温州中学自主招生模拟考试数学试卷
温州中学自主招生模拟试题数学
温州中学自主招生模拟试题数学试卷(120分) 一试一. 选择题:本大题共8小题,每小题4分,满分32分。
1. 设0a b >>, 那么21()a b a b +-的最小值是( )A.2B.3C.4D.52. 已知一组正数12345,,,,x x x x x 的方差为:222222123451(20)5Sx x x x x =++++-,则关于数据123452,2,2,2,2x x x x x + + + + +的说法:①方差为S2;②平均数为2;③平均数为4;④方差为4S2。
其中正确的说法是( )A .①②B .①③C . ②④ D.③④3. 已知实数b a ≠,且满足)1(33)1(2+-=+a a ,2)1(3)1(3+-=+b b .则ba aab b+的值为( )A.23B.23-C.2-D.13- 4. 如果x 和y 是非零实数,使得3=+y x 和3=+x y x ,那么x+y 等于( )A.3B.13C.2131-D.134-5. 如果对于不小于8的自然数n ,当3n+1是一个完全平方数是,n+1都能表示成个k 完全 平方数的和,那么k 的最小值为( ) A.1 B.2 C.3 D.46. 已知24b ac -是一元二次方程20ax bx c ++= (a ≠0)的一个实数根,则ab 的取值范围为( )A.18ab ≥B.18ab ≤C.14ab ≥D.14ab ≤7. 在四边形ABCD 中,边AB=x ,BC=CD=4, DA=5,它的对角线AC=y ,其中x,y 都是整数,∠BAC=∠DAC,那么,x=( )A.4B.5C.4或5D.非以上答案8. 设二次函数()20y ax bx c a =++≠满足:当01x ≤≤时,1y ≤.则a b c ++的最大值是( ).A.3;B.7;C.12;D.17. 二.填空题:本大题共6小题,每小题5分,满分30分。
9. 在边长为2的正方形A B C D 的四边上分别取点E 、F 、G 、H .四边形E F G H 四边的平方和2222EF FG GH HE +++最小时其面积为_____.10. 已知点A ,B 的坐标分别为(1,0),(2,0). 若二次函数()233y x a x =+-+的图象与线段AB 恰有一个交点,则a 的取值范围是 .11. △ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心I 作DE ∥BC ,分别与AB ,AC 相交于点D ,E ,则DE 的长为 .12. 关于x ,y 的方程22208()x y x y +=-的所有正整数解为 . 13. n 个正整数12na a a ,,,满足如下条件:1212009n a a a =<<<= ;且12na a a ,,,中任意n -1个不同的数的算术平均数都是正整数.则 n 的最大值为___________.14. 如图,射线AM ,BN 都垂直于线段AB ,点E 为AM 上一点,过点A 作BE 的垂线AC 分别交BE ,BN 于点F ,C ,过点C 作AM 的垂线CD ,垂足为D .若CD =CF ,A EA D= .温州中学自主招生模拟试题数学答题卷(120分) 一试一.选择题:本大题共8小题,每小题4分,满分32分。
温州中学自主招生模拟考试数学试卷
卷一:温州中学自主招生模拟考试数学试卷一. 选择题(本大题共8小题,每题5分,满分40分。
)1. 已知x 是无理数,且()()31++x x 是有理数,在上述假设下,有人提出了以下四个结论: (1)2x 是有理数;(2)()()31--x x 是无理数;(3)()21+x 是有理数;(4)()21-x 是无理数并说它们中有且只有n 个正确的,那么,n 等于( ) A.0 B.1 C.2 D.42. 一个商人用m 元(m 为自然数)买来了n 台(n 为质数)电视机,其中有二台用成本的一半价钱卖给了某个慈善机构,其余的电视机在商店出售,每台盈利500元,结果商人获得利润5500元,则n 的最小值是( )A.11B.13C.17D.19 3. 方程5173032222=-+y y x x 的整数解的组数为( ) A.1 B.2 C.3 D.44. 设△ABC 的三边长分别为,,AB c BC a CA b ===,a,b,c 互不相等,AD 、BE 、CF 分别为△ABC 的内角平分线,且DE =DF,那么∠BAC 的度数为( ) A.90° B.<90° C.>90° D.以上答案都不对5. 已知ABCD 是圆内接四边形,AC 是圆的直径,BD ⊥AC ,AC 与BD 的交点为E ,F 在DA 的延长线上,连结BF ,G 在BA 的延长线上,使得DG ∥BF ,H 在GF 的延长线上,使得CH ⊥GF .如果∠FBE=65°,∠HFB=25°,则∠FHC=( ) A.65° B.55° C.75° D.40°6. 一条抛物线c bx ax y ++=2的顶点为(4,11-),且与x 轴的两个交点的横坐标为一 正一负,则a 、b 、c 中为正数的( ). A.只有a B.只有b C.只有c D.只有a 和b7. 已知关于x 的一元四次方程420x px qx r +++=有三个相等的实根和另一个与之不同的实根,则下列三个命题中真命题有( )个.①p q r +=可能成立;②p r q +=可能成立;③q r p +=可能成立. A.0 B.1 C.2 D.3.8. 如图,四边形ABCD 中CD BC AB ==,ο78=∠ABC ,ο162=∠BCD 。
温州市重点中学自主招生模拟数学试题含答案
2020年温州市重点中学自主招生模拟试题数学试卷(考试时间120分钟,满分150分)一.选择题(每题5分,共50分) 1.下列数中不属于有理数的是( )A.1B.21C.22D.0.11132.如图,在矩形中截取两个相同的圆作为圆柱的上.下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y 和x ,则y 与x 的函数图象大致是( )A. B. C. D.3.如果把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中, 符合这一规律的是( ) A 、13 = 3+10 B 、25 = 9+16 C 、49 = 18+31 D 、36 = 15+214.a 、b 、c 均不为0,若0<=-=-=-abc cxz b z y a y x ,则),(bc ab p 不可能在( ) A 、第一象限B 、第二象限C 、第三象限D 、第四象限5.如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y=x 的图象被⊙P 截得的弦AB 的长为23错误!未找到引用源。
, 则a 的值是( )A 、22错误!未找到引用源。
B 、22+错误!未找到引用源。
C 、23+2错误!未找到引用源。
D 、23+6.如图,在Rt△ABC 中,∠ACB=90º,∠A=30º,BC=2,将△ABC 绕 点C 按顺时针方向旋转n 度后,得到△EDC,此时,点D 在AB 边 上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积 分别为( )A 、30,2B 、60,2C 、60,3D 、60,3 7.如图一个长为m 、宽为n 的长方形(m >n )沿虚线剪开, 拼接成图2,成为在一角去掉一个小正方形后的一个大 正方形,则去掉的小正方形的边长为( ) A 、2m n - B 、m -n C 、2mD 、2n8.抛物线2x y =上有三点P 1、P 2、P 3,其横坐标分别为t ,t +1,t +3,则△P 1P 2P 3的面积为( ). A.1 B. 2 C. 3 D.4 9.已知直线483y x =-+与x 轴、y 轴分别交于点A 和点B ,M 是OB 上的一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上的点B '处,则直线AM 的函数解析式是( )A.821+-=x yB.831+-=x y C.321+-=x y D.331+-=x y10.正五边形广场ABCDE 的边长为80米,甲、乙两个同学做游戏,分别从A 、C 两点处同时出发,沿A-B-C-D-E-A 的方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分,则两人第一次刚走到同一条边上时( ). A.甲在顶点A 处 B.甲在顶点B 处 C.甲在顶点C 处 D.甲在顶点D 处B /y xMOB A二.填空题(每题6分,共36分)11.分解因式:22242y xy x ++=________________. 12.如图,在平面直角坐标系中,反比例函数)0,0(>>=k x xky的图象经过点A (1, 2),B (m ,n )(m >1),过点B 作 y 轴的垂线,垂足为C.若△ABC 面积为2,则点B 的坐标 为________.13.如右图,是一回形图,其回形通道的宽和OB 的长均 为1,回形线与射线OA 交于A 1,A 2,A 3,….若从O 点到A 1点的回形线为第1圈(长为7),从A 1点到A 2 点的回形线为第2圈,…,依次类推.则第11圈的长 为 .14.今有一副三角板(如图1),中间各有一个直径为4cm 的圆洞,现将三角板a 的30º角的那一头插入三角板b 的圆洞内(如图2),则三角板a 通过三角板b 的圆洞的那一部分的最大面积为 cm 2(不计三角板的厚度,精确到0.1cm 2).15.如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°.正方形ABCD 的边长为1,它的一边AD 在MN 上,且顶点A 与M 重合.现将正方形ABCD 在梯 形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶 点与Q 重合时,点A 所经过的路线与梯形MNPQ 的三边 MN 、NP 、PQ 所围成图形的面积是________.A 3A 2A 1BAO图1ba16.如图,在矩形ABCD 中,AB=2,BC=4,⊙D 的半径为1.现将一个直角三角板的直角顶点与矩形的对称中心O 重合,绕着O 点转动三角板,使它的一条直角边与⊙D切于点H ,此时两直角边与AD 交于E ,F 两点,则tan EFO ∠的值为 . 三.解答题(共6小题,分别为8,10,10,10,12,14分,共64分) 17.设数列ΛΛΛ,1,,12,1,,13,22,31,12,21,11kk k -,问:(1)这个数列第2010项的值是多少?(2)在这个数列中,第2010个值为1的项的序号是多少?18.如图,在梯形ABCD 中,AB ∥CD ,⊙O 为内切圆,E 为切点, (Ⅰ)求AOD ∠的度数;(Ⅱ)若8=AO cm ,6=DO cm ,求OE 的长. .19.请设计三种方案:把一个正方形剪两刀,使剪得的三块图形能够拼成一个三角形,并且使拼成的三角形既不是直角三角形也不是等腰三角形,画出必要的示意图,并附以简要的文字说明.20.某商场在促销期间规定:商场所有商品按标价的80%出售,同时,当顾客在该商场内消费满一定金额后,可按如下方案获得相应金额的奖券:根据上述促销方法,顾客在该商场购物可以获得双重优惠。
