中考试题第一部分 函数图象中点的存在性问题

合集下载

专题10 函数中点的存在性问题(解析版)

专题10 函数中点的存在性问题(解析版)

决战2020年中考典型压轴题大突破模块三中考压轴题函数综合题专题考向导航函数综合题是初中数学中覆盖面最广、综合性最强的题型。

近几年的中考压轴题多以数学综合题的形式出现。

解数学综合题一般可分为认真审题、理解题意,探求解题思路,正确解答三个步骤。

解数学综合题必须要有科学分析问题的方法。

数学思想是解数学综合题的灵魂,要善于总结数学综合题中所隐含的转化思想、数形结合思想、分类讨论的思想、方程的思想等,更要结合实际问题加以领会与掌握,这是学习解综合题的关键。

函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,因此是各地中考的热点题型,并且长盛不衰,年年有新花样。

专题10 函数“存在性”问题方法点拨这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。

这类题目解法的一般思路是:假设存在→推理论证→得出结论。

若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断. 由于“存在性”问题的结论有两种可能,所以具有开放的特征。

在假设存在性以后进行的推理或计算,对基础知识、基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识能力的一次全面的考验。

精典例题(2019·白银)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN 有最大值,最大值是多少?【点睛】(1)由二次函数交点式表达式,即可求解;(2)分AC =AQ 、AC =CQ 、CQ =AQ 三种情况,分别求解即可; (3)由PN =PQ sin ∠PQN =√22(−13m 2+13m +4+m ﹣4)即可求解. 【详解】解:(1)由二次函数交点式表达式得:y =a (x +3)(x ﹣4)=a (x 2﹣x ﹣12)=ax 2﹣ax ﹣12a , 即:﹣12a =4,解得:a =−13,则抛物线的表达式为y =−13x 2+13x +4;(2)存在,理由:点A 、B 、C 的坐标分别为(﹣3,0)、(4,0)、(0,4), 则AC =5,AB =7,BC =4√2,∠OBC =∠OCB =45°,将点B 、C 的坐标代入一次函数表达式:y =kx +b 并解得:y =﹣x +4…①, 同理可得直线AC 的表达式为:y =43x +4,设直线AC 的中点为K (−32,2),过点M 与CA 垂直直线的表达式中的k 值为−34, 同理可得过点K 与直线AC 垂直直线的表达式为:y =−34x +78⋯②, ①当AC =AQ 时,如图1,则AC =AQ =5,设:QM =MB =n ,则AM =7﹣n ,由勾股定理得:(7﹣n )2+n 2=25,解得:n =3或4(舍去4), 故点Q (1,3);②当AC =CQ 时,如图1,CQ =5,则BQ =BC ﹣CQ =4√2−5, 则QM =MB =8−5√22, 故点Q (5√22,8−5√22); ③当CQ =AQ 时, 联立①②并解得:x =252(舍去);故点Q 的坐标为:Q (1,3)或(5√22,8−5√22); (3)设点P (m ,−13m 2+13m +4),则点Q (m ,﹣m +4), ∵OB =OC ,∴∠ABC =∠OCB =45°=∠PQN , PN =PQ sin ∠PQN =√22(−13m 2+13m +4+m ﹣4)=−√26(m ﹣2)2+2√23, ∵−√26<0,∴PN 有最大值,当m =2时,PN 的最大值为:2√23.巩固突破1.(2020·青白江区模拟)如图,抛物线y =ax 2+bx +c 与x 轴相交于A (3,0)、B 两点,与y 轴交于点C (0,3),点B 在x 轴的负半轴上,且OA =3OB .(1)求抛物线的函数关系式;(2)若P 是抛物线上且位于直线AC 上方的一动点,求△ACP 的面积的最大值及此时点P 的坐标; (3)在线段OC 上是否存在一点M ,使BM +√22CM 的值最小?若存在,请求出这个最小值及对应的M点的坐标;若不存在,请说明理由.【点睛】(1)OA=3OB=3,则点B(﹣1,0),抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)△ACP的面积=12PH×OA=12×3×(x2﹣2x+3+x﹣3)=32(﹣x2+3x),即可求解;(3)故当B、M、N三点共线时,BM+√22CM=BN最小,即可求解.【详解】解:(1)OA=3OB=3,则点B(﹣1,0),抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3;(2)过点P作y轴的平行线交CA于点H,由点A、C的坐标得,直线AC的表达式为:y=﹣x+3△ACP的面积=12PH×OA=12×3×(x2﹣2x+3+x﹣3)=32(﹣x2+3x),当x=32时,△ACP的面积的最大,最大值为:278,此时点P(32,154);(3)过点M作MN⊥AC,则MN=√22CM,故当B、M、N三点共线时,BM+√22CM=BN最小,直线CA的倾斜角为45°,BN⊥AC,则∠NBA=45°,即BN=√22AB=2√2=AN,则点N(1,2),由点B、N的坐标得,直线BN的表达式为:y=x+1,故点M(0,1).2.(2019·青海)如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点A(1,0)、B(5,0)、C(0,4)三点.(1)求抛物线的解析式和对称轴;(2)P是抛物线对称轴上的一点,求满足P A+PC的值为最小的点P坐标(请在图1中探索);(3)在第四象限的抛物线上是否存在点E,使四边形OEBF是以OB为对角线且面积为12的平行四边形?若存在,请求出点E坐标,若不存在请说明理由(请在图2中探索)【点睛】(1)将点A、B的坐标代入二次函数表达式得:y=a(x﹣1)(x﹣5)=a(x2﹣6x+5),即可求解;(2)连接B、C交对称轴于点P,此时P A+PC的值为最小,即可求解;(3)S四边形OEBF=OB×y E=5×y E=12,则y E=125,将该坐标代入二次函数表达式即可求解.【详解】解:(1)将点A、B的坐标代入二次函数表达式得:y=a(x﹣1)(x﹣5)=a(x2﹣6x+5),则5a=4,解得:a=4 5,抛物线的表达式为:y=45(x2﹣6x+5)=45x2−245x+4,函数的对称轴为:x=3,顶点坐标为(3,−165); (2)连接B 、C 交对称轴于点P ,此时P A +PC 的值为最小,将点B 、C 的坐标代入一次函数表达式:y =kx +b 得:{0=5k +bb =4,解得:{k =−45b =4,直线BC 的表达式为:y =−45x +4, 当x =3时,y =85, 故点P (3,85);(3)存在,理由:四边形OEBF 是以OB 为对角线且面积为12的平行四边形, 则S 四边形OEBF =OB ×|y E |=5×|y E |=12, 点E 在第四象限,故:则y E =−125, 将该坐标代入二次函数表达式得: y =45(x 2﹣6x +5)=−125, 解得:x =2或4, 故点E 的坐标为(2,−125)或(4,−125). 3.(2020·锦江区模拟)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 的图象与x 轴交于A (4,0),B 两点,与y 轴交于点C (0,2),对称轴x =32与x 轴交于点H .(1)求抛物线的函数表达式;(2)直线y =kx +1(k ≠0)与y 轴交于点E ,与抛物线交于点 P ,Q (点P 在y 轴左侧,点Q 在y 轴右侧),连接CP ,CQ ,若△CPQ 的面积为√172,求点P ,Q 的坐标; (3)在(2)的条件下,连接AC 交PQ 于G ,在对称轴上是否存在一点K ,连接GK ,将线段GK 绕点G 逆时针旋转90°,使点K 恰好落在抛物线上,若存在,请直接写出点K 的坐标;若不存在,请说明理由.【点睛】(1)对称轴x =32,则点B (﹣1,0),则抛物线的表达式为:y =a (x +1)(x ﹣4)=a (x 2﹣3x ﹣4),即可求解; (2)△CPQ 的面积=12×CE ×(n ﹣m )=√172,即n ﹣m =√17, 联立抛物线于直线PQ 的表达式并整理得:−12x 2+(32−k )x +1=0…①,m +n =3﹣2k ,mn =﹣2,n ﹣m =√17=√(m +n)2−4mn =√(3−2k)2+8,即可求解; (3)证明△GNK ≌△K ′MG (AAS ),NK =32−27=1714=MG ,NG =137−m ,则点K ′(157−m ,4314),将该坐标代入抛物线表达式,即可求解.【详解】解:(1)对称轴x =32,则点B (﹣1,0),则抛物线的表达式为:y =a (x +1)(x ﹣4)=a (x 2﹣3x ﹣4), 即﹣4a =2,解得:a =−12,故抛物线的表达式为:y =−12x 2+32x +2;(2)设直线PQ 交y 轴于点E (0,1),点P 、Q 横坐标分别为m ,n ,△CPQ 的面积=12×CE ×(n ﹣m )=√172, 即n ﹣m =√17,联立抛物线于直线PQ 的表达式并整理得:−12x 2+(32−k )x +1=0…①,m +n =3﹣2k ,mn =﹣2,n ﹣m =√17=√(m +n)2−4mn =√(2k −3)2+9 解得:k =0(舍去)或3; 故y =3x +1,则−12x 2+32x +2=3x +1,解得:x =−3±√172, 故点P 、Q 的坐标分别为:(−3−√172,−7−3√172)、(−3+√172,−7+3√172);(3)设点K (32,m ),联立PQ 和AC 的表达式并解得:x =27,故点G (27,137),过点G 作y 轴的平行线交过点K ′与x 轴的平行线于点M ,交过点K 与x 轴的平行线于点N ,则△GNK ≌△K ′MG (AAS ), NK =32−27=1714=MG ,NG =137−m ,则点K ′(157−m ,4314)将该坐标代入抛物线表达式并解得:m =9±√2114, 故点K (32,9+√2114)或(32,9−√2114).4.(2020·下陆区模拟)如图,在矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线y =−49x 2+bx +c 经过点A 、C ,与AB 交于点D . (1)求抛物线的函数解析式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ =CP ,连接PQ ,设CP =m ,△CPQ 的面积为S . ①求S 关于m 的函数表达式;②当S 最大时,在抛物线y =−49x 2+bx +c 的对称轴l 上,若存在点F ,使△DFQ 为直角三角形,请直接写出所有符合条件的点F 的坐标;若不存在,请说明理由.【点睛】(1)将A 、C 两点坐标代入抛物线y =−49x 2+bx +c ,即可求得抛物线的解析式; (2)①先用m 表示出QE 的长度,进而求出三角形的面积S 关于m 的函数; ②直接写出满足条件的F 点的坐标即可,注意不要漏写. 【详解】解:(1)将A 、C 两点坐标代入抛物线,得 {c =8−49×36+6b +c =0, 解得:{b =43c =8,∴抛物线的解析式为y =−49x 2+43x +8; (2)①∵OA =8,OC =6, ∴AC =√OA 2+OC 2=10,过点Q 作QE ⊥BC 与E 点,则sin ∠ACB =QE QC =AB AC =35, ∴QE 10−m=35,∴QE =35(10﹣m ),∴S =12•CP •QE =12m ×35(10﹣m )=−310m 2+3m ;②∵S =12•CP •QE =12m ×35(10﹣m )=−310m 2+3m =−310(m ﹣5)2+152, ∴当m =5时,S 取最大值;在抛物线对称轴l 上存在点F ,使△FDQ 为直角三角形, ∵抛物线的解析式为y =−49x 2+43x +8的对称轴为x =32, D 的坐标为(3,8),Q (3,4), 当∠FDQ =90°时,F 1(32,8),当∠FQD =90°时,则F 2(32,4),当∠DFQ =90°时,设F (32,n ),则FD 2+FQ 2=DQ 2,即94+(8﹣n )2+94+(n ﹣4)2=16,解得:n =6±√72, ∴F 3(32,6+√72),F 4(32,6−√72),满足条件的点F 共有四个,坐标分别为 F 1(32,8),F 2(32,4),F 3(32,6+√72),F 4(32,6−√72).5.(2019·临朐二模)如图,在平面直角坐标系中,抛物线y =ax 2+bx +1交y 轴于点A ,交x 轴正半轴于点B(4,0),与过A 点的直线相交于另一点D (3,52),过点D 作DC ⊥x 轴,垂足为C .(1)求抛物线的表达式;(2)点P 在线段OC 上(不与点O ,C 重合),过P 作PN ⊥x 轴,交直线AD 于M ,交抛物线于点N ,NE ⊥AD 于点E ,求NE 的最大值;(3)若P 是x 轴正半轴上的一动点,设OP 的长为t .是否存在t ,使以点M ,C ,D ,N 为顶点的四边形是平行四边形?若存在,求出t 的值;若不存在,请说明理由.【点睛】(1)将点B 、D 的坐标代入二次函数表达式,即可求解; (2)利用NE =MN cos ∠ENP =2√55(−34m 2+114m +1−12m ﹣1),即可求解; (3)设:OP =t ,则点M (t ,12t +1)、N (t ,−34t 2+114t +1),由|MN |=CD ,即可求解. 【详解】解:(1)将点B 、D 的坐标代入二次函数表达式得:{16a +4b +1=09a +3b +1=52,解得:{a =−34b =114, 则函数的表达式为:y =−34x 2+114x +1;(2)将点A (0,1)、D 的坐标代入一次函数表达式:y =mx +n 并解得: 直线AD 的表达式为:y =12x +1,即直线AD 的倾斜角的正切值为12,则tan ∠ENP =12,则cos ∠ENP =2√55,设点N (m ,−34m 2+114m +1)、点M (12m +1),则NE =MN cos ∠ENP =2√55(−34m 2+114m +1−12m ﹣1)=−3√510(m −32)2+27√540, 故当m =32时,则NE 的最大值为27√540;(3)设:OP =t ,则点M (t ,12t +1)、N (t ,−34t 2+114t +1),点M 可能在CD 得左侧也可能在CD 得右侧,由题意得:|MN |=CD , ±52=−34t 2+114t +1−12t ﹣1, 解得:t =9±√2016(舍去负值), 故t =9+√2016时,以点M ,C ,D ,N 为顶点的四边形是平行四边形. 6.(2019·恩施州)如图,抛物线y =ax 2﹣2ax +c 的图象经过点C (0,﹣2),顶点D 的坐标为(1,−83),与x 轴交于A 、B 两点. (1)求抛物线的解析式.(2)连接AC ,E 为直线AC 上一点,当△AOC ∽△AEB 时,求点E 的坐标和AEAB 的值.(3)点F (0,y )是y 轴上一动点,当y 为何值时,√55FC +BF 的值最小.并求出这个最小值. (4)点C 关于x 轴的对称点为H ,当√55FC +BF 取最小值时,在抛物线的对称轴上是否存在点Q ,使△QHF 是直角三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.【点睛】(1)将点C 、D 的坐标代入抛物线表达式,即可求解; (2)当△AOC ∽△AEB 时,S △AOC S △AEB=(AC AB )2=(√54)2=516,求出y E =−85,由△AOC ∽△AEB 得:AO AC=AE AB=√5,即可求解;(3)如图2,连接BF ,过点F 作FG ⊥AC 于G ,当折线段BFG 与BE 重合时,取得最小值,即可求解; (4)①当点Q 为直角顶点时,由Rt △QHM ∽Rt △FQM 得:QM 2=HM •FM ;②当点H 为直角顶点时,点H (0,2),则点Q (1,2);③当点F 为直角顶点时,同理可得:点Q (1,−32).【详解】解:(1)由题可列方程组:{c =−2a −2a +c =−83,解得:{a =23c =−2∴抛物线解析式为:y =23x 2−43x ﹣2;(2)如图1,∠AOC =90°,AC =√5,AB =4,设直线AC 的解析式为:y =kx +b ,则{−k +b =0b =−2,解得:{k =−2b =−2,∴直线AC 的解析式为:y =﹣2x ﹣2; 当△AOC ∽△AEB 时S △AOC S △AEB=(AC AB)2=(√54)2=516,∵S △AOC =1,∴S △AEB =165, ∴12AB ×|y E |=165,AB =4,则y E =−85, 则点E (−15,−85); 由△AOC ∽△AEB 得:AO AC=AE AB=√5∴AE AB=√55; (3)如图2,连接BF ,过点F 作FG ⊥AC 于G ,则FG =CF sin ∠FCG =√55CF ,∴√55CF +BF =GF +BF ≥BE , 当折线段BFG 与BE 重合时,取得最小值, 由(2)可知∠ABE =∠ACO∴BE =AB cos ∠ABE =AB cos ∠ACO =45=8√55,|y |=OB tan ∠ABE =OB tan ∠ACO =3×12=32,∴当y =−32时,即点F (0,−32),√55CF +BF 有最小值为8√55;(4)①当点Q 为直角顶点时(如图3): 由(3)易得F (0,−32),∵C (0,﹣2)∴H (0,2)设Q (1,m ),过点Q 作QM ⊥y 轴于点M .则Rt △QHM ∽Rt △FQM ∴QM 2=HM •FM , ∴12=(2﹣m )(m +32), 解得:m =1±√334, 则点Q (1,1+√334)或(1,1−√334) 当点H 为直角顶点时:点H (0,2),则点Q (1,2); 当点F 为直角顶点时: 同理可得:点Q (1,−32); 综上,点Q 的坐标为:(1,1+√334)或(1,1−√334)或Q (1,2)或Q (1,−32).7.(2019·阜新)如图,抛物线y =ax 2+bx +2交x 轴于点A (﹣3,0)和点B (1,0),交y 轴于点C . (1)求这个抛物线的函数表达式.(2)点D 的坐标为(﹣1,0),点P 为第二象限内抛物线上的一个动点,求四边形ADCP 面积的最大值.(3)点M 为抛物线对称轴上的点,问:在抛物线上是否存在点N ,使△MNO 为等腰直角三角形,且∠MNO 为直角?若存在,请直接写出点N 的坐标;若不存在,请说明理由.【点睛】(1)抛物线的表达式为:y =a (x +3)(x ﹣1)=a (x 2+2x ﹣3)=ax 2+2ax ﹣3a ,即﹣3a =2,即可求解;(2)S 四边形ADCP =S △APO +S △CPO ﹣S △ODC ,即可求解;(3)分点N 在x 轴上方、点N 在x 轴下方两种情况,分别求解.【详解】解:(1)抛物线的表达式为:y =a (x +3)(x ﹣1)=a (x 2+2x ﹣3)=ax 2+2ax ﹣3a ,即﹣3a=2,解得:a=−2 3,故抛物线的表达式为:y=−23x2−43x+2,则点C(0,2),函数的对称轴为:x=﹣1;(2)连接OP,设点P(x,−23x2−43x+2),则S=S四边形ADCP=S△APO+S△CPO﹣S△ODC=12×AO×y P+12×OC×|x P|−12×CO×OD=12×3×(−23x2−43x+2)+12×2×(﹣x)−12×2×1=−x2﹣3x+2,∵﹣1<0,故S有最大值,当x=−32时,S的最大值为174;(3)存在,理由:△MNO为等腰直角三角形,且∠MNO为直角时,点N的位置如下图所示:①当点N在x轴上方时,点N的位置为N1、N2,N1的情况(△M1N1O):设点N1的坐标为(x,−23x2−43x+2),则M1E=x+1,过点N1作x轴的垂线交x轴于点F,过点M1作x轴的平行线交N1F于点E,∵∠FN 1O +∠M 1N 1E =90°,∠M 1N 1E +∠EM 1N 1=90°,∴∠EM 1N 1=∠FN 1O , ∠M 1EN 1=∠N 1FO =90°,ON 1=M 1N 1, ∴△M 1N 1E ≌△N 1OF (AAS ),∴M 1E =N 1F , 即:x +1=−23x 2−43x +2,解得:x =−7±√734(舍去负值), 则点N 1(−7+√734,−3+√734); N 2的情况(△M 2N 2O ): 同理可得:点N 2(−1−√734,−3+√734); ②当点N 在x 轴下方时,点N 的位置为N 3、N 4, 同理可得:点N 3、N 4的坐标分别为:(−7−√734,−3−√734)、(−1+√734,−3−√734);综上,点N 的坐标为:(−7+√734,−3+√734)或(−1−√734,−3+√734)或(−7−√734,−3−√734)或(−1+√734,−3−√734). 8.(2019·通辽)已知,如图,抛物线y =ax 2+bx +c (a ≠0)的顶点为M (1,9),经过抛物线上的两点A (﹣3,﹣7)和B (3,m )的直线交抛物线的对称轴于点C . (1)求抛物线的解析式和直线AB 的解析式.(2)在抛物线上A 、M 两点之间的部分(不包含A 、M 两点),是否存在点D ,使得S △DAC =2S △DCM ?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点P 在抛物线上,点Q 在x 轴上,当以点A ,M ,P ,Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.【点睛】(1)二次函数表达式为:y=a(x﹣1)2+9,即可求解;(2)S△DAC=2S△DCM,则S△DAC=12DH(x C﹣x A)=12(﹣x2+2x+8﹣2x+1)(1+3)=12(9﹣1)(1﹣x)×2,即可求解;(3)分AM是平行四边形的一条边、AM是平行四边形的对角线两种情况,分别求解即可.【详解】解:(1)二次函数表达式为:y=a(x﹣1)2+9,将点A的坐标代入上式并解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+8…①,则点B(3,5),将点A、B的坐标代入一次函数表达式并解得:直线AB的表达式为:y=2x﹣1;(2)存在,理由:二次函数对称轴为:x=1,则点C(1,1),过点D作y轴的平行线交AB于点H,设点D(x,﹣x2+2x+8),点H(x,2x﹣1),∵S△DAC=2S△DCM,则S△DAC=12DH(x C﹣x A)=12(﹣x2+2x+8﹣2x+1)(1+3)=12(9﹣1)(1﹣x)×2,解得:x=﹣1或5(舍去5),故点D(﹣1,5);(3)设点Q(m,0)、点P(s,t),t=﹣s2+2s+8,①当AM是平行四边形的一条边时,点M向左平移4个单位向下平移16个单位得到A,同理,点Q(m,0)向左平移4个单位向下平移16个单位为(m﹣4,﹣16),即为点P,即:m﹣4=s,﹣16=t,而t=﹣s2+2s+8,解得:s=6或﹣4,故点P(6,﹣16)或(﹣4,﹣16);②当AM是平行四边形的对角线时,由中点公式得:m+s=﹣2,t=2,而t=﹣s2+2s+8,解得:s=1±√7,故点P(1+√7,2)或(1−√7,2);综上,点P(6,﹣16)或(﹣4,﹣16)或(1+√7,2)或(1−√7,2).9.(2019·长沙模拟)如图,在平面直角坐标系中,直线y=12x﹣1与抛物线y=−512x2+bx+c相交于A,B两点,点A在x轴上,点B的横坐标为﹣6,点P是抛物线上位于直线AB上方的一动点(不与点A,B重合).(1)求该抛物线的解析式;(2)连接P A,PB,在点P运动的过程中,是否存在某一位置,使得△P AB恰好是一个以点P为直角顶点的等腰直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)过点P作PD∥y轴交直线AB于点D,以PD为直径的⊙E与直线AB相交于点G,求DG的最大值.【点睛】(1)在函数y=12x﹣1中,求出A(2,0)、B(﹣6,﹣4),将A(2,0),B(﹣6,﹣4)代入y=−512x2+bx+c中,即可求解;(2)存在,理由:由A、B点坐标得:则点E(﹣2,﹣2),则AE=√(−2−2)2+(−2)2=2√5,tan∠OAC=AOAE=ACAF,即:2√5=√5AF,则AF=5,可得直线EF的表达式为:y=﹣2x﹣6…②,联立①②即可求解;(3)GD =PD sin ∠DPG =5(−512x 2−76x +4−12x +1),即可求解.【详解】解:(1)在函数y =12x ﹣1中, 当y =0时,x =2,∴A (2,0), 当x =﹣6时,y =﹣4,∴B (﹣6,﹣4), 将A (2,0),B (﹣6,﹣4)代入y =−512x 2+bx +c 中, 得{−512×22+2b +c =0−512×(−6)2−6b +c =−4,解得{b =−76c =4,∴该抛物线得解析式为y =−512x 2−76x +4…①; (2)存在,理由:设直线AB 交y 轴于点C ,则点C (0,﹣1),如图所示,作线段AB 的垂直平分线交x 轴于点F 、交y 轴于点E ,由A 、B 点坐标得:则点E (﹣2,﹣2),则AE =√(−2−2)2+(−2)2=2√5, tan ∠OAC =AO AE =ACAF ,即:2√5=√5AF,则AF =5, 故点F (﹣3,0),由点E (﹣2,﹣2)、F (﹣3,0)得直线EF 的表达式为:y =﹣2x ﹣6…②, 联立①②并解得:x =﹣4或6(舍去x =6), 故点P 的坐标为(﹣4,2), PE =√(−4+2)2+(2+2)2=2√5;(3)如下图所示,PD 为直径,则∠PGD =90°, 即:PG ⊥AC∠OAC =90°﹣∠PDC =∠DPG ,在Rt △AOC 中,sin ∠OAC =15=sin ∠DPG , 则GD =PD sin ∠DPG ,设点P 坐标为(x ,−512x 2−76x +4),则点D (x ,12x ﹣1), GD =PD sin ∠DPG =1√5(−512x 2−76x +4−12x +1), 当x =−b 2a =−2时,GD 最大,最大值为:4√53. 10.(2019·硚口区区模拟)抛物线y =ax 2−12x +54经过点E (5,5),其顶点为C 点.(1)求抛物线的解析式,并直接写出C 点坐标.(2)将直线y =12x 沿y 轴向上平移b 个单位长度交抛物线于A 、B 两点.若∠ACB =90°,求b 的值.(3)是否存在点D (1,a ),使抛物线上任意一点P 到x 轴的距离等于P 点到点D 的距离?若存在,请求点D 的坐标;若不存在,请说明理由.【点睛】(1)将点E 坐标代入解析式,求出系数a ,获得解析式,并求出顶点C 坐标;(2)平移直线y =12x ,获得平移后的解析式y =12x +b ,直线与抛物线交于两点A 、B ,设A (x 1,y 1)、B (x 2,y 2),因为∠ACB =90°,利用A 、B 、C 三点构造相似,得到1−x 1y 2−1=y 1−1x 2−1,将直线与抛物线联立获得方程,根据韦达定理,获得x 1+x 2,x 1•x 2,从而获得关于b 的方程,求出b 值;(3)过点P 作PQ ⊥x 轴,设点P (m ,14m 2−12m +54)因为PQ =PD ,所以PQ 2=PD 2,整理可得(a −2)m 2+2(a −2)m +2(a −2)(a −12)=0,所以当a =2时,存在点D (1,2).【详解】解:(1)将点E (5,5)代入y =ax 2−12x +545=25a −52+54a =14∴y =14x 2−12x +54,顶点(1,1)(2)直线y =12x 平移后获得解析式y =12x +b交抛物线于A (x 1,y 1)、B (x 2,y 2)y 1=12x 1+b ,y 2=12x 2+b联立{y =12x +by =14x 2−12x +54x 2﹣4x +5﹣4b =0∴x 1+x 2=4,x 1•x 2=5﹣4b如图,过点A 、B 作y 轴的平行线与过点C 平行于x 轴的线交于点E ,F可证△ACE ∽△BCF∴1−x 1y 2−1=y 1−1x 2−1∴(x 1+x 2)﹣(x 1•x 2)﹣1=y 1•y 2﹣(y 1+y 2)+1∴b 2﹣5b +94=0,解,b 1=92,b 2=12(舍)∴b =92.(3)设P(m,n),作PQ⊥x轴于Q若PQ=PD,则PQ2=PD2(m﹣1)2+(n﹣a)2=n2整理得m2﹣2m+1+a2﹣2an=0将n=14m2−12m+54代入整理得(a−2)m2+2(a−2)m+2(a−2)(a−12)=0当a=2时,方程成立∴D(1,2)11.(2020·云南模拟)如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的交点A,与x轴的另一个交点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△P AD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△P AD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.【点睛】(1)利用待定系数法即可解决问题;(2)易知直线AD 解析式为y =﹣x +3,设M 点横坐标为m ,则P (t ,﹣t 2+2t +3),M (t ,﹣t +3),可得l =﹣t 2+2t +3﹣(﹣t +3)=﹣t 2+3t =﹣(t −32)2+94,利用二次函数的性质即可解决问题;(3)由S △P AD =12×PM ×(x D ﹣x A )=32PM ,推出PM 的值最大时,△P AD 的面积最大;(4)如图设AD 的中点为K ,设P (t ,﹣t 2+2t +3).由△P AD 是直角三角形,推出PK =12AD ,可得(t −32)2+(﹣t 2+2t +3−32)2=14×18,解方程即可解决问题;【详解】解:(1)把点 B (﹣1,0),C (2,3)代入y =ax 2+bx +3,则有{a −b +3=04a +2b +3=3,解得{a =−1b =2,∴抛物线的解析式为y =﹣x 2+2x +3.(2)在y =﹣x 2+2x +3中,令y =0可得0=﹣x 2+2x +3,解得x =﹣1或x =3,∴D (3,0),且A (0,3),∴直线AD 解析式为y =﹣x +3,设M 点横坐标为m ,则P (t ,﹣t 2+2t +3),M (t ,﹣t +3),∵0<t <3,∴点M 在第一象限内,∴l =﹣t 2+2t +3﹣(﹣t +3)=﹣t 2+3t =﹣(t −32)2+94,∴当t =32时,l 有最大值,l 最大=94;(3)∵S △P AD =12×PM ×(x D ﹣x A )=32PM ,∴PM 的值最大时,△P AD 的面积中点,最大值=32×94=278. ∴t =32时,△P AD 的面积的最大值为278.(4)如图设AD 的中点为K ,设P (t ,﹣t 2+2t +3).∵△P AD 是直角三角形,∴PK =12AD ,∴(t −32)2+(﹣t 2+2t +3−32)2=14×18, 整理得t (t ﹣3)(t 2﹣t ﹣1)=0,解得t =0或3或1±√52, ∵点P 在第一象限,∴t =1+√52. 12.(2019·大渡口区模拟)如图,抛物线y =−35x 2+125x +3与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C ,连结BC .(1)如图1,点N 为抛物线上的一动点,且位于直线BC 上方,连接CN 、BN .点P 是直线AB 上的动点.当△NBC 面积取得最大值时,求出点N 的坐标及△NBC 面积的最大值,并求此时PN +CP 的最小值;(2)如图2,点M 、P 分别为线段BC 和线段OB 上的动点,连接PM 、PC ,是否存在这样的点P ,使△PCM 为等腰三角形,△PMB 为直角三角形同时成立?若存在,求出点P 的坐标;若不存在,请说明理由.【点睛】(1)S△NBC=12HN×OB=52(−35x2+125x+3+35x﹣3)=−32x2+152x,求出N的坐标是(52,214),点C关于直线AB的对称点C'(0,﹣3),PN+PC的最小值为NC′即可求解;(2)利用△BMP~△BOC,即可求解.【详解】解:(1)过点N作y轴的平行线交直线BC与点H,y=−35x2+125x+3,令x=0,则y=3,令y=0,则x=5或﹣1,即点A、B、C的坐标分别为(﹣1,0)、(5,0)、(0,3),则直线BC的表达式为:y=kx+3,将点B坐标代入上式并解得:k=−3 5,则直线BC的表达式为:y=−35x+3,设点N(x,−35x2+125x+3),点H(x,−35x+3),S△NBC=12HN×OB=52(−35x2+125x+3+35x﹣3)=−32x2+152x,∵−32<0,则S△NBC有最大值,当x=52时,△NBC面积最大,最大值为758;此时点N的坐标是(52,214),如图,点C 关于直线AB 的对称点C '(0,﹣3),PN +PC 的最小值NC′=√(214+3)2+(52)2=√11894; (2)存在,∵B (5,0),C (0,3),∴BC =√32+52=√34,①当∠PMB =90°,则∠PMC =90°,△PMC 为等腰直角三角形,MP =MC ,设PM =t ,则CM =t ,MB =√34−t ,∵∠MBP =∠OBC ,∴△BMP ~△BOC ,∴PM OC =BM OB =BP BC ,即t 3=√34−t 5=√34, 解得t =3√348,BP =174, ∴OP =OB −BP =5−174=34,当∠PMB =90°,CM =PM 时,同理可得:点P (3√34−95,0); 此时P 点坐标为(34,0)或(3√34−95,0). 13.(2019·崇安区一模)已知二次函数y =ax 2﹣9ax +18a 的图象与x 轴交于A ,B 两点(A 在B 的左侧),图象的顶点为C ,直线AC 交y 轴于点D .(1)连接BD ,若∠BDO =∠CAB ,求这个二次函数的表达式;(2)是否存在以原点O 为对称中心的矩形CDEF ?若存在,求出这个二次函数的表达式,若不存在,请说明理由.【点睛】(1)利用配方法求出抛物线y =ax 2﹣9ax +18a 的顶点C 的坐标为(92,−94a ).作CM ⊥x 轴于M ,则OM =92,CM =|−94a |.求出A (3,0),B (6,0).再证明△ODA ∽△OBD ,根据相似三角形对应边成比例求出OD =3√2.根据平行线分线段成比例定理得出OD CM =OA AM ,求得CM =3√22,那么|−94a |=3√22,求出a ,即可得到二次函数的解析式; (2)连接OC ,根据矩形的性质得出OC =OD ,那么∠ODC =∠OCD .再证明∠OCD =∠DCM .作AN ⊥OC 于N ,根据角平分线的性质得出AN =AM =32.由sin ∠AON =AN OA =12,得出∠AON =30°,求出CM =OM •tan30°=3√32,那么|−94a |=3√32,求出a ,即可得到二次函数的解析式.【详解】解:(1)∵y =ax 2﹣9ax +18a =a (x −92)2−94a ,∴顶点C (92,−94a ).作CM ⊥x 轴于M ,则OM =92,CM =|−94a |.当y =0时,ax 2﹣9ax +18a =0,解得x 1=3,x 2=6,∴A (3,0),B (6,0).∵∠BDO =∠CAB ,∠CAB =∠DAO ,∴∠DAO =∠BDO .在△ODA 与△OBD 中,{∠DAO =∠BDO ∠AOD =∠DOB =90°,∴△ODA ∽△OBD ,∴OD OB =OA OD ,即OD 6=3OD ,∴OD =3√2.∵CM ∥OD ,∴OD CM =OA AM ,即3√2CM =392−3,∴CM =3√22,∴|−94a |=3√22,∴a =±2√23,∴二次函数的解析式为y =2√23x 2﹣6√2x +12√2或y =−2√23x 2+6√2x ﹣12√2;(2)存在.连接OC ,则OC =OD .∴∠ODC =∠OCD .∵CM ∥OD ,∴∠ODC =∠DCM ,∴∠OCD =∠DCM .作AN ⊥OC 于N ,AN =AM =32.∵sin ∠AON =AN OA =323=12, ∴∠AON =30°,∴CM =OM •tan30°=92×√33=3√32, ∴|−94a |=3√32, ∴a =±2√33, ∴二次函数的解析式为y =2√33x 2﹣6√3x +12√3或y =−2√33x 2+6√3x ﹣12√3.14.(2019·长沙一模)如图,已知直线y =kx ﹣6与抛物线y =ax 2+bx +c 相交于A ,B 两点,且点A (1,﹣4)为抛物线的顶点,点B 在x 轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P ,使△POB 与△POC 全等?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若点Q 是y 轴上一点,且△ABQ 为直角三角形,求点Q 的坐标.【点睛】(1)已知点A 坐标可确定直线AB 的解析式,进一步能求出点B 的坐标.点A 是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B 的坐标,依据待定系数法可解.(2)首先由抛物线的解析式求出点C 的坐标,在△POB 和△POC 中,已知的条件是公共边OP ,若OB与OC 不相等,那么这两个三角形不能构成全等三角形;若OB 等于OC ,那么还要满足的条件为:∠POC =∠POB ,各自去掉一个直角后容易发现,点P 正好在第二象限的角平分线上,联立直线y =﹣x 与抛物线的解析式,直接求交点坐标即可,同时还要注意点P 在第二象限的限定条件.(3)分别以A 、B 、Q 为直角顶点,分类进行讨论.找出相关的相似三角形,依据对应线段成比例进行求解即可.【详解】解:(1)把A (1,﹣4)代入y =kx ﹣6,得k =2,∴y =2x ﹣6,令y =0,解得:x =3,∴B 的坐标是(3,0).∵A 为顶点,∴设抛物线的解析为y =a (x ﹣1)2﹣4,把B (3,0)代入得:4a ﹣4=0,解得a =1,∴y =(x ﹣1)2﹣4=x 2﹣2x ﹣3.(2)存在.∵OB =OC =3,OP =OP ,∴当∠POB =∠POC 时,△POB ≌△POC ,此时PO 平分第二象限,即PO 的解析式为y =﹣x .设P (m ,﹣m ),则﹣m =m 2﹣2m ﹣3,解得m =1−√132(m =1+√132>0,舍),∴P (1−√132,√13−12).(3)①如图,当∠Q 1AB =90°时,△DAQ 1∽△DOB ,∴AD OD =DQ 1DB ,即√56=13√5,∴DQ 1=52, ∴OQ 1=72,即Q 1(0,−72);②如图,当∠Q 2BA =90°时,△BOQ 2∽△DOB ,∴OB OD =OQ 2OB ,即36=OQ 23, ∴OQ 2=32,即Q 2(0,32);③如图,当∠AQ 3B =90°时,作AE ⊥y 轴于E ,则△BOQ 3∽△Q 3EA ,∴OBQ 3E =OQ 3AE ,即34−OQ 3=OQ 31,∴OQ 32﹣4OQ 3+3=0,∴OQ 3=1或3,即Q 3(0,﹣1),Q 4(0,﹣3).综上,Q 点坐标为(0,−72)或(0,32)或(0,﹣1)或(0,﹣3).15.(2019·海南)如图,已知抛物线y =ax 2+bx +5经过A (﹣5,0),B (﹣4,﹣3)两点,与x 轴的另一个交点为C ,顶点为D ,连结CD .(1)求该抛物线的表达式;(2)点P 为该抛物线上一动点(与点B 、C 不重合),设点P 的横坐标为t .①当点P 在直线BC 的下方运动时,求△PBC 的面积的最大值;②该抛物线上是否存在点P ,使得∠PBC =∠BCD ?若存在,求出所有点P 的坐标;若不存在,请说明理由.【点睛】(1)将点A 、B 坐标代入二次函数表达式,即可求解;(2)①S △PBC =12PG (x C ﹣x B ),即可求解;②分点P 在直线BC 下方、上方两种情况,分别求解即可.【详解】解:(1)将点A 、B 坐标代入二次函数表达式得:{25a −5b +5=016a −4b +5=−3,解得:{a =1b =6,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x=﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC=12PG(x C﹣x B)=32(t+1﹣t2﹣6t﹣5)=−32t2−152t﹣6,∵−32<0,∴S△PBC有最大值,当t=−52时,其最大值为278;②设直线BP与CD交于点H,当点P在直线BC下方时,∵∠PBC =∠BCD ,∴点H 在BC 的中垂线上,线段BC 的中点坐标为(−52,−32),过该点与BC 垂直的直线的k 值为﹣1,设BC 中垂线的表达式为:y =﹣x +m ,将点(−52,−32)代入上式并解得:直线BC 中垂线的表达式为:y =﹣x ﹣4…③,同理直线CD 的表达式为:y =2x +2…④,联立③④并解得:x =﹣2,即点H (﹣2,﹣2),同理可得直线BH 的表达式为:y =12x ﹣1…⑤,联立①⑤并解得:x =−32或﹣4(舍去﹣4),故点P (−32,−74);当点P (P ′)在直线BC 上方时,∵∠PBC =∠BCD ,∴BP ′∥CD ,则直线BP ′的表达式为:y =2x +s ,将点B 坐标代入上式并解得:s =5,即直线BP ′的表达式为:y =2x +5…⑥,联立①⑥并解得:x =0或﹣4(舍去﹣4),故点P (0,5);故点P 的坐标为P (−32,−74)或(0,5).16.(2019·山西)综合与探究如图,抛物线y =ax 2+bx +6经过点A (﹣2,0),B (4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为m (1<m <4).连接AC ,BC ,DB ,DC .(1)求抛物线的函数表达式;(2)△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.【点睛】(1)由抛物线交点式表达,即可求解;(2)利用S △BDC =12HD ×OB ,即可求解;(3)分BD 是平行四边形的一条边、BD 是平行四边形的对角线两种情况,分别求解即可.【详解】解:(1)由抛物线交点式表达式得:y =a (x +2)(x ﹣4)=a (x 2﹣2x ﹣8)=ax 2﹣2ax ﹣8a , 即﹣8a =6,解得:a =−34,故抛物线的表达式为:y =−34x 2+32x +6;(2)点C (0,6),将点B 、C 的坐标代入一次函数表达式并解得:直线BC 的表达式为:y =−32x +6,如图所示,过点D 作y 轴的平行线交直线BC 与点H ,设点D (m ,−34m 2+32m +6),则点H (m ,−32m +6)S △BDC =12HD ×OB =2(−34m 2+32m +6+32m ﹣6)=2(−34m 2+3m ),34S △ACO =34×12×6×2=92,即:2(−34m 2+3m )=92,解得:m =1或3(舍去1),故m =3;(3)当m =3时,点D (3,154),①当BD 是平行四边形的一条边时,如图所示:M 、N 分别有三个点,设点N (n ,−34n 2+32n +6)则点N 的纵坐标为绝对值为154,即|−34n 2+32n +6|=154, 解得:n =﹣1或3(舍去)或1±√14,故点N (N ′、N ″)的坐标为(﹣1,154)或(1+√14,−154)或(1−√14,−154), 当点N (﹣1,154)时,由图象可得:点M (0,0),当N ′的坐标为(1+√14,−154),由中点坐标公式得:点M ′(√14,0), 同理可得:点M ″坐标为(−√14,0),故点M 坐标为:(0,0)或(√14,0)或(−√14,0);②当BD 是平行四边形的对角线时,点B 、D 的坐标分别为(4,0)、(3,154) 设点M (m ,0),点N (s ,t ),由中点坐标公式得:{4+3=m +s 154+0=t +0,而t =−34s 2+32s +6, 解得:t =154,s =﹣1,m =8,故点M 坐标为(8,0);故点M 的坐标为:(0,0)或(√14,0)或(−√14,0)或(8,0).17.(2019·眉山)如图1,在平面直角坐标系中,抛物线y =−49x 2+bx +c 经过点A (﹣5,0)和点B (1,0).(1)求抛物线的解析式及顶点D 的坐标;(2)点P是抛物线上A、D之间的一点,过点P作PE⊥x轴于点E,PG⊥y轴,交抛物线于点G,过点G作GF⊥x轴于点F,当矩形PEFG的周长最大时,求点P的横坐标;(3)如图2,连接AD、BD,点M在线段AB上(不与A、B重合),作∠DMN=∠DBA,MN交线段AD于点N,是否存在这样点M,使得△DMN为等腰三角形?若存在,求出AN的长;若不存在,请说明理由.【点睛】(1)抛物线的表达式为:y=−49(x+5)(x﹣1),即可求解;(2)PE=−49m2−169m+209,PG=2(﹣2﹣m)=﹣4﹣2m,矩形PEFG的周长=2(PE+PG),即可求解;(3)分MN=DM、NM=DN、DN=DM,三种情况分别求解.【详解】解:(1)抛物线的表达式为:y=−49(x+5)(x﹣1)=−49x2−169x+209,则点D(﹣2,4);(2)设点P(m,−49m2−169m+209),则PE=−49m2−169m+209,PG=2(﹣2﹣m)=﹣4﹣2m,矩形PEFG的周长=2(PE+PG)=2(−49m2−169m+209−4﹣2m)=−89(m+174)2+252,∵−89<0,故当m=−174时,矩形PEFG周长最大,此时,点P的横坐标为−17 4;(3)∵∠DMN=∠DBA,∠BMD+∠BDM=180°﹣∠ADB,∠NMA+∠DMB=180°﹣∠DMN,∴∠NMA=∠MDB,∴△BDM ∽△AMN ,AN BM =AM BD ,而AB =6,AD =BD =5,①当MN =DM 时,∴△BDM ≌△AMN ,即:AM =BD =5,则AN =MB =1; ②当NM =DN 时,则∠NDM =∠NMD ,∴△AMD ∽△ADB ,∴AD 2=AB ×AM ,即:25=6×AM ,则AM =256, 而AN BM =AM BD ,即AN 6−256=2565,解得:AN =5536;③当DN =DM 时,∵∠DNM >∠DAB ,而∠DAB =∠DMN , ∴∠DNM >∠DMN ,∴DN ≠DM ;故AN =1或5536.。

