平面直角坐标系与变量之间的关系

合集下载

近十五年沈阳中考数学知识分类汇总(坐标系和简单函数)

近十五年沈阳中考数学知识分类汇总(坐标系和简单函数)

六.坐标系与简单的基本函数 1.平面直角坐标系与变量关系1.(2分)(2018•沈阳)在平面直角坐标系中,点B 的坐标是(4,﹣1),点A 与点B 关于x 轴对称,则点A 的坐标是( ) A .(4,1) B .(﹣1,4) C .(﹣4,﹣1)D .(﹣1,﹣4)2.(2分)(2017•沈阳) 在平面直角坐标系中,点,点关于轴对称,点的坐标是,则点的坐标是( )A.B.C.D.3.(4分)(2013•沈阳)在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是 _________ .4.(3分)(2012•沈阳)在平面直角坐标系中,点P (-1,2 ) 关于x 轴的对称点的坐标为( )A.(-1,-2 )B.(1,-2 )C.(2,-1 )D.(-2,1 ) 5.(4分)(2011•沈阳).在平面直角坐标系中,若点M (1,3)与点N (x ,3)之间的距离是5,则x 的值是____________.6.(4分)(2010•沈阳) 在平面直角坐标系中,点A 1(1,1),A 2(2,4),A 3(3,9),A 4(4,16),…,用你发现的规律确定点A 9的坐标为 。

2.一次函数或反比例函数7.(2分)(2020•沈阳)一次函数y =kx +b(k ≠0)的图象经过点A(−3,0),点B(0,2),那么该图象不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.(3分)(2020•沈阳)如图,在平面直角坐标系中,O 是坐标原点,在△OAB 中,AO =AB ,AC ⊥OB 于点C ,点A 在反比例函数y =kx (k ≠0)的图象上,若OB =4,AC =3,则k 的值为______.A B y A ()2,8-B ()2,8--()2,8()2,8-()8,29.(2分)(2019•沈阳)已知一次函数y =(k +1)x +b 的图象如图所示,则k 的取值范围是( )A .k <0B .k <﹣1C .k <1D .k >﹣110.(3分)(2019•沈阳)如图,正比例函数y 1=k 1x 的图象与反比例函数y 2=(x >0)的图象相交于点A (,2),点B 是反比例函数图象上一点,它的横坐标是3,连接OB ,AB ,则△AOB的面积是.11.(2分)(2018•沈阳)在平面直角坐标系中,一次函数y=kx +b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <012.(2分)(2018•沈阳)点A (﹣3,2)在反比例函数y=k x(k ≠0)的图象上,则k 的值是( )A .﹣6B .﹣32C .﹣1D .613. (2分)(2017•沈阳)点在反比例函数的图象上,则的值是( ) A.10B.5C.D.()-2,5A ()0ky k x=≠k 5-10-14. (2分)(2017•沈阳) 在平面直角坐标系中,一次函数的图象是( )A. B. C. D.15.(2分)(2016•沈阳)如图,在平面直角坐标系中,点P 是反比例函数y=(x >0)图象上的一点,分别过点P 作PA ⊥x 轴于点A ,PB ⊥y 轴于点B .若四边形OAPB 的面积为3,则k 的值为( )A .3B .﹣3C .D .﹣16.(3分)(2016•沈阳)在一条笔直的公路上有A ,B ,C 三地,C 地位于A ,B 两地之间,甲,乙两车分别从A ,B 两地出发,沿这条公路匀速行驶至C 地停止.从甲车出发至甲车到达C 地的过程,甲、乙两车各自与C 地的距离y (km )与甲车行驶时间t (h )之间的函数关系如图表示,当甲车出发 h 时,两车相距350km .17.(4分)(2015•沈阳)如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y (cm )和注水时间x (s )之间的关系满足如图2中的图象,则至少需要 s 能把小水杯注满.1y x =-18.(4分)(2014•沈阳)已知一次函数y=x+1的图象与反比例函数y=的图象相交,其中有一个交点的横坐标是2,则k的值为 .19.(3分)(2013•沈阳)在同一平面直角坐标系中,函数y=x ﹣1与函数的图象可能是( ) A .B .C .D .20.(3分)(2012•沈阳)一次函数y =-x +2的图象经过A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限 21.(3分)(2012•沈阳)已知点A 为双曲线y =图象上的点,点O 为坐标原点过点A 作AB ⊥x 轴于点B ,连接OA .若⊥AOB 的面积为5,则k 的值为____________. 22.(3分)(2011•沈阳)下列各点中,在反比例函数8y x=图象上的是 A .(-1,8)B .(-2,4)C .(1,7)D .(2,4)23.(3分)(2011•沈阳)如果一次函数y=4x +b 的图象经过第一、三、四象限,那么b 的取值范围是_________.24.(3分)(2010•沈阳)反比例函数y = -x15的图像在( ) (A) 第一、二象限 (B) 第二、三象限 (C) 第一、三象限 (D) 第二、四象限 。

新北师大版七年级数学下册第三章《变量之间的关系》单元复习题含答案解析 (14)

新北师大版七年级数学下册第三章《变量之间的关系》单元复习题含答案解析 (14)