2022年温州中学自主招生数学模拟试题[1]
温州中学自主招生摹拟考试数学试题时间:120分钟 满分:120分卷 Ⅰ一、选择题(每小题5分,共40分,请把答案填在卷Ⅱ相应的位置上)1、已知a b c 、、都是实数,并且a b c >>,那末下列式子中正确的是( ▲ )(A)ab bc > (B)a b b c +>+ (C)a b b c ->- (D)a bc c>2、满足20223+++=x x y 的正整数数对(x,y)( ▲ )(A)惟独一对 (B)恰有两对 (C)至少有三对 (D)不存在3、已知1231235x x x y y y ,,的平均数为,,,的平均数为7,则112223 23 x y x y ++,, 3323x y +的平均数为( ▲ )(A)31 (B)313 (C)935(D)174、已知函数5y x =-,令x =21、1、23、2、25、3、27、4、29、5,可得函数图象上的十个点.在这十个点中随机取两个点P (x 1,y 1)、Q (x 2,y 2),则P 、Q 两点在同一反比例函数图象上的概率是( ▲ )(A)91 (B)454 (C)457 (D)525、已知函数()c f x b x a =+-(c ≠0)的对称中心为(a ,b ),则函数42()3x f x x +=-的对称中心为( ▲ )(A)(2,4) (B)(3,4) (C)(2,3) (D)(3,2) 6、如图,□ DEFG 内接于ABC ∆,已知ADE ∆、EFC ∆、DBG ∆的面积为1、3、1,那么□ DEFG 的面积为( ▲ ) (A)32 (B)2(C)3(D)47、已知<cosA<sin80°,则锐角A 的取值范围是( ▲ )(A)60°<A<80° (B)30°<A<80° (C)10°<A<60 (D)10°<A<30°8、有 4 张牌,每张牌的一面都写上一个英文字母, 另一面都写上一个数字.规定:当牌的一面为字母R 时, 它的另一面必须写数字2. 你的任务是:为了检验如图的4张牌是否有违反规定的写法, 你翻看哪几张牌就够了?你的选择是( ▲ ) . (A)(a) (B)(a) 、(c) (C)(a) 、(d) (D)非以上答案二、填空题(每小题5分,共30分,请把答案填在卷Ⅱ相应的位置上) 9、关于x 的方程211x a x +=-的解是正数,则a 的取值范围是 ▲ .10、一厂家有一批长为40㎝、宽为30㎝的矩形红布,现该厂家要将每块矩形红布剪一次后拼成一面三角形旗子,则红布可以拼成三角形旗子的种数是_____▲_____. 11、已知|y|≤1且2x+y=1,则2x 2+16x+3y 2的最小值为_____▲_____cm 2. 12、如图,抛物线2y ax bx c =++与x 轴的一个交点A 在点 (-2,0)和(-1,0)之间(包括这两点),顶点C 是矩形 DEFG 上(包括边界和内部)的一个动点,则a 的取值范围 是 ▲ .13、在直径为4cm的⊙O中,长度为32cm的弦BC 所对的圆周角的度数为 ▲ .14、如图,在△ABC 中,已知AB=5,BC=8,AC=7,动点P、Q 分别在边AB、AC 上,使△APQ 的外接圆与BC 相切,则线段PQ 的最小值等于 ▲ .卷 Ⅱ一、选择题(每小题4分,共32分) 题号 1 2 3 4 5 6 7 8 答案二、填空题(每小题5分,共30分)9、 10、 11、 12、 13、 14、 三、解答题(共5小题,分值挨次为8分、10分、12分、14分、14分,满分58分)15. 已知2311222--=-x x ,求211111()()xx x x x -÷+-+-的值。
2019-2020学年浙江省温州中学自主招生九年级数学模拟试卷有标准答案
浙江省温州中学自主招生九年级数学模拟试卷(本卷满分:150分 考试时间:90分钟)一、单项选择题(本大题分5小题,每题4分,共20分)1. 气象台预报:“本市明天降水概率是80%”,但据经验,气象台预报的准确率仅为80%,则在此经验下,本市明天降水的概率为················( ) A 、84% B 、80% C 、68% D 、64%2. 如图,已知A ∠的平分线分别与边BC 、ABC ∆的外接圆交于点D 、M ,过D 任作一条与直线BC不重合的直线l ,直线l 分别与直线MB 、MC 交于点P 、Q ,下列判断不正确的是···········································( ) A .无论直线l 的位置如何,总有直线PM 与ABD ∆的外接圆相切B .无论直线l 的位置如何,总有BAC PAQ ∠>∠ C .直线l 选取适当的位置,可使A 、P 、M 、Q 四点共圆D .直线l 选取适当的位置,可使APQ S ∆<ABC S ∆3. 欲将正六边形的各边和各条对角线都染为n 种颜色之一,使得以正六边形的任何3个顶点作为顶点的三角形有3种不同颜色的边,并且不同的三角形使用不同的3色组合,则n 的最小值为·········( )A .6B .7C .8D .9 4. 将一个正11边形用对角线划分为9个三角形,这些对角线在正11边形内两两不相交,则··················································( ) A .存在某种分法,所分出的三角形都不是锐角三角形 B .存在某种分法,所分出的三角形恰有两个锐角三角形 C .存在某种分法,所分出的三角形至少有3个锐角三角形 D .任何一种分法所分出的三角形都恰有1个锐角三角形5. 已知实系数二次函数()x f 与()x g ,()()x g x f =和()()03=+x g x f 有两重根,()x f 有两相异实根,则()x g ···································( )A .有两相异实根B .有两相同实根C .没有实根D .没有有理根 二、填空题(本大题分10小题,每题6分,共60分)第2题6. 设正数x 、y 、z 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=++.1693253222222x zx z z y y xy x ,,则xy +2yz +3zx 的值为 .7. 已知ABCD 是一个正方形,点M (异于点B 、C )在边BC 上,线段AM 的垂直平分线l 分别交AB 、CD于点E 、F .若AB =1,则DF BE -的取值范围为 .8. 已知实数a ,b ,c ,d 满足2a 2+3c 2=2b 2+3d 2=(ad-bc )2=6,则(a 2+b 2)(c 2+d 2)的值为 . 9. 由两个不大于100的正整数m ,n 组成的整数对(m ,n )中,满足:2121+<<+m n m 的有 对.10. 甲、乙两人在一个5×5的方格纸上玩填数游戏:甲先填且两人轮流在空格中填数,甲每次选择一个空格写上数字1,乙每次选择一个空格写上数字0,填完后计算每个3×3正方形内9个数之和,并将这些和数中的最大数记为A ,甲尽量使A 增大,乙尽量使A 减小,则甲可使A 获得的最大值是 .11. 一个锐角ABC ∆,︒=∠60BAC ,三点H 、O 、I 分别是ABC ∆的垂心、外心和内心,若BH=OI ,则ACB ∠= .12. 设ΔABC 的内切圆⊙O 与边CA 上的中线BM交于点G 、H ,并且点G 在点B 和点H 之间.已知BG =HM ,AB =2.则GH 的最大值为 .13. 设a 、b 为实数,函数()b ax x f +=满足:对任意x ∈[0,1],有()1≤x f ,则()()11++=b a S 的取值范围为 .14. 已知抛物线y 2=6x 上的两个动点A (x 1,y 1)和B (x 2,y 2),其中x 1≠x 2且x 1+x 2=4.线段AB 的垂直平分线与x 轴交于点C ,则ABC S ∆的最大值为 .15. 将一个3×3的正方形的四个角上各去掉一个单位正方形所得到的图形称为“十字形”.在一个10×11的棋盘上,最多可以放置 个互不重叠的“十字形”.(每个“十字形”恰好盖住棋盘上的5个小方格)三、解答题(本大题分5小题,16题10分,17~20题每题15分,共70分)16. 三角形的三边之长是某个系数为有理数的三次方程的根.证明:该三角形的高是某个系数为有理数的六次方程的根.第12题17. 已知ΔABC 内有n 个点(无三点共线),连同A 、B 、C 共n +3个点.以这些点为顶点把ΔABC 分成若干个互不重叠的小三角形.现把A ,B ,C 分别染成红色、蓝色、黄色,而其余n 个点,每个点任意染上红、蓝、黄三色之一.求证:三顶点都不同色的小三角形的总数必是奇数.18. 设奇数a ,b ,c ,d 满足0<a <b <c <d ,ad =bc ,若k d a 2=+,m c b 2=+,其中k ,m 是整数,试证:a =1.19.如图,在锐角ABC∆的外接圆⊙O的切线BD、CE,∆中,∠BAC≠60°,过点B、C分别作ABC且满足BD=CE=BC.直线DE与AB、AC的延长线分别交于点F、G.设CF与BD交于点M,CE与BG 交于点N,证明:AM=AN.第19题20.如图,在ABC中,AB>AC,内切圆⊙I与边BC切于点D,AD与⊙I的另一个交点为E,⊙I的切线EP与BC的延长线交于点P,CF∥PE且与AD交于点F,直线BF与⊙I交于点M、N,M在线段BF上,线段PM与⊙I交于另一点Q.证明:∠ENP=∠ENQ.第20题温州中学自主招生数学模拟试卷参考答案及评分建议一、单项选择题(本大题分5小题,每题4分,共20分)[ 1~5 ] C C B D C二、简答题(本大题分10小题,每空6分,共60分)[本大题评分建议:若数字书写不清晰,不给分]6、 3247、 ⎥⎦⎤⎝⎛410, 8、 6 9、 17110、 6 11、 40° 12、 213、 [-2,49] 14、 7314 15、 15三、分析解答题(本大题分5小题,16题10分,17~20题每题15分,共70分) 16、(10分)(可能有多种解法)(3分)(7分)故得证! (10分)[证明]17、(15分)(可能有多种解法)[证明]把这些小三角形的边进行赋值:边的端点同色的,赋值0;边的端点不同色的,赋值1.于是每个小三角形的三边之和有如下三种情形:(3分) (1)三顶点都不同色的,和为3; (2)恰有两顶点同色的,和为2; (3)三顶点都同色的,和为0.(6分)设所有小三角形的边赋值之和为S ,上述三种情形的三类小三角形的个数分别为a ,b ,c ,于是S =3a +2b +0c =3a +2b .(9分)而注意到所有小三角形的边的赋值之和中,除了AB ,BC ,CA 边外,其余的边都被算了两次,所以它们赋值之和为偶数,再加上AB ,BC ,CA 三边赋值之和为3,所以S 是奇数.(14分)因此a 是奇数.即三顶点都不同色的小三角形总数为奇数.(15分)18、(15分)(可能有多种解法)[解]22)(4)(a d ad d a -+=+22)()(4)(4c b b c bc a d bc +=-+>-+=222)()(4)(4c b b c bc a d bc +=-+>-+=. ∴m k 22>.∴k >m .