+.故选:D【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.7.【答案】D【解析】解:根据题意,△ABC中,∠ACB=180°﹣20°﹣40°=120°,∵AC=BC=akm,∴由余弦定理,得cos120°=,解之得AB=akm,即灯塔A与灯塔B的距离为akm,故选:D.【点评】本题给出实际应用问题,求海洋上灯塔A与灯塔B的距离.着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题.8.【答案】A【解析】解:椭圆的焦点为(±4,0),由双曲线的焦点与椭圆的重合,可得=4,解得m=12.故选:A.9.【答案】B【解析】解:若,则(a+b)(sinB﹣sinA)﹣sinC(a+c)=0,由正弦定理可得:(a+b)(b﹣a)﹣c(a+c)=0,化为a2+c2﹣b2=﹣ac,∴cosB==﹣,∵B∈(0,π),∴B=,故选:B.【点评】本题考查了正弦定理与余弦定理的应用、向量数量积运算性质,考查了推理能力与计算能力,是一道基础题.10.【答案】C【解析】解:由于q=2,∴∴;故选:C.11.【答案】D【解析】考点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直.12.【答案】A 【解析】试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A.考点:三视图【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹.二、填空题13.【答案】1(,1],22⎡⎤-∞-⎢⎥⎣⎦【解析】试题分析:因为,故得不等式,即12()()0f x f x +≤()()()332212121210x x a x x a x x ++++++≤,由于()()()()()221212121212123120x x x x x x a x x x x a x x ⎡⎤⎡⎤++-+++-++≤⎣⎦⎣⎦,令得方程,因 , 故()()2'321f x x a x a =+++()'0f x =()23210x a x a +++=()2410a a ∆=-+>,代入前面不等式,并化简得,解不等式得或,()12122133x x a a x x ⎧+=-+⎪⎪⎨⎪=⎪⎩()1a +()22520a a -+≥1a ≤-122a ≤≤因此, 当或时, 不等式成立,故答案为.1a ≤-122a ≤≤()()120f x f x +≤1(,1],22⎡⎤-∞-⎢⎥⎣⎦考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.【思路点晴】本题主要考查利用导数研究函数的极值点、韦达定理及高次不等式的解法,属于难题.要解答本题首先利用求导法则求出函数的到函数,令考虑判别式大于零,根据韦达定理求出()f x ()'0f x =的值,代入不等式,得到关于的高次不等式,再利用“穿针引线”即可求得实1212,x x x x +12()()0f x f x +≤数的取值范围.111]14.【答案】1,22⎡⎤⎢⎥⎣⎦【解析】试题分析:依题意得.11322,,22x x ⎡⎤-≤-≤∈⎢⎥⎣⎦考点:抽象函数定义域.15.【答案】 (﹣4,) .【解析】解:∵抛物线方程为y2=﹣8x,可得2p=8,=2.∴抛物线的焦点为F(﹣2,0),准线为x=2.设抛物线上点P(m,n)到焦点F的距离等于6,根据抛物线的定义,得点P到F的距离等于P到准线的距离,即|PF|=﹣m+2=6,解得m=﹣4,∴n2=8m=32,可得n=±4,因此,点P的坐标为(﹣4,).故答案为:(﹣4,).【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标.着重考查了抛物线的定义与标准方程等知识,属于基础题.16.【答案】8或﹣18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案.【解答】解:整理圆的方程为(x﹣1)2++y2=1故圆的圆心为(1,0),半径为1直线与圆相切∴圆心到直线的距离为半径即=1,求得m=8或﹣18故答案为:8或﹣1817.【答案】5【解析】解:由题意的展开式的项为T r+1=C n r(x6)n﹣r()r=C n r=C n r令=0,得n=,当r=4时,n 取到最小值5故答案为:5.【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条件转化成指数为0,得到n的表达式,推测出它的值.18.【答案】 300 .【解析】解:根据分层抽样的特征,每个个体被抽到的概率都相等,所以总体中的个体的个数为15÷=300.故答案为:300.【点评】本题考查了样本容量与总体的关系以及抽样方法的应用问题,是基础题目.三、解答题19.【答案】【解析】(1)证明:设BD 交AC 于M ,连接ME .∵ABCD 为正方形,∴M 为AC 中点,又∵E 为A ′A 的中点,∴ME 为△A ′AC 的中位线,∴ME ∥A ′C .又∵ME ⊂平面BDE ,A ′C ⊄平面BDE ,∴A ′C ∥平面BDE .(2)解:∵V E ﹣ABD ====V A ′﹣ABCD .∴V A ′﹣ABCD :V E ﹣ABD =4:1. 20.【答案】(1)(2)①,②61x =-()1,-+∞【解析】试题解析:(1)由题意,,化简得131331x x x +-+=+()2332310x x ⋅+⋅-=解得,()13133x x =-=舍或所以1x =-(2)因为是奇函数,所以,所以()f x ()()0f x f x -+=1133033x x x x a a b b-++-+-++=++化简并变形得:()()333260x x a b ab --++-=要使上式对任意的成立,则x 30260a b ab -=-=且解得:,因为的定义域是,所以舍去11{{ 33a a b b ==-==-或()f x R 1{ 3a b =-=-所以,所以1,3a b ==()13133x x f x +-+=+①()131********x x x f x +-+⎛⎫==-+ ⎪++⎝⎭对任意有:1212,,x x R x x ∈<()()()()211212121222333313133131x x x x x x f x f x ⎛⎫-⎛⎫ ⎪-=-= ⎪ ⎪++++⎝⎭⎝⎭因为,所以,所以,12x x <21330x x ->()()12f x f x >因此在R 上递减.()f x 因为,所以,()()2222f t t f t k -<-2222t t t k ->-即在时有解220t t k +-<所以,解得:,440t ∆=+>1t >-所以的取值范围为()1,-+∞②因为,所以()()()12333x x f x g x -⎡⎤⋅+=-⎣⎦()()3323x x g x f x --=-即()33x xg x -=+所以()()222233332x x x xg x --=+=+-不等式恒成立,()()211g x m g x ≥⋅-即,()()23323311x x x x m --+-≥⋅+-即:恒成立93333x x x xm --≤+++令,则在时恒成立33,2x x t t -=+≥9m t t ≤+2t ≥令,,()9h t t t =+()29'1h t t =-时,,所以在上单调递减()2,3t ∈()'0h t <()h t ()2,3时,,所以在上单调递增()3,t ∈+∞()'0h t >()h t ()3,+∞所以,所以()()min 36h t h ==6m ≤所以,实数m 的最大值为6 考点:利用函数性质解不等式,不等式恒成立问题【思路点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题。

青州市第一中学2018-2019学年下学期高二期中数学模拟题

青州市第一中学2018-2019学年下学期高二期中数学模拟题

青州市第一中学2018-2019学年下学期高二期中数学模拟题一、选择题1.如果向量满足,且,则的夹角大小为( ) A .30° B .45° C .75°D .135°2. 函数f (x )=3x +x 的零点所在的一个区间是( ) A .(﹣3,﹣2) B .(﹣2,﹣1) C .(﹣1,0) D .(0,1)3. 已知向量=(2,﹣3,5)与向量=(3,λ,)平行,则λ=( )A .B .C .﹣D .﹣4. 在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2﹣b 2=bc ,sinC=2sinB ,则A=( )A .30°B .60°C .120°D .150° 5. “p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要 6. 计算log 25log 53log 32的值为( )A .1B .2C .4D .87. 在三棱柱111ABC A B C -中,已知1AA ⊥平面1=223,2ABC AA BC BAC π=∠=,,,此三棱柱各个顶点都在一个球面上,则球的体积为( ) A .323π B .16π C.253π D .312π8. 给出下列函数: ①f (x )=xsinx ; ②f (x )=e x +x ; ③f (x )=ln(﹣x );∃a >0,使f (x )dx=0的函数是( ) A .①② B .①③C .②③D .①②③9. 在等差数列{a n }中,a 1=2,a 3+a 5=8,则a 7=( )A .3B .6C .7D .810.设集合A={x|﹣2<x <4},B={﹣2,1,2,4},则A ∩B=( ) A .{1,2}B .{﹣1,4}C .{﹣1,2}D .{2,4}11.已知2,0()2, 0ax x x f x x x ⎧+>=⎨-≤⎩,若不等式(2)()f x f x -≥对一切x R ∈恒成立,则a 的最大值为( )A .716-B .916-C .12-D .14-班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________12.曲线y=x 3﹣2x+4在点(1,3)处的切线的倾斜角为( )A .30°B .45°C .60°D .120°二、填空题13.在区间[﹣2,3]上任取一个数a ,则函数f (x )=x 3﹣ax 2+(a+2)x 有极值的概率为 .14.已知实数x ,y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,若目标函数ay x z +=2仅在点)4,3(取得最小值,则a 的取值范围是 .15.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测的线性回归方程为附:回归直线的斜率和截距的最小二乘估计公式分别为: =, =﹣.16.已知f (x )=,则f (﹣)+f ()等于 .17.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2﹣5x+4=0的两个根,则S 6= .18.已知椭圆中心在原点,一个焦点为F (﹣2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .三、解答题19.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y (单位:kg )与它的“相近”作物株数X 之间的关系如下表所示:X 1 2 3 4Y 51 48 4542这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.20.(本小题满分10分)如图⊙O经过△ABC的点B,C与AB交于E,与AC交于F,且AE=AF. (1)求证EF∥BC;(2)过E作⊙O的切线交AC于D,若∠B=60°,EB=EF=2,求ED的长.21.已知函数f(x)=log a(1+x)﹣log a(1﹣x)(a>0,a≠1).(Ⅰ)判断f(x)奇偶性,并证明;(Ⅱ)当0<a<1时,解不等式f(x)>0.22.已知a >0,a ≠1,设p :函数y=log a (x+3)在(0,+∞)上单调递减,q :函数y=x 2+(2a ﹣3)x+1的图象与x 轴交于不同的两点.如果p ∨q 真,p ∧q 假,求实数a 的取值范围.23.(本小题满分10分)选修4-4:坐标系与参数方程 已知椭圆C 的极坐标方程为222123cos 4sin ρθθ=+,点12,F F为其左、右焦点,直线的参数方程为222x y ⎧=+⎪⎪⎨⎪=⎪⎩(为参数,t R ∈). (1)求直线和曲线C 的普通方程;(2)求点12,F F 到直线的距离之和.24.在平面直角坐标系xoy 中,以O 为极点,x 轴的正半轴为极轴的极坐标系中,直线l 的极坐标方程为θ=,曲线C的参数方程为.(1)写出直线l 与曲线C 的直角坐标方程;(2)过点M 平行于直线l 1的直线与曲线C 交于A 、B 两点,若|MA|•|MB|=,求点M 轨迹的直角坐标方程.青州市第一中学2018-2019学年下学期高二期中数学模拟题(参考答案)一、选择题1.【答案】B【解析】解:由题意故,即故两向量夹角的余弦值为=故两向量夹角的取值范围是45°故选B【点评】本题考点是数量积表示两个向量的夹角,考查利用向量内积公式的变形形式求向量夹角的余弦,并进而求出两向量的夹角.属于基础公式应用题.2.【答案】C【解析】解:由函数f(x)=3x+x可知函数f(x)在R上单调递增,又f(﹣1)=﹣1<0,f(0)=30+0=1>0,∴f(﹣1)f(0)<0,可知:函数f(x)的零点所在的区间是(﹣1,0).故选:C.【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题.3.【答案】C【解析】解:∵向量=(2,﹣3,5)与向量=(3,λ,)平行,∴==,∴λ=﹣.故选:C.【点评】本题考查了空间向量平行(共线)的问题,解题时根据两向量平行,对应坐标成比例,即可得出答案.4.【答案】A【解析】解:∵sinC=2sinB,∴c=2b,∵a2﹣b2=bc,∴cosA===∵A是三角形的内角∴A=30°故选A.【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题.5. 【答案】B 【解析】试题分析:因为p 假真时,p q ∨真,此时p ⌝为真,所以,“p q ∨ 真”不能得“p ⌝为假”,而“p ⌝为假”时p 为真,必有“p q ∨ 真”,故选B. 考点:1、充分条件与必要条件;2、真值表的应用. 6. 【答案】A【解析】解:log 25log 53log 32==1.故选:A .【点评】本题考查对数的运算法则的应用,考查计算能力.7. 【答案】A 【解析】考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题. 8. 【答案】B【解析】解:对于①,f (x )=xsinx ,∵(sinx﹣xcosx)′=xsinx,∴xsinxdx=(sinx﹣xcosx)=2sina﹣2acosa,令2sina﹣2acosa=0,∴sina=acosa,又cosa≠0,∴tana=a;画出函数y=tanx与y=x的部分图象,如图所示;在(0,)内,两函数的图象有交点,即存在a>0,使f(x)dx=0成立,①满足条件;对于②,f(x)=e x+x,(e x+x)dx=(e x+x2)=e a﹣e﹣a;令e a﹣e﹣a=0,解得a=0,不满足条件;对于③,f(x)=ln(﹣x)是定义域R上的奇函数,且积分的上下限互为相反数,所以定积分值为0,满足条件;综上,∃a>0,使f(x)dx=0的函数是①③.故选:B.【点评】本题主要考查了定积分运算性质的应用问题,当被积函数为奇函数且积分区间对称时,积分值为0,是综合性题目.9.【答案】B【解析】解:∵在等差数列{a n}中a1=2,a3+a5=8,∴2a4=a3+a5=8,解得a4=4,∴公差d==,∴a7=a1+6d=2+4=6故选:B.10.【答案】A【解析】解:集合A={x|﹣2<x<4},B={﹣2,1,2,4},则A∩B={1,2}.故选:A.【点评】本题考查交集的运算法则的应用,是基础题.11.【答案】C【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题.当0a >(如图1)、0a =(如图2)时,不等式不可能恒成立;当0a <时,如图3,直线2(2)y x =--与函数2y ax x =+图象相切时,916a =-,切点横坐标为83,函数2y ax x =+图象经过点(2,0)时,12a =-,观察图象可得12a ≤-,选C . 12.【答案】B【解析】解:y /=3x 2﹣2,切线的斜率k=3×12﹣2=1.故倾斜角为45°.故选B .【点评】本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,本题属于容易题.二、填空题13.【答案】.【解析】解:在区间[﹣2,3]上任取一个数a , 则﹣2≤a ≤3,对应的区间长度为3﹣(﹣2)=5,若f (x )=x 3﹣ax 2+(a+2)x 有极值,则f'(x )=x 2﹣2ax+(a+2)=0有两个不同的根, 即判别式△=4a 2﹣4(a+2)>0,解得a >2或a <﹣1, ∴﹣2≤a <﹣1或2<a ≤3,则对应的区间长度为﹣1﹣(﹣2)+3﹣2=1+1=2,∴由几何概型的概率公式可得对应的概率P=,故答案为:【点评】本题主要考查几何概型的概率的计算,利用函数取得极值的条件求出对应a 的取值范围是解决本题的关键.14.【答案】(,2)-∞-【解析】不等式组表示的平面区域的角点坐标分别为(1,0),(0,1),(3,4)A B C , ∴2A z =,B z a =,64C z a =+. ∴64264a a a+<⎧⎨+<⎩,解得2a <-.15.【答案】 y=﹣1.7t+68.7【解析】解: =, ==63.6.=(﹣2)×4.4+(﹣1)×1.4+0+1×(﹣1.6)+2×(﹣2.6)=﹣17.=4+1+0+1+2=10.∴=﹣=﹣1.7.=63.6+1.7×3=68.7.∴y关于t的线性回归方程为y=﹣1.7t+68.7.故答案为y=﹣1.7t+68.7.【点评】本题考查了线性回归方程的解法,属于基础题.16.【答案】4.【解析】解:由分段函数可知f()=2×=.f(﹣)=f(﹣+1)=f(﹣)=f(﹣)=f()=2×=,∴f()+f(﹣)=+.故答案为:4.17.【答案】63【解析】解:解方程x2﹣5x+4=0,得x1=1,x2=4.因为数列{a n}是递增数列,且a1,a3是方程x2﹣5x+4=0的两个根,所以a1=1,a3=4.设等比数列{a n}的公比为q,则,所以q=2.则.故答案为63.【点评】本题考查了等比数列的通项公式,考查了等比数列的前n项和,是基础的计算题.18.【答案】.【解析】解:已知∴∴为所求;故答案为:【点评】本题主要考查椭圆的标准方程.属基础题.三、解答题19.【答案】【解析】【专题】概率与统计.【分析】(I)确定三角形地块的内部和边界上的作物株数,分别求出基本事件的个数,即可求它们恰好“相近”的概率;(II)确定变量的取值,求出相应的概率,从而可得年收获量的分布列与数学期望.【解答】解:(I)所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8,∴从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率为=;(II)先求从所种作物中随机选取一株作物的年收获量为Y的分布列∵P(Y=51)=P(X=1),P(48)=P(X=2),P(Y=45)=P(X=3),P(Y=42)=P(X=4)∴只需求出P(X=k)(k=1,2,3,4)即可记n k为其“相近”作物恰有k株的作物株数(k=1,2,3,4),则n1=2,n2=4,n3=6,n4=3由P(X=k)=得P(X=1)=,P(X=2)=,P(X=3)==,P(X=4)==∴所求的分布列为Y 51 48 45 42P数学期望为E(Y)=51×+48×+45×+42×=46【点评】本题考查古典概率的计算,考查分布列与数学期望,考查学生的计算能力,属于中档题.20.【答案】【解析】解:(1)证明:∵AE=AF,∴∠AEF=∠AFE.又B,C,F,E四点共圆,∴∠ABC=∠AFE,∴∠AEF=∠ACB,又∠AEF=∠AFE,∴EF∥BC.(2)由(1)与∠B=60°知△ABC为正三角形,又EB=EF=2,∴AF=FC=2,设DE=x,DF=y,则AD=2-y,在△AED中,由余弦定理得DE2=AE2+AD2-2AD·AE cos A.即x 2=(2-y )2+22-2(2-y )·2×12,∴x 2-y 2=4-2y ,①由切割线定理得DE 2=DF ·DC , 即x 2=y (y +2), ∴x 2-y 2=2y ,②由①②联解得y =1,x =3,∴ED = 3. 21.【答案】【解析】解:(Ⅰ)由,得,即﹣1<x <1,即定义域为(﹣1,1),则f (﹣x )=log a (1﹣x )﹣log a (1+x )=﹣[log a (1+x )﹣log a (1﹣x )]=﹣f (x ),则f (x )为奇函数.(Ⅱ)当0<a <1时,由f (x )>0, 即log a (1+x )﹣log a (1﹣x )>0, 即log a (1+x )>log a (1﹣x ), 则1+x <1﹣x , 解得﹣1<x <0,则不等式解集为:(﹣1,0). 【点评】本题主要考查函数奇偶性的判断以及对数不等式的求解,利用定义法以及对数函数的单调性是解决本题的关键.22.【答案】【解析】解:由题意得 命题P 真时0<a <1,命题q 真时由(2a ﹣3)2﹣4>0解得a >或a <,由p ∨q 真,p ∧q 假,得,p ,q 一真一假即:或,解得≤a <1或a >.【点评】本题考查了复合命题的判断,考查对数函数,二次函数的性质,是一道基础题.23.【答案】(1)直线的普通方程为2y x =-,曲线C 的普通方程为22143x y +=;(2) 【解析】试题分析:(1)由公式cossinxyρθρθ=⎧⎨=⎩可化极坐标方程为直角坐标方程,利用消参法可化参数方程为普通方程;考点:极坐标方程与直角坐标方程的互化,参数方程与普通方程的互化,点到直线的距离公式.24.【答案】【解析】解:(1)直线l的极坐标方程为θ=,所以直线斜率为1,直线l:y=x;曲线C的参数方程为.消去参数θ,可得曲线…(2)设点M(x0,y0)及过点M的直线为由直线l1与曲线C相交可得:,即:,x2+2y2=6表示一椭圆…取y=x+m代入得:3x2+4mx+2m2﹣2=0由△≥0得故点M的轨迹是椭圆x2+2y2=6夹在平行直线之间的两段弧…【点评】本题以直线与椭圆的参数方程为载体,考查直线与椭圆的综合应用,轨迹方程的求法,注意轨迹的范围的求解,是易错点.。

