2020-2021高二数学上期中模拟试卷带答案
2020-2021学年度高二数学上学期期中考试题目(含有答案解析)
高二文科数学上学期期中考试题目一、选择题 1.直线的倾斜角为A.B. C. D.2.若点()1,a 到直线10x y -+=的距离是322,则实数a 的值为( ) A .1-B .5C .1-或5D .3-或33.一圆锥形物体的母线长为4,其侧面积为4π,则这个圆锥的体积为( ) A .153π B .833C .153D .833π 4.一个平面图形用斜二测画法作的直观图是一个边长为1cm 的正方形,则原图形的周长是( )A. 6cmB. 8cmC.D.5.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个 数为( ) A .1 B .2 C .3 D .4 6.《九章算术》是我国古代的数学专著.在《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.已知“堑堵”ABC-A 1B 1C 1的所有顶点都在球O 的球面上,且AB=AC=1.若球O 的表面积为3π,则这个三棱柱的体积是( ) A.61 B.31 C.21D.17.已知光线从点A(-3,4)射出,到x 轴上的点B 后,被x 轴反射,这时反射光线恰好过点C(1,6),则BC 所在直线的方程为( ) A.5x-2y+7=0 B.2x-5y+7=0 C.5x+2y-7=0 D.2x+5y-7=08.已知点A (2,-3),B (-3,-2),直线l 过点P (1,1),且与线段AB 相交,则直线l 的斜率k 的取值范围为( )A .34k ≥或4k ≤- B .34k ≥或14k ≤- C .434≤≤-kD .443≤≤k 10.已知b a 、为不重合的直线,α为平面,下列命题:(1)若//,//a b a α,则//b α;(2)若//a α,b α⊂,则//a b ;(3)若,//a b b ⊥α,则a α⊥;(4)若a ⊥α,b a ⊥,则//b α,其中正确的个数有( ) A .0 B .1 C .2D .39.球面上有三点A,B,C 组成这个球的一个截面的内接三角形的三个顶点,其中AB=18,BC=24,AC=30,球心到这个截面的距离为球半径的一半,则该球的表面积为( ) A.1200πB.1400πC.1600πD.1800π11.如图,正方体1111D C B A ABCD -的棱长为1,动点E 在线段11C A 上, F 、M 分别是AD 、CD 的中点,则下列结论中错误的是( ) A .11//FM AC B .BM ⊥平面1CC FC .存在点E ,使得平面BEF //平面11CCD D D .三棱锥B CEF -的体积为定值12.如图所示,在棱长为1的正方体1111D C B A ABCD -中,点F E ,分别是棱1,CC BC 的中点,P 是侧面11B BCC 内一点,若//1P A 平面AEF ,则线段P A 1长度的取值范围为( )A .⎥⎦⎤⎢⎣⎡25,1B .⎥⎦⎤⎢⎣⎡25,423C .⎥⎦⎤⎢⎣⎡2,25 D .]3,2[二、填空题13.过点)3,2(A 且垂直于直线052=-+y x 的直线方程为 .14. 圆台的上、下两个底面圆的半径分别为1和2,母线与底面的夹角是60∘,则圆台的侧面积为____ .15.直线l 过250x y ++=和70x y -+=的交点,且在两坐标轴上的截距相等,则直线l 的方程为 .16.已知三棱锥ABC S -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2=SC ,则此棱锥的体积为 . 三、解答题17.已知直线01)3(2:1=+-+y m mx l ,022:2=++m my x l . (1)若21l l ⊥,求实数m 的值; (2)若21//l l ,求实数m 的值.18.如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点.求证:(1)P A ∥平面BDE ;(2)平面P AC ⊥平面BDE .19.如图,在直三棱柱111C B A ABC -中,N M 、分别为棱11B A AC 、的中点,且BC AB =.(1)求证:平面⊥BMN 平面11A ACC ; (2)求证:MN ∥平面11B BCC .20.已知直线l :kx -y +1+2k =0(k ∥R) (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求实数k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设∥AOB 的面积为S ,求S 的最小值及此时直线l 的方程.DABCOEP21.在边长为的正方形中,分别为的中点,分别为的中点,现沿折叠,使三点重合,重合后的点记为,构成一个三棱锥.(1)请判断与平面的位置关系,并给出证明;(2)证明:平面;(3)求三棱锥B-AEN的体积.22.如图,在四棱锥P-ABCD中,AB//CD,且90BAP CDP∠=∠=.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,90APD∠=,且四棱锥P-ABCD的体积为83,求该四棱锥的侧面积.4cm ABCD E F、BC CD、M N、AB CF、AE AF EF、、B C D、、BMN AEFAB⊥BEF1-5.DCABC 6-10.CAAAA 11-12.CB13.x -2y +4=0 14.π6 15.3x +4y =0或x +y +1=0 16.62 17.18.19.(1) 证明:因为M 为棱AC 的中点,且BC AB =,所以AC BM ⊥, 因为111C B A ABC -是直三棱柱,所以⊥1AA 平面ABC , 因为⊂BM 平面ABC ,所以BM AA ⊥1,又⊂1AA AC 、平面11A ACC ,且A AA AC =1 ,所以⊥BM 平面11A ACC , 因为⊂BM 平面BMN ,所以平面⊥BMN 平面11A ACC ;(2)取BC 的中点P ,连接P B 1和MP ,因为P M 、为棱BC AC 、的中点,所以AB MP //,且AB MP 21=, 因为111C B A ABC -是棱柱,所以1111,//B A AB B A AB =, 因为N 为棱11B A 的中点,所以BA N B //1,且BA N B 211=, 所以MP N B //1,且MP N B =1,所以P MNB 1是平行四边形, 所以1//PB MN ,又因为⊄MN 平面11B BCC ,⊂1PB 平面11B BCC , 所以//MN 平面11B BCC .20.(1) 因为直线l :kx -y +1+2k =0(k ∥R )⇔ y -1=k (x +2),所以直线l 过定点(-2,1); (2) 由于直线l 恒过定点(-2,1),画出图形,知: 要使直线l 不经过第四象限必须且只需0≥k , 故k ∥[0, ∞+);(3)由直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B 知:k >0, 由直线l :kx -y +1+2k =0中,令,120k x y --=⇒=则)0,12(k A --, 再令120+=⇒=k y x ,则)12,0(+k B ,所以有:()2212k 11441111(44)842222k k s k k k k +++=⋅=⋅=++≥⨯=((当且仅当 21=k 时,取等号), 所以,S 的最小值为4,此时l 的方程为:x -2 y +4=0. 21.22.。
2020-2021年高二数学上册期中试题含解析
高二数学上学期期中试题(含分析)一、选择题(本大题共 12 小题)1.设 x ∈R ,则“ 0< x <5”是“|x -1| <1”的()A. 充足而不用要条件B. 必需而不充足条件C. 充要条件D. 既不充足也不用要条件2. 已知等差数列 { a n } 中, a 7+a 9=16, a 4=1,则 a 12 的值是()A. 64B. 31C. 30D. 153. 己知对于 x 的不等式 x 2- ax +2a > 0 在 R 上恒成立,则实数 a 的取值范围是()A.B.C.D.4. 椭圆 =1 的离心率为,则k 的值为()A.B. 21C. 或21D. 或215. 已知双曲线 +=1,焦点在 y 轴上,若焦距为 4,则 a 等于()A.B. 5C. 7D. 6. 不等式ax 2+ +2> 0 的解集是( - ,),则+ 的值是()bxa bA. 10B.C. 14D.7. 已知数列 {n },假如a1, 2-a1, 3- 2 , ,a n-a n-1, ,是首项为1,公比为的等比a a a a数列,则 a =()nA.B.C.D.8. 已知等差数列 { a } 的公差 d ≠0,且 a 1、 a 3、 a 9 成等比数列,则的值为()nA.B.C.D.9. 已知正项等比数列的公比为3, 若, 则的最小值等于 ()A. 1B.C.D.10. 己知数列 { a n } 的通项公式是.设数列 { a n } 的前 n 项和为 S n ,则使 S n < -4 成立的最小自然数 n 的值是( )A. 13B. 14C. 15D. 1611. 我们把由半椭圆与半椭圆合成的曲线称作“果圆”(此中 a 2=b 2+c 2, a > b > c > 0).如图,设点F 0,F 1,F 2 是相应椭圆的焦点, A 1、A 2 和 B 1、B 2 是“果1圆”与 x , y 轴的交点,若△ F 0F 1F 2 是边长为 1 的等边三角形,则 a , b 的值分别为()A.B.C. 5,3D. 5,412. 已知椭圆C 的焦点为,过2的直线与C 交于 , 两点 . 若,,则C 的方程为( )FA BA.B.C.D.二、填空题(本大题共 4 小题)13. 记Sn 为等比数列 {} 的前 n 项和 . 若,则4 =___________.anS14. 己知命题 : ?∈ [-1 ,1] , a 2-5 a -3 < +2,且 p 是假命题,则实数a 的取值范围p mm是 ______.15. 规定记号“⊙”表示一种运算,定义 a ⊙ b =+a +b ( a , b 为非负数),若 1⊙ k 2< 3,则实数 k 的取值范围是 ______.16. 设 F 1,F 2 为椭圆 C :的两个焦点, M 为 C 上一点且在第一象限.若△ MF 1F 2 为等腰三角形,则 M 的坐标为 ________.三、解答题(本大题共6 小题)17. 求合适以下条件的椭圆的标准方程:( 1)焦点在 y 轴上,焦距是 4,且经过点 M ( 3, 2);( 2) c : a =5:13,且椭圆上一点到两焦点的距离的和为26.18. ( 1)设函数 f 2,若对于 m ∈ [-2 ,2] , f ( x )<0 恒成立,务实数( x ) =mx - mx +m -6 x 的取值范围; ( 2)对于 x 的方程 8x 2-2 ( m -1 ) x +m -6=0 的两个根,一个在区间( 0, 1)内,另一个在区间( 1, 2),务实数的取值范围.m219. 设 { a n } 是等差数列, a 1=-10 ,且 a 2+10, a 3+8, a 4+6 成等比数列.(Ⅰ)求 { a n } 的通项公式;(Ⅱ)记 { a n } 的前 n 项和为 S n ,求 S n 的最小值.20. 某单位有职工 1000 名,均匀每人每年创建收益 10 万元,为了增添公司竞争力,决定优化家产结构,调整出( ∈ * )名职工从事第三家产,调整后他们均匀每人每x n N年创建收益为 10( a - )万元( > 0),剩下的职工均匀每人每年创建的收益能够a提升 0.2 x %.( 1)若要保证节余与职工创建的年总收益不低于本来 1000 名职工创建的年总利润,则最多调整出多少名职工从事第三家产?( 2)在( 1)的条件下,若调整出的职工创建的年总收益一直不高于节余与职工创建的年总收益,则 a 的取值范围是多少?21. 已知椭圆 C :的左、右极点分别为 A , B ,离心率为,点 P ( 1,)为椭圆上一点.( 1)求椭圆 C 的标准方程;( 2)如图,过点 C ( 0, 1)且斜率大于 1 的直线 l 与椭圆交于 M , N 两点,记直线AM 的斜率为 k 1,直线 BN 的斜率为 k 2,若 k 1=2k 2,求直线 l 斜率的值.322.各项为正的数列 { a n} 知足,( 1)当λ=a n+1时,求证:数列 { a n} 是等比数列,并求其公比;( 2)当λ=2 时,令,记数列 { b n} 的前n项和为S n,数列 { b n} 的前n项之积为T n,求证:对随意正整数 n,2n+1T n+S n为定值.4答案和分析1. 【答案】 B【分析】【剖析】此题考察了充足必需条件,考察解不等式问题,是一道基础题. 解出对于 x 的不等式,联合充足必需条件的定义,从而求出答案. 【解答】解:∵ | x -1| < 1,∴ 0< x < 2,∵ 0< x <5 推不出 0< x < 2,0< x < 2? 0< x < 5,∴ 0< x <5 是 0< x < 2 的必需不充足条件,即 0< x <5 是 | x -1| < 1 的必需不充足条件.应选 B .2. 【答案】 D【分析】【剖析】此题考察了等差数列的性质,属于基础题.【解答】解:因为 { a n } 是等差数列,因此 a 7+a 9=a 4 +a 12 ,因此. 应选 D . 3. 【答案】 A【分析】解:不等式x 2-ax +2 >0在R 上恒成立,a△ =a 2-8 a =a ( a -8 )< 0,即 a ∈( 0,8),应选: A .利用鉴别式法判断即可.考察二次函数恒成立问题,基础题. 4. 【答案】 C【分析】解:若a 2=9,b 2=4+k ,则c =,由 =,即 =得 k =- ; 若 a 2=4+k ,b 2=9,则 c =,由 =,即 =,解得k =21.应选: C .5依题意,需对椭圆的焦点在x 轴与在 y 轴分类议论,从而可求得 k 的值.此题考察椭圆的简单性质,对椭圆的焦点在 x 轴, y 轴分类议论是重点,考察推理运算能力,属于中档题. 5. 【答案】 D【分析】解:依据题意,双曲线 +=1,焦点在 y 轴上,则有,解可得 a < 2,又由其焦距为 4,即 c =2, 2则有 c =( 2- a ) +( 3- a ) =4, 解可得 a =;应选: D .依据题意,由双曲线焦点的地点可得,解可得a 的范围,又由其焦距为 4,即 c =2,由双曲线的几何性质可得c 2=(2- a ) +(3- a ) =4,解可得 a 的值.此题考察双曲线的几何性质,注意双曲线的焦点在 y 轴上,先求出 a 的范围.6. 【答案】 B【分析】 剖析:利用一元二次不等式的解集与相应的一元二次方程的实数根的关系即可得出.娴熟掌握一元二次不等式的解法是解题的重点. 解:不等式 ax 2+bx +2> 0 的解集是( - ,),∴ - ,是方程 ax 2+bx +2=0 的两个实数根,且 a < 0,∴ -=-+ ,=- ×,解得 a =-12 , b =-2 ,∴ a +b =-14应选: B .7. 【答案】 A【分析】解:由题意a n= 1+( 2- 1 )+( 3- 2 )+ +(a n-n-1) =aa aa aa应选: .A因为数列 a 1,( a 2- a 1),( a 3- a 2), ,( a - a -1 ), ,此数列是首项为1,公比为nn的等比数列,依据等比数列的通项公式可得数列{ a } 的通项.n考察学生平等比数列性质的掌握能力,属于基础题. 8. 【答案】 C【分析】解:等差数列 { a n } 中, a 1=a 1, a 3=a 1+2d , a 9=a 1+8d ,因为 a 1、 a 3、a 9 恰巧是某等比数列,因此有a 2,即(a2( 1+8),解得 = 1,3= 1 91+2)=1a a da a d d a因此该等差数列的通项为 a n =nd则的值为 =.6应选: C .因为 { a n } 是等差数列,故a 1、 3、 9 都可用 d 表达,又因为1、 3 、 9 恰巧是等比数列,a aa a a 2因此有 a 3 =a 1 a 9,即可求出 d ,从而可求出该等比数列的公比,最后即可求比值.此题考察等差数列的通项公式、 等比数列的定义和公比, 属基础知识、 基本运算的考察.9. 