(2分)把b c a d m k -=-=2,2,代入ad =bc ,有 )2()2(b b a a m k -=-(1), 由(1)可得2222a b a b k m -=•-•.(4分)即2222a b a b k m -=-,))(()2(2a b a b a b m k m -+=-- (2)(5分)已知a ,b 都是奇数,所以a +b ,a -b 都是偶数,又a b a b a 2)()(=-++是奇数的2倍,故b +a ,b -a 中必有一个不是4的倍数.(7分)由(2)必有⎩⎨⎧=-=+-f a b e a b m 221或⎩⎨⎧=+=--fa b ea b m 221.其中,e ,f 为正整数,且m k a b ef -⋅-=2是奇数.[ef b a b a m 2)()(=-++,与(2)比较可得](9分)由于k >m ,故a b a b ef 22=-<-≤f a b a b ef22=-<-≤.从而e =1,m k a b f -⋅-=2. 考虑前一情况,有⎩⎨⎧⋅-==-=+--)2(2221mk m a b f a b a b (11分) 由第二式可得 a a b m k -+=+12,故 a m k m -+-=1122,所以奇数a =1.(13分)对于后一情况,可作类似的讨论.(15分)19、(15分)(解法可能有多种,给分分为4档:0分、5分、10分、15分,注:学生可能用“易证”、“可证”等词骗取分数,此题需慢改)(5分)(10分)(15分)20、(15分)(解法可能有多种,给分分为4档:0分、5分、10分、15分,注:学生可能用“易证”、“可证”等词骗取分数,此题需慢改)(5分)(10分)(15分)第20题[证明](10分)...(5分)(15分)(5分)略(15分)...。
2020年浙江省温州中学自主招生数学模拟试卷及答案解析
第1页(共16页) 2020年浙江省温州中学自主招生数学模拟试卷一.选择题(共8小题,满分40分,每小题5分)1.(5分)化简代数式√3+2√2+√3−2√2的结果是( )A .3B .1+√2C .2+√2D .2√22.(5分)方程6xy +4x ﹣9y ﹣7=0的整数解的个数为( )A .1B .2C .3D .43.(5分)在Rt △ABC 中,∠C =90°,∠B 是它的一个锐角,若sin B ,cos B 是关于x 的方程4x 2﹣5kx +5k +4=0的两个实数根,则k 的值为( )A .125B .−45C .125或−45D .以上各项都不对,关于k 无解4.(5分)已知整数a 1、a 2、a 3、a 4、……满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,……,a n +1=﹣|a n +n |(n 为正整数)依此类推,则a 2020值为( )A .﹣1008B .﹣1009C .﹣1010D .﹣10115.(5分)方程3x 2+y 2=3x ﹣2y 的非负整数解(x ,y )的组数为( )A .0B .1C .2D .36.(5分)如图,在正方形ABCD 中,AD =5,点E 、F 是正方形ABCD 内的两点,且AE=FC =3,BE =DF =4,则EF 的长为( )A .32B .23√2 C .75 D .√27.(5分)若正实数a 、b 满足ab =a +b +3,则a 2+b 2的最小值为( )A .﹣7B .0C .9D .188.(5分)已知x 1,x 2是方程x 2−√5x +1=0的两根,则x 12+x 22的值为( )A .3B .5 C.7 D .4。
2020届浙江省温州中学自主招生九年级数学模拟试卷(有答案)
浙江省温州中学自主招生九年级数学模拟试卷(本卷满分:150分 考试时间:90分钟)一、单项选择题(本大题分5小题,每题4分,共20分) 1. 气象台预报:“本市明天降水概率是80%”,但据经验,气象台预报的准确率仅为80%,则在此经验下,本市明天降水的概率为················( ) A 、84% B 、80% C 、68% D 、64%2. 如图,已知A ∠的平分线分别与边BC 、ABC ∆的外接圆交于点D 、M ,过D 任作一条与直线BC 不重合的直线l ,直线l 分别与直线MB 、MC 交于点P 、Q ,下列判断不正确的是···········································( ) A .无论直线l 的位置如何,总有直线PM 与ABD ∆的外接圆相切B .无论直线l 的位置如何,总有BAC PAQ ∠>∠ C .直线l 选取适当的位置,可使A 、P 、M 、Q 四点共圆D .直线l 选取适当的位置,可使APQ S ∆<ABC S ∆ 3. 欲将正六边形的各边和各条对角线都染为n 种颜色之一,使得以正六边形的任何3个顶点作为顶点的三角形有3种不同颜色的边,并且不同的三角形使用不同的3色组合,则n 的最小值为·········( ) A .6 B .7 C .8 D .94. 将一个正11边形用对角线划分为9个三角形,这些对角线在正11边形内两两不相交,则··················································( ) A .存在某种分法,所分出的三角形都不是锐角三角形 B .存在某种分法,所分出的三角形恰有两个锐角三角形 C .存在某种分法,所分出的三角形至少有3个锐角三角形 D .任何一种分法所分出的三角形都恰有1个锐角三角形5. 已知实系数二次函数()x f 与()x g ,()()x g x f =和()()03=+x g x f 有两重根,()x f 有两相异实根,则()x g ···································( )A .有两相异实根B .有两相同实根C .没有实根D .没有有理根 二、填空题(本大题分10小题,每题6分,共60分)6. 设正数x 、y 、z 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=++.1693253222222x zx z z y y xy x ,,则xy +2yz +3zx 的值为 .7. 已知ABCD 是一个正方形,点M (异于点B 、C )在边BC 上,线段AM 的垂直平分线l 分别交AB 、CD 于点E 、F .若AB =1,则DF BE -的取值范围为 . 8. 已知实数a ,b ,c ,d 满足2a 2+3c 2=2b 2+3d 2=(ad-bc )2=6,则(a 2+b 2)(c 2+d 2)的值为 . 9. 由两个不大于100的正整数m ,n 组成的整数对(m ,n )中,满足:2121+<<+m n m 的有 对. 10. 甲、乙两人在一个5×5的方格纸上玩填数游戏:甲先填且两人轮流在空格中填数,甲每次选择一个空格写上数字1,乙每次选择一个空格写上数字0,填完后计算每个3×3正方形内9个数之和,并将这些和数中的最大数记为A ,甲尽量使A 增大,乙尽量使A 减小,则甲可使A 获得的最大值是 .第2题11. 一个锐角ABC ∆,︒=∠60BAC ,三点H 、O 、I 分别是ABC ∆的垂心、外心和内心,若BH=OI ,则ACB ∠= .12. 设ΔABC 的内切圆⊙O 与边CA 上的中线BM 交于点G 、H ,并且点G 在点B 和点H 之间.已知BG =HM ,AB =2.则GH 的最大值为 .13. 设a 、b 为实数,函数()b ax x f +=满足:对任意x ∈[0,1],有()1≤x f ,则()()11++=b a S 的取值范围为 .14. 已知抛物线y 2=6x 上的两个动点A (x 1,y 1)和B (x 2,y 2),其中x 1≠x 2且x 1+x 2=4.线段AB 的垂直平分线与x 轴交于点C ,则ABC S ∆的最大值为 . 15. 将一个3×3的正方形的四个角上各去掉一个单位正方形所得到的图形称为“十字形”.在一个10×11的棋盘上,最多可以放置 个互不重叠的“十字形”.(每个“十字形”恰好盖住棋盘上的5个小方格)三、解答题(本大题分5小题,16题10分,17~20题每题15分,共70分)16. 三角形的三边之长是某个系数为有理数的三次方程的根.证明:该三角形的高是某个系数为有理数的六次方程的根.17. 已知ΔABC 内有n 个点(无三点共线),连同A 、B 、C 共n +3个点.以这些点为顶点把ΔABC 分成若干个互不重叠的小三角形.现把A ,B ,C 分别染成红色、蓝色、黄色,而其余n 个点,每个点任意染上红、蓝、黄三色之一.求证:三顶点都不同色的小三角形的总数必是奇数.18. 设奇数a ,b ,c ,d 满足0<a <b <c <d ,ad =bc ,若k d a 2=+,m c b 2=+,其中k ,m 是整数,试证:a =1.第12题19.如图,在锐角ABC∆的外接圆⊙O的切线BD、CE,∆中,∠BAC≠60°,过点B、C分别作ABC且满足BD=CE=BC.直线DE与AB、AC的延长线分别交于点F、G.设CF与BD交于点M,CE与BG交于点N,证明:AM=AN.第19题20.如图,在ABC∆中,AB>AC,内切圆⊙I与边BC切于点D,AD与⊙I的另一个交点为E,⊙I 的切线EP与BC的延长线交于点P,CF∥PE且与AD交于点F,直线BF与⊙I交于点M、N,M在线段BF上,线段PM与⊙I交于另一点Q.证明:∠ENP=∠ENQ.第20题温州中学自主招生 数学模拟试卷 参 考 答 案 及 评 分 建 议一、单项选择题(本大题分5小题,每题4分,共20分)[ 1~5 ] C C B D C二、简答题(本大题分10小题,每空6分,共60分)[本大题评分建议:若数字书写不清晰,不给分]6、 3247、 ⎥⎦⎤⎝⎛410, 8、 6 9、 17110、 6 11、 40° 12、 213、 [-2,49] 14、 7314 15、 15三、分析解答题(本大题分5小题,16题10分,17~20题每题15分,共70分) 16、(10分)(可能有多种解法)(3分)[证明]17、(15分)(可能有多种解法)[证明]把这些小三角形的边进行赋值:边的端点同色的,赋值0;边的端点不同色的,赋值1.于是每个小三角形的三边之和有如下三种情形:(3分) (1)三顶点都不同色的,和为3; (2)恰有两顶点同色的,和为2; (3)三顶点都同色的,和为0.(6分) 设所有小三角形的边赋值之和为S ,上述三种情形的三类小三角形的个数分别为a ,b ,c ,于是S =3a +2b +0c =3a +2b .(9分)而注意到所有小三角形的边的赋值之和中,除了AB ,BC ,CA 边外,其余的边都被算了两次,所以它们赋值之和为偶数,再加上AB ,BC ,CA 三边赋值之和为3,所以S 是奇数.(14分)因此a 是奇数.即三顶点都不同色的小三角形总数为奇数.(15分)18、(15分)(可能有多种解法)[解]22)(4)(a d ad d a -+=+22)()(4)(4c b b c bc a d bc +=-+>-+=222)()(4)(4c b b c bc a d bc +=-+>-+=. ∴m k 22>.∴k >m .(2分)把b c a d m k -=-=2,2,代入ad =bc ,有 )2()2(b b a a m k -=-(1),由(1)可得2222a b a b k m -=•-•.(4分)即2222a b a b k m -=-,))(()2(2a b a b a b m k m -+=-- (2)(5分)已知a ,b 都是奇数,所以a +b ,a -b 都是偶数,又a b a b a 2)()(=-++是奇数的2倍,故b +a ,b -a 中必有一个不是4的倍数.(7分)由(2)必有⎩⎨⎧=-=+-f a b e a b m 221或⎩⎨⎧=+=--fa b ea b m 221.其中,e ,f 为正整数,且m k a b ef -⋅-=2是奇数.[ef b a b a m 2)()(=-++,与(2)比较可得](9分)由于k >m ,故a b a b ef 22=-<-≤f a b a b ef22=-<-≤.从而e =1,m k a b f -⋅-=2. 考虑前一情况,有⎩⎨⎧⋅-==-=+--)2(2221mk m a b f a b a b (11分) 由第二式可得 a a b m k -+=+12,故 a m k m -+-=1122,所以奇数a =1.(13分)对于后一情况,可作类似的讨论.(15分)19、(15分)(解法可能有多种,给分分为4档:0分、5分、10分、15分,注:学生可能用“易证”、“可证”等词骗取分数,此题需慢改)(5分)(10分)(15分)(5分)第20题(10分)(15分)20、(15分)(解法可能有多种,给分分为4档:0分、5分、10分、15分,注:学生可能用“易证”、“可证”等词骗取分数,此题需慢改) [证明](10分)(5分)(15分)(5分)略(15分)。
