较为全面的解三角形专题高考题附答案
高三数学解三角形试题答案及解析
高三数学解三角形试题答案及解析1.在中,角所对的边为,已知,.(1)求的值;(2)若的面积为,求的值.【答案】(1);(2)或.【解析】(1)利用正弦定理对已知条件化简可求sinB,利用三角形的大边对大角可求B;(2)利用余弦定理可求a,b之间的关系,进而结合三角形的面积可ac,再把a,b的关系代入可求a,b的值.试题解析:(1),,或,,所以 4分(2)由解得或①又②③由①②③或 9分【考点】1.正弦定理;2.余弦定理.2.如图,正方形的边长为,延长至,使,连接、则()A.B.C.D.【答案】B【解析】连接AC,∵四边形ABCD是正方形,∴∠BAC=45°,∠DAE=∠DAB=90°,∵AD=AE=1,∴∠AED=∠ADE=45°,即∠DEA=∠CAB=45°,∴AC∥ED,∴∠CED=∠ECA,作EF⊥CA,交CA的延长线于点F,∵AE=1,∴由勾股定理得:EF=AF=∵在Rt△EBC中,由勾股定理得:CE2=12+22=5∴CE=∴sin∠CED=sin∠ECF=,故选B.【考点】1.三角函数的定义;2.勾股定理及正方形的性质.3.已知的内角,面积满足所对的边,则下列不等式一定成立的是A.B.C.D.【答案】A【解析】由题设得:(1)由三角形面积公式及正弦定理得:所以又因为,所以所以恒成立,所以故选A.【考点】1、两角和与差的三角函数;2、正弦定理;3、三角形的面积公式.4.甲船在岛B的正南A处,AB=10 n mile,甲船自A处以4 n mile/h的速度向正北航行,同时乙船以6 n mile/h的速度自岛B出发,向北偏东60°方向驶去,则两船相距最近时经过了________ min.【答案】【解析】设甲、乙两船行驶x h后,分别位于C,D,CD=y,如图所示.在△CBD中,y2=(10-4x)2+(6x)2-2(10-4x)·6x·cos120°=28x2-20x+100=28(x-)2+,所以当x=h,即x=×60=min时,=.5.在△ABC中,若a、b、c分别为角A、B、C所对的边,且cos2B+cosB+cos(A-C)=1,则有( ).A.a、c、b 成等比数列B.a、c、b 成等差数列C.a、b、c 成等差数列D.a、b、c成等比数列【答案】D【解析】由,.所以cos2B+cosB+cos(A-C)=1可化为.所以成等比数列.故选D.【考点】1.三角函数的恒等变换.2.正弦定理.3.方程中的消元思想.6.(2011•浙江)在△ABC中,角A,B,C,所对的边分别为a,b,c.已知sinA+sinC=psinB (p∈R).且ac=b2.(1)当p=,b=1时,求a,c的值;(2)若角B为锐角,求p的取值范围.【答案】(1)a=1,c=或a=,c=1 (2)<p<【解析】(1)解:由题设并利用正弦定理得故可知a,c为方程x2﹣x+=0的两根,进而求得a=1,c=或a=,c=1(2)解:由余弦定理得b2=a2+c2﹣2accosB=(a+c)2﹣2ac﹣2accosB=p2b2﹣b2cosB﹣,即p2=+cosB,因为0<cosB<1,所以p2∈(,2),由题设知p∈R,所以<p<或﹣<p<﹣又由sinA+sinC=psinB知,p是正数故<p<即为所求7.已知向量m=(sin ,1),n=(cos ,cos2).记f(x)=m·n.(1)若f(α)=,求cos(-α)的值;(2)在△ABC中,角A、B、C的对边分别是a、b、c,且满足(2a-c)cos B=bcos C,若f(A)=,试判断△ABC的形状.【答案】(1)1 (2)等边三角形【解析】f(x)=sin cos +cos2=sin+cos+=sin(+)+.(1)由已知f(α)=得sin(+)+=,于是+=2kπ+,k∈Z,即α=4kπ+,k∈Z,∴cos(-α)=cos(-4kπ-)=1.(2)根据正弦定理知:(2a-c)cos B=bcos C⇒(2sin A-sin C)cos B=sin Bcos C⇒2sin Acos B=sin(B+C)=sinA⇒cos B=⇒B=,∵f(A)=,∴sin(+)+=⇒+=或⇒A=或π,而0<A<,所以A=,因此△ABC为等边三角形.8.如图,已知中,,,,则_____________.【答案】【解析】因为又所以【考点】三角形面积公式两种表示形式9.某人站在60米高的楼顶A处测量不可到达的电视塔的高度,测得塔顶C的仰角为30°,塔底B的俯角为15°,已知楼底部D和电视塔的底部B在同一水平面上,则电视塔的高为米.【答案】120+40【解析】如图,用AD表示楼高,AE与水平面平行,E在线段BC上,因为∠CAE=30°,∠BAE=15°,AD=BE=60,则AE===120+60,在Rt△AEC中,CE=AE·tan30°=(120+60)×=60+40,∴BC=CE+BE=60+40+60=(120+40)米,所以塔高为(120+40)米.10.若sin 2α=,则cos2=( )A.B.C.D.【答案】A【解析】cos2=11.在△ABC中,a2+b2+c2=2ab sin C,则△ABC的形状是()A.直角三角形B.锐角三角形C.钝角三角形D.正三角形【答案】D【解析】a2+b2+c2=a2+b2+a2+b2-2ab cos C=2ab sin C,即a2+b2=2ab sin,由于2ab≤a2+b2=2ab sin,故只能a=b且C+=,故三角形为正三角形.也可用特殊值的方法断定正三角形合适,排除其他情况12.在△中,所对边分别为、、.若,则.【答案】【解析】三角形中问题在解决时要注意边角的互化,本题求角,可能把边化为角比较方便,同时把正切化为正弦余弦,由正弦定理可得,,所以有,即,在三角形中,于是有,,.【考点】解三角形.13.如图,在凸四边形中,为定点,为动点,满足.(I)写出与的关系式;(II)设的面积分别为和,求的最大值.【答案】(1);(2)有最大值.【解析】本题主要考查解三角形中的余弦公式、三角形的面积公式、平方关系、配方法求函数的最值等数学知识,考查运用三角公式进行三角变换的能力、计算能力.第一问,在和中利用余弦定理分别求,两式联立,得到和的关系式;第二问,先利用面积公式展开求出和,化简,利用平方关系,将,转化为,,再将第一问的结论代入,配方法求函数最值.