青县第一中学2018-2019学年高二上学期数学期末模拟试卷含解析

青县第一中学2018-2019学年高二上学期数学期末模拟试卷含解析

青县第一中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________ 一、选择题1.若函数1,0,()(2),0,x xf xf x x+≥⎧=⎨+<⎩则(3)f-的值为()A.5 B.1-C.7-D.2 2.在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.若sinC+sin(B﹣A)=sin2A,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形3.如图Rt△O′A′B′是一平面图形的直观图,斜边O′B′=2,则这个平面图形的面积是()A.B.1 C.D.4.若变量x,y满足:,且满足(t+1)x+(t+2)y+t=0,则参数t的取值范围为()A.﹣2<t<﹣B.﹣2<t≤﹣C.﹣2≤t≤﹣D.﹣2≤t<﹣5.某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x的值是()A.2 B.C.D.36.某几何体的三视图如图所示,该几何体的体积是()A.B.C. D.7.满足下列条件的函数)(xf中,)(xf为偶函数的是()A.()||xf e x= B.2()x xf e e= C.2(ln)lnf x x= D.1(ln)f x xx=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.8.在二项式(x3﹣)n(n∈N*)的展开式中,常数项为28,则n的值为()A.12 B.8 C.6 D.49.方程1x-=表示的曲线是()A.一个圆B.两个半圆C.两个圆D.半圆10.已知函数f(x)=sin2(ωx)﹣(ω>0)的周期为π,若将其图象沿x轴向右平移a个单位(a>0),所得图象关于原点对称,则实数a的最小值为()A.πB.C.D.11.设F1,F2是双曲线的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的面积等于()A. B. C.24 D.4812.两个随机变量x,y的取值表为若x,y具有线性相关关系,且y^=bx+2.6,则下列四个结论错误的是()A.x与y是正相关B.当y的估计值为8.3时,x=6C.随机误差e的均值为0D.样本点(3,4.8)的残差为0.6513.若实数x ,y 满足不等式组则2x+4y 的最小值是( )A .6B .﹣6C .4D .214.设集合{}|||2A x R x =∈≤,{}|10B x Z x =∈-≥,则A B =( )A.{}|12x x <≤B.{}|21x x -≤≤C. {}2,1,1,2--D. {}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.15.在△ABC 中,,则这个三角形一定是( )A .等腰三角形B .直角三角形C .等腰直角三角D .等腰或直角三角形二、填空题16.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全 校学生中抽取1名学生,抽到高二年级女生的概率为19.0,先采用分层抽样(按年级分层)在全校抽取 100人,则应在高三年级中抽取的人数等于 .17.某校开设9门课程供学生选修,其中A ,B ,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有 种.18.在(1+2x )10的展开式中,x 2项的系数为 (结果用数值表示).19.如图,E ,F 分别为正方形ABCD 的边BC ,CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是 .三、解答题20.如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D、E分别是AC、AB上的点,且DE∥BC,将△ADE 沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.(Ⅰ)求证:平面A1BC⊥平面A1DC;(Ⅱ)若CD=2,求BD与平面A1BC所成角的正弦值;(Ⅲ)当D点在何处时,A1B的长度最小,并求出最小值.21.设F是抛物线G:x2=4y的焦点.(1)过点P(0,﹣4)作抛物线G的切线,求切线方程;(2)设A,B为抛物线上异于原点的两点,且满足FA⊥FB,延长AF,BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值.22.已知函数f(x)=lnx的反函数为g(x).(Ⅰ)若直线l:y=k1x是函数y=f(﹣x)的图象的切线,直线m:y=k2x是函数y=g(x)图象的切线,求证:l⊥m;(Ⅱ)设a,b∈R,且a≠b,P=g(),Q=,R=,试比较P,Q,R的大小,并说明理由.23.已知定义域为R的函数是奇函数.(1)求f(x);(2)判断函数f(x)的单调性(不必证明);(3)解不等式f(|x|+1)+f(x)<0.24.(本题满分12分)有人在路边设局,宣传牌上写有“掷骰子,赢大奖”.其游戏规则是这样的:你可以在1,2,3,4,5,6点中任选一个,并押上赌注m元,然后掷1颗骰子,连续掷3次,若你所押的点数在3次掷骰子过程中出现1次,2次,3次,那么原来的赌注仍还给你,并且庄家分别给予你所押赌注的1倍,2倍,3倍的奖励.如果3次掷骰子过程中,你所押的点数没出现,那么你的赌注就被庄家没收.(1)求掷3次骰子,至少出现1次为5点的概率;(2)如果你打算尝试一次,请计算一下你获利的期望值,并给大家一个正确的建议.25.(本小题满分12分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,1)cos 2cos a B b A c -=, (Ⅰ)求tan tan AB的值;(Ⅱ)若a =4B π=,求ABC ∆的面积.青县第一中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】D111] 【解析】试题分析:()()()311112f f f -=-==+=. 考点:分段函数求值. 2. 【答案】D【解析】解:∵sinC+sin (B ﹣A )=sin2A , ∴sin (A+B )+sin (B ﹣A )=sin2A , ∴sinAcosB+cosAsinB+sinBcosA ﹣cosBsinA=sin2A ,∴2cosAsinB=sin2A=2sinAcosA , ∴2cosA (sinA ﹣sinB )=0, ∴cosA=0,或sinA=sinB ,∴A=,或a=b ,∴△ABC 为等腰三角形或直角三角形 故选:D . 【点评】本题考查三角形形状的判断,涉及三角函数公式的应用,本题易约掉cosA 而导致漏解,属中档题和易错题.3. 【答案】D【解析】解:∵Rt △O'A'B'是一平面图形的直观图,斜边O'B'=2,∴直角三角形的直角边长是,∴直角三角形的面积是,∴原平面图形的面积是1×2=2故选D .4. 【答案】C【解析】解:作出不等式组对应的平面区域如图:(阴影部分). 由(t+1)x+(t+2)y+t=0得t (x+y+1)+x+2y=0,由,得,即(t+1)x+(t+2)y+t=0过定点M (﹣2,1),则由图象知A ,B 两点在直线两侧和在直线上即可, 即[2(t+2)+t][﹣2(t+1)+3(t+2)+t]≤0,即(3t+4)(2t+4)≤0,解得﹣2≤t≤﹣,即实数t的取值范围为是[﹣2,﹣],故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键.综合性较强,属于中档题.5.【答案】C解析:由三视图可知:原几何体是一个四棱锥,其中底面是一个上、下、高分别为1、2、2的直角梯形,一条长为x的侧棱垂直于底面.则体积为=,解得x=.故选:C.6.【答案】A【解析】解:几何体如图所示,则V=,故选:A.【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键.7.【答案】D.【解析】8.【答案】B【解析】解:展开式通项公式为T r+1=•(﹣1)r•x3n﹣4r,则∵二项式(x3﹣)n(n∈N*)的展开式中,常数项为28,∴,∴n=8,r=6.故选:B.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.9.【答案】A【解析】试题分析:由方程1x-=,即221x-=22x y-++=,所(1)(1)1以方程表示的轨迹为一个圆,故选A.考点:曲线的方程.10.【答案】D【解析】解:由函数f(x)=sin2(ωx)﹣=﹣cos2ωx (ω>0)的周期为=π,可得ω=1,故f(x)=﹣cos2x.若将其图象沿x轴向右平移a个单位(a>0),可得y=﹣cos2(x﹣a)=﹣cos(2x﹣2a)的图象;再根据所得图象关于原点对称,可得2a=kπ+,a=+,k∈Z.则实数a的最小值为.故选:D【点评】本题主要考查三角恒等变换,余弦函数的周期性,函数y=Acos(ωx+φ)的图象变换规律,正弦函数、余弦函数的奇偶性,属于基础题.11.【答案】C【解析】解:F1(﹣5,0),F2(5,0),|F1F2|=10,∵3|PF1|=4|PF2|,∴设|PF2|=x,则,由双曲线的性质知,解得x=6.∴|PF1|=8,|PF2|=6,∴∠F1PF2=90°,∴△PF1F2的面积=.故选C.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.12.【答案】【解析】选D.由数据表知A是正确的,其样本中心为(2,4.5),代入y^=bx+2.6得b=0.95,即y^=0.95x+^=8.3时,则有8.3=0.95x+2.6,∴x=6,∴B正确.根据性质,随机误差e的均值为0,∴C正确.样2.6,当y本点(3,4.8)的残差e^=4.8-(0.95×3+2.6)=-0.65,∴D错误,故选D.13.【答案】B【解析】解:作出不等式组对应的平面区域如图:设z=2x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点C时,直线y=﹣x+的截距最小,此时z最小,由,解得,即C(3,﹣3),此时z=2x+4y=2×3+4×(﹣3)=6﹣12=﹣6.故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键.14.【答案】D【解析】由绝对值的定义及||2x ≤,得22x -≤≤,则{}|22A x x =-≤≤,所以{}1,2A B =,故选D.15.【答案】A 【解析】解:∵,又∵cosC=,∴=,整理可得:b 2=c 2,∴解得:b=c .即三角形一定为等腰三角形. 故选:A .二、填空题16.【答案】25 【解析】考点:分层抽样方法.17.【答案】75【解析】计数原理的应用.【专题】应用题;排列组合.【分析】由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果.【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31C63=60,第二类,若从其他六门中选4门有C64=15,∴根据分类计数加法得到共有60+15=75种不同的方法.故答案为:75.【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏.18.【答案】180【解析】解:由二项式定理的通项公式T r+1=C n r a n﹣r b r可设含x2项的项是T r+1=C7r(2x)r可知r=2,所以系数为C102×4=180,故答案为:180.【点评】本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9.一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等.19.【答案】.【解析】解:由题意图形折叠为三棱锥,底面为△EFC,高为AC,所以三棱柱的体积:××1×1×2=,故答案为:.【点评】本题是基础题,考查几何体的体积的求法,注意折叠问题的处理方法,考查计算能力.三、解答题20.【答案】【解析】【分析】(Ⅰ)在图1中,△ABC中,由已知可得:AC⊥DE.在图2中,DE⊥A1D,DE⊥DC,即可证明DE⊥平面A1DC,再利用面面垂直的判定定理即可证明.(Ⅱ)如图建立空间直角坐标系,设平面A1BC的法向量为,利用,BE与平面所成角的正弦值为.(Ⅲ)设CD=x(0<x<6),则A1D=6﹣x,利用=(0<x<6),即可得出.【解答】(Ⅰ)证明:在图1中,△ABC中,DE∥BC,AC⊥BC,则AC⊥DE,∴在图2中,DE⊥A1D,DE⊥DC,又∵A1D∩DC=D,∴DE⊥平面A1DC,∵DE∥BC,∴BC⊥平面A1DC,∵BC⊂平面A1BC,∴平面A1BC⊥平面A1DC.(Ⅱ)解:如图建立空间直角坐标系:A1(0,0,4)B(3,2,0),C(0,2,0),D(0,0,0),E(2,0,0).则,,设平面A1BC的法向量为则,解得,即则BE与平面所成角的正弦值为(Ⅲ)解:设CD=x(0<x<6),则A1D=6﹣x,在(2)的坐标系下有:A1(0,0,6﹣x),B(3,x,0),∴==(0<x<6),即当x=3时,A1B长度达到最小值,最小值为.21.【答案】【解析】解:(1)设切点.由,知抛物线在Q点处的切线斜率为,故所求切线方程为.即y=x0x﹣x02.因为点P(0,﹣4)在切线上.所以,,解得x0=±4.所求切线方程为y=±2x﹣4.(2)设A(x1,y1),C(x2,y2).由题意知,直线AC的斜率k存在,由对称性,不妨设k>0.因直线AC过焦点F(0,1),所以直线AC的方程为y=kx+1.点A,C的坐标满足方程组,得x2﹣4kx﹣4=0,由根与系数的关系知,|AC|==4(1+k2),因为AC⊥BD,所以BD的斜率为﹣,从而BD的方程为y=﹣x+1.同理可求得|BD|=4(1+),S ABCD=|AC||BD|==8(2+k2+)≥32.当k=1时,等号成立.所以,四边形ABCD面积的最小值为32.【点评】本题考查抛物线的方程和运用,考查直线和抛物线相切的条件,以及直线方程和抛物线的方程联立,运用韦达定理和弦长公式,考查基本不等式的运用,属于中档题.22.【答案】【解析】解:(Ⅰ)∵函数f(x)=lnx的反函数为g(x).∴g(x)=e x.,f(﹣x)=ln(﹣x),则函数的导数g′(x)=e x,f′(x)=,(x<0),设直线m与g(x)相切与点(x1,),则切线斜率k2==,则x1=1,k2=e,设直线l与f(x)相切与点(x2,ln(﹣x2)),则切线斜率k1==,则x2=﹣e,k1=﹣,故k2k1=﹣×e=﹣1,则l⊥m.(Ⅱ)不妨设a>b,∵P﹣R=g()﹣=﹣=﹣<0,∴P<R,∵P﹣Q=g()﹣=﹣==,令φ(x)=2x﹣e x+e﹣x,则φ′(x)=2﹣e x﹣e﹣x<0,则φ(x)在(0,+∞)上为减函数,故φ(x)<φ(0)=0,取x=,则a﹣b﹣+<0,∴P<Q,⇔==1﹣令t(x)=﹣1+,则t′(x)=﹣=≥0,则t(x)在(0,+∞)上单调递增,故t(x)>t(0)=0,取x=a﹣b,则﹣1+>0,∴R>Q,综上,P<Q<R,【点评】本题主要考查导数的几何意义的应用以及利用作差法比较大小,考查学生的运算和推理能力,综合性较强,难度较大.23.【答案】【解析】解:(1)因为f(x)是R上的奇函数,所以f(0)=0,即=0,解得b=1;从而有;…经检验,符合题意;…(2)由(1)知,f(x)==﹣+;由y=2x的单调性可推知f(x)在R上为减函数;…(3)因为f(x)在R上为减函数且是奇函数,从而不等式f(1+|x|)+f(x)<0等价于f(1+|x|)<﹣f(x),即f(1+|x|)<f(﹣x);…又因f(x)是R上的减函数,由上式推得1+|x|>﹣x,…解得x∈R.…24.【答案】【解析】【命题意图】本题考查了独立重复试验中概率的求法,对立事件的基本性质;对化归能力及对实际问题的抽象能力要求较高,属于中档难度.25.【答案】【解析】(本小题满分12分)解:(Ⅰ)由1)cos2cosa Bb A c-=及正弦定理得1)sin cos2sin cos sin sin cos+cos sinA B B A C A B A B-==,(3分)cos3sin cosA B B A=,∴tantanAB=6分)(Ⅱ)tan A B==3Aπ=,sin42sin sin3a BbAππ===,(8分)sin sin()4C A B=+=,(10分)∴ABC∆的面积为111sin2(3222ab C==(12分)。