一、选择题(共10题)1.甲、乙二人同时从A地出发,沿同一条道路去B地,途中都使用两种不同的速度V1和V2(V1<V2),甲用一半的路程使用速度V1,另一半的路程使用速度V2,乙用一半的时间使用速度V1,另一半的时间使用速度V2,关于甲乙二人从A地到达B地的路程与时间的函数图象及关系,有图中4个不同的图示分析,其中横轴t表示时间,纵轴S表示路程,其中正确的图示分析为( )A.图(1)B.图( 1)或图( 2)C.图( 3)D.图( 4)2.甲、乙两位同学进行长跑训练,甲和乙所跑的路程S(单位:米)与所用时间t(单位:秒)之间的函数图象分别为线段OA和折线OBCD.则下列说法正确的是( )A.两人从起跑线同时出发,同时到达终点B.跑步过程中,两人相遇一次C.起跑后160秒时,甲、乙两人相距最远D.乙在跑前300米时,速度最慢3.下列各曲线表示的y与x的关系中,y不是x的函数的是( )A.B.C.D.4.一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是( )A.32B.34C.36D.385.如图,在△ABC中,AB=AC,MN是边BC上一条运动的线段(点M不与点B重合,点BC,MD⊥BC交AB于点D,NE⊥BC交AC于点E,在N不与点C重合),且MN=12MN从左至右的运动过程中,设BM=x,△BMD和△CNE的面积之和为y,则下列图象中,能表示y与x的函数关系的图象大致是( )A.B.C.D.6.圆周长公式c=2πr中,下列说法正确的是( )A.r是自变量,2,π,c是常量B.π,r是自变量,2为常量C.c,r为变量,2,π为常量D.c为变量,2,π,r为常量7.2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间函数关系的大致图象是( )A.B.C.D.8.已知,A市到B市的路程为260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M 地后又经过20分钟修好甲车后以原速原路返回A市,同时甲车以原来 1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车所用时间x(小时)之间的函数图象,下列四种说法:①甲车出发时的速度是60千米时;②乙车的速度是96千米/时;③乙车返回时y与x的函数关系式为y=−96x+384;④甲车到达B市时乙已返回A市2小时20分钟.其中正确的个数是( )A.1个B.2个C.3个D.4个9.如图①,点P从长方形ABCD的顶点A出发沿A→B→C以2cm/s的速度匀速运动到点C,图②是点P运动时,△APD的面积y(cm2)随运动时间x(s)变化而变化的函数关系图象,则长方形ABCD的面积为( )A.36cm2B.48cm2C.32cm2D.24cm210.某校在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A.经过5min集中喷洒药物,室内空气中的含药量最高达到10 mg/m3B.室内空气中的含药量不低于8 mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5 mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2 mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2 mg/m3开始,需经过59min后,学生才能进入室内二、填空题(共7题)11. 心理学家发现,学生对概念的接受能力 y 与提出概念所用的时间 x (单位:min )之间有如下关系:(其中0≤x ≤30).提出概念所用时间(x )257101213141720对概念的接受能力(y )47.853.556.35959.859.959.858.355(1)上表中反映了变量是 , 是自变量, 是因变量;(2)当提出概念所用时间是 10 min 时,学生的接受能力是 ;(3)根据表格中的数据,你认为提出概念 分钟时,学生的接受能力最强;(4)从表中可知,当时间 x 在 范围内,学生的接受能力逐步增强,当时间 x 在 范围内,学生的接受能力逐步降低.12. 一天早晨,小玲从家出发匀速步行到学校.小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲.妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半.小玲继续以原速度步行前往学校.妈妈与小玲之间的距离 y (米)与小玲从家出发后步行的时间 x (分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为 米.13. 某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用 45 分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为 60 千米/时,两车之间的距离 y (千米)与货车行驶时间 x (小时)之间的函数图象,如图所示,现有以下 4 个结论:①快递车从甲地到乙地的速度为 100 千米/时;②甲、乙两地之间的距离为 120 千米;③图中点 B 的坐标为 (334,75);④快递车从乙地返回时的速度为 90千米/时,其中正确的是 (填序号).14.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,根据图象有以下四个判断:①乙队率先到达终点;②甲队比乙队多走了126米;③在47.8秒时,两队所走路程相等;④从出发到13.7秒的时间段内,甲队的速度比乙队的慢.所以正确判断的序号是.15.已知函数f(x)=√x+6,那么f(−2)=.16.两个少年在绿茵场上游戏.小红从点A出发沿线段AB运动到点B,小兰从点C出发,以相同的速度沿⊙O逆时针运动一周回到点C,两人的运动路线如图1所示,其中AC=DB.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C的距离y与时间x(单位:秒)的对应关系如图2所示.则下列说法正确的有.(填序号)①小红的运动路程比小兰的长;②两人分别在1.09秒和7.49秒的时刻相遇;③当小红运动到点D的时候,小兰已经经过了点D;④在4.84秒时,两人的距离正好等于⊙O的半径.17.已知A,B两地相距20千米,某同学步行由A地到B地,速度为每小时4千米,设该同学与B地的距离为y千米,步行的时间为x小时,则y与x之间的函数解析式为.三、解答题(共8题)18.等腰三角形的周长为16cm,设它的底边长为x cm,腰长为y cm.(1) 写出y关于x的函数解析式;(2) 求这个函数的定义域;(3) 当y=5时,求x的值.19.一销售员向某企业推销一种该企业生产必需的物品,若企业要40件,则销售员每件可获利40元,销售员(在不亏本的前提下)为扩大销售量,而企业为了降低生产成本,经协商达成协议,如果企业购买40件以上时,每多要1件,则每件降低1元.(1) 设每件降低x(元)时,销售员获利为y(元),试写出y关于x的函数关系式;(2) 当每件降低20元时,问此时企业需购进物品多少件?此时销售员的利润是多少?20.甲、乙两人同时从A地前往相距5千米的B地.甲骑自行车,途中修车耽误了20分钟,甲行驶的路程s(千米)关于时间t(分钟)的函数图象如图所示;乙慢跑所行的路程s(千米)关于时t(0≤t≤60).间t(分钟)的函数解析式为s=112(1) 在图中画出乙慢跑所行的路程关于时间的函数图象;(2) 乙慢跑的速度是每分钟千米;(3) 甲修车后行驶的速度是每分钟千米;(4) 甲、乙两人在出发后,中途 分钟时相遇.21. 如图①表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1) 设北京时间为 x (时),首尔时间为 y (时),若 0≤x ≤12,求 y 关于 x 的函数表达式,并填写下表(同一时刻的两地时间).北京时间7:30 2:50首尔时间 12:15 (2) 如图②表示同一时刻的英国伦敦(夏时制)时间和北京时间,两地时差为整数.如果现在伦敦(夏时制)时间为 7:30,那么此时韩国首尔时间是多少?22. 如图,在 △ABC 中,∠ABC =90∘,∠C =40∘,点 D 是线段 BC 上的动点,将线段 AD 绕点 A顺时针旋转 50∘ 至 ADʹ,连接 BDʹ.已知 AB =2 cm ,设 BD 为 x cm ,BDʹ 为 y cm . 小明根据学习函数的经验,对函数 y 随自变量 x 的变化而变化的规律进行了探究,下面是小明的探究过程,请补充完整.(说明:解答中所填数值均保留一位小数)(1) 通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm00.50.7 1.0 1.5 2.0 2.3y/cm 1.7 1.3 1.10.70.9 1.1(2) 建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3) 结合画出的函数图象,解决问题:线段BDʹ的长度的最小值约为cm;若BDʹ≥BD,则BD的长度x的取值范围是.23.阅读下面的材料:如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2,(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.例题:证明函数f(x)=6x(x>0)是减函数.证明:设0<x1<x2,f(x1)−f(x2)=6x1−6x2=6x2−6x1x1x2=6(x2−x1)x1x2,∵0<x1<x2,∴x2−x1>0,x1x2>0.∴6(x2−x1)x1x2>0.即f(x1)−f(x2)>0.∴f(x1)>f(x2).∴函数f(x)−6x(x>0)是减函数.根据以上材料,解答下面的问题:已知函数f(x)=2x−1x2(x<0),例如f(−1)=2×(−1)−1(−1)2=−3,f(−2)=2×(−2)−1(−2)2=−54.(1) 计算:f(−3)=;(2) 猜想:函数f(x)=2x−1x2(x<0)是函数(填“增”或“减”);(3) 请仿照例题证明你的猜想.24.某固体物质在受热熔解过程中物质温度T(∘C)与时间t(s)的关系如图,其中A阶段物质为固态,B阶段物质为固液共存态,C阶段物质为液态.(1) 物质温度上升速度最快的是阶段,最慢的是阶段.(2) 若物质的温度是60∘C,那么时间t(s)的变化范围是.(3) 请写出A阶段物质温度T(∘C)与时间t(s)的函数关系式.25.在疫情期间,某口罩生产厂为提高生产效益引进了新的设备,其中甲表示新设备的产量y(万个)与生产时间x(天)的关系,乙表示旧设备的产量y(万个)与生产时间x(天)的关系:(1) 由图象可知,新设备因工人操作不当停止生产了天;(2) 求新、旧设备每天分别生产多少万个口罩?(3) 在生产过程中,x为何值时,新旧设备所生产的口罩数量相同.答案一、选择题(共10题)1. 【答案】B【解析】由题意得:甲在一半路程处将进行速度的转换,4个选项均符合,乙在一半时间处将进行速度的转换,函数图象将在t1处发生弯折,只有(1)(2)(4)符合,再利用速度不同,所以行驶路程就不同,两人不可能同时到达目的地,故(4)错误,故只有(1)(2)正确.【知识点】用函数图象表示实际问题中的函数关系2. 【答案】C【知识点】用函数图象表示实际问题中的函数关系3. 【答案】C【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,A,B,D 选项中,都是一一对应关系,而C选项不满足函数的定义.【知识点】函数的概念4. 【答案】C【解析】由图象可知,进水的速度为:20÷4=5(L/min),出水的速度为:5−(35−20)÷(16−4)=3.75(L/min),第24分钟时的水量为:20+(5−3.75)×(24−4)=45(L),a=24+ 45÷3.75=36.【知识点】用函数图象表示实际问题中的函数关系5. 【答案】B【知识点】图像法6. 【答案】C【知识点】函数的概念7. 【答案】D【解析】根据题意可知,库存量y(吨)与时间t(天)之间函数关系的图象为先水平,再逐渐下降,最后为0.故选D.【知识点】用函数图象表示实际问题中的函数关系8. 【答案】B【解析】①前2小时甲车行驶80km,=40km/h;∴v=802②乙车总行驶路程为80×2=160km,总行驶时间为4−2−13=53h,∴v=16053=96km/h;③ ∵乙车速度为96km/h,∴乙返回时的直线k=−96,将(4,0)代入y=−96x+b得y=−96x+384;④ CD段甲车速度为40×1.5=60km/h,S=260−80=180km,∴t甲=18060=3h,乙车返回所用时间:t乙=8096=56h,3−56=136h,∴甲到达乙返回2h10min.∴②③正确.【知识点】用函数图象表示实际问题中的函数关系9. 【答案】C【解析】由题图可得AB=2×2=4(cm),BC=(6−2)×2=8(cm),所以长方形ABCD的面积是4×8=32(cm),故选C.【知识点】图像法10. 【答案】C【知识点】用函数图象表示实际问题中的函数关系二、填空题(共7题)11. 【答案】学生对概念的接受能力与老师提出概念的时间(单位:min)之间的关系;老师传授概念的时间;学生对概念的接受能力;10min;59.9;2∼13min;14∼20min【知识点】列表法12. 【答案】200【知识点】用函数图象表示实际问题中的函数关系13. 【答案】①③④【解析】设快递车出发时的速度为m千米/时,到由图象得3(m−6)=120,解得m=100,①正确;甲、乙两地之间的距离大于120千米,②错误;点B的横坐标是快递车返回的时刻:3×4560=334(h),纵坐标是此时货车到乙地的距离:120−34×60=75(km),∴点B的坐标为(334,75),③正确;设快递车从乙地返回是的速度为n千米/时,则(414−334)(n+60)=75,解得n=90,④正确.【知识点】用函数图象表示实际问题中的函数关系14. 【答案】③④【知识点】用函数图象表示实际问题中的函数关系15. 【答案】2【知识点】解析式法16. 【答案】④【解析】①由图可知,速度相同的情况下,小红比小兰提前停下来,时间花的短,故小红的运动路程比小兰的短,故本选项不符合题意;②两人分别在1.09秒和7.49秒的时刻与点C距离相等,故本选项不符合题意;③当小红运动到点D的时候,小兰也在点D,故本选项不符合题意;④当小红运动到点O的时候,两人的距离正好等于⊙O的半径,此时t=9.682=4.48.故本选项正确.故答案为:④.【知识点】用函数图象表示实际问题中的函数关系17. 【答案】y=20−4x【知识点】解析式法三、解答题(共8题)18. 【答案】(1) 依题意得2y+x=16,∴2y=16−x,∴y=8−12x,∴y关于x的函数解析式为y=8−12x.(2) ∵2y>x,2y=16−x,∴2x<16,∴x<8,∵ x >0, ∴ 0<x <8,∴ 这个函数的定义域为 0<x <8.(3) 当 y =5 时,8−12x =5,∴ −12x =−3,∴ x =6.【知识点】解析式法、实际问题中的自变量的取值范围19. 【答案】(1) y =(40−x )(40+x )=1600−x 2.(2) 当降低 20 元时,需购进 40+20=60 (件) 此时销售员的利润 y =1600−202=1200(元).【知识点】解析式法20. 【答案】(1) 略 (2) 112 (3) 320(4) 24【知识点】用函数图象表示实际问题中的函数关系21. 【答案】(1) 从题图①看出,同一时刻,首尔时间比北京时间多 1 小时, 所以 y 关于 x 的函数表达式是 y =x +1,0≤x ≤12. 填表如下:北京时间7:3011:152:50首尔时间8:3012:153:50(2) 设伦敦(夏时制)时间为 t 时,则北京时间为 (t +7) 时, 结合(1)可得,韩国首尔时间为 (t +8) 时,所以当伦敦(夏时制)时间为 7:30,韩国首尔时间为 15:30. 【知识点】解析式法22. 【答案】(1) 0.9 (2) 如图所示. (3) 0.7;0≤x ≤0.9【知识点】列表法、图像法23. 【答案】(1) −79(2) 减(3) 证明:设x1<x2<0,f(x1)−f(x2)=2x1−1x12−2x2−1x22=(x2−x1)[2x1x2−(x1+x2)](x1x2)2,∵x1<x2<0,∴x2−x1>0,x1x2>0,x1+x2<0,∴(x2−x1)[2x1x2−(x1+x2)](x1x2)2>0,即f(x1)−f(x2)>0,∴f(x1)>f(x2),∴函数f(x)=2x−1x2(x<0)是减函数,猜想得证.【解析】(1) 计算:f(−3)=2×(−3)−1(−3)2=−79.(2) 由(1)知,f(−3)=−79,当x=−2时,f(−2)=2×(−2)−1(−2)2=−54,∵−3<−2<0,f(−3)>f(−2),∴猜想:函数f(x)=2x−1x2(x<0)是减函数.【知识点】解析式法24. 【答案】(1) C;B(2) 20≤t≤50(3) T=3t(0≤t≤20).【知识点】用函数图象表示实际问题中的函数关系、正比例函数解决实际问题25. 【答案】(1) 2.(2) 新设备:4.8÷1=4.8(万个/天),乙设备:16.8÷7=2.4(万个/天),∴甲设备每天生产4.8万个口罩,乙设备每天生产2.4万个口罩.(3) ① 2.4x=4.8,解得x=2;② 2.4x=4.8(x−2),解得x=4.∴在生产过程中,x为2或4时,新旧设备所生产的口罩数量相同.【知识点】用函数图象表示实际问题中的函数关系。