试题解析:(I)由余弦定理,在中,=,在中,.所以=,即 4分(II) 6分所以10分由题意易知,,所以当时,有最大值. 12分【考点】1.余弦定理;2.三角形面积公式;3.平方关系;4.配方法求函数最值.14.在中,,,,则 .【答案】.【解析】解法一:由余弦定理得,即,整理得,由于,解得;解法二:由正弦定理得,所以,由于,所以,因此,所以,所以为直角三角形,且为斜边,由勾股定理得.【考点】1.余弦定理;2.正弦定理;3.勾股定理15.设的内角所对的边长分别为,且满足(Ⅰ)求角的大小;(Ⅱ)若,边上的中线的长为,求的面积.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求角的大小,由于三角形的三边满足,含有平方关系,可考虑利用余弦定理来解,由余弦定理得,把代入,可求得,从而可得角的值;(Ⅱ)由于,关系式中,即含有边,又含有角,需要进行边角互化,由于,故利用正弦定理把边化成角,通过三角恒等变换求出,得三角形为等腰三角形,由于边上的中线的长为,可考虑利用余弦定理来求的长,由于的长与的长相等,又因为,从而可求出的面积.试题解析:(Ⅰ)因为,由余弦定理有,故有,又,即: 5分(Ⅱ)由正弦定理: 6分可知:9分,设 10分由余弦定理可知: 11分. 12分【考点】解三角形,求三角形的面积.16.在中,角、、所对的边分别为、、,若,,则()A.B.C.D.【答案】B【解析】,所以,由余弦定理得,,,故选B.【考点】1.边角互化;2.余弦定理17.在△ABC中,,则的形状一定是( )A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形【答案】B【解析】,,,得,所以,即,故的形状一定是等腰三角形.【考点】18.在锐角中,、、所对的边分别为、、.已知向量,,且.(1)求角的大小;(2)若,,求的面积.【答案】(1);(2).【解析】(1)先根据平面向量垂直的等价条件得到等式,再利用弦化切的思想求出的值,最终在求出角的值;(2)解法一:在角的大小确定的前提下,利用正弦定理与同角三角函数之间的关系求出和,并利用结合和角公式求出的值,最后利用面积公式求出的面积;解法二:利用余弦定理求出的值,并对的值进行检验,然后面积公式求出的面积.试题解析:(1)因为,所以,则, 4分因为,所以,则,所以 7分(2)解法一:由正弦定理得,又,,,则,因为为锐角三角形,所以, 9分因为, 12分所以 14分解法二:因为,,,所以由余弦定理可知,,即,解得或,当时,,所以,不合乎题意;当时,,所以,合乎题意;所以 14分【考点】正弦定理、余弦定理、同角三角函数的关系、两角和的正弦函数、三角形的面积公式19.在中,角所对的边分别为满足,,,则的取值范围是 .【答案】【解析】由得,得为钝角,故,由正弦定理可知:,,所以.【考点】正余弦定理,辅助角公式.20.已知外接圆的半径为,且.,从圆内随机取一个点,若点取自内的概率恰为,判断的形状.()A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形【答案】B【解析】依题意,,又,,在内易知,在内由余弦定理得,则(当且仅当时,等号成立),又有几何概率可知,即,,即,此时当且仅当,所以为等边三角形.【考点】正弦定理和余弦定理、基本不等式、几何概率.21.在中,边、、分别是角、、的对边,且满足.(Ⅰ)求;(Ⅱ)若,,求边,的值.【答案】(1)(2)或【解析】(1)由正弦定理和,得, 2分化简,得即, 4分故.所以. 6分(2)因为,所以所以,即. (1) 8分又因为,整理得,. (2) 10分联立(1)(2),解得或. 12分【考点】正弦定理和余弦定理点评:主要是考查了正弦定理和余弦定理的运用,属于基础题。
2022年高考数学解三角形知识点专项练习含答案
专题19 解三角形一、单选题(本大题共10小题,共50分)1.在△ABC中,角A,B,C所对的边分别为a,b,c,若2acosC=b,则△ABC的形状是()A. 等腰直角三角形B. 直角三角形C. 等腰三角形D. 等边三角形2.如图,在△ABC中,点D在边AB上,CD⊥BC,AC=5√3,CD=5,BD=2AD,则AD的长为()A. 4B. 5C. 6D. 73.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B,C间的距离是()A. 10√3海里B. 10√63海里 C. 5√2海里 D. 5√6海里4.在△ABC中,内角A、B、C所对的边分别为a、b、c,若角A、C、B成等差数列,角C的角平分线交AB于点D,且CD=√3,a=3b,则c的值为()A. 3B. 72C. 4√73D. 2√35.如图,要测量电视塔AB的高度,在C点测得塔顶A的仰角是π4,在D点测得塔顶A的仰角是π6,水平面上的,则电视塔AB的高度为()mA. 20B. 30C. 40D. 506.为测出小区的面积,进行了一些测量工作,所得数据如图所示,则小区的面积为( )A.B. 3−√64km2C.D. 6−√34km27.已知直三棱柱ABC−A1B1C1的底面是正三角形,AB=2√3,D是侧面BCC1B1的中心,球O与该三棱柱的所有面均相切,则直线AD被球O截得的弦长为()A. √1010B. √105C. 3√1010D. 3√1058.在△ABC中,角A,B,C所对的边分别为a,b,c,若直线bx+ycos A+cos B=0与ax+ycos B+cos A=0平行,则△ABC一定是()A. 锐角三角形B. 等腰三角形C. 直角三角形D. 等腰或者直角三角形9.海伦不仅是古希腊的数学家,还是一位优秀的测绘工程师.在他的著作《测地术》中最早出现了已知三边求三角形面积的公式,即著名的海伦公式S=√p(p−a)(p−b)(p−c),这里p=12(a+b+c),a,b,c分别为▵ABC的三个角A,B,C所对的边,该公式具有轮换对称的特点,形式很美.已知▵ABC中,p=12,c=9,cosA=23,则该三角形内切圆半径()A. √2B. √3C. √10D. √510.在ΔABC中,若1sinA +1sinB=2(1tanA+1tanB),则()A. C的最大值为π3B. C的最大值为2π3C. C的最小值为π3D. C的最小值为π6二、单空题(本大题共4小题,共20分)11.