青县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析

青县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析

青县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. “4<k <6”是“方程表示椭圆”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件2. 经过点()1,1M 且在两轴上截距相等的直线是( ) A .20x y +-= B .10x y +-=C .1x =或1y =D .20x y +-=或0x y -= 3. 函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是( )A .()1,10B .()1,+∞C .()0,1D .()10,+∞4. 在△ABC 中,AB 边上的中线CO=2,若动点P 满足=(sin 2θ)+(cos 2θ)(θ∈R ),则(+)•的最小值是( )A .1B .﹣1C .﹣2D .05. 与函数 y=x 有相同的图象的函数是( ) A .B .C .D .6. 已知a >0,实数x ,y 满足:,若z=2x+y 的最小值为1,则a=( )A .2B .1C .D .7. 为了得到函数的图象,只需把函数y=sin3x 的图象( )A .向右平移个单位长度B .向左平移个单位长度C .向右平移个单位长度 D .向左平移个单位长度8. 函数f (x )=21﹣|x|的值域是( ) A .(0,+∞)B .(﹣∞,2]C .(0,2]D .[,2]9. 已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则=( )A .﹣1B .2C .﹣5D .﹣310.如图,程序框图的运算结果为( )A .6B .24C .20D .12011.函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数,则下列结论成立的是( ) A .f (2)<f (π)<f (5) B .f (π)<f (2)<f (5)C .f (2)<f (5)<f (π)D .f (5)<f (π)<f (2)12.若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( ) A .f (x )为奇函数 B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数二、填空题13.如图,长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角的余弦值是 .14.已知M N 、为抛物线24y x 上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为_________.15.执行如图所示的程序框图,输出的所有值之和是 .【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.16.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,),(3,),则O 点到直线AB的距离是 . 17.的展开式中的系数为 (用数字作答).18.设,x y 满足条件,1,x y a x y +≥⎧⎨-≤-⎩,若z ax y =-有最小值,则a 的取值范围为 .三、解答题19.在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且.(Ⅰ)求角B 的大小;(Ⅱ)若b=6,a+c=8,求△ABC 的面积.20.已知函数f (x )=1+(﹣2<x ≤2).(1)用分段函数的形式表示函数; (2)画出该函数的图象; (3)写出该函数的值域.21.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=(2﹣a )(x ﹣1)﹣2lnx ,g (x )=1xxe -.(a ∈R ,e 为自然对数的底数)(Ⅰ)当a=1时,求f (x )的单调区间; (Ⅱ)若函数f (x )在10,2⎛⎫⎪⎝⎭上无零点,求a 的最小值; (Ⅲ)若对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使得f (x i )=g (x 0)成立,求a 的取值范围.22.(本小题满分12分)已知过抛物线2:2(0)C y px p =>的焦点,斜率为11A x y (,)和22B x y (,)(12x x <)两点,且92AB =. (I )求该抛物线C 的方程;(II )如图所示,设O 为坐标原点,取C 上不同于O 的点S ,以OS 为直径作圆与C 相交另外一点R ,求该圆面积的最小值时点S 的坐标.23.设a >0,是R 上的偶函数.(Ⅰ)求a 的值;(Ⅱ)证明:f (x )在(0,+∞)上是增函数.24.某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.(1)求直方图中的值;(2)求月平均用电量的众数和中位数.1111]青县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】C【解析】解:若方程表示椭圆则6﹣k >0,且k ﹣4>0,且6﹣k ≠k ﹣4 解得4<k <5或5<k <6 故“4<k <6”是“方程表示椭圆”的必要不充分条件故选C【点评】本题考查的知识点是充要条件的定义,椭圆的标准方程,其中根据椭圆的标准方程及椭圆的简单性质,构造不等式组,求出满足条件的参数k 的取值范围,是解答本题的关键.2. 【答案】D 【解析】考点:直线的方程. 3. 【答案】B 【解析】试题分析:函数()f x 有两个零点等价于1xy a ⎛⎫= ⎪⎝⎭与log a y x =的图象有两个交点,当01a <<时同一坐标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当1a >时同一坐标系中做出两函数图象如图(1),由图知有两个交点,不符合题意,故选B.x(1)(2)考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程()y f x=零点个数的常用方法:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数()y f x=零点个数就是方程()0f x=根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)可确定函数的零点个数;③数形结合法:一是转化为两个函数()(),yg x y h x==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),ya y g x==的交点个数的图象的交点个数问题.本题的解答就利用了方法③.4.【答案】C【解析】解:∵=(sin2θ)+(cos2θ)(θ∈R),且sin2θ+cos2θ=1,∴=(1﹣cos2θ)+(cos2θ)=+cos2θ•(﹣),即﹣=cos2θ•(﹣),可得=cos2θ•,又∵cos2θ∈[0,1],∴P在线段OC上,由于AB边上的中线CO=2,因此(+)•=2•,设||=t,t∈[0,2],可得(+)•=﹣2t(2﹣t)=2t2﹣4t=2(t﹣1)2﹣2,∴当t=1时,(+)•的最小值等于﹣2.故选C.【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题.5.【答案】D【解析】解:A:y=的定义域[0,+∞),与y=x的定义域R不同,故A错误B:与y=x的对应法则不一样,故B错误C:=x,(x≠0)与y=x的定义域R不同,故C错误D:,与y=x是同一个函数,则函数的图象相同,故D正确故选D【点评】本题主要考查了函数的三要素:函数的定义域,函数的值域及函数的对应法则的判断,属于基础试题6.【答案】C【解析】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.7.【答案】A【解析】解:把函数y=sin3x的图象向右平移个单位长度,可得y=sin3(x﹣)=sin(3x﹣)的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.8.【答案】C【解析】解:由题意:函数f(x)=21﹣|x|,∵令u=1﹣|x|的值域为[1,﹣∞),则:f(x)=2u是单调增函数,∴当u=1时,函数f(x)取得最大值为2,故得函数f(x)=21﹣|x|的值域(0,2].故选C.【点评】本题考查了复合函数的值域求法.需分解成基本函数,再求解.属于基础题.9.【答案】C【解析】解:由三次函数的图象可知,x=2函数的极大值,x=﹣1是极小值,即2,﹣1是f′(x)=0的两个根,∵f(x)=ax3+bx2+cx+d,∴f′(x)=3ax2+2bx+c,由f′(x)=3ax2+2bx+c=0,得2+(﹣1)==1,﹣1×2==﹣2,即c=﹣6a,2b=﹣3a,即f′(x)=3ax2+2bx+c=3ax2﹣3ax﹣6a=3a(x﹣2)(x+1),则===﹣5,故选:C【点评】本题主要考查函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力.10.【答案】B【解析】解:∵循环体中S=S×n可知程序的功能是:计算并输出循环变量n的累乘值,∵循环变量n的初值为1,终值为4,累乘器S的初值为1,故输出S=1×2×3×4=24,故选:B.【点评】本题考查的知识点是程序框图,其中根据已知分析出程序的功能是解答的关键.11.【答案】B【解析】解:∵函数y=f(x)在[1,3]上单调递减,且函数f(x+3)是偶函数,∴f(π)=f(6﹣π),f(5)=f(1),∵f(6﹣π)<f(2)<f(1),∴f(π)<f(2)<f(5)故选:B【点评】本题考查的知识点是抽象函数的应用,函数的单调性和函数的奇偶性,是函数图象和性质的综合应用,难度中档.12.【答案】C【解析】解:∵对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,∴令x1=x2=0,得f(0)=﹣1∴令x1=x,x2=﹣x,得f(0)=f(x)+f(﹣x)+1,∴f(x)+1=﹣f(﹣x)﹣1=﹣[f(﹣x)+1],∴f(x)+1为奇函数.故选C【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答.二、填空题13.【答案】0【解析】【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线A1E与GF所成的角的余弦值.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,∵AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,∴A1(1,0,2),E(0,0,1),G(0,2,1),F(1,1,0),=(﹣1,0,﹣1),=(1,﹣1,﹣1),=﹣1+0+1=0,∴A1E⊥GF,∴异面直线A1E与GF所成的角的余弦值为0.故答案为:0.14.【答案】20x y --=【解析】解析: 设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=.15.【答案】54【解析】根据程序框图可知循环体共运行了9次,输出的x 是1,3,5,7,9,11,13,15, 17中不是3的倍数的数,所以所有输出值的和54171311751=+++++.16.【答案】 .【解析】解:根据点A ,B 的极坐标分别是(2,),(3,),可得A 、B 的直角坐标分别是(3,)、(﹣,),故AB 的斜率为﹣,故直线AB 的方程为 y ﹣=﹣(x ﹣3),即x+3y ﹣12=0,所以O 点到直线AB 的距离是=,故答案为:.【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题.17.【答案】20【解析】【知识点】二项式定理与性质 【试题解析】通项公式为:令12-3r=3,r=3.所以系数为:故答案为:18.【答案】[1,)+∞ 【解析】解析:不等式,1,x y a x y +≥⎧⎨-≤-⎩表示的平面区域如图所示,由z ax y =-得y ax z =-,当01a ≤<时,平移直线1l 可知,z 既没有最大值,也没有最小值;当1a ≥时,平移直线2l 可知,在点A 处z 取得最小值;当10a -<<时,平移直线3l 可知,z 既没有最大值,也没有最小值;当1a ≤-时,平移直线4l 可知,在点A 处取得最大值,综上所述,1a ≥.三、解答题19.【答案】【解析】解:(Ⅰ)由2bsinA=a ,以及正弦定理,得sinB=,又∵B 为锐角, ∴B=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)由余弦定理b 2=a 2+c 2﹣2accosB , ∴a 2+c 2﹣ac=36,∵a+c=8, ∴ac=,∴S △ABC ==.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣20.【答案】【解析】解:(1)函数f (x )=1+=,(2)函数的图象如图:.(3)函数值域为:[1,3).21.【答案】(1) f (x )的单调减区间为(0,2],单调增区间为[2,+∞);(2) 函数f (x )在10,2⎛⎫ ⎪⎝⎭上无零点,则a 的最小值为2﹣4ln2;(3)a 的范围是3,21e ⎛⎤-∞-⎥-⎝⎦. 【解析】试题分析:(Ⅰ)把a=1代入到f (x )中求出f ′(x ),令f ′(x )>0求出x 的范围即为函数的增区间,令f ′(x )<0求出x 的范围即为函数的减区间; (Ⅱ)f (x )<0时不可能恒成立,所以要使函数在(0,12)上无零点,只需要对x ∈(0,12)时f (x )>0恒成立,列出不等式解出a 大于一个函数,利用导数得到函数的单调性,根据函数的增减性得到这个函数的最大值即可得到a 的最小值;试题解析:(1)当a=1时,f (x )=x ﹣1﹣2lnx ,则f ′(x )=1﹣,由f ′(x )>0,得x >2; 由f ′(x )<0,得0<x <2.故f (x )的单调减区间为(0,2],单调增区间为[2,+∞); (2)因为f (x )<0在区间上恒成立不可能,故要使函数上无零点,只要对任意的,f (x )>0恒成立,即对恒成立.令,则,再令,则,故m (x )在上为减函数,于是,从而,l (x )>0,于是l (x )在上为增函数,所以,故要使恒成立,只要a ∈[2﹣4ln2,+∞),综上,若函数f (x )在10,2⎛⎫⎪⎝⎭上无零点,则a 的最小值为2﹣4ln2; (3)g ′(x )=e 1﹣x ﹣xe 1﹣x =(1﹣x )e 1﹣x ,当x ∈(0,1)时,g ′(x )>0,函数g (x )单调递增; 当x ∈(1,e]时,g ′(x )<0,函数g (x )单调递减. 又因为g (0)=0,g (1)=1,g (e )=e •e 1﹣e >0, 所以,函数g (x )在(0,e]上的值域为(0,1]. 当a=2时,不合题意;当a ≠2时,f ′(x )=,x ∈(0,e]当x=时,f ′(x )=0.由题意得,f (x )在(0,e]上不单调,故,即①又因为,当x →0时,2﹣a >0,f (x )→+∞,,所以,对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2), 使得f (x i )=g (x 0)成立,当且仅当a 满足下列条件:即令h (a )=,则h,令h ′(a )=0,得a=0或a=2,故当a ∈(﹣∞,0)时,h ′(a )>0,函数h (a )单调递增;当时,h ′(a )<0,函数h (a )单调递减.所以,对任意,有h (a )≤h (0)=0, 即②对任意恒成立. 由③式解得:.④综合①④可知,当a 的范围是3,21e ⎛⎤-∞-⎥-⎝⎦时,对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使f (x i )=g (x 0)成立. 22.【答案】【解析】【命题意图】本题考查抛物线标准方程、抛物线定义、直线和抛物线位置关系等基础知识,意在考查转化与化归和综合分析问题、解决问题的能力.因为12y y ≠,20y ≠,化简得12216y y y ⎛⎫=-+⎪⎝⎭,所以221222256323264y y y =++≥=, 当且仅当2222256y y =即22y =16,24y =?时等号成立. 圆的直径OS=因为21y ≥64,所以当21y =64即1y =±8时,min OS =S 的坐标为168±(,). 23.【答案】【解析】解:(1)∵a >0,是R 上的偶函数. ∴f (﹣x )=f (x ),即+=,∴+a •2x =+,2x (a ﹣)﹣(a ﹣)=0,∴(a ﹣)(2x+)=0,∵2x+>0,a >0,∴a ﹣=0,解得a=1,或a=﹣1(舍去), ∴a=1;(2)证明:由(1)可知,∴∵x >0, ∴22x >1, ∴f'(x )>0,∴f (x )在(0,+∞)上单调递增;【点评】本题主要考查函数单调性的判断问题.函数的单调性判断一般有两种方法,即定义法和求导判断导数正负.24.【答案】(1)0.0075x =;(2)众数是230,中位数为224. 【解析】试题分析:(1)利用频率之和为一可求得的值;(2)众数为最高小矩形底边中点的横坐标;中位数左边和右边的直方图的面积相等可求得中位数.1试题解析:(1)由直方图的性质可得(0.0020.00950.0110.01250.0050.0025)201x ++++++⨯=, ∴0.0075x =.考点:频率分布直方图;中位数;众数.。

青县第一中学2018-2019学年下学期高二期中数学模拟题

青县第一中学2018-2019学年下学期高二期中数学模拟题

青县第一中学2018-2019学年下学期高二期中数学模拟题一、选择题1. 运行如图所示的程序框图,输出的所有实数对(x ,y )所对应的点都在某函数图象上,则该函数的解析式为()A .y=x+2B .y=C .y=3x D .y=3x 32. 在△ABC 中,b=,c=3,B=30°,则a=( )A .B .2C .或2D .23. 下列命题中的说法正确的是()A .命题“若x 2=1,则x=1”的否命题为“若x 2=1,则x ≠1”B .“x=﹣1”是“x 2+5x ﹣6=0”的必要不充分条件C .命题“∃x ∈R ,使得x 2+x+1<0”的否定是:“∀x ∈R ,均有x 2+x+1>0”D .命题“在△ABC 中,若A >B ,则sinA >sinB ”的逆否命题为真命题4. 长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=2AB=2AD ,G 为CC 1中点,则直线A 1C 1与BG 所成角的大小是()A .30°B .45°C .60°D .120°5. 下列说法正确的是()A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________6. 下列命题中正确的是( )(A )若为真命题,则为真命题p q ∨p q ∧( B ) “,”是“”的充分必要条件0a >0b >2b aa b+≥ (C ) 命题“若,则或”的逆否命题为“若或,则”2320x x -+=1x =2x =1x ≠2x ≠2320x x -+≠(D ) 命题,使得,则,使得:p 0R x ∃∈20010x x +-<:p ⌝R x ∀∈210x x +-≥7. 某几何体的三视图如图所示,该几何体的体积是( )A .B .C .D .8. 某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为()A .20+2πB .20+3πC .24+3πD .24+3π9. 如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A .B .C .D .10.一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A .3B .C .2D .611.已知向量=(﹣1,3),=(x ,2),且,则x=( )A .B .C .D . 12.设直线x=t 与函数f (x )=x 2,g (x )=lnx 的图象分别交于点M ,N ,则当|MN|达到最小时t 的值为( )A .1B .C .D .二、填空题13.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点P 、Q 分别是B 1C 1、CC 1的中点,则直线A 1P 与DQ 的位置关系是 .(填“平行”、“相交”或“异面”)14.若正数m 、n 满足mn ﹣m ﹣n=3,则点(m ,0)到直线x ﹣y+n=0的距离最小值是 . 15.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= .16.若复数在复平面内对应的点关于轴对称,且,则复数在复平面内对应的点在12,z z y 12i z =-1212||z z z +()A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力.17.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=3cm ,AA 1=2cm ,则四棱锥A ﹣BB 1D 1D 的体积为 cm 3.18.设,在区间上任取一个实数,曲线在点处的切线斜率为,则随机()xxf x e =[0,3]0x ()f x ()00,()x f x k 事件“”的概率为_________.0k <三、解答题19.已知椭圆Γ:(a >b >0)过点A (0,2),离心率为,过点A 的直线l 与椭圆交于另一点M.(I )求椭圆Γ的方程;(II )是否存在直线l ,使得以AM 为直径的圆C ,经过椭圆Γ的右焦点F 且与直线 x ﹣2y ﹣2=0相切?若存在,求出直线l 的方程;若不存在,请说明理由. 20.若函数f (x )=sin ωxcos ωx+sin 2ωx ﹣(ω>0)的图象与直线y=m (m 为常数)相切,并且切点的横坐标依次构成公差为π的等差数列.(Ⅰ)求ω及m 的值;(Ⅱ)求函数y=f (x )在x ∈[0,2π]上所有零点的和. 21.已知函数f (x )=ax 2﹣2lnx .(Ⅰ)若f (x )在x=e 处取得极值,求a 的值;(Ⅱ)若x ∈(0,e],求f (x )的单调区间;(Ⅲ) 设a >,g (x )=﹣5+ln ,∃x 1,x 2∈(0,e],使得|f (x 1)﹣g (x 2)|<9成立,求a 的取值范围.22.(本题满分12分)设向量,,,记函数))cos (sin 23,(sin x x x a -=)cos sin ,(cos x x x b +=R x ∈.x f ⋅=)((1)求函数的单调递增区间;)(x f (2)在锐角中,角的对边分别为.若,,求面积的最大值.ABC ∆C B A ,,c b a ,,21)(=A f 2=a ABC ∆23.已知等差数列{a n}的首项和公差都为2,且a1、a8分别为等比数列{b n}的第一、第四项.(1)求数列{a n}、{b n}的通项公式;(2)设c n=,求{c n}的前n项和S n.24.我市某校某数学老师这学期分别用m,n两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的数学期末考试成绩,并作出茎叶图如图所示.(Ⅰ)依茎叶图判断哪个班的平均分高?(Ⅱ)现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,用ξ表示抽到成绩为86分的人数,求ξ的分布列和数学期望;(Ⅲ)学校规定:成绩不低于85分的为优秀,作出分类变量成绩与教学方式的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”下面临界值表仅供参考:P(K2≥k)0.150.100.050.0250.0100.0050.001k 2.072 2.706 3.841 5.024 6.6357.87910.828(参考公式:K2=,其中n=a+b+c+d)青县第一中学2018-2019学年下学期高二期中数学模拟题(参考答案)一、选择题1.【答案】C【解析】解:模拟程序框图的运行过程,得;该程序运行后输出的是实数对(1,3),(2,9),(3,27),(4,81);这组数对对应的点在函数y=3x的图象上.故选:C.【点评】本题考查了程序框图的应用问题,是基础题目.2.【答案】C【解析】解:∵b=,c=3,B=30°,∴由余弦定理b2=a2+c2﹣2accosB,可得:3=9+a2﹣3,整理可得:a2﹣3a+6=0,∴解得:a=或2.故选:C.3.【答案】D【解析】解:A.命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,故A错误,B.由x2+5x﹣6=0得x=1或x=﹣6,即“x=﹣1”是“x2+5x﹣6=0”既不充分也不必要条件,故B错误,C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1≤0﹣5,故C错误,D.若A>B,则a>b,由正弦定理得sinA>sinB,即命题“在△ABC中,若A>B,则sinA>sinB”的为真命题.则命题的逆否命题也成立,故D正确故选:D.【点评】本题主要考查命题的真假判断,涉及四种命题的关系以及充分条件和必要条件的判断,含有量词的命题的否定,比较基础.4.【答案】C【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AA1=2AB=2AD=2,A1(1,0,2),C1(0,1,2),=(﹣1,1,0),B(1,1,0),G(0,1,1),=(﹣1,0,1),设直线A1C1与BG所成角为θ,cosθ===,∴θ=60°.故选:C.【点评】本题考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力,解题时要注意向量法的合理运用. 5. 【答案】C 【解析】考点:几何体的结构特征.6. 【答案】D【解析】对选项A ,因为为真命题,所以中至少有一个真命题,若一真一假,则为假命题,p q ∨,p q p q ∧故选项A 错误;对于选项B ,的充分必要条件是同号,故选项B 错误;命题“若2b aa b+≥,a b ,则或”的逆否命题为“若且,则”,故选项C 错误;2320x x -+=1x =2x =1x ≠2x ≠2320x x -+≠故选D .7. 【答案】A【解析】解:几何体如图所示,则V=,故选:A .【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键. 8. 【答案】B【解析】由已知中的三视图,可知该几何体是一个以侧视图为底面的柱体(一个半圆柱与正方体的组合体),其底面面积S=2×2+=4+,底面周长C=2×3+=6+π,高为2,故柱体的侧面积为:(6+π)×2=12+2π,故柱体的全面积为:12+2π+2(4+)=20+3π,故选:B【点评】本题考查的知识点是简单空间图象的三视图,其中根据已知中的视图分析出几何体的形状及棱长是解答的关键.9.【答案】C【解析】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,其中只有(3,4,5)为勾股数,故这3个数构成一组勾股数的概率为.故选:C10.【答案】C【解析】解:∵椭圆的半焦距为2,离心率e=,∴c=2,a=3,∴b=∴2b=2.故选:C.【点评】本题主要考查了椭圆的简单性质.属基础题.11.【答案】C【解析】解:∵,∴3x+2=0,解得x=﹣.故选:C.【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题.12.【答案】D【解析】解:设函数y=f(x)﹣g(x)=x2﹣lnx,求导数得=当时,y′<0,函数在上为单调减函数,当时,y′>0,函数在上为单调增函数所以当时,所设函数的最小值为所求t的值为故选D【点评】可以结合两个函数的草图,发现在(0,+∞)上x2>lnx恒成立,问题转化为求两个函数差的最小值对应的自变量x的值.二、填空题13.【答案】 相交 【分析】由已知得PQ∥A1D,PQ=A1D,从而四边形A1DQP是梯形,进而直线A1P与DQ相交.【解析】解:∵在正方体ABCD﹣A1B1C1D1中,点P、Q分别是B1C1、CC1的中点,∴PQ∥A1D,∵直线A1P与DQ共面,∴PQ=A1D,∴四边形A1DQP是梯形,∴直线A1P与DQ相交.故答案为:相交.【点评】本题考查两直线位置关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.14.【答案】 .【解析】解:点(m,0)到直线x﹣y+n=0的距离为d=,∵mn﹣m﹣n=3,∴(m﹣1)(n﹣1)=4,(m﹣1>0,n﹣1>0),∴(m﹣1)+(n﹣1)≥2,∴m+n≥6,则d=≥3.故答案为:.【点评】本题考查了的到直线的距离公式,考查了利用基本不等式求最值,是基础题.15.【答案】8或﹣18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案.【解答】解:整理圆的方程为(x ﹣1)2++y 2=1故圆的圆心为(1,0),半径为1直线与圆相切∴圆心到直线的距离为半径即=1,求得m=8或﹣18故答案为:8或﹣1816.【答案】D 【解析】17.【答案】 6 【解析】解:过A 作AO ⊥BD 于O ,AO 是棱锥的高,所以AO==,所以四棱锥A ﹣BB 1D 1D 的体积为V==6.故答案为:6. 18.【答案】35【解析】解析:本题考查几何概率的计算与切线斜率的计算.,由得,,∴随机事件“”的概率为.0001()x x k f x e -'==0()0f x '<01x >0k <23三、解答题19.【答案】【解析】解:(Ⅰ)依题意得,解得,所以所求的椭圆方程为;(Ⅱ)假设存在直线l ,使得以AM 为直径的圆C ,经过椭圆后的右焦点F 且与直线x ﹣2y ﹣2=0相切,因为以AM 为直径的圆C 过点F ,所以∠AFM=90°,即AF ⊥AM ,又=﹣1,所以直线MF的方程为y=x﹣2,由消去y,得3x2﹣8x=0,解得x=0或x=,所以M(0,﹣2)或M(,),(1)当M为(0,﹣2)时,以AM为直径的圆C为:x2+y2=4,则圆心C到直线x﹣2y﹣2=0的距离为d==≠,所以圆C与直线x﹣2y﹣2=0不相切;(2)当M为(,)时,以AM为直径的圆心C为(),半径为r===,所以圆心C到直线x﹣2y﹣2=0的距离为d==r,所以圆心C与直线x﹣2y﹣2=0相切,此时k AF=,所以直线l的方程为y=﹣+2,即x+2y﹣4=0,综上所述,存在满足条件的直线l,其方程为x+2y﹣4=0.【点评】本题考直线与圆锥曲线的关系、椭圆方程的求解,考查直线与圆的位置关系,考查分类讨论思想,解决探究型问题,往往先假设存在,由此推理,若符合题意,则存在,否则不存在.20.【答案】【解析】解:(Ⅰ)∵f(x)=sinωxcosωx+sin2ωx﹣=ωx+(1﹣cos2ωx)﹣=2ωx﹣2ωx=sin(2ωx﹣),依题意得函数f(x)的周期为π且ω>0,∴2ω=,∴ω=1,则m=±1;(Ⅱ)由(Ⅰ)知f(x)=sin(2ωx﹣),∴,∴.又∵x∈[0,2π],∴.∴y=f(x)在x∈[0,2π]上所有零点的和为.【点评】本题主要考查三角函数两倍角公式、辅助角公式、等差数列公差、等差数列求和方法、函数零点基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归转化思想,是中档题. 21.【答案】【解析】解:(Ⅰ)f′(x)=2ax﹣=由已知f′(e)=2ae﹣=0,解得a=.经检验,a=符合题意.(Ⅱ)1)当a≤0时,f′(x)<0,∴f(x)在(0,e]上是减函数.2)当a>0时,①若<e,即,则f(x)在(0,)上是减函数,在(,e]上是增函数;②若≥e,即0<a≤,则f(x)在[0,e]上是减函数.综上所述,当a≤时,f(x)的减区间是(0,e],当a>时,f(x)的减区间是,增区间是.(Ⅲ)当时,由(Ⅱ)知f(x)的最小值是f()=1+lna;易知g(x)在(0,e]上的最大值是g(e)=﹣4﹣lna;注意到(1+lna)﹣(﹣4﹣lna)=5+2lna>0,故由题设知,解得<a<e2.故a的取值范围是(,e2)22.【答案】【解析】【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,难度为中等.23.【答案】【解析】解:(1)由等差数列通项公式可知:a n=2+(n﹣1)2=2n,当n=1时,2b1=a1=2,b4=a8=16, (3)设等比数列{b n}的公比为q,则, (4)∴q=2, (5)∴ (6)(2)由(1)可知:log2b n+1=n (7)∴ (9)∴,∴{c n}的前n项和S n,S n=. (12)【点评】本题考查等比数列及等差数列通项公式,等比数列性质,考查“裂项法”求数列的前n项和,考查计算能力,属于中档题.24.【答案】【解析】【专题】综合题;概率与统计.【分析】(Ⅰ)依据茎叶图,确定甲、乙班数学成绩集中的范围,即可得到结论;(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2,求出概率,可得ξ的分布列和数学期望;(Ⅲ)根据成绩不低于85分的为优秀,可得2×2列联表,计算K2,从而与临界值比较,即可得到结论.【解答】解:(Ⅰ)由茎叶图知甲班数学成绩集中于60﹣9之间,而乙班数学成绩集中于80﹣100分之间,所以乙班的平均分高┉┉┉┉┉┉(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2P(ξ=0)==,P(ξ=1)==,P(ξ=2)==┉┉┉┉┉┉则随机变量ξ的分布列为ξ012P数学期望Eξ=0×+1×+2×=人﹣┉┉┉┉┉┉┉┉(Ⅲ)2×2列联表为甲班乙班合计优秀31013不优秀171027合计202040┉┉┉┉┉K2=≈5.584>5.024因此在犯错误的概率不超过0.025的前提下可以认为成绩优秀与教学方式有关.┉┉【点评】本题考查概率的计算,考查独立性检验知识,考查学生的计算能力,属于中档题.。