小学数学认识平面直角坐标系和变量的基本概念

小学数学认识平面直角坐标系和变量的基本概念

小学数学认识平面直角坐标系和变量的基本概念数学作为一门科学,给我们提供了一种思维方式和解决问题的工具。

在小学数学的学习过程中,平面直角坐标系和变量是非常重要的基本概念。

本文将通过介绍这两个概念的定义、用途和相关知识点,帮助读者更好地理解和掌握它们。

一、平面直角坐标系平面直角坐标系是用来描述平面上点的位置的一种工具。

它由两条互相垂直的数轴组成,一条是横轴又称为x轴,一条是纵轴又称为y轴。

两条轴的交点称为坐标原点,用O表示。

平面直角坐标系中的点和坐标之间存在着一一对应的关系,每一个点在平面直角坐标系中都有唯一的坐标表示。

通常情况下,我们用一个有序数对(x, y)表示一个点P的坐标,其中x表示点P在x轴上的坐标,y表示点P在y轴上的坐标。

x和y分别称为点P的横坐标和纵坐标。

平面直角坐标系在数学中的应用非常广泛,它可以用来解决几何问题、函数问题、图形的表示等等。

通过在平面直角坐标系中标出点的坐标,我们可以清晰地表示出几何图形的位置和形状,进而进行更深入的研究和推理。

二、变量的基本概念变量是数学中的一个重要概念,它用来表示数值的变化。

变量通常用字母表示,比如x、y等。

在数学问题中,我们往往会遇到未知的数值,这时候我们可以用变量来表示这个未知数值,并通过方程或不等式等方式来进行求解。

变量可以用于解决各种实际问题,比如通过变量来表示物体的长度、重量、时间等等。

通过引入变量,我们可以建立数学模型,对实际问题进行抽象和描述,从而更好地进行分析和解决。

在平面直角坐标系中,变量通常用来表示坐标的值。

比如我们可以定义一个函数y=f(x),其中x为变量,表示点P在x轴上的坐标,y表示点P在y轴上的坐标,f(x)表示这两个坐标之间的关系。

通过改变x的值,我们可以获得对应的y值,从而绘制出一条曲线,这对于研究函数和图像具有很大的帮助。

三、小学数学中的应用平面直角坐标系和变量在小学数学的学习中扮演着非常重要的角色。

在小学阶段,学生往往会通过图形的位置、方向和形状等概念来认识平面直角坐标系,从而提高他们的空间思维能力和几何直观。

变量间的相关关系讲义

变量间的相关关系讲义

变量间的相关关系讲义变量间的相关关系讲义一、基础知识梳理知识点1:变量之间的相关关系两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。

当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。

相关关系是一种非确定性关系,如长方体的高与体积之间的关系就是确定的函数关系,而人的身高与体重的关系,学生的数学成绩好坏与物理成绩的关系等都是相关关系。

注意:两个变量之间的相关关系又可分为线性相关和非线性相关,如果所有的样本点都落在某一函数曲线的附近,则变量之间具有相关关系(不确定性的关系),如果所有样本点都落在某一直线附近,那么变量之间具有线性相关关系,相关关系只说明两个变量在数量上的关系,不表明他们之间的因果关系,也可能是一种伴随关系。

点睛:两个变量相关关系与函数关系的区别和联系相同点:两者均是两个变量之间的关系,不同点:函数关系是一种确定的关系,如匀速直线运动中时间t与路程s的关系,相关关系是一种非确定的关系,如一块农田的小麦产量与施肥量之间的关系,函数关系是两个随机变量之间的关系,而相关关系是非随机变量与随机变量之间的关系;函数关系式一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系。

知识点2.散点图.1.在考虑两个量的关系时,为了对变量之间的关系有一个大致的了解,人们常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图。

2.从散点图可以看出如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这种近似的过程称为曲线拟合。

3.对于相关关系的两个变量,如果一个变量的值由小变大时,另一个变量的的值也由小变大,这种相关称为正相关,正相关时散点图的点散布在从左下角到由上角的区域内。

如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关,负相关时散点图的点散步在从左上角到右下角的区域。

xy坐标图

xy坐标图

XY坐标图1. 介绍XY坐标图是一种常用的数据可视化方法,常用于研究和展示两个变量之间的关系。

它将数据点绘制在一个平面直角坐标系中,其中水平轴表示一个变量,垂直轴表示另一个变量。

XY坐标图可以帮助我们快速了解变量之间的趋势、分布和相关性。

在本文档中,我们将介绍如何制作XY坐标图,包括准备数据、选择合适的图表类型、使用Markdown文本格式输出等。

2. 准备数据制作XY坐标图的第一步是准备数据。

数据应该是一组有序的(x,y)数对,其中x和y代表两个变量的值。

例如,以下是一组示例数据:X Y1 52 73 44 95 63. 选择图表类型接下来,我们需要选择适合数据的图表类型。

在XY坐标图中,常用的图表类型有散点图和折线图。

•散点图:将数据点绘制为散点,适合显示变量之间的分布和关系。

•折线图:通过连接数据点的线段,适合显示随着x值变化,y值的趋势和变化。

根据数据的特点和目标,选择合适的图表类型进行制作。

4. 制作XY坐标图在制作XY坐标图时,可以使用各种可视化工具和库,如matplotlib和ggplot。

下面是使用matplotlib制作散点图和折线图的示例代码:import matplotlib.pyplot as plt# 准备数据x = [1, 2, 3, 4, 5]y = [5, 7, 4, 9, 6]# 绘制散点图plt.scatter(x, y)plt.xlabel('X')plt.ylabel('Y')plt.title('Scatter Plot')# 绘制折线图plt.plot(x, y)plt.xlabel('X')plt.ylabel('Y')plt.title('Line Plot')# 显示图表plt.show()5. 输出结果将制作好的XY坐标图以Markdown文本格式输出,可以在文档中轻松插入并与其他内容一起显示。

两个变量的相关性

两个变量的相关性
4
xiyi=3×2.5+4×3+4×5+6×4.5=66.5(吨 2),
i=1
4
xi2=32+42+52+62=86(吨 2),
i=1
4
xiyi-4 x ·y
i=1
∴^b=
4
=66.58-6-4×4×3.45.×52 4.5=0.7,
xi2-4 x 2
i=1
^a= y -^b x =3.5-0.7×4.5=0.35,∴^y=0.7x+0.35.
方法,即使得样本数据的点到回归直线的距离的
_平__方__和__最__小__的方法叫做最小二乘法.
回归直线通过样本点的中心,对照平均数与样本数据 之间的关系,你能说说回归直线与散点图中各点之间的关 系吗? 提示 假设样本点为(x1,y1)(x2,y2),…,(xn,yn),记 x =
n1i=n1xi, y =n1i=n1yi,则( x , y )为样本点的中心,回归直线一
规律方法 (1)函数关系是一种确定性关系,如匀速直线 运动中路程s与时间t的关系;相关关系是一种非确定性关 系,如一块农田的水稻产量与施肥量之间的关系. (2)判断两个变量是否是相关关系的关键是看这两个变量 之间是否具有不确定性.
题型二 求线性回归方程
【例2】某地10户家庭的年收入和年饮食支出的统计资料如
规律方法 1.判断两个变量 x 和 y 间是否具有线性相关关 系,常用的简便方法就是绘制散点图,如果发现点的分布从 整体上看大致在一条直线附近,那么这两个变量就是线性相 关的.否则,所求直线方程毫无意义. 2.求回归方程的步骤
n
n
(1)计算 x , y ,xi2,xiyi
i=1
i=1
n
xiyi-n x y

平面直角坐标系的认识与应用

平面直角坐标系的认识与应用

平面直角坐标系的认识与应用平面直角坐标系是一种常见的数学工具,被广泛应用于几何学、代数学和物理学等领域。

本文将介绍平面直角坐标系的概念、构建方法以及在实际问题中的应用。

一、平面直角坐标系的概念平面直角坐标系由两个相互垂直的坐标轴组成,通常被标记为x轴和y轴。

这两条轴相交于原点O,并以原点为起点进行标度。

x轴从原点向右方向延伸,y轴则从原点向上方向延伸。

在平面直角坐标系中,任意一点的位置可以由它在x轴和y轴上的坐标表示。

通常,x轴上的坐标被称为横坐标或x坐标,y轴上的坐标被称为纵坐标或y坐标。

以点A为例,在平面直角坐标系中,点A的坐标可以表示为(Ax, Ay)。

二、平面直角坐标系的构建方法构建平面直角坐标系可以通过以下方法进行:1. 确定坐标轴方向:根据具体问题需要,确定x轴和y轴的方向,一般选择x轴向右为正方向,y轴向上为正方向。