浙江省温州市自主招生数学试卷
浙江省温州市自主招生数学试卷一、选择题(本大题共5小题,共20.0分)1. 实数a ,b 在数轴上对应的点的位置如图,则必有( ) A. a b <0 B. ab >0 C. a −|b|>0 D. a +b >02. 无论m 为何实数,直线y =2x +m 与直线y =-x +3的交点都不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列5个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④2c <3b ;⑤a +b>m (am +b )(m ≠1的实数).其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个4. 如果外切的两圆⊙O 1和⊙O 2的半径分别为2和4,那么半径为6,与⊙O 1和⊙O 2都相切的圆有( )A. 4个B. 5个C. 6个D. 7个5. 如图,从A 点沿线段走到B 点,要求每一步都是向右或向上,则走法共有( )A. 9种B. 16种C. 20种D. 25种二、填空题(本大题共4小题,共20.0分)6. 反比例函数y =3x ,当y ≤3时,x 的取值范围是______ .7. 圆的半径为13cm ,两弦AB ∥CD ,AB =24cm ,CD =10cm ,则两弦AB ,CD 的距离是______ .8. 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,那么三辆汽车经过这个十字路口,至少有两辆车向左转的概率为______.9. 对于实数a ,b ,c ,d ,规定一种数的运算:∣∣∣a b cd∣∣∣=ad -bc ,那么当∣∣∣24−3x ∣∣∣=10时,x = ______ .三、解答题(本大题共4小题,共40.0分)10. 已知:如图,在△ABC 中,AC =BC ,以BC 为直径的⊙O 交AB 于点D ,过点D 作DE ⊥AC 于点E ,交BC 的延长线于点F .(1)求证:AD =BD ;(2)求证:DF是⊙O的切线;,求DE的长.(3)若⊙O的半径为3,sin∠F=3511.如图,张大爷家有一块四边形的菜地,在A处有一口井,张大爷欲想从A处引一条笔直的水渠,且这条笔直的水渠将四边形菜地分成面积相等的两部分.请你为张大爷设计一种引水渠的方案,画出图形并说明理由.12.小亮早晨从家里出发匀速步行去上学,小亮的妈妈在小亮出发后10分钟,发现小亮的数学课本没带,于是她带上课本立即匀速骑车按小亮上学的路线追赶小亮,结果与小亮同时到达学校.已知小亮在整个上学途中,他出发后t分钟时,他所在的位置与家的距离为s千米,且s与t之间的函数关系的图象如图中的折线段OA-AB 所示.(1)试求折线段OA-AB所对应的函数关系式;(2)请解释图中线段AB的实际意义;(3)请在所给的图中画出小亮的妈妈在追赶小亮的过程中,她所在位置与家的距离S(千米)与小亮出发后的时间t(分钟)之间函数关系的图象.(友情提醒:请对画出的图象用数据作适当的标注)13.已知梯形ABCD中,AD∥BC,且AD<BC,AD=5,AB=DC=2.(1)如图,P为AD上的一点,满足∠BPC=∠A,求AP的长;(2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠BPE=∠A,PE 交直线BC于点E,同时交直线DC于点Q.①当点Q在线段DC的延长线上时,设AP=x,CQ=y,求y关于x的函数关系式,并写出自变量x的取值范围;②当CE=1时,写出AP的长.(不必写解答过程)答案和解析1.【答案】A【解析】解:由数轴可得出:1>a>0,-1<b,A、<0,正确;B、ab<0,故此选项错误;C、a-|b|<0,故此选项错误;D、a+b<0,故此选项错误;故选:A.利用数轴分别得出1>a>0,-1<b,进而分析各选项得出即可.此题主要考查了实数与数轴,得出a,b的取值范围是解题关键.2.【答案】C【解析】解:由于直线y=-x+3的图象不经过第三象限.因此无论m取何值,直线y=2x+m与直线y=-x+3的交点不可能在第三象限.故选C.直线y=-x+3经过第一,二,四象限,一定不经过第三象限,因而直线y=2x+m 与直线y=-x+3的交点不可能在第三象限.本题考查了两条直线相交的问题,需注意应找到完整的函数,进而找到它不经过的象限,那么交点就一定不在那个象限.3.【答案】A【解析】解:开口向下,a<0;对称轴在y轴的右侧,a、b异号,则b>0;抛物线与y轴的交点在x轴的上方,c>0,则abc<0,所以①不正确;当x=-1时图象在x轴上,则y=a-b+c=0,即a+c=b,所以②不正确;对称轴为直线x=1,则x=2时图象在x轴上方,则y=4a+2b+c>0,所以③正确;x=-=1,则a=-b,而a-b+c=0,则-b-b+c=0,2c=3b,所以④不正确;开口向下,当x=1,y有最大值a+b+c;当x=m(m≠1)时,y=am2+bm+c,则a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1),所以⑤正确.故选:A.观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0;当x=-1时图象在x轴上得到y=a-b+c=0,即a+c=b;对称轴为直线x=1,可得x=2时图象在x轴上方,则y=4a+2b+c>0;利用对称轴x=-=1得到a=-b,而a-b+c<0,则-b-b+c<0,所以2c<3b;开口向下,当x=1,y有最大值a+b+c,得到a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1).本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0)的图象,当a>0,开口向上,函数有最小值,a<0,开口向下,函数有最大值;对称轴为直线x=-,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c>0,抛物线与y轴的交点在x轴的上方;当△=b2-4ac>0,抛物线与x轴有两个交点.4.【答案】B【解析】解:如图所示:和⊙O1和⊙O2都外切的圆,可以画两个,和⊙O1内切,⊙O2外切的圆可以画一个,和⊙O2内切,⊙O1外切的圆可以画一个,和⊙O1,⊙O2都内切的圆可以画一个,共5个,故选B.所求圆与已知圆相切,分为内切和外切两种,根据本题情况,画出图形,求出所有可能的个数.本题考查了相切两圆的性质,勾股定理的逆定理,分类讨论思想是解题的关键.5.【答案】C【解析】解:从A到A右边一个点的走法数量为1+3+6=10种;从A到A上边一个点的走法数量为1+3+6=10种;故共有10+10=20种不同的走法.故选C.从A→B点的走法数量,等于从A到A右边一个点的走法数量+从A到A上边一个点的走法数量.本题考查了加法原理,解题的关键是按照题目的要求,渐次地寻找到达每一个点的不同走法的种数,并在相应的位置上记录下来.6.【答案】x≥1或x<0【解析】解:由图象可以看出y≤3所对应的自变量的取值为x≥1或x<0.故答案为x≥1或x<0.画出相应函数图象,找到直线y=3下方的函数图象所对应的自变量的取值即可.考查反比例函数的性质;利用数形结合的思想解决问题是解决本题的突破点.7.【答案】7cm或17cm【解析】解:第一种情况:两弦在圆心的同侧时,已知CD=10cm,∴由垂径定理得DE=5.∵OD=13,∴利用勾股定理可得:OE=12.同理可求OF=5,∴EF=7.第二种情况:只是EF=OE+OF=17.其它和第一种一样.故答案为:7cm或17cm.此题可以分两种情况,即两弦在圆心的一侧时和在两侧时,所以此题的答案有两个.本题考查的是垂径定理及勾股定理,解答此题时要注意分AB、CD在圆心的同侧和异侧两种情况讨论,不要漏解.8.【答案】727【解析】解:三辆车经过十字路口的情况有27种,至少有两辆车向左转的情况数为7种,所以概率为:.至少两辆车向左转,则要将两辆车向左转和三辆车向向左转的概率相加.或用1减去一辆车或没车向左转的概率.本题考查的是概率的公式,本题易错,要仔细分析可能出现的情况.用到的知识点为:概率=所求情况数与总情况数之比.9.【答案】-1【解析】解:由题意得,2x+12=10,解得x=-1.故答案为:-1.先根据:=ad-bc得出关于x的一元一次方程,求出x的值即可.本题考查的是解一元一次方程,根据题意得出关于x的一元一次方程是解答此题的关键.10.【答案】(1)证明:如图,连接CD,(1分)∵BC是直径,∴∠BDC=90°,即CD⊥AB.(2分)∵AC=BC,∴AD=BD.(3分)(2)证明:连接OD,(4分)∵∠A=∠B,∠AED=∠BDC=90°,∴∠ADE=∠DCO.∵OC=OD,∴∠DCO=∠CDO.∴∠CDO=∠ADE.由(1)得∠ADE+∠CDE=90°,∴∠CDO+∠CDE=90°.(5分)即∠ODF=90°.∴DF是⊙O的切线.(6分)(3)解:在Rt△DOF中,∵sin∠F=35=3OF,∴OF=5.(7分)∵OC=3,∴CF=5-3=2.由(2)得∠DEA=∠ODF=90°,∴OD∥AC.∴△CEF∽△ODF.(9分)∴EF DF =CFOF.(10分)即4−DE4=25.∴DE=125.(11分)【解析】(1)连接CD,由圆周角定理易得CD⊥AB,又有AC=BC,故AD=BD.(2)连接OD,根据三角形中角的互余关系可得∠ODF=90°,故DF是⊙O的切线.(3)根据三角函数的定义,可得sin∠F=,进而可得CF=5-3=2,再根据比例的关系,代入数据可得答案.