青州市第一中学校2018-2019学年高二上学期第二次月考试卷数学

青州市第一中学校2018-2019学年高二上学期第二次月考试卷数学

青州市第一中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 命题“∀a ∈R ,函数y=π”是增函数的否定是( )A .“∀a ∈R ,函数y=π”是减函数B .“∀a ∈R ,函数y=π”不是增函数C .“∃a ∈R ,函数y=π”不是增函数D .“∃a ∈R ,函数y=π”是减函数2. 如图所示,已知四边形ABCD 的直观图是一个边长为的正方形,则原图形的周长为( )A .B . C. D .3. 设函数)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f ,且有2')()(2x x xf x f >+,则不等式0)2(4)2014()2014(2>--++f x f x 的解集为A 、)2012,(--∞ B 、)0,2012(- C 、)2016,(--∞ D 、)0,2016(-4. 为得到函数的图象,只需将函数y=sin2x 的图象( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位5. 阅读如图所示的程序框图,运行相应的程序.若该程序运行后输出的结果不大于20,则输入的整数i 的最大值为( )A.3 B.4 C.5 D.66.设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)﹣lnx]=e+1,若x0是方程f(x)﹣f′(x)=e的一个解,则x0可能存在的区间是()A.(0,1) B.(e﹣1,1)C.(0,e﹣1)D.(1,e)7.设集合A={x|x+2=0},集合B={x|x2﹣4=0},则A∩B=()A.{﹣2} B.{2} C.{﹣2,2} D.∅8.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.抛物线y=x2的焦点坐标为()A.(0,)B.(,0)C.(0,4) D.(0,2)10.如图可能是下列哪个函数的图象()A .y=2x ﹣x 2﹣1B .y=C .y=(x 2﹣2x )e xD .y=11.复数2(2)i z i-=(i 为虚数单位),则z 的共轭复数为( )A .43i -+B .43i +C .34i +D .34i -【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力.12.如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为( )A .30B .50C .75D .150二、填空题13.已知平面上两点M (﹣5,0)和N (5,0),若直线上存在点P 使|PM|﹣|PN|=6,则称该直线为“单曲型直线”,下列直线中:①y=x+1 ②y=2 ③y=x ④y=2x+1是“单曲型直线”的是 .14.如图,是一回形图,其回形通道的宽和OB 1的长均为1,回形线与射线OA 交于A 1,A 2,A 3,…,若从点O 到点A 3的回形线为第1圈(长为7),从点A 3到点A 2的回形线为第2圈,从点A 2到点A 3的回形线为第3圈…依此类推,第8圈的长为 .15.已知[2,2]a ∈-,不等式2(4)420x a x a +-+->恒成立,则的取值范围为__________.16.曲线在点(3,3)处的切线与轴x 的交点的坐标为 .17.若与共线,则y= .18.设函数,若用表示不超过实数m 的最大整数,则函数的值域为 .三、解答题19.设函数f (x )=|x ﹣a|﹣2|x ﹣1|. (Ⅰ)当a=3时,解不等式f (x )≥1;(Ⅱ)若f (x )﹣|2x ﹣5|≤0对任意的x ∈[1,2]恒成立,求实数a 的取值范围.20.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()()3231312f x x k x kx =-+++,其中.k R ∈(1)当3k =时,求函数()f x 在[]0,5上的值域;(2)若函数()f x 在[]1,2上的最小值为3,求实数k 的取值范围.21.如图,三棱柱ABC ﹣A 1B 1C 1中,AB=AC=AA 1=BC 1=2,∠AA 1C 1=60°,平面ABC 1⊥平面AA 1C 1C ,AC 1与A 1C 相交于点D .(1)求证:BD ⊥平面AA 1C 1C ; (2)求二面角C 1﹣AB ﹣C 的余弦值.22.双曲线C与椭圆+=1有相同的焦点,直线y=x为C的一条渐近线.求双曲线C的方程.23.如图,椭圆C1:的离心率为,x轴被曲线C2:y=x2﹣b截得的线段长等于椭圆C1的短轴长.C2与y轴的交点为M,过点M的两条互相垂直的直线l1,l2分别交抛物线于A、B两点,交椭圆于D、E两点,(Ⅰ)求C1、C2的方程;(Ⅱ)记△MAB,△MDE的面积分别为S1、S2,若,求直线AB的方程.24.(本题12分)正项数列{}n a 满足2(21)20n n a n a n ---=. (1)求数列{}n a 的通项公式n a ; (2)令1(1)n nb n a =+,求数列{}n b 的前项和为n T .青州市第一中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:因为全称命题的否定是特称命题,所以,命题“∀a∈R,函数y=π”是增函数的否定是:“∃a∈R,函数y=π”不是增函数.故选:C.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.2.【答案】C【解析】考点:平面图形的直观图.3.【答案】C.【解析】由,得:,即,令,则当时,,即在是减函数,,,,在是减函数,所以由得,,即,故选4.【答案】A【解析】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选A.【点评】本题主要考查诱导公式和三角函数的平移.属基础题.5.【答案】B【解析】解:模拟执行程序框图,可得s=0,n=0满足条件n<i,s=2,n=1满足条件n<i,s=5,n=2满足条件n<i,s=10,n=3满足条件n<i,s=19,n=4满足条件n<i,s=36,n=5所以,若该程序运行后输出的结果不大于20,则输入的整数i的最大值为4,有n=4时,不满足条件n<i,退出循环,输出s的值为19.故选:B.【点评】本题主要考查了循环结构的程序框图,属于基础题.6.【答案】D【解析】解:由题意知:f(x)﹣lnx为常数,令f(x)﹣lnx=k(常数),则f(x)=lnx+k.由f[f(x)﹣lnx]=e+1,得f(k)=e+1,又f(k)=lnk+k=e+1,所以f(x)=lnx+e,f′(x)=,x>0.∴f(x)﹣f′(x)=lnx﹣+e,令g(x)=lnx﹣+﹣e=lnx﹣,x∈(0,+∞)可判断:g(x)=lnx﹣,x∈(0,+∞)上单调递增,g(1)=﹣1,g(e)=1﹣>0,∴x0∈(1,e),g(x0)=0,∴x0是方程f(x)﹣f′(x)=e的一个解,则x0可能存在的区间是(1,e)故选:D.【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题.7.【答案】A【解析】解:由A中的方程x+2=0,解得x=﹣2,即A={﹣2};由B中的方程x2﹣4=0,解得x=2或﹣2,即B={﹣2,2},则A∩B={﹣2}.故选A【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.8.【答案】D【解析】解:∵P(sinθcosθ,2cosθ)位于第二象限,∴sinθcosθ<0,cosθ>0,∴sinθ<0,∴θ是第四象限角.故选:D.【点评】本题考查了象限角的三角函数符号,属于基础题.9.【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,∴焦点坐标为(0,2).故选:D.【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.10.【答案】C【解析】解:A中,∵y=2x﹣x2﹣1,当x趋向于﹣∞时,函数y=2x的值趋向于0,y=x2+1的值趋向+∞,∴函数y=2x﹣x2﹣1的值小于0,∴A中的函数不满足条件;B中,∵y=sinx是周期函数,∴函数y=的图象是以x轴为中心的波浪线,∴B中的函数不满足条件;C中,∵函数y=x2﹣2x=(x﹣1)2﹣1,当x<0或x>2时,y>0,当0<x<2时,y<0;且y=e x>0恒成立,∴y=(x2﹣2x)e x的图象在x趋向于﹣∞时,y>0,0<x<2时,y<0,在x趋向于+∞时,y趋向于+∞;∴C中的函数满足条件;D中,y=的定义域是(0,1)∪(1,+∞),且在x∈(0,1)时,lnx<0,∴y=<0,∴D中函数不满足条件.故选:C.【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目.11.【答案】A【解析】根据复数的运算可知43)2()2(22--=--=-=i i i ii z ,可知z 的共轭复数为43z i =-+,故选A.12.【答案】B【解析】解:该几何体是四棱锥, 其底面面积S=5×6=30, 高h=5,则其体积V=S ×h=30×5=50.故选B .二、填空题13.【答案】 ①② .【解析】解:∵|PM|﹣|PN|=6∴点P 在以M 、N 为焦点的双曲线的右支上,即,(x >0).对于①,联立,消y 得7x 2﹣18x ﹣153=0,∵△=(﹣18)2﹣4×7×(﹣153)>0,∴y=x+1是“单曲型直线”.对于②,联立,消y 得x 2=,∴y=2是“单曲型直线”.对于③,联立,整理得144=0,不成立.∴不是“单曲型直线”.对于④,联立,消y 得20x 2+36x+153=0,∵△=362﹣4×20×153<0∴y=2x+1不是“单曲型直线”.故符合题意的有①②. 故答案为:①②.【点评】本题考查“单曲型直线”的判断,是中档题,解题时要认真审题,注意双曲线定义的合理运用.14.【答案】 63 .【解析】解:∵第一圈长为:1+1+2+2+1=7 第二圈长为:2+3+4+4+2=15第三圈长为:3+5+6+6+3=23 …第n 圈长为:n+(2n ﹣1)+2n+2n+n=8n ﹣1 故n=8时,第8圈的长为63, 故答案为:63.【点评】本题主要考查了归纳推理,解答的一般步骤是:先通过观察第1,2,3,…圈的长的情况发现某些相同性质,再从相同性质中推出一个明确表达的一般性结论,最后将一般性结论再用于特殊情形.15.【答案】(,0)(4,)-∞+∞ 【解析】试题分析:把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可,设关于的函数44)2(24)4(x f(x)y 22+-+-=-+-+==x x a x a x a 对任意的2],[-2a ∈,当-2a =时,044)42(x )2(f(a)y 2>++--+=-==x f ,即086x )2(2>+-=-x f ,解得4x 2x ><或;当2a =时,044)42(x )2(y 2>-+-+==x f ,即02x )2(2>-=x f ,解得2x 0x ><或,∴的取值范围是{x|x 0x 4}<>或;故答案为:(,0)(4,)-∞+∞.考点:换主元法解决不等式恒成立问题.【方法点晴】本题考查了含有参数的一元二次不等式得解法,解题时应用更换主元的方法,使繁杂问题变得简洁,是易错题.把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可.关键是换主元需要满足两个条件,一是函数必须是关于这个量的一次函数,二是要有这个量的具体范围.16.【答案】 (,0) .【解析】解:y ′=﹣,∴斜率k=y ′|x=3=﹣2,∴切线方程是:y ﹣3=﹣2(x ﹣3), 整理得:y=﹣2x+9,令y=0,解得:x=,故答案为:.【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题.17.【答案】﹣6.【解析】解:若与共线,则2y﹣3×(﹣4)=0解得y=﹣6故答案为:﹣6【点评】本题考查的知识点是平面向量共线(平行)的坐标表示,其中根据“两个向量若平行,交叉相乘差为零”的原则,构造关于y的方程,是解答本题的关键.18.【答案】{0,1}.【解析】解:=[﹣]+[+]=[﹣]+[+],∵0<<1,∴﹣<﹣<,<+<,①当0<<时,0<﹣<,<+<1,故y=0;②当=时,﹣=0,+=1,故y=1;③<<1时,﹣<﹣<0,1<+<,故y=﹣1+1=0;故函数的值域为{0,1}.故答案为:{0,1}.【点评】本题考查了学生的化简运算能力及分类讨论的思想应用.三、解答题19.【答案】【解析】解:(Ⅰ)f (x )≥1,即|x ﹣3|﹣|2x ﹣2|≥1 x时,3﹣x+2x ﹣2≥1,∴x ≥0,∴0≤x ≤1;1<x <3时,3﹣x ﹣2x+2≥1,∴x ≤,∴1<x ≤;x ≥3时,x ﹣3﹣2x+2≥1,∴x ≤﹣2∴1<x ≤,无解,…所以f (x )≥1解集为[0,].…(Ⅱ)当x ∈[1,2]时,f (x )﹣|2x ﹣5|≤0可化为|x ﹣a|≤3, ∴a ﹣3≤x ≤a+3,…∴,…∴﹣1≤a ≤4.…20.【答案】(1)[]1,21;(2)2k ≥.【解析】试题分析:(1)求导,再利用导数工具即可求得正解;(2)求导得()'f x =()()31x x k --,再分1k ≤和1k >两种情况进行讨论;试题解析:(1)解:3k = 时,()32691f x x x x =-++则()()()23129313f x x x x x =-+=--' 令()0f x '=得1,3x x ==列表由上表知函数()f x 的值域为[]1,21(2)方法一:()()()()2331331f x x k x k x x k =-++=--'①当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]1,2单调递增 所以()()()min 31113132f x f k k ==-+++=即53k =(舍) ②当2k ≥时,[]()1,2,'0x f x ∀∈≤,函数()f x 在区间[]1,2单调递减所以()()()min 28613213f x f k k ==-++⋅+= 符合题意③当12k <<时,当[)1,x k ∈时,()'0f x <()f x 区间在[)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增所以()()()322min 313132f x f k k k k k ==-+++= 化简得:32340k k -+=即()()2120k k +-=所以1k =-或2k =(舍)注:也可令()3234g k k k =-+则()()23632g k k k k k =='-- 对()()1,2,0k g k ∀∈'≤()3234g k k k =-+在()1,2k ∈单调递减所以()02g k <<不符合题意综上所述:实数k 取值范围为2k ≥方法二:()()()()2331331f x x k x k x x k =-++=--'①当2k ≥时,[]()1,2,'0x f x ∀∈≤,函数()f x 在区间[]1,2单调递减 所以()()()min 28613213f x f k k ==-++⋅+= 符合题意 …………8分 ②当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]1,2单调递增所以()()min 23f x f <=不符合题意③当12k <<时,当[)1,x k ∈时,()'0f x <()f x 区间在[)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增 所以()()()min 23f x f k f =<=不符合题意综上所述:实数k 取值范围为2k ≥ 21.【答案】【解析】解:(1)∵四边形AA 1C 1C 为平行四边形,∴AC=A 1C 1,∵AC=AA1,∴AA1=A1C1,∵∠AA1C1=60°,∴△AA1C1为等边三角形,同理△ABC1是等边三角形,∵D为AC1的中点,∴BD⊥AC1,∵平面ABC1⊥平面AA1C1C,平面ABC1∩平面AA1C1C=AC1,BD⊂平面ABC1,∴BD⊥平面AA1C1C.(2)以点D为坐标原点,DA、DC、DB分别为x轴、y轴、z轴,建立空间直角坐标系,平面ABC1的一个法向量为,设平面ABC的法向量为,由题意可得,,则,所以平面ABC的一个法向量为=(,1,1),∴cosθ=.即二面角C1﹣AB﹣C的余弦值等于.【点评】本题在三棱柱中求证线面垂直,并求二面角的平面角大小.着重考查了面面垂直的判定与性质、棱柱的性质、余弦定理、二面角的定义及求法等知识,属于中档题.22.【答案】【解析】解:设双曲线方程为(a>0,b>0)由椭圆+=1,求得两焦点为(﹣2,0),(2,0),∴对于双曲线C:c=2.又y=x为双曲线C的一条渐近线,∴=解得a=1,b=,∴双曲线C的方程为.23.【答案】【解析】解:(Ⅰ)∵椭圆C1:的离心率为,∴a2=2b2,令x2﹣b=0可得x=±,∵x轴被曲线C2:y=x2﹣b截得的线段长等于椭圆C1的短轴长,∴2=2b,∴b=1,∴C1、C2的方程分别为,y=x2﹣1;…(Ⅱ)设直线MA的斜率为k1,直线MA的方程为y=k1x﹣1与y=x2﹣1联立得x2﹣k1x=0 ∴x=0或x=k1,∴A(k1,k12﹣1)同理可得B(k2,k22﹣1)…∴S1=|MA||MB|=•|k1||k2|…y=k1x﹣1与椭圆方程联立,可得D(),同理可得E()…∴S2=|MD||ME|=••…∴若则解得或∴直线AB的方程为或…【点评】本题考查椭圆的标准方程,考查直线与抛物线、椭圆的位置关系,考查三角形面积的计算,联立方程,确定点的坐标是关键.24.【答案】(1)n a n 2=;(2)=n T )1(2+n n.考点:1.一元二次方程;2.裂项相消法求和.。