【答案】 C【分析】【剖析】此题考察等比数列的应用,函数的最值的求法,考察计算能力 , 属于较易题 .利用等比数列的性质推出 m 、 n 的关系,而后利用基本不等式求最小值即可.【解答】解:正项等比数列 { a n } 的公比为 3, 2若 =a 3 ,可得 m +n =6, m , n ∈ . = ,当且仅当 m =2n , 即 m =4, n =2 时,的最小值等于.应选: C .10. 【答案】 D【分析】解: a n =log 2=log 2n -log 2( n +1),可得前 n 项和为 S n =a 1+a 2+ +a n =log 21-log 22+log 22-log 23++log 2n -log 2(n +1)=log 21-log 2( n +1) =-log 2( n +1)< -4 , 则 n +1> 16,即 n >15,使 S n < -4 成立的最小自然数 n 的值是 16.应选: D .求得 a n =log 2=log 2n -log 2( n +1),再由数列的裂项相消乞降,可得前n 项和 S n ,再由对数不等式的解法可得n 的最小值.此题考察数列的裂项相消乞降,对数不等式的解法,考察运算能力,属于基础题. 11. 【答案】 A【分析】解:,,∴ b =1,∴,得,即, b =1.应选: A . 由题意可知求得c ,再由求得 b ,最后由 a 2=b 2+c 2 求得 a .此题主要考察椭圆的性质.属基础题. 12. 【答案】 B【分析】【剖析】此题考察了椭圆的性质,属中档题.依据椭圆的定义以及余弦定理列方程可解得a =,b =,可得椭圆的方程.7【解答】解:∵ | AF2|=2| BF2| ,∴ | AB|=3| BF2| ,又 | AB|=| BF1| ,∴ | BF1|=3|BF2| ,又 | BF1|+| BF2|=2 a,∴ |BF2|= ,∴ | AF2|= a, | BF1|= a,则 | AF2|=||= a,因此A为椭圆短轴端点,在 Rt△ AF2O中,cos∠ AF2O=,在△ BF1F2中,由余弦定理可得cos∠BF2F1=,依据 cos ∠AF2O+cos∠BF2F1=0,可得 +=0,解得 a2=3,∴a=,b2=a2- c2=3-1=2.因此椭圆 C的方程为:+=1.应选 B.13.【答案】【分析】【剖析】此题主要考察了等差数列的通项公式及乞降公式的简单应用,属于基础试题,利用等比数列的通项公式及乞降公式表示已知,可求公比,而后再利用等比数列的乞降公式即可求解 .【解答】解:∵数列 { a n} 为等比数列,a1=1, S3=,∴q≠1,=,整理可得,解得 q=-,故 S4===.故答案为 .14.【答案】( - ∞, -1] ∪ [6 ,+∞)【分析】解:∵命题p:? m∈[-1,1], a2-5 a-3< m+2,且 p 是假命题,则∴? m∈ [-1 , 1] ,a2-5 a- 3≥m+2 恒成立,∴a2-5 a- 3≥3,∴a≤-1或 a≥6,故答案为:(- ∞, -1] ∪ [6 ,+∞).命题 p 是假命题,利用分别m求解.此题考察复合命题真假的关系,参数取值范围,考察转变、逻辑推理、计算能力.15.【答案】( -1 ,1)8【分析】解:由a ⊙b =+a +b ,∵ 1⊙ k 2< 3,∴,化简可得, | k |+1+| k 2| < 2, ∴( | k |-1 )( | k |+2 )< 0,∴ | k | < 1, ∴ -1 < k < 1,原不等式的解集为( -1 ,1).故答案为:( -1 , 1).由已知新定义可转变不等式得,化简后解二次不等式及绝对值不等式即可求解.此题以新定义为载体,主要考察了二次不等式与绝对值不等式的求解,属于基础试题. 16. 【答案】( 3,)【分析】【剖析】此题主要考察椭圆的方程和性质,考察分类议论思想方法,考察方程思想和运算能力,属于中档题.设( , ), , >0,求得椭圆的 , , ,因为 为 C 上一点且在第M m n m n a b c M 一象限,可得 |1| >| 2| ,△1 2 为等腰三角形,可能 | 1|=2 或 |2|=2 c .分类讨MFMFMFFMF cMF论即可得出 M 的坐标 . 【解答】解:设 M (m , n ), ( m , n > 0) ,椭圆 C : +=1 的 a =6,b =2,c =4, ,因为 M 为 C 上一点且在第一象限,可得 | MF 1| > | MF 2| , △ MF 1F 2 为等腰三角形,可能 | MF 1|=2 c 或 | MF 2|=2 c , 因此解得因此 M ( 3,).故答案为( 3,).17. 【答案】解:( 1)由题意可设椭圆的方程为,焦距是 4,且经过点 M ( 3, 2);可得,解得 a =4, c =2, b 2=12.∴椭圆的标准方程是:.( 2)由题意可得,解得.故所求的椭圆方程为:或.【分析】( 1)由题意可设椭圆的方程,利用已知条件列出方程,求出a ,b ,即可解出椭圆方程.(2)由题意可得a,b的方程组,求解即可.娴熟掌握椭圆的标准方程及其性质是解题的重点,是中档题.218. 【答案】解:(1)对于m∈ [-2 ,2] ,f(x)< 0 恒成立,即mx- mx+m-6<0,9可得 m( x2- x+1)-6<0,因为 x2- x+1>0恒成立令= (2 - +1) -6 ,当作对于与y 的一次函数,且在∈ [-2 , 2] 上单一递加,y m x x m m∴m=2时获得最大值为2( x2- x+1)-6,∴2(x2- x+1) -6 < 0,解得 -1 <x< 2,故得 x 的取值范围(-1,2);(2)记f(x) =8x2-2 (m-1 )x+m-6 ,∵方程的一根在区间(0, 1)上,另一根在区间(1, 2)上,∴有 f (0)>0, f (1)<0, f (2)>0,即;解得: 4<m< 6;∴实数 m的取值范围是(4, 6).【分析】( 1)主元换位,即可求解;(2)结构函数,依据方程的一根在区间(0, 1)上,另一根在区间( 1, 2)上,有f(0)> 0,f( 1)< 0,f( 2)> 0,从而务实数m的取值范围此题考察了变元的思想,经过变元,转变为m的函数,利用函数的单一性求函数最大值;在把恒成立问题转变为求函数的最值问题的过程中,表现了转变的思想方程;还考察了对根的议论,函数与方程思想,以及学生的计算能力,正确成立不等式是重点;此题属于中档题.19. 【答案】解:(Ⅰ)∵{ a n} 是等差数列,a1=-10,且 a2+10,a3+8, a4+6成等比数列.∴( a3+8)2=( a2+10)( a4+6),∴( -2+2 d)2=d( -4+3 d),解得 d=2,∴a n=a1+( n-1) d=-10+2 n-2=2 n-12.(Ⅱ)由 a1=-10, d=2,得:S n=-10 n+=n2-11 n=( n-)2-,∴ n=5或 n=6时, S n取最小值-30.【分析】此题考察数列的通项公式、前n 项和的最小值的求法,考察等差数列、等比数列的性质等基础知识,考察推理能力与计算能力,属于基础题.(Ⅰ)利用等差数列通项公式和等比数列的性质,列出方程求出d=2,由此能求出{ a }n 的通项公式;(Ⅱ)由 a =-10, d=2,得 S 2 2 S 的最小值.=-10 n+=n -11 n=(n- ) - ,由此能求出1 n n20.【答案】解:( 1)由题意得: 10(1000- x)( 1+0.2 x%)≥ 10×1000,即 x2-500 x≤0,又 x>0,因此0< x≤500.即最多调整500 名职工从事第三家产.(2)从事第三家产的职工创建的年总收益为万元,从事本来家产的职工的年总收益为万元,则( 1+0.2 x%)10因此, 因此 ax ≤,即 a ≤恒成立,因为,当且仅当,即 x =500 时等号成立.因此 a ≤5,又 a > 0,因此 0< a ≤5,即 a 的取值范围为( 0, 5] .【分析】( 1)依据题意可列出10( 1000- x )( 1+0.2 x %)≥ 10×1000,从而解不等式求得 x 的范围,确立问题的答案.( 2)依据题意分别表示出从事第三家产的职工创建的年总收益和从事本来家产的职工的年总收益,从而依据题意成立不等式,依据均值不等式求得求a 的范围.此题主要考察了基本不等式在求最值问题中的应用.考察了学生综合运用所学知识,解决实质问题的能力.21. 【答案】解:( 1)依据题意,椭圆的离心率为,即 e ==,则 a =2c .又∵ a 2=b 2+c 2,∴. ∴椭圆的标准方程为:.又∵点 P (1,)为椭圆上一点,∴,解得: c =1.∴椭圆的标准方程为:. ( 2)由椭圆的对称性可知直线l 的斜率必定存在,设其方程为 y =kx +1.设 M ( x 1, y 1), N ( x 2,y 2). 联列方程组:,消去y 可得:( 3+4k 2)x 2+8kx -8=0 .∴由韦达定理可知:,. ∵,,且 k 1=2k 2,∴,即.①又∵ M ( x 1, y 1), N (x 2,y 2)在椭圆上,∴,.②将②代入①可得:,即3x 1x 2+10( x 1+x 2) +12=0.∴,即 12k 2-20 k +3=0. 解得:或. 又由 k > 1,则.【分析】此题考察椭圆的几何性质,波及直线与椭圆的地点关系,重点是求出椭圆的标准方程,属于综合题.( 1)依据题意,由椭圆离心率可得a =2c ,从而可得,则椭圆的标准方程为,将P 的坐标代入计算可得 c 的值,即可得答案;( 2)依据题意,设直线1122),将直线的方 l 的方程为 y =kx +1,设 M ( x ,y ), N (x , y程与椭圆联立,可得( 223+4k )x +8kx -8=0 ,由根与系数的关系剖析,:,,联合椭圆的方程与直线的斜率公式可得,即 12k 2-20 k +3=0,解可得 k 的值,即可得答案.22. 【答案】证明:( 1)当 λ=a n+1 时, a n+1=+a n , a n >0,∴ =+1,11令 =q> 0,则q=+1,化为q2- q-1=0 ,解得q=.∴数列 { a n} 是等比数列,其公比q=.(2)当λ=2 时,a n+1=+a n,∴ 2a n+1=a n(a n+2),∴ =.∴ T n=b1b2b3 b n=?? ?==.又b n====-,∴S n=b1+b2+b3+ +b n=- ++ +-=-,∴2n+1T n+S n=+-==2 .∴对随意正整数n,2n+1 T n+S n为定值2.【分析】( 1)递推式两边同除a n,得出对于的方程,求出=,得出结论;(2)化简整理可得b n=,求出S n,T n即可得出结论.此题考察了数列递推关系、等比数列的判断,乞降公式,考察了推理能力与计算能力,属于中档题.2020-2021年高二数学上册期中试题含解析1221 / 21。
2020-2021高二数学上期中一模试卷含答案(3)
2020-2021高二数学上期中一模试卷含答案(3)一、选择题1.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )A .203B .72C .165D .1582.一组数据如下表所示:x1 2 3 4y e3e 4e 6e已知变量y 关于x 的回归方程为+0.5ˆbx ye =,若5x =,则预测y 的值可能为( ) A .5eB .112eC .132eD .7e3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油 4.阅读下边的程序框图,运行相应的程序,则输出s 的值为( )A .1B .0C .1D .35.从一批产品中取出三件产品,设事件A 为“三件产品全不是次品”,事件B 为“三件产品全是次品”,事件C 为“三件产品不全是次品”,则下列结论正确的是( ) A .事件A 与C 互斥 B .事件B 与C 互斥 C .任何两个事件均互斥D .任何两个事件均不互斥6.《九章算术》是我国古代内容极为丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,七日织28尺,第二日,第五日,第八日所织之和为15尺,则第十五日所织尺数为( )A .13B .14C .15D .167.某城市2017年的空气质量状况如下表所示: 污染指数T 3060100110130140概率P110 16 13 730 215 130其中污染指数50T ≤时,空气质量为优;50100T <≤时,空气质量为良;100150T <≤时,空气质量为轻微污染,该城市2017年空气质量达到良或优的概率为( )A .35B .1180C .119D .568.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是( )A .336B .510C .1326D .36039.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110B .35C .310D .2510.将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m ,第二次出现的点数为n ,向量p u v =(m ,n),q v =(3,6).则向量p u v 与q v共线的概率为( )A .13B .14C .16D .11211.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中. (a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =. 则A .()()1212,p p E E ξξ><B .()()1212,p p E E ξξC .()()1212,p p E E ξξ>>D .()()1212,p pE E ξξ<<12.某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有( )①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;②用简单随机抽样的方法从新生中选出100人; ③西部地区学生小刘被选中的概率为150; ④中部地区学生小张被选中的概率为15000A .①④B .①③C .②④D .②③二、填空题13.将一枚骰子连续掷两次,点数之积为奇数的概率为__________.14.为了防止职业病,某企业采用系统抽样方法,从该企业全体1200名员工中抽80名员工做体检,现从1200名员工从1到1200进行编号,在115~中随机抽取一个数,如果抽到的是7,则从4660~这15个数中应抽取的数是__________. 15.执行如图所示的程序框图,则输出S 的结果为________.16.下列四个命题:①样本方差反映的是所有样本数据与样本平均值的偏离程度;②基本事件空间是Ω={1,2,3,4,5,6},若事件A ={1,3},B ={3,5,6},A ,B 为互斥事件,但不是对立事件;③某校高三(1)班和高三(2)班的人数分别是m ,n ,若一模考试数学平均分分别是a ,b ,则这两个班的数学平均分为na mb m n+; ④如果平面外的一条直线上有两个点到这个平面的距离相等,那么这条直线与这个平面的位置关系为平行或相交. 其中真命题的序号是__________.17.集合{|64,1,2,3,4,5,6}A y y n n ==-=,集合1{|2,1,2,3,4,5,6}n B y y n -===,若任意A∪B 中的元素a ,则a ∈A∩B 的概率是________。
2020-2021高二数学上期中模拟试卷(及答案)