如图,在离地面高200m的热气球上,观测到山顶C处的仰角为15∘、山脚A处的俯角为45∘,已知∠BAC=60∘,则山的高度BC为______m.12. 在四边形ABCD 中,AB =6,BC =CD =4,DA =2,则四边形ABCD 的面积的最大值是______.13. 海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A,B 两点间的距离,现在珊瑚群岛上取两点C,D ,测得CD =45m ,∠ADB =135∘,∠BDC =∠DCA =15∘,∠ACB =120∘,则AB 两点的距离为______.14. 如图,A ,B 两点在河的同侧,且A ,B 两点均不可到达,要测出A ,B 的距离,测量者可以在河岸边选定两点C ,D ,若测得CD =4 km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,则A ,B 两点间的距离是_______km .三、解答题(本大题共4小题,共30分)15. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 且ccosB +bcosC =3acosB .(1)求cos B 的值;(2)若|CA ⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ |=2,△ABC 的面积为2√2,求边b .16. 在①2acosC +c =2b ,②cos 2B−C 2−cosBcosC =34,③(sinB +sinC)2=sin 2A +3sinBsinC 这三个条件中任选一个补充在下面的横线上,并加以解答. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且 . (1)求角A 的大小;(2)若a =2,求△ABC 面积的最大值.17. 设a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,m⃗⃗⃗ =(cos C2,sin C2),n ⃗ =(cos C2,−sin C2),m ⃗⃗⃗ 与n ⃗ 的夹角为π3. (1)求角C 的大小;(2)已知c =72,△ABC 的面积S =3√32,求a +b 的值.18. 某农场有一块等腰直角三角形的空地ABC ,其中斜边BC 的长度为400米,为迎接“五一”观光游,欲在边界BC 上选择一点P ,修建观赏小径PM 、PN ,其中M 、N 分别在边界AB 、AC 上,小径PM 、PN 与边界BC 的夹角都为60°,区域PMB 和区域PNC 内种植郁金香,区域AMPN 内种植月季花.(1)探究:观赏小径PM 与PN 的长度之和是否为定值?请说明理由;(2)为深度体验观赏,准备在月季花区域内修建小径MN,当P点在何处时,三条小径(PM、PN、MN)的长度和最小?专题19 解三角形一、单选题(本大题共10小题,共50分)19.在△ABC中,角A,B,C所对的边分别为a,b,c,若2acosC=b,则△ABC的形状是()A. 等腰直角三角形B. 直角三角形C. 等腰三角形D. 等边三角形【答案】C解:∵b=2acosC,∴由正弦定理得sinB=2sinAcosC,∵B=π−(A+C),∴sin(A+C)=2sinAcosC,则sinAcosC+cosAsinC=2sinAcosC,sinAcosC−cosAsinC=0,即sin(A−C)=0,∵A、C∈(0,π),∴A−C∈(−π,π),则A−C=0,∴A=C,∴△ABC是等腰三角形.故选:C.20.如图,在△ABC中,点D在边AB上,CD⊥BC,AC=5√3,CD=5,BD=2AD,则AD的长为()A. 4B. 5C. 6D. 7【答案】B【解析】解:设AD=t,可得BD=2t,BC=√4t2−25,在直角三角形BCD中,可得cosB=√4t2−252t,在三角形ABC中,可得cosB=222⋅3t⋅√4t2−25,即为√4t2−252t =222⋅3t⋅√4t2−25,即2(4t2−25)=9t2−75,解得t=5,可得AD=5,故选:B.21.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B,C间的距离是()A. 10√3海里B. 10√63海里 C. 5√2海里 D. 5√6海里【答案】D【解析】解:由题意可得,A=60°,B=75°,∠C=180°−60°−75°=45°根据正弦定理可得,BCsin60°=ABsin45°∴BC=10×√32√22=5√6故选D.22.在△ABC中,内角A、B、C所对的边分别为a、b、c,若角A、C、B成等差数列,角C的角平分线交AB于点D,且CD=√3,a=3b,则c的值为()A. 3B. 72C. 4√73D. 2√3【答案】C【解析】解:由题意,得由S△ABC=S△ACD+S△BCD,得,所以ab=a+b,(b=0舍去),所以3b2=4b,解得b=43故a=3b=4,故c=√a2+b2−2ab·cosC=4√73故选C.23.如图,要测量电视塔AB的高度,在C点测得塔顶A的仰角是π,在D点测得塔顶A4的仰角是π,水平面上的,则电视塔AB的高度为6()mA. 20B. 30C. 40D. 50【答案】A【解析】解:由题题意,设AB=x,则BD=√3x,BC=x在△DBC中,∠BCD=60°,CD=40,∴根据余弦定理,得BD2=BC2+CD2−2BC⋅CD⋅cos∠DCB即:(√3x)2=(40)2+x2−2×40⋅x⋅cos60°整理得x2+20x−800=0,解之得x=−40(舍去)或x=20即所求电视塔的高度为20米.故选A.24.为测出小区的面积,进行了一些测量工作,所得数据如图所示,则小区的面积为( )A.B. 3−√6km24C.D. 6−√34km2【答案】D【解析】解:如图连接AC,根据余弦定理可得AC2=AB2+BC2−2AB×BCcosB=3,即AC=√3,由于AC2+BC2=AB2,所以∠ACB=90°,∠BAC=30°,所以∠DAC=45°−30°=15°,∠DCA=105°−90°=15°,所以∠DAC=∠DCA所以△ADC为等腰三角形,设AD=DC=x,∠D=150°,由余弦定理x2+x2+√3x2=3⇒x2=3(2−√3),故所求面积为12×1×√3+12×3(2−√3)×12=6−√34.