青州市第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析

青州市第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析

青州市第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 在区间上恒正,则的取值范围为()()()22f x ax a =-+[]0,1A . B .C .D .以上都不对0a>0a <<02a <<2. 在数列中,,,则该数列中相邻两项的乘积为负数的项是{}n a 115a =*1332()n n a a n N +=-∈()A .和B .和C .和D .和21a 22a 22a 23a 23a 24a 24a 25a 3. 设复数(是虚数单位),则复数( )1i z =-i 22z z +=A.B.C.D. 1i -1i +2i +2i-【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力.4. 在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2﹣b 2=bc ,sinC=2sinB ,则A=()A .30°B .60°C .120°D .150°5. 《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布.A .B .C .D .6. 在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,a=5,b=4,cosC=,则△ABC 的面积是( )A .16B .6C .4D .87. 已知不等式组表示的平面区域为,若内存在一点,使,则的取值⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x D D 00(,)P x y 001ax y +<a 范围为()A .B .C .D .(,2)-∞(,1)-∞(2,)+∞(1,)+∞8. △ABC 的三内角A ,B ,C 所对边长分别是a ,b ,c ,设向量,,若,则角B 的大小为( )A .B .C .D .9. △ABC 中,A (﹣5,0),B (5,0),点C 在双曲线上,则=()A .B .C .D .±10.已知M={(x ,y )|y=2x },N={(x ,y )|y=a},若M ∩N=∅,则实数a 的取值范围为( )A .(﹣∞,1)B .(﹣∞,1]C .(﹣∞,0)D .(﹣∞,0]11.已知向量=(1,2),=(m ,1),如果向量与平行,则m 的值为( )A .B .C .2D .﹣212.设a >0,b >0,若是5a 与5b 的等比中项,则+的最小值为()A .8B .4C .1D .二、填空题13.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .14.已知函数y=f (x ),x ∈I ,若存在x 0∈I ,使得f (x 0)=x 0,则称x 0为函数y=f (x )的不动点;若存在x 0∈I ,使得f (f (x 0))=x 0,则称x 0为函数y=f (x )的稳定点.则下列结论中正确的是 .(填上所有正确结论的序号)①﹣,1是函数g (x )=2x 2﹣1有两个不动点;②若x 0为函数y=f (x )的不动点,则x 0必为函数y=f (x )的稳定点;③若x 0为函数y=f (x )的稳定点,则x 0必为函数y=f (x )的不动点;④函数g (x )=2x 2﹣1共有三个稳定点;⑤若函数y=f (x )在定义域I 上单调递增,则它的不动点与稳定点是完全相同. 15.如果椭圆+=1弦被点A (1,1)平分,那么这条弦所在的直线方程是 .16.如果实数满足等式,那么的最大值是 .,x y ()2223x y -+=yx17.已知圆O :x 2+y 2=1和双曲线C :﹣=1(a >0,b >0).若对双曲线C 上任意一点A (点A 在圆O 外),均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD ,则﹣= .18.给出下列命题:(1)命题p :;菱形的对角线互相垂直平分,命题q :菱形的对角线相等;则p ∨q 是假命题(2)命题“若x 2﹣4x+3=0,则x=3”的逆否命题为真命题(3)“1<x <3”是“x 2﹣4x+3<0”的必要不充分条件(4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p :.其中叙述正确的是 .(填上所有正确命题的序号)三、解答题19.已知函数(a ≠0)是奇函数,并且函数f (x )的图象经过点(1,3),(1)求实数a ,b 的值;(2)求函数f (x )的值域.20.(本小题满分10分)求经过点的直线,且使到它的距离相等的直线()1,2P ()()2,3,0,5A B -方程.21.已知椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切.(Ⅰ)求椭圆C的方程;(Ⅱ)如图,若斜率为k(k≠0)的直线l与x轴,椭圆C顺次交于P,Q,R(P点在椭圆左顶点的左侧)且∠RF1F2=∠PF1Q,求证:直线l过定点,并求出斜率k的取值范围.22.已知数列{a n}是等比数列,S n为数列{a n}的前n项和,且a3=3,S3=9(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log2,且{b n}为递增数列,若c n=,求证:c1+c2+c3+…+c n<1.23.已知抛物线C:x2=2y的焦点为F.(Ⅰ)设抛物线上任一点P(m,n).求证:以P为切点与抛物线相切的方程是mx=y+n;(Ⅱ)若过动点M(x0,0)(x0≠0)的直线l与抛物线C相切,试判断直线MF与直线l的位置关系,并予以证明.24.已知x2﹣y2+2xyi=2i,求实数x、y的值.青州市第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】C 【解析】试题分析:由题意得,根据一次函数的单调性可知,函数在区间上恒正,则()()22f x ax a =-+[]0,1,即,解得,故选C.(0)0(1)0f f >⎧⎨>⎩2020a a a >⎧⎨-+>⎩02a <<考点:函数的单调性的应用.2. 【答案】C 【解析】考点:等差数列的通项公式.3. 【答案】A 【解析】4. 【答案】A 【解析】解:∵sinC=2sinB ,∴c=2b ,∵a 2﹣b 2=bc ,∴cosA===∵A 是三角形的内角∴A=30°故选A .【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题. 5. 【答案】D【解析】解:设从第2天起每天比前一天多织d 尺布m 则由题意知,解得d=.故选:D .【点评】本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的通项公式的求解. 6. 【答案】D【解析】解:∵a=5,b=4,cosC=,可得:sinC==,∴S △ABC=absinC==8.故选:D . 7. 【答案】A【解析】解析:本题考查线性规划中最值的求法.平面区域如图所示,先求的最小值,当D z ax y =+12a ≤时,,在点取得最小值;当时,,在点取12a -≥-z ax y =+1,0A ()a 12a >12a -<-z ax y =+11,33B ()得最小值.若内存在一点,使,则有的最小值小于,∴或1133a +D 00(,)P x y 001ax y +<z ax y =+1121a a ⎧≤⎪⎨⎪<⎩,∴,选A .1211133a a ⎧>⎪⎪⎨⎪+<⎪⎩2a <8. 【答案】B 【解析】解:若,则(a+b )(sinB ﹣sinA )﹣sinC (a+c)=0,由正弦定理可得:(a+b )(b ﹣a )﹣c (a+c )=0,化为a 2+c 2﹣b 2=﹣ac ,∴cosB==﹣,∵B∈(0,π),∴B=,故选:B.【点评】本题考查了正弦定理与余弦定理的应用、向量数量积运算性质,考查了推理能力与计算能力,是一道基础题.9.【答案】D【解析】解:△ABC中,A(﹣5,0),B(5,0),点C在双曲线上,∴A与B为双曲线的两焦点,根据双曲线的定义得:|AC﹣BC|=2a=8,|AB|=2c=10,则==±=±.故选:D.【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目.10.【答案】D【解析】解:如图,M={(x,y)|y=2x},N={(x,y)|y=a},若M∩N=∅,则a≤0.∴实数a的取值范围为(﹣∞,0].故选:D.【点评】本题考查交集及其运算,考查了数形结合的解题思想方法,是基础题.11.【答案】B【解析】解:向量,向量与平行,可得2m=﹣1.解得m=﹣.故选:B.12.【答案】B【解析】解:∵是5a与5b的等比中项,∴5a•5b=()2=5,即5a+b=5,则a+b=1,则+=(+)(a+b)=1+1++≥2+2=2+2=4,当且仅当=,即a=b=时,取等号,即+的最小值为4,故选:B【点评】本题主要考查等比数列性质的应用,以及利用基本不等式求最值问题,注意1的代换. 二、填空题13.【答案】 .【解析】解:不等式组的可行域为:由题意,A(1,1),∴区域的面积为=(x3)=,由,可得可行域的面积为:1=,∴坐标原点与点(1,1)的连线的斜率大于1,坐标原点与与坐标原点连线的斜率大于1的概率为:=故答案为:.【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积. 14.【答案】 ①②⑤ 【解析】解:对于①,令g(x)=x,可得x=或x=1,故①正确;对于②,因为f(x0)=x0,所以f(f(x0))=f(x0)=x0,即f(f(x0))=x0,故x0也是函数y=f(x)的稳定点,故②正确;对于③④,g(x)=2x2﹣1,令2(2x2﹣1)2﹣1=x,因为不动点必为稳定点,所以该方程一定有两解x=﹣,1,由此因式分解,可得(x﹣1)(2x+1)(4x2+2x﹣1)=0还有另外两解,故函数g(x)的稳定点有﹣,1,,其中是稳定点,但不是不动点,故③④错误;对于⑤,若函数y=f(x)有不动点x0,显然它也有稳定点x0;若函数y=f(x)有稳定点x0,即f(f(x0))=x0,设f(x0)=y0,则f(y0)=x0即(x0,y0)和(y0,x0)都在函数y=f(x)的图象上,假设x0>y0,因为y=f(x)是增函数,则f(x0)>f(y0),即y0>x0,与假设矛盾;假设x0<y0,因为y=f(x)是增函数,则f(x0)<f(y0),即y0<x0,与假设矛盾;故x0=y0,即f(x0)=x0,y=f(x)有不动点x0,故⑤正确.故答案为:①②⑤.【点评】本题考查命题的真假的判断,新定义的应用,考查分析问题解决问题的能力.15.【答案】 x+4y﹣5=0 .【解析】解:设这条弦与椭圆+=1交于P(x1,y1),Q(x2,y2),由中点坐标公式知x1+x2=2,y1+y2=2,把P(x1,y1),Q(x2,y2)代入x2+4y2=36,得,①﹣②,得2(x1﹣x2)+8(y1﹣y2)=0,∴k==﹣,∴这条弦所在的直线的方程y﹣1=﹣(x﹣1),即为x+4y﹣5=0,由(1,1)在椭圆内,则所求直线方程为x+4y﹣5=0.故答案为:x+4y﹣5=0.【点评】本题考查椭圆的方程的运用,运用点差法和中点坐标和直线的斜率公式是解题的关键.16.【解析】考点:直线与圆的位置关系的应用. 1【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方法,本题的解答中把的最值转化为直线与圆相切是解答的关键,属于中档试题.y x17.【答案】 1 .【解析】解:若对双曲线C 上任意一点A (点A 在圆O 外),均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD ,可通过特殊点,取A (﹣1,t ),则B (﹣1,﹣t ),C (1,﹣t ),D (1,t ),由直线和圆相切的条件可得,t=1.将A (﹣1,1)代入双曲线方程,可得﹣=1.故答案为:1.【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题.18.【答案】 (4) 【解析】解:(1)命题p :菱形的对角线互相垂直平分,为真命题.命题q :菱形的对角线相等为假命题;则p ∨q 是真命题,故(1)错误,(2)命题“若x 2﹣4x+3=0,则x=3或x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,(3)由x 2﹣4x+3<0得1<x <3,则“1<x <3”是“x 2﹣4x+3<0”的充要条件,故(3)错误,(4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p :.正确,故答案为:(4)【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题. 三、解答题19.【答案】【解析】解:(1)∵函数是奇函数,则f (﹣x )=﹣f (x )∴,∵a ≠0,∴﹣x+b=﹣x ﹣b ,∴b=0(3分)又函数f (x )的图象经过点(1,3),∴f (1)=3,∴,∵b=0,∴a=2(6分)(2)由(1)知(7分)当x >0时,,当且仅当,即时取等号(10分)当x <0时,,∴当且仅当,即时取等号(13分)综上可知函数f (x )的值域为(12分)【点评】本题主要考查函数的奇偶性和单调性的应用,转化函数研究性质是问题的关键.20.【答案】或.420x y --=1x =【解析】21.【答案】【解析】(Ⅰ)解:椭圆的左,右焦点分别为F 1(﹣c ,0),F 2(c ,0),椭圆的离心率为,即有=,即a=c ,b==c ,以原点为圆心,椭圆的短半轴长为半径的圆方程为x 2+y 2=b 2,直线y=x+与圆相切,则有=1=b ,即有a=,则椭圆C 的方程为+y 2=1;(Ⅱ)证明:设Q (x 1,y 1),R (x 2,y 2),F 1(﹣1,0),由∠RF 1F 2=∠PF 1Q ,可得直线QF 1和RF 1关于x 轴对称,即有+=0,即+=0,即有x1y2+y2+x2y1+y1=0,①设直线PQ:y=kx+t,代入椭圆方程,可得(1+2k2)x2+4ktx+2t2﹣2=0,判别式△=16k2t2﹣4(1+2k2)(2t2﹣2)>0,即为t2﹣2k2<1②x1+x2=,x1x2=,③y1=kx1+t,y2=kx2+t,代入①可得,(k+t)(x1+x2)+2t+2kx1x2=0,将③代入,化简可得t=2k,则直线l的方程为y=kx+2k,即y=k(x+2).即有直线l恒过定点(﹣2,0).将t=2k代入②,可得2k2<1,解得﹣<k<0或0<k<.则直线l的斜率k的取值范围是(﹣,0)∪(0,).【点评】本题考查椭圆的方程和性质,主要是离心率的运用,注意运用直线和圆相切的条件,联立直线方程和椭圆方程,运用韦达定理,考查化简整理的运算能力,属于中档题和易错题.22.【答案】已知数列{a n}是等比数列,S n为数列{a n}的前n项和,且a3=3,S3=9(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log2,且{b n}为递增数列,若c n=,求证:c1+c2+c3+…+c n<1.【考点】数列的求和;等比数列的通项公式.【专题】计算题;证明题;方程思想;综合法;等差数列与等比数列.【分析】(Ⅰ)设数列{a n}的公比为q,从而可得3(1++)=9,从而解得;(Ⅱ)讨论可知a2n+3=3•(﹣)2n=3•()2n,从而可得b n=log2=2n,利用裂项求和法求和.【解析】解:(Ⅰ)设数列{a n}的公比为q,则3(1++)=9,解得,q=1或q=﹣;故a n=3,或a n=3•(﹣)n﹣3;(Ⅱ)证明:若a n=3,则b n=0,与题意不符;故a2n+3=3•(﹣)2n=3•()2n,故b n=log2=2n,故c n==﹣,故c1+c2+c3+…+c n=1﹣+﹣+…+﹣=1﹣<1.【点评】本题考查了数列的性质的判断与应用,同时考查了方程的思想应用及裂项求和法的应用. 23.【答案】【解析】证明:(Ⅰ)由抛物线C:x2=2y得,y=x2,则y′=x,∴在点P(m,n)切线的斜率k=m,∴切线方程是y﹣n=m(x﹣m),即y﹣n=mx﹣m2,又点P(m,n)是抛物线上一点,∴m2=2n,∴切线方程是mx﹣2n=y﹣n,即mx=y+n …(Ⅱ)直线MF与直线l位置关系是垂直.由(Ⅰ)得,设切点为P(m,n),则切线l方程为mx=y+n,∴切线l的斜率k=m,点M(,0),又点F(0,),此时,k MF====…∴k•k MF=m×()=﹣1,∴直线MF⊥直线l …【点评】本题考查直线与抛物线的位置关系,导数的几何意义,直线垂直的条件等,属于中档题. 24.【答案】【解析】解:由复数相等的条件,得﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)解得或﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)【点评】本题考查复数相等的条件,以及方程思想,属于基础题. 。