2. 确定坐标轴刻度:根据问题的范围,确定坐标轴的刻度。

可以根据实际情况进行适当放大或缩小。

3. 标记坐标轴:在平面上画出x轴和y轴,并标记刻度。

原点O通常位于坐标轴的交点处。

4. 标记点的位置:在平面上标记出所需点的位置,根据具体问题确定其坐标。

三、平面直角坐标系的应用平面直角坐标系在多个学科领域有广泛的应用。

以下列举了其中几个常见的应用场景:1. 几何学:平面直角坐标系可以用来描述点、线、面等几何图形的位置和性质。

通过坐标系,可以计算两点之间的距离、线段的斜率等几何关系。

2. 代数学:平面直角坐标系可用于代数方程的求解。

例如,通过将方程转化为图形,在平面上求解方程的解,可以直观地理解解的个数及其分布。

3. 物理学:平面直角坐标系可用于描述和分析物体的运动。

例如,我们可以将物体的位置随时间的变化用坐标系表示,并通过求导数来得到物体的速度和加速度等物理量。

4. 经济学:平面直角坐标系可以用于表示经济变量之间的关系。

例如,通过绘制供需曲线,可以直观地反映市场平衡点及价格、数量等变量之间的关系。

2023年《平面直角坐标系》说课稿_1

2023年《平面直角坐标系》说课稿_1

2023年《平面直角坐标系》说课稿2023年《平面直角坐标系》说课稿1《平面直角坐标系》是人教版九年义务教育七年级数学下册第六章第一节第二次课的内容,它是在学习了数轴和有序数对后安排的一次概念性教学,也是初中生与坐标系的第一次亲密接触。

平面直角坐标系的建立架起了数与形之间的桥梁,是数形结合的具体体现。

这一节课主要是让学生认识平面直角坐标系,了解点与坐标的对应关系;在给定的平面直角坐标系中,能根据坐标描出点的位置,能由点的位置写出点的坐标。

因此,本节课的学习,是今后进一步学习有关知识和借助平面直角坐标系学习一次函数、二次函数的一个基础,它在整个初中数学教材体系中有着举足轻重的作用。

说目标与重难点1.知识与能力目标:使学生认识平面直角坐标系,理解并掌握横轴、纵轴、原点及点的坐标,了解点与坐标的对应关系;能准确地在平面直角坐标系中描出点的位置和根据点的位置写出点的坐标,培养学生思维的准确性和深刻性。

2.过程与方法目标:通过自主阅读,用游戏活动和动手实践的方式,让学生认识平面直角坐标系,掌握用“坐标”表示平面内点的位置的方法,培养学生自主获取知识的能力。

3.情感态度价值观目标:利用游戏、观察、实践、归纳等方法,积淀学生的数学文化涵养,鼓励学生去发现、去思考,使学生认识到数学的科学价值和应用价值,培养热爱数学,勇于探索的精神。

其中认识平面直角坐标系,能正确地画出平面直角坐标系是本节课的教学重点;会用“坐标”表示平面内点的位置和坐标轴上的点的特征是本节课的教学难点。

说学情七年级的学生具有活泼好动,好奇的天性,他们正处于独立思维发展的重要阶段,对数学的求知欲较强,具有初步的自主、合作探究的学习能力,对数轴有一定的认识,因此,对于平面直角坐标系的构成和建立较为容易理解。

说教学策略数学课程标准指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”,学生的数学学习内容应当是现实的,有趣的和富有挑战性的”。

平面直角坐标系与函数方程的关系

平面直角坐标系与函数方程的关系

平面直角坐标系与函数方程的关系在数学中,平面直角坐标系是一种常用的工具,用于描述平面上的点的位置。

而函数方程则是用来描述数学关系的方程。

本文将探讨平面直角坐标系与函数方程之间的关系,以及如何利用函数方程在平面直角坐标系中进行图像的表示与分析。

一、平面直角坐标系与坐标表示平面直角坐标系由两条互相垂直的坐标轴组成,通常称为x轴和y 轴。

这两条坐标轴的交点被称为原点,用O表示。

x轴和y轴将平面分成四个象限,依次为第一象限、第二象限、第三象限和第四象限。

在平面直角坐标系中,每个点的位置可以通过两个坐标值来表示,分别是水平方向的x坐标和垂直方向的y坐标。

对于任意一个点P(x, y),x表示该点到y轴的水平距离,正值表示在y轴右侧,负值表示在y轴左侧;y表示该点到x轴的垂直距离,正值表示在x轴上方,负值表示在x轴下方。

二、函数方程的概念与表示函数方程是用来描述自变量和因变量之间关系的方程。

在平面直角坐标系中,函数方程一般表示为y = f(x),其中y表示因变量,x表示自变量。

函数方程可以通过不同的数学表达式来表示,如线性函数、二次函数、指数函数等。

对于线性函数y = kx + b,k表示斜率,决定了函数图像的倾斜程度;b表示截距,决定了函数图像与y轴的交点位置。

对于二次函数y = ax^2 + bx + c,a、b和c分别表示二次项、一次项和常数项的系数,决定了函数图像的开口方向、顶点位置以及与x轴的交点位置。

对于指数函数y = a^x,a表示底数,决定了函数图像的增长速度和开口方向。

三、函数方程与平面直角坐标系的关系在平面直角坐标系中,函数方程的图像可以直观地表示出来,有助于我们对函数关系进行分析和理解。

通过对函数方程中的自变量赋予不同的取值,可以得到对应的因变量值。

将这些点在平面直角坐标系中绘制出来,就可以得到函数的图像。

例如,对于线性函数y = 2x + 1,在平面直角坐标系中选择几个x值(如-2、0和2),代入函数方程求得对应的y值,然后将这些点连接起来,就得到了一条直线。

表示两个变量之间的关系的三种方法

表示两个变量之间的关系的三种方法

表示两个变量之间的关系的三种方法在数学中,变量之间的关系是研究的重点之一。

为了更好地描述变量之间的关系,数学家们提出了许多方法。

本文将介绍三种表示两个变量之间关系的常见方法。

1. 函数图像函数图像是一种常见的表示两个变量之间关系的方法。

在二维坐标系中,我们可以将其中一个变量作为横坐标,另一个变量作为纵坐标,然后将它们连成一条曲线或直线。

这条曲线或直线就是函数图像。

例如,在一个简单的函数y=x+1中,我们可以将x作为横坐标,y作为纵坐标,在平面直角坐标系中画出它们的对应点,并用一条直线连接这些点。

这条直线就是函数y=x+1的图像。

通过观察函数图像,我们可以得到许多有用信息。

例如,我们可以看出函数是否单调递增或单调递减、是否有极值、是否有周期等等。

2. 方程式方程式也是表示两个变量之间关系的重要方法之一。

方程式是由等号连接两个表达式组成的数学语句。

其中一个表达式包含独立变量(自变量),另一个表达式包含依赖于该独立变量的因变量。

例如,在函数y=x+1中,我们可以将其写成方程式y=x+1。

这个方程式告诉我们,当x取任意值时,y的值都等于x+1。

方程式的优点在于它能够精确地描述两个变量之间的关系。

通过解方程式,我们可以得到这两个变量之间的具体数值关系。

3. 数据表格数据表格也是表示两个变量之间关系的常见方法。

数据表格是由若干行和若干列组成的矩形表格。

其中每一行代表一个特定的自变量取值,每一列代表一个特定的因变量取值。

在每个单元格中,填写该自变量和因变量所对应的数值。

例如,在函数y=x+1中,我们可以将x从0到5分别取不同的值,并计算出相应的y值。

然后将这些数值填入数据表格中。

通过观察数据表格,我们可以得到许多有用信息。

例如,我们可以看出函数是否单调递增或单调递减、是否有极值、是否有周期等等。

总结以上三种方法都是表示两个变量之间关系常用的方法。

它们各自有其优点和缺点,在不同场合下选择不同方法能够更好地描述问题并得到更准确的结论。

北师大初中数学知识分类整理函数

北师大初中数学知识分类整理函数

函数一、变量之间的关系(七年级下册第六章)1. 小车下滑的时间①经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感;②在具体情境中理解什么是变量、自变量、因变量,并能举出反映变量之间相依关系的例子;③能从表格中获得变量之间关系的信息,能用表格表示变量之间的关系,并根据表格中的数据尝试对变化趋势进行初步的预测。

在具体情境中理解变量、自变量、因变量:在教材的下滑试验中,支撑物高度h 和小车下滑的时间t 在变化,它们都是变量。

其中t 随h 的变化而变化,h 是自变量,t 是因变量。

在教材的人口普查问题中,我国人口总数y 随x 的变化而变化,x 是自变量,y 是因变量。

在这两个问题中,变量用字母表示,更显示了数学符号的简洁。

借助表格,可以把因变量随自变量的变化而变化的情况表示出来。

2. 变化中的三角形①经历探索图形中变量关系的过程,进一步体验一个变量的变化对另一个变量的影响,发展符号感;②会用关系式表示变量关系;③能根据关系式求值,初步体会变量间的数值对应关系。

关系式是我们表示变量之间关系的另一种方法,利用关系式,我们可以根据任何一个自变量的值求相应的因变量的值。

注意:用关系式表示变量之间的关系时,因变量单独放在关系式的左边。

在本节的“做一做”中,要运用以前我们学过的圆锥体积公式:是高)是底面半径,(底圆锥h r h r h S V 23131π==3. 温度的变化①经历从图象中分析变量之间关系的过程,进一步体会变量之间的关系;②结合具体情境理解图象上的点所表示的意义;③能从图象中获取变量之间关系的信息,并能用语言进行描述。

图象是我们表示变量之间关系的又一种方法,它的特点是非常直观。

在用图象表示变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量。

4. 速度的变化①通过速度随时间变化的实际情境,经历用图象分析变量之间的关系;②能从图象中分析出某些变量之间的关系,并能用自己的语言进行表达,发展有条理地进行思考和表达能力;③感受从图象中获取变量之间关系的信息,并能解决相关问题;④通过学习,提高学生的认知能力、观察能力、想像能力。