本题考查切线的判定,线段等量关系的证明及线段长度的求法,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.11.【答案】解:连接AC,过D作AC的平行线交BC的延长线于E,取BE的中点F,连接AF,则AF即为所引水渠,连接AE,∵DE∥AC,∴S△CDE=S△ADE,∴S△CEG=S△ADG,∴S四边形ABCD=S△ABE,∵F是BE的中点,∴S△ABF=S四边形AFCD.【解析】连接AC,过D作AC的平行线交BC的延长线于E,取BE的中点F,连接AF,则AF即为所引水渠,再连接AE,得出S△CEG=S△ADG,再由F是BE的中点,即可得出结论.本题考查的是面积及等积变换,能根据题意作出辅助线,构造出面积相等的三角形是解答此题的关键.12.【答案】解:(1)设线段OA所在直线的解析式为y=kx,.将x=12,y=1代入得:12k=1,解得:k=112t(0≤t≤12)线段OA对应的函数关系式为:s=112线段AB对应的函数关系式为:s=1(12<t≤20).(2)图中线段AB的实际意义是:小亮出发12分钟后,沿着以他家为圆心,1千米为半径的圆弧形道路上匀速步行了8分钟.(3)小亮的妈妈在追赶小亮的过程中,她所在位置与家的距离S(千米)与小亮出发后的时间t(分钟)之间函数关系的图象如图中折线段CD-DB所示.根据题意可知:小亮从家到学校用时20分钟,妈妈用时10分钟,故妈妈的速度是小亮的2倍,故此妈妈从C到D妈妈用时6分钟中,从D到B用时4分钟.故此可画出函数图象.【解析】(1)设线段OA所在直线的解析式为y=kx,将x=12,y=1代入可求得OA的解析式;(2)小亮距离家的距离不变,且没有停止运动,故小亮在以家为圆心,半径为1千米的圆弧上运动;(3)根据题意可知:妈妈的速度是小亮的2倍,故此可求得点D,B的坐标从而画出图象.本题主要考查的是一次函数的应用,根据题意得出得出线段AB的实际意义以及妈妈的速度是小亮的2倍是解题的关键.13.【答案】解:(1)∵ABCD是梯形,AD∥BC,AB=DC.∴∠A=∠D∵∠ABP+∠APB+∠A=180°,∠APB+∠DPC+∠BPC=180°,∠BPC=∠A∴∠ABP=∠DPC,∴△ABP∽△DPC∴AP CD =ABPD,即:AP2=25−AP解得:AP=1或AP=4.(2)①由(1)可知:△ABP∽△DPQ∴AP DQ =ABPD,即:x2+y=25−x,∴y=−12x2+52x−2(1<x<4).②当CE=1时,∵△PDQ∽△ECQ,∴CE PD =CQDQ,1 5−x =yy+2或15+x=yy−2,∵y=−12x2+52x−2,解得:AP=2或3−√5(舍去).【解析】(1)当∠BPC=∠A时,∠A+∠APB+∠ABP=180°,而∠APB+∠BPC+∠DPC=180°,因此∠ABP=∠DPC,此时三角形APB与三角形DPC相似,那么可得出关于AP,PD,AB,CD的比例关系式,AB,CD的值题中已经告诉,可以先用AP表示出PD,然后代入上面得出的比例关系式中求出AP的长.(2)①与(1)的方法类似,只不过把DC换成了DQ,那么只要用DC+CQ就能表示出DQ了.然后按得出的关于AB,AP,PD,DQ的比例关系式,得出x,y 的函数关系式.②和①的方法类似,但是要多一步,要先通过平行得出三角形PDQ和CEQ 相似,根据CE的长,用AP表示出PD,然后根据PD,DQ,QC,CE的比例关系用AP表示出DQ,然后按①的步骤进行求解即可.本题结合梯形的性质考查二次函数的综合应用,利用相似三角形得出线段间的比例关系是求解的关键.第11页,共11页。
【新】2019-2020浙江温州中学初升高自主招生数学【4套】模拟试卷【含解析】
第一套:满分120分2020-2021年浙江温州中学初升高自主招生数学模拟卷一.选择题(共6小题,满分42分)1. (7分)货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y (千米)与各自行驶时间t (小时)之间的函数图象是【 】A. B. C. D.2. (7分)在平面直角坐标系中,任意两点规定运算:①;②;③当x 1= x 2且y 1=y 2时,A =B.有下列四个命题:(1)若A (1,2),B (2,–1),则,; (2)若,则A =C ; (3)若,则A =C ;()()1122,,,A x y B x y ()1212,⊕=++A B x x y y 1212=⊗+A B x x y y (),31⊕= A B 0=⊗A B ⊕=⊕A B B C =⊗⊗A B B C(4)对任意点A 、B 、C ,均有成立. 其中正确命题的个数为( )A. 1个B. 2个C. 3个D. 4个 3.(7分)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连结CD 、OD ,给出以下四个结论:①AC ∥OD ;②CE=OE ;③△ODE ∽△ADO ;④2CD 2=CE •AB .正确结论序号是( )A .①②B .③④C .①③D .①④ 4. (7分)如图,在△ABC 中,∠ACB =90º,AC =BC =1,E 、F 为线段AB 上两动点,且∠ECF =45°,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、G .现有以下结论:①;②当点E 与点B 重合时,;③;④MG •MH =,其中正确结论为( )A. ①②③B. ①③④C. ①②④D. ①②③④ 5.(7分)在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A. 4,2,1B. 2,1,4C. 1,4,2D. 2,4,1 6. (7分)如图,在矩形ABCD 中,AB =4,AD =5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D()()⊕⊕=⊕⊕A B C A B C 2AB =12MH =AF BE EF +=12作⊙O 的切线交BC 于点M ,则DM 的长为( )A.B. C. D.二.填空题(每小题6分,满分30分)7.(6分)将边长分别为1、2、3、4……19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为 . 8.(6分)如图,三个半圆依次相外切,它们的圆心都在x 轴上,并与直线3y x =相切.设三个半圆的半径依次为r 1、r 2、r 3,则当r 1=1时,r 3= .9.(6分)如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOB=60°,点A 在第一象限,过点A 的双曲线为k y x=.在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ´B ´.(1)当点O ´与点A 重合时,点P 的坐标是 ;(2)设P (t ,0),当O ´B ´与双曲线有交点时,t 的取值范围是 .1339241332510.(6分)如图,正方形A 1B 1P 1P 2的顶点P 1、P 2在反 比例函数2(0)y x x=>的图象上,顶点A 1、B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数2(0)y x x=>的图象上,顶点A 2在x 轴的正半轴上,则点P 3的坐标为 .11.(6分)如图,在⊙O 中,直径AB ⊥CD ,垂足为E ,点M 在OC 上,AM 的延长线交⊙O 于点G ,交过C 的直线于F ,∠1=∠2,连结CB 与DG 交于点N .若点M 是CO 的中点,⊙O 的半径为4,cos ∠BOC=41,则BN= .三.解答题(每小题12分,满分48分)12.(12分)先化简,再求值:, 其中.13.(12分)如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数的图象上.(1)求m ,k 的值;32221052422x x x x x x x x --÷++--+-2022(tan 45cos30)21x =-+︒-︒-xky =xO yAB (2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式. (3)将线段AB 沿直线进行对折得到线段,且点始终在直线OA 上,当线段与轴有交点时,则b 的取值范围为 (直接写出答案)14.(12分)如图,在Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O 交AC 于点D ,DE 是⊙O 的切线,连接DE .(1)连接OC 交DE 于点F ,若OF=CF ,证明:四边形OECD 是平行四边形; (2)若=n ,求tan ∠ACO 的值b kx y +=11B A 1A 11B A x OFCF15.(12分)如图1,抛物线y =ax 2+bx +c (a ≠0)的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0)。
浙江省温州市温州中学2024届高三第一次模拟考试数学试题
一、单选题1. 设函数f (x )=若函数g (x )=f (x )-b 有三个零点,则实数b 的取值范围是( )A .(1,+∞)B.C .(1,+∞)∪{0}D .(0,1]2. 直线经过椭圆的左焦点,交椭圆于、两点,交轴于点,若,则该椭圆的离心率是( )A.B.C.D.3. 已知集合,,则( )A.B.C.D.4. 若函数()的值域是,则实数 的取值范围是( )A.B.C.D.5. 雨滴在下落过程中,受到的阻力随速度增大而增大,当速度增大到一定程度时,阻力与重力达到平衡,雨滴开始匀速下落,此时雨滴的下落速度称为“末速度”.某学习小组通过实验,得到了雨滴的末速度v (单位:m/s )与直径d (单位:mm )的一组数据,并绘制成如图所示的散点图,则在该实验条件下,下面四个回归方程类型中最适宜作为雨滴的末速度v 与直径d 的回归方程类型的是().A.B.C.D.6.已知双曲线的渐近线方程为,则双曲线的离心率为A.B.C.D.7. 已知边长为2的菱形中,点为上一动点,点满足,,则的最小值为( )A.B.C.D.8. 下图是2013-2020年国家财政性教育经费(单位:万元)和国家财政性教育经费占总教育经费占比的统计图,下列说法正确的是()浙江省温州市温州中学2024届高三第一次模拟考试数学试题浙江省温州市温州中学2024届高三第一次模拟考试数学试题二、多选题三、填空题A .2019年国家财政性教育经费和国家财政性教育经费占总教育经费占比均最低B .国家财政性教育经费逐年增加C .国家财政性教育经费占比逐年增加D .2020年国家财政性教育经费是2014年的两倍9. 若平面向量,,其中,,则下列说法正确的是( )A .若,则B .若,则与同向的单位向量为C .若,且与的夹角为锐角,则实数的取值范围为D .若,则的最小值为10. 正四棱锥中,,,过点作截面分别交棱于点,且,则下列结论正确的是()A .若为中点,则B.若平面,则截面的面积C .若为所在棱的中点,则D .