故选D.25.已知直三棱柱ABC−A1B1C1的底面是正三角形,AB=2√3,D是侧面BCC1B1的中心,球O与该三棱柱的所有面均相切,则直线AD被球O截得的弦长为()A. √1010B. √105C. 3√1010D. 3√105【答案】D【解析】解:因为球O与直三棱柱ABC−A1B1C1的所有面均相切,且直三棱柱ABC−A1B1C1的底面是正三角形,所以球心O为该三棱柱上、下底面三角形重心连线的中点,如图所示,设球O的球心为O,底面三角形ABC的重心为O′,连接OO′,则OO′⊥底面ABC.设BC的中点为E,连接AE,易知点O′在AE上,连接OD、DE,因为D是侧面BB1C1C的中心,所以四边形OO′ED为正方形,设球O的半径为r,则由AB=2√3,可得r=2√3×√32×13=1,易得AD=√3√32)=√10,连接OA,可得OA=√23)=√5,∴cos ∠ADO=DO2+AD2−AO22⋅DO⋅AD =3√1010,故所求弦长为2r⋅cos ∠ADO=3√105.故选D.26.在△ABC中,角A,B,C所对的边分别为a,b,c,若直线bx+ycos A+cos B=0与ax+ycos B+cos A=0平行,则△ABC一定是()A. 锐角三角形B. 等腰三角形C. 直角三角形D. 等腰或者直角三角形【答案】C【解析】解:∵直线bx+ycosA+cosB=0与ax+ycosB+cosA=0平行,∴ba =cosAcosB,解得bcosB=acosA,∴利用余弦定理可得:b×a2+c2−b22ac =a×b2+c2−a22bc,整理可得:c2(b2−a2)=(b2+a2)(b2−a2),∴解得:c2=a2+b2或b=a,而当a=b时,两直线重合,不满足题意;则△ABC是直角三角形.故选C.27.海伦不仅是古希腊的数学家,还是一位优秀的测绘工程师.在他的著作《测地术》中最早出现了已知三边求三角形面积的公式,即著名的海伦公式S=√p(p−a)(p−b)(p−c),这里p=12(a+b+c),a,b,c分别为▵ABC的三个角A,B,C所对的边,该公式具有轮换对称的特点,形式很美.已知▵ABC中,p=12,c=9,cosA=23,则该三角形内切圆半径()A. √2B. √3C. √10D. √5【答案】D【解析】解:因为p=12(a+b+c),所以a+b+c=2p,因为p=12,c=9,所以a+b=15,三角形的内切圆半径r=2Sa+b+c,由余弦定理得cos A=b2+c2−a2 2bc =23,所以(b−a)(b+a)+81=12b,即b−5a=−27,所以a=7,b=8,所以S=√p(p−a)(p−b)(p−c)=√12×(12−7)(12−8)(12−9)=12√5,所以r=√5,故选D28.在ΔABC中,若1sinA +1sinB=2(1tanA+1tanB),则()A. C的最大值为π3B. C的最大值为2π3C. C的最小值为π3D. C的最小值为π6【答案】A【解析】解:因为1sin A +1sin B=2(1tan A+1tan B),所以1sin A +1sin B=2(cosAsinA+cosBsin B),所以sin A+sin Bsin Asin B =2·(sin BcosA+cosBsinA)sin Asin B=2·sin(A+B)sin Asin B =2·sinCsin Asin B,所以sinA+sinB=2sinC,由正弦定理得到:a+b=2c,所以cosC=a2+b2−c22ab =a2+b2−(a+b2)22ab=34a2+34b2−12ab2ab⩾34·2ab−12ab2ab=12,当且仅当a=b时“=”成立,所以,则C的最大值为π3.故选A.二、单空题(本大题共4小题,共20分)29.如图,在离地面高200m的热气球上,观测到山顶C处的仰角为15∘、山脚A处的俯角为45∘,已知∠BAC=60∘,则山的高度BC为______m.【答案】300【解析】解:根据题意,可得Rt△AMD中,∠MAD=45°,MD=200,∴AM=MDsin45°=200√2.∵△MAC中,∠AMC=45°+15°=60°,∠MAC=180°−45°−60°=75°,∴∠MCA=180°−∠AMC−∠MAC=45°,由正弦定理,得AC=MAsin∠AMCsin∠MCA =200√2×√32√22=200√3,在Rt△ABC中,BC=ACsin∠BAC=200√3×√32=300m.故答案为300.30.在四边形ABCD中,AB=6,BC=CD=4,DA=2,则四边形ABCD的面积的最大值是______.【答案】8√3【解析】解:如图所示,AB=6,BC=CD=4,DA=2,设BD=x,在△ABD中,由余弦定理可得x2=22+62−2×2×6cosA=40−24cosA,在△BCD中,由余弦定理可得x2=32−32cosC,联立可得3cosA−4cosC=1,①又四边形ABCD面积S=12×4×4sinC+12×2×6sinA,即4sinC+3sinA=12S,②①2+②2可得9+16+24(sinAsinC−cosAcosC)=1+14S2,化简可得−24cos(A+C)=14S2−24,由于−1≤cos(A+C)≤1,∴−24≤14S2−24≤24,∴0≤S2≤192,解得S≤8√3,当cos(A+C)=−1即A+C=π时取等号,∴S的最大值为8√3.故答案为:8√3.31.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A,B两点间的距离,现在珊瑚群岛上取两点C,D,测得CD=45m,∠ADB=135∘,∠BDC=∠DCA=15∘,∠ACB=120∘,则AB两点的距离为______.【答案】45√5【解析】解:易知在△ACD中,∠DAC=180°−∠ADB−∠BDC−∠ACD=15°,∴△ACD为等腰三角形,则AD=CD=45,在△BCD中,∠CBD=180°−∠BDC−∠ACD−∠ACB=30°,∠BCD=120°+15°= 135°,所以由正弦定理得,即45sin30°=BDsin135°,得BD=45√2,在△ABD中,由余弦定理得=452+(45√2)2−2×45×45√2×(−√22)=452×5,所以AB=45√5,即A,B两点的距离为45√5,故答案为45√5.32.