位置的确定

位置的确定

常用的确定物体位置的方法有两种:(1)用有序实数对( a,b)表示,其一般步骤是先选择一个适当的参照点为原点,
确定x轴、y轴的正方向,建立平面直角坐标系,然后根据
具体问题确定单位长度,最后确定物体位置;(2)用方向和 距离表示.
【例 1】(2010· 杭州 ) 常用的确定物体位置的方法有两
种.用有序实数对 (a,b)表示.如图3-1-4,在4×4个边
横坐标 相等. 有点的________ 3.点P(x,y)坐标的几何意义
| y| (1)点P(x,y)到x轴的距离是________; | x| (2)点P(x,y)到y轴的距离是________ ; (3)点P(x,y)到原点的距离是________.
1、已知点P到x轴距离为52,到y轴距离为2,则点P的坐标为 . 2、已知点P在第四象限,且到x轴距离为52,到y轴距离为2, 则点P的坐标为 . 3、点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧, 则P点的坐标是 . 4、.若点M在第一、三象限的角平分线上,且点M到x轴的距 离为2,则点M的坐标是( ) A.(2,2) B.(-2,-2) C.(2,2)或(-2,-2) D.(2,-2)或(-2,2) 5. Q点坐标为(3,-6),并且直线PQ∥x轴,则P点坐标 为 ; 6.点A(-3,5)在第_____象限,到x轴的距离为______,到 y轴的距离为_______。
二、函数、变量之间的关系及函数 图象
1.在某变化过程中有两个变量x、y,如果对于x在某一范围内 的每一个确定的值,y都有唯一确定的值与它对应,那么就 称y是x的函数,x叫做自变量。Y是因变量。 2.函数的三种表示方式: 解析法 列表法 图像法
求函数自变量的取值范围,要根据表达式来确定,一 般方法是:(1)若函数式为整式,则自变量可取任意实数;( 2)若函数式为分式,则自变量取使分母不等于0的实数;(3) 若函数式为二次根式,则自变量取使被开方数为非负数的