若为所在棱的中点,则点到平面的距离为11. 已知圆上的三个点分别为,,,直线的方程为,则下列说法正确的是( )A.圆的方程为B.过作直线与线段相交,则直线的斜率的取值范围为C .若直线被圆截得的弦长为2,则的方程为或D .当点到直线的距离最大时,过上的点作圆的两条切线,切点分别为,,则四边形面积的最小值为12. 已知函数,,若,则下列说法正确的是( )A .当时,有2个零点B.当时,恒在的上方C .若在上单调递增,则D .若在有2个极值点,则13. 抛物线具有以下光学性质:从焦点出发的光线经抛物线反射后平行于抛物线的对称轴.该性质在实际生产中应用非常广泛.如图所示,从抛物线的焦点F 向y 轴正方向发出的两条光线a ,b 分别经抛物线上的A ,B 两点反射,已知两条入射光线与x 轴所成锐角均为60°,且,则______.四、解答题14.已知数列的前项和,如果存在正整数,使得成立,则实数的取值范围是_____________.15. 已知函数的定义域为,,,若此函数同时满足:①当时,有;②当时,有,则称函数为函数.在下列函数中:①;②;③是函数的为__________.(填出所有符合要求的函数序号)16. 如图,在四棱锥P-ABCD中,平面平面ABCD .是等腰三角形,且.在梯形ABCD中,,,,,.(Ⅰ)求证:平面PDC ;(Ⅱ)求二面角A-PB-C 的余弦值;(Ⅲ)在线段AP 上是否存在点H ,使得平面ADP ?请说明理由.17.某企业参加项目生产的工人为人,平均每人每年创造利润万元.根据现实的需要,从项目中调出人参与项目的售后服务工作,每人每年可以创造利润万元(),项目余下的工人每人每年创造利图需要提高(1)若要保证项目余下的工人创造的年总利润不低于原来名工人创造的年总利润,则最多调出多少人参加项目从事售后服务工作?(2)在(1)的条件下,当从项目调出的人数不能超过总人数的时,才能使得项目中留岗工人创造的年总利润始终不低于调出的工人所创造的年总利润,求实数的取值范围.18.已知函数(1)当时,证明:.(2)若有两个零点且求的取值范围.19. 在平面直角坐标系中, 圆为 的内切圆.其中.(1)求圆的方程及 点坐标;(2)在直线上是否存在异于的定点使得对圆上任意一点,都有为常数 )?若存在,求出点的坐标及的值;若不存在,请说明理由.20. 已知函数(是自然对数的底数).(1)求函数的最小值;(2)若函数有且仅有两个不同的零点,求实数的取值范围.21. 已知数列的通项公式为.(1)若成等比数列,求的值;(2)是否存在使得成等差数列,若存在,求出常数的值;若不存在,请说明理由;(3)求证:数列中的任意一项总可以表示成数列中的其他两项的积.。
2020年温州重点中学自主招生模拟测试数学试卷及参考答案
数学试卷一.选择题: 1. 方程x =3-5535x 3++ 的根是x =( )A.4-15B.4+15C.15-4D.3-52. 将自然数1~22分别填在下面的“□”内(每个“□”只能填一个数), 在形成的11个分数中, 分数值为整数的最多能有( )个A.6B.8C.10D.123. 如图,平面直角坐标系内,正三角形ABC 的顶点B ,C 的坐标分别为(1,0),(3,0),过坐标原点O 的一条直线分别与边AB ,AC 交于点M ,N ,若OM=MN ,则点M 的坐标为( ) A.)43,45( B.(2,1) C.(2, 23) D.( 22,23)4. 已知正整数1210,,,a a a 满足:3,1102>≤<≤ji a i j a ,则10a 的最小可能值是( ) A.78 B.92 C.86 D.985. 一个梯子有10级台阶,规定每步可以迈一级台阶或两级台阶,最多可迈3级台阶,从地面上到最上面一级台阶,一共有( )钟迈法? A.44 B.81 C.149 D.2746.将2,3,4,5,6,7,8,9,10,11这10个数填入图中10个格子中,使得‘田’字形的4个格子中所填数字之和都等于P ,则P 的最大值为( ) A.20 B.24 C.28 D.327. 方程20062420042005(1)(1)2006xx x x x +++++=的实数解的个数为( ) A.1 B.2 C.2005 D.368. 将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。
甲从袋中摸出一个球,其号码为a ,放回后,乙从此袋中再摸出一个球,其号码为b 。
则使不等式a −2b +10>0成立的事件发生的概率等于( ) A.8152 B.8159 C.8160 D.8161yxMN OCBA9. 方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( ) A. 1 B. 2 C.3 D. 410. . 44442222123100123100++++++++的值是( ).A.459395; B.159405; C.460595; D.160605.二.填空题:11. 将2个a 和2个b 共4个字母填在如图所示的16个小方格内,每个小方格内至多填1个字母,若使相同字母既不同行也不同列,则不同的填法共有________种(用数字作答)。
2020年浙江省温州中学自主招生数学试卷
一、选择题(本大四共10小题,每小题4分,共40分。
在每小给出的四个选项中只有一个是符合题目要求的,请将你认为正确的答案填在卷的相应位置。
)1.(4分)已知a>b,则的化简结果是()A.B.﹣C.D.﹣2.(4分)有以下关于x,y的等式:①x+2y=0;②x2+y2=2;③x=|y|;④xy=1,其中y是x的函数的有()A.1个B.2个C.3个D.4个3.(4分)已知tanα=2,则=()A.B.C.4D.24.(4分)如图,一枚棋子在正方体ABCD﹣MNPQ的棱上移动,从每一个顶点出发都等可能地移到和它相邻的三个顶点中的任何一个,若棋子的初始位置为点A,则移动三次后到达点P的概率为()A.B.C.D.5.(4分)直线y=﹣x+b与x轴交于点A,与函数y=在第一象限的图象交于B,C两点,若AB•AC=4,则k=()A.1B.C.2D.46.(4分)已知函数f(x)=ax3+bx2+cx+d,满足f(1)=2,f(2)=4,f(3)=6,则f(0)+f(4)=()A.0B.2C.4D.87.(4分)如图,在△ABC中,AB=3,AC=4,D为AB的中点,E为AC靠近点C的三等分点,BE与CD交于点M,过M作∠A内角平分线的平行线交AC于点N,则AN=()A.B.C.D.8.(4分)已知a,b为实数,设M=max{|a+b|,|a﹣b|,|a﹣2019|,|b﹣2019|},则M的最小值是()(注max{a,b,c,d}表示a,b,c,d中的最大值)A.B.673C.1346D.20199.(4分)如图,三棱锥A﹣BCD的各棱长均为1,点P,Q,R分别在棱CA,AD,DC上,则BP+PQ+QR+RB 的最小值是()A.B.C.2D.310.(4分)在1,2,3,…,2019中,可以表示为[x•[x]]形式的数有()(注:[x]表示不超过实数x 的最大整数)A.980个B.988个C.990个D.998个二、填空题(本题共6小题,每小题5分,共30分,请将答案填在答题卷相应的位置.)11.(5分)不等式(x﹣1)|x﹣1|>1的解是.12.(5分)已知关于x的方程x2+(m+2)x+3=0的两个根x1,x2满足x1<1<x2,则实数m的取值范围是.13.(5分)甲、乙、丙、丁、戊五位同学排成一排,甲不能站在排头和排尾,乙和丙至少有一人与甲相邻,则满足条件的排法数为.14.(5分)当0≤x≤2时,不等式|x2+a|≥2x﹣x2恒成立,则实数a的取值范围是.15.(5分)已知P为△ABC内一点,满足∠BAP=20°,∠CAP=28°,∠ACP=48°,AP=BC,则∠BCP=.16.(5分)已知a,b,c为整数,满足a+b+c=10,S=(10a+bc)(10b+ac)(10c+ab)≥2019,则S的最小值是.三、解答题(本大题共5小题,共80分,解答应写出文字说明,证明过程或演算步骤)17.(10分)解方程组:.18.(15分)如图,在△ABC中,AB⊥AC,AH⊥BC于点H,M为HC的中点,过H作HD⊥AM交直线AB于点D.求证:AB=BD.19.(15分)如图,已知A(x1,y1)B(x2,y2),C(x3,y3),D(x4,y4)是抛物线y=x2上的四个不同的点.(1)试用x1,x2表示直线AB的解析式;(2)已知AB过点E(0,1),BD过点F(0,2),CD过点G(0,4).(ⅰ)证明:A,F,C三点共线;(ⅱ)若点A在第一象限,且S△ADF=4S△BCF,求直线AB的解析式.20.(20分)小明将n枚硬币任意摆放在图中的点上(每个点的硬币数不限,可以0).(1)对于图1定义一次“操作”:从一个至少有2枚硬币的点取走2枚硬币,并分别在与此点相邻的点上各放置1枚硬币,对小明的每种摆法,若点E处无硬币,则总能经过若干次该“操作”,使点E处有硬币,求n的最小值;(2)对于图2定义一次“操作”:从一个至少有2枚硬币的点取走2枚硬币,若该点有两个相邻点,就分别在每个相邻的点各放置1枚硬币;若该点只有一个相邻点,就只在该相邻点处放置1枚硬币.对小明的每种摆法,若点D处无硬币,则总能经过若干次该“操作”,使点D处有硬币,求n的最小值.21.(20分)如图,P为四边形ABCD内一点,满足∠APB=∠ADC,∠BAP=∠CAD,E为线段BD上的一点,过E作EF∥CD交AD于点F,△APF的外接圆交AB于点G.求证:GE∥BC.。
2020年温州市温州中学自主招生数学模拟试卷及答案解析
第1页(共16页)2020年温州市温州中学自主招生数学模拟试卷一.选择题(共8小题,满分40分,每小题5分)1.(5分)设x =√5−32,则代数式x (x +1)(x +2)(x +3)的值为( ) A .0 B .1 C .﹣1 D .22.(5分)方程x 2+2xy +3y 2=34的整数解(x ,y )的组数为( )A .3B .4C .5D .6 3.(5分)已知A ,B 是两个锐角,且满足sin 2A +cos 2B =54t ,cos 2A +sin 2B =34t 2,则实数t 所有可能值的和为( )A .−83B .−53C .1D .1134.(5分)已知整数a 1、a 2、a 3、a 4、……满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,……,a n +1=﹣|a n +n |(n 为正整数)依此类推,则a 2019的值为( )A .﹣1007B .﹣1008C .﹣1009D .﹣10105.(5分)方程组{xy +yz =63xz +yz =23的正整数解的组数是( ) A .1 B .2 C .3 D .46.(5分)如图,已知在正方形ABCD 中,点O 是对角线AC 的中点,过O 点的射线OM 、ON 分别交AB 、BC 于点E 、F ,且∠EOF =90°,BO 、EF 交于点P ,下列结论:①图形中全等的三角形只有三对; ②△EOF 是等腰直角三角形;③正方形ABCD 的面积等于四边形OEBF 面积的4倍;④BE +BF =OA ;⑤AE 2+BE 2=2OP •OB .其中正确的个数有( )个.A .4B .3C .2D .17.(5分)已知实数a ,b 满足a 2+b 2=1,则a 4+ab +b 4的最小值为( )A .−18B .0C .1D .98 8.(5分)已知2x 2﹣x ﹣1=0的两根为x 1、x 2,则x 1+x 2为( )。