如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B的距离,测量者可以在河岸边选定两点C,D,若测得CD=4km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,则A,B两点间的距离是_______km.【答案】2√2【解析】由于CD=4km,∠ADB=∠CDB=30∘,∠ACD=60∘,∠ACB=45∘,所以∠DAC=180°−30°−30°−60°=60°,∠DBC=180°−30°−60°−45°=45°,在三角形ADC 中,由正弦定理得4sin∠DAC =ADsin∠ACD ,所以AD =4sin60°sin60°=4,在三角形BCD 中,由正弦定理得BDsin∠BCD =4sin∠DBC , 所以BD =4×sin(60°+45°)sin45°=2√3+2,在三角形ABD 中由余弦定理得到AB 2=42+(2√3+2)2−2×4×(2√3+2)cos30°=8, 所以AB =2√2, 故答案为2√2.三、解答题(本大题共4小题,共30分)33. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 且ccosB +bcosC =3acosB .(1)求cos B 的值;(2)若|CA⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ |=2,△ABC 的面积为2√2,求边b . 【答案】解:(1)由正弦定理asinA =bsinB =csinC , 即ccosB +bcosC =3acosB ,得sinCcosB +sinBcosC =3sinAcosB ,则有3sinAcosB =sin(B +C)=sin(π−A)=sinA . 又A ∈(0,π),则sinA >0,则.(2)因为B ∈(0,π),则sinB >0,.因为|CA ⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ |=|BA ⃗⃗⃗⃗⃗ |=c =2,所以S =12acsinB =12a ×2×2√23=2√2,得a =3.由余弦定理,则b =3.34. 在①2acosC +c =2b ,②cos 2B−C 2−cosBcosC =34,③(sinB +sinC)2=sin 2A +3sinBsinC 这三个条件中任选一个补充在下面的横线上,并加以解答. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且 . (1)求角A 的大小;(2)若a =2,求△ABC 面积的最大值. 【答案】解:(1)选①,由正弦定理得2sin Acos C +sin C =2sin B ,所以2sin Acos C +sin C =2sin (A +C)=2(sin Acos C +cos Asin C),即sin C(2cos A −1)=0,又C ∈(0,π),所以sin C >0,所以cos A =12,又A ∈(0,π),从而得A =π3. 选②,因为cos 2 B−C 2−cosBcosC =1+cos (B−C )2−cosBcosC=1−cosBcosC+sinBsinC2=1−cos(B+C)2=34,所以cos(B +C)=−12,cosA =−cos(B +C)=12,又因为A ∈(0,π),所以A =π3. 选③因为(sinB +sinC)2=sin 2A +3sinBsinC , 所以sin 2B +sin 2C +2sinBsinC =sin 2A +3sinBsinC , 即sin 2B +sin 2C −sin 2A =sinBsinC , 所以由正弦定理得b 2+c 2−a 2=bc ,由余弦定理知cosA =b 2+c 2−a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)得A =π3,又a =2,由余弦定理得a 2=b 2+c 2−2bccos A =b 2+c 2−bc ⩾2bc −bc =bc , 所以bc ⩽4,当且仅当b =c =2时取得等号,,所以△ABC 面积的最大值为√3.35. 设a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,m ⃗⃗⃗ =(cos C2,sin C2),n ⃗ =(cos C2,−sin C2),m ⃗⃗⃗ 与n ⃗ 的夹角为π3. (1)求角C 的大小;(2)已知c =72,△ABC 的面积S =3√32,求a +b 的值.【答案】解:(1)由已知,得.又∵|m⃗⃗⃗ |=|n ⃗ |=1, .又∵0<C <π,∴C =π3.(2)由面积公式,得由余弦定理,得c 2=a 2+b 2−2abcosC , 即494=a 2+b 2−ab.② ①②联立,解得a +b =112.36. 某农场有一块等腰直角三角形的空地ABC ,其中斜边BC 的长度为400米,为迎接“五一”观光游,欲在边界BC 上选择一点P ,修建观赏小径PM 、PN ,其中M 、N 分别在边界AB、AC上,小径PM、PN与边界BC的夹角都为60°,区域PMB和区域PNC内种植郁金香,区域AMPN内种植月季花.(1)探究:观赏小径PM与PN的长度之和是否为定值?请说明理由;(2)为深度体验观赏,准备在月季花区域内修建小径MN,当P点在何处时,三条小径(PM、PN、MN)的长度和最小?【答案】解:(1)在三角形BPM中由正弦定理可得:PM sin45∘=PBsin75∘,化简得PM=(√3−1)PB,同理可得PN=(√3−1)PC,∴PM+PN=(√3−1)(PB+PC)=(√3−1)BC=(√3−1)×400为定值.(2)在三角形PMN中,由余弦定理得MN2=PM2+PN2−2PM⋅PNcos60°=(PM+ PN)2−3PM⋅PN=160000(√3−1)2−3PM⋅PN≥160000(√3−1)2−3×(PM+PN2)2=160000(√3−1)2−3×[400(√3−1)2]2=40000(√3−1)2,∴MN≥200(√3−1),当且仅当PM=PN,即P为BC的中点时,MN取得最小值200(√3−1),∴P为BC的中点时,三条小径(PM、PN、MN)的长度和最小,且最小值为600(√3−1).。