第9讲 变量之间的关系七年级数学下册同步精品讲义

第9讲  变量之间的关系七年级数学下册同步精品讲义

第9讲 变量之间的关系1.一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,60s t ,速度60千米/时是常量,时间t 和里程s 为变量. t 是自变量,s 是因变量.2.表格可以清楚地列出一些自变量和因变量的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等.3.关系式能揭示出变量之间的内在联系,但较抽象,不是所有的变量之间都能列出关系式.4.图象法可以直观形象地反映变量的变化趋势,而且对于一些无法用关系式表达的变量,图象可以充当重要角色.知识点01.常量与变量(1)变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量. (2)方法:①常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化; ②常量和变量是相对于变化过程而言的.可以互相转化; ③不要认为字母就是变量,例如π是常量.【知识拓展1】(2021春•成华区期末)汽车以每小时100千米的速度匀速行驶,行驶的路程随时间的变化而变化,在这个变化过程中,自变量是( ) A .汽车B .路程C .速度D .时间【即学即练1】(2021秋•天长市月考)一本笔记本5元,买x 本共付y 元,则5和x 分别是( ) A .常量,变量B .变量,变量C .常量,常量D .变量,常量【即学即练2】(2021春•莱阳市期末)已知声音在空气中的传播速度与空气的温度有关,在一定范围内其关系如表所示: 温度℃ ﹣20 ﹣10 0 10 20 30 传播速度318324330336342348知识精讲目标导航(m/s)则下列说法错误的是()A.自变量是传播速度,因变量是温度B.温度越高,传播速度越快C.当温度为10℃时,声音10s可以传播3360mD.温度每升高10℃,传播速度增加6m/s知识点02.函数关系式用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注意:①函数解析式是等式.②函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.③函数的解析式在书写时有顺序性,例如,y=x+9时表示y是x的函数,若写成x=﹣y+9就表示x是y的函数.【知识拓展2】(2021秋•成都期末)现有一小树苗高100cm,以后平均每年长高50cm.x年后树苗的总高度y(cm)与年份x(年)的关系式是.【即学即练1】(2021秋•龙口市期末)如图,在平面直角坐标系xOy中,以O为圆心,适当长为半径画弧,交x轴于点A,交y轴于点B,再分别以点A,B为圆心,大于AB的长为半径画弧,两弧在第二象限交于点C,若点C的坐标为(x﹣2,2y),则y与x的函数关系式为.【即学即练2】(2021秋•三水区期末)一辆车的油箱有80升汽油,该车行驶时每1小时耗油4升,则油箱的剩余油量y(升)与该车行驶时间x(小时)(0≤x≤20)之间的函数关系式为.【即学即练3】(2021秋•香洲区期末)某种产品今年的年产量是20t,计划今后两年增加产量.如果每年的产量都比上一年增加x倍,两年后这种产品的产量y与x之间的函数表达式是.【即学即练4】(2021秋•杜尔伯特县期末)如图所示,梯形的上底长是5cm,下底长是13cm.当梯形的高由大变小时,梯形的面积也随之发生变化.(1)在这个变化过程中,自变量是,因变量是.(2)梯形的面积y(cm2)与高x(cm)之间的关系式为.(3)当梯形的高由10cm变化到1cm时,梯形的面积由cm2变化到cm2.【即学即练5】(2021秋•密云区期末)如图,一个矩形的长比宽多3cm,矩形的面积是Scm2.设矩形的宽为xcm,当x在一定范围内变化时,S随x的变化而变化,则S与x满足的函数关系是()A.S=4x+6B.S=4x﹣6C.S=x2+3x D.S=x2﹣3x【即学即练6】(2021秋•临漳县期末)某油箱容量为60升的汽车,加满汽油后行驶了100千米时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为x千米,油箱中剩余油量为y升,则y与x之间的函数关系式是()A.y=0.12x B.y=60+0.12xC.y=﹣60+0.12x D.y=60﹣0.12x【即学即练7】(2021秋•滨海县期末)某商场为了增加销售额,推出“元月销售大酬宾”活动,其活动内容为:“凡元月份在该商场一次性购物超过100元以上者,超过100元的部分按9折优惠.”在大酬宾活动中,小王到该商场为单位购买单价为60元的办公用品x件(x>2),则应付货款y(元)与商品件数x 的函数关系式是.知识点03.函数的图象函数的图象定义对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.注意:①函数图形上的任意点(x,y)都满足其函数的解析式;②满足解析式的任意一对x、y的值,所对应的点一定在函数图象上;③判断点P(x,y)是否在函数图象上的方法是:将点P(x,y)的x、y的值代入函数的解析式,若能满足函数的解析式,这个点就在函数的图象上;如果不满足函数的解析式,这个点就不在函数的图象上..【知识拓展3】(2021秋•綦江区期末)小强和爷爷去爬山,爷爷先出发一段时间后小强再出发,途中小强追上了爷爷并最终先爬到山顶,两人所爬的高度h(米)与小强出发后的时间t(分钟)的函数关系如图所示,下列结论正确的是()A.爷爷比小强先出发20分钟B.小强爬山的速度是爷爷的2倍C.l1表示的是爷爷爬山的情况,l2表示的是小强爬山的情况D.山的高度是480米【即学即练1】(2021秋•长丰县期末)小明上午8:00从家里出发,跑步去他家附近的抗日纪念馆参加抗美援朝70周年纪念活动,然后从纪念馆原路返回家中,小明离家的路程y(米)和经过的时间x(分)之间的函数关系如图所示,下列说法不正确的是()A.从小明家到纪念馆的路程是1800米B.小明从家到纪念馆的平均速度为180米/分C.小明在纪念馆停留45分钟D.小明从纪念馆返回家中的平均速度为100米/分【即学即练2】(2021秋•大东区期末)疫苗接种,利国利民.甲、乙两地分别对本地各40万人接种新冠疫苗.甲地在前期完成5万人接种后,甲、乙两地同时以相同速度接种.甲地经过a天后接种人数达到30万人,由于情况变化,接种速度放缓,结果100天完成接种任务,乙地80天完成接种任务,在某段时间内,甲、乙两地的接种人数y(万人)与各自接种时间x(天)之间的关系如图所示,当乙地完成接种任务时,甲地未接种疫苗的人数为万人.【即学即练3】(2021秋•南岸区期末)一司机驾驶汽车从甲地到乙地,他以60km/h的平均速度行驶4h到达目的地,并按照原路返回甲地.(1)返回过程中,汽车行驶的平均速度v与行驶的时间t有怎样的函数关系?(2)如果要在3h返回甲地,求该司机返程的平均速度;(3)如图,是返程行驶的路程s(km)与时间t(h)之间的函数图象,中途休息了30分钟,休息后以平均速度为85km/h的速度回到甲地.求该司机返程所用的总时间.【即学即练4】(2021秋•徐汇区校级期末)某空军加油飞机接到命令,立即给另一架正在飞行的运输机进行空中加油.在加油过程中,设运输飞机的油箱余油量为Q1吨,加油飞机的加油箱余油量为Q2吨,加油时间为t(分),Q1、Q2与t之间的函数图象如图所示,结合图象回答下列问题:(1)加油之前,加油飞机的加油油箱中装载了吨油;运输飞机的油箱有余油量吨油;(2)这些油全部加给运输飞机需分钟;(3)运输飞机的飞行油耗为每分钟吨油;(4)运输飞机加完油后,以原速继续飞行,如果每分钟油耗相同,最多能飞行小时.【即学即练5】(2021秋•沛县期末)小明爸爸开车从单位回家,沿途部分路段正在进行施工改造,小明爸爸回家途中距离家的路程ykm与行驶时间xmin之间的函数关系如图所示.结合图象,解决下列问题:(1)小明爸爸回家路上所花时间为min;(2)小明爸爸说:“回家路上,有一段路连续4分钟恰好行驶了2.4千米.”你认为该说法有无可能?若有,请求出这4分钟的起止时间;若没有,请说明理由.【即学即练6】(2021秋•龙凤区校级期末)如图是一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的图象,两地间的距离是80km,请你根据图象解决下面的问题.(1)谁出发较早?早多长时间?谁到达乙地较早?早到多长时间?(2)两人在途中行驶的速度分别是多少?(3)若用y表示自行车行驶过的路程,用x表示自行车行驶过的时间,写出y与x的关系.知识点04.动点问题的函数图象函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.【知识拓展4】((2021秋•东阳市期末)已知两个等腰直角三角形的斜边放置在同一直线l上,且点C与点B重合,如图①所示.△ABC固定不动,将△A′B′C′在直线l上自左向右平移.直到点B′移动到与点C重合时停止.设△A′B′C′移动的距离为x,两个三角形重叠部分的面积为y,y与x之间的函数关系如图②所示,则△ABC的直角边长是()A.4B.4C.3D.3【即学即练1】(2021秋•龙岩期末)如图,正方形ABCD的边长为2,点E和点F分别在BC和CD上运动,且保持∠EAF=45°.若设BE的长为x,EF的长为y,则y与x的函数图象是()A.B.C.D.【即学即练2】(2021秋•沛县期末)如图1,在矩形ABCD中,点P从点C出发,沿C→D→A→B方向运动至点B处停止.设点P运动的路程为x,△PBC的面积为y,已知y关于x的函数关系如图2所示,则长方形ABCD的面积为()A.15B.20C.25D.30【即学即练3】(2021秋•金湖县期末)如图(1),△ABC和△A'B'C'是两个腰长不相等的等腰直角三角形,其中,∠A=∠A'=90°.点B'、C'、B、C都在直线l上,△ABC固定不动,将△A'B'C'在直线l上自左向右平移,开始时,点C'与点B重合,当点B'移动到与点C重合时停止.设△A'B'C'移动的距离为x,两个三角形重叠部分的面积为y,y与x之间的函数关系如图(2)所示,则BC的长是.【即学即练4】(2021秋•龙华区期末)如图1,动点P从长方形ABCD的顶点A出发,沿A→C→D以1cm/s 的速度运动到点D停止.设点P的运动时间为x(s),△P AB的面积为y(cm2).表示y与x的函数关系的图象如图2所示,则长方形ABCD的面积为cm2.知识点05.函数的表示方法函数的三种表示方法:列表法、解析式法、图象法.其特点分别是:列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.注意:①它们分别从数和形的角度反映了函数的本质;②它们之间可以互相转化.【知识拓展5】(2021秋•紫金县期末)在实验课上,小亮利用同一块木板测得小车从不同高度(h)与下滑的时间(t)的关系如下表:支撑物高h(cm)1020304050…下滑时间t(s) 3.25 3.01 2.81 2.66 2.56…以下结论错误的是()A.当h=40时,t约2.66秒B.随高度增加,下滑时间越来越短C.估计当h=80cm时,t一定小于2.56秒D.高度每增加了10cm,时间就会减少0.24秒【即学即练1】(2021秋•肇源县期末)河北给武汉运送抗疫物资,某汽车油箱内剩余油量Q(升)与汽车行驶路程s(千米)有如下关系:行驶路程s(千米)050100150200…剩余油量Q(升)4035302520…则该汽车每行驶100千米的耗油量为升.【即学即练2】(2021春•富平县期末)在《科学》课上,老师讲到温度计的使用方法及液体的沸点时,好奇的王红同学准备测量食用油的沸点,已知食用油的沸点温度高于水的沸点温度(100℃),王红家只有刻度不超过100℃的温度计,她的方法是在锅中倒入一些食用油,用煤气灶均匀加热,并每隔10s测量一次锅中油温,测量得到的数据如下表:时间t/s010203040油温y/℃1030507090王红发现,烧了110s时,油沸腾了,则下列说法不正确的是()A.加热10s,油的温度是30℃B.在一定范围内,每加热10s,油的温度升高20℃C.估计这种食用油的沸点温度约是230℃D.加热50s,油的温度是100℃知识点06.分段函数(1)一次函数与常函数组合的分段函数.分段函数是在不同区间有不同对应方式的函数.(注意:在解决分段函数问题时,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.)