2020-2021高二数学上期中模拟试卷(及答案)一、选择题1.民间有一种五巧板拼图游戏.这种五巧板(图1)可以说是七巧板的变形,它是由一个正方形分割而成(图2),若在图2所示的正方形中任取一点,则该点取自标号为③和④的巧板的概率为()A.518B.13C.718D.492.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b分别为14,18,则输出的a ()A.0B.2C.4D.143.在本次数学考试中,第二大题为多项选择题.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分,小明因某原因网课没有学习,导致题目均不会做,那么小明做一道多选题得5分的概率为()A.115B.112C.111D.144.阅读下边的程序框图,运行相应的程序,则输出s的值为( )A .1B .0C .1D .35.已知变量,x y 之间满足线性相关关系ˆ 1.31yx =-,且,x y 之间的相关数据如下表所示: x 12 3 4 y0.1m3.14则实数m =( ) A .0.8B .0.6C .1.6D .1.86.某商场为了了解毛衣的月销售量y (件)与月平均气温x (C ︒)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: 月平均气温x C ︒171382月销售量y (件)24334055由表中数据算出线性回归方程y bx a =+$$$中的2b =-$,气象部门预测下个月的平均气温为6C ︒,据此估计该商场下个月毛衣销售量约为( )A .58件B .40件C .38件D .46件7.已知某地区中小学生人数和近视情况分别如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A .100,20B .200,20C .100,10D .200,108.6件产品中有4件合格品,2件次品.为找出2件次品,每次任取一个检验,检验后不放回,则恰好在第四次检验后找出所有次品的概率为( ) A .35B .13C .415D .159.将三枚质地均匀的骰子各掷一次,设事件A =“三个点数之和等于15”,B =“至少出现一个5点”,则概率()|P A B 等于( ) A .5108B .113C .17D .71010.如图所示是为了求出满足122222018n +++>L 的最小整数n ,和两个空白框中,可以分别填入( )A .2018S >?,输出1n -B .2018S >?,输出nC .2018S ≤?,输出1n -D .2018S ≤?,输出n11.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x (万8.28.610.0 11.3 11.9元)支出y(万元)6.27.58.08.59.8根据上表可得回归直线方程ˆˆˆy bx a=+,其中ˆˆˆ0.76,b a y bx==-,据此估计,该社区一户收入为15万元家庭年支出为()A.11.4万元B.11.8万元C.12.0万元D.12.2万元12.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,...,960,分组后某组抽到的号码为41.抽到的32人中,编号落入区间[]401,755的人数为()A.10B.11C.12D.13二、填空题13.在区间[2,4]-上随机地取一个实数x,若实数x满足||x m≤的概率为23,则m=_______.14.连续抛掷一颗骰子2次,则掷出的点数之和不超过9的概率为______.15.某校连续5天对同学们穿校服的情况进行统计,没有穿校服的人数用茎叶图表示,如图,若该组数据的平均数为18,则x=_____________.16.在可行域103x yx yx--≤⎧⎪+≤⎨⎪>⎩,内任取一点(),M x y,则满足20x y->的概率是______.17.某单位为了了解用电量y(度)与气温x(℃之间的关系,随机统计了某4天的用电量与当天气温(如表),并求得线性回归方程ˆ360y x=-为:x c914-1y184830d不小心丢失表中数据c,d,那么由现有数据知3c d-____________.18.三位同学参加跳高、跳远、铅球项目的比赛.若每人只选择一个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示).19.课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市的个数分别为4、12、8.若用分层抽样的方法抽取6个城市,则乙组中应抽取的城市数为_________.20.已知方程0.85 2.1ˆ87yx =-是根据女大学生的身高预报其体重的回归方程, ˆ,x y 的单位是cm 和kg ,则针对某个体()160,53的残差是__________.三、解答题21.随着我国经济的发展,居民收入逐年增长.某地区2014年至2018年农村居民家庭人均纯收入y (单位:千元)的数据如下表: 年份 2014 2015 2016 2017 2018 年份代号t 1 2 3 4 5 人均纯收入y547810(1)求y 关于t 的线性回归方程;(2)利用(1)中的回归方程,分析2014年至2018年该地区农村居民家庭人均纯收入的变化情况,并预测2019年该地区农村居民家庭人均纯收入为多少?附:回归直线的斜率和截距的最小二乘估计公式分别为()()()121niii nii tty y b tt==--=-∑∑$,a y bt =-$$.22.树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,大量的统计数据表明,参与调查者中关注此问题的约占80%.现从参与调查的人群中随机选出200人,并将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4 组[45,55),第5组[55,65],得到的频率分布直方图如图所示(1) 求a 的值(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取12人,再从这12人中随机抽取3人进行问卷调查,求在第1组已被抽到1人的前提下,第3组被抽到2人的概率; (3)若从所有参与调查的人中任意选出3人,记关注“生态文明”的人数为X ,求X 的分布列与期望.23.“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.共生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据(),(1,2,,6)i i x y i =L ,如表所示:已知611806i i y y ===∑,613050i i i x y ==∑.(1)已知变量,x y ,只有线性相关关系,求产品销量y (件)关于试销单价x (元)的线性回方程y bx a =+$$$;(2)用µi y 表示用(Ⅱ)中所求的线性回归方程得到的与i x 对应的产品销量的估计值.当销售数据(),i i x y 对应的差的绝对值µ||1i i y y -≤时,则将售数数(),i i x y 称为一个“好数据”.现从6小销售数据中任取2个;求“好数据”至少有一个的概率.(参考公式:线性回归方程中,b a 的最小二乘估计分别为1221ni ii nii x y nx ybxnx==-=-∑∑$,a y bx =-$$)24.某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲、乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在(]195,210内,则为合格品,否则为不合格品.如图是甲流水线样本的频数分布表和乙流水线样本的频率分布直方图.(1)根据频率分布直方图,估计乙流水线生产的产品该质量指标值的中位数; (2)若将频率视为概率,某个月内甲、乙两条流水线均生产了5000件产品,则甲、乙两条流水线分别生产出不合格品约多少件?(3)根据已知条件完成下面22⨯列联表,并回答是否有85%的把握认为“该企业生产的这种产品的质量指标值与甲、乙两条流水线的选择有关”?甲流水线 乙流水线 合计合格品 不合格品 合计附:()()()()22()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.临界值表:()20P K k ≥ 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.82825.为了调查教师对教育改革认识水平,现从某市年龄在[]20,45的教师队伍中随机选取100名教师,得到的频率分布直方图如图所示,若从年龄在[)[)[]30,35,35,40,40,45中用分层抽样的方法选取6名教师代表.(1)求年龄在[)35,40中的教师代表人数;(2)在这6名教师代表中随机选取2名教师,求在[)35,40中至少有一名教师被选中的概率.26.某校命制了一套调查问卷(试卷满分均为100分),并对整个学校的学生进行了测试.现从这些学生的成绩中随机抽取了50名学生的成绩,按照[)[)[]50,60,60,70,,90,100⋅⋅⋅分成5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分).(1)求频率分布直方图中x 的值,并估计所抽取的50名学生成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表);(2)用样本估计总体,若该校共有2000名学生,试估计该校这次测试成绩不低于70分的人数;(3)若利用分层抽样的方法从样本中成绩不低于70分的学生中抽取6人,再从这6人中随机抽取3人,试求成绩在[]80,100的学生至少有1人被抽到的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】【分析】分别求出③和④的巧板的面积,根据几何概型的概率关系转化为面积比. 【详解】设巧板①的边长为1,则结合图2可知大正方形的边长为3, 其面积239S ==.其中巧板③是底边长为2的等腰直角三角形,其面积为112112S =⨯⨯=的正方形 与腰长为1的等腰直角三角形的组合图形,其面积为22151122S ⨯⨯+==, 故所求的概率12718S S P S +==. 故选:C . 【点睛】本题考查几何概型的概率求法,转化为面积比,属于中档题 .2.B解析:B 【解析】 【分析】 【详解】由a=14,b=18,a <b , 则b 变为18﹣14=4, 由a >b ,则a 变为14﹣4=10, 由a >b ,则a 变为10﹣4=6, 由a >b ,则a 变为6﹣4=2, 由a <b ,则b 变为4﹣2=2, 由a=b=2, 则输出的a=2. 故选B .3.C解析:C 【解析】 【分析】根据题意结合组合的知识可知,总的答案的个数为11个,而正确的答案只有1个,根据古典概型的计算公式,即可求得结果. 【详解】总的可选答案有:AB ,AC ,AD ,BC ,BD ,CD , ABC ,ABD ,ACD ,BCD ,ABCD ,共11个,而正确的答案只有1个, 即得5分的概率为111p =. 故选:C. 【点睛】本题考查了古典概型的基本知识,关键是弄清一共有多少个备选答案,属于中档题.4.B解析:B 【解析】经过第一次循环得到32s i ==,,不满足4i >, 执行第二次循环得到43s i ==,, 不满足4i >,, 执行第三次循环得到s=1,i=4,不满足4i >,, 经过第四次循环得到05s i ==,, 满足判断框的条件 执行“是”输出0S =.故选B . 5.D解析:D 【解析】分析:由题意结合线性回归方程的性质整理计算即可求得最终结果. 详解:由题意可得:12345 2.542x +++===,0.1 3.14 1.844m m y +++==+, 线性回归方程过样本中心点,则:1.8 1.3 2.514m+=⨯-, 解得:8.1=m . 本题选择D 选项.点睛:本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.6.D解析:D 【解析】试题分析:由表格得(),x y 为:()10,38,因为(),x y 在回归方程y bx a =+$$$上且2b =-$,()38102a ∴=⨯-+,解得58a =∴2ˆ58y x =-+,当6x =时,26ˆ5846y=-⨯+=,故选D. 考点:1、线性回归方程的性质;2、回归方程的应用.7.B解析:B 【解析】 【分析】 【详解】试题分析:由题意知,样本容量为()3500450020002%200++⨯=,其中高中生人数为20002%40⨯=,高中生的近视人数为4050%20⨯=,故选B. 【考点定位】本题考查分层抽样与统计图,属于中等题.8.C解析:C 【解析】 【分析】题目包含两种情况:第一种是前面三次找出一件次品,第四次找出次品,第二种情况是前面四次都是正品,则剩余的两件是次品,计算概率得到答案. 【详解】题目包含两种情况:第一种是前面三次找出一件次品,第四次找出次品,2314615C p C ==;第二种情况是前面四次都是正品,则剩余的两件是次品,44246115C p C ==;故12415p p p =+=. 故选:C . 【点睛】本题考查了概率的计算,忽略掉前面四次都是正品的情况是容易发生的错误.9.B解析:B 【解析】 【分析】根据条件概率的计算公式即可得出答案. 【详解】3311166617()216A P AB C C C +==Q ,11155561116691()1216C C C P B C C C =-=()()()72161|2169113P AB P A B P B ∴==⨯= 故选:B 【点睛】本题主要考查了利用条件概率计算公式计算概率,属于中档题.10.A解析:A【解析】 【分析】通过要求122222018n +++>L 时输出且框图中在“是”时输出确定“”内应填内容;再通过循环体确定输出框的内容. 【详解】因为要求122222018n +++>L 时输出,且框图中在“是”时输出, 所以“”内输入“2018S >?”,又要求n 为最小整数, 所以“”中可以填入输出1n -,故选:A . 【点睛】本题考查了程序框图的应用问题,是基础题.11.B解析:B 【解析】 试题分析:由题,,所以.试题解析:由已知,又因为ˆˆˆybx a =+,ˆˆˆ0.76,b a y bx ==- 所以,即该家庭支出为万元.考点:线性回归与变量间的关系.12.C解析:C 【解析】 【分析】由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,求得此等差数列的通项公式为a n =30n ﹣19,由401≤30n ﹣21≤755,求得正整数n 的个数,即可得出结论. 【详解】∵960÷32=30,∴每组30人,∴由题意可得抽到的号码构成以30为公差的等差数列, 又某组抽到的号码为41,可知第一组抽到的号码为11,∴由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,∴等差数列的通项公式为a n =11+(n ﹣1)30=30n ﹣19, 由401≤30n ﹣19≤755,n 为正整数可得14≤n ≤25, ∴做问卷C 的人数为25﹣14+1=12, 故选C . 【点睛】本题主要考查等差数列的通项公式,系统抽样的定义和方法,根据系统抽样的定义转化为等差数列是解决本题的关键,比较基础.二、填空题13.2【解析】【分析】画出数轴利用满足的概率可以求出的值即可【详解】如图所示区间的长度是6在区间上随机地取一个数若满足的概率为则有解得故答案是:2【点睛】该题考查的是有关长度型几何概型的问题涉及到的知识解析:2 【解析】 【分析】画出数轴,利用x 满足||x m ≤的概率,可以求出m 的值即可. 【详解】 如图所示,区间[2,4]-的长度是6,在区间[2,4]-上随机地取一个数x , 若x 满足||x m ≤的概率为23, 则有2263m =,解得2m =, 故答案是:2. 【点睛】该题考查的是有关长度型几何概型的问题,涉及到的知识点有长度型几何概型的概率公式,属于简单题目.14.【解析】【分析】根据古典概型概率公式求解【详解】连续抛掷一颗骰子2次共有36种基本事件其中掷出的点数之和不超过9的事件有种故所求概率为【点睛】本题考查古典概型概率考查基本分析与运算能力属基础题解析:56【解析】【分析】根据古典概型概率公式求解. 【详解】连续抛掷一颗骰子2次,共有36种基本事件,其中掷出的点数之和不超过9的事件有66654330+++++=种,故所求概率为305366=. 【点睛】本题考查古典概型概率,考查基本分析与运算能力,属基础题.15.8【解析】【分析】根据茎叶图计算平均数【详解】由茎叶图得【点睛】本题考查茎叶图以及平均数考查基本运算能力属基础题解析:8 【解析】 【分析】根据茎叶图计算平均数. 【详解】 由茎叶图得1617101920188.5x x +++++=∴=【点睛】本题考查茎叶图以及平均数,考查基本运算能力,属基础题.16.