青州市一中2018-2019学年上学期高二数学12月月考试题含解析

青州市一中2018-2019学年上学期高二数学12月月考试题含解析

青州市一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 某程序框图如图所示,则该程序运行后输出的S 的值为( )A .1B .C .D .2. 极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,则|PQ|的最小值为( )A .1B .C .D .23. 1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆,则该双曲线的离心率为( )C. 1D. 1【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.4. 两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .akmB .akmC .2akmD .akm5.(﹣6≤a≤3)的最大值为()A.9 B.C.3 D.6.已知a∈R,复数z=(a﹣2i)(1+i)(i为虚数单位)在复平面内对应的点为M,则“a=0”是“点M在第四象限”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件7.若如图程序执行的结果是10,则输入的x的值是()A.0 B.10 C.﹣10 D.10或﹣108.如图,函数f(x)=Asin(2x+φ)(A>0,|φ|<)的图象过点(0,),则f(x)的图象的一个对称中心是()A.(﹣,0)B.(﹣,0)C.(,0)D.(,0)9.已知向量=(1,2),=(m,1),如果向量与平行,则m的值为()A.B. C.2 D.﹣210.有以下四个命题:①若=,则x=y.②若lgx有意义,则x>0.③若x=y,则=.④若x>y,则x2<y2.则是真命题的序号为( ) A .①②B .①③C .②③D .③④11.如果过点M (﹣2,0)的直线l与椭圆有公共点,那么直线l 的斜率k 的取值范围是( )A.B.C.D.12.设集合A={x||x ﹣2|≤2,x ∈R},B={y|y=﹣x 2,﹣1≤x ≤2},则∁R (A ∩B )等于( ) A .RB .{x|x ∈R ,x ≠0}C .{0}D .∅二、填空题13.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤02x -y -1≥0x -2y +1≤0,若z =2x +by (b >0)的最小值为3,则b =________.14.给出下列命题:(1)命题p :;菱形的对角线互相垂直平分,命题q :菱形的对角线相等;则p ∨q 是假命题(2)命题“若x 2﹣4x+3=0,则x=3”的逆否命题为真命题 (3)“1<x <3”是“x 2﹣4x+3<0”的必要不充分条件 (4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p:.其中叙述正确的是 .(填上所有正确命题的序号)15.设函数,其中[x]表示不超过x 的最大整数.若方程f (x )=ax 有三个不同的实数根,则实数a 的取值范围是 .16.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为y=()t ﹣a (a 为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.17.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均的课外阅读时间为 小时.18.若的展开式中含有常数项,则n 的最小值等于 .三、解答题19.本小题满分12分 设函数()ln xf x e a x =- Ⅰ讨论()f x 的导函数'()f x 零点个数; Ⅱ证明:当0a >时,()2ln f x a a a ≥-20.巳知二次函数f (x )=ax 2+bx+c 和g (x )=ax 2+bx+c •lnx (abc ≠0).(Ⅰ)证明:当a <0时,无论b 为何值,函数g (x )在定义域内不可能总为增函数;(Ⅱ)在同一函数图象上取任意两个不同的点A (x 1,y 1),B (x 2,y 2),线段AB 的中点C (x 0,y 0),记直线AB 的斜率为k 若f (x )满足k=f ′(x 0),则称其为“K 函数”.判断函数f (x )=ax 2+bx+c 与g (x )=ax 2+bx+c •lnx 是否为“K 函数”?并证明你的结论.21.在平面直角坐标系中,矩阵M对应的变换将平面上任意一点P(x,y)变换为点P(2x+y,3x).(Ⅰ)求矩阵M的逆矩阵M﹣1;(Ⅱ)求曲线4x+y﹣1=0在矩阵M的变换作用后得到的曲线C′的方程.22.已知函数f(x)=alnx﹣x(a>0).(Ⅰ)求函数f(x)的最大值;(Ⅱ)若x∈(0,a),证明:f(a+x)>f(a﹣x);(Ⅲ)若α,β∈(0,+∞),f(α)=f(β),且α<β,证明:α+β>2α23.已知f(x)=x2﹣(a+b)x+3a.(1)若不等式f(x)≤0的解集为[1,3],求实数a,b的值;(2)若b=3,求不等式f(x)>0的解集.对一切的x∈R恒成立”,若p∧q为假命题,p∨q为真命题,求实数a的取值范围.青州市一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】 C【解析】解:第一次循环 第二次循环得到的结果第三次循环得到的结果第四次循环得到的结果…所以S 是以4为周期的,而由框图知当k=2011时输出S ∵2011=502×4+3所以输出的S 是 故选C2. 【答案】A【解析】解:极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点, 可知两条曲线是同心圆,如图,|PQ|的最小值为:1. 故选:A .【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查.3. 【答案】D【解析】∵120PF PF ⋅=,∴12PFPF ⊥,即12PF F ∆为直角三角形,∴222212124PF PF F F c +==,12||2PF PF a -=,则222221212122()4()PF PF PF PF PF PF c a ⋅=+--=-, 2222121212()()484PF PF PF PF PF PF c a +=-+⋅=-.所以12PF F ∆内切圆半径12122PF PF F F r c +-==,外接圆半径R c =.12c c =,整理,得2()4ca=+1e =,故选D. 4. 【答案】D【解析】解:根据题意,△ABC 中,∠ACB=180°﹣20°﹣40°=120°,∵AC=BC=akm ,∴由余弦定理,得cos120°=,解之得AB=akm ,即灯塔A 与灯塔B 的距离为akm ,故选:D .【点评】本题给出实际应用问题,求海洋上灯塔A 与灯塔B 的距离.着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题.5. 【答案】B【解析】解:令f (a )=(3﹣a )(a+6)=﹣+,而且﹣6≤a ≤3,由此可得函数f(a )的最大值为,故(﹣6≤a ≤3)的最大值为=,故选B .【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题.6. 【答案】A【解析】解:若a=0,则z=﹣2i (1+i )=2﹣2i ,点M 在第四象限,是充分条件,若点M 在第四象限,则z=(a+2)+(a ﹣2)i ,推出﹣2<a <2,推不出a=0,不是必要条件;故选:A.【点评】本题考查了充分必要条件,考查了复数问题,是一道基础题.7.【答案】D【解析】解:模拟执行程序,可得程序的功能是计算并输出y=的值,当x<0,时﹣x=10,解得:x=﹣10当x≥0,时x=10,解得:x=10故选:D.8.【答案】B【解析】解:由函数图象可知:A=2,由于图象过点(0,),可得:2sinφ=,即sinφ=,由于|φ|<,解得:φ=,即有:f(x)=2sin(2x+).由2x+=kπ,k∈Z可解得:x=,k∈Z,故f(x)的图象的对称中心是:(,0),k∈Z当k=0时,f(x)的图象的对称中心是:(,0),故选:B.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,正弦函数的对称性,属于中档题.9.【答案】B【解析】解:向量,向量与平行,可得2m=﹣1.解得m=﹣.故选:B.10.【答案】A【解析】解:①若=,则,则x=y,即①对;②若lgx有意义,则x>0,即②对;③若x=y>0,则=,若x=y<0,则不成立,即③错;④若x>y>0,则x2>y2,即④错.故真命题的序号为①②故选:A.11.【答案】D【解析】解:设过点M(﹣2,0)的直线l的方程为y=k(x+2),联立,得(2k2+1)x2+8k2x+8k2﹣2=0,∵过点M(﹣2,0)的直线l与椭圆有公共点,∴△=64k4﹣4(2k2+1)(8k2﹣2)≥0,整理,得k2,解得﹣≤k≤.∴直线l的斜率k的取值范围是[﹣,].故选:D.【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.12.【答案】B【解析】解:A=[0,4],B=[﹣4,0],所以A∩B={0},∁R(A∩B)={x|x∈R,x≠0},故选B.二、填空题13.【答案】【解析】约束条件表示的区域如图,当直线l:z=2x+by(b>0)经过直线2x-y-1=0与x-2y+1=0的交点A(1,1)时,z min=2+b,∴2+b =3,∴b=1.答案:114.【答案】(4)【解析】解:(1)命题p:菱形的对角线互相垂直平分,为真命题.命题q:菱形的对角线相等为假命题;则p∨q是真命题,故(1)错误,(2)命题“若x2﹣4x+3=0,则x=3或x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,(3)由x2﹣4x+3<0得1<x<3,则“1<x<3”是“x2﹣4x+3<0”的充要条件,故(3)错误,(4)若命题p:∀x∈R,x2+4x+5≠0,则¬p:.正确,故答案为:(4)【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题.15.【答案】(﹣1,﹣]∪[,).【解析】解:当﹣2≤x<﹣1时,[x]=﹣2,此时f(x)=x﹣[x]=x+2.当﹣1≤x<0时,[x]=﹣1,此时f(x)=x﹣[x]=x+1.当0≤x<1时,﹣1≤x﹣1<0,此时f(x)=f(x﹣1)=x﹣1+1=x.当1≤x<2时,0≤x﹣1<1,此时f(x)=f(x﹣1)=x﹣1.当2≤x<3时,1≤x﹣1<2,此时f(x)=f(x﹣1)=x﹣1﹣1=x﹣2.当3≤x<4时,2≤x﹣1<3,此时f(x)=f(x﹣1)=x﹣1﹣2=x﹣3.设g(x)=ax,则g(x)过定点(0,0),坐标系中作出函数y=f(x)和g(x)的图象如图:当g(x)经过点A(﹣2,1),D(4,1)时有3个不同的交点,当经过点B(﹣1,1),C(3,1)时,有2个不同的交点,则OA的斜率k=,OB的斜率k=﹣1,OC的斜率k=,OD的斜率k=,故满足条件的斜率k的取值范围是或,故答案为:(﹣1,﹣]∪[,)【点评】本题主要考查函数交点个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合是解决函数零点问题的基本思想.16.【答案】0.6【解析】解:当t>0.1时,可得1=()0.1﹣a∴0.1﹣a=0a=0.1由题意可得y≤0.25=,即()t﹣0.1≤,即t﹣0.1≥解得t≥0.6,由题意至少需要经过0.6小时后,学生才能回到教室.故答案为:0.6【点评】本题考查函数、不等式的实际应用,以及识图和理解能力.易错点:只单纯解不等式,而忽略题意,得到其他错误答案.17.【答案】0.9【解析】解:由题意,=0.9,故答案为:0.918.【答案】5【解析】解:由题意的展开式的项为T r+1=C n r(x6)n﹣r()r=C n r=C n r令=0,得n=,当r=4时,n 取到最小值5故答案为:5.【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条件转化成指数为0,得到n 的表达式,推测出它的值.三、解答题19.【答案】【解析】:Ⅰ'()xaf x e x=-,因为定义域为(0,)+∞, '()0x a f x e x=⇒=有解 即xxe a =有解. 令()x h x xe =,'()(1)x h x e x =+, 当0,'()0,(0)0()0x h x h h x >>=∴> 所以,当0a ≤时,'()0,f x >无零点; 当0a >时,有唯一零点. Ⅱ由Ⅰ可知,当0a >时,设'()f x 在(0,)+∞上唯一零点为0x , 当0(,),'()0x x f x ∈+∞>,()f x 在0(,)x +∞为增函数;当0(0,)x x ∈,'()0,f x <()f x 在0(0,)x 为减函数.0000x x ae e x a x =∴= 000000000()ln ln (ln )ln 2ln x x a a a af x e a x a a a x ax a a a a a x e x x ∴=-=-=--=+-≥-20.【答案】【解析】解:(Ⅰ)证明:如果g (x )是定义域(0,+∞)上的增函数,则有g ′(x )=2ax+b+=>0;从而有2ax 2+bx+c >0对任意x ∈(0,+∞)恒成立;又∵a <0,则结合二次函数的图象可得,2ax 2+bx+c >0对任意x ∈(0,+∞)恒成立不可能,故当a <0时,无论b 为何值,函数g (x )在定义域内不可能总为增函数;(Ⅱ)函数f (x )=ax 2+bx+c 是“K 函数”,g (x )=ax 2+bx+c •lnx 不是“K 函数”, 事实上,对于二次函数f (x )=ax 2+bx+c ,k==a (x 1+x 2)+b=2ax 0+b ;又f ′(x 0)=2ax 0+b , 故k=f ′(x 0);故函数f (x )=ax 2+bx+c 是“K 函数”; 对于函数g (x )=ax 2+bx+c •lnx ,不妨设0<x1<x2,则k==2ax0+b+;而g′(x0)=2ax0+b+;故=,化简可得,=;设t=,则0<t<1,lnt=;设s(t)=lnt﹣;则s′(t)=>0;则s(t)=lnt﹣是(0,1)上的增函数,故s(t)<s(1)=0;则lnt≠;故g(x)=ax2+bx+c•lnx不是“K函数”.【点评】本题考查了导数的综合应用及学生对新定义的接受能力,属于中档题.21.【答案】【解析】解:(Ⅰ)设点P(x,y)在矩阵M对应的变换作用下所得的点为P′(x′,y′),则即=,∴M=.又det(M)=﹣3,∴M﹣1=;(Ⅱ)设点A(x,y)在矩阵M对应的变换作用下所得的点为A′(x′,y′),则=M﹣1=,即,∴代入4x+y﹣1=0,得,即变换后的曲线方程为x+2y+1=0.【点评】本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想,属于中档题.22.【答案】【解析】解:(Ⅰ)令,所以x=a.易知,x∈(0,a)时,f′(x)>0,x∈(a,+∞)时,f′(x)<0.故函数f(x)在(0,a)上递增,在(a,+∞)递减.故f(x)max=f(a)=alna﹣a.(Ⅱ)令g(x)=f(a﹣x)﹣f(a+x),即g(x)=aln(a﹣x)﹣aln(a+x)+2x.所以,当x∈(0,a)时,g′(x)<0.所以g(x)<g(0)=0,即f(a+x)>f(a﹣x).(Ⅲ)依题意得:a<α<β,从而a﹣α∈(0,a).由(Ⅱ)知,f(2a﹣α)=f[a+(a﹣α)]>f[a﹣(a﹣α)]=f(α)=f(β).又2a﹣α>a,β>a.所以2a﹣α<β,即α+β>2a.【点评】本题考查了利用导数证明不等式的问题,一般是转化为函数的最值问题来解,注意导数的应用.23.【答案】【解析】解:(1)∵函数f(x)=x2﹣(a+b)x+3a,当不等式f(x)≤0的解集为[1,3]时,方程x2﹣(a+b)x+3a=0的两根为1和3,由根与系数的关系得,解得a=1,b=3;(2)当b=3时,不等式f(x)>0可化为x2﹣(a+3)x+3a>0,即(x﹣a)(x﹣3)>0;∴当a>3时,原不等式的解集为:{x|x<3或x>a};当a<3时,原不等式的解集为:{x|x<a或x>3};当a=3时,原不等式的解集为:{x|x≠3,x∈R}.【点评】本题考查了含有字母系数的一元二次不等式的解法和应用问题,是基础题目.24.【答案】【解析】解:若p为真,则0<a<1;若q为真,则△=4a2﹣1≤0,得,又a>0,a≠1,∴.因为p∧q为假命题,p∨q为真命题,所以p,q中必有一个为真,且另一个为假.①当p为真,q为假时,由;②当p为假,q为真时,无解.综上,a的取值范围是.【点评】1.求解本题时,应注意大前提“a>0,a≠1”,a的取值范围是在此条件下进行的.。

青县高中2018-2019学年高二下学期第一次月考试卷数学

青县高中2018-2019学年高二下学期第一次月考试卷数学

青县高中2018-2019学年高二下学期第一次月考试卷数学一、选择题1. 抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )A. B. C. D .32. 如图所示,已知四边形ABCD 的直观图是一个边长为的正方形,则原图形的周长为( )A. B . C. D. 3. 从单词“equation ”选取5个不同的字母排成一排,含有“qu ”(其中“qu ”相连且顺序不变)的不同排列共有( ) A .120个B .480个C .720个D .840个4. 已知直线x+ay ﹣1=0是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴,过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( ) A .2B .6C .4D .25. 12,e e 是平面内不共线的两向量,已知12AB e ke =-,123CD e e =-,若,,A B D 三点共线,则的值是( )A .1B .2C .-1D .-26. 函数f (x )=x 3﹣3x 2+5的单调减区间是( )A .(0,2)B .(0,3)C .(0,1)D .(0,5)7. 若不等式1≤a ﹣b ≤2,2≤a+b ≤4,则4a ﹣2b 的取值范围是( )A .[5,10]B .(5,10)C .[3,12]D .(3,12)8. “3<-b a ”是“圆056222=++-+a y x y x 关于直线b x y 2+=成轴对称图形”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度.9. 如图,正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是AA 1,AD 的中点,则CD 1与EF 所成角为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .0°B .45°C .60°D .90°10.如图,空间四边形OABC 中,,,,点M 在OA上,且,点N 为BC 中点,则等于( )A. B. C. D.11.已知f (x )是定义在R 上的奇函数,且f (x ﹣2)=f (x+2),当0<x <2时,f (x )=1﹣log 2(x+1),则当0<x <4时,不等式(x ﹣2)f (x )>0的解集是( ) A .(0,1)∪(2,3) B .(0,1)∪(3,4) C .(1,2)∪(3,4)D .(1,2)∪(2,3)12.以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2C π=”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.二、填空题13.已知球与棱长均为3的三棱锥各条棱都相切,则该球的表面积为 .14.函数()y f x =的定义域是[]0,2,则函数()1y f x =+的定义域是__________.111] 15.已知数列{a n }满足a n+1=e+a n (n ∈N *,e=2.71828)且a 3=4e ,则a 2015= . 16.若全集,集合,则17.已知实数x ,y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,若目标函数ay x z +=2仅在点)4,3(取得最小值,则a 的取值范围是 .18.设全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},则(∁U A )∪B= .三、解答题19.(本小题满分12分) 在等比数列{}n a 中,3339,22a S ==.(1)求数列{}n a 的通项公式; (2)设2216log n n b a +=,且{}n b 为递增数列,若11n n n c b b +=,求证:12314n c c c c ++++<.20.设函数f (x )=lnx+,k ∈R .(Ⅰ)若曲线y=f (x )在点(e ,f (e ))处的切线与直线x ﹣2=0垂直,求k 值; (Ⅱ)若对任意x 1>x 2>0,f (x 1)﹣f (x 2)<x 1﹣x 2恒成立,求k 的取值范围;(Ⅲ)已知函数f (x )在x=e 处取得极小值,不等式f (x )<的解集为P ,若M={x|e ≤x ≤3},且M ∩P ≠∅,求实数m 的取值范围.21.甲、乙两人参加普法知识竞赛,共有5道不同的题目,其中选择题3道,判断题2道,甲、乙两人各抽一道(不重复).(1)甲抽到选择题,乙抽到判断题的概率是多少? (2)甲、乙二人中至少有一人抽到选择题的概率是多少?22.某校举办学生综合素质大赛,对该校学生进行综合素质测试,学校对测试成绩(10分制)大于或等于7.5A B 两班中各随机抽5名学生进行抽查,其成绩记录如下: x <y ,且A 和B 两班被抽查的5名学生成绩的平均值相等,方差也相等.(Ⅰ)若从B班被抽查的5名学生中任抽取2名学生,求被抽取2学生成绩都颁发了荣誉证书的概率;(Ⅱ)从被抽查的10名任取3名,X表示抽取的学生中获得荣誉证书的人数,求X的期望.23.已知f(x)=log3(1+x)﹣log3(1﹣x).(1)判断函数f(x)的奇偶性,并加以证明;(2)已知函数g(x)=log,当x∈[,]时,不等式f(x)≥g(x)有解,求k的取值范围.24.2014年“五一”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/t)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90)后得到如图所示的频率分布直方图.(Ⅰ)求这40辆小型车辆车速的众数及平均车速(可用中值代替各组数据平均值);(Ⅱ)若从车速在[60,70)的车辆中任抽取2辆,求车速在[65,70)的车辆至少有一辆的概率.青县高中2018-2019学年高二下学期第一次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:由,得3x2﹣4x+8=0.△=(﹣4)2﹣4×3×8=﹣80<0.所以直线4x+3y﹣8=0与抛物线y=﹣x2无交点.设与直线4x+3y﹣8=0平行的直线为4x+3y+m=0联立,得3x2﹣4x﹣m=0.由△=(﹣4)2﹣4×3(﹣m)=16+12m=0,得m=﹣.所以与直线4x+3y﹣8=0平行且与抛物线y=﹣x2相切的直线方程为4x+3y﹣=0.所以抛物线y=﹣x2上的一点到直线4x+3y﹣8=0的距离的最小值是=.故选:A.【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题.2.【答案】C【解析】考点:平面图形的直观图.3.【答案】B【解析】解:要选取5个字母时首先从其它6个字母中选3个有C63种结果,再与“qu“组成的一个元素进行全排列共有C63A44=480,故选B.4.【答案】B【解析】解:∵圆C:x2+y2﹣4x﹣2y+1=0,即(x﹣2)2+(y﹣1)2 =4,表示以C(2,1)为圆心、半径等于2的圆.由题意可得,直线l:x+ay﹣1=0经过圆C的圆心(2,1),故有2+a﹣1=0,∴a=﹣1,点A(﹣4,﹣1).∵AC==2,CB=R=2,∴切线的长|AB|===6.故选:B.【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题.5.【答案】B【解析】考点:向量共线定理.6.【答案】A【解析】解:∵f(x)=x3﹣3x2+5,∴f′(x)=3x2﹣6x,令f′(x)<0,解得:0<x<2,故选:A.【点评】本题考察了函数的单调性,导数的应用,是一道基础题.7.【答案】A【解析】解:令4a﹣2b=x(a﹣b)+y(a+b)即解得:x=3,y=1即4a﹣2b=3(a﹣b)+(a+b)∵1≤a﹣b≤2,2≤a+b≤4,∴3≤3(a﹣b)≤6∴5≤(a﹣b)+3(a+b)≤10故选A【点评】本题考查的知识点是简单的线性规划,其中令4a﹣2b=x(a﹣b)+y(a+b),并求出满足条件的x,y,是解答的关键.8.【答案】A【解析】9.【答案】C【解析】解:连结A1D、BD、A1B,∵正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,∴EF∥A1D,∵A1B∥D1C,∴∠DA1B是CD1与EF所成角,∵A1D=A1B=BD,∴∠DA1B=60°.∴CD1与EF所成角为60°.故选:C.【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.10.【答案】B【解析】解:===;又,,,∴.故选B.【点评】本题考查了向量加法的几何意义,是基础题.11.【答案】D【解析】解:∵f(x)是定义在R上的奇函数,且f(x﹣2)=f(x+2),∴f(0)=0,且f(2+x)=﹣f(2﹣x),∴f(x)的图象关于点(2,0)中心对称,又0<x<2时,f(x)=1﹣log2(x+1),故可作出fx(x)在0<x<4时的图象,由图象可知当x∈(1,2)时,x﹣2<0,f(x)<0,∴(x﹣2)f(x)>0;当x∈(2,3)时,x﹣2>0,f(x)>0,∴(x﹣2)f(x)>0;∴不等式(x﹣2)f(x)>0的解集是(1,2)∪(2,3)故选:D【点评】本题考查不等式的解法,涉及函数的性质和图象,属中档题.12.【答案】D二、填空题13.【答案】3π.【解析】解:将棱长均为3的三棱锥放入棱长为的正方体,如图∵球与三棱锥各条棱都相切,∴该球是正方体的内切球,切正方体的各个面切于中心,而这个切点恰好是三棱锥各条棱与球的切点由此可得该球的直径为,半径r=∴该球的表面积为S=4πr2=3π故答案为:3π【点评】本题给出棱长为3的正四面体,求它的棱切球的表面积,着重考查了正多面体的性质、多面体内切球和球的表面积公式等知识,属于基础题.14.【答案】[]1,1- 【解析】考点:函数的定义域.15.【答案】 2016 .【解析】解:由a n+1=e+a n ,得a n+1﹣a n =e , ∴数列{a n }是以e 为公差的等差数列, 则a 1=a 3﹣2e=4e ﹣2e=2e ,∴a 2015=a 1+2014e=2e+2014e=2016e . 故答案为:2016e .【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题.16.【答案】{|0<<1} 【解析】∵,∴{|0<<1}。

青县一中2018-2019学年高二上学期第二次月考试卷数学

青县一中2018-2019学年高二上学期第二次月考试卷数学

青县一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 复数z=(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限2. 已知f (x )为R 上的偶函数,对任意x ∈R 都有f (x+6)=f (x )+f (3),x 1,x 2∈[0,3],x 1≠x 2时,有成立,下列结论中错误的是( )A .f (3)=0B .直线x=﹣6是函数y=f (x )的图象的一条对称轴C .函数y=f (x )在[﹣9,9]上有四个零点D .函数y=f (x )在[﹣9,﹣6]上为增函数3. 在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( ) A .众数 B .平均数 C .中位数 D .标准差4. 函数f (x )=xsinx 的图象大致是( )A .B .C .D .5. 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。