一次函数综合—线段和差、存在性问题

一次函数综合—线段和差、存在性问题

一次函数的应用—线段和差、存在性问题一、一次函数线段和差最值问题【知识点】1. 最短路径原理【原理1】作法作图原理在直线l 上求一点P,使PA+PB 值最小。

连AB,与l 交点即为P.两点之间线段最短.PA+PB 最小值为AB.【原理2】作法作图原理在直线l 上求一点P,使PA+PB 值最小.作 B 关于l 的对称点B'连A B',与l 交点即为P.两点之间线段最短.PA+PB 最小值为A B'.【原理3】作法作图原理在直线l 上求一点P,使作直线AB,与直线l的交点即为P.三角形任意两边之差小于第三边.≤AB .PBPA-(1)求线段和最小时动点坐标或直线解析式;(2)求三角形周长最小值;(3)求线段差最大时点的坐标或直线解析式。

3. 口诀:“和小异,差大同”(一)一次函数线段和最小值问题【例题讲解】★★☆例题1.在平面直角坐标系xOy中,y轴上有一点P,它到点(4,3)A,(3,1)B 的距离之和最小,则点P的坐标是()A.(0,0)B.4(0,)7C.5(0,)7D.4(0,)5的值最大 .【原理4】作法作图原理在直线l 上求一点P,使的值最大 .作B 关于l 的对称点B'作直线A B',与l交点即为P.三角形任意两边之差小于第三边.≤A B' .PB PA-PB PA-PB PA-★★☆练习1.如图,在平面直角坐标系中,已知点(2,3)B-,在x轴上存在点P到A,B两点的A,点(2,1)距离之和最小,则P点的坐标是.★★☆练习2.如图,直线34120+-=与x轴、y轴分别交于点B、A两点,以线段AB为边在第一象限x y内作正方形ABCD.若点P为x轴上的一个动点,求当PC PD+的长最小时点P的坐标.★★☆例题2.在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,3∆的周长最小时,求点E OB=,D为边OB的中点,若E为x轴上的一个动点,当CDEOA=,4的坐标()A .(3,0)-B .(1,0)C .(0,0)D .(3,0)★★☆练习1.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,连接AC 、BC ,当ABC ∆的周长最小值时,ABC ∆的面积为 .★★☆练习2.如图,在平面直角坐标系中,直线122y x =+与x 轴、y 轴分别交于A 、B 两点,以AB 为边 在第二象限内作正方形ABCD .(1)求点A 、B 的坐标,并求边AB 的长;(2)求点C 和点D 的坐标;(3)在x 轴上找一点M ,使MDB ∆的周长最小,请求出M 点的坐标,并直接写出MDB ∆的周长最小值.(二)一次函数线段差最大值问题【例题讲解】★★☆例题1.已知,如图点(1,1)A,(2,3)B-,点P为x轴上一点,当||PA PB-最大时,点P 的坐标为()A.1(,0)2B.5(,0)4C.1(,0)2-D.(1,0)★★☆练习1.平面直角坐标系中,已知(4,3)A、(2,1)B,x轴上有一点P,要使PA PB-最大,则P点坐标为★★☆练习2.如图,在平面直角坐标系中,点A的坐标为(0,4),点B的坐标为(6,0),点P在一次函数1322y x =+的图象上运动,则PB PA -的最大值为( )A .2B .233C .4D .143【题型知识点总结】一次函数最短路径问题注意事项:1. 根据“和小异,差大同”判断是否需要作对称;2. 作对称时注意要选取动点运动的直线为对称轴作某一定点的对称点。