(2)由文字图象信息确定分段函数.根据图象读取信息时,要把握住以下三个方面:①横、纵轴的意义,以及横、纵轴分别表示的量.②关于某个具体点,要求向横、纵轴作垂线来求得该点的坐标.③在实际问题中,要注意图象与x轴、y轴交点坐标代表的具体意义.【规律方法】用图象描述分段函数的实际问题需要注意的四点1.自变量变化而函数值不变化的图象用水平线段表示.2.当两个阶段的图象都是一次函数(或正比例函数)时,自变量变化量相同,而函数值变化越大的图象与x轴的夹角就越大.3.各个分段中,准确确定函数关系.4.确定函数图象的最低点和最高点.【知识拓展6】(2021春•滦南县期末)在国内投寄到外地质量为80g以内的普通信函应付邮资如下表:信件质量m/g0<m≤2020<m≤4040<m≤6060<m≤80邮资y/元 1.20 2.40 3.60 4.80某同学想寄一封质量为15g的信函给居住在外地的朋友,他应该付的邮资是()A.4.80B.3.60C.2.40D.1.20【即学即练1】((2021•永州)已知函数y =,若y=2,则x=.【即学即练2】((2021•锡山区校级模拟)某市地铁票价计费标准如表所示:乘车距离x,单位:公里.乘车距离x x≤66<x≤1212<x≤2222<x≤32x>32票价(元)3456每增加1元可乘20公里另外,使用市政交通一卡通,每个自然月每张卡片支出累计满100元后,超出部分打8折;满150元后,超出部分打5折;支出累计达400元后,不再打折.小红妈妈上班时,需要乘坐地铁15公里到达公司,每天上下班共乘坐两次,如果每次乘坐地铁都使用市政交通一卡通,那么每月第22次乘坐地铁上下班时,她刷卡支出的费用是元.能力拓展【考点1】:用表格表示变量间关系例题1.(2020·山东济南市·七年级期末)为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:汽车行驶时间t(h)0 1 2 3 …油箱剩余油量Q(L)100 94 88 82 …①根据上表的数据,请你写出Q与t的关系式;②汽车行驶5h后,油箱中的剩余油量是多少;③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远.【变式1】(2019·广东深圳市·七年级期末)某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用-支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的);(1)在这个变化过程中,是自变量,是因变量;(填中文)(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为元?(4)若5月份想获得利润5000元,则请你估计5月份的乘客量需达人.【变式2】(2020·辽宁丹东市·七年级期末)某路公交车每月有x人次乘坐,每月的收入为y元,每人次乘坐的票价相同,下面的表格是y与x的部分数据.x/人次500 1000 1500 2000 2500 3000 …y/元1000 2000 4000 6000 …(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)请将表格补充完整.(3)若该路公交车每月的支出费用为4000元,如果该路公交车每月的利润要达到10000元,则每月乘坐该路公交车要达到多少人次?(利润=收入-支出费用)【考点2】 :用关系式表示变量间关系例题2.(2020·甘肃酒泉市·七年级期末)如图,自行车每节链条的长度为2.5cm ,交叉重叠部分的圆的直径为0.8cm .(1)观察图形,填写下表: 链条的节数/节 2 3 4链条的长度/cm(2)如果x 节链条的长度是y ,那么y 与x 之间的关系式是什么?(3)如果一辆某种型号自行车的链条(安装前)由60节这样的链条组成,那么这辆自行车上的链条(安装后)总长度是多少?【变式1】(2020·江西九江市·七年级期末)在一次实验中,小明把一根弹簧的端固定,在其下端悬挂物体,下面是测得的弹簧的长度()y cm 与所挂物体的质量()x kg 的一组对应值:所挂物体的质量()x kg 012 3 4 5弹簧长度()y cm18 20 222426 28(1)在这个变化的过程中,自变量是 ;因变量是 ; (2)写出y 与x 之间的关系式,并求出当所挂重物为6kg 时,弹簧的长度为多少?【变式2】(2020·甘肃酒泉市·七年级期末)如图,自行车每节链条的长度为2.5cm,交叉重叠部分的圆的直径为0.8cm.(1)观察图形,填写下表:链条的节数/节234链条的长度/cm(2)如果x节链条的长度是y,那么y与x之间的关系式是什么?(3)如果一辆某种型号自行车的链条(安装前)由60节这样的链条组成,那么这辆自行车上的链条(安装后)总长度是多少?【考点3】:用图象表示变量间关系例题3、(2020·四川达州市·七年级期末)巴蜀中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动,朱老师先跑.当小明出发时,朱老师已经距起点200米了.他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是______,因变量是______;(2)朱老师的速度为_____米/秒,小明的速度为______米/秒;(3)当小明第一次追上朱老师时,求小明距起点的距离是多少米?【变式1】(2020·四川达州市·七年级期末)巴蜀中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动,朱老师先跑.当小明出发时,朱老师已经距起点200米了.他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是______,因变量是______;(2)朱老师的速度为_____米/秒,小明的速度为______米/秒;(3)当小明第一次追上朱老师时,求小明距起点的距离是多少米?【变式2】(2020·贵州毕节市·七年级期末)如图所示,是反映了爷爷每天晚饭后从家中出发去散步的时间与距离之间的关系的一幅图.(1)下图反映了哪两个变量之间的关系?(2)爷爷从家里出发后20分钟到30分钟可能在做什么?(3)爷爷每天散步多长时间?(4)爷爷散步时最远离家多少米?(5)分别计算爷爷离开家后的20分钟内、30分钟内、45分钟内的平均速度.【变式3】(2021·山东聊城市·七年级期末)如图是2020年1月15日至2月2日全国(除湖北省)新冠肺炎新增确诊人数的变化曲线,则下列说法:①自变量为时间,确诊总人数是时间的函数;②1月23号,新增确诊人数约为150人;③1月25号和1月26号,新增确诊人数基本相同;④1月30号之后,预测新增确诊人数呈下降趋势,其中正确的是____________.(填上你认为正确的说法的序号)分层提分题组A 基础过关练一.选择题(共5小题)1.(2021秋•龙泉驿区期末)小亮放学回家走了一段,发现一家新开的店在搞活动,就好奇地围观了一会,然后意识到回家晚了妈妈会着急,急忙跑步回到家.若设小亮与家的距离为s(米),他离校的时间为t (分钟),则反映该情景的图象为()A .B .C.D.2.(2021秋•丰台区期末)如图所示,有一个容器水平放置,往此容器内注水,注满为止.若用h(单位:cm)表示容器底面到水面的高度,用V(单位:cm3)表示注入容器内的水量,则表示V与h的函数关系的图象大致是()A.B.C.D.3.(2021秋•毕节市期中)油箱中存油60升,油从油箱中均匀流出,流速为0.3升/分钟,则油箱中剩余油量Q(升)与流出时间t(分钟)的函数关系是()A.Q=0.3t B.t=60﹣0.3Q C.t=0.3Q D.Q=60﹣0.3t4.(2021秋•济阳区期中)一水池的容积是90m3,现有蓄水10m3,用水管以5m3/h的速度向水池注水,直到注满为止.则水池蓄水量V(m3)与注水时间t(h)之间的函数关系式为()A.V=5t B.V=10t C.V=5t+10D.V=80﹣5t5.(2021秋•无棣县期中)已知关于x与y之间的关系如表所示:x1234…y5+0.610+1.215+1.820+2.4…下面用的式子中,正确的是()A.y=5x+0.6B.y=(5+0.6)x C.y=5+0.6x D.y=5+0.6+x二.填空题(共3小题)6.(2021秋•成都期末)现有一小树苗高100cm,以后平均每年长高50cm.x年后树苗的总高度y(cm)与年份x(年)的关系式是.7.(2021秋•福田区期末)元旦期间,大兴商场搞优惠活动,其活动内容是:凡在本商场一次性购买商品超过100元者,超过100元的部分按8折优惠.在此活动中,小明到该商场一次性购买单价为60元的礼盒x(x>2)件,则应付款y(元)与商品数x(件)之间的关系式,化简后的结果是.8.(2021秋•李沧区期中)如图,甲、乙两地相距120km,现有一列火车从乙地出发,以80km/h的速度向丙地行驶.设x(h)表示火车行驶的时间,y(km)表示火车与甲地的距离,写出x,y之间的关系式.三.解答题(共4小题)9.(2021春•庄河市期末)如图,在平面直角坐标系中,点A坐标为(0,3),点C坐标为(6,0),AB∥x 轴,且OA=AB,动点P从点O出发以2个单位/秒的速度沿O→A→B→C的路线匀速运动,运动到点C 时终止.过点P作PQ⊥x轴,垂足为Q,设点P的运动时间为x(s),线段PQ的长为y.(1)求∠C的度数;(2)求y与x的函数关系式.10.(2021•罗庄区一模)经过实验获得两个变量x(x>0),y(y>0)的一组对应值如表.x123456y632 1.5 1.21(1)请画出相应函数的图象,并求出函数表达式.(2)点A(x1,y1),B(x2,y2)在此函数图象上.若x1<x2,则y1,y2有怎样的大小关系?请说明理由.11.(2021•寻乌县模拟)数学活动课上,老师提出问题:如图1,有一张长4dm,宽3dm的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大(已知长方体的体积=长×宽×高).下面是探究过程,请补充完整:(1)设小正方形的边长为xdm,体积为ydm3,y和x的关系式是;自变量x的取值范围是;(2)①列表:根据(1)中所求函数关系式计算并补全表格:x/dm…1…y/dm3… 1.3 2.2 2.73 2.8 2.5 1.50.9…②描点:根据表中的数值,继续描出2中剩余两个点(x,y);③在平面直角坐标系中用平滑的曲线画出该函数的图象.(3)结合画出的函数图象,解决问题:当图1中小正方形的边长约为dm时,盒子的体积最大,最大值约为dm3(结果精确到0.01).12.(2020•南山区校级开学)某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如表所示(每位乘客的公交票价是固定不变的):x(人)50010001500200025003000…y(元)﹣3000﹣2000﹣1000010002000…(1)在这个变化过程中,是自变量,是因变量;(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)由表格猜想y与x关系式,并估计当每月乘车人数为3500人时,每月利润为多少元?(4)若5月份想获得利润5000元,则请你估计5月份的乘客量需达人.题组B 能力提升练易错点一:常量、变量(自变量、因变量)基本概念认识1.(2020·山东济南市·七年级期末)骆驼被称为“沙漠之舟”,它的体温是随时间的变化而变化的,在这一问题中,因变量是( )A.沙漠B.体温C.时间D.骆驼2.(2020·贵州毕节市·七年级期末)甲以每小时20km的速度行驶时,他所走的路程S(km)与时间t(h)之间可用公式s=20t来表示,则下列说法正确的是()A.数20和s,t都是变量B.s是常量,数20和t是变量C.数20是常量,s和t是变量D.t是常量,数20和s是变量易错点二:列表法表示变量之间的关系1.(2020·山东青岛市·七年级期末)某品牌热水壶的成本为50元,销售商对其销量与定价的关系进行了调查,结果如下:现销售了105把水壶,则定价约为()A.115元B.105元C.95元D.85元2.(2020·山东济南市·七年级期末)为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:①根据上表的数据,请你写出Q与t的关系式;②汽车行驶5h后,油箱中的剩余油量是多少;③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远.。