A3 B4 C5 D66. 集合{}5,4,3,2,1,0=S ,A 是S 的一个子集,当A x ∈时,若有A x A x ∉+∉-11且,则称x 为A 的一个“孤立元素”.集合B 是S 的一个子集, B 中含4个元素且B 中无“孤立元素”,这样的集合B 共有个 A.4 B. 5 C.6 D.77. 过抛物线C :x 2=2y 的焦点F 的直线l 交抛物线C 于A 、B 两点,若抛物线C 在点B 处的切线斜率为1,则线段|AF|=( ) A .1 B .2C .3D .48. 已知双曲线的方程为﹣=1,则双曲线的离心率为( )A .B .C .或D .或9. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( ) A .T 1=T 19 B .T 3=T 17 C .T 5=T 12 D .T 8=T 1110.已知复数z 满足z •i=2﹣i ,i 为虚数单位,则z=( ) A .﹣1﹣2i B .﹣1+2iC .1﹣2iD .1+2i11.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )A .B .(4+π)C .D .12.设b ,c 表示两条直线,α,β表示两个平面,则下列命题是真命题的是( ) A .若b ⊂α,c ∥α,则b ∥cB .若c ∥α,α⊥β,则c ⊥β C .若b ⊂α,b ∥c ,则c ∥α D .若c ∥α,c ⊥β,则α⊥β二、填空题13.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .14.长方体1111ABCD A BC D -中,对角线1AC 与棱CB 、CD 、1CC 所成角分别为α、β、, 则222sinsin sin αβγ++= .15.对于映射f :A →B ,若A 中的不同元素有不同的象,且B 中的每一个元素都有原象,则称f :A →B 为一一映射,若存在对应关系Φ,使A 到B 成为一一映射,则称A 到B 具有相同的势,给出下列命题: ①A 是奇数集,B 是偶数集,则A 和B 具有相同的势;②A 是平面直角坐标系内所有点形成的集合,B 是复数集,则A 和B 不具有相同的势; ③若区间A=(﹣1,1),B=R ,则A 和B 具有相同的势.其中正确命题的序号是 .16.已知a 、b 、c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,则3s i n c o s ()4A B π-+的取值范围是___________. 【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.17.把函数y=sin2x 的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为 .18.曲线y=x 2和直线x=0,x=1,y= 所围成的图形的面积为 .三、解答题19.已知m ∈R ,函数f (x )=(x 2+mx+m )e x . (1)若函数f (x )没有零点,求实数m 的取值范围;(2)若函数f (x )存在极大值,并记为g (m ),求g (m )的表达式;(3)当m=0时,求证:f (x )≥x 2+x 3.20.已知f (x )是定义在R 上的奇函数,当x <0时,f (x )=()x . (1)求当x >0时f (x )的解析式; (2)画出函数f (x )在R 上的图象; (3)写出它的单调区间.21.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AD,点F是棱PD的中点,点E为CD的中点.(1)证明:EF∥平面PAC;(2)证明:AF⊥EF.22.本小题满分10分选修44-:坐标系与参数方程选讲在直角坐标系xoy中,直线的参数方程为3x y ⎧=⎪⎪⎨⎪=⎪⎩为参数,在极坐标系与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴中,圆C的方程为ρθ=. Ⅰ求圆C 的圆心到直线的距离;Ⅱ设圆C 与直线交于点A B 、,若点P的坐标为(3,,求PA PB +.23.在ABC ∆中已知2a b c =+,2sin sin sin A B C =,试判断ABC ∆的形状.24.如图的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结BC ′,证明:BC ′∥面EFG .青县一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:z====+i,当1+m>0且1﹣m>0时,有解:﹣1<m<1;当1+m>0且1﹣m<0时,有解:m>1;当1+m<0且1﹣m>0时,有解:m<﹣1;当1+m<0且1﹣m<0时,无解;故选:C.【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题.2.【答案】D【解析】解:对于A:∵y=f(x)为R上的偶函数,且对任意x∈R,均有f(x+6)=f(x)+f(3),∴令x=﹣3得:f(6﹣3)=f(﹣3)+f(3)=2f(3),∴f(3)=0,故A正确;对于B:∵函数y=f(x)是以6为周期的偶函数,∴f(﹣6+x)=f(x),f(﹣6﹣x)=f(x),∴f(﹣6+x)=f(﹣6﹣x),∴y=f(x)图象关于x=﹣6对称,即B正确;对于C:∵y=f(x)在区间[﹣3,0]上为减函数,在区间[0,3]上为增函数,且f(3)=f(﹣3)=0,∴方程f(x)=0在[﹣3,3]上有2个实根(﹣3和3),又函数y=f(x)是以6为周期的函数,∴方程f(x)=0在区间[﹣9,﹣3)上有1个实根(为﹣9),在区间(3,9]上有一个实根(为9),∴方程f(x)=0在[﹣9,9]上有4个实根.故C正确;对于D:∵当x1,x2∈[0,3]且x1≠x2时,有,∴y=f(x)在区间[0,3]上为增函数,又函数y=f(x)是偶函数,∴y=f(x)在区间[﹣3,0]上为减函数,又函数y=f(x)是以6为周期的函数,∴y=f(x)在区间[﹣9,﹣6]上为减函数,故D错误.综上所述,命题中正确的有A、B、C.故选:D.【点评】本题考查抽象函数及其应用,命题真假的判断,着重考查函数的奇偶性、对称性、周期性、单调性,考查函数的零点,属于中档题.3. 【答案】D【解析】解:A 样本数据:82,84,84,86,86,86,88,88,88,88. B 样本数据84,86,86,88,88,88,90,90,90,90 众数分别为88,90,不相等,A 错. 平均数86,88不相等,B 错. 中位数分别为86,88,不相等,C 错A 样本方差S 2= [(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,标准差S=2,B 样本方差S 2= [(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,标准差S=2,D 正确故选D .【点评】本题考查众数、平均数、中位标准差的定义,属于基础题.4. 【答案】A【解析】解:函数f (x )=xsinx 满足f (﹣x )=﹣xsin (﹣x )=xsinx=f (x ),函数的偶函数,排除B 、C , 因为x ∈(π,2π)时,sinx <0,此时f (x )<0,所以排除D , 故选:A .【点评】本题考查函数的图象的判断,函数的奇偶性以及函数值的应用,考查分析问题解决问题的能力.5. 【答案】B【解析】由题意知x =a +b ,a ∈A ,b ∈B ,则x 的可能取值为5,6,7,8.因此集合M 共有4个元素,故选B 6. 【答案】C 【解析】试题分析:根据题中“孤立元素”定义可知,若集合B 中不含孤立元素,则必须没有三个连续的自然数存在,所有B 的可能情况为:{}0,1,3,4,{}0,1,3,5,{}0,1,4,5,{}0,2,3,5,{}0,2,4,5,{}1,2,4,5共6个。

青州市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

青州市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

青州市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 记集合和集合表示的平面区域分别为Ω1,Ω2,{}22(,)1A x y x y =+£{}(,)1,0,0B x y x y x y =+£³³ 若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( )A .B .C .D .12p1p2p13p【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力.2. 数列{a n }的通项公式为a n =﹣n+p ,数列{b n }的通项公式为b n =2n ﹣5,设c n =,若在数列{c n }中c 8>c n (n ∈N *,n ≠8),则实数p 的取值范围是( )A .(11,25)B .(12,16]C .(12,17)D .[16,17)3. 已知正项数列{a n }的前n 项和为S n ,且2S n =a n +,则S 2015的值是()A .B .C .2015D .4. 如图,正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是AA 1,AD 的中点,则CD 1与EF 所成角为()A .0°B .45°C .60°D .90°5. 设0<a <1,实数x ,y 满足,则y 关于x 的函数的图象形状大致是()A .B .C .D .6. 等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 2a 6=( )A .6B .9C .36D .727. 圆()与双曲线的渐近线相切,则的值为( )222(2)x y r -+=0r >2213y x -=r AB . C. D.2【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力.8. 已知,则方程的根的个数是( )22(0)()|log |(0)x x f x x x ⎧≤=⎨>⎩[()]2f f x = A .3个B .4个C .5个D .6个9. 函数的定义域是()A .(﹣∞,2)B .[2,+∞)C .(﹣∞,2]D .(2,+∞)10.一个多面体的直观图和三视图如图所示,点是边上的动点,记四面体的体M AB FMC E -积为,多面体的体积为,则( )1111]1V BCE ADF -2V =21V V A .B .C. D .不是定值,随点的变化而变化413121M 11.设集合S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,则实数a 的取值范围是( )A .﹣3<a <﹣1B .﹣3≤a ≤﹣1C .a ≤﹣3或a ≥﹣1D .a <﹣3或a >﹣112.若函数f (x )=log a (2x 2+x )(a >0且a ≠1)在区间(0,)内恒有f (x )>0,则f (x )的单调递增区间为()A .(﹣∞,)B .(﹣,+∞)C .(0,+∞)D .(﹣∞,﹣)二、填空题13.曲线y =x 2+3x 在点(-1,-2)处的切线与曲线y =ax +ln x 相切,则a =________.14.已知满足,则的取值范围为____________.,x y 41y xx y x ≥⎧⎪+≤⎨⎪≥⎩22223y xy x x -+15.给出下列四个命题:①函数f (x )=1﹣2sin 2的最小正周期为2π;②“x 2﹣4x ﹣5=0”的一个必要不充分条件是“x=5”;③命题p :∃x ∈R ,tanx=1;命题q :∀x ∈R ,x 2﹣x+1>0,则命题“p ∧(¬q )”是假命题;④函数f (x )=x 3﹣3x 2+1在点(1,f (1))处的切线方程为3x+y ﹣2=0.其中正确命题的序号是 . 16.已知tan 23πα⎛⎫+= ⎪⎝⎭,则42sin cos 335cos sin 66ππααππαα⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭=⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭.17.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,),(3,),则O 点到直线AB的距离是 .18.平面向量,满足|2﹣|=1,|﹣2|=1,则的取值范围 .三、解答题19.已知集合P={x|2x 2﹣3x+1≤0},Q={x|(x ﹣a )(x ﹣a ﹣1)≤0}.(1)若a=1,求P ∩Q ;(2)若x ∈P 是x ∈Q 的充分条件,求实数a 的取值范围.20.已知椭圆E : =1(a >b >0)的焦距为2,且该椭圆经过点.(Ⅰ)求椭圆E 的方程;(Ⅱ)经过点P (﹣2,0)分别作斜率为k 1,k 2的两条直线,两直线分别与椭圆E 交于M ,N 两点,当直线MN 与y 轴垂直时,求k 1k 2的值.21.(1)求z=2x+y的最大值,使式中的x、y满足约束条件(2)求z=2x+y的最大值,使式中的x、y满足约束条件+=1.22.如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:BC1∥平面ACD1.(2)当时,求三棱锥E﹣ACD1的体积.23.如图,平面ABB1A1为圆柱OO1的轴截面,点C为底面圆周上异于A,B的任意一点.(Ⅰ)求证:BC⊥平面A1AC;(Ⅱ)若D 为AC 的中点,求证:A 1D ∥平面O 1BC .24.(本小题满分12分)一直线被两直线截得线段的中点是12:460,:3560l x y l x y ++=--=P 点, 当点为时, 求此直线方程.P ()0,0青州市第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案)一、选择题1. 【答案】A【解析】画出可行域,如图所示,Ω1表示以原点为圆心, 1为半径的圆及其内部,Ω2表示及其内部,OAB D由几何概型得点M 落在区域Ω2内的概率为,故选A.112P ==p 2p2. 【答案】C【解析】解:当a n ≤b n 时,c n =a n ,当a n >b n 时,c n =b n ,∴c n 是a n ,b n 中的较小者,∵a n =﹣n+p ,∴{a n }是递减数列,∵b n =2n ﹣5,∴{b n }是递增数列,∵c 8>c n (n ≠8),∴c 8是c n 的最大者,则n=1,2,3,…7,8时,c n 递增,n=8,9,10,…时,c n 递减,∴n=1,2,3,…7时,2n ﹣5<﹣n+p 总成立,当n=7时,27﹣5<﹣7+p ,∴p >11,n=9,10,11,…时,2n ﹣5>﹣n+p 总成立,当n=9时,29﹣5>﹣9+p ,成立,∴p <25,而c 8=a 8或c 8=b 8,若a 8≤b 8,即23≥p ﹣8,∴p ≤16,则c 8=a 8=p ﹣8,∴p ﹣8>b 7=27﹣5,∴p >12,故12<p ≤16,若a 8>b 8,即p ﹣8>28﹣5,∴p >16,∴c 8=b 8=23,那么c 8>c 9=a 9,即8>p ﹣9,∴p<17,故16<p<17,综上,12<p<17.故选:C.3.【答案】D【解析】解:∵2S n=a n+,∴,解得a1=1.当n=2时,2(1+a2)=,化为=0,又a2>0,解得,同理可得.猜想.验证:2S n=…+=,==,因此满足2S n=a n+,∴.∴S n=.∴S2015=.故选:D.【点评】本题考查了猜想分析归纳得出数列的通项公式的方法、递推式的应用,考查了由特殊到一般的思想方法,考查了推理能力与计算能力,属于难题.4.【答案】C【解析】解:连结A1D、BD、A1B,∵正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,∴EF∥A1D,∵A1B∥D1C,∴∠DA1B是CD1与EF所成角,∵A1D=A1B=BD,∴∠DA1B=60°.∴CD1与EF所成角为60°.故选:C.【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养. 5. 【答案】A【解析】解:0<a <1,实数x ,y 满足,即y=,故函数y 为偶函数,它的图象关于y轴对称,在(0,+∞)上单调递增,且函数的图象经过点(0,1),故选:A .【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题. 6. 【答案】D【解析】解:设等比数列{a n }的公比为q ,∵a 1=3,a 1+a 3+a 5=21,∴3(1+q 2+q 4)=21,解得q 2=2.则a 2a 6=9×q 6=72.故选:D . 7. 【答案】C8. 【答案】C【解析】由,设f (A )=2,则f (x )=A,则,则A=4或A=,作出f (x )的图像,由[()]2f f x =2log 2x =14数型结合,当A=时3个根,A=4时有两个交点,所以的根的个数是5个。

山东省潍坊青州市2019年中考二模数学试卷及答案(Word版)

山东省潍坊青州市2019年中考二模数学试卷及答案(Word版)