二次函数与几何的动点及最值、存在性问题(解析版)-2024中考数学

二次函数与几何的动点及最值、存在性问题(解析版)-2024中考数学

二次函数与几何的动点及最值、存在性问题目录题型01平行y轴动线段最大值与最小值问题题型02抛物线上的点到某一直线的距离问题题型03已知点关于直线对称点问题题型04特殊角度存在性问题题型05将军饮马模型解决存在性问题题型06二次函数中面积存在性问题题型07二次函数中等腰三角形存在性问题题型08二次函数中直角三角形存在性问题题型09二次函数中全等三角形存在性问题题型10二次函数中相似三角形存在性问题题型11二次函数中平行四边形存在性问题题型12二次函数中矩形存在性问题题型13二次函数中菱形存在性问题题型14二次函数中正方形存在性问题二次函数常见存在性问题:(1)等线段问题:将动点坐标用函数解析式以“一母式”的结构表示出来,再利用点到点或点到直线的距离公式列出方程或方程组,然后解出参数的值,即可以将线段表示出来.【说明】在平面直角坐标系中该点在某一函数图像上,设该点的横坐标为m,则可用含m字母的函数解析式来表示该点的纵坐标,简称“设横表纵”或“一母式”.(2)平行y轴动线段最大值与最小值问题:将动点坐标用函数解析式以“一母式”的结构表示出来,再用纵坐标的较大值减去较小值,再利用二次函数的性质求出动线段的最大值或最小值.(3)求已知点关于直线对称点问题:先求出直线解析式,再利用两直线垂直的性质(两直线垂直,斜率之积等于-1)求出已知点所在直线的斜率及解析式,最后用中点坐标公式即可求出对称点的坐标.(4)“抛物线上是否存在一点,使其到某一直线的距离为最值”的问题:常常利用直线方程与二次函数解析式联立方程组,求出切点坐标,运用点到直线的距离公式进行求解.(5)二次函数与一次函数、特殊图形、旋转及特殊角度综合:图形或一次函数与x 轴的角度特殊化,利用与角度有关知识点求解函数图像上的点,结合动点的活动范围,求已知点与动点是否构成新的特殊图形.2.二次函数与三角形综合(1)将军饮马问题:本考点主要分为两类:①在定直线上是否存在点到两定点的距离之和最小;②三角形周长最小或最大的问题,主要运用的就是二次函数具有对称性.(2)不规则三角形面积最大或最小值问题:利用割补法将不规则三角形分割成两个或以上的三角形或四边形,在利用“一母式”将动点坐标表示出来,作线段差,用线段差来表示三角形的底或高,用面积公式求出各部分面积,各部分面积之和就是所求三角形的面积.将三角形的面积用二次函数的结构表示出来,再利用二次函数的性质求出面积的最值及动点坐标.(3)与等腰三角形、直角三角形的综合问题:对于此类问题,我们可以利用两圆一线或两线一圆的基本模型来进行计算.问题分情况找点画图解法等腰三角形已知点A ,B 和直线l ,在l 上求点P ,使△PAB 为等腰三角形以AB为腰分别以点A ,B 为圆心,以AB 长为半径画圆,与已知直线的交点P 1,P 2,P 4,P 5即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB =AP ;②AB =BP ;③BP =AP 列方程解出坐标以AB 为底作线段AB 的垂直平分线,与已知直线的交点P 3即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB =AP ;②AB =BP ;③BP =AP 列方程解出坐标问题分情况找点画图解法直角三角形已知点A ,B 和直线l ,在l 上求点P ,使△PAB 为直角三角形以AB为直角边分别过点A ,B 作AB 的垂线,与已知直线的交点P 1,P 4即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB 2=BP 2+AP 2;②BP 2=AB 2+AP 2;③AP 2=AB 2+BP 2列方程解出坐标以AB 为斜边以AB 的中点Q 为圆心,QA 为半径作圆,与已知直线的交点P 2,P 3即为所求注:其他常见解题思路有:①作垂直,构造“三垂直”模型,利用相似列比例关系得方程求解;②平移垂线法:若以AB 为直角边,且AB 的一条垂线的解析式易求(通常为过原点O 与AB 垂直的直线),可将这条直线分别平移至过点A 或点B 得到相应解析式,再联立方程求解.(4)与全等三角形、相似三角形的综合问题:在没有指定对应点的情况下,理论上有六种情况需要讨论,但在实际情况中,通常不会超过四种,要注意边角关系,积极分类讨论来进行计算.情况一探究三角形相似的存在性问题的一般思路:解答三角形相似的存在性问题时,要具备分类讨论思想及数形结合思想,要先找出三角形相似的分类标准,一般涉及动态问题要以静制动,动中求静,具体如下:①假设结论成立,分情况讨论.探究三角形相似时,往往没有明确指出两个三角形的对应点(尤其是以文字形式出现求证两个三角形相似的题目),或者涉及动点问题,因动点问题中点的位置的不确定,此时应考虑不同的对应关系,分情况讨论;②确定分类标准.在分类时,先要找出分类的标准,看两个相似三角形是否有对应相等的角,若有,找出对应相等的角后,再根据其他角进行分类讨论来确定相似三角形成立的条件;若没有,则分别按三种角对应来分类讨论;③建立关系式,并计算.由相似三角形列出相应的比例式,将比例式中的线段用所设点的坐标表示出来(其长度多借助勾股定理运算),整理可得一元一次方程或者一元二次方程,解方程可得字母的值,再通过计算得出相应的点的坐标.情况二探究全等三角形的存在性问题的思路与探究相似三角形的存在性问题类似,但是除了要找角相等外,还至少要找一组对应边相等.3.二次函数与四边形的综合问题特殊四边形的探究问题解题步骤如下:①先假设结论成立;②设出点坐标,求边长;③建立关系式,并计算.若四边形的四个顶点位置已确定,则直接利用四边形边的性质进行计算;若四边形的四个顶点位置不确定,需分情况讨论:a.探究平行四边形:①以已知边为平行四边形的某条边,画出所有的符合条件的图形后,利用平行四边形的对边相等进行计算;②以已知边为平行四边形的对角线,画出所有的符合条件的图形后,利用平行四边形对角线互相平分的性质进行计算;③若平行四边形的各顶点位置不确定,需分情况讨论,常以已知的一边作为一边或对角线分情况讨论.b.探究菱形:①已知三个定点去求未知点坐标;②已知两个定点去求未知点坐标,一般会用到菱形的对角线互相垂直平分、四边相等的性质列关系式.c.探究正方形:利用正方形对角线互相垂直平分且相等的性质进行计算,一般是分别计算出两条对角线的长度,令其相等,得到方程再求解.d.探究矩形:利用矩形对边相等、对角线相等列等量关系式求解;或根据邻边垂直,利用勾股定理列关系式求解.题型01平行y轴动线段最大值与最小值问题1(2023·广东东莞·一模)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,OA=OC =3,顶点为D.(1)求此函数的关系式;(2)在AC 下方的抛物线上有一点N ,过点N 作直线l ∥y 轴,交AC 与点M ,当点N 坐标为多少时,线段MN 的长度最大?最大是多少?(3)在对称轴上有一点K ,在抛物线上有一点L ,若使A ,B ,K ,L 为顶点形成平行四边形,求出K ,L 点的坐标.(4)在y 轴上是否存在一点E ,使△ADE 为直角三角形,若存在,直接写出点E 的坐标;若不存在,说明理由.【答案】(1)y =x 2+2x -3(2)当N 的坐标为-32,-154 ,MN 有最大值94(3)K -1,4 ,L -1,-4 或K -1,12 ,L -5,12 或K -1,12 ,L 3,12(4)存在,点E 的坐标为0,32 或0,-72或0,-1 或0,-3【分析】(1)由OA =OC =3求得A -3,0 ,C 0,-3 ,再分别代入抛物线解析式y =x 2+bx +c ,得到以b ,c 为未知数的二元一次方程组,求出b ,c 的值即可;(2)求出直线AC 的解析式,再设出M 、N 的坐标,把MN 表示成二次函数,配方即可;(3)根据平行四边形的性质,以AB 为边,以AB 为对角线,分类讨论即可;(4)设出E 的坐标,分别表示出△ADE 的平分,再分每一条都可能为斜边,分类讨论即可.【详解】(1)∵抛物线y =x 2+bx +c 经过点A ,点C ,且OA =OC =3,∴A -3,0 ,C 0,-3 ,∴将其分别代入抛物线解析式,得c =-39-3b +c =0,解得b =2c =-3 .故此抛物线的函数表达式为:y =x 2+2x -3;(2)设直线AC 的解析式为y =kx +t ,将A -3,0 ,C 0,-3 代入,得t =-3-3k +t =0 ,解得k =-1t =-3 ,∴直线AC 的解析式为y =-x -3,设N 的坐标为n ,n 2+2n -3 ,则M n ,-n -3 ,∴MN =-n -3-n 2+2n -3 =-n 2-3n =-n +32 +94,∵-1<0,∴当n =-32时,MN 有最大值,为94,把n =-32代入抛物线得,N 的坐标为-32,-154,当N 的坐标为-32,-154 ,MN 有最大值94;(3)①当以AB 为对角线时,根据平行四边形对角线互相平分,∴KL 必过-1,0 ,∴L 必在抛物线上的顶点D 处,∵y =x 2+2x -3=x +1 2-4,∴K -1,4 ,L -1,-4②当以AB 为边时,AB =KL =4,∵K 在对称轴上x =-1,∴L 的横坐标为3或-5,代入抛物线得L -5,12 或L 3,12 ,此时K 都为-1,12 ,综上,K -1,4 ,L -1,-4 或K -1,12 ,L -5,12 或K -1,12 ,L 3,12 ;(4)存在,由y =x 2+2x -3=x +1 2-4,得抛物线顶点坐标为D -1,-4 ∵A -3,0 ,∴AD 2=-3+1 2+0+4 2=20,设E 0,m ,则AE 2=-3-0 2+0-m 2=9+m 2,DE 2=-1-0 2+-4-m 2=17+m 2+8m ,①AE 为斜边,由AE 2=AD 2+DE 2得:9+m 2=20+17+m 2+8m ,解得:m =-72,②DE 为斜边,由DE 2=AD 2+AE 2得:9+m 2+20=17+m 2+8m ,解得:m =32,③AD 为斜边,由AD 2=ED 2+AE 2得:20=17+m 2+8m +9+m 2,解得:m =-1或-3,∴点E 的坐标为0,32 或0,-72或0,-1 或0,-3 .【点睛】本题主要考查待定系数法求二次函数解析式,二次函数图象与性质,平行四边形的判定与性质以及勾股定理等知识,会运用待定系数法列方程组,两点间距离公式求MN 的长,由平行四边形的性质判定边相等,运用勾股定理列方程.2(2023·河南南阳·统考一模)如图,抛物线与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴的交于点C 0,-4 ,点P 是第三象限内抛物线上的一个动点,设点P 的横坐标为m ,过点P 作直线PD ⊥x 轴于点D ,作直线AC 交PD 于点E .已知抛物线的顶点P 坐标为-3,-254.(1)求抛物线的解析式;(2)求点A 、B 的坐标和直线AC 的解析式;(3)求当线段CP =CE 时m 的值;(4)连接BC ,过点P 作直线l ∥BC 交y 轴于点F ,试探究:在点P 运动过程中是否存在m ,使得CE =DF ,若存在直接写出m 的值;若不存在,请说明理由.【答案】(1)y =14x 2+32x -4(2)A -8,0 ,B 2,0 ,y =-12x -4(3)-4(4)存在,m =2-25或m =-4【分析】(1)运用待定系数法即可求得抛物线的解析式;(2)令y =0,解方程即可求得点A 、B 的坐标,再运用待定系数法即可求得直线AC 的解析式;(3)过点C 作CF ⊥PE 于点F ,根据等腰三角形的性质可得点F 是PE 的中点,设P m ,14m 2+32m -4 ,则E m ,-12m -4 ,可得F m ,18m 2+12m -4 ,再由点F 与点C 的纵坐标相同建立方程求解即可;(4)过C 作CH ⊥PD 于H ,设P m ,14m 2+32m -4 ,由PF ∥BC ,可得直线PF 解析式为y =2x +14m 2-12m -4,进而可得OF =14m 2-12m -4 ,再证得Rt △CHE ≅Rt △DOF HL ,得出∠HCE =∠FDO ,进而推出∠FDO =∠CAO ,即tan ∠FDO =tan ∠CAO ,据此建立方程求解即可.【详解】(1)解:∵抛物线的顶点坐标为-3,-254∴设抛物线的解析式为y =a x +3 2-254,把点C 0,-4 代入,得:-4=9a -254,解得:a =14,∴y =14x +3 2-254=14x 2+32x -4,∴该抛物线的解析式为y =14x 2+32x -4.(2)解:令y =0,得14x 2+32x -4=0,解得:x 1=-8,x 2=2,∴A -8,0 ,B 2,0 ,,设直线AC 的解析式为y =kx +b ,则-8k +b =0b =-4 ,解得:k =-12b =-4 ,∴直线AC 的解析式为y =-12x -4.(3)解:如图,过点C 作CF ⊥PE 于点F ,∵CP =CE ,∴EF =PF ,即点F 是PE 的中点,设P m ,14m 2+32m -4 ,则E m ,-12m -4 ,∴F m ,18m 2+12m -4 ,∵PE ∥y 轴,CF ⊥PE ,∴CF ∥x 轴,∴18m 2+12m -4=-4,解得:m =-4或m =0(不符合题意,舍去),∴m =-4.(4)解:存在m ,使得CE =DF ,理由如下:如图:过C 作CH ⊥PD 于H ,设P m,14m2+32m-4,由B2,0,C0,-4,由待定系数法可得直线BC解析式为y=2x-4,根据PF∥BC,设直线PF解析式为y=2x+c,将P m,14m2+32m-4代入得:1 4m2+32m-4=2m+c,∴c=14m2-12m-4,∴直线PF解析式为y=2x+14m2-12m-4,令x=0得y=14m2-12m-4,∴F0,14m2-12m-4,∴OF=14m2-12m-4,∵∠CHD=∠PDO=∠COD=90°,∴四边形CODH是矩形,∴CH=OD,∵CE=DF,∴Rt△CHE≅Rt△DOF HL,∴∠HCE=∠FDO,∵∠HCE=∠CAO,∴∠FDO=∠CAO,∴tan∠FDO=tan∠CAO,∴OF OD =OCOA,即14m2-12m-4-m=48=12,∴1 4m2-12m-4=-12m或14m2-12m-4=12m,解得:m=-4或m=4或m=2-25或m=2+25,∵P在第三象限,∴m=2-25或m=-4.【点睛】本题属于二次函数综合题,主要考查了待定系数法求函数解析式、二次函数综合应用、等腰三角形性质、矩形判定及性质、相似三角形判定及性质、解直角三角形等知识点,解题的关键是用含m的代数式表示相关点坐标和相关线段的长度.3(2023·山东聊城·统考三模)抛物线y=-x2+bx+c与x轴交于点A3,0,与y轴交于点C0,3,点P 为抛物线上的动点.(2)若P 为直线AC 上方抛物线上的动点,作PH ∥x 轴交直线AC 于点H ,求PH 的最大值;(3)点N 为抛物线对称轴上的动点,是否存在点N ,使直线AC 垂直平分线段PN ?若存在,请直接写出点N 的纵坐标;若不存在,请说明理由.【答案】(1)b =2,c =3(2)PH 取得最大值为94(3)存在,2-2或2+2【分析】(1)将坐标代入解析式,构建方程求解;(2)设PH 交y 轴于点M ,P m ,-m 2+2m +3 ,则PM =m ;待定系数法确定直线AC 的解析式为y =-x +3,从而确定PH =m -m 2-2m =-m 2+3m =-m -32 2+94,解得PH 最大值为94;(3)如图,设PN 与AC 交于点G ,可设直线PN 的解析式为y =x +p ,设点N (1,n ),求得y =x +(n -1);联立y =-x +3y =x +(n -1) ,解得x =-n 2+2y =n 2+1,所以点P 的横坐标为2×-n 2+2 -1=-n +3,纵坐标为2×n2+1 -n =2,由二次函数解析式构建方程-(-n +3)2+2(-n +3)+3=2,解得n =2±2;【详解】(1)∵抛物线y =-x 2+bx +c 与x 轴交于点A 3,0 ,与y 轴交于点C 0,3 ,∴-9+3b +c =0c =3,解得:b =2c =3 ,∴b =2,c =3;(2)设PH 交y 轴于点M ,P m ,-m 2+2m +3 ,∴PM =m ,∵PH ∥x 轴,∴点H 的纵坐标为-m 2+2m +3,设直线AC 的解析式为y =kx +n ,∴3k +n =0n =3 ,解得:k =-1n =3 ,∴直线AC 的解析式为y =-x +3.∴-m 2+2m +3=-x +3,∴x =m 2-2m ,∴H m 2-2m ,-m 2+2m +3 ,∴PH =m -m 2-2m =-m 2+3m =-m -322+94,∴当m =32时,PH 取得最大值为94(3)存在点N ,使直线AC 垂直平分线段PN ,点N 的纵坐标为2-2或2+2如图,设PN 与AC 交于点G ,∵AC 垂直平分PN ,直线AC 的解析式为y =-x +3∴可设直线PN 的解析式为y =x +p 设点N (1,n ),则n =1+p ∴p =n -1,∴y =x +(n -1)联立y =-x +3y =x +(n -1) ,解得x =-n 2+2y =n 2+1∴点P 的横坐标为2×-n 2+2 -1=-n +3,纵坐标为2×n 2+1 -n =2∴-(-n +3)2+2(-n +3)+3=2,解得n =2±2∴点N 的纵坐标为2-2或2+2.【点睛】本题考查利用二次函数解析式及点坐标求待定参数、待定系数法确定函数解析式、二次函数极值及其它二次函数综合问题,利用直线间的位置关系、点线间的位置关系,融合方程的知识求解坐标是解题的关键.题型02抛物线上的点到某一直线的距离问题1(2023·广东梅州·统考二模)探究求新:已知抛物线G 1:y =14x 2+3x -2,将抛物线G 1平移可得到抛物线G 2:y =14x 2.(1)求抛物线G 1平移得到抛物线G 2的平移路径;(2)设T 0,t ,直线l :y =-t ,是否存在这样的t ,使得抛物线G 2上任意一点到T 的距离等于到直线l 的距离?若存在,求出t 的值;若不存在,试说明理由;(3)设H 0,1 ,Q 1,8 ,M 为抛物线G 2上一动点,试求QM +MH 的最小值.参考公式:若点M x 1,y 1 ,N x 2,y 2 为平面上两点,则有MN =x 1-x 22+y 1-y 2 2.【答案】(1)将G 1向左平移-6个单位,向上平移11个单位(2)存在,1(3)9【分析】(1)设G 1向左平移a 个单位,向上平移b 个单位得到函数G 2,列方程组即可求解;(2)设P x 0,x 204为抛物线G 2上的一点,根据题意列方程即可;(3)点H 坐标与(2)中t =1时的T 点重合,过点M 作MA ⊥l ,垂足为A ,如图所示,则有MH =MA ,当且仅当Q ,M ,A 三点共线时QM +MA 取得最小值.【详解】(1).解:设G 1向左平移a 个单位,向上平移b 个单位得到函数G 2,由平移法则可知14(x +a )2+3(x +a )-2+b =14x 2,整理可得14x 2+3+12a x +14a 2+3a -2+b =14x 2,可得方程组3+12a =014a 2+3a -2+b =0,解得a =-6b =11 ;∴平移路径为将G 1向左平移-6个单位,向上平移11个单位;(2)解:存在这样的t ,且t =1时满足条件,设P x 0,x 204为抛物线G 2上的一点,则点P 到直线l 的距离为x 204+t ,点P 到点T 距离为(x 0-0)2+x 204-t2,联立可得:x 204+t =(x 0-0)2+x 204-t2,两边同时平方合并同类项后可得x 20-x 20t =0解得:t =1;(3)解:点H 坐标与(2)中t =1时的T 点重合,作直线l :y =-1,过点M 作MA ⊥直线l ,垂足为A ,如图所示,则有MH =MA ,此时QM +MH =QM +MA ,当且仅当Q ,M ,A 三点共线时QM +MA 取得最小值即QM +MA =QA =8-(-1)=9∴QM +MH 的最小值为9;【点睛】本题考查二次函数综合题,涉及到线段最小值、平移性质等,灵活运用所学知识是关键.2(2023·湖北宜昌·统考一模)如图,已知:点P 是直线l :y =x -2上的一动点,其横坐标为m (m 是常数),点M 是抛物线C :y =x 2+2mx -2m +2的顶点.(1)求点M 的坐标;(用含m 的式子表示)(2)当点P 在直线l 运动时,抛物线C 始终经过一个定点N ,求点N 的坐标,并判断点N 是否是点M 的最高位置?(3)当点P 在直线l 运动时,点M 也随之运动,此时直线l 与抛物线C 有两个交点A ,B (A ,B 可以重合),A ,B 两点到y 轴的距离之和为d .①求m 的取值范围;②求d 的最小值.【答案】(1)M -m ,-m 2-2m +2(2)N (1,3),点N 是点M 的最高位置(3)①m ≤-52或m ≥32;②d 取得最小值为2【分析】(1)将抛物线解析式写成顶点式即可求解;(2)根据解析式含有m 项的系数为0,得出当x =1时,y =3,即N (1,3),根据二次函数的性质得出-m 2-2m +2=-m +1 2+3的最大值为3,即可得出点N 是点M 的最高位置;(3)①根据直线与抛物线有交点,联立方程,根据一元二次方程根的判别式大于等于0,求得m 的范围,即可求解;②设A ,B 的坐标分别为x 1,y 1 ,x 2,y 2 ,其中x 1<x 2,由①可知x 1,x 2是方程x 2+2mx -x -2m +4=0的两根,根据x 1+x 2=-2m +1,分情况讨论,求得d 是m 的一次函数,进而根据一次函数的性质即可求解.【详解】(1)解:y =x 2+2mx -2m +2=x +m 2-m 2-2m +2,∴顶点M -m ,-m 2-2m +2 ,(2)解:∵y =x 2+2mx -2m +2=x 2+2+2m x -1 ,∴当x =1时,y =3,抛物线C 始终经过一个定点1,3 ,即N (1,3);∵M -m ,-m 2-2m +2 ,-m 2-2m +2=-m +1 2+3,∴M 的纵坐标最大值为3,∴点N 是点M 的最高位置;(3)解:①联立y =x -2y =x 2+2mx -2m +2 ,得x 2+2mx -x -2m +4=0,∵直线l 与抛物线C 有两个交点A ,B (A ,B 可以重合),∴Δ=b 2-4ac =2m -1 2-4-2m +4 ,=4m 2+4m -15≥0,∵4m 2+4m -15=0,解得m 1=-52,m 2=32,∴当4m 2+4m -15≥0时,m ≤-52或m ≥32,②设A ,B 的坐标分别为x 1,y 1 ,x 2,y 2 ,其中x 1<x 2,由①可知x 1,x 2是方程x 2+2mx -x -2m +4=0的两根,∴x1+x 2=-2m +1,当m =-3时,如图所示,y A =0,当-3≤m ≤-52时,y 1≥0,y 2≥0,则d =x 1+x 2 =-2m +1 ,∵-2<0,∴当m =-52时,d 取得最小值为-2×-52 +1=5+1=6,当m ≥32时,d =-x 1+x 2 =--2m +1 =2m -1,∴当m =32时,d 取得最小值为2×32-1=2,综上所述,d 取得最小值为2.【点睛】本题考查了二次函数的性质,一元二次方程与二次函数的关系,熟练掌握二次函数的性质是解题的关键.3(2023·云南楚雄·统考一模)抛物线y =x 2-2x -3交x 轴于A ,B 两点(A 在B 的左边),C 是第一象限抛物线上一点,直线AC 交y 轴于点P .(1)直接写出A ,B 两点的坐标;(2)如图①,当OP =OA 时,在抛物线上存在点D (异于点B ),使B ,D 两点到AC 的距离相等,求出所有满足条件的点D 的横坐标;(3)如图②,直线BP 交抛物线于另一点E ,连接CE 交y 轴于点F ,点C 的横坐标为m ,求FP OP 的值(用含m 的式子表示).【答案】(1)A (-1,0),B (3,0)(2)0或3-41或3+41(3)13m 【分析】(1)令y =0,解方程可得结论;(2)分两种情形:①若点D 在AC 的下方时,过点B 作AC 的平行线与抛物线交点即为D 1.②若点D 在AC 的上方时,点D 1关于点P 的对称点G (0,5),过点G 作AC 的平行线交抛物线于点D 2,D 3,D 2,D 3符合条件.构建方程组分别求解即可;(3)设E 点的横坐标为n ,过点P 的直线的解析式为y =kx +b ,由y =kx +b y =x 2-2x -3 ,可得x 2-(2+k )x -3-b =0,设x 1,x 2是方程x 2-(2+k )x -3-b =0的两根,则x 1x 2=-3-b ,推出x A ⋅x C =x B ⋅x E =-3-b 可得n =-1-b 3,设直线CE 的解析式为y =px +q ,同法可得mn =-3-q 推出q =-mn -3,推出q =-(3+b )-1-b 3 -3=13b 2+2b ,推出OF =13b 2+b ,可得结论.【详解】(1)解:令y =0,得x 2-2x -3=0,解得:x =3或-1,∴A (-1,0),B (3,0);(2)∵OP =OA =1,∴P (0,1),∴直线AC 的解析式为y =x +1.①若点D 在AC 的下方时,过点B 作AC 的平行线与抛物线交点即为D 1.∵B (3,0),BD 1∥AC ,∴直线BD 1的解析式为y =x -3,由y =x -3y =x 2-2x -3,解得x =3y =0 或x =0y =-3 ,∴D 1(0,-3),∴D 1的横坐标为0.②若点D 在AC 的上方时,点D 1关于点P 的对称点G (0,5),过点G 作AC 的平行线l 交抛物线于点D 2,D 3,D 2,D 3符合条件.直线l 的解析式为y =x +5,由y =x +5y =x 2-2x -3 ,可得x 2-3x -8=0,解得:x =3-412或3+412,∴D 2,D 3的横坐标为3-412,3+412,综上所述,满足条件的点D 的横坐标为0,3-412,3+412.(3)设E 点的横坐标为n ,过点P 的直线的解析式为y =kx +b ,由y =kx +b y =x 2-2x -3,可得x 2-(2+k )x -3-b =0,设x 1,x 2是方程x 2-(2+k )x -3-b =0的两根,则x 1x 2=-3-b ,∴x A ⋅x C =x B ⋅x E =-3-b∵x A =-1,∴x C =3+b ,∴m =3+b ,∵x B =3,∴x E =-1-b 3,∴n =-1-b 3,设直线CE 的解析式为y =px +q ,同法可得mn =-3-q∴q =-mn -3,∴q =-(3+b )-1-b 3 -3=13b 2+2b ,∴OF =13b 2+2b ,∴FP OP=13b +1=13(m -3)+1=13m .【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,一元二次方程的根与系数的关系等知识,解题的关键是学会构建一次函数,构建方程组确定交点坐标,学会利用参数解决问题,属于中考压轴题.题型03已知点关于直线对称点问题1(2023·辽宁阜新·统考中考真题)如图,在平面直角坐标系中,二次函数y =-x 2+bx -c 的图象与x 轴交于点A (-3,0)和点B (1,0),与y 轴交于点C .(1)求这个二次函数的表达式.(2)如图1,二次函数图象的对称轴与直线AC :y =x +3交于点D ,若点M 是直线AC 上方抛物线上的一个动点,求△MCD 面积的最大值.(3)如图2,点P 是直线AC 上的一个动点,过点P 的直线l 与BC 平行,则在直线l 上是否存在点Q ,使点B 与点P 关于直线CQ 对称?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)y =-x 2-2x +3;(2)S △MCD 最大=98;(3)Q 1-5,-5 或1+5,5 .【分析】(1)根据抛物线的交点式直接得出结果;(2)作MQ ⊥AC 于Q ,作ME ⊥AB 于F ,交AC 于E ,先求出抛物线的对称轴,进而求得C ,D 坐标及CD 的长,从而得出过M 的直线y =x +m 与抛物线相切时,△MCD 的面积最大,根据x +m =-x 2-2x +3的△=0求得m 的值,进而求得M 的坐标,进一步求得CD 上的高MQ 的值,进一步得出结果;(3)分两种情形:当点P 在线段AC 上时,连接BP ,交CQ 于R ,设P (t ,t +3),根据CP =CB 求得t 的值,可推出四边形BCPQ 是平行四边形,进而求得Q 点坐标;当点P 在AC 的延长线上时,同样方法得出结果.【详解】(1)解:由题意得,y =-(x +3)(x -1)=-x 2-2x +3;(2)解:如图1,作MQ ⊥AC 于Q ,作ME ⊥AB 于F ,交AC 于E ,∵OA =OC =3,∠AOC =90°,∴∠CAO =∠ACO =45°,∴∠MEQ =∠AEF =90°-∠CAO =45°,抛物线的对称轴是直线:x =-3+12=-1,∴y =x +3=-1+3=2,∴D (1,2),∵C (0,3),∴CD =2,故只需△MCD 的边CD 上的高最大时,△MCD 的面积最大,设过点M 与AC 平行的直线的解析式为:y =x +m ,当直线y =x +m 与抛物线相切时,△MCD 的面积最大,由x +m =-x 2-2x +3得,x 2+3x +(m -3)=0,由△=0得,32-4(m -3)=0得,m -3=94,∴x 2+3x +94=0,∴x 1=x 2=-32,∴y =--32 2-2×-32 +3=154,y =x +3=-32+3=32,∴ME =154-32=94,∴MQ =ME ⋅sin ∠MEQ =ME ⋅sin45°=94×22=928,∴S △MCD 最大=12×2×928=98;(3)解:如图2,当点P 在线段AC 上时,连接BP ,交CQ 于R ,∵点B 和点Q 关于CQ 对称,∴CP =CB ,设P (t ,t +3),由CP 2=CB 2得,2t 2=10,∴t 1=-5,t 2=5(舍去),∴P -5,3-5 ,∵PQ ∥BC ,∴CR =BR =1,∴CR =QR ,∴四边形BCPQ 是平行四边形,∵1+(-5)-0=1-5,0+(3-5)-3=-5,∴Q 1-5,-5 ;如图3,当点P 在AC 的延长线上时,由上可知:P 5,3+5 ,同理可得:Q 1+5,5 ,综上所述:Q 1-5,-5 或1+5,5 .【点睛】本题考查了二次函数及其图象的性质,一元二次方程的解法,平行四边形的判定和性质,轴对称的性质等知识,解决问题的关键是分类讨论.2(2023·四川甘孜·统考中考真题)已知抛物线y =x 2+bx +c 与x 轴相交于A -1,0 ,B 两点,与y 轴相交于点C 0,-3 .(1)求b ,c 的值;(2)P 为第一象限抛物线上一点,△PBC 的面积与△ABC 的面积相等,求直线AP 的解析式;(3)在(2)的条件下,设E 是直线BC 上一点,点P 关于AE 的对称点为点P ,试探究,是否存在满足条件的点E ,使得点P 恰好落在直线BC 上,如果存在,求出点P 的坐标;如果不存在,请说明理由.【答案】(1)b =-2,c =-3.(2)y =x +1(3)存在,点P 的坐标为1+21,-2+21 或1-21,-2-21【分析】(1)由待定系数法即可求解;(2)S △PBC =S △ABC 得到AP ∥BC ,即可求解;(3)由题意的:∠AEP =∠AEP ,P E =PE ,即可求解.【详解】(1)由题意,得1-b +c =0,c =-3.∴b =-2,c =-3.(2)由(1)得抛物线的解析式为y =x 2-2x -3.令y =0,则x 2-2x -3=0,得x 1=-1,x 2=3.∴B 点的坐标为3,0 .∵S △PBC =S △ABC ,∴AP ∥BC .∵B 3,0,C 0,-3 ,∵AP∥BC,∴可设直线AP的解析式为y=x+m.∵A(-1,0)在直线AP上,∴0=-1+m.∴m=1.∴直线AP的解析式为y=x+1.(3)设P点坐标为m,n.∵点P在直线y=x+1和抛物线y=x2-2x-3上,∴n=m+1,n=m2-2m-3.∴m+1=m2-2m-3.解得m1=4,m2=-1(舍去).∴点P的坐标为4,5.由翻折,得∠AEP=∠AEP ,P E=PE.∵AP∥BC,∴∠PAE=∠AEP '.∴∠PAE=∠PEA.∴PE=PA=4+12=52.2+5-0设点E的坐标为t,t-3,则PE2=t-42.2+t-3-52=52∴t=6±21.当t=6+21时,点E的坐标为6+21,3+21.设P (s,s-3),由P E=AP,P E=PE=52得:s-6-212,2=522+s-3-3-21解得:s=1+21,则点P 的坐标为1+21,-2+21.当t=6-21时,同理可得,点P 的坐标为1-21,-2-21.综上所述,点P 的坐标为1+21,-2+21.或1-21,-2-21【点睛】本题是二次函数的综合题,主要考查了用待定系数法求一次函数、二次函数的解析式,二次函数的性质,此题题型较好,综合性比较强,用的数学思想是分类讨论和数形结合的思想.3(2023·江苏连云港·连云港市新海实验中学校考二模)如图,“爱心”图案是由抛物线y=-x2+m的一部分及其关于直线y=-x的对称图形组成,点E、F是“爱心”图案与其对称轴的两个交点,点A、B、C、D是该图案与坐标轴的交点,且点D的坐标为6,0.(1)求m 的值及AC 的长;(2)求EF 的长;(3)若点P 是该图案上的一动点,点P 、点Q 关于直线y =-x 对称,连接PQ ,求PQ 的最大值及此时Q 点的坐标.【答案】(1)m =6,AC =6+6(2)52(3)2542,Q -234,-12【分析】(1)用待定系数法求得m 与抛物线的解析式,再求出抛物线与坐标轴的交点坐标,进而求得A 的坐标,根据对称性质求得B ,C 的坐标,即可求得结果;(2)将抛物线的解析式与直线EF 的解析式联立方程组进行求解,得到E ,F 的坐标,即可求得结果;(3)设P (m ,-m 2+6),则Q (m 2-6,-m ),可得PQ =2×m -12 2-252 ,即求m -12 2-252的最值,根据二次函数的最值,即可得到m 的值,即可求得.【详解】(1)把D 6,0 代入y =-x 2+m 得0=-6+m解得m =6∴抛物线的解析式为:y =-x 2+6∴A 0,6根据对称性可得B -6,0 ,C 0,-6∴AC =AO +OC =6+6(2)联立y =-x y =-x 2+6解得x =3y =-3 或x =-2y =2 ∴E -2,2 ,F 3,-3∴EF =-2-3 2+2+3 2=52(3)设P (m ,-m 2+6),则Q (m 2-6,-m )∴PQ =m -m 2-6 2+-m 2+6--m 2整理得PQ =2×m -12 2-254 ∵m -12 2≥0∴当m -12 2=0时,即m =12时,m -12 2-254 有最大值为254∴PQ 的最大值为2542∴12 2-6=-234故Q -234,-12【点睛】本题考查二次函数综合应用,涉及待定系数法求函数解析式,两点间的距离公式,求抛物线与一次函数的交点坐标,二次函数的最值等知识,解题的关键是掌握关于直线y =-x 对称的点坐标的关系.题型04特殊角度存在性问题1(2023·山西忻州·统考模拟预测)如图,抛物线y =18x 2+34x -2与x 轴交于A ,B 两点,与y 轴交于点C .P 是直线AC 下方抛物线上一个动点,过点P 作直线l ∥BC ,交AC 于点D ,过点P 作PE ⊥x 轴,垂足为E ,PE 交AC 于点F .(1)直接写出A ,B ,C 三点的坐标,并求出直线AC 的函数表达式;(2)当线段PF 取最大值时,求△DPF 的面积;(3)试探究在拋物线的对称轴上是否存在点Q ,使得∠CAQ =45°?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)A -8,0 ,B 2,0 ,C 0,-2 .y =-14x -2(2)85(3)存在,-3,3 或-3,-253【分析】(1)对于直线y =18x 2+34x -2,当x =0时,y =-2,即点C 0,-2 ,令18x 2+34x -2=0,则x =2或-8,则点A ,B 的坐标分别为-8,0 ,2,0 即求出三个点的坐标,设直线AC 的表达式为y =kx +b ,利用待定系数法求解即可;(2)设点P 的横坐标为m ,则P m ,18m 2+34m -2 ,F m ,-14m -2 ,表示出PF =-18m 2-m ,求出PF max =2,再表示出点D 到直线PF 的距离d =85,利用S △DPF =12⋅PF ⋅d 进行求解即可;(3)由抛物线的表达式知,其对称轴为x =-3,当点Q 在x 轴上方时,设抛物线的对称轴交x 轴于点N ,交AC 于H ,故点Q 作QT ⊥AC 于点T ,在△AQH 中,∠CAQ =45°,tan ∠QHA =4,用解直角三角形的方法求出QH =174,即可求出Q 点坐标,当点Q Q 在x 轴上方时,直线AQ 的表达式为y =35x +8 ,当∠CAQ =45°时,AQ ⊥AQ ,即可求解.【详解】(1)解:对于抛物线y =18x 2+34x -2,当x =0时,y =-2,即点C 0,-2 ,令18x 2+34x -2=0,则x =2或-8,则点A ,B 的坐标分别为-8,0 ,2,0 ,即点A ,B ,C 三点的坐标分别为-8,0 ,2,0 ,0,-2 ,设直线AC 的表达式为y =kx +b ,则-8k +b =0b =-2 ,解得k =-14b =-2 ,∴直线AC 的函数表达式为y =-14x -2;(2)设点P 的横坐标为m ,则P m ,18m 2+34m -2 ,F m ,-14m -2 ,PF =-14m -2 -18m 2+34m -2 =-18m 2-m ,当m =--12×-18 =-4时,PF 最大,PF max =-18×(-4)2--4 =2,此时,P -4,-3 ,由B 2,0 ,C 0,-2 ,可得直线BC 的函数表达式为y =x -2,设直线l 的函数表达式为y =x +p ,将P -4,-3 代入可得p =1,∴直线l 的函数表达式为y =x +1,由y =-14x -2y =x +1 ,解得x =-125y =-75,∴D -125,-75 ,点D 到直线PF 的距离d =-125--4 =85,∴S △DPF =12⋅PF ⋅d =12×2×85=85.(3)存在,理由:由抛物线的表达式知,其对称轴为x =-3,当点Q 在x 轴上方时,如下图:设抛物线的对称轴交x 轴于点N ,交AC 于H ,故点Q 作QT ⊥AC 于点T ,则∠ACO =∠QHA ,则tan ∠ACO =tan ∠QHA =4,当x =3时,y =-14x -2=-54,则点H -3,-54 ,由点A ,H 的坐标得,AH =5174,在△AQH 中,∠CAQ =45°,tan ∠QHA =4,设TH =x ,则QT =4x ,则QH =17x ,则AH =AT +TH =5x =5174,则x =174,则QH =17x =174,则174-54=3,则点Q -3,3 ;当点Q Q 在x 轴上方时,直线AQ 的表达式为y =35x +8 ,当∠CAQ =45°时,AQ ⊥AQ ,则直线AQ 的表达式为y =-53x +8 ,当x =-3时,y =-5x +8 =-25,。

中考数学压轴题分析-函数图象中点的存在性问题-由比例线段产生的函数关系问题

中考数学压轴题分析-函数图象中点的存在性问题-由比例线段产生的函数关系问题

中考数学压轴题分析-函数图象中点的存在性问题-由比例线段产生的函数关系问题例1 2015年呼和浩特市中考第25题已知抛物线y =x 2+(2m -1)x +m 2-1经过坐标原点,且当<0时,y 随x 的增大而减小。