【解析】【分析】画出可行域求出面积满足的区域为图形中的红色直线的下方的四边形其面积为由几何概型的公式可得的概率为:;【详解】约束条件的可行域如图:由解得可行域d 面积为由解得满足的区域为图形中的红色直解析:58【解析】 【分析】画出可行域,求出面积,满足20x y ->的区域为图形中的红色直线的下方的四边形,其面积为1541322-⨯⨯=,由几何概型的公式可得20x y ->的概率为:55248=;【详解】约束条件1030x y x y x --≤⎧⎪+≤⎨⎪>⎩的可行域如图:由103x y x y --=⎧+=⎨⎩解得()2,1A , 可行域d 面积为12442⨯⨯=, 由32x y y x +=⎧=⎨⎩,解得()1.2B . 满足20x y ->的区域为图形中的红色直线的下方的四边形,其面积为1541322-⨯⨯=, 由几何概型的公式可得20x y ->的概率为:55248=;故答案为58.【点睛】本题考查了可行域的画法以及几何概型的概率公式的运用.考查数形结合以及计算能力.在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.17.【解析】分析:由题意首先确定样本中心点然后结合回归方程过样本中心点整理计算即可求得最终结果详解:由题意可得:回归方程过样本中心点则:即:整理可得:故答案为:270点睛:(1)正确理解计算的公式和准确解析:【解析】分析:由题意首先确定样本中心点,然后结合回归方程过样本中心点整理计算即可求得最终结果.详解:由题意可得:91412244c c x ++-+==,1848309644d dy ++++==, 回归方程过样本中心点,则:962236044d c ++=⨯-,即:()96322240d c +=+-, 整理可得:3270c d -=. 故答案为:270.点睛:(1)正确理解计算$,ba $的公式和准确的计算是求线性回归方程的关键. (2)回归直线方程y bx a =+$$$必过样本点中心(),x y .(3)在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程来估计和预测.18.【解析】【分析】【详解】每个同学都有三种选择:跳高与跳远;跳高与铅球;跳远与铅球三个同学共有3×3×3=27种有且仅有两人选择的项目完全相同有种其中表示3个同学中选2个同学选择的项目表示从三种组合中解析:23【解析】 【分析】 【详解】每个同学都有三种选择:跳高与跳远;跳高与铅球;跳远与铅球三个同学共有3×3×3=27种,有且仅有两人选择的项目完全相同有21133218C C C ⨯⨯=种,其中23C 表示3个同学中选2个同学选择的项目,13C 表示从三种组合中选一个,12C 表示剩下的一个同学有2中选择,故有且仅有两人选择的项目完全相同的概率是182273=. 考点:古典概型及其概率计算公式.19.3【解析】分析:根据分层抽样的方法各组抽取数按比例分配详解:根据分层抽样的方法乙组中应抽取的城市数为点睛:本题考查分层抽样概念并会根据比例关系确定各组抽取数解析:3 【解析】分析:根据分层抽样的方法,各组抽取数按比例分配. 详解:根据分层抽样的方法,乙组中应抽取的城市数为126=34+12+8⨯. 点睛:本题考查分层抽样概念,并会根据比例关系确定各组抽取数.20.-029【解析】所以残差是解析:-0.29【解析】0.8516082.71ˆ53.29y=⨯-= ,所以残差是5353.290.29.-=- 三、解答题21.(1)$1.2 3.6y t =+ (2)2014年至2018年该地区农村居民家庭人均纯收入逐年增加,平均每年增加1.2千元;10.8千元 【解析】 【分析】(1)根据所给数据利用公式计算,t ,y ,()51=-∑ii tt ,()()51=--∑i ii t ty y ,然后代入()()()1211==--=-∑∑$niii ni tty y btt,a y bt =-$$求解,再写出回归方程.(2)根据(1)的结果,由b$的正负来判断,将6t =,代入回归方程,预测该地区2019年农村居民家庭人均纯收入. 【详解】(1)由所给数据计算得()11234535t =⨯++++=, ()15678107.25y =⨯++++=,()514101410ii tt =-=++++=∑, ()()()()()()()512 2.21 1.200.210.82 2.812iii tty y =--=-⨯-+-⨯-+⨯-+⨯+⨯=∑()()()1211121.210niii ni tty y bt t==--===-∑∑$, $7.2 1.23 3.6ay bt =-=-⨯=$, 所求回归方程为$1.2 3.6y t =+.(2)由(1)知, 1.20b=>$,故2014年至2018年该地区农村居民家庭人均纯收入逐年增加,平均每年增加1.2千元.2019年时6t =,$1.26 3.610.8y =⨯+=,故预测该地区2019年农村居民家庭人均纯收入约为10.8千元. 【点睛】本题主要考查线性回归分析,还考查了运算求解的能力,属于中档题. 22.(1) 0.035a = (2) 2150(3)()12.5E X =【解析】试题分析:(1)由频率分布直方图求出a 的值;(2)设从12人中随机抽取3人,第1组已被抽到1人为事件A ,第3组抽到2人为事件B ,由条件概率公式得到所求概率;(3)X 的可能取值为0,1,2,3,求出相应的概率值,从而得到X 的分布列与期望. 试题解析:(1)由()100.0100.0150.0300.0101a ⨯++++=,得0.035a =,(2)第1,2,3组的人数分别为20人,30人,70人,从第1,2,3组中用分层抽样的方法抽取12人,则第1,2,3组抽取的人数分别为2人,3人,7人.设从12人中随机抽取3人,第1组已被抽到1人为事件A ,第3组抽到2人为事件B ,则()()()1227312122121021031221|.50C C P AB C P B A C C C C P A C ===+ (3)从所有参与调查的人中任意选出1人,关注“生态文明”的 概率为4,5P =X 的可能取值为0,1,2,3. ()30341015125P X C ⎛⎫∴==-= ⎪⎝⎭,()121344121155125P X C ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭ ()212344482155125P X C ⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭,()33346435125P X C ⎛⎫=== ⎪⎝⎭所以X 的分布列为4~3,5X B ⎛⎫⎪⎝⎭Q ,()4123.55E X np ==⨯=23.(1)$4106y x =-+;(2)45. 【解析】 【分析】(1)根据所给数据计算回归方程中的系数,得回归方程;(2)由回归方程计算每个销量的估计值,确定“好数据”的个数,然后确定基本事件的个数后可求得概率. 【详解】 (1)由已知4567896.56x +++++==,1221ni ii ni i x y nx ybx nx==-=-∑∑$222222230506 6.5804(456789)6 6.5-⨯⨯==-+++++-⨯,$80(4) 6.5106a=--⨯=, ∴所求回归直线方程为$4106y x =-+.(2)由(1)4x =时,µ190y =,25x =时,µ286y =,36x =时,µ382y =,47x =时,µ478y =,58x =时,µ574y =,69x =时,µ670y =, 与销售数据比较,“好数据”有3个,(4,90),(6,82),(8,74), 从6个数据中任取2个的所有可能结果共有652⨯=15种,其中2个数据中至少有一个是“好数据”的结果有33312⨯+=种, 所求概率为124155P ==. 【点睛】本题考查线性回归直线方程,考查古典概型.解题时根据所给数据计算回归方程的系数,考查了学生的运算求解能力与数据处理能力. 24.(1)390019;(2)答案见解析;(3)答案见解析. 【解析】 【分析】(1)由题意得到关于中位数的方程,解方程可得乙流水线生产产品该质量指标值的中位数;(2)求出甲,乙两条流水线生产的不合格的概率,即可得出结论; (3)计算可得2K 的近似值,结合参考数值可得结论. 【详解】(1)设乙流水线生产产品的该项质量指标值的中位数为x , 因为()()0.480.0120.0320.05250.50.0120.0320.0520.07650.86=++⨯<<+++⨯=,则()()0.0120.0320.05250.0762050.5x ++⨯+⨯-=, 解得390019x =. (2)由甲,乙两条流水线各抽取的50件产品可得,甲流水线生产的不合格品有15件, 则甲流水线生产的产品为不合格品的概率为1535010P ==甲, 乙流水线生产的产品为不合格品的概率为()10.0120.02855P =+⨯=乙,于是,若某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两条流水线生产的不合格品件数分别为315000150050001000105⨯=⨯=,; (3)2×2列联表:则2100(350600)41.3505075253K ⨯-==≈⨯⨯⨯,因为1.3<2.072,所以没有85%的把握认为“该企业生产的这种产品的该项质量指标值与甲,乙两条流水线的选择有关”. 【点睛】本题主要考查频率分布直方图计算中位数的方法,独立性检验的应用,古典概型计算公式及其应用等知识,意在考查学生的转化能力和计算求解能力. 25.(1)2名;(2)35【解析】 【分析】(1)根据分层抽样的比例关系计算得到答案.(2)记在[)35,40中选取2名教师代表为a ,b ,其余的4名代表为A 、B 、C 、D ,列出所有情况和满足条件的情况,相除得到答案. 【详解】(1)由频率分布直方图得:年龄在[)30,35的教师有1000.06530⨯⨯=, 年龄在[)35,40的教师有1000.04520⨯⨯=, 年龄在[]40,45的教师有1000.02510⨯⨯=, 设年龄在[)35,40的教师代表人数为x ,则66020x =,∴2x = ∴从年龄在[)35,40中选取教师代表人数为2名;(2)记在[)35,40中选取2名教师代表为a ,b ,其余的4名代表为A 、B 、C 、D 从这6名教师中选2名教师的选法为: ab ,aA ,aB ,aC ,aD , bA ,bB ,bC ,bD ,AB ,AC ,AD ,BC ,BD ,CD以上共15种在[)35,40中至少有一名教师被选中的选法为:ab ,aA ,aB ,aC ,aD ,bA ,bB ,bC ,bD以上9种在[)35,40中至少有一名教师被选中为事件A ,则()93155P A ==. ∴在[35,40)中至少有一名教师被选中的概率为35. 【点睛】本题考查了频率直方图,分层抽样,概率的计算,意在考查学生的综合应用能力.26.(1)0.02x =,74,2203;(2)1200;(3)1920. 【解析】【分析】(1)根据频率和为1可求得第第4组的频率,由此求得x 的值;根据频率分布直方图中平均数和中位数的估计方法可计算得到结果;(2)计算得到50名学生中成绩不低于70分的频率,根据样本估计总体的方法,利用总数⨯频率可得所求人数;(3)根据分层抽样原则确定[)70,80、[)80,90和[]90,100种分别抽取的人数,采用列举法列出所有结果,从而可知成绩在[]80,100的学生没人被抽到的概率;根据对立事件概率公式可求得结果.【详解】(1)由频率分布直方图可得第4组的频率为:()10.010.030.030.01100.2-+++⨯= 0.2100.02x ∴=÷=估计所抽取的50名学生成绩的平均数为:()550.01650.03750.03850.02950.011074⨯+⨯+⨯+⨯+⨯⨯=由于前两组的频率之和为0.10.30.4+=,前三组的频率之和为0.10.30.30.7++= ∴中位数在第3组中设中位数为t ,则有:()700.030.1t -⨯=,解得:2203t =即所求的中位数为2203(2)由(1)知:50名学生中成绩不低于70分的频率为:0.30.20.10.6++=用样本估计总体,可以估计高三年级2000名学生中成绩不低于70分的人数为:20000.61200⨯=(3)由(1)可知,后三组中的人数分别为15,10,5∴这三组中所抽取的人数分别为3,2,1记成绩在[)70,80的3名学生分别为,,a b c ,成绩在[)80,90的2名学生分别为,d e ,成绩在[]90,100的1名学生为f ,则从中随机抽取3人的所有可能结果为:(),,a b c ,(),,a b d ,(),,a b e ,(),,a b f ,(),,a c d ,(),,a c e ,(),,a c f ,(),,a d e ,(),,a d f ,(),,a e f ,(),,b c d ,(),,b c e ,(),,b c f ,(),,b d e ,(),,b d f ,(),,b e f ,(),,c d e ,(),,c d f ,(),,c e f ,(),,d e f ,共20种其中成绩在[]80,100的学生没人被抽到的可能结果为(),,a b c ,只有1种,故成绩在[]80,100的学生至少有1人被抽到的概率:11912020P =-= 【点睛】本题考查利用频率分布直方图计算频率、频数、估计平均数、中位数的问题,分层抽样、古典概型概率问题的求解;考查学生对于统计和概率部分知识的综合掌握情况,属于常考题型.。
2020-2021学年高二上册数学期中数学试卷带答案
2020-2021学年高二(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 命题p:“∃n∈N,则n2>2n”的否定是()A.∀n∈N,n2>2nB.∃n∈N,n2≤2nC.∀n∈N,n2≤2nD.∀n∈N,n2<2n2. 双曲线x24−y25=1的渐近线方程为( )A.y=±√52x B.y=±2√55x C.y=±54x D.y=±32x3. 不等式ax2−5x+c<0的解集为{x|2<x<3},则a,c的值为()A.a=6,c=1B.a=−6,c=−1C.a=1,c=6D.a=−1,c=−64. 《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466−485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加()尺.A.4 7B.1629C.815D.455. 已知椭圆C的中心在原点,焦点在y轴上,且短轴的长为2,离心率等于,则该椭圆的标准方程为()A.+=1B.+=1C.+x2=1D.+y2=16. 不等式x2+3x+2>0成立的一个必要不充分条件是()A.(−1, +∞)B.[−1, +∞)C.(−∞, −2]∪[−1, +∞)D.(−1, +∞)∪(−∞, −2)7. “蒙日圆”涉及几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆.若椭圆C:=1(a>0)的离心率为,则椭圆C的蒙日圆方程为()A.x2+y2=9B.x2+y2=7C.x2+y2=5D.x2+y2=48. 已知数列{a n}的首项a1=21,且满足(2n−5)a n+1=(2n−3)a n+4n2−16n+15,则{a n}的最小的一项是()A.a5B.a6C.a7D.a8二、选择题:本题共4小题,每小题5分,共20分。
2020-2021高二数学上期中一模试卷(及答案)
758
23.光伏发电是将光能直接转变为电能的一种技术,具有资源的充足性及潜在的经济性等 优点,在长期的能源战略中具有重要地位,2015 年起,国家能源局、国务院扶贫办联合在 6 省的 30 个县开展光伏扶贫试点,在某县居民中随机抽取 50 户,统计其年用量得到以下 统计表.以样本的频率作为概率.
用电量(单位: 0,200
2020-2021 高二数学上期中一模试卷(及答案)
一、选择题
1.某学校为了解 1 000 名新生的身体素质,将这些学生编号为 1,2,…,1 000,从这些
新生中用系统抽样方法等距抽取 100 名学生进行体质测验,若 46 号学生被抽到,则下面 4
名学生中被抽到的是
A.8 号学生
B.200 号学生
(1)若 x, y M ,且 x, y 为整数,求 x y 0 的概率; (2)若 x, y M ,求 x y 0 的概率.