平面直角坐标系的基本概念与应用

平面直角坐标系的基本概念与应用

平面直角坐标系的基本概念与应用在数学中,平面直角坐标系是研究平面几何和代数的基础工具之一。

它由两条相互垂直的坐标轴组成,通常称为x轴和y轴。

本文将介绍平面直角坐标系的概念、性质,并探讨其在代数和几何中的应用。

一、平面直角坐标系的概念平面直角坐标系使用数轴上的实数,将平面上的每一个点都与一个有序数对(x,y)相对应。

这里,x轴上的数值表示点在水平方向上的位置,y轴上的数值表示点在垂直方向上的位置。

两个轴的交点称为原点,用O表示。

二、平面直角坐标系的性质1. 坐标轴相互垂直:x轴和y轴在原点处相交,且彼此垂直。

2. 坐标方向:x轴自原点向右延伸为正方向,向左延伸为负方向;y轴自原点向上延伸为正方向,向下延伸为负方向。

3. 轴的单位长度:x轴和y轴在同一张纸上通常有相同的单位长度,但在实际应用中可以根据需要进行调整。

4. 正负坐标:平面直角坐标系将平面上的每个点表示为(x,y)的形式。

若x为正值,表示点在x轴的正方向上;若x为负值,则表示点在x轴的负方向上。

同理,若y为正值,表示点在y轴的正方向上;若y为负值,则表示点在y轴的负方向上。

三、平面直角坐标系在代数中的应用平面直角坐标系在代数中有广泛的应用,尤其是在方程和函数的研究中。

1. 点的坐标:通过平面直角坐标系,我们可以将每个点表示为一个有序数对的形式。

这使得我们可以准确地描述点的位置,进行计算和推理。

2. 线段长度:利用坐标系上两点的坐标,可以计算出两点之间的距离,进而得到线段的长度。

这是平面几何中常见的计算问题。

3. 方程表示:平面直角坐标系可用于表示和解决方程。

通过将方程转化为坐标系上的图形,我们可以更直观地理解方程的性质和解的情况。

4. 函数图像:坐标系可以用于绘制函数的图像。

函数图像是将自变量的取值与函数值相对应的点所组成的集合,通过观察图像,我们可以研究函数的性质和变化趋势。

四、平面直角坐标系在几何中的应用平面直角坐标系在几何中也扮演着重要的角色,使得我们可以通过代数方法和几何方法相互转化,进而解决各种几何问题。

平面直角坐标系与函数像的关系

平面直角坐标系与函数像的关系

平面直角坐标系与函数像的关系直角坐标系是数学中常用的一种坐标系,我们可以利用它来描述平面上的各种几何图形和数学函数。

在这种坐标系中,平面被划分为四个象限,每个象限由两个互相垂直的轴,即x轴和y轴所确定。

x轴和y轴的交点称为原点,它的坐标为(0, 0)。

在直角坐标系中,我们可以通过给定的x坐标和y坐标,来确定平面上的一个点。

这个点的坐标表示为(x, y),其中x表示点在x轴上的位置,y表示点在y轴上的位置。

通过这种表示方式,我们可以利用直角坐标系方便地进行平面几何运算和函数分析。

函数是数学中一个非常重要的概念,它描述了两个数集之间的一种关系。

在直角坐标系中,我们可以将函数表示为一条曲线,这条曲线上的每个点都满足函数的定义。

函数的自变量通常表示为x,因变量表示为y,即y = f(x)。

在直角坐标系中,这个函数图像可以看作是平面上的一个图形。

函数的图像在直角坐标系中呈现出各种不同的形状,如直线、曲线、抛物线等。

通过观察这些图像,我们可以得到函数的性质和行为。

例如,当函数图像是一条直线时,函数呈现线性关系,即y与x成正比或反比。

而当函数图像是一条曲线时,函数可能表现出增长或衰减的趋势,或者存在极值点和拐点等。

函数图像在直角坐标系中的属性还包括对称性和周期性。

对称性是指函数图像在某个中心对称轴上呈现对称的特点,例如关于x轴对称、y轴对称或者原点对称。

周期性是指函数图像呈现出一定规律的重复性,即函数在某个区间内的数值与另一个区间内的数值相同。

直角坐标系也为我们提供了一种便利的方式来研究函数的变化趋势和数值特征。

通过观察函数图像在直角坐标系中的行为,我们可以判断函数的增减性、最值、零点以及一些其他的特征。

这些特征对于我们理解函数的性质和应用具有重要意义。

在数学和物理等领域,直角坐标系与函数的关系具有广泛的应用。

例如,我们可以利用直角坐标系来分析物体的运动轨迹、计算物体的速度和加速度,从而更好地理解运动规律。

此外,直角坐标系也为计算机图形学等领域提供了重要的基础,使得我们可以实现平面上的各种图形显示和处理。

平面直角坐标系与方程的基本关系定理

平面直角坐标系与方程的基本关系定理

平面直角坐标系与方程的基本关系定理平面直角坐标系是数学中最常用的坐标系之一,它与方程之间有着密切的联系。

本文将介绍平面直角坐标系与方程的基本关系定理,包括一元一次方程、一元二次方程和线性方程组等方面的内容。

一、一元一次方程在平面直角坐标系中,一元一次方程是指变量的最高次数为一次的方程。

以一元一次方程y = kx + b为例,其中k和b为已知常数,x和y为变量。

可以将该方程表示为直线的形式。

根据平面直角坐标系与方程之间的基本关系定理,我们可以利用一元一次方程来描述平面上的直线。

具体而言,方程中的k决定了直线的斜率,b决定了直线相对于y轴的截距。

二、一元二次方程一元二次方程是指变量的最高次数为二次的方程。

以一元二次方程y = ax^2 + bx + c为例,其中a、b和c为已知常数,x和y为变量。

这样的方程在平面直角坐标系中可以表示为抛物线的形式。

根据平面直角坐标系与方程之间的基本关系定理,我们可以利用一元二次方程来描述平面上的抛物线。

具体而言,方程中的a决定了抛物线的开口方向和形状,b决定了抛物线在x方向上的平移,c决定了抛物线在y方向上的平移。

三、线性方程组线性方程组是由多个线性方程组成的方程组。

以二元线性方程组为例,形如:```a₁x + b₁y = c₁a₂x + b₂y = c₂```其中a₁、b₁、c₁、a₂、b₂、c₂为已知常数,x和y为变量。

这样的方程组在平面直角坐标系中可以表示为两个直线的交点。

根据平面直角坐标系与方程之间的基本关系定理,我们可以利用线性方程组来描述平面上的交点。

具体而言,方程组中的每个方程表示了一条直线,在平面直角坐标系中,方程组的解表示了这两条直线的交点坐标。

综上所述,平面直角坐标系与方程之间有着紧密的关系。

一元一次方程对应着平面上的直线,一元二次方程对应着平面上的抛物线,线性方程组对应着平面上的交点。

这些基本关系定理为数学问题的求解提供了有力的工具,对于理解和应用平面直角坐标系与方程的关系具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系及变量之间的关系
主讲:黄冈中学数学高级教师平友
一、考点回顾
1、平面直角坐标系中特殊点的坐标的特征.
x轴上的点,其纵坐标为0,y轴上的点,其横坐标为0,原点的坐标为(0,0).
2、各象限的点的坐标的符号特征.
3、平行于坐标轴的直线上的点的坐标特征.
平行于x轴的直线上任两点的纵坐标相同;平行于y轴的直线上任两点的横坐标相同.
4、象限角平分线上的点的坐标特征.
第一、三象限角平分线上的点的横、纵坐标相等,第二、四象限角平分线上的点横、纵坐标互为相反数.
5、对称点的坐标特征
A(a,b)关于x轴的对称点坐标为(a,-b),A(a,b)关于y轴的对称点的坐标为(-a,b),A(a,b)关于原点的对称点为(-a,-b).
6、对函数概念的理解
(1)在某一个变化过程中有两个变量x,y;
(2)变量y的值随变量x的值的变化而变化;
(3)对于x的每一个值,y都有唯一的值与它对应.
7、函数的表示方法:解析法、列表法、图象法.
二、考点精讲精练
例1、已知点A(-1,2),将它先向左平移2个单位,再向上平移3个单位后,得到点B,则点B的坐标为__________.
A(-1,2)向左平移2个单位得(-3,2),再向上平移3个单位得(-3,5).
变式练习1
1、在直角坐标系中,把点A(-2,3)向右平移3个单位到B点,则点B的坐标为__________.
答案:(1,3)
2、将点P(-3,y)向下平移3个单位,并向左平移2个单位后得到点Q(x,-1),则xy=__________.
解:
将点P(-3,y)向下平移3个单位得(-3,y-3),再向左平移2个单位得到点(-5,y-3),所以 x=-5,且y-3=-1.得x=-5,y=2,所以xy=-10.
例2、已知点P(-2,a),Q(b,3),且PQ∥x轴,则a=__________,b≠__________.
答案:a=3,b≠-2
变式练习2
1、已知线段AB=3,AB∥x轴,若点A的坐标为(1,2),则点B的坐标为
__________.
答案:4,2或-2,2
2、过A(-2,4)和B(-2,2)两点的直线一定()
A.垂直于x轴B.与y轴相交但不平行于x轴
C.平行于x轴D.与x轴,y轴相交
答案:A
例3、已知如图,菱形ABCD的边长为2,∠AOC=45°,则点B的坐标为
__________.
过B作BD⊥x轴于D.
依题意有∠BOD=45°,BC=2,
∴ BD=2sin45°=,
CD=2cos45°=,
∴ OD=2+,∴B(2+,)
变式练习3
在平面直角坐标系中,若以点A(0,-3)为圆心,5为半径画一个圆,则这个圆与x轴的负半轴相交的点的坐标为()
A.(4,0)B.(0,-4)
C.(0,4)D.(-4,0)
答案:D
例4、如图,直线与x轴、y轴分别交于A、B两点,把△AO B绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是()
A.B.
C. D.
答案:B
提示:.
变式练习4
如图,将平面直角坐标系中的△AOB绕点O顺时针旋转90°得
△A′OB′.已知∠AOB=60°,∠B=90°,,则点B′的坐标是()A.B.
C.D.
解:
∵,∠AOB=60°,
∴A(-2,0),∴OA′=2,∠A′OB′=60°,
∴OB′=1,∠B′Ox=30°,,故选A.
例5、一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15km/h,水流速度为5km /h.轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用的时间为t (h),航行的路程为 s(km),则s与t的函数图象大致是()
答案:C 轮船顺水航行的速度比逆水航行的速度快,而航行的路程相同,所以顺航所用时间比逆航所用时间短,故选C.
变式练习5
某天小明骑自行车上学,途中因自行车发生故障修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()
A.学校离家的距离为2000米
B.修车时间为15分钟
C.到达学校时共用时间20分钟
D.自行车发生故障时离家距离为1000米
答案:B
例6、函数中自变量x的取值围为__________.
解:依题意得x≤12且x≠4.
变式练习6、函数中,自变量x的取值围为__________.
答案:x≥-2且x≠1.
- 返回 -
备考模拟
一、填空题
1、已知点P(a,b),当ab>0,则点A在第__________象限.
2、在直角坐标系,将点A(-2,3)向右平移3个单位到B点,则点B的坐标是__________.
3、矩形ABCD中,A、B、C三点的坐标分别是(0,0),(6,0),(6,4),则D点的坐标是__________,D点关于x轴的对称点是__________.
4、已知点P在第二象限两坐标轴所成角的平分线上,且到x轴的距离为3,则点P的坐标为__________.
5、在同一坐标系中,图形a是图形b向上平移3个单位长度得到的,如果在图形a中点A的坐标为(5,-3),则图形b中与A对应的点B的坐标为
__________.
隐藏答案
答案:
1、一或三
2、(1,3)
3、(0,4),(0,-4)
4、(-3,3)
5、(5,-6)
二、选择题
6、有一个长方形,已知它的三个顶点的坐标分别是(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标为()
A.(2,2)B.(3,2)
C.(3,3)D.(2,3)
7、若a>0,则点P(-a,2)应在()
A.第一象限B.第二象限
C.第三象限D.第四象限
8、在平面直角坐标系中,点P(-1,m2+1)一定在()
A.第一象限B.第二象限
C.第三象限D.第四象限
9、在一个标准大气压下,能反映水在均匀加热过程中,水的温度(T)随加热时间(t)变化的函数图象大致是()
10、如图,矩形ABCD中,P为CD中点,点Q为AB上的动点(不与A,B重合).过Q作QM⊥PA于M,QN⊥PB于N.设AQ的长度为x,QM与QN的长度和为y,则能表示y与x之间的函数关系的图象大致是()
三、综合题
11、如图,四边形ABCD四个顶点的坐标分别为A(-2,0)、B(1,7)、C (5,5)、D(7,0),试求这个四边形的面积.
隐藏答案
解:作BE⊥x轴于E,CF⊥x轴于F,
12、若函数,则当函数值y=8时,自变量x的值是多少?
隐藏答案
解:当x≤2时,令8=x2+2,;
当x>2时,令8=2x,∴x=4,∴自变量x的值为4,或.
13、某市自来水公司为限制单位用水,每月只给某单位计划用水3000吨,计划用水每吨收费0.5元,超计划部分每吨按0.8元收费.
(1)某月该单位用水3200吨,水费是__________元;若用水2800吨,水费是__________元;
(2)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式;
(3)若某月该单位缴纳水费1540元,则该单位这个月的用水量为多少吨?
隐藏答案
解:(1)1660;1400
(2)
(3)∵缴纳水费1540元>1500元,∴用水量超过了3000吨.
∴1500+0.8(x-3000)=1540
∴x=3050.故该月用水量为3050吨.
14、在平面直角坐标系中,A点坐标为(0,4),C点坐标为(10,0).
(1)如图①,若直线AB∥OC,AB上有一动点P,当P点的坐标为__________时,有PO=PC;
(2)如图②,若直线AB与OC不平行,在过点A的直线y=-x+4上是否存在点P,使∠OPC=90°?若有这样的点P,求出它的坐标;若没有,请简要说明理由.
隐藏答案
解;(1)(5,4);
(2)设P(x,-x+4),连OP,PC,过点P作PE⊥OC于E.
∵OP2=x2+(-x+4)2,PC2=(-x+4)2+(10-x)2,OP2+PC2=OC2,
∴x2+(-x+4)2+(-x+4)2+(10-x)2=102,
解得x1=1,x2=8.
∴P(1,3)或P(8,-4).
15、一辆经营长途运输的货车在高速公路的A处加满油后匀速行驶,下表记录的是货车一次加满油后油箱余油量y(升)与行驶时间x(时)之间的关系:
行驶时间x(时)0 1 2 2.5
余油量y(升)100 80 60 50
(1)请你认真分析上表中所给的数据,用你学过的一次函数、反比例函数和二次函数中的一种来表示y与x之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;(不要求写出自变量的取值围)
(2)按照(1)中的变化规律,货车从A处出发行驶4.2小时到达B处,求此时油箱余油多少升?
隐藏答案
解:(1)设y与x之间的关系式为y=kx+b(k≠0),
把(0,100),(1,80)代入上式得
∴y=-20x+100
经检验(2,60),(2.5,50)都符合上式.
∴可用一次函数y=-20x+100表示其变化规律.
(2)当x=4.2时,y=-20×4.2+100=16.
即货车行驶到B处时油箱余油16升.
-END-。

相关文档
最新文档