(1)求抛物线的解析式,并写出y < 0时,对应x 的取值范围;(2)设点A 是该抛物线上位于x 轴下方的一个动点,过点A 作x 轴的平行线交抛物线于另一点D ,再作AB ⊥x 轴于点B , DC ⊥x 轴于点C.①当BC =1时,直接写出矩形ABCD 的周长;②设动点A 的坐标为(a , b ),将矩形ABCD 的周长L 表示为a 的函数并写出自变量的取值范围,判断周长是否存在最大值,如果存在,求出这个最大值,并求出此时点A 的坐标;如果不存在,请说明理由.动感体验请打开几何画板文件名“15呼和浩特25”,拖动点A 在x 轴下方的抛物线上运动,观察L 随a 变化的图像,可以体验到,有两个时刻,L 取得最大值,这两个时刻的点A 关于抛物线的对称轴对称.思路点拨1.先用含a 的式子表示线段AB 、AD 的长,再把L 表示为a 的函数关系式.2.点A 与点D 关于抛物线的对称轴对称,根据对称性,点A 的位置存在两个情况. 满分解答(1)因为抛物线y =x 2+(2m -1)x +m 2-1经过原点,所以m 2-1=0.解得m =±1。

如图1,当m =1时,抛物线y =x 2+x 的对称轴在y 轴左侧,不符合当x <0时,y 随x 的增大而减小。

当m =-1时,抛物线y =x 2-3x 符合条件。

图1 图2 图3(2)①当BC =1时,矩形ABCD 的周长为6。

②如图2,抛物线y =x 2-3x 的对称轴为直线32x =,如果点A 在对称轴的左侧,那么3322D a x -=-。

解得3D x a =-。

所以AD =3-2a 。

当x =a 时,y =x 2-3x =a 2-3a 。

初中数学专题04几何最值存在性问题(解析版)

初中数学专题04几何最值存在性问题(解析版)

专题四几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。

从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。

几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。

【解题攻略】最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题.【解题类型及其思路】解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。

【典例指引】类型一【确定线段(或线段的和,差)的最值或确定点的坐标】【典例指引1】(2018·天津中考模拟)如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x轴、y轴的正半轴上.点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E.(I)证明:EO=EB;(Ⅱ)点P是直线OB上的任意一点,且△OPC是等腰三角形,求满足条件的点P的坐标;(Ⅲ)点M是OB上任意一点,点N是OA上任意一点,若存在这样的点M、N,使得AM+MN最小,请直接写出这个最小值.【答案】(I)证明见解析;(Ⅱ)P的坐标为(4,2)或(55,455)或P(﹣55,﹣455)或(165,85);(Ⅲ)325.【解析】分析:(Ⅰ)由折叠得到∠DOB=∠AOB,再由BC∥OA得到∠OBC=∠AOB,即∠OBC=∠DOB,即可;(Ⅱ)设出点P坐标,分三种情况讨论计算即可;(Ⅲ)根据题意判断出过点D作OA的垂线交OB于M,OA于N,求出DN即可.详解:(Ⅰ)∵将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E,∴∠DOB=∠AOB,∵BC∥OA,∴∠OBC=∠AOB,∴∠OBC=∠DOB,∴EO=EB;(Ⅱ)∵点B的坐标为(8,4),∴直线OB解析式为y=12 x,∵点P是直线OB上的任意一点,∴设P(a,12 a).∵O(0,0),C(0,4),∴OC=4,PO2=a2+(12a)2=54a2,PC2=a2+(4-12a)2.当△OPC是等腰三角形时,可分三种情况进行讨论:①如果PO=PC,那么PO2=PC2,则54a2=a2+(4-12a)2,解得a=4,即P(4,2);②如果PO=OC,那么PO2=OC2,则54a2=16,解得a=±855,即P(855,455)或P(-855,-455);③如果PC=OC时,那么PC2=OC2,则a2+(4-12a)2=16,解得a=0(舍),或a=165,即P(165,85);故满足条件的点P的坐标为(4,2)或(855,455)或P(-855,-455)或(165,85);(Ⅲ)如图,过点D作OA的垂线交OB于M,交OA于N,此时的M,N是AM+MN的最小值的位置,求出DN就是AM+MN的最小值.由(1)有,EO=EB,∵长方形OABC的顶点A,C分别在x轴、y轴的正半轴上,点B的坐标为(8,4),设OE=x,则DE=8-x,在Rt△BDE中,BD=4,根据勾股定理得,DB2+DE2=BE2,∴16+(8-x)2=x2,∴x=5,∴BE=5,∴CE=3,∴DE=3,BE=5,BD=4,∵S△BDE=12DE×BD=12BE×DG,∴DG=12=5 DE BDBE⨯,由题意有,GN=OC=4,∴DN=DG+GN=125+4=325.即:AM+MN的最小值为325.点睛:此题是四边形综合题,主要考查了矩形的性质,折叠的性质,勾股定理,等腰三角形的性质,极值的确定,进行分类讨论与方程思想是解本题的关键.【举一反三】(2020·云南初三)如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△P AD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△P AD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.【答案】(1)y=﹣x2+2x+3;(2)当t=32时,l有最大值,l最大=94;(3)t=32时,△P AD的面积的最大值为278;(4)t 15 +.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)易知直线AD解析式为y=-x+3,设M点横坐标为m,则P(t,-t2+2t+3),M(t,-t+3),可得l=-t2+2t+3-(-t+3)=-t2+3t=-(t-32)2+94,利用二次函数的性质即可解决问题;(3)由S△P AD=12×PM×(x D-x A)=32PM,推出PM的值最大时,△P AD的面积最大;(4)如图设AD的中点为K,设P(t,-t2+2t+3).由△P AD是直角三角形,推出PK=12AD,可得(t-32)2+(-t2+2t+3-32)2=14×18,解方程即可解决问题;试题解析:(1)把点B(﹣1,0),C(2,3)代入y=ax2+bx+3,则有30 4233 a ba b-+=⎧⎨++=⎩,解得12ab=-⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3.(2)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,∴D(3,0),且A(0,3),∴直线AD解析式为y=﹣x+3,设M点横坐标为m,则P(t,﹣t2+2t+3),M(t,﹣t+3),∵0<t<3,∴点M在第一象限内,∴l=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t=﹣(t﹣32)2+94,∴当t=32时,l有最大值,l最大=94;(3)∵S△P AD=12×PM×(x D﹣x A)=32PM,∴PM的值最大时,△P AD的面积中点,最大值=32×94=278.∴t=32时,△P AD的面积的最大值为278.(4)如图设AD的中点为K,设P(t,﹣t2+2t+3).∵△P AD 是直角三角形,∴PK =12AD , ∴(t ﹣32)2+(﹣t 2+2t +3﹣32)2=14×18, 整理得t (t ﹣3)(t 2﹣t ﹣1)=0, 解得t =0或3或15±, ∵点P 在第一象限, ∴t =1+5. 类型二 【确定三角形、四边形的周长的最值或符合条件的点的坐标】【典例指引2】(2020·重庆初三期末)如图,抛物线2y ax bx =+(0a >)与双曲线ky x=相交于点A 、B ,已知点A 坐标()1,4,点B 在第三象限内,且AOB ∆的面积为3(O 为坐标原点).(1)求实数a 、b 、k 的值;(2)在该抛物线的对称轴上是否存在点P 使得POB ∆为等腰三角形?若存在请求出所有的P 点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M ,恰使得MA MB MO ==,现要求在y 轴上找出点Q 使得BQM ∆的周长最小,请求出M 的坐标和BQM ∆周长的最小值.【答案】(1)13a b =⎧⎨=⎩,4k =;(2)存在,1 1.5,2P ⎛-- ⎝⎭,2 1.5,2P ⎛⎫- ⎪ ⎪⎝⎭,3 1.5,22P ⎛--- ⎝⎭,4 1.5,2P ⎛-- ⎝⎭,()5 1.5,0.5P --;(3)12【解析】 【分析】(1)由点A 在双曲线上,可得k 的值,进而得出双曲线的解析式.设4,B m m ⎛⎫⎪⎝⎭(0m <),过A 作AP ⊥x 轴于P ,BQ ⊥y 轴于Q ,直线BQ 和直线AP 相交于点M .根据AOB AMB AOP QOB OPMQ S S S S S ∆∆∆∆=---矩形=3解方程即可得出k 的值,从而得出点B 的坐标,把A 、B 的坐标代入抛物线的解析式即可得到结论; (2)抛物线对称轴为 1.5x =-,设()1.5,P y -,则可得出2PO ;2OB ;2PB .然后分三种情况讨论即可; (3)设M (x ,y ).由MO =MA =MB ,可求出M 的坐标.作B 关于y 轴的对称点B '.连接B 'M 交y 轴于Q .此时△BQM 的周长最小.用两点间的距离公式计算即可. 【详解】(1)由()1,4A 知:k =xy =1×4=4, ∴4y x=. 设4,B m m ⎛⎫⎪⎝⎭(0m <). 过A 作AP ⊥x 轴于P ,BQ ⊥y 轴于Q ,直线BQ 和直线AP 相交于点M ,则S △AOP =S △BOQ =2.AOB AMB AOP QOB OPMQ S S S S S ∆∆∆∆=---矩形()()14414102AOP QOB m S S m m ∆∆⎛⎫⎛⎫=---+-⨯- ⎪ ⎪⎝⎭⎝⎭242224m m m ⎛⎫⎛⎫=--+--- ⎪ ⎪⎝⎭⎝⎭22m m=- 令:223m m-=, 整理得:22320m m +-=, 解得:112m =,22m =-. ∵m <0, ∴m =-2, 故()2,2B --.把A 、B 带入2y ax bx =+2424a ba b -=-⎧⎨=+⎩解出:13a b =⎧⎨=⎩,∴23y x x =+.(2)223( 1.5) 2.25y x x x =+=+- ∴抛物线23y x x =+的对称轴为 1.5x =-.设()1.5,P y -,则2294PO y =+,28OB =,()22124PB y =++.∵△POB 为等腰三角形, ∴分三种情况讨论: ①22PO OB =,即2984y +=,解得:2y =±,∴1 1.5,P ⎛- ⎝⎭,2P ⎛- ⎝⎭;②22PB OB =,即()21284y ++=,解得:22y =-±,∴3 1.5,2P ⎛-- ⎝⎭,4 1.5,2P ⎛-- ⎝⎭;③22PB OP =,即()2219244y y ++=+,解得:0.5y =- ∴()5 1.5,0.5P --; (3)设(),M x y .∵()1,4A ,()2,2B --,()0,0O ,∴222MO x y =+,()()22214MA x y =-+-,()()22222MB x y =+++.∵MO MA MB ==,∴()()()()222222221422x y x y x y x y ⎧+=-+-⎪⎨+=+++⎪⎩ 解得:11272x y ⎧=-⎪⎪⎨⎪=⎪⎩,∴117,22M ⎛⎫-⎪⎝⎭. 作B 关于y 轴的对称点B '坐标为:(2,-2). 连接B 'M 交y 轴于Q .此时△BQM 的周长最小.BQM C MQ BQ MB ∆=++MQ QB MB '=++=MB '+MB222211711722222222⎛⎫⎛⎫⎛⎫⎛⎫=--+++-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()13461702=+.【名师点睛】本题是二次函数综合题.考查了用待定系数法求二次函数的解析式、二次函数的性质、轴对称-最值问题等.第(1)问的关键是割补法;第(2)问的关键是分类讨论;第(3)问的关键是求出M 的坐标. 【举一反三】(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C . (1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.【答案】(1)y =﹣34x +3;(2)R (1,92);(3)BT =2或BT =165.【解析】 【分析】(1)由已知可求A (﹣2,0),B (4,0),C (0,3),即可求BC 的解析式;(2)由已知可得∠QMH =∠CBO ,则有QH =34QM ,MH =54MQ ,所以△MHQ 周长=3QM ,则求△MHQ周长的最大值,即为求QM 的最大值;设M (m ,233384m m -++),过点M 与BC 直线垂直的直线解析式为243733812y x m m =--+,交点22972721,35025200100Q m m m m ⎛⎫+--+ ⎪⎝⎭,可求出()23=410MQ m m -+,当m =2时,MQ 有最大值65;函数的对称轴为x =1,作点M 关于对称轴的对称点M '(0,3),连接AM '与对称轴交于点R ,此时|AR ﹣MR |=|AR ﹣M 'R |=AM ',|AR ﹣MR |的最大值为AM ';求出AM '的直线解析式为332y x =+,则可求912R ⎛⎫⎪⎝⎭,; (3)有两种情况:当TC '∥OC 时,GO ⊥TC ';当OT ⊥BC 时,分别求解即可. 【详解】解:(1)令y =0,即2333084x x -++=,解得122,4x x =-=, ∵点A 在点B 的左侧 ∴A (﹣2,0),B (4,0), 令x =0解得y =3, ∴C (0,3),设BC 所在直线的解析式为y =kx +3, 将B 点坐标代入解得k =34- ∴BC 的解析式为y =-34x +3;(2)∵MQ ⊥BC ,M 作x 轴, ∴∠QMH =∠CBO , ∴tan ∠QMH =tan ∠CBO =34, ∴QH =34QM ,MH =54MQ ,∴△MHQ 周长=MQ +QH +MH =34QM +QM +54MQ =3QM ,则求△MHQ 周长的最大值,即为求QM 的最大值; 设M (m ,233384m m -++), 过点M 与BC 直线垂直的直线解析式为243733812y x m m =--+, 直线BC 与其垂线相交的交点22972721,35025200100Q m m m m ⎛⎫+--+ ⎪⎝⎭,∴()23=410MQ m m -+, ∴当m =2时,MQ 有最大值65, ∴△MHQ 周长的最大值为185,此时M (2,3), 函数的对称轴为x =1,作点M 关于对称轴的对称点M '(0,3),连接AM '与对称轴交于点R ,此时|AR ﹣MR |=|AR ﹣M 'R |=AM ', ∴|AR ﹣MR |的最大值为AM '; ∵AM '的直线解析式为y =32x +3, ∴R (1,92); (3)①当TC '∥OC 时,GO ⊥TC ', ∵△OCT ≌△OTC ', ∴3412=55OG ⨯=, ∴12655T ⎛⎫⎪⎝⎭, ∴BT =2;②当OT⊥BC时,过点T作TH⊥x轴,OT=125,∵∠BOT=∠BCO,∴3=1255cOo BOTHs∠=,∴OH=36 25,∴36482525 T⎛⎫ ⎪⎝⎭,∴BT=165;综上所述:BT=2或BT=165.【点睛】本题是一道综合题,考查了二次函数一次函数和三角形相关的知识,能够充分调动所学知识是解题的关键. 类型三【确定三角形、四边形的面积最值或符合条件的点的坐标】【典例指引3】(2019·甘肃中考真题)如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.【答案】(1)y=x2﹣4x+3;(2)点P(4,3)或(0,3)或(2,﹣1);(3)最大值为94,E(32,﹣34).【解析】【分析】(1)用交点式函数表达式,即可求解;(2)分当AB为平行四边形一条边、对角线,两种情况,分别求解即可;(3)利用S四边形AEBD=12AB(y D﹣y E),即可求解.【详解】解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PE=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当AB是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:22m+,即:22m+=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3)直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S四边形AEBD=12AB(y D﹣y E)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,∵﹣1<0,故四边形AEBD面积有最大值,当x=32,其最大值为94,此时点E(32,﹣34).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.【举一反三】(2019·内蒙古中考真题)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.(4)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以,,,B C M N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【答案】(1)224233y x x =-++,对称轴1x =;(2)11,4D ⎛⎫ ⎪⎝⎭;(3)面积有最大值是4948,755,424E ⎛⎫⎪⎝⎭;(4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形,()2,2M或104,3M ⎛⎫-⎪⎝⎭或102,3M ⎛⎫-- ⎪⎝⎭.【解析】 【分析】(1)将点A (-1,0),B (3,0)代入y =ax 2+bx +2即可;(2)过点D 作DG ⊥y 轴于G ,作DH ⊥x 轴于H ,设点D (1,y ),在Rt △CGD 中,CD 2=CG 2+GD 2=(2-y )2+1,在Rt △BHD 中,BD 2=BH 2+HD 2=4+y 2,可以证明CD =BD ,即可求y 的值;(3)过点E 作EQ ⊥y 轴于点Q ,过点F 作直线FR ⊥y 轴于R ,过点E 作FP ⊥FR 于P ,证明四边形QRPE是矩形,根据S △CEF =S 矩形QRPE -S △CRF -S △EFP ,代入边即可;(4)根据平行四边形对边平行且相等的性质可以得到存在点M 使得以B ,C ,M ,N 为顶点的四边形是平行四边形,点M (2,2)或M (4,- 103)或M (-2,-103); 【详解】解:(1)将点()()1,0,3,0A B -代入22y ax bx =++,可得24,33a b =-=, 224233y x x ∴=-++;∴对称轴1x =;(2)如图1:过点D 作DG y ⊥轴于G ,作DH x ⊥轴于H ,设点()1,D y ,()()0,2,3,0C B Q ,∴在Rt CGD ∆中,()222221CD CG GD y =+=-+, ∴在Rt BHD ∆中,22224BD BH HD y =+=+,在BCD ∆中,DCB CBD ∠=∠QCD BD ∴=,22CD BD ∴=()22214y y ∴-+=+ 14y ∴=,11,4D ⎛⎫∴ ⎪⎝⎭; (3)如图2:过点E 作EQ y ⊥轴于点Q ,过点F 作直线FR y ⊥轴于R ,过点E 作FP FR ⊥于P ,90EQR QRP RPE ︒∴∠=∠=∠=, ∴四边形QRPE 是矩形,CEF CRF EFP QRPE S S S S ∆∆∆=--Q 矩形,()()(),,0,2,1,1E x y C F Q ,111•222CEF S EQ QR EQ QC CR RF FP EP ∴=⋅-⨯⋅-⋅-V()()()()111121111222CEF S x y x y x y ∆∴=----⨯⨯---224233y x x =-++Q ,21736CEF S x x ∆∴=-+∴当74x =时,面积有最大值是4948,此时755,424E ⎛⎫⎪⎝⎭; (4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形, 设()()1,,,N n M x y ,①四边形CMNB 是平行四边形时,1322x+=2x ∴=-102,3M ⎛⎫∴-- ⎪⎝⎭②四边形CNBM 时平行四边形时,3122x +=2x ∴=, ()2,2M ∴;③四边形CNNB 时平行四边形时,1322x+=, 4x ∴=,104,3M ⎛⎫∴- ⎪⎝⎭;综上所述:()2,2M 或104,3M ⎛⎫- ⎪⎝⎭或102,3M ⎛⎫--⎪⎝⎭; 【点睛】本题考查了待定系数法求二次函数解析式,二次函数的图象及性质,勾股定理,平行四边形的判定与性质,及分类讨论的数学思想.熟练掌握二次函数的性质、灵活运用勾股定理求边长、掌握平行四边形的判定方法是解题的关键.【新题训练】1.如图,直线y =5x +5交x 轴于点A ,交y 轴于点C ,过A ,C 两点的二次函数y =ax 2+4x +c 的图象交x 轴于另一点B .(1)求二次函数的表达式;(2)连接BC ,点N 是线段BC 上的动点,作ND ⊥x 轴交二次函数的图象于点D ,求线段ND 长度的最大值; (3)若点H 为二次函数y =ax 2+4x +c 图象的顶点,点M (4,m )是该二次函数图象上一点,在x 轴,y 轴上分别找点F ,E ,使四边形HEFM 的周长最小,求出点F 、E 的坐标.【答案】(1) y=-x2+4x+5;(2);(3) F (,0),E(0,).【解析】【分析】(1)先根据坐标轴上点的坐标特征由一次函数的表达式求出A,C两点的坐标,再根据待定系数法可求二次函数的表达式;(2)根据坐标轴上点的坐标特征由二次函数的表达式求出B点的坐标,根据待定系数法可求一次函数BC 的表达式,设ND的长为d,N点的横坐标为n,则N点的纵坐标为-n+5,D点的坐标为D(n,-n2+4n+5),根据两点间的距离公式和二次函数的最值计算可求线段ND长度的最大值;(3)由题意可得二次函数的顶点坐标为H(2,9),点M的坐标为M(4,5),作点H(2,9)关于y轴的对称点H1,可得点H1的坐标,作点M(4,5)关于x轴的对称点HM1,可得点M1的坐标连结H1M1分别交x轴于点F,y轴于点E,可得H1M1+HM的长度是四边形HEFM的最小周长,再根据待定系数法可求直线H1M1解析式,根据坐标轴上点的坐标特征可求点F、E的坐标.【详解】解:(1)∵直线y=5x+5交x轴于点A,交y轴于点C,∴A(-1,0),C(0,5),∵二次函数y=ax2+4x+c的图象过A,C两点,∴,解得,∴二次函数的表达式为y=-x2+4x+5;(2)如解图①,第2题解图①∵点B是二次函数的图象与x轴的交点,∴由二次函数的表达式为y=-x2+4x+5得,点B的坐标B(5,0),设直线BC解析式为y=kx+b,∵直线BC过点B(5,0),C(0,5),∴,解得,∴直线BC解析式为y=-x+5,设ND的长为d,N点的横坐标为n,则N点的坐标为(n,-n+5),D点的坐标为(n,-n2+4n+5),则d=|-n2+4n+5-(-n+5)|,由题意可知:-n2+4n+5>-n+5,∴d=-n2+4n+5-(-n+5)=-n2+5n=-(n-)2+,∴当n=时,线段ND长度的最大值是;(3)∵点M(4,m)在抛物线y=-x2+4x+5上,∴m=5,∴M(4,5).∵抛物线y=-x2+4x+5=-(x-2)2+9,∴顶点坐标为H(2,9),如解图②,作点H(2,9)关于y轴的对称点H1,则点H1的坐标为H1(-2,9);作点M(4,5)关于x轴的对称点M1,则点M1的坐标为M1(4,-5),连接H1M1分别交x轴于点F,y轴于点E,∴H1M1+HM的长度是四边形HEFM的最小周长,则点F,E即为所求的点.设直线H1M1的函数表达式为y=mx+n,∵直线H1M1过点H1(-2,9),M1(4,-5),∴,解得,∴y=-x+,∴当x=0时,y=,即点E坐标为(0,),当y=0时,x=,即点F坐标为(,0),故所求点F,E的坐标分别为(,0),(0,).2.(2019·江苏中考真题)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为;(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.【答案】(1)4;(2)(3)面积不变,S△ACB’=(4)【解析】【分析】(1)证明△APB′是等边三角形即可解决问题;(2)如图2中,设直线l交BC于点E,连接B B′交PE于O,证明△PEB是等边三角形,求出OB即可解决问题;(3)如图3中,结论:面积不变,证明B B′//AC即可;(4)如图4中,当PB′⊥AC时,△ACB′的面积最大,设直线PB′交AC于点E,求出B′E即可解决问题.【详解】(1)如图1,∵△ABC为等边三角形,∴∠A=60°,AB=BC=CA=8,∵PB=4,∴PB′=PB=P A=4,∵∠A=60°,∴△APB′是等边三角形,∴AB′=AP=4,故答案为4;(2)如图2,设直线l交BC于点E,连接B B′交PE于O,∵PE∥AC,∴∠BPE=∠A=60°,∠BEP=∠C=60°,∴△PEB是等边三角形,∵PB=5,B、B′关于PE对称,∴BB′⊥PE,BB′=2OB,∴OB=PB·sin60°,∴BB,故答案为(3)如图3,结论:面积不变.过点B作BE⊥AC于E,则有BE=AB·sin60°=3843⨯=,∴S△ABC=1184322AC BE=⨯⨯g=163,∵B、B′关于直线l对称,∴BB′⊥直线l,∵直线l⊥AC,∴AC//BB′,∴S△ACB’=S△ABC=163;(4)如图4,当B′P⊥AC时,△ACB′的面积最大,设直线PB′交AC于E,在Rt△APE中,P A=2,∠P AE=60°,∴PE=P A·sin60°=3,∴B′E=B′P+PE=6+3,∴S△ACB最大值=12×(6+3)×8=24+43.【点睛】本题是几何变换综合题,考查了等边三角形的判定与性质,轴对称变换,解直角三角形,平行线的判定与性质等知识,理解题意,熟练掌握和灵活运用相关知识是解题的关键.3.(2019·湖南中考真题)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为212时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.【答案】(1)点C的坐标为(2,3;(2)OA=2;(3)OC的最大值为8,cos∠OAD 5.【解析】【分析】(1)作CE⊥y轴,先证∠CDE=∠OAD=30°得CE=12CD=2,DE2223CD CE-=OAD=30°知OD=12AD=3,从而得出点C坐标;(2)先求出S△DCM=6,结合S四边形OMCD=212知S△ODM=92,S△OAD=9,设OA=x、OD=y,据此知x2+y2=36,12xy=9,得出x2+y2=2xy,即x=y,代入x2+y2=36求得x的值,从而得出答案;(3)由M为AD的中点,知OM=3,CM=5,由OC≤OM+CM=8知当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,ON⊥AD,证△CMD∽△OMN得CD DM CM ON MN OM==,据此求得MN=95,ON=125,AN=AM﹣MN=65,再由OA22ON AN+cos∠OAD=ANOA可得答案.【详解】(1)如图1,过点C作CE⊥y轴于点E,∵矩形ABCD中,CD⊥AD,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=30°,∴在Rt△CED中,CE=12CD=2,DE22CD CE=3,在Rt△OAD中,∠OAD=30°,∴OD=12AD=3,∴点C的坐标为(2,3);(2)∵M为AD的中点,∴DM=3,S△DCM=6,又S四边形OMCD=212,∴S△ODM=92,∴S△OAD=9,设OA=x、OD=y,则x2+y2=36,12xy=9,∴x2+y2=2xy,即x=y,将x=y代入x2+y2=36得x2=18,解得x=2(负值舍去),∴OA=2;(3)OC的最大值为8,如图2,M为AD的中点,∴OM=3,CM22CD DM+5,∴OC≤OM+CM=8,当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,过点O作ON⊥AD,垂足为N,∵∠CDM=∠ONM=90°,∠CMD=∠OMN,∴△CMD∽△OMN,∴CD DM CMON MN OM==,即4353ON MN==,解得MN=95,ON=125,∴AN=AM﹣MN=65,在Rt△OAN中,OA2265 5ON AN+=,∴cos∠OAD=5 ANOA=.【点睛】本题是四边形的综合问题,解题的关键是掌握矩形的性质、勾股定理、相似三角形的判定与性质等知识点.4.(2018·江苏中考真题)如图,在平面直角坐标系中,一次函数y=﹣23x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O 停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.【答案】(1)(4,0);(2)①当0<t≤1时,S =334t2;②当1<t≤43时,S =﹣394t2+18t;③当43<t≤2时,S =﹣3t2+12;(3)OT+PT的最小值为32【解析】【分析】(1)先确定出点A的坐标,进而求出AP,利用对称性即可得出结论;(2)分三种情况,①利用正方形的面积减去三角形的面积,②利用矩形的面积减去三角形的面积,③利用梯形的面积,即可得出结论;(3)先确定出点T的运动轨迹,进而找出OT+PT最小时的点T的位置,即可得出结论.【详解】(1)令y=0,∴﹣23x+4=0,∴x=6,∴A(6,0),当t=13秒时,AP=3×13=1,∴OP=OA﹣AP=5,∴P(5,0),由对称性得,Q(4,0);(2)当点Q在原点O时,OQ=6,∴AP=12OQ=3,∴t=3÷3=1,①当0<t≤1时,如图1,令x=0,∴y=4,∴B(0,4),∴OB=4,∵A(6,0),∴OA=6,在Rt△AOB中,tan∠OAB=2=3 OBOA,由运动知,AP=3t,∴P(6﹣3t,0),∴Q(6﹣6t,0),∴PQ=AP=3t,∵四边形PQMN是正方形,∴MN∥OA,PN=PQ=3t,在Rt△APD中,tan∠OAB=233 PD PDAP t==,∴PD=2t,∴DN=t,∵MN∥OA∴∠DCN=∠OAB,∴tan∠DCN=23 DN tCN CN==,∴CN=32t,∴S=S正方形PQMN﹣S△CDN=(3t)2﹣12t×32t=334t2;②当1<t≤43时,如图2,同①的方法得,DN=t,CN=32t,∴S=S矩形OENP﹣S△CDN=3t×(6﹣3t)﹣12t×32t=﹣394t2+18t;③当43<t≤2时,如图3,S=S梯形OBDP=12(2t+4)(6﹣3t)=﹣3t2+12;(3)如图4,由运动知,P(6-3t,0),Q(6-6t,0),∴M(6-6t,3t),∵T是正方形PQMN的对角线交点,∴T(6-93,22t t),∴点T是直线y=-13x+2上的一段线段,(-3≤x<6),同理:点N是直线AG:y=-x+6上的一段线段,(0≤x≤6),∴G(0,6),∴OG=6,∵A(6,0),∴AG2,在Rt△ABG中,OA=6=OG,∴∠OAG=45°,∵PN⊥x轴,∴∠APN=90°,∴∠ANP=45°,∴∠TNA=90°,即:TN⊥AG,∵T 正方形PQMN 的对角线的交点, ∴TN =TP , ∴OT +TP =OT +TN ,∴点O ,T ,N 在同一条直线上(点Q 与点O 重合时),且ON ⊥AG 时,OT +TN 最小, 即:OT +TN 最小,∵S △OAG =12OA ×OG =12AG ×ON , ∴ON =OA OGAGn =32. 即:OT +PT 的最小值为32【点睛】此题是一次函数综合题,主要考查了正方形的面积,梯形,三角形的面积公式,正方形的性质,勾股定理,锐角三角函数,用分类讨论的思想解决问题是解本题的关键,找出点T 的位置是解本题(3)的难点.5.(2020·江苏初三期末)已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y 轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积. (3)在P 点运动过程中,求APC ∆面积的最大值. 【答案】(1)3y x =+;(2)3;(3)APC ∆面积的最大值为278. 【解析】 【分析】(1)由题意分别将x =0、y =0代入二次函数解析式中求出点C 、A 的坐标,再根据点A 、C 的坐标利用待定系数法即可求出直线AC 的解析式;(2)由题意先根据二次函数解析式求出顶点P ,进而利用割补法求APC ∆面积;(3)根据题意过点P 作PE y P 轴交AC 于点E 并设点P 的坐标为()2,23m m m --+(30m -<<),则点E的坐标为(),3+m m 进而进行分析. 【详解】解:(1) 分别将x =0、y =0代入二次函数解析式中求出点C 、A 的坐标为()0,3C ;()30A -,; 将()0,3C ;()30A -,代入223y x x =--+,得到直线AC 的解析式为3y x =+. (2)由223y x x =--+,将其化为顶点式为2(1)4y x =-++,可知顶点P 为(1,4)-, 如图P 为顶点时连接PC 并延长交x 轴于点G ,则有S APC S APG S ACG =-V V V ,将P 点和C 点代入求出PC 的解析式为3y x =-+,解得G 为(3,0), 所有S APC S APG S ACG =-V V V 11646312922=⨯⨯-⨯⨯=-=3;(3)过点P 作PE y P 轴交AC 于点E .设点P 的坐标为()2,23m m m --+(30m -<<),则点E 的坐标为(),3+m m ∴()2233PE m m m =--+-+2239324m m m ⎛⎫=--=-++ ⎪⎝⎭, 当32m =-时,PE 取最大值,最大值为94.∵()1322APC C A S PE x x PE ∆=⋅-=,∴APC ∆面积的最大值为278. 【点睛】本题考查待定系数法求一次函数解析式、二次函数图象上点的坐标特征、等腰三角形的性质、二次函数的性质以及解二元一次方程组,解题的关键是利用待定系数法求出直线解析式以及利用二次函数的性质进行综合分析.6.(2020·江苏初三期末)如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标; (3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.【答案】(1)265y x x =-+-;(2)1258S =,点P 坐标为515,24⎛⎫ ⎪⎝⎭;(3)点M 的坐标为7837,2323⎛⎫-⎪⎝⎭, 6055,2323⎛⎫- ⎪⎝⎭【解析】 【分析】(1)利用B (5,0)用待定系数法求抛物线解析式; (2)作PQ ∥y 轴交BC 于Q ,根据12PBC S PQ OB ∆=⋅求解即可; (3)作∠CAN =∠NAM 1=∠ACB ,则∠A M 1B =3∠ACB , 则∆ NAM 1∽∆ A C M 1,通过相似的性质来求点M 1的坐标;作AD ⊥BC 于D ,作M 1关于AD 的对称点M 2, 则∠A M 2C =3∠ACB ,根据对称点坐标特点可求M 2的坐标. 【详解】(1)把()5,0B 代入265y ax x =+-得253050a +-= 1a =-.∴265y x x =-+-;(2)作PQ ∥y 轴交BC 于Q ,设点()2,65P x x x -+-,则∵()5,0B∴OB =5, ∵Q 在BC 上,∴Q 的坐标为(x ,x -5),∴PQ =2(65)(5)x x x -+---=25x x -+, ∴12PBC S PQ OB ∆=⋅ =21(5)52x x -+⨯ =252522x x -+∴当52x =时,S 有最大值,最大值为1258S =,∴点P 坐标为515,24⎛⎫⎪⎝⎭. (3)如图1,作∠CAN =∠NAM 1=∠ACB ,则∠A M 1B =3∠ACB ,∵∠CAN =∠NAM 1, ∴AN =CN ,∵265y x x =-+-=-(x -1)(x -5),∴A 的坐标为(1,0),C 的坐标为(0,-5), 设N 的坐标为(a ,a -5),则∴2222(1)(5)(55)a a a a -+-=+-+,∴a =136, ∴N 的坐标为(136,176-), ∴AN 2=221317(1)()66-+-=16918,AC 2=26,∴22169113182636 ANAC=⨯=,∵∠NAM1=∠ACB,∠N M1A=∠C M1A,∴∆NAM1∽∆A C M1,∴11AMANAC CM=,∴21211336AMCM=,设M1的坐标为(b,b-5),则∴222236[(1)(5)]13[(55)]b b b b-+-=+-+,∴b1=7823,b2=6(不合题意,舍去),∴M1的坐标为7837(,)2323-,如图2,作AD⊥BC于D,作M1关于AD的对称点M2, 则∠A M2C=3∠ACB,易知∆ADB是等腰直角三角形,可得点D的坐标是(3,-2),∴M2横坐标=7860232323⨯-=,M2纵坐标=37552(2)()2323⨯---=-,∴M2的坐标是6055(,)2323-,综上所述,点M的坐标是7837(,)2323-或6055(,)2323-.【点睛】本题考查了二次函数与几何图形的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质及相似三角形的判定与性质,会运用分类讨论的思想解决数学问题.7.(2019·石家庄市第四十一中学初三)如图,在平面直角坐标系中,抛物线y=x(x﹣b)﹣与y轴相交于A点,与x轴相交于B、C两点,且点C在点B的右侧,设抛物线的顶点为P.(1)若点B与点C关于直线x=1对称,求b的值;(2)若OB=OA,求△BCP的面积;(3)当﹣1≤x≤1时,该抛物线上最高点与最低点纵坐标的差为h,求出h与b的关系;若h有最大值或最小值,直接写出这个最大值或最小值.【答案】(1)2(2)(3)h存在最小值,最小值为1【解析】【分析】(1)由点B与点C关于直线x=1对称,可得出抛物线的对称轴为直线x=1,再利用二次函数的性质可求出b值;(2)利用二次函数图象上点的坐标特征可求出点A的坐标,结合OA=OB可得出点B的坐标,由点B的坐标利用待定系数法可求出抛物线的解析式,由抛物线的解析式利用二次函数图象上点的坐标特征可求出点C的坐标,利用配方法可求出点P的坐标,再利用三角形的面积公式即可求出△BCP的面积;(3)分b≥2,0≤b<2,﹣2<b<0和b≤﹣2四种情况考虑,利用二次函数图象上点的坐标特征结合二次函数的图象找出h关于b的关系式,再找出h的最值即可得出结论.【详解】解:(1)∵点B与点C关于直线x=1对称,y=x(x﹣b)﹣=x2﹣bx﹣,∴﹣=1,解得:b=2.(2)当x=0时,y=x2﹣bx﹣=﹣,∴点A的坐标为(0,﹣).又∵OB=OA,∴点B的坐标为(﹣,0).将B(﹣,0)代入y=x2﹣bx﹣,得:0=+b﹣,解得:b=,∴抛物线的解析式为y=x2﹣x﹣.∵y=x2﹣x﹣=(x﹣)2﹣,∴点P的坐标为(,﹣).当y=0时,x2﹣x﹣=0,解得:x1=﹣,x2=1,∴点C的坐标为(1,0).∴S△BCP=×[1﹣(﹣)]×|﹣|=.(3)y=x2﹣bx﹣=(x﹣)2﹣﹣.当≥1,即b≥2时,如图1所示,y最大=b+,y最小=﹣b+,∴h=2b;当0≤<1,即0≤b<2时,如图2所示,y最大=b+,y最小=﹣﹣,∴h=1+b+=(1+)2;当﹣1<<0,﹣2<b<0时,如图3所示y最大=﹣b,y最小=﹣﹣,∴h=1﹣b+=(1﹣)2;当≤﹣1,即b≤﹣2时,如图4所示,y最大=﹣b+,y最小=b+,h=﹣2b.综上所述:h=,h存在最小值,最小值为1.【点睛】本题考查了二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式、三角形的面积、二次函数图象以及二次函数的最值,解题的关键是:(1)利用二次函数的性质,求出b的值;(2)利用二次函数图象上的坐标特征及配方法,求出点B,C,P的坐标;(3)分b≥2,0≤b<2,﹣2<b<0和b≤﹣2四种情况,找出h关于b的关系式.8.(2020·江西初三期中)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.。