26.2019 年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医 疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分
示的程序框图的功能就是计算截取 7 天后所剩木棍的长度(单位:尺),则①②③处可分别
填入的是( )
A. i 7?, s s 1,i i+1 i
C. i 7 ?, s s 1 ,i i+1 2i
B. i 128?, s s 1,i 2i i
D. i 128?, s s 1 ,i 2i 2i
()
A. 19 36
B. 11 36
C. 7 12
D. 1 2
5.甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡都送给丁
的概率为( )
2020-2021高二数学上期中试卷含答案
年份x
2014
2015
2016
2017
2018
储蓄存款y(千亿元)
5
6
7
8
10
为便于计算,工作人员将上表的数据进行了处理(令 ),得到下表:
时间t
1
2
3
4
5
储蓄存款z
0
1
2
3
5
(1)求z关于t的线性回归方程;
A.127B.128C.128.5D.129
8.某程序框图如图所示,若输出的结果是126,则判断框中可以是()
A. B. C. D.
9.将参加夏令营的600名学生编号为:001,002,…,600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到200住在第一营区,从201到500住在第二营区,从501到600住在第三营区,三个营区被抽中的人数依次为().
组号
分组
回答正确的人数
回答正确的人数占本组的频率
第 组
第 组
第 组
第 组
第 组
(1)分别求出 的值;
(2)从第 组回答正确的人中用分层抽样的方法抽取 人,求第 组每组抽取的人数;
(3)在(2)中抽取的 人中随机抽取 人,求所抽取的人中恰好没有年龄段在 的概率
【参考答案】***试卷处理标记,请不要删除
本题选择D选项.
点睛:本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.
4.A
解析:A
【解析】
【分析】
根据互斥事件的和的概率公式求解即可.
2020-2021高二数学上期中一模试卷(含答案)
2020-2021高二数学上期中一模试卷(含答案)一、选择题1.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .8π C .12D .4π 2.如图所示,墙上挂有边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为2a的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是 ( )A .18π-B .4π C .14π-D .与a 的值有关联3.某程序框图如图所示,若输出的S=57,则判断框内为 A .k >4? B .k >5? C .k >6?D .k >7?4.甲、乙两名射击运动员分别进行了5次射击训练,成绩(单位:环)如下: 甲:7,8,8,8,9 乙:6,6,7,7,10;若甲、乙两名运动员的平均成绩分别用12,x x 表示,方差分别为2212,S S 表示,则( )A .221212,x x s s >> B .221212,x x s s >< C .221212,x x s s << D .221212,x x s s <> 5.统计某校n 名学生的某次数学同步练习成绩,根据成绩分数依次分成六组:[)[)[)[)[)[]90,100,100,110,110,120,120,130,130,140,140,150,得到频率分布直方图如图所示,若不低于140分的人数为110.①0.031m =;②800n =;③100分以下的人数为60;④分数在区间[)120,140的人数占大半.则说法正确的是( )A .①②B .①③C .②③D .②④6.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,87.某校高一1班、2班分别有10人和8人骑自行车上学,他们每天骑行路程(单位:千米)的茎叶图如图所示:则1班10人每天骑行路程的极差和2班8人每天骑行路程的中位数分别是 A .14,9.5B .9,9C .9,10D .14,98.将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m ,第二次出现的点数为n ,向量p u v =(m ,n),q v =(3,6).则向量p u v 与q v共线的概率为( ) A .13B .14C .16D .1129.某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有( )①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;②用简单随机抽样的方法从新生中选出100人; ③西部地区学生小刘被选中的概率为150; ④中部地区学生小张被选中的概率为15000A .①④B .①③C .②④D .②③10.下列说法正确的是( )A .若残差平方和越小,则相关指数2R 越小B .将一组数据中每一个数据都加上或减去同一常数,方差不变C .若2K 的观测值越大,则判断两个分类变量有关系的把握程度越小D .若所有样本点均落在回归直线上,则相关系数1r11.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x (万元)8.28.610.011.311.9支出y (万元)6.27.58.0 8.59.8根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元B .11.8万元C .12.0万元D .12.2万元12.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为3二、填空题13.从标有1,2,3,4,5的五张卡中,依次抽出2张,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为________;14.在长为10cm 的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于225cm 与249cm 之间的概率为__________.15.在区间[]3,3-上随机取一个数x ,使得11x +≥成立的概率为______.16.某校高一年级有600个学生,高二年级有550个学生,高三年级有650个学生,为调查学生的视力情况,用分层抽样的方法抽取一个样本,若在高二、高三共抽取了48个学生,则应在高一年级抽取学生______个 17.以下四个命题错误的序号为_______(1) 样本频率分布直方图中小矩形的高就是对应组的频率.(2) 过点P(2,-2)且与曲线33y x x =-相切的直线方程是9160x y +-=.(3) 若样本1210,,x x x L 的平均数是5,方差是3,则数据121021,21,,21x x x +++L 的平均数是11,方差是12.(4) 抛掷一颗质地均匀的骰子,事件“向上点数不大于4”和事件“向上点数不小于3”是对立事件.18.执行如图所示的程序框图,若输入的A ,S 分别为0,1,则输出的S =____________.19.某班全体学生参加英语成绩的频率分布直方图如图,若低于60分的人数是15,则该班的学生人数是__________.20.从2个黄球,3个红球中随机取出两个球,则两球颜色不同的概率是______.三、解答题21.为检验,A B两条生产线的优品率,现从两条生产线上各抽取6件产品进行检测评分,用茎叶图的形式记录,并规定高于90分为优品.前5件的评分记录如下,第6件暂不公布.(1)求所抽取的A生产线上的6个产品的总分小于B生产线上的第6个产品的总分的概率;(2)已知,A B生产线的第6件产品的评分分别为90,97.①从A生产线的6件产品里面随机抽取2件,设非优品的件数为η,求η的分布列和数学期望;②以所抽取的样本优品率来估计B生产线的优品率,从B生产线上随机抽取3件产品,记优品的件数为X,求X的数学期望.22.近年来,我国许多省市雾霾天气频发,为增强市民的环境保护意识,某市面向全市征召n名义务宣传志愿者,成立环境保护宣传组织,现把该组织的成员按年龄分成5组第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示,已知第2组有35人.(1)求该组织的人数;(2)若在第3,4,5组中用分层抽样的方法抽取6名志愿者参加某社区的宣传活动,应从第3,4,5组各抽取多少名志愿者?(3)在(2)的条件下,该组织决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第3组至少有1名志愿者被抽中的概率.PM是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国23. 2.5PM标准采用世卫组织设定的最宽限值,即 2.5PM日均值在35微克/立方米以下空气2.5质量为一级;在35微克/立方米至75微克/立方米之间空气质量为二级;在75微克/立方PM监测数据中,随机抽米以上空气质量为超标.某市环保局从市区2016年全年每天的 2.5取15天的数据作为样本,监测值如茎叶图所示:(十位为茎,个位为叶)(1)从这15天的数据中任取3天的数据,求空气质量至少有一天达到一级的概率;PM日均值来估算一年的空气质量情况,则一年(按360天计算)中(2)以这15天的 2.5大致有多少天的空气质量达到一级.24.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨)标准煤的几组对照数据x3456y 2.534 4.5(1)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y b x a =+$$; (2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?参考公式:()1122211()()nni i i i i i n n ii i ix x y y x y nxy b x x x nx a y bx====⎧---⎪==⎪⎨--⎪=-⎪⎩∑∑∑∑25.某学校随机抽取部分学生调查其上学路上所需时间(单位:分钟),并将所得数据制成频率分布直方图(如图),若上学路上所需时间的范围为[]0,100,样本数据分组为[)0,20,[)20,40,[)40,60,[)60,80,[]80,100.(1)求直方图中a 的值;(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,若招收学生1200人,请估计所招学生中有多少人可以申请住宿; (3)求该校学生上学路上所需的平均时间.26.某校举行书法比赛,下图为甲乙两人近期8次参加比赛的成绩的茎叶图。
2020-2021高二数学上期中模拟试题及答案
2020-2021高二数学上期中模拟试题及答案一、选择题1.如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是A.1 4B.8πC.12D.4π2.民间有一种五巧板拼图游戏.这种五巧板(图1)可以说是七巧板的变形,它是由一个正方形分割而成(图2),若在图2所示的正方形中任取一点,则该点取自标号为③和④的巧板的概率为()A.518B.13C.718D.493.已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x,方差为2s,则A.270,75x s=<B.270,75x s=>C.270,75x s><D.270,75x s<>4.一个盒子里装有大小相同的10个黑球、12个红球、4个白球,从中任取2个,其中白球的个数记为X,则下列概率等于11222422226C C CC+的是 ( )A.P(0<X≤2)B.P(X≤1)C.P(X=1)D.P(X=2)5.函数()logax xf xx=(01a<<)的图象大致形状是()A.B.C.D.6.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b分别为14,18,则输出的a=()A.0B.2C.4D.147.某程序框图如图所示,若输出的S=57,则判断框内为A.k>4? B.k>5?C.k>6? D.k>7?0,1内自动生成一个实数,且每次生成每个实数都是等可能性8.用电脑每次可以从区间()的,若用该电脑连续生成3个实数,则这3个实数都大于13的概率为()A.127B.23C.827D.499.若干个人站成一排,其中为互斥事件的是( )A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”10.将20名学生任意分成甲、乙两组,每组10人,其中2名学生干部恰好被分在不同组内的概率为( )A.192181020C CCB.1921810202C CCC.1921910202C CCD.192191020C CC11.执行如图的程序框图,则输出x的值是 ( )A.2018B.2019C.12D.212.执行如图所示的程序框图,则输出的结果是()A .5B .7C .9D .11二、填空题13.执行如图所示的程序框图,则输出的m 的值为____.14.在区间[]3,3-上随机取一个数x ,使得11x +≥成立的概率为______.15.为了防止职业病,某企业采用系统抽样方法,从该企业全体1200名员工中抽80名员工做体检,现从1200名员工从1到1200进行编号,在115~中随机抽取一个数,如果抽到的是7,则从4660~这15个数中应抽取的数是__________.16.执行如图所示的程序框图,如果输入3n =,则输出的S 为 ________.17.执行如下图所示的程序框图,若输入n 的值为6,则输出S 的值为__________.18.如图所示,正六边形ABCDEF 中,线段AD 与线段BE 交于点G ,圆O 1,O 2分别是△ABG 与△DEG 的内切圆,圆O 3,O 4分别是四边形BCDG 与四边形AGEF 的内切圆,则往六边形ABCDEF 中任意投掷一点,该点落在图中阴影区域内的概率为_________.19.已知01a ≤≤,11b -≤≤,则关于x 的方程220x ax b ++=有实根的概率是______.20.某商家观察发现某种商品的销售量x 与气温y 呈线性相关关系,其中组样本数据如下表:已知该回归直线方程为ˆˆ1.02yx a =+,则实数ˆa =__________. 三、解答题21.中国神舟十一号载人飞船在酒泉卫星发射中心成功发射,引起全国轰动.开学后,某校高二年级班主任对该班进行了一次调查,发现全班60名同学中,对此事关注的占13,他们在本学期期末考试中的物理成绩如下面的频率分布直方图:(1)求“对此事关注”的同学的物理期末平均分(以各区间的中点代表该区间的均值). (2)若物理成绩不低于80分的为优秀,请以是否优秀为分类变量, ①补充下面的22⨯列联表:物理成绩优秀 物理成绩不优秀 合计对此事关注 对此事不关注 合计②是否有95%以上的把握认为“对此事是否关注”与物理期末成绩是否优秀有关系?参考公式:22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++.参考数据:20()P K k ≥ 0.150.10 0.05 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.82822.某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如下表所示. 组别 [)30,40 [)40,50 [)50,60 [)60,70 [)70,80 [)80,90 [)90,100频数25150200250 225 100 50(1)已知此次问卷调查的得分Z 服从正态分布(),210N μ,μ近似为这1000人得分的平均值(同一组中的数据用该组区间的中点值为代表),请利用正态分布的知识求()3679.5P Z <≤;(2)在(1)的条件下,环保部门为此次参加问卷调查的市民制定如下奖励方案. (ⅰ)得分不低于μ的可以获赠2次随机话费,得分低于μ的可以获赠1次随机话费; (ⅱ)每次赠送的随机话费和相应的概率如下表.现市民甲要参加此次问卷调查,记X 为该市民参加问卷调查获赠的话费,求X 的分布列及数学期望.14.5≈,若()2,X Nμσ:,则()0.6827P X μσμσ-<≤+=,()220.9545P X μσμσ-<≤+=,()330.9973P X μσμσ-<≤+=.23.