解三角形高考真题(带解析)
解三角形高考真题(带解析)1.在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ==-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值.2.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B -+==. (1)求ABC 的面积;(2)若sin sin A C =,求b .3.在ABC 中,sin 2C C =. (1)求C ∠;(2)若6b =,且ABC 的面积为ABC 的周长.4.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ; (2)证明:2222a b c =+5.记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-. (1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长.6.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知34,cos 5a C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积.7.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c +的最小值.8.小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在一个周期内的图象时,列表如下:根据表中数据,求: (1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.9.在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+.. (1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.10.在ABC 中,2cos c b B =,23C π=. (1)求B ;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:c =;条件②:ABC 的周长为4+条件③:ABC11.记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.12.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 0b A =. (I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.参考答案:1.(1)1c =(2)sin B =(3)sin(2)A B -=【分析】(1)根据余弦定理2222cos a b c bc A =+-以及2b c =解方程组即可求出; (2)由(1)可求出2b =,再根据正弦定理即可解出;(3)先根据二倍角公式求出sin 2,cos 2A A ,再根据两角差的正弦公式即可求出. (1)因为2222cos a b c bc A =+-,即22162b c bc =++,而2b c =,代入得22264c c c =++,解得:1c =.(2)由(1)可求出2b =,而0πA <<,所以sin A ==,又sin sin a b A B =,所以2sin sin b AB a===.(3)因为1cos 4A =-,所以ππ2A <<,故π02B <<,又sin A ==所以1sin 22sin cos 24A A A ⎛⎫==⨯-= ⎪⎝⎭,217cos 22cos 121168A A =-=⨯-=-,而sin B =cos B ==故7sin(2)sin 2cos cos 2sin 8A B A B A B ⎛-=-=+= ⎝⎭. 2.(2)12【分析】(1)先表示出123,,S S S,再由123S S S -+=求得2222a c b +-=,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得22sin sin sin b acB A C=,即可求解.(1)由题意得22221231,,2S a S S =⋅===,则222123S S S -+==即2222a c b +-=,由余弦定理得222cos 2a c b B ac+-=,整理得cos 1ac B =,则cos 0B >,又1sin 3B =,则cos B1cos ac B ==1sin 2ABCS ac B ==(2)由正弦定理得:sin sin sin b a cB A C==,则229sin sin sin sin sin 4b a c ac B A C A C =⋅===,则3sin 2b B =,31sin 22b B ==.3.(1)6π(2)663【分析】(1)利用二倍角的正弦公式化简可得cos C 的值,结合角C 的取值范围可求得角C 的值;(2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得ABC 的周长. (1)解:因为()0,C π∈,则sin 0C >2sin cos C C C =,可得cos C =,因此,6C π=.(2)解:由三角形的面积公式可得13sin 22ABCSab C a ===a =由余弦定理可得2222cos 48362612c a b ab C =+-=+-⨯=,c ∴=所以,ABC 的周长为6a b c ++=. 4.(1)5π8; (2)证明见解析.