函数图象中点的存在性问题

函数图象中点的存在性问题
典型例题展示
1. 函数图象中点的存在性问题
因动点产生的等腰三角形
1
因动点产生的等腰三角形
2
因动点产生的平行四边形
改编
3
因动点产生的平行四边形
06年海9年海 南中考
求面积的最 大(小值)
5
因动点产生的直角三角形问题
12年海 南中考
6
因动点产生的线段和(差)最值问题
量,然后根据相似、比例等构造,整理得出符合条件
的函数关系式。
建立函数解析式的问题也是压轴题命题中常见模 式,只是考一次函数还是二次函数的选择上有所不同。
9
12年山 西中考
7
因动点产生的线段和(差)最值问题
05年海 南中考
8
2. 图形运动中的函数关系问题
主要特征:图形运动变化过程中,要写出两个变
量之间的函数关系式。
简单一些的题目,用面积、勾股定理、线段的和 (差)就直接写出函数的解析式;复杂一些的题目,
要先根据图形给定的数量关系,有代数式表示某些变

一次函数中的(特殊图形)存在性问题(解析版)八年级数学上册同步考点归类培优题库

一次函数中的(特殊图形)存在性问题(解析版)八年级数学上册同步考点归类培优题库

专题十五 一次函数中的(特殊图形)存在性问题考点一 直角三角形存在性问题【方法点拨】分类讨论哪个角为直角,一般分三种情况,简称“两垂线+一圆”1.如图1,在平面直角坐标系中,点A 坐标为(﹣4,4),点B 的坐标为(4,0).(1)求直线AB 的解析式;(2)点M 是坐标轴上的一个点,若AB 为直角边构造直角三角形△ABM ,请求出满足条件的所有点M 的坐标;(3)如图2,以点A 为直角顶点作∠CAD =90°,射线AC 交x 轴的负半轴与点C ,射线AD 交y 轴的负半轴与点D ,当∠CAD 绕点A 旋转时,OC ﹣OD 的值是否发生变化?若不变,直接写出它的值;若变化,直接写出它的变化范围(不要解题过程).【思路点拨】(1)由A 、B 两点的坐标利用待定系数法可求得直线AB 的解析式;(2)分别过A 、B 两点作AB 的垂线,与坐标轴的交点即为所求的M 点,再结合相似三角形的性质求得OM 的长即可求得点M 的坐标;(3)过A 分别作x 轴和y 轴的垂线,垂足分别为E 、F ,可证明△AEC ≌△AFD ,可得到EC =FD ,从而可把OC ﹣OD 转化为FD ﹣OD ,再利用线段的和差可求得OC ﹣OD =OE +OF =8;【解析】解:(1)设直线AB 的解析式为:y =kx +b (k ≠0).∵点A (﹣4,4),点B (0,2)在直线AB 上,∴{−4k +b =4b =2,解得{k =−12b =2, ∴直线AB 的解析式为:y =−12x +2;(2)∵△ABM 是以AB 为直角边的直角三角形,∴有∠BAM =90°或∠ABM =90°,①当∠BAM =90°时,如图1,过A 作AB 的垂线,交x 轴于点M 1,交y 轴于点M 2,则可知△AEM 1∽△BEA ,∴M 1E AE =AE BE ,由(1)可知OE =OB =AE =4,∴M 1E 4=48,解得M 1E =2, ∴OM 1=2+4=6,∴M 1(﹣6,0),∵AE ∥y 轴,∴M 1EM 1O =AEOM 2,即26=4OM 2,解得OM 2=12,∴M 2(0,12);②当∠ABM =90°时,如图2,过B 作AB 的垂线,交y 轴于点M 3,设直线AB交y轴于点E,则由(1)可知E(0,2),∴OE=2,OB=4,由题意可知△BOE∽△M3OB,∴OEOB =OBOM3,即24=4OM3,解得OM3=8,∴M3(0,﹣8),综上可知点M的坐标为(﹣6,0)或(0,12)或(0,﹣8);(3)不变.理由如下:过点A分别作x轴、y轴的垂线,垂足分别为G、H,如图3.则∠AGC=∠AHD=90°,又∵∠HOC=90°,∴∠GAH=90°,∴∠DAG+∠DAH=90°,∵∠CAD=90°,∴∠DAG+∠CAG=90°,∴∠CAG=∠DAH.∵A (﹣4,4),∴OG =AH =AG =OH =4.在△AGC 和△AHD 中{∠AGC =∠AHD AG =AH ∠CAG =∠DAH∴△AGC ≌△AHD (ASA ),∴GC =HD .∴OC ﹣OD =(OG +GC )﹣(HD ﹣OH )=OG +OH =8.故OC ﹣OD 的值不发生变化,值为8.【点睛】本题为一次函数的综合应用,涉及知识点有待定系数法、全等三角形的判定和性质、相似三角形的判定和性质及分类讨论思想等.在(1)中注意待定系数法的应用步骤,在(2)中确定出M 点的位置是解题的关键,在(3)中构造三角形全等是解题的关键.本题考查知识点较多,综合性较强,难度适中.2.已知,如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求经过点E 、D 的直线解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G ,使得EF =2GO ,请求出此时OG 的长度.(3)对于(2)中的点G ,在直线ED 上是否存点P ,使得点P 与点D 、G 构成的△DPG 是直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.【思路点拨】(1)只要证明△ADE ∽△BCD ,可得AD BC =AE DB ,求出AE 即可解决问题;(2)由△ADE ≌△RDG ,可得AF =RG ,设OG =m ,则AF =GR =2﹣m ,构建方程即可解决问题;(3)分两种情形①作GP ⊥BE 于P ,则△PDG 是直角三角形.②作P ′G ⊥DG 交直线DE 于P ′,则△DGP ′是直角三角形.分别根据一次函数利用方程组确定交点坐标即可;【解析】解:(1)如图1中,∵四边形ABCO 是矩形,∴∠OAB =∠B =90°,∵∠AOD =∠DOC =45°,∴OA =AD =2,DB =1,∵DE ⊥DC ,∴∠EDC =90°,∴∠ADE +∠BDC =90°,∵∠BDC +∠BCD =90°,∴∠ADE =∠DCB ,∴△ADE ∽△BCD ,∴AD BC =AE DB ,∴AE =1,∴E (0,1),设直线DE 的解析式为y =kx +b ,则有{b =12k +b =2, 解得{k =12b =1∴直线DE 的解析式为y =12x +1(2)如图2中,作DR ⊥OC 于R .易知△ADE≌△RDG,∴AF=RG,设OG=m,则AF=GR=2﹣m,∴EF=1+2﹣m=3﹣m,∵EF=2OG,∴3﹣m=2m,∴m=1,∴OG=1.(3)如图3中,①作GP⊥BE于P,则△PDG是直角三角形.∵G(1,0),GP⊥BE,∴直线PG的解析式为y=﹣2x+2,由{y =12x +1y =−2x +2,解得{x =25y =65, ∴P (25,65). ②作P ′G ⊥DG 交直线DE 于P ′,则△DGP ′是直角三角形,∵直线DG 的解析式为y =2x ﹣2,∴直线GP ′的解析式为y =−12x +12,由{y =−12x +12y =12x +1,解得{x =−12y =34, ∴P ′(−12,34), 综上所述,满足条件的点P 坐标为(25,65)或(−12,34). 【点睛】本题考查一次函数综合题、旋转变换、全等三角形的判定和性质.相似三角形的判定和性质、直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形和相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.考点二 等腰三角形存在性问题【方法点拨】分类讨论哪两条边相等,一般分三种情况,简称“两圆+一中垂线”1.如图1,在平面直角坐标系中,O 是坐标原点,长方形OACB 的顶点A 、B 分别在x 轴与y 轴上,已知OA =6,OB =10.点D 为y 轴上一点,其坐标为(0,2),点P 从点A 出发以每秒2个单位的速度沿线段AC ﹣CB 的方向运动,当点P 与点B 重合时停止运动,运动时间为t 秒.(1)当点P 经过点C 时,求直线DP 的函数解析式;(2)①求△OPD 的面积S 关于t 的函数解析式;②如图②,把长方形沿着OP 折叠,点B 的对应点B ′恰好落在AC 边上,求点P 的坐标.(3)点P 在运动过程中是否存在使△BDP 为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.【思路点拨】(1)设直线DP 解析式为y =kx +b ,将D 与C 坐标代入求出k 与b 的值,即可确定出解析式;(2)①当P 在AC 段时,三角形ODP 底OD 与高为固定值,求出此时面积;当P 在BC 段时,底边OD 为固定值,表示出高,即可列出S 与t 的关系式;②当点B 的对应点B ′恰好落在AC 边上时,关键勾股定理即可求出此时P 坐标;(3)存在,分别以BD ,DP ,BP 为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P 坐标即可.【解析】解:(1)∵OA =6,OB =10,四边形OACB 为长方形,∴C (6,10).设此时直线DP 解析式为y =kx +b ,把(0,2),C (6,10)分别代入,得{b =26k +b =10, 解得{k =43b =2则此时直线DP 解析式为y =43x +2;(2)①当点P 在线段AC 上时,OD =2,高为6,S =6;当点P 在线段BC 上时,OD =2,高为6+10﹣2t =16﹣2t ,S =12×2×(16﹣2t )=﹣2t +16;②设P (m ,10),则PB =PB ′=m ,如图2,∵OB ′=OB =10,OA =6,∴AB ′=√OB′2−OA 2=8,∴B ′C =10﹣8=2,∵PC =6﹣m ,∴m 2=22+(6﹣m )2,解得m =103 则此时点P 的坐标是(103,10);(3)存在,理由为: 若△BDP 为等腰三角形,分三种情况考虑:如图3,①当BD =BP 1=OB ﹣OD =10﹣2=8,在Rt △BCP 1中,BP 1=8,BC =6,根据勾股定理得:CP 1=√82−62=2√7,∴AP 1=10﹣2√7,即P 1(6,10﹣2√7);②当BP 2=DP 2时,此时P 2(6,6);③当DB =DP 3=8时,在Rt △DEP 3中,DE =6,根据勾股定理得:P 3E =√82−62=2√7,∴AP 3=AE +EP 3=2√7+2,即P 3(6,2√7+2),综上,满足题意的P 坐标为(6,6)或(6,2√7+2)或(6,10﹣2√7).【点睛】此题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键.2.如图①,在平面直角坐标系中,△AOB的边OA在x轴上,点A坐标为(14,0),点B在第一象限,∠BAO=45°,AB=8√2.D为射线OB上一点,过D作直线l∥y轴交OA于E,交射线AB于G.(1)求B点坐标;(2)当D为线段OB中点时,在直线l上找点P,当△PBD为等腰三角形,请直接写出P点坐标;(3)如图②,F为AO中点,当S△BDF=2S△BDG时,求D点坐标.【思路点拨】(1)先求出BH=AH=8,进而求出OH=6,即可得出结论;(2)先设出点P坐标,进而表示出DP,BP,BD,再分三种情况讨论建立方程求解即可得出结论;(3)先求出OF,直线OB,AB的解析式,进而设出点D的坐标,表示出S△BDG=12|m﹣14|×|6﹣m|,S△BDF =|143m﹣28|,最后用面积关系建立方程求解即可得出结论.【解析】解:(1)如图①,过点B作BH⊥OA于H,∵∠BAO=45°,AB=8√2,∴BH=AH=1√2AB=8,∵A(14,0),∴OA=14,∴OH=OA﹣AH=6,∴B(6,8);(2)∵DE ⊥OA ,∴DE ∥BH ,∵点D 是OB 中点,∴DE =12BH =4,OE =12OH =3,∴D (3,4),设P (3,m ),∵B (6,8),∴DP =|m ﹣4|,BD =5,BP 2=(m ﹣8)2+9,∵△PBD 为等腰三角形,∴①DP =BD ,∴|m ﹣4|=5,∴m =9或m =﹣1,∴P (3,9)或(3,﹣1),②DP =BP ,∴(m ﹣4)2=(m ﹣8)2+9,∴m =578, ∴P (3,578)③BD =BP ,∴25=(m ﹣8)2+9,∴m =4(舍)或m =12,∴P (3,12),即:满足条件的点P (3,9)或(3,﹣1)或(3,578)或(3,12);(3)如图由(1)知,B (6,8),∴直线OB 的解析式为y =43x ,∵A (14,0),∴直线AB 的解析式为y =﹣x +14,∵点F 是OA 中点,∴OF =12OA =7,设点D (m ,43m ),∴G (m ,﹣m +14), ∴S △BDG =12|﹣m +14−43m |×|6﹣m |=12|m ﹣14|×|6﹣m |, S △BDF =|S △BOF ﹣S △DOF |=|12×7×8−12×7×43m |=|143m ﹣28|,∵S △BDF =2S △BDG ,∴|143m ﹣28|=212|m ﹣14|×|6﹣m |, ∴m =4或m =8, ∴D (4,163)或(8,323).【点睛】此题是三角形综合题,主要考查了勾股定理,等腰三角形的性质,三角形的面积公式,分类讨论的思想,解本题的关键是用方程的思想解决问题.考点三 等腰直角三角形存在性问题【方法点拨】分类讨论哪个角为直角且哪两条边相等1.正方形OABC 的边长为1,把它放在如图所示的直角坐标系中,点M (t ,0)是x 轴上一个动点(t ≥1),连接BM ,在BM 的右侧作正方形BMNP ;直线DE 的解析式为y =2x +b ,与x 轴交于点D ,与y 轴交于点E ,当△PDE 为等腰直角三角形时,点P 的坐标是 (2,4)或(2,1) .【思路点拨】过点P 作PF ⊥BC 交CB 的延长线于点F ,根据同角的余角相等可得∠ABM =∠FBP ,然后利用“角角边”证明△ABM 和△FBP 全等,根据全等三角形对应边相等可得BF =AB ,PF =AM ,然后根据正方形OABC 的边长为2以及点M (t ,0)表示出点P 的坐标,再利用直线DE 的解析式求出点D 、E 的坐标,然后分①DE 是斜边时,利用勾股定理以及两点间的距离公式分别表示出PD 、PE 、DE 的平方,再根据等腰直角三角形的三边关系,②PD 是斜边时,过点P 作PF ⊥y 轴于点F ,然后利用“角角边”证明△EDO 和△PEF 全等,根据全等三角形对应边相等可得EF =DO ,PC =EO ,然后用b 、t 表示并求解即可得到点P 的坐标.【解析】解:如图,过点P 作PF ⊥BC 交CB 的延长线于点F ,∵四边形OABC 与四边形BMNP 都是正方形,∴∠ABM +∠MBF =90°,∠FBP +∠MBF =90°,∴∠ABM =∠FBP ,在△ABM 和△FBP 中,{∠ABM =∠FBP∠BAM =∠F =90°BM =BP,∴△ABM ≌△FBP (AAS ),∴BF =AB ,PF =AM ,∵正方形OABC 的边长为1,点M (t ,0),∴BF =1,PF =t ﹣1,点P 到x 轴的距离为t ﹣1+1=t ,∴点P 的坐标为(2,t ),又∵当y =0时,2x +b =0,解得x =−b 2,当x =0时,y =b ,∴点D (−b 2,0),E (0,b ),①DE 是斜边时,PD 2=(b 2+2)2+t 2,PE 2=(b ﹣t )2+22,DE 2=(b 2)2+b 2, ∵△PDE 是等腰直角三角形,∴PD 2=PE 2,且PD 2+PE 2=DE 2,即(b 2+2)2+t 2=(b ﹣t )2+22,且(b 2+2)2+t 2+(b ﹣t )2+22=(b 2)2+b 2, 14b 2+2b +4+t 2=b 2﹣2bt +t 2+4,且14b 2+2b +4+t 2+b 2﹣2bt +t 2+4=14b 2+b 2, 整理得,b =83(t +1)且t 2﹣b (t ﹣1)+4=0,∴t 2−83(t +1)(t ﹣1)+4=0,整理得,t 2=4,解得t 1=2,t 2=﹣2(舍去),∴点P 的坐标是(2,2);②PD 是斜边时,∵△PDE 是等腰直角三角形,∴PE ⊥DE ,且PE =DE ,过点P 作PF ⊥y 轴于点F∵∠DEO +∠PEO =90°,∠DEO +∠EDO =90°,∴∠PEO =∠EDO ,在△EDO 和△PEF 中,{∠PEO =∠EDO ∠DOE =∠EFP =90°PE =DE,∴△EDO ≌△PEF (AAS ),∴EF =DO =b 2,PC =EO =b ,又∵点P (2,t ),∴b =2,b ﹣t =b 2,解得t=b2=12×2=1,∴点P坐标为(2,1),此时点C、F重合,点M、A重合,综上所述,点P的坐标为(2,4)或(2,1).故答案为:(2,2)或(2,1).【点睛】本题是一次函数的综合题型,主要利用了全等三角形的判定与性质,等腰三角形的性质,直线与坐标轴的交点的求解,勾股定理的应用,综合题但难度不大,要注意分情况讨论.2.如图,在平面直角坐标系中,直线l1的解析式为y=﹣x,直线l2与l1交于点A(a,﹣a),与y轴交于点B(0,b),其中a,b满足(a+2)2+√b−3=0.(1)求直线l2的解析式;(2)在平面直角坐标系中第二象限有一点P(m,5),使得S△AOP=S△AOB,请求出点P的坐标;(3)已知平行于y轴且位于y轴左侧有一动直线,分别与l1,l2交于点M、N,且点M在点N的下方,点Q为y轴上一动点,且△MNQ为等腰直角三角形,请直接写出满足条件的点Q的坐标.【思路点拨】(1)由偶次方及被开方数非负,可求出a 、b 的值,进而可得出点A 、B 的坐标,由点A 、B 的坐标,利用待定系数法即可求出直线l 2的解析式;(2)由△AOP 和△AOB 等底及S △AOP =S △AOB ,可得出点P 到AO 的距离与点B 到AO 的距离相等,分点P 在l 1的右侧及点P 在l 1的左侧两种情况考虑:①当点P 在l 1的右侧时,设点P 为P 1,则P 1B ∥l 1,根据平行线的性质结合点B 的坐标可得出直线P 1B 的解析式,再利用一次函数图象上点的坐标特征可求出点P 1的坐标;②当点P 在l 1的左侧时,设点P 为P 2,设直线y =5与直线l 1交于点E ,利用一次函数图象上点的坐标特征可求出点E 的坐标,再由点E 为P 1P 2中点,可求出点P 2的坐标;(3)设动直线为x =t ,由题可得﹣2<t <0,则点M 的坐标为(t ,﹣t ),点N 的坐标为(t ,12t +3),进而可得出MN 的长度.分∠NMQ =90°、∠MNQ =90°及∠MQN =90°三种情况,利用等腰直角三角形的性质可求出点M 、N 、Q 的坐标,此题得解.【解析】解:(1)∵a 、b 满足(a +2)2+√b −3=0,∴a +2=0,b ﹣3=0,∴a =﹣2,b =3,∴点A 的坐标为(﹣2,2),点B 的坐标为(0,3).设直线l 2的解析式为y =kx +c (k ≠0),将A (﹣2,2)、B (0,3)代入y =kx +c ,得:{−2k +c =2c =3,解得:{k =12c =3, ∴直线l 2的解析式为y =12x +3.(2)∵S △AOP =S △AOB ,∴点P 到AO 的距离与点B 到AO 的距离相等,且点P 位于l 1两侧(如图1).①当点P 在l 1的右侧时,设点P 为P 1,则P 1B ∥l 1,∴直线P 1B 的解析式为:y =﹣x +3,当y =5时,有﹣x +3=5,解得:x =﹣2,∴点P 1的坐标为(﹣2,5);②当点P 在l 1的左侧时,设点P 为P 2,设直线y =5与直线l 1交于点E ,则点E 的坐标为(﹣5,5),∵点E 为P 1P 2中点,∴点P 2的坐标为(﹣8,5).综上所述:点P 的坐标为(﹣2,5)或(﹣8,5).(3)设动直线为x =t ,由题可得﹣2<t <0,则点M 的坐标为(t ,﹣t ),点N 的坐标为(t ,12t +3), ∴MN =32t +3(如图2).①当∠NMQ =90°时,有MN =MQ ,即32t +3=﹣t , 解得:t =−65,∴点M 的坐标为(−65,65). ∵MQ ∥x 轴,∴点Q 的坐标为(0,65); ②当∠MNQ =90°时,有MN =NQ ,即32t +3=﹣t , 解得:t =−65,∴点N 的坐标为(−65,125). ∵NQ ∥x 轴,∴点Q 的坐标为(0,125);③当∠MQN =90°时,点Q 到MN 的距离=12MN ,即﹣t =12×(32t +3),解得:t =−67,∴点M 的坐标为(−67,67),点N 的坐标为(−67,187).∵△MNQ 为等腰直角三角形,∴点Q 的坐标为(0,127).综上所述:点Q 的坐标为(0,65)或(0,125)或(0,127).【点睛】本题考查了待定系数法求一次函数解析式、偶次方及被开方数的非负性、三角形的面积、一次函数图象上点的坐标特征以及等腰直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数解析式;(2)分点P 在l 1的右侧及点P 在l 1的左侧两种情况求出点P 的坐标;(3)分∠NMQ =90°、∠MNQ =90°及∠MQN =90°三种情况,利用等腰直角三角形的性质求出点Q 的坐标.3.在平面直角坐标系xOy 中,直线l 1:y =k 1x +2√3与x 轴、y 轴分别交于点A 、B 两点,OA =√3OB ,直线l 2:y =k 2x +b 经过点C (1,−√3),与x 轴、y 轴和线段AB 分别交于点E 、F 、D 三点.(1)求直线l 1的解析式;(2)如图①:若EC =ED ,求点D 的坐标和△BFD 的面积;(3)如图②:在坐标轴上是否存在点P ,使△PCD 是以CD 为底边的等腰直角三角形,若存在,请直接写出点P 的坐标;若不存在,请说明理由.【思路点拨】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)如图1中,作CM⊥OA于M,DN⊥CA于N.由△CME≌△DNE(AAS),推出CM=DN由C(1,−√3),可得CM=DN=√3,再利用待定系数法即可解决问题;(3)分点P在y轴或x轴两种情形分别求解即可解决问题;【解析】解:(1)∵直线y=k1x+2√3与y轴B点,∴B(0,2√3),∴OB=2√3,∵OA=√3OB=6,∴A(6,0),把A(6,0)代入y=k1x+2√3得到,k1=−√33,∴直线l1的解析式为y=−√33x+2√3.(2)如图1中,作CM⊥OA于M,DN⊥CA于N.∵∠CME=∠DNE=90°,∠MEC=∠NED,EC=DE,∴△CME≌△DNE(AAS),∴CM=DN∵C (1,−√3),∴CM =DN =√3,当y =√3时,√3=−√33x +2√3, 解得x =3,∴D (3,√3),把C (1,−√3),D (3,√3)代入y =k 2x +b ,得到{k 2+b =−√33k 2+b =√3, 解得{k 2=√3b =−2√3, ∴直线CD 的解析式为y =√3x ﹣2√3,∴F (0,﹣2√3),∴S △BFD =12×4√3×3=6√3.(3)①如图③﹣1中,当PC =PD ,∠CPD =90°时,作DM ⊥OB 于M ,CN ⊥y 轴于N .设P (0,m ).∵∠DMP =∠CNP =∠CPD =90°,∴∠CPN +∠PCN =90°,∠CPN +∠DPM =90°,∴∠PCN =∠DPM ,∵PD =PC ,∴△DMP ≌△NPC (AAS ),∴CN =PM =1,PN =DM =m +√3,∴D (m +√3,m +1),把D 点坐标代入y =−√33x +2√3,得到:m +1=−√33(m +√3)+2√3,解得m =4√3−6,∴P (0,4√3−6).②如图③﹣2中,当PC=PC,∠CPD=90时,作DM⊥OA于M,CN⊥OA于N.设P(n,0).同法可证:△DMP≌△PNC,∴PM=CN=√3,DM=PN=n﹣1,∴D(n−√3,n﹣1),把D点坐标代入y=−√33x+2√3,得到:n﹣1=−√33(n−√3)+2√3,解得n=2√3∴P(2√3,0).综上所述,满足条件的点P坐标为(0,4√3−6)或(2√3,0)【点睛】本题属于一次函数综合题,考查了待定系数法,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数解决问题,属于中考压轴题.4.如图1,在平面直角坐标系中,A(a,0),B(0,b),且a,b满足b=√a2−4+√4−a2+16a+2(1)求直线AB的解析式;(2)第一象限内是否存在一点M,使△ABM是等腰直角三角形,若存在,求出点M的坐标;若不存在,请说明理由;(3)如图2过点A的直线y=kx﹣2k交y轴负半轴于点P,N点的横坐标为﹣1,过点N的直线y=k2x−k2交AP于点M,交x轴于点C,求证:NC=MC.【思路点拨】(1)由二次根式的被开方数是非负数可以求得a 、b 的值.则易求点A 、B 的坐标.设直线AB 的方程为y =kx +b (k ≠0),将其分别代入该解析式列出关于k 、b 的方程组,通过解方程组即可求得它们的值;(2)需要分类讨论:当AB 为底和当AB 为腰时,分别求得点M 的坐标;(3)将y =kx ﹣2k 与y =k 2x −k 2联立求出M 的坐标为(3,k ),由条件可求得N 的坐标为(﹣1,﹣k ),C 的坐标为(1,0),作CG ⊥x 轴于G 点,MH ⊥x 轴于H 点,可证△NGC ≌△MHC ,得NC =MC .【解析】解:(1)依题意,得:{a 2−4≥04−a 2≥0a +2≠0,解得a =2;则b =4.所以A (2,0),B (0,4),设直线AB 解析式为y =kx +b (k ≠0),将A 与B 坐标代入得:{2k +b =0b =4, 解得:{k =−2b =4, 则直线AB 的解析式为y =﹣2x +4;(2)如图1,分三种情况:①如图1,当BM ⊥BA ,且BM =BA 时,过M 作MN ⊥y 轴于N ,∵BM ⊥BA ,MN ⊥y 轴,OB ⊥OA ,∴∠MBA =∠MNB =∠BOA =90°,∴∠NBM +∠NMB =90°,∠ABO +∠NBM =90°,∴∠ABO =∠NMB ,在△BMN 和△ABO 中{∠MNB =∠BOA ∠NMB =∠ABO BM =AB,∴△BMN ≌△ABO (AAS ),MN =OB =4,BN =OA =2,∴ON =2+4=6,∴M 的坐标为(4,6 );②如图2当AM ⊥BA ,且AM =BA 时,过M 作MN ⊥x 轴于N ,△BOA ≌△ANM (AAS ),同理求出M 的坐标为(6,2);③如图4,当AM⊥BM,且AM=BM时,过M作MN⊥X轴于N,MH⊥Y轴于H,则△BHM≌△AMN,∴MN=MH,设M(x,x),由勾股定理得,(x﹣2)2+x2=(4﹣x)2+x2,解得,x=3;∴M点的坐标为(3,3)综上所知M点的坐标为(4,6)(6,2)(3,3);(3)将y=kx﹣2k与y=k2x−k2联立求出M的坐标为(3,k),由条件可求得N的坐标为(﹣1,﹣k),C的坐标为(1,0),作CG⊥x轴于G点,MH⊥x轴于H点,可证△NGC≌△MHC,得NC=MC.【点睛】本题主要考查对一次函数图象上点的坐标特征,等腰直角三角形性质,用待定系数法求正比例函数的解析式,全等三角形的性质和判定,二次根式的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.。