为保护农民种粮收益,促进粮食生产,确保国家粮食安全,调动广大农民生产粮食的积极性,从2014年开始,国家实施了对种粮农民直接补贴的政策通过对2014~2018年的数据进行调查,发现某地区发放粮食补贴额x (单位:亿元)与该地区粮食产量y (单位:万亿吨)之间存在着线性相关关系,统计数据如下表:(1)请根据上表所给的数据,求出y 关于x 的线性回归直线方程ˆˆybx a =+; (2)通过对该地区粮食产量的分析研究,计划2019年在该地区发放粮食补贴7亿元,请根据(1)中所得到的线性回归直线方程,预测2019年该地区的粮食产量.参考公式:()()()121ˆniii ni i x x y y bx x==--=-∑∑,ˆˆay bx =-. 24.国家公安机关为给居民带来全方位的安全感,大力开展智慧警务社区建设.智慧警务建设让警务更智慧,让民生更便利,让社区更安全.下表是某公安分局在建设智慧警务社区活动中所记录的七个月内的该管辖社区的违法事件统计数据: 根据以上数据,绘制了如图所示的散点图.(1)根据散点图判断,用y a bx =+与(0,01)xy c d b d =⋅<<<哪一个更适宜作为违法案件数y 关于月份x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)中的判断结果及表中所给数据,求y 关于x 的回归方程(保留两位有效数字),并预测第8个月该社区出现的违法案件数(取整数). 参考数据:yv71i ii x y =∑71i i i x v =∑721ii x=∑ 2.541062.141.54945 36.186 140346.74其中i i v lgy =,7117i i v v ==∑.参考公式:对一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线的斜率和截距的最小二乘估计公式分别为:µ1221ni i i nii u v nuvunuβ==-=-∑∑,µµv u αβ=-. 25.我省某校要进行一次月考,一般考生必须考5门学科,其中语、数、英、综合这四科是必考科目,另外一门在物理、化学、政治、历史、生物、地理、英语2中选择.为节省时间,决定每天上午考两门,下午考一门学科,三天半考完.(1)若语、数、英、综合四门学科安排在上午第一场考试,则“考试日程安排表”有多少种不同的安排方法;(2)如果各科考试顺序不受限制;求数学、化学在同一天考的概率是多少?26.某企业生产一种产品,质量测试分为:指标不小于90为一等品,不小于80小于90为二等品,小于80为三等品,每件一等品盈利50元,每件二等品盈利30元,每件三等品亏损10元,现对学徒工甲和正式工人乙生产的产品各100件的检测结果统计如下: 测试指标 [70,75)[75,80)[80,85)[85,90)[90,95)[95,100)甲 5 15 35 35 7 3 乙3720402010根据上表统计得到甲、乙生产产品等级的频率分别估计为他们生产产品等级的概率. (1)求出乙生产三等品的概率;(2)求出甲生产一件产品,盈利不小于30元的概率;(3)若甲、乙一天生产产品分别为40件和30件,估计甲、乙两人一天共为企业创收多少元?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为2π4a .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248a a ⋅=,选B. 点睛:对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A .2.C解析:C 【解析】 【分析】分别求出③和④的巧板的面积,根据几何概型的概率关系转化为面积比. 【详解】设巧板①的边长为1,则结合图2可知大正方形的边长为3, 其面积239S ==.其中巧板③是底边长为2的等腰直角三角形, 其面积为112112S =⨯⨯=的正方形 与腰长为1的等腰直角三角形的组合图形,其面积为22151122S ⨯⨯+==, 故所求的概率12718S S P S +==. 故选:C .【点睛】本题考查几何概型的概率求法,转化为面积比,属于中档题 .3.A解析:A 【解析】 【分析】分别根据数据的平均数和方差的计算公式,求得2,x s 的值,即可得到答案. 【详解】由题意,根据平均数的计算公式,可得7050806070907050x ⨯+-+-==,设收集的48个准确数据分别记为1248,,,x x x L , 则()()()()()2222212481757070706070907050x x x ⎡⎤=-+-++-+-+-⎣⎦L ()()()2221248170707050050x x x L ⎡⎤=-+-++-+⎣⎦, ()()()()()222222124817070708070707050s x x x ⎡⎤=-+-++-+-+-⎣⎦L ()()()222124817070701007550x x x ⎡⎤=-+-++-+<⎣⎦L , 故275s <.选A . 【点睛】本题主要考查了数据的平均数和方差的计算公式的应用,其中解答中熟记数据的平均数和方差的公式,合理准确计算是解答的关键,着重考查了推理与运算能力,数基础题.4.B解析:B 【解析】 【分析】由题意知本题是一个古典概型,由古典概型公式分别求得P (X=1)和P (X=0),即可判断等式表示的意义. 【详解】由题意可知112224222226261,0C C C P X P X C C ⋅====:()() , ∴11222422225C C C C +表示选1个白球或者一个白球都没有取得即P (X≤1), 故选B . 【点睛】本题是一个古典概型问题,这种问题在高考时可以作为文科的一道解答题,古典概型要求能够列举出所有事件和发生事件的个数,本题可以用组合数表示出所有事件数.5.C解析:C 【解析】 【分析】确定函数是奇函数,图象关于原点对称,x >0时,f (x )=log a x (0<a <1)是单调减函数,即可得出结论. 【详解】由题意,f (﹣x )=﹣f (x ),所以函数是奇函数,图象关于原点对称,排除B 、D ; x >0时,f (x )=log a x (0<a <1)是单调减函数,排除A . 故选C . 【点睛】本题考查函数的图象,考查函数的奇偶性、单调性,正确分析函数的性质是关键.6.B解析:B 【解析】 【分析】 【详解】由a=14,b=18,a <b , 则b 变为18﹣14=4, 由a >b ,则a 变为14﹣4=10, 由a >b ,则a 变为10﹣4=6, 由a >b ,则a 变为6﹣4=2, 由a <b ,则b 变为4﹣2=2, 由a=b=2, 则输出的a=2. 故选B .7.A解析:A 【解析】试题分析:由程序框图知第一次运行112,224k S =+==+=,第二次运行213,8311k S =+==+=,第三次运行314,22426k S =+==+=,第四次运行4154,52557k S =+=>=+=,输出57S =,所以判断框内为4?k >,故选C.考点:程序框图.8.C解析:C 【解析】 由题意可得:每个实数都大于13的概率为12133p=-=,则3个实数都大于13的概率为328327⎛⎫=⎪⎝⎭.本题选择C选项.9.A解析:A【解析】【分析】根据不能同时发生的两个事件,叫互斥事件,依次判断.【详解】根据互斥事件不能同时发生,判断A是互斥事件;B、C、D中两事件能同时发生,故不是互斥事件;故选A.【点睛】本题考查了互斥事件的定义.是基础题.10.A解析:A【解析】【分析】由题意知本题是一个古典概型,先求出事件发生的总个数,再求出满足要求的事件个数,再根据古典概型的概率公式即可得出结果.【详解】由题意知本题是一个古典概型,试验发生的所有事件是20名学生平均分成两组共有1020C种结果,而满足条件的事件是2名学生干部恰好被分在不同组内共有19218C C中结果,根据古典概型的概率公式得192181020=C CPC.故选:A.【点睛】本题主要考查古典概型和组合问题,属于基础题.11.D解析:D【解析】【分析】模拟执行程序框图,依次写出每次循环得到的x,y的值,当2019y=时,不满足条件退出循环,输出x的值即可得解.【详解】解:模拟执行程序框图,可得2,0x y ==.满足条件2019y <,执行循环体,1,1x y =-=;满足条件2019y <,执行循环体,1,22x y == ; 满足条件2019y <,执行循环体,2,3x y ==;满足条件2019y <,执行循环体,1,4x y =-= ; …观察规律可知,x 的取值周期为3,由于20196733⨯=,可得: 满足条件2019y <,执行循环体,当2,2019x y == ,不满足条件2019y <,退出循环,输出x 的值为2. 故选D . 【点睛】本题主要考查了循环结构的程序框图,依次写出每次循环得到的x ,y 的值,根据循环的周期,得到跳出循环时x 的值是解题的关键.12.C解析:C 【解析】循环依次为123,123;S K =+==+=369,325;S K =+==+=91019,527;S K =+==+=191433,729;S K =+==+=结束循环,输出9;K =选C.二、填空题13.【解析】【分析】执行如图所示的程序框图逐次计算根据判断条件即可求解得到答案【详解】执行如图所示的程序框图可得:第1次循环满足判断条件;第2次循环满足判断条件;第3次循环满足判断条件;第4次循环满足判 解析:6【解析】 【分析】执行如图所示的程序框图,逐次计算,根据判断条件,即可求解,得到答案. 【详解】执行如图所示的程序框图,可得:0,1S m ==, 第1次循环,满足判断条件,10122,2S m =+⨯==; 第2次循环,满足判断条件,222210,3S m =+⨯==; 第3次循环,满足判断条件,3103234,4S m =+⨯==; 第4次循环,满足判断条件,4344298,5S m =+⨯==;第5次循环,满足判断条件,59852258,6S m =+⨯==; 不满足判断条件,此时输出6m =. 故答案为6. 【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中根据给定的程序框图,逐次计算,结合判断条件求解是解答的关键,着重考查了推理与运算能力,属于基础题.14.【解析】【分析】求出不等式的解集计算长度运用几何概型即可求出概率【详解】或则在区间上随机取一个数x 使得成立的概率为故答案为【点睛】本题考查了几何概型中的长度型概率只需将题目中的含有绝对值不等式进行求 解析:23【解析】 【分析】求出不等式的解集,计算长度,运用几何概型即可求出概率 【详解】11x +≥Q0x ∴≥或2x ≤-则在区间[]33-,上随机取一个数x ,使得11x +≥成立的概率为4263= 故答案为23【点睛】本题考查了几何概型中的长度型概率,只需将题目中的含有绝对值不等式进行求解,然后计算出长度,即可得到结果15.52【解析】由题意可知抽取的人数编号组成一个首项为7公差为15的等差数列则从这个数中应抽取的数是:故答案为52解析:52 【解析】由题意可知,抽取的人数编号组成一个首项为7,公差为15的等差数列, 则从4660~这15个数中应抽取的数是:715352+⨯=. 故答案为 52.16.【解析】【分析】根据框图可知该程序实现了对数列求和的功能输入时求【详解】根据框图可知执行该程序实现了对数列求和当时故填【点睛】本题主要考查了程序框图裂项相消法求和属于中档题解析:37【解析】【分析】根据框图可知,该程序实现了对数列1(21)(21)n a n n =-+ 求和的功能,输入3n =时,求3S .【详解】根据框图可知,执行该程序,实现了对数列1(21)(21)n a n n =-+ 求和,当3n =时,3111111111=++=1)133557233557S -+-+-⨯⨯⨯( 1131)277-=(, 故填37. 【点睛】本题主要考查了程序框图,裂项相消法求和,属于中档题.17.15【解析】程序执行过程为:当i=1s=1i<6s=1当i=3i<6s=3当i=5i<6s=15当i=7i>6退出s=15填15解析:15 【解析】 程序执行过程为:当i=1,s=1,i<6,s=1,当i=3,i<6,s=3,当i=5,i<6,s=15,当i=7,i>6,退出s=15.填15.18.【解析】【分析】不妨设小圆与正三角形相切小圆的半径为大圆与菱形相切大圆直径是菱形的高也等于正三角形的高圆半径为由几何概型概率公式可得结果【详解】依题意不妨设小圆与正三角形相切小圆的半径为大圆与菱形相【解析】 【分析】不妨设2AB =AB =,大圆与菱形相切,大圆直径是菱形的高,也等于正三角形的高,圆半径为1222AB ⨯=,由几何概型概率公式可得结果. 【详解】依题意,不妨设2AB =,AB =, 大圆与菱形相切,大圆直径是菱形的高,也等于正三角形的高,可得大圆半径为1222AB ⨯=, 由几何概型概率公式可得该点落在图中阴影区域内的概率为:222232P ππ⎛⎫⎛⨯⨯+⨯⨯ ⎪ ==,故答案为108. 【点睛】本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.19.【解析】【分析】有实根则由根的判别式大于零可得之间的关系利用面积型概率求解【详解】关于x 的方程有实根则故答案为【点睛】本题是一道关于几何概型问题的题目根据题意求出判别式大于零的情况满足条件然后结合图 解析:14【解析】 【分析】有实根则由根的判别式大于零,可得a 、b 之间的关系,利用面积型概率求解 【详解】11a -≤≤Q ,11b -≤≤,224u S ∴=⨯=,Q 关于x 的方程220x ax b ++=有实根2240a b ∴->,()()220a b a b +->121112q S ∴=⨯⨯⨯=则14p =故答案为14【点睛】本题是一道关于几何概型问题的题目,根据题意求出判别式大于零的情况满足条件,然后结合图像求出面积即可得到结果,较为基础20.【解析】分析:根据表格中数据及平均数公式可求出与的值从而可得样本中心点的坐标结合样本中心点的性质可得进而可得关于的回归方程详解:由表格数据可得样本中心点坐标为代入可得故答案为点睛:本题主要考查线性回 解析: 2.4-【解析】分析:根据表格中数据及平均数公式可求出x 与y 的值,从而可得样本中心点的坐标,结合样本中心点的性质可得 2.4a ∧=,进而可得y 关于x 的回归方程.详解:由表格数据可得,1015202530205x ++++==,813172428185y ++++==,∴样本中心点坐标为()20,18,代入 1.0ˆ2ˆya =+,可得ˆ 2.4a =-,故答案为 2.4-. 点睛:本题主要考查线性回归方程,属于简单题. 回归直线过样本点中心(),x y 是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.三、解答题21.(1)75.5;(2)列联表见解析,没有. 【解析】试题分析:(1)各小矩形中点横坐标与纵坐标的乘积的和即是对此事关注的同学的物理期末平均分;(2)根据直方图求出列联表所需数据,即可完成22⨯列联表,利用公式()()()()()22n ad bc k a b c d a c b d -=++++求得2K ,与邻界值比较,即可得到结论.试题解析:(1)对此事关注的同学的物理期末平均分为(450.005550.005650.020⨯+⨯+⨯ 750.030850.030+⨯+⨯ 950.010)1075.5+⨯⨯=(分).(2)①补充的22⨯列联表如下:()()()()()22n ad bc k a b c d a c b d -=++++ ()26083281216442040⨯⨯-⨯=⨯⨯⨯ 302.733.84111=≈<, 所以没有95%以上的把握认为“对此事是否关注”与物理期末成绩是否优秀有关系. 【方法点睛】本题主要考查频率分布直方图的应用以及独立性检验,属于中档题.独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.) 22.(1)0.8186;(2)见解析. 【解析】 【分析】(1)根据题中所给的统计表,利用公式计算出平均数μ的值,再利用数据之间的关系将36、79.5表示为362μσ=-,79.5μσ=+,利用题中所给数据,以及正态分布的概率密度曲线的对称性,求出对应的概率;(2)根据题意,高于平均数和低于平均数的概率各为12,再结合得20元、40元的概率,分析得出话费的可能数据都有哪些,再利用公式求得对应的概率,进而得出分布列,之后利用离散型随机变量的分布列求出其数学期望. 【详解】 (1)由题意可得352545150552006525075225851009550651000μ⨯+⨯+⨯+⨯+⨯+⨯+⨯==,易知14.5σ=≈,36652965214.52μσ∴=-=-⨯=-,79.56514.5μσ=+=+,()()()()3679.522P Z P Z P Z P Z μσμσμσμμμσ∴<≤=-<≤+=-<≤+<≤+()()0.95450.6827022.818622P X P X μσμσμσμσ+===-<≤++-<≤+;(2)根据题意,可得出随机变量X 的可能取值有20、40、60、80元,()13320248P X ==⨯=,()1113313402424432P X ==⨯+⨯⨯=,()113360224416P X ==⨯⨯⨯=,()11118024432P X ==⨯⨯=.