【分析】(1)根据题意可得,()sin sin C C A =-,再结合三角形内角和定理即可解出; (2)由题意利用两角差的正弦公式展开得()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再根据正弦定理,余弦定理化简即可证出. (1)由2A B =,()()sin sin sin sin C A B B C A -=-可得,()sin sin sin sin C B B C A =-,而π02B <<,所以()sin 0,1B ∈,即有()sin sin 0C C A =->,而0π,0πC C A <<<-<,显然C C A ≠-,所以,πC C A +-=,而2A B =,πA B C ++=,所以5π8C =. (2)由()()sin sin sin sin C A B B C A -=-可得,()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C -=-,然后根据余弦定理可知,()()()()22222222222211112222a cb bc a b c a a b c +--+-=+--+-,化简得: 2222a b c =+,故原等式成立.5.(1)见解析 (2)14【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c +,即可得解. (1)证明:因为()()sin sin sin sin C A B B C A -=-,所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C -=-, 所以2222222222222a c b b c a a b c ac bc ab ac bc ab +-+-+-⋅-⋅=-⋅, 即()22222222222a cb a bc b c a +-+--+-=-, 所以2222a b c =+; (2)解:因为255,cos 31a A ==, 由(1)得2250b c +=,由余弦定理可得2222cos a b c bc A =+-, 则50502531bc -=, 所以312bc =, 故()2222503181b c b c bc +=++=+=, 所以9b c +=,所以ABC 的周长为14a b c ++=.6. (2)22.【分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab+-=以及4a =可解出a ,即可由三角形面积公式in 12s S ab C =求出面积.(1)由于3cos 5C =, 0πC <<,则4sin 5C =.因为4a =,由正弦定理知4sin A C =,则sin A C ==(2)因为4a =,由余弦定理,得2222221612111355cos 22225a a a abc C ab a a +--+-====, 即26550a a +-=,解得5a =,而4sin 5C =,11b =, 所以ABC 的面积114sin 51122225S ab C ==⨯⨯⨯=.7.(1)π6;(2)5.【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos2A BA B=++化成()cos sin A B B +=,再结合π02B <<,即可求出; (2)由(1)知,π2C B =+,π22A B =-,再利用正弦定理以及二倍角公式将222a b c +化成2224cos 5cos B B +-,然后利用基本不等式即可解出.(1) 因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B BA B B B===++,即()1sin cos cos sin sin cos cos 2B A B A B A BC =-=+=-=, 而π02B <<,所以π6B =;(2)由(1)知,sin cos 0B C =->,所以πππ,022C B <<<<, 而πsin cos sin 2B C C ⎛⎫=-=- ⎪⎝⎭,所以π2C B =+,即有π22A B =-,所以30,,,424B C πππ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭所以222222222sin sin cos 21cos sin cos a b A B B Bc C B+++-== ()2222222cos 11cos 24cos 555cos cos B BB BB-+-==+-≥=.当且仅当2cos B =222a b c +的最小值为5.8.(1)3A =,2ω=,3πϕ=;(2)最大值是3,最小值是32-. 【分析】(1)利用三角函数五点作图法求解A ,ω,ϕ的值即可.(2)首先根据(1)知:3sin 23y x π⎛⎫=+ ⎪⎝⎭,根据题意得到11172636x πππ≤+≤,从而得到函数的最值.【详解】(1)由表可知max 3y =,则3A =,因为566T πππ⎛⎫=--= ⎪⎝⎭,2T πω=,所以2ππω=,解得2ω=,即3sin(2)y x ϕ=+, 因为函数图象过点,312π⎛⎫⎪⎝⎭,则33sin 212πϕ⎛⎫=⨯+ ⎪⎝⎭,即πsinφ16, 所以262k ππϕπ+=+,k ∈Z ,解得23k πϕπ=+,k ∈Z ,又因为2πϕ<,所以3πϕ=.(2)由(1)可知3sin 23y x π⎛⎫=+ ⎪⎝⎭.因为3544x ππ≤≤,所以11172636x πππ≤+≤, 因此,当11236x ππ+=时,即34x π=时,32y =-, 当5232x ππ+=时,即1312x π=时,3y =.所以该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值是3,最小值是32-.9.(1(2)存在,且2a =. 【分析】(1)由正弦定理可得出23c a =,结合已知条件求出a 的值,进一步可求得b 、c 的值,利用余弦定理以及同角三角函数的基本关系求出sin B ,再利用三角形的面积公式可求得结果;(2)分析可知,角C 为钝角,由cos 0C <结合三角形三边关系可求得整数a 的值. 【详解】(1)因为2sin 3sin C A =,则()2223c a a =+=,则4a =,故5b =,6c =,2221cos 28a b c Cab,所以,C 为锐角,则sin C ==因此,11sin 4522ABC S ab C ==⨯⨯△(2)显然c b a >>,若ABC 为钝角三角形,则C 为钝角,由余弦定理可得()()()()22222221223cos 022121a a a a b c a a C ab a a a a ++-++---===<++, 解得13a -<<,则0<<3a ,由三角形三边关系可得12a a a ++>+,可得1a >,a Z ∈,故2a =. 