温州中学自主招生模拟数学试卷[1]
温州中学自主招生模拟数学试卷[1]温州中学自主招生模拟数学试卷候选人须知:1.本卷满分150分,考试时间120分钟。
2.共有2个问题,4个答案。
请把所有答案填在答题纸上。
一、多项选择题:这道主题共有10个子题,每个子题得5分,满分50分。
1.已知y?1222x?y?12x?16x?3y且,则的最小值为()2719a。
2b。
3c。
7天。
一2.已知抛物线在x轴下方有一个交点(x,y),则抛物线与x轴有()个交点a.0个b.1个c.2个d.无法判断3.如图所示,ab‖EF‖CD,已知AC+BD=240,BC=100,EC+ed=192,然后CF=()a.100b 120c。
80天。
已知实数x和y满足a.5b 424424??3,y?Y3.y、那么424xx1的值是多少?137? 13c。
d、 7225。
有两个同心圆。
大圆上有四个不同的点,小圆上有两个不同的点。
这六个点可以确定的不同直线至少是()a.6条b.8条c.10条d.12条6.一所学校有3125名学生。
在一项活动中,所有学生被安排成N行等腰梯形阵列学生数按每排都比前一排多一人的规律排列,则当n取到最大值时,排在这等腰梯形阵最外面的一周的学生总人数是()a、 296b、221c、225d、6417.设x、y、z是两两不等的实数,且满足下列等式:633X(y?x)?6x(z?x)?6y?十、十、z、那么代数公式X3?Yz3?3xyz的值为()a、 0b,1C,3D,没有足够的条件来计算8.数列x1,x2,?,x100满足下列条件:对于k=1,2,…,100,xk比其余99个数的和小k已知x50?m,m,n是互质的正整数,则m+n等于()n3a、50b、100c、165d、1739.把方程x放进去?3[x]?4.0的实解([x]代表不超过x的最大整数)从小到大排列x1,x2,,xk,则x13?x23??xk3?()a、 8b。
12c。
16天。
二十10.如图,四边形abcd中ab?bc?cd,?abc?78,?bcd?162。
2022年温州中学自主招生考试数学试卷含答案
温州中学自主招生素质测试数学试题(本试卷满分150分,考试时间120分钟)一、选取题:本大题共8小题,每小题5分,共40分.在每小题给出四个选项中,只有一项是符合题目规定.请将你以为对的答案填在答题卷相应位置. 1.关于反比例函数4y x=图象,下列说法对的是( ▲ ) A .必通过点(1,1) B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称 2. 已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩解,则a b -值为( ▲ )A .1-B .1C .2D .33. 已知平面上n 个点,任三个点都能构成直角三角形,则n 最大值为( ▲ )A .3B .4C .5D .64.如图1,AC 、BC 为半径为1⊙O 弦,D 为BC 上动点,M 、N 分别为AD 、BD 中点,则ACB ∠sin 值可表达为( ▲ ) A .DN B .DM C .MN D .CD5.已知甲盒中有若干个白球,乙盒中有若干个白球和黑球,白球和黑球数量均多于3个.从乙盒中随机抽取()1,2i i =个球放入甲盒中.放入i 个球后,从甲盒中取1个球是白球概率记为()1,2i p i =,则( ▲ ) A .12p p >,B .12p p =, C .12p p <, D .以上均有也许6.已知5个实数12345,,,,a a a a a 满足123450a a a a a ≤≤≤≤≤,且对任意正整数(),15i j i j ≤≤≤,均存在k ()1,2,3,4,5k =,使得k a =j i a a -.① 10a =; ② 524a a =;③4223a a a =;④ 当15i j ≤≤≤时,i j a a +也许值共有9个.则上述论断对的有( ▲ )个. A .1 B .2 C .3 D .4 7.二元方程2233y x y x =+正整数解组数为( ▲ ) A .1 B .2 C .3 D .4 8.如图2,点F E D ,,分别是ABC ∆三边上点,且满足4CD DB =,4AE EC =,4BF FA =,AD 、BE 、CF 两两分别交于1A 、1B 、1C ,若ABC ∆面积为1,则111C B A ∆面积为( ▲ ) A .17 B .316 C .73 D .1631图1B图2二、填空题:本大题共7小题,每小题6分,共42分.请将答案填在答题卷相应位置. 9.设2015-a,2015小数某些为b ,则()()12a b -+值 为 ▲ .10.若实数b a ,满足122=+b a ,则},max{b a b a ++最大值为 ▲ .(其中},max{b a 表达b a ,中较大者)11.6名小朋友分坐两排,每排3人规定面对面而坐,但其中两个小朋友不可相邻 ,也不可面对面,有 ▲ 种排法.12.如图3,已知正方体1111ABCD A B C D -棱长为1,M 为棱11C D 中点,点P 为平面11A BCD 上动点,则1MP B P +最小值为 ▲ .13.若正实数c b a ,,满足c b a c b a ++=++2015111,则abca c cb b a ))()((+++值为 ▲ . 14.如图4是一种残缺乘法竖式,在每个方框中填入一种不是2数字,可使其成为对的算式,那么所得乘积是 ▲ .15. 对于任意102x ≤≤,有1ax b +≤,则对于任意102x ≤≤,bx a +最大值 为 ▲ .温州中学自主招生素质测试数学试题×22图4图31A答题卷一、选取题:本大题共8小题,每小题5分,共40分.二、填空题:本大题共7小题,每小题6分,共42分.9. ; 10. ; 11. ;12. ; 13.; 14. ;15. ;三、解答题:(本大题共5小题,16题8分,17、18、19、20题各15分,共68分.解答应写出文字阐明,证明过程或演算环节) 16.在函数y =,求自变量x 取值范畴.17. 如图5,,,,M A B C 为抛物线2y ax =上不同四图5点,()2,1M -,线段MC MB MA ,,与y 轴交点分别为,,E F G ,且1EF FG ==, (1)若F 坐标为()0,t ,求点B 坐标(用t 表达); (2)若AMB ∆面积是BMC ∆面积21,求直线MB 解析式..18.如图6,在ABC ∆中,BAC ∠平分线交BC 于点M ,点D 、E 分别为ABC ∆内切圆在边AB 、AC 上切点,点1I 、2I 分别为ABM ∆与ACM ∆内心.求证:2212221I I EI DI =+.19.试求出所有正整数k ,使得对一切奇数10n >,数165nn+均可被k 整除.20.如图7,在ABC ∆中,AD 为边BC 上高,AB DE ⊥于点E ,AC DF ⊥于点F ,EF 与AD 交于G 点,BEG ∆与CFG∆O 2O 1DBC图7外心分别为1O 和2O ,求证:BC O O //21.温州中学自主招生综合素质测试笔试数学试题答题卷二、选取题:本大题共8小题,每小题5分,共40分.题号 1 2 3 4 5 6 7 8 答案DABCACAC二、填空题:本大题共7小题,每小题6分,共42分.9. 2- ; 10. 5 ; 11. 384 ;12.32; 13. ; 14. 30096 ;15. 4三、解答题:(本大题共5小题,16题8分,17、18、19、20题各15分,共68分.解答应写出文字阐明,证明过程或演算环节) 16.在函数246y x x =--中,求自变量x 取值范畴解:[][]2,06,8-17. 如图,,,,M A B C 为抛物线2y ax =上不同四点,()2,1M -,线段MC MB MA ,,与y 轴交点分别为,,E F G ,且1EF FG ==,(1)若F 坐标为()0,t ,求点B 坐标(用t 表达); (2)若AMB ∆面积是BMC ∆面积21,求直线MB 解析式.解:(1)∵()0,F t ,∴可设直线MB 解析式为y kx t =+, 由点()2,1M -在抛物线2y ax =上得14a =,∴214y x = 由点()2,1M -在直线MB 上得12k t =-+ 将y kx t =+代入214y x =整顿得:2440x kx t --= ∴4M B x x t ⋅=-即24B x t -⋅=-,∴2B x t =,从而得2B y t =故所求点B 坐标为()22,t t(2)(解法一)∵()0,F t ,∴()0,1E t -, ()0,1G t + 由(1)同理可得点()22(1),(1)A t t --,()22(1),(1)C t t ++2AMB S t t ∆=+,232CMB S t t ∆=++∵AMB ∆面积是BMC ∆面积21, ∴22322()t t t t ++=+,解得2t =或1t =-(舍去)∴12k = ∴所求直线MB 解析式为122y x =+, (解法二)过点A 作y 轴平行线分别交,MB MC 于,L H , 由EF FG =得HL AL =,∴AMB HMB S S ∆∆=, 又∵2CMB AMB S S ∆∆=∴HBC HMB S S ∆∆= ∴点H 为MC 中点,22A H M C x x x x ==+ 即4(1)22(1)t t -=-++解得2t =从而12k = ∴所求直线MB 解析式为122y x =+ 18.如图,在ABC ∆中,BAC ∠平分线交BC 于点M ,点D 、E 分别为ABC ∆内切圆在边AB 、AC 上切点,点1I 、2I 分别为与ABM ∆与ACM ∆内心.求证:2212221I I EI DI =+.解:设ABC ∆内切圆在边BC 上切点为F ,21,I I 在边BC 上射影分别为Q P ,. 连接P I 1,Q I 2,M I 1,M I 2,F I 1,F I 2. 由内心性质知EDI 2I 1MBCAAC BA BC BP BF PF -+=-=2因此QF PM =易知M I M I 21⊥,从而PM I 1∆因此QI FQQ I PM MQ P I PF P I 2211===,从而易得F I F I 21⊥,又D I F I 11=,因此2221221EI DI I I +=.19.试求出所有正整数k ,使得对一切奇数10n >,数165n n+均可被k 整除 解:()()()11111116516516165521161655n n n n n n n n ------+=+-⋅++=⋅-⋅++故有21165n n +,故1,3,7,21k =均满足条件;下证,对于其她正整数k 均不满足条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
增加,而 SY+SW 在减少 (注意 X、 Y、Z、W 的面积之和是定值 πr2).因而,比值 SX SZ 增 SY SW
加.于是,当点 A 与点 C 重合时,它才有可能取到最大值 .