所以,随机变量X 的分布列如下表所示:所以,随机变量X 的数学期望为2040608083216322EX =⨯+⨯+⨯+⨯=. 【点睛】本题考查概率的计算,涉及到平均数的求法、正态分布概率的计算以及离散型随机变量分布列及其数学期望,在解题时要弄清楚随机变量所满足的分布列类型,结合相应公式计算对应事件的概率,考查计算能力,属于中等题.23.(1)ˆ 2.24yx =+(2)大约为19.4万亿吨 【解析】 【分析】(1)分别求出x 和y ,根据公式,求出ˆb和ˆa ,即可得出线性回归方程; (2)由(1)得ˆ 2.24yx =+,可估计出2019年该地区的粮食产量. 【详解】解:(1)由表中所给数据可得,91012118105x ++++==,2526312721265y ++++==,代入公式()()()51521ˆiii ii x x y y bx x ==--=-∑∑,解得ˆ 2.2b=, 所以ˆˆ4ay bx =-=. 故所求的y 关于x 的线性回归直线方程为ˆ 2.24yx =+. (2)由题意,将7x =代入回归方程ˆ 2.24y x =+, 可得,ˆ19.4y=. 所以预测2019年该地区的粮食产量大约为19.4万亿吨. 【点睛】本题考查求线性回归方程,以及根据回归方程解决实际问题,考查计算能力.24.(1),x y c d =⋅更适宜(2)$0.25346.7410xy =;预计为4 【解析】 【分析】(1)根据散点图判断,x y c d =⋅更适宜作为违法案件数y 关于月份x 的回归方程类型. (2)由x y c d =⋅得()lg lg lg lg xy c d c x d =⋅=+⋅,设lg v y =,则lg lg v c x d =+⋅,然后算出$lg 2.540.25y x =- 【详解】解:(1)根据散点图判断,x y c d =⋅更适宜作为违法案件数y 关于月份x 的回归方程类型.(2)xy c d =⋅Q ,()lg lg lg lg xy c dc xd ∴=⋅=+⋅,设lg v y =,lg lg v c x d ∴=+⋅,4x =Q , 1.54v =,$7172221736.18674 1.54lg 0.25140747i ii i i x vxvdx x==--⨯⨯===--⨯-∑∑,$lg 4lg 2.54c v d =-⨯=$, $lg lg 2.540.25v c x d x ∴=+⋅=-$$,即$lg 2.540.25y x =-.y ∴关于x 的回归方程为:$ 2.542.540.250.250.2510346.74101010x x x y -===. 当8x =时,$0.2582346.74346.743.4671010y ⨯===,则第8个月该社区出现的违法案件数预计为4. 【点睛】 本题考查的是用最小二乘法计算线性回归直线方程,解答本类题的关键是计算能力. 25.(1)120960;(2)211. 【解析】 【分析】(1)分布计算出语、数、英、综合四门学科安排在上午第一场和其余7门学科的安排方法,根据分步乘法计数原理计算可得结果;(2)分别计算出所有安排方法和数学、化学在同一天考的安排方法的种数,根据古典概型概率公式计算可得结果. 【详解】(1)语、数、英、综合四门学科安排在上午第一场,共有4424A =种排法; 其余7门学科共有775040A =种排法,∴“考试日程安排表”共有504024120960⨯=种不同的安排方法.(2)各科考试顺序不受限制时,共有1111A 种安排方法;数学和化学在同一天考共有:2912929339A A C A A +种安排方法, ∴数学、化学在同一天考的概率291292933911112362111011A A C A A P A ++⨯===⨯. 【点睛】本题考查排列组合计数问题、古典概型概率问题的求解,涉及到分类加法和分步乘法计数原理的应用,考查学生的分析和解决问题的能力.26.(1)110;(2)45;(3)1920元. 【解析】【分析】(1)求出乙生产三等品的件数,根据古典概型的概率公式进行求解即可;(2)由条件求出甲在一天中测试指标不小于80的件数,根据古典概型概率公式,即可求出;(3)根据条件求出甲、乙一天中生产一等品、二等品、三等品的产品件数,即可得出结论.【详解】(1)依题意,乙生产三等品,即为测试指标小于80, 所求概率为:1371372040201010P +==+++++. (2)依题意,甲生产一件产品,盈利不小于30元,即为测试指标不小于80,235357345153535735P +++==+++++. (3)甲一天生产40件产品,其中 三等品的件数为40(515)8100+⨯=件. 二等品的件数为40(3535)28100+⨯=件. 一等品的件数为40(73)41100+⨯=件. 乙一天生产30件产品,其中: 三等品的件数为30(37)3100+⨯=件, 二等品的件数为30(2040)18100+⨯=件, 三等品的件数为30(2010)9100+⨯=件. 则(83)(10)(2828)30(94)501920+⨯-++⨯++⨯=元. ∴估计甲、乙两人一天共为企业创收1920元.【点睛】本题考查求古典概型概率以及简单应用,考查分析问题解决问题能力,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021高二数学上期中模拟试卷带答案一、选择题1.民间有一种五巧板拼图游戏.这种五巧板(图1)可以说是七巧板的变形,它是由一个正方形分割而成(图2),若在图2所示的正方形中任取一点,则该点取自标号为③和④的巧板的概率为( )A .518B .13C .718D .492.一组数据的平均数为m ,方差为n ,将这组数据的每个数都乘以()0a a >得到一组新数据,则下列说法正确的是( ) A .这组新数据的平均数为m B .这组新数据的平均数为a m + C .这组新数据的方差为anD .这组新数据的标准差为n3.设a 是甲抛掷一枚骰子得到的点数,则方程220x ax ++=有两个不相等的实数根的概率为( ) A .23B .13C .12D .5124.某商场为了了解毛衣的月销售量y (件)与月平均气温x (C ︒)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: 月平均气温x C ︒171382月销售量y (件)24334055由表中数据算出线性回归方程y bx a =+$$$中的2b =-$,气象部门预测下个月的平均气温为6C ︒,据此估计该商场下个月毛衣销售量约为( )A .58件B .40件C .38件D .46件5.《九章算术》是我国古代内容极为丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,七日织28尺,第二日,第五日,第八日所织之和为15尺,则第十五日所织尺数为( )A .13B .14C .15D .166.已知0,0,2,a b a b >>+=则14y a b=+的最小值是 ( ) A .72B .4C .92D .57.执行如图所示的程序框图,则输出的结果是( )A .5B .7C .9D .118.将三枚质地均匀的骰子各掷一次,设事件A =“三个点数之和等于15”,B =“至少出现一个5点”,则概率()|P A B 等于( ) A .5108B .113C .17D .7109.我国古代名著《庄子g 天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是( )A .17?,,+1i s s i i i≤=-= B .1128?,,2i s s i i i≤=-= C .17?,,+12i s s i i i ≤=-= D .1128?,,22i s s i i i≤=-= 10.将参加夏令营的600名学生编号为:001,002,…,600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到200住在第一营区,从201到500住在第二营区,从501到600住在第三营区,三个营区被抽中的人数依次为( ). A .16,26,8B .17,24,9C .16,25,9D .17,25,811.运行如图所示的程序框图,若输出S 的值为129,则判断框内可填入的条件是( )A .4?k <B .5?k <C .6?k <D .7?k <12.已知P 是△ABC 所在平面内﹣点,20PB PC PA ++=u u u r u u u r u u u r r,现将一粒黄豆随机撒在△ABC内,则黄豆落在△PBC 内的概率是( )A .23B .12C .13D .14二、填空题13.有一批产品,其中有2件次品和4件正品,从中任取2件,至少有1件次品的概率为______.14.已知一组数据:87,,90,89,93x 的平均数为90,则该组数据的方差为______. 15.已知某人连续5次投掷飞镖的环数分别是8,9,10,10,8,则该组数据的方差为______.16.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得101ii x =∑=80, 101ii y =∑=20, 110i i i x y =∑=184, 1210i ix =∑=720.则家庭的月储蓄y 对月收入x 的线性回归方程为__________.附:线性回归方程y =bx +a 中, 1221ni i i n i i x y nxy b x nx==-=-∑∑,a =y -b x ,其中x , y 为样本平均值.线性回归方程也可写为ˆy=ˆb x +ˆa . 17.某学生每次投篮的命中概率都为40%.现采用随机模拟的方法求事件的概率:先由计算器产生0到9之间的整数值随机数,制定1、2、3、4表示命中,5、6、7、8、9、0表示不命中;再以每3个随机数为一组,代表三次投篮的结果.经随机模拟产生如下20组随机数:989 537 113 730 488 556 027 393 257 431 683 569 458 812 932 271 925 191 966 907,据此统计,该学生三次投篮中恰有一次命中的概率约为__________.18.在—次对人体脂肪百分比和年龄关系的研究中,研究人员获得如下一组样本数据:由表中数据求得y 关于x 的线性回归方程为0.6ˆˆyx a =+,若年龄x 的值为50,则y 的估计值为 .19.从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中的视力情况进行统计,其频率分布直方图如图所示:若某高校A 专业对视力的要求在0.9以上,则该班学生中能报A 专业的人数为________20.已知方程0.85 2.1ˆ87yx =-是根据女大学生的身高预报其体重的回归方程, ˆ,x y 的单位是cm 和kg ,则针对某个体()160,53的残差是__________.三、解答题21.某地实施乡村振兴战略,对农副产品进行深加工以提高产品附加值,已知某农产品成本为每件3元,加工后的试营销期间,对该产品的价格与销售量统计得到如下数据: 单价x (元)66.2 6.4 6.6 6.8 7 销量y (万件) 807473706558数据显示单价x 与对应的销量y 满足线性相关关系.(1)求销量y (件)关于单价x (元)的线性回归方程ˆˆˆybx a =+; (2)根据销量y 关于单价x 的线性回归方程,要使加工后收益P 最大,应将单价定为多少元?(产品收益=销售收入-成本).参考公式:ˆb=()121()()ni i i n i i x x y y x x ==---∑∑=1221ni i i n i i x y nxy x nx==--∑∑,ˆˆay bx =- 22.自从高中生通过高校自主招生可获得加分进入高校的政策出台后,自主招生越来越受到高中生家长的重视.某机构为了调查A 城市和B 城市的高中家长对于自主招生的关注程度,在这两个城市中抽取了100名高中生家长进行了调查,得到下表:关注 不关注 合计 A 城高中家长2050B 城高中家长20合计100(1)完成上面的列联表;(2)根据上面列联表的数据,是否有95%的把握认为家长对自主招生关注与否与所处城市有关;(3)为了进一步研究家长对自主招生的直法,该机构从关注的学生家长里面,按照分层抽样方法抽取了5人,并再从这5人里面抽取2人进行采访,求所抽取的2人恰好,A B 两城市各一人的概率.附:()()()()()22n ad bcKa b c d a c b d-=++++(其中n a b c d=+++).23.为了调查某大学学生在周日上网的时间,随机对100名男生和100名女生进行了不记名的问卷调查,得到了如下的统计结果:表1:男生上网时间与频数分布表:表2:女生上网时间与频数分布表:(1)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数;(2)完成表3的22⨯列联表,并回答能否有90%的把握认为“学生周日上网时间与性别有关”?(3)从表3的男生中“上网时间少于60分钟”和“上网时间不少于60分钟”的人数中用分层抽样的方法抽取一个容量为5的样本,再从中任取两人,求至少有一人上网时间超过60分钟的概率.表3:附:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++,()20P K k ≥ 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.82824.某保险公司有一款保险产品的历史收益率(收益率=利润÷保费收入)的频率分布直方图如图所示:(1)试估计这款保险产品的收益率的平均值;(2)设每份保单的保费在20元的基础上每增加x 元,对应的销量为y (万份).从历史销售记录中抽样得到如下5组x 与y 的对应数据:x 元25 30 38 45 52 销量为y (万份)7.57.16.05.64.8由上表,知x 与y 有较强的线性相关关系,且据此计算出的回归方程为10.0ˆybx =-.(ⅰ)求参数b 的值;(ⅱ)若把回归方程10.0ˆybx =-当作y 与x 的线性关系,用(1)中求出的收益率的平均值作为此产品的收益率,试问每份保单的保费定为多少元时此产品可获得最大利润,并求出最大利润.注:保险产品的保费收入=每份保单的保费⨯销量.25.2017年10月18日至10月24日,中国共产党第十九次全国代表大会简称党的“十九大”在北京召开一段时间后,某单位就“十九大”精神的领会程度随机抽取100名员工进行问卷调查,调查问卷共有20个问题,每个问题5分,调查结束后,发现这100名员工的成绩都在内,按成绩分成5组:第1组,第2组,第3组,第4组,第5组,绘制成如图所示的频率分布直方图,已知甲、乙、丙分别在第3,4,5组,现在用分层抽样的方法在第3,4,5组共选取6人对“十九大”精神作深入学习.求这100人的平均得分同一组数据用该区间的中点值作代表;求第3,4,5组分别选取的作深入学习的人数;若甲、乙、丙都被选取对“十九大”精神作深入学习,之后要从这6人随机选取2人再全面考查他们对“十九大”精神的领会程度,求甲、乙、丙这3人至多有一人被选取的概率.26.某企业生产一种产品,质量测试分为:指标不小于90为一等品,不小于80小于90为二等品,小于80为三等品,每件一等品盈利50元,每件二等品盈利30元,每件三等品亏损10元,现对学徒工甲和正式工人乙生产的产品各100件的检测结果统计如下:测试指标[70,75)[75,80)[80,85)[85,90)[90,95)[95,100)甲515353573乙3720402010根据上表统计得到甲、乙生产产品等级的频率分别估计为他们生产产品等级的概率.(1)求出乙生产三等品的概率;(2)求出甲生产一件产品,盈利不小于30元的概率;(3)若甲、乙一天生产产品分别为40件和30件,估计甲、乙两人一天共为企业创收多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】分别求出③和④的巧板的面积,根据几何概型的概率关系转化为面积比.【详解】设巧板①的边长为1,则结合图2可知大正方形的边长为3,其面积239S ==.其中巧板③是底边长为2的等腰直角三角形,其面积为112112S =⨯⨯=的正方形 与腰长为1的等腰直角三角形的组合图形,其面积为22151122S ⨯⨯+==, 故所求的概率12718S S P S +==. 故选:C . 【点睛】本题考查几何概型的概率求法,转化为面积比,属于中档题 .2.D解析:D 【解析】 【分析】计算得到新数据的平均数为am ,方差为2a n ,标准差为,结合选项得到答案. 【详解】根据题意知:这组新数据的平均数为am ,方差为2a n ,标准差为. 故选:D 【点睛】本题考查了数据的平均值,方差,标准差,掌握数据变化前后的关系是解题的关键.3.A解析:A 【解析】分析:可以按照等可能时间的概率来考虑,可以先列举出试验发生包含的事件数,再求出满足条件的事件数,从而根据概率计算公式求解.