中考几何-动态试题解法(解析版)

中考几何-动态试题解法(解析版)

中考几何动态试题解法专题知识点概述一、动态问题概述1.就运动类型而言,有函数中的动点问题有图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。

2.就运动对象而言,几何图形中的动点问题有点动、线动、面动三大类。

3.就图形变化而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等。

4.动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。

另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。

所以说,动态问题是中考数学当中的重中之重,属于初中数学难点,综合性强,只有完全掌握才能拿高分。

二、动点与函数图象问题常见的四种类型1.三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。

2.四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。

3.圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。

4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。

三、图形运动与函数图象问题常见的三种类型1.线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。

2.多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。

3.多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。

四、动点问题常见的四种类型解题思路1.三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系。

一次函数背景下的图象存在性问题

一次函数背景下的图象存在性问题

专题六 一次函数背景下的图象存在性问题考点一:一次函数中等腰三角形存在性问题【例1】.如果一次函数y =﹣43x +6的图象与x 轴、y 轴分别交于A 、B 两点,M 点在x 轴上,并且使得以 点A 、B 、M 为顶点的三角形是等腰三角形,则M 点的坐标为 .【变1-1】.如图,在平面直角坐标系中,直线MN 的函数解析式为y =﹣x +3,点A 在线段MN 上且满足AN =2AM ,B 点是x 轴上一点,当△AOB 是以OA 为腰的等腰三角形时,则B 点的坐标为 .【变1-2】.如图,在平面直角坐标系中,直线y=﹣2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.(1)求点C的坐标.(2)若P是x轴上的一个动点,直接写出当△OPC是等腰三角形时P的坐标.考点二:一次函数中直角三角形存在性问题【例2】.已知点A、B的坐标分别为(2,2)、(5,1),试在x轴上找一点C,使△ABC为直角三角形.【变2-1】.如图,一次函数y=kx+1的图象过点A(1,2),且与x轴相交于点B.若点P是x轴上的一点,且满足△ABP是直角三角形,则点P的坐标是.【变2-2】.如图,已知一次函数y=x﹣2的图象与y轴交于点A,一次函数y=4x+b的图象与y轴交于点B,且与x轴以及一次函数y=x﹣2的图象分别交于点C、D,点D的坐标为(﹣2,﹣4).(1)关于x、y的方程组的解为.(2)求△ABD的面积;(3)在x轴上是否存在点E,使得以点C,D,E为顶点的三角形是直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.考点三:一次函数中平行四边形存在性问题【例3】.如图,已知一次函数y=kx+b的图象经过A(1,3),B(﹣2,﹣1)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的表达式;(2)求△AOB的面积;(3)平面内是否存在一点M,使以点M、C、O、B为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标,若不存在,请说明理由.【变3-1】.如图1,在平面直角坐标系中,直线y =﹣21x +3与x 轴、y 轴相交于A 、B 两点,点C 在线段OA 上,将线段CB 绕着点C 顺时针旋转90°得到CD ,此时点D 恰好落在直线AB 上,过点D 作DE ⊥x 轴于点E .(1)求证:△BOC ≌△CED ;(2)如图2,将△BCD 沿x 轴正方向平移得△B 'C 'D ',当B 'C '经过点D 时,求△BCD 平移的距离及点D 的坐标;(3)若点P 在y 轴上,点Q 在直线AB 上,是否存在以C 、D 、P 、Q 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的P 点的坐标;若不存在,请说明理由.考点四:一次函数中矩形存在性问题【例4】.如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,且OA、OB的长满足|OA﹣8|+(OB﹣6)2=0,∠ABO的平分线交x轴于点C过点C作AB的垂线,垂足为点D,交y轴于点E.(1)求线段AB的长;(2)求直线CE的解析式;(3)若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以A、B、M、P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【变4-1】.如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣4x+3=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求点H到x轴的距离;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.考点五:一次函数中菱形存在性问题【例5】.如图1,直线y =43x +6与x ,y 轴分别交于A ,B 两点,∠ABO 的角平分线与x 轴相交于点C . (1)求点C 的坐标;(2)在直线BC 上有两点M ,N ,△AMN 是等腰直角三角形,∠MAN =90°,求点M 的坐标;(3)点P 在y 轴上,在平面上是否存在点Q ,使以点A 、B 、P 、Q 为顶点的四边形为菱形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【变5-1】.如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于点D、C,直线AB与y轴交于点B(0,﹣2),与直线CD交于点A(m,2).(1)求直线AB的解析式;(2)点E是射线CD上一动点,过点E作EF∥y轴,交直线AB于点F,若以O、C、E、F为顶点的四边形是平行四边形,请求出点E的坐标;(3)设P是射线CD上一点,在平面内是否存在点Q,使以B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.巩固练习1.如图,在平面直角坐标系中,点A坐标为(2,1),连接OA,点P是x轴上的一动点,如果△OAP是等腰三角形,请你写出符合条件的点P坐标.2.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为.3.直线l1交x轴于点A(63,0),交y轴于B(0,6).(1)如图,折叠△AOB,使BA落在y轴上,折痕所在直线为l2,直线l2与x轴交于C点,求C点坐标及l2的解析式;(2)在直线l1上找点M,使得以M、A、C为顶点的三角形是等腰三角形,求出所有满足条件的M点的坐标.4.在平面直角坐标系中,直线y=kx+8k(k是常数,k≠0)与坐标轴分别交于点A,点B,且点B的坐标为(0,6).(1)求点A的坐标;(2)如图1,将直线AB绕点B逆时针旋转45°交x轴于点C,求直线BC的解析式;(3)在(2)的条件下,直线BC上有一点M,坐标平面内有一点P,若以A、B、M、P为顶点的四边形是菱形,请直接写出点P的坐标.5.如图,直线y =﹣x +4与x 轴、y 轴分别交于A 、B 两点,直线BC 与x 轴、y 轴分别交于C 、B 两点,连接BC ,且OC =43OB . (1)求点A 的坐标及直线BC 的函数关系式;(2)点M 在x 轴上,连接MB ,当∠MBA +∠CBO =45°时,求点M 的坐标;(3)若点P 在x 轴上,平面内是否存在点Q ,使点B 、C 、P 、Q 为顶点的四边形是菱形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.6.已知,一次函数643+=x y -的图象与x 轴、y 轴分别交于点A 、点B ,与直线y =x 45相交于点C .过点B 作x 轴的平行线l .点P 是直线l 上的一个动点.(1)求点A ,点B 的坐标.(2)求点C 到直线l 的距离.(3)若S △AOC =S △BCP ,求点P 的坐标.(4)若点E 是直线y =x 45上的一个动点,当△APE 是以AP 为直角边的等腰直角三角形时,请直接写出点E 的坐标.7.如图,在平面直角坐标系xOy 中,直线y =﹣2321+x 与y =x 相交于点A ,与x 轴交于点B . (1)求点A ,B 的坐标; (2)在平面直角坐标系xOy 中,是否存在一点C ,使得以O ,A ,B ,C 为顶点的四边形是平行四边形?如果存在,试求出所有符合条件的点C 的坐标;如果不存在,请说明理由;(3)在直线OA 上,是否存在一点D ,使得△DOB 是等腰三角形?如果存在,试求出所有符合条件的点D 的坐标,如果不存在,请说明理由.8.如图1,已知直线l 1:y =kx +4交x 轴于A (4,0),交y 轴于B .(1)直接写出k 的值为 ;(2)如图2,C 为x 轴负半轴上一点,过C 点的直线l 2:n x y +=21经过AB 的中点P ,点Q (t ,0)为x 轴上一动点,过Q 作QM ⊥x 轴分别交直线l 1、l 2于M 、N ,且MN =2MQ ,求t 的值;(3)如图3,已知点M (﹣1,0),点N (5m ,3m +2)为直线AB 右侧一点,且满足∠OBM =∠ABN ,求点N 坐标.9.如图,在平面直角坐标系中,直线AB:y=﹣x+4与x轴、y轴分别交于点A、B,点C在y轴的负半轴上,若将△CAB沿直线AC折叠,点B恰好落在x轴正半轴上的点D处.(1)点A的坐标是,点B的坐标是,AB的长为;(2)求点C的坐标;(3)点M是y轴上一动点,若S△MAB=S△OCD,直接写出点M的坐标;(4)在第一象限内是否存在点P,使△P AB为等腰直角三角形,若存在,直接写出点P的坐标;若不存在,请说明理由.10.如图,直角坐标系中,直线y=kx+b分别与x轴、y轴交于点A(3,0),点B(0,﹣4),过D(0,8)作平行x轴的直线CD,交AB于点C,点E(0,m)在线段OD上,延长CE交x轴于点F,点G在x 轴正半轴上,且AG=AF.(1)求直线AB的函数表达式.(2)当点E恰好是OD中点时,求△ACG的面积.(3)是否存在m,使得△FCG是直角三角形?若存在,直接写出m的值;若不存在,请说明理由.11.如图,一次函数y1=x+n与x轴交于点B,一次函数y2=﹣x+m与y轴交于点C,且它们的图象都经过点D(1,﹣).(1)则点B的坐标为,点C的坐标为;(2)在x轴上有一点P(t,0),且t>,如果△BDP和△CDP的面积相等,求t的值;(3)在(2)的条件下,在y轴的右侧,以CP为腰作等腰直角△CPM,直接写出满足条件的点M的坐标.12.在学习一元一次不等式与一次函数的过程中,小新在同一个坐标系中发现直线l1:y1=﹣x+3与坐标轴相交于A,B两点,直线l2:y2=kx+b(k≠0)与坐标轴相交于C,D两点,两直线相交于点E,且点E 的横坐标为2.已知OC=,点P是直线l2上的动点.(1)求直线l2的函数表达式;(2)过点P作x轴的垂线与直线l1和x轴分别相交于M,N两点,当点N是线段PM的三等分点时,求P点的坐标;(3)若点Q是x轴上的动点,是否存在以A,E,P,Q为顶点的四边形是平行四边形?若存在,请求出所有满足条件的P点坐标;若不存在,请说明理由.13.(1)认识模型:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;(2)应用模型:①已知直线y=﹣2x+4与y轴交于A点,与x轴交于B点,将线段AB绕点B顺时针旋转90度,得到线段CB,求点C的坐标;②如图3,矩形ABCO,O为坐标原点,B的坐标为(5,4),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x﹣3上的一点,点Q是平面内任意一点.若四边形ADPQ 是正方形,请直接写出所有符合条件的点D的坐标.14.如图,四边形OABC为矩形,其中O为原点,A、C两点分别在x轴和y轴上,点B的坐标是(4,6),将矩形沿直线DE折叠,使点C落在AB边上点F处,折痕分别交OC、BC于点E、D,且点D的坐标是(,6).(1)求BF的长度;(2)如图2,点P在第二象限,且△PDE≌△CED,求直线PE的解析式;(3)若点M为直线DE上一动点,在x轴上是否存在点N,使以M、N、D、F为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.— 21 —。

中考数学复习《函数压轴题》经典题型及测试题(含答案)

中考数学复习《函数压轴题》经典题型及测试题(含答案)

中考数学复习《函数压轴题》经典题型及测试题(含答案)阅读与理解函数压轴题主要分为两大类:一是动点函数图象问题;二是与动点、存在点、相似等有关的二次函数综合题.解答动点函数图象问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数关系式,进而确定函数图象;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总成最终答案.类型一 动点函数图象问题此类问题一般是通过分析动点在几何图形边上的运动情况,确定出有关动点函数图象的变化情况.分析此类问题,首先要明确动点在哪条边上运动,在运动过程中引起了哪个量的变化,然后求出在运动过程中对应的函数关系式,最后根据函数关系式判断图象的变化.例1 (2016·济南) 如图,在四边形ABCD 中,AB ∥CD ,∠B =90°,AB =AD =5,BC =4,M 、N 、E 分别是A B 、AD 、CB 上的点,AM =CE =1,AN =3,点P 从点M 出发,以每秒1个单位长度的速度沿折线MB -BE 向点E 运动,同时点Q 从点N ,以相同的速度沿折线ND -DC -CE 向点E 运动,设△APQ 的面积为S ,运动的时间为t 秒,则S 与t 函数关系的大致图象为( )【分析】 由点Q 从点N 出发,沿折线NDDCCE 向点E 运动,确定出点Q 分别在ND ,DC ,CE 运动时对应的t 的取值范围,再根据t 所在的取值范围分别求出其对应的函数关系式,最后根据函数关系式确定对应的函数图象.【自主解答】过点D 作DF ⊥AB 于点F (如图1),则DF =BC =4.第15题图 A BCDM N Q∵AD =5,DF =4,∴AF =3.∴sin ∠A=DF AD =45,MF =3-1=2,BF =AB -AF =5-3=2,DC =BF =2.∵AD =5,AN =3,∴ND =5-3=2.(1)当0≤t ≤2时,点P 在MF 上,点Q 在ND 上(如图2),此时AP =AM +MP =1+t ,AQ =AN +NQ =3+t .∴S =12AP •AQ •sin ∠A =12(1+t )(3+t )×45=25(t +2)2―25.当0≤t ≤2时,S随t 的增大而增大,且当t =2时,S =6.由此可知A 、B 选项都不对.(2)当t =5时,点P 在MF 上,点Q 在ND 上(如图3),此时BP =1,PE =BC -BP -CE =4-1-1=2.∴S =12AB •PE =12×5×2=5.∵6>5,∴选项D 正确.变式训练1.如图,△ABC 是等腰直角三角形,∠C =90°,AC =BC ,AB =4,D 为AB 上的动点,DP ⊥AB 交折线A -C -B 于点P.设AD =x ,△ADP 的面积为y ,则y 与x 的函数图象正确的是( )2.(2016·烟台)如图,⊙O 的半径为1,AD ,BC 是⊙O 的两条相互垂直的直径,图1 DC B A E M N QP F 图2 A B C D E M N Q P F 图3 A B C D E (Q )M N F P点P从点O出发(P点与O点不重合),沿OCD的路线运动.设AP=x,sin∠APB =y,那么y与x之间的关系图象大致是()类型二二次函数的实际问题解答此类问题时,首先要构建合理的坐标系,并写出对应的函数解析式,并利用二次函数的性质求解后续的问题.一般来说,选择的坐标系不同,得出的解析式必然不同,因此解答此类问题时,选择最恰当的坐标系往往显得尤为重要.例2 (2017·金华) 甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=﹣时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到点O的水平距离为7m,离地面的高度为m的Q处时,乙扣球成功,求a的值.【分析】(1)①将点P(0,1)代入y=﹣(x﹣4)2+h即可求得h;②求出x=5时,y的值,与1.55比较即可得出判断;(2)将(0,1)、(7,)代入y=a(x﹣4)2+h代入即可求得a、h.【自主解答】解:(1)①当a=﹣时,y=﹣(x﹣4)2+h,将点P(0,1)代入,得:﹣×16+h=1,解得:h=;②把x=5代入y=﹣(x﹣4)2+,得:y=﹣×(5﹣4)2+=1.625,∵1.625>1.55,∴此球能过网;(2)把(0,1)、(7,)代入y=a(x﹣4)2+h,得:,解得:,∴a=﹣.变式训练3.(2017·沈阳)某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售单价是_____元时,才能在半月内获得最大利润.4、(2017•青岛)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨.下表是去年该酒店豪华间某两天的相关记录:淡季旺季未入住房间数100日总收入(元)2400040000(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?【分析】(1)根据题意可以列出相应的方程组,进而求得该酒店豪华间的间数和旺季每间的价格;(2)根据题意可以求得总收入和上涨价格之间的函数解析式,然后化为顶点式即可解答本题.【自主解答】解:(1)设淡季每间的价格为x元,酒店豪华间有y间,,解得,,∴x+x=600+=800,答:该酒店豪华间有50间,旺季每间价格为800元;(2)设该酒店豪华间的价格上涨x元,日总收入为y元,y=(800+x)(50﹣)=42025,∴当x=225时,y取得最大值,此时y=42025,答:该酒店将豪华间的价格上涨225元时,豪华间的日总收入最高,最高日总收入是42025元.类型三二次函数的综合题二次函数作为整套试卷的压轴题,往往会命制三个小问题,其中第一问求解二次函数的解析式,此问题往往利用待定系数法便可解决;第二、三问往往涉及动点问题及存在点问题,此问题需要利用全等三角形、相似三角形、平行四边形、圆等知识综合解答,计算量很大,且题目较为综合.例3 (2017·泰安) )如图,是将抛物线y=﹣x2平移后得到的抛物线,其对称轴为直线x=1,与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C.(1)求抛物线的函数表达式;(2)若点N为抛物线上一点,且BC⊥NC,求点N的坐标;(3)点P是抛物线上一点,点Q是一次函数y=x+的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P,Q的坐标;若不存在,说明理由.【分析】(1)已知抛物线的对称轴,因而可以设出顶点式,利用待定系数法求函数解析式;(2)首先求得B和C的坐标,易证△OBC是等腰直角三角形,过点N作NH⊥y 轴,垂足是H,设点N纵坐标是(a,﹣a2+2a+3),根据CH=NH即可列方程求解;(3)四边形OAPQ是平行四边形,则PQ=OA=1,且PQ∥OA,设P(t,﹣t2+2t+3),代入y=x+,即可求解.【自主解答】解:(1)设抛物线的解析式是y=﹣(x﹣1)2+k.把(﹣1,0)代入得0=﹣(﹣1﹣1)2+k,解得k=4,则抛物线的解析式是y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)在y=﹣x2+2x+3中令x=0,则y=3,即C的坐标是(0,3),OC=3.∵B的坐标是(3,0),∴OB=3,∴OC=OB,则△OBC是等腰直角三角形.∴∠OCB=45°,过点N作NH⊥y轴,垂足是H.∵∠NCB=90°,∴∠NCH=45°,∴NH=CH,∴HO=OC+CH=3+CH=3+NH,设点N纵坐标是(a,﹣a2+2a+3).∴a+3=﹣a2+2a+3,解得a=0(舍去)或a=1,∴N的坐标是(1,4);(3)∵四边形OAPQ是平行四边形,则PQ=OA=1,且PQ∥OA,设P(t,﹣t2+2t+3),代入y=x+,则﹣t2+2t+3=(t+1)+,整理,得2t2﹣t=0,解得t=0或.∴﹣t2+2t+3的值为3或.∴P、Q的坐标是(0,3),(1,3)或(,)、(,).变式训练5.(2016·襄阳) 如图,已知点A的坐标为(﹣2,0),直线y=﹣x+3与x轴、y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A、B、C三点.(1)请直接写出B、C两点的坐标,抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P是第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP 为平行四边形,求点P的坐标;(3)设点M是线段BC上的一动点,过点M作MN∥AB,交AC 于点N,点Q从点B出发,以每秒1个单位长度的速度沿线段BA 向点A运动,运动时间为t(秒),当t(秒)为何值时,存在△QMN 为等腰直角三角形?解:(1)令x=0代入y=﹣x+3∴y=3,∴C(0,3),令y=0代入y=﹣x+3∴x=4,∴B(4,0),设抛物线的解析式为:y=a(x+2)(x﹣4),把C(0,3)代入y=a(x+2)(x﹣4),∴a=﹣,∴抛物线的解析式为:y=(x+2)(x﹣4)=﹣x2+x+3,∴顶点D的坐标为(1,);(2)当DP∥BC时,此时四边形DEFP是平行四边形,设直线DP的解析式为y=mx+n,∵直线BC的解析式为:y=﹣x+3,∴m=﹣,∴y=﹣x+n,把D(1,)代入y=﹣x+n,∴n=,∴直线DP的解析式为y=﹣x+,∴联立,解得:x=3或x=1(舍去),∴把x=3代入y=﹣x+,y=,∴P的坐标为(3,);(3)由题意可知:0≤t≤6,设直线AC的解析式为:y=m1x+n1,把A(﹣2,0)和C(0,3)代入y=m1x+n1,得:,∴解得,∴直线AC的解析式为:y=x+3,由题意知:QB=t,如图1,当∠NMQ=90°,∴OQ=4﹣t,令x=4﹣t代入y=﹣x+3,∴y=t,∴M(4﹣t,t),∵MN∥x轴,∴N的纵坐标为t,把y=t代入y=x+3,∴x=t﹣2,∴N(t﹣2,t),∴MN=(4﹣t)﹣(﹣2)=6﹣t,∵MQ∥OC,∴△BQM∽△BOC,∴,∴MQ=t,当MN=MQ时,∴6﹣t=t,∴t=,此时QB=,符合题意,如图2,当∠QNM=90°时,∵QB=t,∴点Q的坐标为(4﹣t,0)∴令x=4﹣t代入y=x+3,∴y=9﹣t,∴N(4﹣t,9﹣t),∵MN∥x轴,∴点M的纵坐标为9﹣t,∴令y=9﹣t代入y=﹣x+3,∴x=2t﹣8,∴M(2t﹣8,9﹣t),∴MN=(2t﹣8)﹣(4﹣t)=3t﹣12,∵NQ∥OC,∴△AQN∽△AOC,∴=,∴NQ=9﹣t,当NQ=MN时,∴9﹣t=3t﹣12,∴t=,∴此时QB=,符合题意如图3,当∠NQM=90°,过点Q作QE⊥MN于点E,过点M作MF⊥x轴于点F,设QE=a,令y=a代入y=﹣x+3,∴x=4﹣,∴M(4﹣a,a),令y=a代入y=x+3,∴x=﹣2,∴N(﹣2,0),∴MN=(4﹣a)﹣(a﹣2)=6﹣2a,当MN=2QE时,∴6﹣2a=2a,∴a=,∴MF=QE=,∵MF∥OC,∴△BMF∽△BCO,∴=,∴BF=2,∴QB=QF+BF=+2=,∴t=,此情况符合题意,综上所述,当△QMN为等腰直角三角形时,此时t=或或6.(2017·潍坊) 如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等两部分,与抛物线交于另一点F.点P在直线l上方抛物线上一动点,设点P的横坐标为t(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(﹣1,0),∴C(1,0),∴线段AC的中点为(,),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,∴直线l的解析式为y=﹣x+,联立直线l和抛物线解析式可得,解得或,∴F(﹣,),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,﹣t2+2t+3),M(t,﹣t+),∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,∴S△PEF =S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+×,∴当t=时,△PEF的面积最大,其最大值为×,∴最大值的立方根为=;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴=,即=,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去),综上可知存在满足条件的点P,t的值为1或.。

中考数学复习考点知识讲解与练习27 二次函数-存在性问题

中考数学复习考点知识讲解与练习27 二次函数-存在性问题

中考数学复习考点知识讲解与练习 专题27 二次函数-存在性问题存在性问题是判断事物是否存在的问题,其知识点较广,综合性强,解题方法较灵活,对学生解决问题能力要求高,中考题中往往出现在压轴题中,其解题的一般思路是:假设存在--推理论证--得出结论---合理就存在在,反之不存在。