2019 年初中学业水平考试复习自测(二)数学试题2019.5注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.共120 分.考试时间为120 分钟.2.答卷前务势必试题密封线内及答题卡上边的项目填涂清楚.全部答案都一定涂、写在答题卡相应地点,答在本试卷上一律无效 .第Ⅰ卷 (选择题共36分)一、选择题(此题共12 小题,在每题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每题选对得 3 分,满分 36 分.多项选择、不选、错选均记零分.)1. 6 的相反数是()A. -6B.61 1C. D. -6 62. 以下运算正确的选项是()A. (2a2)3 6a6B. a 2 b2 3ab3 3a2 b5C. a2 1 1 1D. b a 1a a 1 ab b a3. 以下图形是中心对称图形的是()4. 我们知道四边形拥有不稳固性.如图,在平面直角坐标系中,边长为 2的正方形 ABCD 的边 AB 在 x 轴上, AB 的中点是坐标原点O.固定点A 、B ,把正方形沿箭头方向推,使点 D 落在 y 轴正半轴上的点 D 处,则点 C 的对应点C的坐标为()A. (3,1)B.( 2,1)C.(1,3)D.(2, 3 )5. 函数 y ax a 与y a(a 0) 在同一坐标系中的图象可能是()x6. 已知一次函数y kx b 的图象以下图,则对于x的不等式 k( x 4) 2b >0的解集为()A.x > -2B.x <-2C.x >2D.x < 37. 四边形 ABCD 的对角线 AC 、 BD 订交于点 O ,给出以下 4 个条件: ①AB ∥CD ;② OB=OD ;③ AD=BC ;④ AD ∥ BC.从中任取两个条件, 能推出四边形 ABCD 是平行四边形的概率是( )11 25A .B .C .D .23368. 某商品的进价为每件 40 元.当售价为每件 60 元时,每礼拜可卖出 300 件,为使市场份额最大化(市场份额别名市场据有率) ,现需降价办理,经市场检查:每降价 1 元,每礼拜可多卖出 20 件.此刻要使每礼拜收益为 6120 元,每件商品应降价( )元. A.3 C.2 D.5 9. 世界因爱而美好,在今年我校的 “献爱心 ”捐钱活动中,九年级三班 50 名学生踊跃参加 “献爱心 ”捐钱活动,班长将捐钱状况进行了统计,并 绘制成了统计图,依据图中供给的信息,捐钱金额的众数和中位数分 别是( ) A.20 , 20 B.30 ,20 C.30, 30 D.20 , 30 10.如图,在矩形 ABCD 中, AB=6 , BC=8 , O 为矩形 ABCD 的中心,以 D为圆心, 2 为半径作⊙ D ,P 为⊙ D 上的一个动点,则△ AOP 面积的最大 值为( )A.16B.173584C.D.2511.如图,二次函数 y=ax 2+bx+c 的图象过点 A ( 3, 0),对称轴为直线 x=1, 给出以下结论: ① abc <0;② b 2-4ac > 0;③ax 2+bx+c ≤ a+b+c ;④若 M ( x 2+1, y 1 )、N ( x 2+2,y 2)为函数图象上的两点, 则 y 1< y 2.此中正确的选项是 ( )A. ①②③B. ①②③④C. ①③④D. ②③④12. 如图,直角三角形纸片 ABC 中, AB=3 ,AC=4. D 为斜边 BC 中点,第 1 次将纸片折叠,使点 A 与点 D 重合,折痕与 AD 交于点 P 1;设 P 1D 的中点为 D 1,第 2 次将纸片折叠, 使点 A 与点 D 1 重合,折痕与 AD 交于 P 2;设 P 2D 1 的中点为 第 3 次将纸片折叠, 使点 A 与点 D 2 重合,折痕与 AD 交于点 P 3; ;设 P n-1D n-2 的中点为第 n 次将纸片折叠, 使点 A 与点 D n-1 重合,折痕与 AD 交于点 P (n n > 2),则 AP 6 的长为(D 2,Dn-1,)5 35B.35 5 36D.37 A.29C.21421121255第Ⅱ卷(非选择题共 84分)二、填空题(本大题共6 小题,共18 分,只填写最后结果,每题填对得3 分)13.在实数范围内分解因式 4m 5-16m=.14.已知 x 1、 x 2 是一元二次方程 x 2-3x-6=0 的两个实数根,那么直线 y (1 1) x (x 12x 2 2 ) 不x 1 x 2经过第 象限.15.如图,一把翻开的雨伞可近似的当作一个圆锥,伞骨(面料下方可以把面料撑起来的支架)尾端各点所在圆的直径AC 长为 12分米,伞骨AB 长为9 分米,那么制作这样的一把雨伞起码需要绸布面料为平方分米.16.对于两个不相等的实数a、 b,我们规定符号Max ( a,b)表示a、 b 中的较大值,如:Max(2 ,4)=4 ,依据这个规定,方程Max(x , -x)= 2x 1 的解为x= .x17.如图,在平行四边形ABCD以随意长为半径作弧,分别交中,按以下步骤作图:①以 A 为圆心,AB,AD于点M,N;②分别以M,N 为圆心,以大于1MN 的长为半径作弧,两弧订交于点P;③作射线2AP ,交边 CD 于点 Q.若 DQ=2QC,BC=3 则平行四边形ABCD 的面积等于,梯形.ABCQ 的周长等于13.8,18.如图,抛物线的极点为P( -2,2),与 y 轴交于点抛物线使其极点P 沿直线挪动到点P(2,-2),点则抛物线上PA 段扫过的地区(暗影部分)的面积为A ( 0,3),若平移该A 的对应点为 A ,.三、解答题(本大题共 7 小题,共 66 分.解答要写出文字说明、证明过程或演算步骤)19.(此题满分8 分)已知 A= ( x 3) ( x 2)( x 2 6 x 9) 1x 2 42 x3 x(1)化简 A;( 2)若 x 知足不等式组 6 x 4 ,且 x 为整数时,求 A 的值.5 3 320.(此题满分8 分)“校园手机”现象愈来愈遇到社会的关注.“寒假” 时期,某校小记者随机检查了某地域若干名学生和家长对中学生带手机现象的见解,统计整理并制作了以下的统计图:(1)求此次检查的家长人数,并补全图 1(标明人数);(2)求图 2 中表示家长“同意”的圆心角的度数;(3)已知某地域共 6500 名家长,预计此中反对中学生带手机的家长大概有多少人?21.(此题满分9 分)某海疆有 A 、 B 两个港口, B 港口在 A 港口北偏西 30°方向上,距 A 港口240 海里,有一艘船从 A 港口出发,沿东北方向行驶一段距离后,抵达位于 B 港口南偏东 75°方向的 C 处,求:(1)∠ ACB 的度数;(2)此时刻船与 B 港口之间的距离 CB 的长(结果保存根号).22.(此题满分9 分)如图, AB 是⊙ O 的直径, C 是 AB 延伸线上一点, CD 与⊙ O 相切于点 E,AD ⊥CD 于点 D.(1)求证: AE 均分∠ DAC ;(2)若 AB=4 ,∠ ABE=60° .①求 AD 的长;②求出图中暗影部分的面积23.(此题满分9 分)阅读 1: a、 b 为实数,且 a> 0,b> 0,由于( a b ) 2≥0,因此 a 2 ab b ≥0,进而a+b≥2 ab(当 a=b 时取等号).阅读 2:函数ym(常数 m> 0,x> 0),由阅读1 结论可知:xmxm=2 m ,x ≥ 2因此当 x= m即 x=x m的最小值为 2x x m 时,函数 y x m .x x阅读理解上述内容,解答以下问题:1 4 ,此中一边长为x ,则另一边长为 42 x+ 4 x=()已知一个矩形的面积为,周长为(),求当x x时,周长的最小值为.(2)已知函数 y1=x+1(x> -1)与函数 y2=x 2+2x+17( x> -1),当 x= 时,y2 的最小值为.y1(3)某民办学校每日的支出总花费包括以下三个部分:一是教员工薪资12800 元;二是学生生活费每人 20 元;三是其余花费.此中,其余花费与学生人数的平方成正比,比率系数为0.02.当学校学生人数为多少时,该校每日生均投入最低?最低花费是多少元?(生均投入=支出总花费÷学生人数)24.(此题满分 11 分)在△ ABC 中, AB=AC ,∠ BAC=2 ∠DAE=2 .( 1)如图1,若点 D 对于直线 AE 的对称点为 F,求证:△ ADF ∽△ ABC ;( 2)如图2,在( 1)的条件下,若=45°,求证: DE 2=BD 2+CE2;(3)如图3,若=45°,点 E在 BC 的延伸线上,则等式DE2=BD 2+CE2还可以建立吗?请说明原因.25.(此题满分 12 分)如图,抛物线 y ax2 bx c (a<0)与双曲线 y k订交于点 A 、xB,且抛物线经过坐标原点,点 A 的坐标为( -2,2),点 B 在第四象限内,过点 B 作直线 BC ∥ x 轴,点 C 为直线 BC 与抛物线的另一交点,已知直线 BC 与 x 轴之间的距离是点 B 到 y 轴距离的 4 倍,记抛物线极点为 E.(1)求双曲线和抛物线的分析式;(2)求△ ABC 与△ ABE 的面积;(3)在抛物线上能否存在点 D,使△ ABD 的面积等于△ ABE 的面积的8 倍?若存在,恳求出点 D 的坐标;若不存在,请说明原因.2019 年初中学业水平考试复习自测(二)数学试题参照答案及评分标准一、选择题(本大题共 12 小题,共 36 分.每题选对得3 分. 错选、不选或多项选择均记0 分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ADBDDBCACBAA二、填空题(本大题共 6 小题,共18 分 . 只需求填写最后结果,每题填对得 3 分.)13. 4m(m22)( m 2 )(m 2 ) ; 14.一 ; 15. 54π; 16. 1 2 或-1;17. 12.96;18. 12三、解答题(本大题共7 小题,共 66 分 .解答应写出文字说明、证明过程或演算步骤)19.(本小题满分 8 分 )解:(1) A=( x 3)(x 2)( x26x 9) 1 = ( x 3) (x 2)( x 2)1 =x 2x 3x 24(x 2)(x 3)2 x 3 x 31=x 3 ---------------------------------------------------------------------------------------------------------------3分2x 3 ①x(2)6x 4 ②5 33解不等式①得, x ≤3 解不等式②得, x ≥252∴不等式组的解集为0、1、 2、 3 ----------------------------------------------------- 5 分≤ x ≤ 3,即整数解为5∵假如分式 A 存心义,∴ x ≠2, x ≠ 3 ∴x 只好取 0 或 1 ---------------------------------------------------- 6分 当 x=0 时, A=11----------------------------------------------------------------------------------------7 分x 3=3当 x=1 时, A=1 1---------------------------------------------------------------------------------------8 分x 3=220. (本小题满分 8 分)解:(1)此次检查的家长人数为: 80÷20%=400 (人) ---------------------------------------------------------------- 2 分 表示“反对”的人数是: 400-40-80=280 (人) --------------------------------------------------------------------- 3分-------------------------------------------------------------------------------------4 分o4036 o6分(2) 360400 ------------------------------------------------------------------------------------------------280(3)反对中学生带手机的家长大概有:6500-----------------------------------------8 4550 (人) 分40021. (本小题满分9 分)解:(1)如图,∵∠ EAB=30 °, AE ∥ BF ∴∠ FBA=30 ° 又∵∠ FBC=75 ° ∴∠ ABC=45 °又∵∠ BAC= ∠ BAE+ ∠ CAE=30 ° +45° =75° ∴∠ ACB=180 ° -45°-75° =60° ------------------------ 4 分 (2)如图,作 AD ⊥ BC 于 D.在 Rt △ ABD 中,∵∠ ABD=45 °, AB=240∴AD=BD= ABsin 45o2402 120 2 (海里) -----6 分2在 Rt △ ACD 中,∵∠ C=60 °, AD= 120 2∴CD ADtan 30o120 23 40 6 (海里) ------------------------------------------------8分3∴ B C=BD+CD= 120 2 + 40 6 (海里)答:该船与 B 港口之间的距离 CB 的长为( 1202 + 40 6 )海里 .----------------------------------------9分22. (本小题满分 9 分)(1)证明:连结 OE (如图) .∵ CD 与⊙ O 相切于点 E ,∴ OE ⊥CD∵ AD ⊥CD ,∴ OE ∥ AD ,∴∠ DAE= ∠ AEO ------------1 分 ∵ AO=OE ,∴∠ AEO= ∠ OAE ---------------------------- 2 分∴∠ OAE= ∠ DAE ,∴ AE 均分∠ DAC ---------------------------------------------- 3 分(2)解:①∵ AB 是直径,∴∠ AEB=90 °∵∠ ABE=60 °.∴∠ EAB=30 °在 Rt △ABE 中, BE=1 AB=1×4=2, AE= BE /tan30 ° =2 3 ------------------------------------------4分2 2在 Rt △ADE 中,∠ DAE= ∠BAE=30 ° ∴ AD=cos30 °× AE=3×2 3 =3 --------------------------6分2②∵ OA=OB ,∴∠ AEO= ∠ OAE=30 °,∴∠ AOE=120 °------------------------------------------------------7 分1 1202 2112324S △ABE3 ------9 分∴暗影部分的面积 =S 扇形 AOE -S △ AOE =S 扇形 AOE -3 23602 223. (本小题满分 9 分)解( 1)∵ x4 2 x 4 4,∴当 x 4 时, 2( x 4 ) 有最小值8.即 x=2 时,周长的最小值为 8.----2 分x xx xy 2 ( x 1) 2 1616∵x 1 1616 8(2)x 1x 12 ( x 1)y 1x 1x 1x 1∴当 x 116 ,即 x=3 时( x=-5 舍去),y 2的最小值为 8. --------------------------- 5分x 1y 1( 3)设学校学生人数为 x 人,生均投入为 y 元,依题意得:12800 20x 0.02x 2x 12800 20 -------------------------------------------------------- 6yx50x分∵ x > 0 ∴yx 12800 202 256 20 52 ----------------------------------------------8分50x∴当x12800,即 x=800 时, y 取最小值 52.50 x答:当学校学生人数为 800 人时,该校每日生均投入最低,最低花费是 52 元.--------------------------------9 分24. (本小题满分 11 分)证明:( 1)∵点 D 对于直线 AE 的对称点为 F ∴∠ EAF= ∠DAE ,AD=AF又∵∠ BAC=2 ∠ DAE ∴∠ BAC= ∠ DAF ,∵AB=AC∴ ABAC ∴△ ADF ∽△ ABC ------------------------------------------------------------- 3分AD AF(2)∵点 D 对于直线 AE 的对称点为 F∴EF=DE ,AF=AD ------------------------------------------------------- 4分∵α =45°∴∠ BAD=90 °-∠CAD ,∠ CAF= ∠ DAE+ ∠ EAF- ∠CAD=45 ° +45°- ∠CAD=90 °-∠CAD ∴∠ BAD= ∠CAFAB AC在△ ABD 和△ ACF 中,BAD CAF ∴△ ABD ≌△ ACF (SAS ) ------------------------------5 分ADAF∴CF=BD ,∠ ACF= ∠ B ,∵AB=AC ,∠ BAC=2 α, α=45° ∴△ ABC 是等腰直角三角形 ∴∠ B= ∠ACB=45 °∴∠ ECF=∠ ACB+ ∠ ACF=45 ° +45°=90°在 Rt △ CEF 中,由勾股定理得, EF 2 =CF 2+CE 2 ∴ DE 2=BD 2+CE 2 ------------------------------------------7分( 3) DE 2=BD 2+CE 2 还可以建立.原因以下:作点 D 对于 AE 的对称点 F ,连结 EF 、 CF 、AF.由轴对称的性质得, EF=DE , AF=AD∵α =45°,∴∠ BAD=90 °-∠CAD∠CAF= ∠ DAE+ ∠ EAF- ∠CAD=45 °+45°- ∠CAD=90 °- ∠CAD∴∠ BAD= ∠ CAF ,AB AC在△ ABD 和△ ACF 中,BADCAF ,∴△ ABD ≌△ ACF ( SAS )------------------------------9 分AD AF∴CF=BD ,∠ ACF= ∠ B ,∵AB=AC ,∠ BAC=2 α, α=45° ∴△ ABC 是等腰直角三角形,∴∠ B=∠ ACB=45 °∴∠ BCF= ∠ ACB+ ∠ ACF=45 ° +45°=90°∴∠ ECF=180 °-∠BCF=180 °-90° =90°在 Rt △ CEF 中,由勾股定理得, EF 2 =CF 2+CE2∴ DE2=BD 2+CE 2. ------------------------------------------11 分25. (本小题满分 12 分 )解:(1)∵点 A (-2 ,2)在双曲线yk 上,∴ k=-4 ,∴双曲线的分析式为 y4------------------------1 分xx∵BC 与 x 轴之间的距离是点 B 到 y 轴距离的 4 倍,∴设 B 点坐标为( m ,-4m )( m > 0),代入y 4-----------------------------------------------------2分得, m=1x∴抛物线 yax 2bx c (a < 0)过点 A ( -2, 2)、 B (1,-4 )、 O (0, 0),4a 2b c2a 1∴ab c 4解得,b 3 ∴抛物线的分析式为yx 2 3x----------------------4 分c 0c 0(2)∵ yx 2 3x(x 3)29 ∴极点 E (3 , 9 ),对称轴为 x= 3 ,2 42 4 2∵B ( 1, -4), ∴x 2 3x =-4 ,解得: x 1=1,x 2=-4∵C 点横坐标小于 0,∴ C ( -4,-4)1 15 --------------6 分∴ S△ABC =5×6×2由 A 、 B 两点坐标为( -2 ,2),(1,-4 )可求得直线 AB 的分析式为: y=-2x-2设抛物线的对称轴与3 9 5AB 交于点 F ,连结 BE ,则 F 点的坐标为(,1) ∴ EF=-1=244∴S△ABE =S △AEF +S △BEF =1 EF ×( 3 +2) + 1 EF ×( 1+3)=1 5 ×3= 15----------------------8 分152 2 22 2 4 8∴ 8S △ ABE =15,∴当点 D 与点 C 重合时,明显知足条件; ---------------------------------9 (3)∵S△ ABE=分8当点 D 与点 C 不重合时,过点C 作 CD ∥ AB ,交抛物线 yx 2 3x 于点 D.∵CD ∥ AB ,且 C (-4, -4) ∴直线 CD 的分析式为 y=-2x-12 ----------------------------------------------- 10分令-2x-12=x 23x ,∴ x 2+x-12=0 ,∴( x-3)( x+4)=0,解得 x 1=3, x 2=-4(舍去)--11 分当 x=3 时, y=-18 ,故存在另一点 D ( 3, -18)知足条件综上,切合条件的D 点坐标为:( -4, -4)或( 3, -18).------------------------------------------------------------12 分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点:组合体的结构特征;球的体积公式. 【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置 关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答 问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题. 8. 【答案】B 【解析】解:对于①,f(x)=xsinx,
C.充要 D.8
D.既不充分也不必要
7. 在三棱柱 ABC A1 B1C1 中,已知 AA1 平面 ABC,AA1 =2,BC 2 3, BAC 柱各个顶点都在一个球面上,则球的体积为( A. ) C.

2
,此三棱
32 3
B. 16
25 3
D.
31 2
8. 给出下列函数: ①f(x)=xsinx; ②f(x)=ex+x; ③f(x)=ln( ∃a>0,使 A.①② A.3 ﹣x); f(x)dx=0 的函数是( B.①③ C.7 C.②③ D.8 ) ) D.①②③ )
,0),且长轴长是短轴长的 2 倍,则该椭圆的标准方程是
三、解答题
19.某人在如图所示的直角边长为 4 米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处 都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获 Y(单位:kg)与它的“相近”作物 株数 X 之间的关系如下表所示: X 1 2 3 Y 51 48 45 4 42
4. 在△ABC 中,内角 A,B,C 的对边分别是 a,b,c,若 a2﹣b2= A.30° A.充分不必要 A.1 B.2 B.60° B.必要不充分 ) C.4 C.120° )条件
bc,sinC=2 D.150°
sinB,则 A=(

5. “ p q 为真”是“ p 为假”的( 6. 计算 log25log53log32 的值为(
青州市第一中学 2018-2019 学年下学期高二期中数学模拟题 一、选择题
1. 如果向量 A.30° 满足 B.45° ,且 C.75° ) D.(0,1) )平行,则 λ=( ) ,则 的夹角大小为( D.135° )
2. 函数 f(x)=3x+x 的零点所在的一个区间是( 班级_______________ 座号______ 姓名_______________ 分数_______________ ___________________________________________________________________________________________________ A.(﹣3,﹣2) B.(﹣2,﹣1) C.(﹣1,0) 3. 已知向量 =(2,﹣3,5)与向量 =(3,λ, A. B. C.﹣ D.﹣
6 4 a 2 ,解得 a 2 . 6 4 a a
15.【答案】 y=﹣1.7t+68.7
21.已知函数 f(x)=loga(1+x)﹣loga(1﹣x)(a>0,a≠1). (Ⅰ)判断 f(x)奇偶性,并证明; (Ⅱ)当 0<a<1 时,解不等式 f(x)>0.
第 3 页,共 13 页
22.已知 a>0,a≠1,设 p:函数 y=loga(x+3)在(0,+∞)上单调递减,q:函数 y=x2+(2a﹣3)x+1 的图象 与 x 轴交于不同的两点.如果 p∨q 真,p∧q 假,求实数 a 的取值范围.
23.(本小题满分 10 分)选修 4-4:坐标系与参数方程 已知椭圆 C 的极坐标方程为
2
12 ,点 F1 , F2 为其左、右焦点,直线的参数方程为 3cos 4sin 2
2
2 t x 2 2 (为参数, t R ). 2 y t 2 (1)求直线和曲线 C 的普通方程;
第 4 页,共 13 页
青州市第一中学 2018-2019 学年下学期高二期中数学模拟题(参考答案) 一、选择题
1. 【答案】B 【解析】解:由题意 故两向量夹角的余弦值为 故两向量夹角的取值范围是 45° 故选 B 【点评】本题考点是数量积表示两个向量的夹角,考查利用向量内积公式的变形形式求向量夹角的余弦,并进 而求出两向量的夹角.属于基础公式应用题. 2. 【答案】C 【解析】解:由函数 f(x)=3x+x 可知函数 f(x)在 R 上单调递增, 又 f(﹣1)= ﹣1<0,f(0)=30+0=1>0, ∴f(﹣1)f(0)<0, 可知:函数 f(x)的零点所在的区间是(﹣1,0). 故选:C. 【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题. 3. 【答案】C 【解析】解:∵向量 =(2,﹣3,5)与向量 =(3,λ, ∴ = = , )平行, = 故 ,即
B. Βιβλιοθήκη x09 16,若不等式 f ( x 2) f ( x) 对一切 x R 恒成立,则 a 的最大值为
7 16
C.
1 2
D.
1 4
第 1 页,共 13 页
12.曲线 y=x3﹣2x+4 在点(1,3)处的切线的倾斜角为( A.30° B.45° C.60°
) D.120°
2
9 8 1 2 ,切点横坐标为 ,函数 y ax x 图象经过点 (2, 0) 时, a , 16 3 2
观察图象可得 a 12.【答案】B
1 ,选 C. 2
【解析】解:y/=3x2﹣2,切线的斜率 k=3×12﹣2=1.故倾斜角为 45°. 故选 B. 【点评】本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,本题属于容易题.
第 2 页,共 13 页
这里,两株作物“相近”是指它们之间的直线距离不超过 1 米. (I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰 好“相近”的概率; (II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.
20.
(本小题满分 10 分)如图⊙O 经过△ABC 的点 B,C 与 AB 交于 E,与 AC 交于 F,且 AE=AF. (1)求证 EF∥BC; (2)过 E 作⊙O 的切线交 AC 于 D,若∠B=60°,EB=EF=2,求 ED 的长.
(2)求点 F1 , F2 到直线的距离之和.
24. x 轴的正半轴为极轴的极坐标系中, 在平面直角坐标系 xoy 中, 以 O 为极点, 直线 l 的极坐标方程为 θ= ,曲线 C 的参数方程为 .
(1)写出直线 l 与曲线 C 的直角坐标方程; (2)过点 M 平行于直线 l1 的直线与曲线 C 交于 A、B 两点,若|MA|•|MB|= ,求点 M 轨迹的直角坐标方程.
9. 在等差数列{an}中,a1=2,a3+a5=8,则 a7=( B.6
10.设集合 A={x|﹣2<x<4},B={﹣2,1,2,4},则 A∩B=( A.{1,2} B.{﹣1,4} C.{﹣1,2} D.{2,4}
11.已知 f ( x) ( A. )
ax 2 x, x 0 2 x,
二、填空题
13.在区间[﹣2,3]上任取一个数 a,则函数 f(x)= x3﹣ax2+(a+2)x 有极值的概率为 .
2 x y 2 14.已知实数 x , y 满足约束条件 x y 1 ,若目标函数 z 2 x ay 仅在点 ( 3, 4 ) 取得最小值,则 a 的 x y 1
二、填空题
13.【答案】 .
【解析】解:在区间[﹣2,3]上任取一个数 a, 则﹣2≤a≤3,对应的区间长度为 3﹣(﹣2)=5, 若 f(x)= x3﹣ax2+(a+2)x 有极值, 则 f'(x)=x2﹣2ax+(a+2)=0 有两个不同的根, 即判别式△=4a2﹣4(a+2)>0, 解得 a>2 或 a<﹣1, ∴﹣2≤a<﹣1 或 2<a≤3, 则对应的区间长度为﹣1﹣(﹣2)+3﹣2=1+1=2, ∴由几何概型的概率公式可得对应的概率 P= , 故答案为: 【点评】 本题主要考查几何概型的概率的计算, 利用函数取得极值的条件求出对应 a 的取值范围是解决本题的 关键. 14.【答案】 ( , 2) 【解析】不等式组表示的平面区域的角点坐标分别为 A(1, 0), B (0,1), C (3, 4) , ∴ z A 2 , z B a , zC 6 4a . ∴
∴λ=﹣ . 故选:C. 【点评】本题考查了空间向量平行(共线)的问题,解题时根据两向量平行,对应坐标成比例,即可得出答案. 4. 【答案】A 【解析】解:∵sinC=2 ∵a2﹣b2= bc,∴cosA= sinB,∴c=2 = b, =
∵A 是三角形的内角 ∴A=30° 故选 A. 【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题.
第 5 页,共 13 页
5. 【答案】B 【解析】 试题分析:因为 p 假真时, p q 真,此时 p 为真,所以,“ p q 真”不能得“ p 为假”,而“ p 为 假”时 p 为真,必有“ p q 真”,故选 B. 考点:1、充分条件与必要条件;2、真值表的应用. 6. 【答案】A 【解析】解:log25log53log32= 故选:A. 【点评】本题考查对数的运算法则的应用,考查计算能力. 7. 【答案】A 【解析】 =1.
即存在 a>0,使
对于②,f(x)=ex+x, 对于③,f(x)=ln(
令 ea﹣e﹣a=0,解得 a=0,不满足条件; ﹣x)是定义域 R 上的奇函数, 且积分的上下限互为相反数, 所以定积分值为 0,满足条件; 综上,∃a>0,使 故选:B. 【点评】本题主要考查了定积分运算性质的应用问题,当被积函数为奇函数且积分区间对称时,积分值为 0, 是综合性题目. 9. 【答案】B 【解析】解:∵在等差数列{an}中 a1=2,a3+a5=8, ∴2a4=a3+a5=8,解得 a4=4, ∴公差 d= ∴a7=a1+6d=2+4=6 故选:B. 10.【答案】A 【解析】解:集合 A={x|﹣2<x<4},B={﹣2,1,2,4},则 A∩B={1,2}. 故选:A. 【点评】本题考查交集的运算法则的应用,是基础题.
相关文档
最新文档