详解:因为a 是抛掷一枚骰子得到的点数,所以试验发生包含的事件总数为6, 方程220x ax ++=有两个不等实根,所以280a ->, 以为a 为正整数,所以3,4,5,6a =,即满足条件的事件有4种结果,所以所求的概率为4263P ==,故选A. 点睛:本题主要考查的是古典概型及其概率计算公式.,属于基础题.解题时要准确理解题意,先要判断该概率模型是不是古典概型,利用排列组合有关知识,正确找出随机事件A 包含的基本事件的个数和试验中基本事件的总数代入公式()()n A P n =Ω.4.D解析:D【解析】试题分析:由表格得(),x y 为:()10,38,因为(),x y 在回归方程y bx a =+$$$上且2b =-$,()38102a ∴=⨯-+,解得58a =∴2ˆ58y x =-+,当6x =时,26ˆ5846y=-⨯+=,故选D. 考点:1、线性回归方程的性质;2、回归方程的应用.5.C解析:C 【解析】 【分析】 【详解】由题意得等差数列{}n a 中258715,28a a a S ++== 求15a25855153155a a a a a ++=⇒=⇒=1774428772845412a a S a a d +=⇒⨯==⇒=∴=-= 154(154)1415415a a ∴=+-⨯=+-=,选C.6.C解析:C 【解析】 【分析】由题意结合均值不等式的结论即可求得14y a b=+的最小值,注意等号成立的条件. 【详解】 由题意可得:14y a b =+()11414522b a a b a b a b ⎛⎫⎛⎫=⨯++=⨯++ ⎪ ⎪⎝⎭⎝⎭152⎛≥⨯+ ⎝92=, 当且仅当24,33a b ==时等号成立. 即14y a b =+的最小值是92. 故选:C. 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.7.C解析:C循环依次为123,123;S K =+==+=369,325;S K =+==+=91019,527;S K =+==+=191433,729;S K =+==+=结束循环,输出9;K =选C.8.B解析:B 【解析】 【分析】根据条件概率的计算公式即可得出答案. 【详解】3311166617()216A P AB C C C +==Q ,11155561116691()1216C C C P B C C C =-=()()()72161|2169113P AB P A B P B ∴==⨯= 故选:B 【点睛】本题主要考查了利用条件概率计算公式计算概率,属于中档题.9.B解析:B 【解析】 【分析】分析程序中各变量的作用,再根据流程图所示的顺序,可得该程序的作用是累加并输出S 的值,由此可得到结论. 【详解】由题意,执行程序框图,可得: 第1次循环:11,42S i =-=; 第2次循环:111,824S i =--=; 第3次循环:1111,16248S i =--==; 依次类推,第7次循环:11111,256241288S i =----==L , 此时不满足条件,推出循环,其中判断框①应填入的条件为:128?i ≤, 执行框②应填入:1S S i=-,③应填入:2i i =. 故选:B .本题主要考查了循环结构的程序框图的应用,其中解答中正确理解程序框图的含义是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.10.D解析:D 【解析】 【分析】由题意可知,首次抽到003号,以后每隔12个号抽到一个人,则抽到的号构成以3为首项,12为公差的等差数列,从而求出三个营区被抽中的人数. 【详解】由题意可知,首次抽到003号,以后每隔12个号抽到一个人,则抽到的号构成以3为首项,12为公差的等差数列,记为{},n a n N +∈,其中13a =,公差12d =,则第n 个号()11129n a a n d n =+-=-.令200n a ≤,即5129200,1712n n -≤∴≤,所以第一营区抽17人; 令500n a ≤,即5129500,4212n n -≤∴≤,所以第二营区抽421725-=人; 三个营区共抽50人,所以第三营区抽5017258--=人. 故选: D . 【点睛】本题考查系统抽样,属于基础题.11.C解析:C 【解析】 【分析】最常用的方法是列举法,即依次执行循环体中的每一步,直到循环终止,但在执行循环体时要明确循环终止的条件是什么,什么时候要终止执行循环体. 【详解】0S =,1k =;110121S -=+⨯=,2k =;211225S -=+⨯=, 3k =;3153217S -=+⨯=,4k =;41174249S -=+⨯=, 5k =;514952129S -=+⨯=,6k =,此时输出S ,即判断框内可填入的条件是“6?k <”. 故选:C . 【点睛】本题考查循环结构程序框图. 解决程序框图填充问题的思路(1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、执行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.12.B解析:B 【解析】 【分析】推导出点P 到BC 的距离等于A 到BC 的距离的12.从而S △PBC =12S △ABC .由此能求出将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率. 【详解】以PB 、PC 为邻边作平行四边形PBDC ,则PB PC +u u u r u u u r =PD u u u r,∵20PB PC PA ++=u u u r u u u r u u u r r ,∴2PB PC PA +=-u u u r u u u r u u u r , ∴2PD PA =-u u u r u u u r,∴P 是△ABC 边BC 上的中线AO 的中点,∴点P 到BC 的距离等于A 到BC 的距离的12.∴S △PBC =12S △ABC . ∴将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率为:P=PBC ABC S S V V =12. 故选B . 【点睛】本题考查概率的求法,考查几何概型等基础知识,考运算求解能力,考查化归与转化思想、函数与方程思想,考查创新意识、应用意识,是中档题.二、填空题13.【解析】【分析】利用古典概型概率公式求出事件至少有件次品的对立事件全都是次品的概率再利用对立事件的概率公式可计算出所求事件的概率【详解】记事件至少有件次品则其对立事件为全都是次品由古典概型的概率公式解析:56. 【解析】 【分析】利用古典概型概率公式求出事件“至少有1件次品”的对立事件“全都是次品”的概率,再利用对立事件的概率公式可计算出所求事件的概率. 【详解】记事件:A 至少有1件次品,则其对立事件为:A 全都是次品,由古典概型的概率公式可得()222416C P A C ==,()()151166P A P A ∴=-=-=.因此,至少有1件次品的概率为56,故答案为56. 【点睛】本题考查古典概型概率公式以及对立事件概率的计算,在求事件的概率时,若问题中涉及“至少”,可利用对立事件的概率进行计算,可简化分类讨论,考查分析问题的能力和计算能力,属于中等题.14.【解析】该组数据的方差为 解析:4【解析】8790899390591x x ++++=⨯∴=该组数据的方差为222221[(8790)(9190)(9090)(8990)(9390)]45-+-+-+-+-=15.【解析】16.y =03x -04【解析】由题意知又由此得故所求回归方程为故答案为解析:y =0.3x -0.4【解析】由题意知1118012010,8,21010n n i i i i n x x y y n n =========∑∑, 又222172010880nii xnx =-=-⨯=∑,1184108224ni i i x y nxy =-=-⨯⨯=∑,由此得240.3ˆˆˆ,20.380.480bay bx ===-=-⨯=-,故所求回归方程为ˆy 0.30.4x =-,故答案为ˆy0.30.4x =-. 17.【解析】这20组随机数中该学生三次投篮中恰有一次命中的有537730488027257683458925共8组则该学生三次投篮中恰有一次命中的概率约为故填 解析:25【解析】这20组随机数中, 该学生三次投篮中恰有一次命中的有537,730,488,027,257,683,458,925共8组,则该学生三次投篮中恰有一次命中的概率约为82205=,故填25.18.【解析】【分析】【详解】试题分析:由题意可得将代入解得所以线性回归方程为再将代入得故答案为考点:回归分析及线性回归方程 解析:32【解析】 【分析】 【详解】试题分析: 由题意可得30,20x y ==将()30,20代入0.6ˆˆyx a =+解得ˆ2a =,所以线性回归方程为0.62ˆyx =+,再将50x =代入0.62ˆy x =+得ˆ32y =,故答案为32. 考点: 回归分析及线性回归方程.19.20【解析】试题分析:根据频率分布直方图得视力在09以上的频率为(100+075+025)×02=04∴该班学生中能报A 专业的人数为50×04=20考点:频率分布直方图解析:20 【解析】试题分析:根据频率分布直方图,得视力在0.9以上的频率为(1.00+0.75+0.25)×0.2=0.4,∴该班学生中能报A 专业的人数为50×0.4=20. 考点:频率分布直方图.20.-029【解析】所以残差是解析:-0.29【解析】0.8516082.71ˆ53.29y=⨯-= ,所以残差是5353.290.29.-=- 三、解答题21.(1)ˆ20200yx =-+;(2)6.5元. 【解析】 【分析】(1)由题意计算平均数和回归系数,即可写出回归直线方程;(2)由题意写出收益函数P 的解析式,求出P 取最大值时对应的x 值即可. 【详解】解:(1)由题意得,x =16×(6+6.2+6.4+6.6+6.8+7)=6.5, y =16×(80+74+73+70+65+58)=70; 则()61()5 1.20.30 1.5614iii x x y y =--=------=-∑,621()0.250.090.010.010.090.250.7ii x x =-=+++++=∑;所以142007ˆ.b-==- ,() 7020 6.5200ˆˆa y bx =-=--⨯= 所以所求回归直线方程为20200ˆy x =-+. (2)由题意可得,()()()3202ˆ003P yx x x =-=-+-, 整理得P =-20(x -6.5)2+245, 当x =6.5时,P 取得最大值为245;所以要使收益达到最大,应将价格定位6.5元. 【点睛】本题考查了线性回归方程的求法与应用问题,也考查了计算与推理能力,是基础题. 22.(1)详见解析;(2)有95%的把握认为家长对自主招生的关注与否与所处城市有关;(3)0.6. 【解析】 【分析】(1)根据相关数据完成.(2)根据2K 的观测值的计算公式求解,再对应2K 下结论.,(3)关注的人共有50人,根据分层抽样的方法,A 城市2人,B 城市3人,算出从5人抽取两的方法数,,A B 两城市各取一人的方法数,再代入古典概型的概率公式求解. 【详解】 (1)(2)由题意,得K 的观测值为()()()()()()22100203030304 3.84150505050n ad bc k a b c d a c b d -⨯⨯-⨯===>++++⨯⨯⨯,所以有95%的把握认为家长对自主招生的关注与否与所处城市有关. (3)关注的人共有50人,按照分层抽样的方法,A 城市2人,B 城市3人.从5人抽取两人有2510C =种不同的方法,,A B 两城市各取一人有1123236C C =⨯=种不同的方法,故所抽取的2人恰好,A B 两城市各一人的概率为11322560.610C C C ==. 【点睛】本题主要考查独立性检验的应用和古典概型的概率,还考查了运算求解的能力,属于中档题.23.(1)225;(2)见解析,否;(3)710【解析】 【分析】(1)直接根据比例关系计算得到答案.(2)完善列联表,计算22002.198 2.70691K =≈<,得到答案. (3)5人中上网时间少于60分钟的有3人,记为,,A B C ,上网时间不少于60分钟的有2人,记为,D E ,列出所有情况,统计满足条件的情况,得到概率. 【详解】(1)设估计上网时间不少于60分钟的人数x ,依据题意有30750100x =,解得:225x =. 所以估计其中上网时间不少于60分钟的人数是225人. (2)根据题目所给数据得到如下列联表:其中()2220060304070200 2.198 2.7061001001307091K ⨯-⨯==≈<⨯⨯⨯, 因此,没有90%的把握认为“学生周日上网时间与性别有关”.(3)因为上网时间少于60分钟与上网时间不少于60分钟的人数之比为3:2, 所以5人中上网时间少于60分钟的有3人,记为,,A B C ,上网时间不少于60分钟的有2人,记为,D E ,从中任取两人的所有基本事件为:()()()()()()()()()(),,,,,,,,,AB AC AD AE BC BD BE CD CE DE ,共10种,其中“至少有一人上网时间超过60分钟”包含了7种,∴710P =. 【点睛】本题考查了独立性检验,概率的计算,意在考查学生的计算能力和应用能力. 24.(1)0.275;(2)(ⅰ)0.1b =;(ⅱ)99万元 【解析】试题分析:(1)根据平均值为0.275各组的组中值与面积的乘积之和,计算得;(2)(ⅰ)先求得38x =; 6.2y =,由10y bx =-,得1038 6.2b -=.解得0.1b =;(ⅱ)易得这款保险产品的保费收入为()()()()220100.13600.140f x x x x =+-=--⇒当40x =,即每份保单的保费为60元时,保费收入最大为360万元⇒预计这款保险产品的最大利润为3600.27599⨯=万元.试题解析:(1)收益率的平均值为0.050.10.150.20.250.25⨯+⨯+⨯0.350.30.450.10.050.050.275+⨯+⨯+⨯=.(2)(ⅰ)25303845521903855x ++++===; 7.57.1 6.0 5.6 4.831 6.255y ++++===由10y bx =-,得1038 6.2b -=.解得0.1b =.(ⅱ)设每份保单的保费为()20x +元,则销量为100.1y x =-. 则这款保险产品的保费收入为()()()20100.1f x x x =+-万元. 于是,()()2220080.13600.140f x x x x =+-=--.所以,当40x =,即每份保单的保费为60元时,保费收入最大为360万元. 预计这款保险产品的最大利润为3600.27599⨯=万元. 25.(1)87.25;(2)3,2,;(3) 【解析】 【分析】(1)利用频率分布直方图的性质能求出这100人的平均得分(2)第3组的人数为30,第4组的人数为20,第5组的人数为10,用分层抽样能求出在这三个组选取的人数(3)记其他人为甲、乙、丙、丁、戊、己,从这6人随机选取2人,利用列举法能写出甲、乙、丙这3人至多有一人被选取的概率. 【详解】这100人的平均得分为:.第3组的人数为,第4组的人数为,第5组的人数为,故共有60人, 用分层抽样在这三个组选取的人数分别为:3,2, 记其他人为甲、乙、丙、丁、戊、己,则所有选取的结果为甲、乙、甲、丙、甲、丁、甲、戊、甲、己、 乙、丙、乙、丁、乙、戊、乙、己 、丙、丁、丙、戊、丙、己、 丁、戊、丁、己 、戊、己共15种情况, 其中甲、乙、丙这3人至多有一人被选取有12种情况, 故甲、乙、丙这3人至多有一人被选取的概率为【点睛】本题主要考查了频率分布直方图,分层抽样,古典概率,属于中档题.26.(1)110;(2)45;(3)1920元.【解析】【分析】(1)求出乙生产三等品的件数,根据古典概型的概率公式进行求解即可;(2)由条件求出甲在一天中测试指标不小于80的件数,根据古典概型概率公式,即可求出;(3)根据条件求出甲、乙一天中生产一等品、二等品、三等品的产品件数,即可得出结论.【详解】(1)依题意,乙生产三等品,即为测试指标小于80,所求概率为:1371 372040201010P+==+++++.(2)依题意,甲生产一件产品,盈利不小于30元,即为测试指标不小于80,23535734 5153535735P+++==+++++.(3)甲一天生产40件产品,其中三等品的件数为40 (515)8100+⨯=件.二等品的件数为40 (3535)28100+⨯=件.一等品的件数为40(73)41100+⨯=件.乙一天生产30件产品,其中:三等品的件数为30 (37)3100+⨯=件,二等品的件数为30 (2040)18100+⨯=件,三等品的件数为30 (2010)9100+⨯=件.则(83)(10)(2828)30(94)501920+⨯-++⨯++⨯=元.∴估计甲、乙两人一天共为企业创收1920元.【点睛】本题考查求古典概型概率以及简单应用,考查分析问题解决问题能力,属于中档题.。