存在性的问题有点、面、线段、图形的存在等等。

解题方法多以设参数--表示点坐标--表示线段长--表示面积---建立方程等方法解决问题。

1.如图,二次函数的图象交x 轴于点()()1,0,4,0A B -,交y 轴于点()0,4,C P -是直线BC 下方抛物线上一动点. (1)求这个二次函数的表达式;(2)连接,PB PC ,是否存在点P ,使PBC ∆面积最大,若存在,求出点P 的坐标;若不存在,请说明理由.2.如图,二次函数 2 2y ax bx =++经过点()1,0A -和点()4,0B ,与y 轴交于点C .()1求抛物线的解析式;()2D 为y 轴右侧抛物线上一点,是否存在点D ,使若存在23ABC ABD S S ∆∆=,请直接写出点D 的坐标;若不存在,请说明理由.3.如图,在平面直角坐标系中,己知二次函数283y ax x c =++的图像与y 轴交于点B (0,4),与x 轴交于点A (-1,0)和点D . (1)求二次函数的解析式; (2)求抛物线的顶点和点D 的坐标;(3)在抛物线上是否存在点P ,使得△BOP 的面积等于52?如果存在,请求出点P 的坐标?如果不存在,请说明理由.4.如图,已知二次函数2(1)y x a x a =-++-与x 轴交于A 、B 两点(点A 位于点B 的左侧),与y 轴交于点C ,已知BAC ∆的面积是6.(1)求a 的值;(2)在抛物线上是否存在一点P ,使ABP ABC S S ∆∆=.存在请求出P 坐标,若不存在请说明理由.5.如图所示,二次函数2y ax bx c =++的图象与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB OC <)是方程210160x x -+=的两个根,且A 点坐标为(60)-,. (1)求此二次函数的表达式;(2)若点E 是线段AB 上的一个动点(与点A 、B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE . 设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(3)在(2)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.6.关于x 的一元二次方程()222110k x k x --+=有两个实数根.()1求k 的取值范围;()2是否存在实数k ,使方程的实数根互为相反数?若存在,求k ;若不存在,请说明理由.6.如图,在平面直角坐标系xOy 中,二次函数22y x bx c =++的图象与x 轴交于A (-1,0)、B (3,0)两点, 顶点为C . (1) 求此二次函数解析式;(2) 点D 为点C 关于x 轴的对称点,过点A 作直线l :33y x =+交BD 于点E ,过点B 作直线BK ∥AD 交直线l 于K 点.问:在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由; (3) 在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.8.如图是二次函数()2y x m k =++的图象,其顶点坐标为()1,4M -.(1)直接写出m 、k 的值;(2)求二次函数的图象与x 轴的交点A ,B 的坐标;(3)在二次函数的图象上是否存在点P ,使54PAB MAB S S =△△?若存在,求出点P 的坐标;若不存在,请说明理由.9.如图,二次函数212y x bx c =++的图象交x 轴于,A D 两点,并经过B 点,已知A 点坐标是()2,0,B 点坐标是()8,6. (1)求二次函数的解析式;(2)求函数图象的顶点坐标及D 点的坐标;(3)二次函数的对称轴上是否存在一点C ,使得CBD ∆的周长最小?若C 点存在,求出C 点的坐标,若C 点不存在,请说明理由.10.如图是二次函数c bx x y ++=2的图象,其顶点坐标为M (1,-4). (1)求出图象与x 轴的交点A ,B 的坐标; (2)在二次函数的图象上是否存在点P ,使MAB PAB S S ∆∆=45,若存在,求出P 点的坐标;若不存在,请说明理由;11.如图,二次函数y=﹣14x2+bx+c的图象经过点A(4,0),B(﹣4,﹣4),且与y轴交于点C.(1)求此二次函数的解析式;(2)证明:AO平分∠BAC;(3)在二次函数对称轴上是否存在一点P使得AP=BP?若存在,请求出点P的坐标;若不存在,请说明理由.11.(本题满分10分)如图是二次函数的图象,其顶点坐标为M(1,-4).(1)求出图象与轴的交点A,B的坐标;(2)(2)在二次函数的图象上是否存在点P,使,若存在,求出P点的坐标;若不存在,请说明理由;13.如图,二次函数212y x bx c =-++的图象经过A(2,0),B(0,-6)两点. (1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA ,BC ,求△ABC 的面积. (3)在x 轴上是否存在一点P ,使△ABP 为等腰三角形,若存在,求出P 的坐标,若不存在,说明理由.14.如图,二次函数2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于c 顶点,已知(1,0)A ,(0,3)C -.(1)求此二次函数的解析式及B 点坐标.(2)在抛物线上存在一点P 使ABP ∆的面积为10,不存在说明理由,如果存在,请求出P 的坐标.(3)根据图象直接写出33x -<<时,y 的取值范围.15.如图,已知二次函数223y x x =+-的图象与x 轴相交于C D 、两点(点C 在点D 的左边),与y 轴交于点B ,点A 在二次函数的图像上,且AB ∥x 轴.问线段BC 上是否存在点P ,使△POC 为等腰三角形;如果存在,求出点P 的坐标;如果不存在,请说明理由.16.已知二次函数:2(21)2(0)y ax a x a =+++<. (1)求证:二次函数的图象与x 轴有两个交点;(2)当二次函数的图象与x 轴的两个交点的横坐标均为整数,且a 为负整数时,求a 的值及二次函数的解析式并画出二次函数的图象(不用列表,只要求用其与x 轴的两个交点A ,B (A 在B 的左侧),与y 轴的交点C 及其顶点D 这四点画出二次函数的大致图象,同时标出A ,B ,C ,D 的位置);(3)在(2)的条件下,二次函数的图象上是否存在一点P 使75PCA ︒∠=?如果存在,求出点P 的坐标;如果不存在,请说明理由.17.如图,二次函数2y x bx c =-++的图象经过坐标原点,与x 轴的另一个交点为A (-2,0).(1)求二次函数的解析式(2)在抛物线上是否存在一点P ,使△AOP 的面积为3,若存在请求出点P 的坐标,若不存在,请说明理由.18.二次函数y=ax 2+bx+c (a≠0)的图象经过点A (3,0),B (2,﹣3),并且以x=1为对称轴.(1)求此函数的解析式; (2)作出二次函数的大致图象;(3)在对称轴x=1上是否存在一点P ,使△PAB 中PA=PB ?若存在,求出P 点的坐标;若不存在,说明理由.19.如图,已知二次函数21:43L y x x =-+与x 轴交于AB 、两点(点A 在点B 的左边),与y 轴交于点C .(1)写出AB 、两点的坐标;(2)二次函数()22:430L y kx kx k k =-+≠,顶点为P .①直接写出二次函数2L 与二次函数1L 有关图象的两条相同的性质;②是否存在实数k ,使ABP ∆为等边三角形?如存在,请求出k 的值;如不存在,请说明理由;③若直线8y k =与抛物线2L 交于E F 、两点,问线段EF 的长度是否发生变化?如果不会,请求出EF 的长度;如果会,请说明理由.20.如图,已知二次函数y =x 2﹣2x +m 的图象与x 轴交于点A 、B ,与y 轴交于点C ,直线AC 交二次函数图象的对称轴于点D ,若点C 为AD 的中点. (1)求m 的值;(2)若二次函数图象上有一点Q ,使得tan ∠ABQ =3,求点Q 的坐标;(3)对于(2)中的Q 点,在二次函数图象上是否存在点P ,使得△QBP ∽△COA ?若存在,求出点P 的坐标;若不存在,请说明理由.21.如图,二次函数y =12x 2+bx+c 的图象交x 轴于A 、D 两点,并经过B 点,已知A 点坐标是(2,0),B 点坐标是(8,6).(1)求二次函数的解析式;(2)求函数图象的顶点坐标及D 点的坐标;(3)二次函数的对称轴上是否存在一点C ,使得△CBD 的周长最小?若C 点存在,求出C 点的坐标;若C 点不存在,请说明理由.22.已知:如图,二次函数y=x 2+bx+c 的图象过点A (1,0)和C (0,﹣3)(1)求这个二次函数的解析式;(2)如果这个二次函数的图象与x 轴的另一个交点为B ,求线段AB 的长.(3)在这条抛物线上是否存在一点P ,使△ABP 的面积为8?若存在,求出点P 的坐标;若不存在,请说明理由.23.已知二次函数22y x 2mx m 1=-+-.(1)当二次函数的图象经过坐标原点O (0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y 轴交于点C ,顶点为D ,求C 、D 两点的坐标;(3)在(2)的条件下,x 轴上是否存在一点P ,使得PC+PD 最短?若P 点存在,求出P点的坐标;若P 点不存在,请说明理由.24.如图,二次函数214y x bx c =-++的图象经过点()4,0A ,()4,4B --,且与y 轴交于点C .(1)当二次函数的图象经过坐标原点O (0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y 轴交于点C ,顶点为D ,求C 、D 两点的坐标;(3)在(2)的条件下,x 轴上是否存在一点P ,使得PC+PD 最短?若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由.25.如图,二次函数24y ax x c =-+的图象经过坐标原点,与x 轴交于点()4,0A -.(1)求二次函数的解析式;(2)在抛物线上存在点P ,满足6AOP S =,试求出点P 的坐标.26.已知二次函数2y ax bx c =++的图象过点()2,0且与直线334y x =-+相交于B 、C 两点,点B 在x 轴上,点C 在y 轴上.()1求二次函数的解析式.()2如果(),P x y 是线段BC 上的动点,O 为坐标原点,试求POA 的面积S 与x 之间的函数关系式,并求出自变量的取值范围. ()3是否存在这样的点P ,使PO AO =?若存在,求出点P 的坐标;若不存在,请说明理由.27.已知二次函数2y ax bx c =++(a ≠0)的图象过点E (2,3),对称轴为1x =,它的图象与x 轴交于两点(1x ,0),B (2x ,0),且12x x <,221210x x +=.(1)求这个二次函数的解析式;(2)在(1)中抛物线上是否存在点P ,使△POA 的面积等于△EOB 的面积?若存在,求出点P 的坐标;若不存在,请说明理由.28.已知二次函数y =﹣x 2+x +m .(1)如图,二次函数的图象过点A (3,0),与y 轴交于点B ,求直线AB 和二次函数图象的解析式;(2)在线段AB 上有一动点P (不与A ,B 两点重合),过点P 作x 轴的垂线,交抛物线于点D ,是否存在一点P 使线段PD 的长有最大值?若存在,求出点P 的坐标;若不存在,请说明理由.29.下图是二次函数2()y x m k =++的图象,其顶点坐标为()1,4M -.()1求出图象与x 轴的交点A ,B 的坐标;()2在二次函数的图象上是否存在点P ,使54PAB MAB S S =?若存在,求出P 点的坐标;若不存在,请说明理由; ()3将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线(1)y x b b =+<与此图象有两个公共点时,b 的取值范围.30.如图,二次函数y =(x -2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y =kx +b 的图象经过该二次函数图象上的点A(1,0)及点B .(1)求m 的值与一次函数的解析式;(2)抛物线上是否存在一点P ,使S △ABP =S △ABC ?若存在,请直接写出点P 的坐标;若不存在,请说明理由.31.二次函数2y ax bx c =++过()1,0A -、()3,0B 两点,与y 轴正半轴交于C ,OC OB =(1)求二次函数解析式;(2)抛物线对称轴上是否存在点D ,使得三角形ACD 为等腰三角形,若存在,直接写出D 坐标,若不存在,请说明理由.(3)在直线BC 上方的抛物线上有点P ,作PQ BC ⊥于点Q ,求PQ 最大值.32.如图,二次函数与一次函数交于顶点(4,1)A --和点(2,3)B -两点,一次函数与y 轴交于点C .(1)求二次函数1y 和一次函数2y 的解析式;(2)y 轴上存在点P 使PAB ∆的面积为9,求点P 的坐标.33.如图,已知二次函数2y x bx c =-++的图象经过点()1,0A -,()3,0B ,与y 轴交于点C .(1)求抛物线的解析式;(2)抛物线上是否存在点P ,使PAB ABC ∠=∠,若存在请直接写出点P 的坐标.若不存在,请说明理由.34.如图,已知二次函数y=x2+bx+c的图象分别经过点A(1,0),B(0,3),(1)求该函数的解析式;(2)在抛物线上是否存在一点P,使△APO的面积等于4?若存在,求出点P的坐标若不存在,说明理由.。

一次函数的存在性问题(共13题)

一次函数的存在性问题(共13题)

一次函数之存在性问题知识点睛函数背景下研究存在性问题,先把函数信息转化为几何信息,然后按照存在性问题来处理.几何图形一次函数坐标1.如图,直线2y x=+与坐标轴分别交于A,B两点,点C在y轴上,且12OAAC=,直线CD ⊥AB于点P,交x轴于点D.(1)求点P的坐标;(2)坐标系内是否存在点M,使以点B,P,D,M为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.2. 如图,直线y =kx -4与x 轴、y 轴分别交于B ,C 两点,且43OC OB . (1)求B 点的坐标和k 的值.(2)若点A (x ,y )是第一象限内的直线y =kx -4上的一个动点,则当点A 运动到什么位置时,△AOB 的面积是6?(3)在(2)成立的情况下,x 轴上是否存在点P ,使△POA 是等腰三角形?若存在,求出点P3. 如图,在平面直角坐标系中,点A ,B 分别在x 轴、y 轴上,OA =6,OB =12,点C 是直线y =2x与直线AB的交点,点D在线段OC上,OD=(1)求直线AB的解析式及点C的坐标;(2)求直线AD的解析式;(3)P是直线AD上的一个动点,在平面内是否存在点Q,使以O,A,P,Q为顶点的四边形是菱形?若存在,求出点Q的坐标;若不存在,请说明理由.4. 如图,直线122y x =+与x 轴、y 轴分别交于A ,B 两点,点C 的坐标为(-3,0),P (x ,y )是直线122y x =+上的一个动点(点P 不与点A 重合). (1)在P 点运动过程中,试写出△OPC 的面积S 与x 的函数关系式;(2)当P 运动到什么位置时,△OPC 的面积为278,求出此时点P 的坐标;(3)过P 作AB 的垂线分别交x 轴、y 轴于E ,F 两点,是否存在这样的点P ,使△EOF ≌△BOA ?若存在,求出点P 的坐标;若不存在,请说明理由.6.如图,在直角坐标系中,一次函数y=23x +的图象与x 轴交于点A ,与y 轴交于点B . (1)已知OC ⊥AB 于C ,求C 点坐标;(2)在x 轴上是否存在点P ,使△PAB 为等腰三角形?若存在,请直接写出点P 的坐标;若xx不存在,请说明理由.7.如图,一次函数y=+x轴、y轴分别交于点A,B,以线段AB为直角边在第一象限内作Rt△ABC,且使∠ABC=30°.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,2),试用含m的代数式表示△APB的面积,并求当△APB与△ABC面积相等时m的值;(3)在坐标轴上是否存在一点Q,使△QAB是等腰三角形?若存在,请直接写出点Q所有可能的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系中,直线y=x+1与y=-34x+3交于点A,分别交x轴于点B和点C,点D是直线AC上的一个动点.(1)求出点A,B,C的坐标;(2)在直线AB上是否存在点E,使得以点E,D,O,A为顶点的四边形是平行四边形?如果存在,求出点E的坐标;如果不存在,请说明理由.9.如图,在平面直角坐标系中,直线l1:y=162x-+分别与x轴、y轴交于点B,C,且与直线l2:y=12x交于点A.(1)求出点A,B,C的坐标;(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O,C,P,Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.10.如图,直线y=kx-1与x轴、y轴分别交于B,C两点,且12 OCOB.(1)求B点的坐标和k的值.(2)若点A(x,y)是第一象限内的直线y=kx-1上的一个动点,则当点A运动到什么位置时,△AOB的面积是2?(3)在(2)成立的情况下,x轴上是否存在点P,使△POA是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.11.如图,将Rt△AOB放入平面直角坐标系中,点O与坐标原点重合,点A在x轴上,点B∠BAO=30°,将△AOB沿直线BE折叠,使得边OB落在AB上,点O与点D重合.(1)求直线BE的解析式;(2)求点D的坐标;(3)x轴上是否存在点P,使△PAD是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.12.如图,四边形ABCD为矩形,点D与坐标原点重合,点C在x轴上,点A在y轴上,点B的坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,点E,F分别在AD,AB上,且F点的坐标是(2,4).(1)求点G 的坐标; (2)求直线EF 的解析式;(3)坐标系内是否存在点M ,使以点A ,E ,F ,M 为顶点的四边形为平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.13.如图,在平面直角坐标系中,直线y =-x +8与x 轴、y 轴分别交于点A ,B ,点P (x ,y )是直线AB 上一动点(点P 不与点A 重合),点C (6,0),O 是坐标原点,设△PCO 的面积为S .(1)求S 与x 的函数关系式.(2)当点P 运动到什么位置时,△PCO 的面积为15?(3)过点P 作AB 的垂线分别交x 轴、y 轴于点E ,F ,是否存在这样的点P ,使△EOF ≌△BOA ?若存在,求出点P 的坐标;若不存在,请说明理由.。

江苏省南通市通州区2024届中考联考数学试题含解析

江苏省南通市通州区2024届中考联考数学试题含解析

江苏省南通市通州区2024届中考联考数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(共10小题,每小题3分,共30分)1.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是()A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为22.如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()A.①B.③C.②或④D.①或③3.由五个相同的立方体搭成的几何体如图所示,则它的左视图是( )A.B.C.D.4.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD的正切值是()A.43B.35C.53D.345.如图,半径为1的圆O1与半径为3的圆O2相内切,如果半径为2的圆与圆O1和圆O2都相切,那么这样的圆的个数是()A.1 B.2 C.3 D.46.下列等式正确的是()A.x3﹣x2=x B.a3÷a3=aC.231(2)(2)2-÷-=-D.(﹣7)4÷(﹣7)2=﹣727.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁8.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()A.(2017,0)B.(2017,12)C.(2018,3)D.(2018,0)9.点A、C为半径是4的圆周上两点,点B为AC的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆半径的中点上,则该菱形的边长为()A.7或22B.7或23C.26或22D.26或2310.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=2x(x>0)的图象上,则△OAB的面积等于()A.2 B.3 C. 4 D.6二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是_____.12.若m、n 是方程x2+2018x﹣1=0 的两个根,则m2n+mn2﹣mn=_________.13.对于函数y= 2x,当函数y﹤-3时,自变量x的取值范围是____________ .14.已知点(﹣1,m)、(2,n )在二次函数y=ax2﹣2ax﹣1的图象上,如果m>n,那么a____0(用“>”或“<”连接).15.如图,A、B是双曲线y=kx上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若D为OB的中点,△ADO的面积为3,则k的值为_____.16.如图,已知点A是反比例函数2yx=-的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为______.三、解答题(共8题,共72分)17.(8分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.①若该公司当月卖出3部汽车,则每部汽车的进价为万元;②如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)18.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:此次共调查了名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.19.(8分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A、B、C、D,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图.请结合图中的信息解答下列问题:(1)本次抽查测试的学生人数为,图①中的a的值为;(2)求统计所抽查测试学生成绩数据的平均数、众数和中位数.20.(8分)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.求证:AB=DC;试判断△OEF的形状,并说明理由.21.(8分)如图,在矩形ABCD中,AB═2,3,P是BC边上的一点,且BP=2CP.(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图②,在(1)的条体下,判断EB 是否平分∠AEC ,并说明理由;(3)如图③,在(2)的条件下,连接EP 并廷长交AB 的廷长线于点F ,连接AP ,不添加辅助线,△PFB 能否由都经过P 点的两次变换与△PAE 组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)22.(10分)计算:2cos30°+27-33--(12)-2 23.(12分)如图1,在直角梯形ABCD 中,动点P 从B 点出发,沿B→C→D→A 匀速运动,设点P 运动的路程为x ,△ABP 的面积为y ,图象如图2所示.(1)在这个变化中,自变量、因变量分别是 、 ;(2)当点P 运动的路程x =4时,△ABP 的面积为y = ;(3)求AB 的长和梯形ABCD 的面积.24.如图,在平面直角坐标系中,圆M 经过原点O ,直线364y x =--与x 轴、y 轴分别相交于A ,B 两点.(1)求出A ,B 两点的坐标;(2)若有一抛物线的对称轴平行于y 轴且经过点M ,顶点C 在圆M 上,开口向下,且经过点B ,求此抛物线的函数解析式;(3)设(2)中的抛物线交轴于D 、E 两点,在抛物线上是否存在点P ,使得S △PDE =110S △ABC ?若存在,请求出点P 的坐标;若不存在,请说明理由.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39;平均数==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴选项A,B、D错误;故选C.考点:方差;加权平均数;中位数;众数.2、D【解题分析】分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.【题目详解】分两种情况讨论:①当点P顺时针旋转时,BP2增加到2,再降到02,图象③符合;②当点P逆时针旋转时,BP2降到0,再增加到22,图象①符合.故答案为①或③.故选D.【题目点拨】本题考查了动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.3、D【解题分析】找到从正面看所得到的图形即可,注意所有看到的棱都应表现在主视图中.【题目详解】解:从正面看第一层是二个正方形,第二层是左边一个正方形.故选A.【题目点拨】本题考查了简单组合体的三视图的知识,解题的关键是了解主视图是由主视方向看到的平面图形,属于基础题,难度不大.4、D【解题分析】根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD的值.【题目详解】∵CD是AB边上的中线,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BC=6,AC=8,∴tan∠A=6384 BCAC==,∴tan∠ACD的值34.故选D.【题目点拨】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A=∠ACD是解本题的关键.5、C【解题分析】分析:过O1、O2作直线,以O1O2上一点为圆心作一半径为2的圆,将这个圆从左侧与圆O1、圆O2同时外切的位置(即圆O3)开始向右平移,观察图形,并结合三个圆的半径进行分析即可得到符合要求的圆的个数.详解:如下图,(1)当半径为2的圆同时和圆O1、圆O2外切时,该圆在圆O3的位置;(2)当半径为2的圆和圆O1、圆O2都内切时,该圆在圆O4的位置;(3)当半径为2的圆和圆O1外切,而和圆O2内切时,该圆在圆O5的位置;综上所述,符合要求的半径为2的圆共有3个.故选C.点睛:保持圆O1、圆O2的位置不动,以直线O1O2上一个点为圆心作一个半径为2的圆,观察其从左至右平移过程中与圆O1、圆O2的位置关系,结合三个圆的半径大小即可得到本题所求答案.6、C【解题分析】直接利用同底数幂的乘除运算法则以及有理数的乘方运算法则分别计算得出答案.【题目详解】解:A、x3-x2,无法计算,故此选项错误;B、a3÷a3=1,故此选项错误;C、(-2)2÷(-2)3=-12,正确;D、(-7)4÷(-7)2=72,故此选项错误;故选C.【题目点拨】此题主要考查了同底数幂的乘除运算以及有理数的乘方运算,正确掌握相关运算法则是解题关键.7、A【解题分析】根据方差的概念进行解答即可.【题目详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【题目点拨】本题考查了方差,解题的关键是掌握方差的定义进行解题.8、C【解题分析】本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为2017÷6=336余1,点F滚动1次时的横坐标为2,纵坐标为3,点F滚动7次时的横坐标为8,纵坐标为3,所以点F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题.【题目详解】.解:∵正六边形ABCDEF一共有6条边,即6次一循环;∴2017÷6=336余1,∴点F滚动1次时的横坐标为2,纵坐标为3,点F滚动7次时的横坐标为8,纵坐标为3,∴点F滚动2107次时的纵坐标与相同,横坐标的次数加1,∴点F滚动2107次时的横坐标为2017+1=2018,纵坐标为3,∴点F滚动2107次时的坐标为(2018,3),故选C.【题目点拨】本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考题型.9、C【解题分析】过B作直径,连接AC交AO于E,如图①,根据已知条件得到BD=12OB=2,如图②,BD=6,求得OD、OE、DE的长,连接OD,根据勾股定理得到结论.【题目详解】过B作直径,连接AC交AO于E,∵点B为AC的中点,∴BD⊥AC,如图①,∵点D恰在该圆直径上,D为OB的中点,∴BD=12×4=2,∴OD=OB-BD=2,∵四边形ABCD是菱形,∴DE=12BD=1,∴OE=1+2=3,连接OC,∵CE=2222=43=7OC OE--,在Rt△DEC中,由勾股定理得:DC=2222=(7)1=22CE DE++;如图②,OD=2,BD=4+2=6,DE=12BD=3,OE=3-2=1,由勾股定理得:2222=41=15OC OE--2222=3(15)=26DE CE++.故选C.【题目点拨】本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确的作出图形是解题的关键.10、B【解题分析】作BD⊥x轴于D,CE⊥x轴于E,∴BD∥CE,∴CE AE AC BD AD AB==,∵OC是△OAB的中线,∴12 CE AE ACBD AD AB===,设CE=x,则BD=2x,∴C的横坐标为2x,B的横坐标为1x,∴OD=1x,OE=2x,∴DE=OE-OD=2x﹣1x=1x,∴AE=DE=1x,∴OA=OE+AE=213x x x +=,∴S△OAB=12OA•BD=12×32xx⨯=1.故选B.点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、(2n﹣1,2n﹣1).【解题分析】解:∵y=x-1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21-1),B2(21,22-1),B3(22,23-1),…,∴B n坐标(2n-1,2n-1).故答案为(2n-1,2n-1).12、1【解题分析】根据根与系数的关系得到m+n=﹣2018,mn=﹣1,把m2n+mm2﹣mn分解因式得到mn(m+n﹣1),然后利用整体代入的方法计算.【题目详解】解:∵m、n 是方程x2+2018x﹣1=0 的两个根,则原式=mn(m+n﹣1)=﹣1×(﹣2018﹣1)=﹣1×(﹣1)=1,故答案为:1.【题目点拨】本题考查了根与系数的关系,如果一元二次方程ax2+bx+c=0 的两根分别为与,则解题时要注意这两个关系的合理应用.13、-23<x<0【解题分析】根据反比例函数的性质:y随x的增大而减小去解答. 【题目详解】解:函数y= 2x 中,y 随x 的增大而减小,当函数y ﹤-3时 223? x 3x -∴- 又函数y= 2x中,x 0≠ 203x ∴-<< 故答案为:-23<x<0. 【题目点拨】此题重点考察学生对反比例函数性质的理解,熟练掌握反比例函数性质是解题的关键.14、>;【解题分析】∵2y ax 2ax 1=--=a(x-1)2-a-1,∴抛物线对称轴为:x=1,由抛物线的对称性,点(-1,m )、(2,n )在二次函数2y ax 2ax 1=--的图像上,∵|−1−1|>|2−1|,且m >n ,∴a>0.故答案为>15、1.【解题分析】过点B 作BE ⊥x 轴于点E ,根据D 为OB 的中点可知CD 是△OBE 的中位线,即CD=BE ,设A (x ,),则B (2x ,),故CD=,AD=﹣,再由△ADO 的面积为1求出k 的值即可得出结论.解:如图所示,过点B 作BE ⊥x 轴于点E ,∵D 为OB 的中点,∴CD 是△OBE 的中位线,即CD=BE .设A(x,),则B(2x,),CD=,AD=﹣,∵△ADO的面积为1,∴AD•OC=3,(﹣)•x=3,解得k=1,故答案为1.16、2 yx =【解题分析】∵点A是反比例函数2yx=-的图象上的一个动点,设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,∴AC=n,OC=﹣m,∴∠ACO=∠ADO=90°,∵∠AOB=90°,∴∠CAO+∠AOC=∠AOC+∠BOD=90°,∴∠CAO=∠BOD,在△ACO与△ODB中,∵∠ACO=∠ODB,∠CAO=∠BOD,AO=BO,∴△ACO≌△ODB,∴AC=OD=n,CO=BD=﹣m,∴B(n,﹣m),∵mn=﹣2,∴n(﹣m)=2,∴点B所在图象的函数表达式为2yx =,故答案为:2yx =.三、解答题(共8题,共72分)17、解:(1)22.1.(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为:21-[27-0.1(x-1)]=(0.1x+0.9)(万元),当0≤x≤10,根据题意,得x·(0.1x+0.9)+0.3x=12,整理,得x2+14x-120=0,解这个方程,得x1=-20(不合题意,舍去),x2=2.当x>10时,根据题意,得x·(0.1x+0.9)+x=12,整理,得x2+19x-120=0,解这个方程,得x1=-24(不合题意,舍去),x2=3.∵3<10,∴x2=3舍去.答:要卖出2部汽车.【解题分析】一元二次方程的应用.(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:27-0.1×2=22.1.,(2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当0≤x≤10,以及当x>10时,分别讨论得出即可.18、(1)200;(2)见解析;(3)126°;(4)240人.【解题分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数【题目详解】(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:24100×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.【题目点拨】此题考查扇形统计图和条形统计图,看懂图中数据是解题关键19、(1)50、2;(2)平均数是7.11;众数是1;中位数是1.【解题分析】(1)根据A等级人数及其百分比可得总人数,用C等级人数除以总人数可得a的值;(2)根据平均数、众数、中位数的定义计算可得.【题目详解】(1)本次抽查测试的学生人数为14÷21%=50人,a%=1250×100%=2%,即a=2.故答案为50、2;(2)观察条形统计图,平均数为1492081274650⨯+⨯+⨯+⨯=7.11.∵在这组数据中,1出现了20次,出现的次数最多,∴这组数据的众数是1.∵将这组数据从小到大的顺序排列,其中处于中间的两个数都是1,∴882+=1,∴这组数据的中位数是1.【题目点拨】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.20、(1)证明略(2)等腰三角形,理由略【解题分析】证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS),∴AB=DC.(2)△OEF 为等腰三角形理由如下:∵△ABF ≌△DCE ,∴∠AFB=∠DEC .∴OE=OF .∴△OEF 为等腰三角形.21、(1)作图见解析;(2)EB 是平分∠AEC ,理由见解析; (3)△PFB 能由都经过P 点的两次变换与△PAE 组成一个等腰三角形,变换的方法为:将△BPF 绕点B 顺时针旋转120°和△EPA 重合,①沿PF 折叠,②沿AE 折叠.【解题分析】【分析】(1)根据作线段的垂直平分线的方法作图即可得出结论;(2)先求出DE=CE=1,进而判断出△ADE ≌△BCE ,得出∠AED=∠BEC ,再用锐角三角函数求出∠AED ,即可得出结论;(3)先判断出△AEP ≌△FBP ,即可得出结论.【题目详解】(1)依题意作出图形如图①所示;(2)EB 是平分∠AEC ,理由:∵四边形ABCD 是矩形,∴∠C=∠D=90°,CD=AB=2,3,∵点E 是CD 的中点,∴DE=CE=12CD=1, 在△ADE 和△BCE 中,90AD BC C D DE CE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ADE ≌△BCE ,∴∠AED=∠BEC ,在Rt△ADE中,AD=3,DE=1,∴tan∠AED=ADDE=3,∴∠AED=60°,∴∠BCE=∠AED=60°,∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,∴BE平分∠AEC;(3)∵BP=2CP,BC=3=,∴323在Rt△CEP中,tan∠CEP=CPCE3∴∠CEP=30°,∴∠BEP=30°,∴∠AEP=90°,∵CD∥AB,∴∠F=∠CEP=30°,在Rt△ABP中,tan∠BAP=BPAB3∴∠PAB=30°,∴∠EAP=30°=∠F=∠PAB,∵CB⊥AF,∴AP=FP,∴△AEP≌△FBP,∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.【题目点拨】本题考查了矩形的性质,全等三角形的判定和性质,解直角三角形,图形的变换等,熟练掌握和灵活应用相关的性质与定理、判断出△AEP≌△△FBP是解本题的关键.22、37【解题分析】根据实数的计算,先把各数化简,再进行合并即可.【题目详解】原式=234+-7【题目点拨】此题主要考查实数的计算,解题的关键是熟知特殊三角函数的化简与二次根式的运算.23、(1)x ,y ;(2)2;(3)AB =8,梯形ABCD 的面积=1.【解题分析】(1)依据点P 运动的路程为x ,△ABP 的面积为y ,即可得到自变量和因变量;(2)依据函数图象,即可得到点P 运动的路程x =4时,△ABP 的面积;(3)根据图象得出BC 的长,以及此时三角形ABP 面积,利用三角形面积公式求出AB 的长即可;由函数图象得出DC 的长,利用梯形面积公式求出梯形ABCD 面积即可.【题目详解】(1)∵点P 运动的路程为x ,△ABP 的面积为y ,∴自变量为x ,因变量为y .故答案为x ,y ;(2)由图可得:当点P 运动的路程x =4时,△ABP 的面积为y =2.故答案为2; (3)根据图象得:BC =4,此时△ABP 为2,∴12AB •BC =2,即12×AB ×4=2,解得:AB =8; 由图象得:DC =9﹣4=5,则S 梯形ABCD =12×BC ×(DC +AB )=12×4×(5+8)=1. 【题目点拨】本题考查了动点问题的函数图象,弄清函数图象上的信息是解答本题的关键.24、(1)A (﹣8,0),B (0,﹣6);(2)21462y x x =---;(3)存在.P 点坐标为(﹣,-1)或(﹣4,-1)或(﹣,1)或(﹣4,1)时,使得110PDE ABC S S ∆∆=. 【解题分析】分析:(1)令已知的直线的解析式中x=0,可求出B 点坐标,令y=0,可求出A 点坐标;(2)根据A 、B 的坐标易得到M 点坐标,若抛物线的顶点C 在⊙M 上,那么C 点必为抛物线对称轴与⊙O 的交点;根据A 、B 的坐标可求出AB 的长,进而可得到⊙M 的半径及C 点的坐标,再用待定系数法求解即可;(3)在(2)中已经求得了C 点坐标,即可得到AC 、BC 的长;由圆周角定理:∠ ACB=90°,所以此题可根据两直角三角形的对应直角边的不同来求出不同的P 点坐标.本题解析:(1)对于直线364y x =--,当0x =时,6y =-;当0y =时, 所以A (﹣8,0),B (0,﹣6);(2)在Rt △AOB 中,,∵∠AOB=90°,∴AB 为⊙M 的直径,∴点M 为AB 的中点,M (﹣4,﹣3),∵MC ∥y 轴,MC=5,∴C (﹣4,2),设抛物线的解析式为y=a(x+4)²+2, 把B (0,﹣6)代入得16a+2=﹣6,解得a=12-, ∴抛物线的解析式为21(4)2y x =-+ ,即21462y x x =---; (3)存在.当y=0时,21(4)22y x =-++ ,解得x ,=﹣2,x ,=﹣6, ∴D (﹣6,0),E (﹣2,0),18202ABC ACM BCM S S S CM ∆∆∆=+=⨯⨯=, 设P (t ,2142t t ---6), ∵110PDE ABC S S ∆∆= ∴211(26)4622t t -+---=110⨯20, 即|21462t t ---|=1,当21462t t ---=-1,解得14t =-,24t =-,此时P 点坐标为(﹣,-1)或(﹣4,-1);当214612t t ---=时 ,解得1t =﹣,2t =﹣4﹣;此时P 点坐标为(﹣,1)或(﹣4,1).综上所述,P点坐标为(﹣6,-1)或(﹣46,-1)或(﹣2,1)或(﹣42,1)时,使得110PDE ABCS S∆∆=.点睛:本题考查了二次函数的综合应用及顶点式求二次函数的解析式和一元二次方程的解法,本题的综合性较强,注意分类讨论的思想应用.。