在图 7(c) 中, Rt△ ABD 的斜边 BD 是直径,则△ ABD 在 OA 为高时面积最大,此时, SZ 最
边长的三角形,求 k 的取值范围
数学答题卷 第 2 页 共 4 页
4 / 10
18. (本题满分 15 分) 设 1≤a1<a2<… <an≤ 21是 n 个任意的整数 .若其中总有 4 个不同的数 a 数 ai、 aj、ak、 am 满足 ai+am=aj+ak(1 ≤ i<j<k<m ≤,n则) 称数组 (a1, a2, …, an) 的阶数 n 为 “好数 ”. (1)n=7 是否为好数 ?说明理由 ; (2)n=8 是否为好数 ?说明理由 .
)
A
B
C
D E 数学试卷 第 1 页,共 2 页 ,
1 / 10
A.18 °
B.21
二. 填空题(本大题共 6 小题,每题 6 分,满分 36 分。)
9. 已 知 a 0 , b 0 , c 0 , 且 b2 4ac b 2ac , 则 b 2 4ac 的 最 小 值 为
6 / 10
卷三: 温州中学自主招生模拟考试数学答案
一. 选择题(每题 5 分,共 40 分)
题号 1
2
3
4
5
答案 C
C
D
C
A
二. 填空题(每题 6 分。共 36 分)
9._______4_______; 10.
______2 √6______;
6
7
8
A
B
B
11. _______6.75________;
数并说它们中有且只有 n 个正确的,那么, n 等于(
)
A.0
B.1
C.2
D.4
2. 一个商人用 m 元( m 为自然数)买来了 n 台( n 为质数)电视机,其中有二台用成本的 一半价钱卖给了某个慈善机构, 其余的电视机在商店出售, 每台盈利 500 元,结果商人获得
利润 5500 元,则 n 的最小值是(
k1
fmin ( x) 1
k1
fmax (x) 1
1 结论: ( - , 4)
2
x4 x2 f min ( x)
1 3x2
k2
fmax ( x)
,故1<k<4 3
k 2 ,故- 1 k 1
3
2
18. ( 15 分)解: (1)n=7 时, {1 ,2, 3, 5, 8, 13,21} 不满足要求,故 n=7 不是好数 .
(i) 若这 8 对相等的差中,存在 1 对其中的 4 个数互不相同,即 aj-ai=am- ak(1 ≤ i<j<k<m ≤此8). 时原题成立 .
(ii) 若这 8 对相等的差中,每一对的 4 个数中至少有 2 个数相同,则这 4 个数中恰有 2 个数 相同 (因为 aj-ai=am-ak 中至多有 aj=ak 或 ai=am 之一成立 ).于是, 每对这样的差对应一个三元 数组 (ai , aj , ak),且满足 2aj=ai +ak(1 ≤ i<j<k ≤ 8). 不妨设这 8 对差对应的 8 个不同的三元数组为 (ai1, aj1, ak1), (ai2, aj2, ak2 ), … ,(ai8,aj8 ,
)
A.11
B.13
C.17
D.19
3. 方程 x 2 3x 2 y2 30y2 517 的整数解的组数为(
)
A.1
B.2
C.3
D.4
4. 设△ ABC 的三边长分别为 AB c, BC a,CA b ,a,b,c 互不相等, AD 、BE 、CF 分别
为△ ABC 的内角平分线,且 DE= DF,那么∠ BAC 的度数为(
)
A.65 °
B.55 °
C.75°
D.40 °
6. 一条抛物线 y ax 2 bx c 的顶点为( 4, 11),且与 x 轴的两个交点的横坐标为一
正一负,则 a、 b、 c 中为正数的(
).
A. 只有 a
B.只有 b
C.只有 c D.只有 a 和 b
7. 已知关于 x 的一元四次方程 x4 px2 qx r 0 有三个相等的实根和另一个与之不同
其中, ai1、 ak1、 ai2、 ak2 两两不同 (否则它们为同一个三元数组,矛盾 ).
综合 (i) 、 (ii) 知, n=8 是好数 .
19. ( 20 分) 解:观察数列开初的一些项:
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
拼色方法有 _____________ 个.
13. 凸四边形 ABCD 中 , ∠ABC = 60° , ∠ BAD =∠ BCD = 90° , AB = 2, CD
=1, 对角线 AC 、 BD 交于点 O, 如图 . 则 sin ∠AOB =__________.
C
B
ba
O
14. 若 正 五 边 形 ABCDE 的 边 长 为 a, 对 角 线 长 为 b, 则 : - =
卷一:温州中学自主招生模拟考试数学试卷
一. 选择题(本大题共 8 小题,每题 5 分,满分 40 分。) 1. 已知 x 是无理数,且 x 1 x 3 是有理数,在上述假设下,有人提出了以下四个结论:
(1) x 2 是有理数;( 2) x 1 x 3 是无理数;( 3) x 1 2 是有理数; ( 4) x 1 2 是无理
)
A.90 °
B.<90 °
C.>90°
D. 以上答案都不对
5. 已知 ABCD 是圆内接四边形, AC 是圆的直径, BD ⊥AC , AC 与 BD 的交点为 E, F 在
DA 的延长线上,连结 BF,G 在 BA 的延长线上,使得 DG ∥BF, H 在 GF 的延长线上,使
得 CH⊥ GF.如果∠ FBE=65 °,∠ HFB=25 °,则∠ FHC=(
大, SX+SZ 也最大,其值为 1 π2r+r2.而 SY+SW 最小,其值为 1 π2r-r2 .
2
2
所以, SX+SZSY +SW 的最大值是
16. ( 14 分)证明:如图 , 作△ BCE 的外接圆交 EF 于 G, 连结 CG. 因∠ FDC =∠ ABC=∠ CGE , 故 F、 D、 C、 G 四点共圆 . 由切割线定理 , 有 EF2= ( EG+GF ) · EF = EG· EF+ GF · EF= EC·ED+ FC· FB =EC ·ED + FC· FB = EP2+ FQ2,
如图,设 AB 、 CD 是以 O 为圆心、 r 为半径的圆的两条互相垂直的弦,且将圆分成的四个
部分 (每一部分允许退化为一个点 )依顺时针顺序记为 X 、 Y 、 Z 、 W.试求
SX SZ 的最大值。 SY SW
:
请
号
学
内
: 名 姓线
订 : 级
班
装
数学答题卷 第 1 页 共 4 页
3 / 10
16. (本题满分 14 分)
ak8),
8 / 10
其中, 2ajl=ail +akl (l=1 ,2, … , 8).
由于 a1 与 a8不能作为三元数组的中间项,故中间项至多有
6 种不同的取法 .再由抽屉原理,
知上述 8 个不同的三元数组中必有
2 个三元数组的中间项相等,不妨设为
aj1=aj2. 则
ai1+a k1=2aj1 =2aj2 =ai2 +ak2,
ab
D
______________.
A
数学试卷 第 2 页,共 2 页,
2 / 10
题
: 号 位 座
答
: 号 场勿 考
卷二: 温州中学自主招生模拟考试数学答题卷
一. 选择题(本大题共 8 小题,每题 5 分,满分 40 分。)
题号
1
2
3
4
5
6
7
8
答案
二. 填空题(本大题共 6 小题,每题 6 分,满分 36 分。)
9.________________;
10._______________; 11._______________;
12._______________;
13._______________; 14._______________;
三. 解答题(本大题共 5 小题,满分 74 分)
15.( 本题满分 10 分 )
12._____ 30 217 ____; 13.____
15 6 3 ___; 26
三. 解答题(本大题共 5 小题,满分 74 分)
15.(10 分 ) 解:不妨设圆心落在如图 (a) 的 Z 中 .
14.__________1________;
当弦 AB 向上平移时, 图 7(b)中的阴影部分面积大于它左边无阴影部分的面积, 所以,SX+SZ
如图 , ABCD 是⊙ O 的内接四边形 , 延长 AB 和 DC 相交于 E, 延长 AD 和 BC 相交于 F, EP 和
FQ 分别切⊙ O 于 P、 Q. 求证: EP2+ FQ2= EF2.
A
P O
B C
E
Q D
F
17. (本题满分 15 分)
设 k 是实数, f ( x)