2020年湖北省荆州中考数学试卷附答案解析版

2020年湖北省荆州中考数学试卷附答案解析版
tanABC 3 , DEB 45 ,小张某天沿 A C E B D A 路线跑一圈, 4
则他跑了
km .
第 15 题图
16.我们约定:a,b, c 为函数 y ax2 bx c 的“关联数”,当其图象与坐标轴交点的横、 纵坐标均为整数时,该交点为“整交点”.若关联数为m, m 2, 2 的函数图象与 x
2.本卷是试题卷,不能答题,答题必须写在答题卡上。解答题中添加的辅助线、字
母和符号等务必添在答题卡对应的图形上。 卷
3.在答题卡上答题,选择题要用 2B 铅笔填涂,非选择题要用 0.5 毫米黑色中性笔
作答。
一、选择题(本大题共有 10 个小题,每小题 3 分,共 30 分)

1.有理数2 的相反数是
B. 2 5 5
第 10 题图 C. 1 2
D. 2 2
二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)
11.若 a -20200 , b
1 1 2

c
3
,则 a , b , c 的大小关系为
.(用
“ < ”号连接)
12. 若单项式2xm y3 与 3xym n 是同类项,则 2m n 的值为

13. 已知: △ABC ,求作: △ABC 的外接圆.作法:①分别作线段 BC , AC 的垂直平
分线 EF 和 MN ,它们相交于点O ;②以点O 为圆心, OB 的长为半径画圆.如图,
O 即为所求,以上作图用到的数学依据有:
.(只需写一条)
第 13 题图 数学试卷 第 3 页(共 8 页)
14.若标有 A , B ,C 的三只灯笼按图所示悬挂,每次摘取一只(摘 B 前需先摘C ),直

中考数学一轮复习 一次函数专题复习---一次函数存在性问题之—次函数存在性之等腰三角形(无答案)

中考数学一轮复习 一次函数专题复习---一次函数存在性问题之—次函数存在性之等腰三角形(无答案)

鲁教版2023-2024一次函数专题复习---一次函数存在性问题之—次函数存在性之等腰三角形知识点精讲1.存在性问题:通常是在变化的过程中,根据已知条件,探索某种状态是否存在的题目,主要考查运动的结果. 2.存在性问题处理框架:①研究背景图形.②分析不变特征,确定分类标准.③分析特殊状态的形成因素,画出符合题意的图形并求解.④结果验证.3.不变特征举例:①等腰三角形以定线段作为底边或者腰确定分类标准,利用两圆一线确定点的位置.两个定点一动点构成等腰三角形的策略方法一①首先弄清题中是否规定了哪个点为等腰三角形的顶点.(若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形,则有三种情况),先借助于动点所在图象的解析式,表示出动点的坐标(标横表纵),按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程.解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点(就是不能构成三角形这个题意).方法二①(两圆一线)或(两圆一垂)当定长为腰,找已知直线上满足条件的点时,以定长的某一端点为圆心,以定长为半径画弧,若所画弧与已知直线有交点且交点不是定长的另一端点时,交点即为所求的点,若所画弧与已知直线无交点或交点是定长的另一端点时,满足条件的点不存在,②当定长为底边时,作出定长的垂直平分线,若作出的垂直平分线与已知直线有交点,则交点即为所求的点,若作出的垂直平分线与已知直线无交点,则满足条件的点不存在,用以上方法即可找出所有符合条件的点.特殊①y=x+b与x轴所夹的锐角为45°;②y=±3x+b与x轴所夹的锐角为60°;③y=±33x+b与x轴所夹的锐角为30°.注意:函数与坐标轴夹角为特殊角要进行简单的过程书写,不可以直接用.函数是一个工具,将几何与函数有机的结合,特殊三角形角的边长关系:30°,60°,90°的直角三角形比例为1:2:3.120°的等腰三角形比例为1:1:3.45°,45°,90°比例为1:1:2.1. 如图,以矩形ABCD的相邻边建立直角坐标系,AB=3, BC=5.点E是边CD上一点,将△ADE沿着AE翻折,点D恰好落在BC边上,记为F.(1)求折痕AE所在直线的函数解析式;(2)若把翻折后的矩形沿y轴正半轴向上平移m个单位,连结OF,若△OAF是等腰三角形,求m的值2.如图,在平面直角坐标系中,直线AB 与x 轴、y 轴相交于A(6,0)、B(0,2)两点,动点C 在线段OA 上,将线段CB 绕着点C 顺时针旋转90°得到CD ,此时点D 恰好落在直线AB 上时,过点D 作DE ⊥x 轴于点E .(1)求证:BOC ≌CED ;(2)求经过 A 、B 两点的一次函数表达式及点D 的坐标;(3)在x 轴上是否存在点P ,使得以C 、D 、P 为顶点的三角形是等腰三角形?若存在,请直接写出P 点的坐标.(不用写过程)ABQ ABP S S =时,求出发,以每秒1个单位的速度沿直线于点N .在运动过程中,使得AMN 为等腰三角形?4如图,直线y=﹣2x+7与x轴、y轴分别相交于点C、B.与直线y=x相交于点A.(1)求A点坐标;(2)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,求P点坐标;(3)在直线y=﹣2x+7上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.5.如图,在平面直角坐标系中,一次函数y=﹣x+6的图象与x轴、y轴分别交于B、C两点,与正比例函数12y x 的图象交于点A.(1)求A、B、C三点的坐标;(2)若动点M在线段AC上运动,当OMC的面积是OAC的面积的12时,求出此时点M的坐标.(3)在y轴上是否存在点N,使NAC为等腰三角形,若存在,直接写出点N的坐标;若不存在.请说明理由.6.如图1,平面直角坐标系中,过A(,3)作AC∥x轴,交y轴于C,交直线OB于点B,已知∠BOC=30°.(1)求直线OB解析式;(2)F为线段OC上一动点,连接AF,求AF+FO的最小值及此时F点坐标;(3)如图2,在(2)条件下,当AF+FO取得最小值时,将△CF A绕C顺时针旋转60°得到△CF'A',过点F′作CF′的垂线与直线AC交于点Q,此时有一点D(2,4),请问在y轴上是否存在点S,使得以D,S,Q三点为顶点的三角形为等腰三角形?若存在,请直接写出S的坐标;若不存在,请说明理由.7.如图,一次函数y=kx+5(k≠0)的图象与x轴交于点C,与y轴交于点A,与正比例函数的图象交于点B,且点B的横坐标为2,点P为y轴上的一个动点.(1)求B点的坐标和k的值;(2)连接CP,当△ACP与△AOB的面积相等时,求点P的坐标;(3)连接BP,是否存在点P使得△P AB为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.8.如图1,一次函数y=﹣2x+2的图象与y轴交于点A,与x轴交于点B,过点B作线段BC⊥AB且BC=AB,直线AC交x轴于点D.(1)点A的坐标为,点B的坐标为;(2)直接写出点C的坐标,并求出直线AC的函数关系式;(3)若点P是图1中直线AC上的一点,连接OP,得到图2.当点P在第二象限,且到x轴,y轴的距离相等时,直接写出△AOP的面积;(4)若点Q是图1中坐标平面内不同于点B、点C的一点,当以点C,D,Q为顶点的三角形与△BCD全等时,直接写出点Q的坐标.9综合与探究:如图,在平面直角坐标系中,一次函数的图象分别交x、y轴于点A、B,点C在y轴上,AC平分∠OAB.(1)求点A、B的坐标;(2)求线段BC的长;(3)在平面直角坐标系中是否存在点D,使得△ABD是以AB为直角边的等腰直角三角形,若存在,请直接写出点D的坐标,若不存在,请说明理由.10.如图,直线与x轴交于点A,与y轴交于点B,直线l2与x轴交于点C,与y轴交于D点,AC=8,OD=3OC.(1)求直线CD的解析式;(2)点Q为直线AB上一动点,若有,请求出Q点坐标;(3)点M为直线AB上一动点,点N为y轴上一动点,是否存在以点M,N,C为顶点且以MN为直角边的三角形是等腰直角三角形,若存在,请直接写出点M的坐标,并写出其中一个点M的求解过程,若不存在,请说明理由.11.如图,在平面直角坐标系中,直线y=x+3与x轴,y轴分别交于点A,C,经过点C的直线与x轴交于点B(3,0).(1)求直线BC的解析式;(2)点G是线段BC上一动点,若直线AG把△ABC的面积分成2:1的两部分,请求点G的坐标;(3)已知D为AC的中点,点P是平面内一点,当△CDP是以CD为直角边的等腰直角三角形时,直接写出点P 的坐标.。

中考数学重难点专题17 二次函数中几何存在性的问题(学生版)

中考数学重难点专题17 二次函数中几何存在性的问题(学生版)

中考数学复习重难点与压轴题型专项突围训练(全国通用版)专题17二次函数中几何存在性的问题【典型例题】1.(2022·全国·九年级专题练习)抛物线C1:y14-=x212-x+2交x轴于A、B两点(点A在点B的右侧),与y轴交于点C.(1)求A,B两点的坐标.(2)M为平面内一点,将抛物线C1绕点M旋转180°后得到抛物线C2,C2经过点A且抛物线C2上有一点P,使△BCP是以△B为直角的等腰直角三角形.是否存在这样的点M?若存在,求出点M的坐标,若不存在,说明理由.【专题训练】一、解答题1.(2022·全国·九年级专题练习)如图,在平面直角坐标系中,已知抛物线y=ax2+32x+c(a≠0)与x轴相交于A,B两点,与y轴交于点C,B点坐标为(4,0),C点坐标为(0,2).(1)求该抛物线的函数表达式;(2)点P为直线BC上方抛物线上的任意一点,过P作PF△x轴交直线BC于点F,过P作PE△y轴交直线BC 于点E,求线段EF的最大值及此时P点坐标;(3)将该抛物线沿着射线AC个单位得到新抛物线y,N是新抛物线对称轴上一点,在平面直角坐标系中是否存在点Q,使以点B、C、Q、N为顶点的四边形为矩形?若存在,请直接写出点Q点的坐标;若不存在,请说明理由.2.(2022·全国·九年级专题练习)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3交x轴于A、B两点(点A在点B的左侧),交y轴于点E,一次函数y=x+1与抛物线交于A、D两点,交y轴于点C,且D(4,5).(1)求抛物线的解析式;(2)若点P是第四象限内抛物线上的一点,过点作PQ△AD交AD于点Q,求PQ的最大值以及相应的P点坐标;(3)将抛物线向右平移1个单位长度,再向上平移1个单位长度得到新抛物线,新抛物线与原抛物线交于点R,M点在原抛物线的对称轴上,在平面内是否存在点N,使得以点A、R、M、N为顶点的四边形是矩形?若存在,请直接写出N点的坐标;若不存在,请说明理由.3.(2022·全国·九年级专题练习)如图,平面直角坐标系中,抛物线y=ax2+bx+3与x轴分别交于A(﹣1,0),B两点,与y轴交于点C,直线y=﹣x+n经过B、C两点.点D为第一象限内抛物线上一动点,过点D作DE△y轴,分别交x轴,BC于点E,F.(1)求直线BC及抛物线的表达式;(2)点D在移动过程中,若存在△DCF=△ACO,求线段DE的长;(3)在抛物线上取点M,在坐标系内取点N,问是否存在以C、B、M、N为顶点且以CB为边的矩形?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.4.(2022·全国·九年级专题练习)如图,在平面直角坐标系中,抛物线L:y=ax2+c与x轴相交于A、B两点,顶点C(0,2).AB=M(m,0)是x轴正半轴上一点,抛物线L关于点M对称的抛物线为L'.(1)求抛物线L的函数表达式;(2)点P是第一象限抛物线L上一点,点P到两坐标轴的距离相等,点P在抛物线L'上的对应点为P'.设E 是抛物线L上的动点,E'是点E在抛物线L'上的对应点,试探究四边形PEP'E′能否成为正方形.若能,求出m的值;若不能,请说明理由.5.(2022·全国·九年级专题练习)如图,抛物线y2x轴交于点A和点B,与y轴交于点C,经过点C的直线l与抛物线交于另一点E(4,a),抛物线的顶点为点Q,抛物线的对称轴与x轴。

挑战中考数学压轴题(第九版精选)之欧阳道创编

挑战中考数学压轴题(第九版精选)之欧阳道创编

目录第一部分函数图象中点的存在性问题1.1 因动点产生的相似三角形问题例1 2015年上海市宝山嘉定区中考模拟第24题例2 2014年武汉市中考第24题例3 2012年苏州市中考第29题例4 2012年黄冈市中考第25题例5 2010年义乌市中考第24题例6 2009年临沂市中考第26题1.2 因动点产生的等腰三角形问题例1 2015年重庆市中考第25题例2 2014年长沙市中考第第26题例3 2013年上海市虹口区中考模拟第25题例42012年扬州市中考第27题例5 2012年临沂市中考第26题例62011年盐城市中考第28题1.3 因动点产生的直角三角形问题例12015年上海市虹口区中考模拟第25题例22014年苏州市中考第29题例3 2013年山西省中考第26题例4 2012年广州市中考第24题例5 2012年杭州市中考第22题例6 2011年浙江省中考第23题例7 2010年北京市中考第24题1.4 因动点产生的平行四边形问题例1 2015年成都市中考第28题例2 2014年陕西省中考第24题例3 2013年上海市松江区中考模拟第24题例42012年福州市中考第21题例5 2012年烟台市中考第26题例6 2011年上海市中考第24题例7 2011年江西省中考第24题1.5 因动点产生的梯形问题例1 2015年上海市徐汇区中考模拟第24题例2 2014年上海市金山区中考模拟第24题例3 2012年上海市松江中考模拟第24题例4 2012年衢州市中考第24题例5 2011年义乌市中考第24题1.6 因动点产生的面积问题例1 2015年河南市中考第23题例22014年昆明市中考第23题例3 2013年苏州市中考第29题例4 2012年菏泽市中考第21题例5 2012年河南省中考第23题例62011年南通市中考第28题例72010年广州市中考第25题1.7因动点产生的相切问题例12015年上海市闵行区中考模拟第24题例22014年上海市徐汇区中考模拟第25题例3 2013年上海市杨浦区中考模拟第25题1.8因动点产生的线段和差问题例1 2015年福州市中考第26题例22014年广州市中考第24题例3 2013年天津市中考第25题例4 2012年滨州市中考第24题第二部分图形运动中的函数关系问题2.1 由比例线段产生的函数关系问题例12015年呼和浩特市中考第25题例22014年上海市徐汇区中考模拟第25题例3 2013年宁波市中考第26题例4 2012年上海市徐汇区中考模拟第25题2.2 由面积公式产生的函数关系问题例12015年上海市徐汇区中考模拟第25题例2 2014年黄冈市中考第25题例3 2013年菏泽市中考第21题例4 2012年广东省中考第22题例5 2012年河北省中考第26题例6 2011年淮安市中考第28题第三部分图形运动中的计算说理问题3.1 代数计算及通过代数计算进行说理问题例12015年北京市中考第29题例2 2014年福州市中考第22题例3 2013年南京市中考第26题3.2几何证明及通过几何计算进行说理问题例12015年杭州市中考第22题例2 2014年安徽省中考第23题例3 2013年上海市黄浦区中考模拟第24题第四部分图形的平移翻折与旋转4.1图形的平移例12015年泰安市中考第15题例2 2014年江西省中考第11题4.2图形的翻折例1 2015年上海市宝山区嘉定区中考模拟第18题例2 2014年上海市中考第18题4.3图形的旋转例12015年扬州市中考第17题例2 2014年上海市黄浦区中考模拟第18题4.4三角形例12015年上海市长宁区中考模拟第18题例2 2014年泰州市中考第16题4.5四边形例12015年安徽省中考第19题例2 2014年广州市中考第8题4.6圆例12015年兰州市中考第15题例22014年温州市中考第16题4.7函数图像的性质例12015年青岛市中考第8题例2 2014年苏州市中考第18题第一部分函数图象中点的存在性问题1.1 因动点产生的相似三角形问题例1 2015年上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E 的坐标.图1动感体验请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,△ACE与△ACD相似,存在两种情况.思路点拨1.直线AD//BC,与坐标轴的夹角为45°.2.求△ABC的面积,一般用割补法.3.讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.满分解答(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).将点A(2, 4)代入ky,得k=8.x(2)将点B(n, 2),代入8y x =,得n =4. 所以点B 的坐标为(4, 2). 设直线BC 为y =x +b ,代入点B(4,2),得b =-2.所以点C 的坐标为(0,-2).由A(2, 4)、B(4, 2)、C (0,-2),可知A 、B 两点间的水平距离和竖直距离都是2,B 、C 两点间的水平距离和竖直距离都是4.所以AB =22,BC =42,∠ABC =90°. 图2所以S △ABC =12BA BC ⋅=122422⨯⨯=8. (3)由A(2, 4)、D(0, 2)、C (0,-2),得AD =22,AC =210. 由于∠DAC +∠ACD =45°,∠ACE +∠ACD =45°,所以∠DAC =∠ACE .所以△ACE 与△ACD 相似,分两种情况:①如图3,当CE AD CA AC =时,CE =AD =22.此时△ACD ≌△CAE ,相似比为1.②如图4,当CE AC CA AD=时,21021022=.解得CE =102.此时C 、E 两点间的水平距离和竖直距离都是10,所以E(10, 8).图3 图4 考点伸展第(2)题我们在计算△ABC 的面积时,恰好△ABC 是直角三角形.一般情况下,在坐标平面内计算图形的面积,用割补法.如图5,作△ABC的外接矩形HCNM,MN//y轴.由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.图5例22014年武汉市中考第24题如图1,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)如图2,连接AQ、CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.图1 图2动感体验请打开几何画板文件名“14武汉24”,拖动点P运动,可以体验到,若△BPQ可以两次成为直角三角形,与△ABC相似.当AQ⊥CP时,△ACQ∽△CDP.PQ 的中点H在△ABC的中位线EF上.思路点拨1.△BPQ与△ABC有公共角,按照夹角相等,对应边成比例,分两种情况列方程.2.作PD⊥BC于D,动点P、Q的速度,暗含了BD=CQ.3.PQ的中点H在哪条中位线上?画两个不同时刻P、Q、H的位置,一目了然.满分解答(1)Rt△ABC中,AC=6,BC=8,所以AB=10.△BPQ 与△ABC 相似,存在两种情况:① 如果BP BA BQ BC =,那么510848t t =-.解得t =1. ② 如果BP BC BQ BA =,那么588410t t =-.解得3241t =. 图3 图4(2)作PD ⊥BC ,垂足为D .在Rt △BPD 中,BP =5t ,cosB =45,所以BD =BPcosB =4t ,PD =3t .当AQ ⊥CP 时,△ACQ ∽△CDP . 所以AC CD QC PD =,即68443t t t -=.解得78t =.图5 图6(3)如图4,过PQ 的中点H 作BC 的垂线,垂足为F ,交AB 于E .由于H 是PQ 的中点,HF//PD ,所以F 是QD 的中点.又因为BD =CQ =4t ,所以BF =CF .因此F 是BC 的中点,E 是AB 的中点.所以PQ 的中点H 在△ABC 的中位线EF 上.考点伸展本题情景下,如果以PQ 为直径的⊙H 与△ABC 的边相切,求t 的值.如图7,当⊙H 与AB 相切时,QP ⊥AB ,就是BP BC BQ BA=,3241t =. 如图8,当⊙H 与BC 相切时,PQ ⊥BC ,就是BP BA BQ BC =,t =1.如图9,当⊙H 与AC 相切时,直径PQ半径等于FC =48=. 解得12873t =,或t =0(如图10,但是与已知0<t <2矛盾).图7 图 8 图9 图10例3 2012年苏州市中考第29题如图1,已知抛物线211(1)444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1动感体验请打开几何画板文件名“12苏州29”,拖动点B 在x 轴的正半轴上运动,可以体验到,点P 到两坐标轴的距离相等,存在四边形PCOB 的面积等于2b 的时刻.双击按钮“第(3)题”,拖动点B ,可以体验到,存在∠OQA =∠B 的时刻,也存在∠OQ′A =∠B 的时刻.思路点拨1.第(2)题中,等腰直角三角形PBC 暗示了点P 到两坐标轴的距离相等.2.联结OP ,把四边形PCOB 重新分割为两个等高的三角形,底边可以用含b 的式子表示.3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q 最大的可能在经过点A 与x 轴垂直的直线上.满分解答(1)B 的坐标为(b, 0),点C 的坐标为(0, 4b ). (2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,那么△PDB ≌△PEC .因此PD =PE .设点P 的坐标为(x, x).如图3,联结OP .所以S 四边形PCOB =S △PCO +S △PBO =1152428b x b x bx ⨯⋅+⨯⋅==2b . 解得165x =.所以点P 的坐标为(1616,55). 图2 图3(3)由2111(1)(1)()4444b y x b x x x b =-++=--,得A(1, 0),OA =1.①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA . 当BA QA QA OA=,即2QA BA OA =⋅时,△BQA ∽△QOA . 所以2()14b b =-.解得8b =±Q 为(1,2+.②如图5,以OC 为直径的圆与直线x =1交于点Q ,那么∠OQC =90°。

2022年黑龙江省大庆市中考数学真题及答案

2022年黑龙江省大庆市中考数学真题及答案
②在①的条件下,当图象C中 时,结合图象求x的取值范围;
(3)已知两点 ,当线段 与图象C恰有两个公共点时,直接写出m的取值范围.
2022年大庆市初中升学考试
数学
考生注意:
1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区城内。
2.选择题每小题选出答案后,用2B铅笔在答题卡上把对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题用黑色字迹的钢笔或签字笔在答题卡相应位置作答。在草稿纸、试题卷上作答无效。
13.满足不等式组 的整数解是____________.
14.不透明的盒中装有三张卡片,编号分别为1,2,3.三张卡片质地均匀,大小、形状完全相同,摇匀后从中随机抽取一张卡片记下编号,然后放回盒中再摇匀,再从盒中随机取出一张卡片,则两次所取卡片的编号之积为奇数的概率为____________.
15.已知代数式 是一个完全平方式,则实数t的值为____________.
① ;
② ;
③高斯函数 中,当 时,x的取值范围是 ;
④函数 中,当 时, .
A 0B.1C.2D.3
二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)
11.在函数 中,自变量 的取值范围是_________.
12.写出一个过点 且y随x增大而减小的一次函数关系式____________.
【详解】解:由数轴上的点表示的数右边的总比左边的大,得c<0<d,
A、 ,原结论错误,故此选项不符合题意;
B、 ,原结论错误,故此选项不符合题意;
C、∵c<0<d,且 ,∴ ,原结论正确,故此选项符合题意;
D、∵c<0<d,且 ,∴ ,原结论错误,故此选项不符合题意;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分函数图象中点的存在性问题
§1.1 因动点产生的相似三角形问题
课前导学
相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.
如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两边表示出来,
按照对应边成比例,分AB DE
AC DF
=和
AB DF
AC DE
=两种情况列方程.
应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).
还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.求线段的长,要用到两点间的距离公式,而这个公式容易记错.理解记忆比较好.如图1,如果已知A、B两点的坐标,怎样求A、B两点间的距离呢?
我们以AB为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB的长了.水平距离BC的长就是A、B两点间的水平距离,等于A、B两点的横坐标相减;竖直距离AC就是A、B两点间的竖直距离,等于A、B两点的纵坐标相减.
图1。

相关文档
最新文档