10.(1)6π;(2)答案不唯一,具体见解析. 【分析】(1)由正弦定理化边为角即可求解; (2)若选择①:由正弦定理求解可得不存在;若选择②:由正弦定理结合周长可求得外接圆半径,即可得出各边,再由余弦定理可求; 若选择③:由面积公式可求各边长,再由余弦定理可求.【详解】(1)2cos c b B =,则由正弦定理可得sin 2sin cos C B B =,2sin 2sin3B π∴==23C π=,0,3B π⎛⎫∴∈ ⎪⎝⎭,220,3B π⎛⎫∈ ⎪⎝⎭, 23B π∴=,解得6B π=;(2)若选择①:由正弦定理结合(1)可得sin 21sin 2c Cb B===与c =矛盾,故这样的ABC 不存在; 若选择②:由(1)可得6A π=,设ABC 的外接圆半径为R , 则由正弦定理可得2sin 6a b R R π===,22sin3c R π==,则周长24a b c R ++==+ 解得2R=,则2,a c ==由余弦定理可得BC 边上的中线的长度为:=;若选择③:由(1)可得6A π=,即a b =,则211333sin 2224ABCSab C a ==⨯=,解得3a =, 则由余弦定理可得BC 边上的中线的长度为:22233212cos 33223422a a b b π⎛⎫+-⨯⨯⨯=++⨯= ⎪⎝⎭. 11.(1)证明见解析;(2)7cos 12ABC ∠=. 【分析】(1)根据正弦定理的边角关系有acBD b=,结合已知即可证结论. (2)方法一:两次应用余弦定理,求得边a 与c 的关系,然后利用余弦定理即可求得cos ABC ∠的值.【详解】(1)设ABC 的外接圆半径为R ,由正弦定理, 得sin sin ,22b cR ABC C R==∠, 因为sin sin BD ABC a C ∠=,所以22b cBD a R R⋅=⋅,即BD b ac ⋅=. 又因为2b ac =,所以BD b =.(2)[方法一]【最优解】:两次应用余弦定理因为2AD DC =,如图,在ABC 中,222cos 2a b c C ab+-=,①在BCD △中,222()3cos 23ba b b a C +-=⋅.② 由①②得2222223()3b a b c a b ⎡⎤+-=+-⎢⎥⎣⎦,整理得22211203a b c -+=.又因为2b ac =,所以2261130a ac c -+=,解得3ca =或32c a =,当22,33c c a b ac ===时,33c ca b c +=<(舍去). 当2233,22c c a b ac ===时,22233()722cos 31222c c ABC c c c +⋅-==⋅∠.所以7cos 12ABC ∠=. [方法二]:等面积法和三角形相似 如图,已知2AD DC =,则23ABD ABC S S =△△, 即21221sin sin 2332b ac AD A B BC ⨯=⨯⨯∠∠,而2b ac =,即sin sin ADB ABC ∠=∠, 故有ADB ABC ∠=∠,从而ABD C ∠=∠. 由2b ac =,即b ca b =,即CA BA CB BD=,即ACB ABD ∽, 故AD ABAB AC=,即23bc c b =,又2b ac =,所以23c a =, 则2227cos 212c a b ABC ac +-==∠. [方法三]:正弦定理、余弦定理相结合由(1)知BD b AC ==,再由2AD DC =得21,33AD b CD b ==.在ADB △中,由正弦定理得sin sin AD BDABD A=∠.又ABD C ∠=∠,所以s 3sin n 2i C b A b=,化简得2sin sin 3C A =. 在ABC 中,由正弦定理知23c a =,又由2b ac =,所以2223b a =. 在ABC 中,由余弦定理,得222222242793cos 221223a a a a c b ABC ac a +--⨯∠+===. 故7cos 12ABC ∠=. [方法四]:构造辅助线利用相似的性质如图,作DE AB ∥,交BC 于点E ,则DEC ABC △∽△.由2AD DC =,得2,,333c a aDE EC BE ===.在BED 中,2222()()33cos 2323BED a c b a c -=⋅∠+⋅.在ABC 中222cos 2a a BC c A b c+-=∠.因为cos cos ABC BED ∠=-∠,所以2222222()()3322233a c ba cb ac ac +-+-=-⋅⋅,整理得22261130a b c -+=.又因为2b ac =,所以2261130a ac c -+=, 即3ca =或32a c =. 下同解法1.[方法五]:平面向量基本定理 因为2AD DC =,所以2AD DC =. 以向量,BA BC 为基底,有2133BD BC BA =+. 所以222441999BD BC BA BC BA =+⋅+, 即222441cos 999b ac c ABC a ∠=++, 又因为2b ac =,所以22944cos ac a ac ABC c ⋅∠=++.③ 由余弦定理得2222cos b a c ac ABC =+-∠, 所以222cos ac a c ac ABC =+-∠④ 联立③④,得2261130a ac c -+=.所以32a c =或13a c =. 下同解法1. [方法六]:建系求解以D 为坐标原点,AC 所在直线为x 轴,过点D 垂直于AC 的直线为y 轴,DC 长为单位长度建立直角坐标系,如图所示,则()()()0,0,2,0,1,0D A C -.由(1)知,3BD b AC ===,所以点B 在以D 为圆心,3为半径的圆上运动. 设()(),33B x y x -<<,则229x y +=.⑤ 由2b ac =知,2BA BC AC ⋅=, 2222(2)(1)9x y x y ++-+.⑥联立⑤⑥解得74x =-或732x =≥(舍去),29516y =,代入⑥式得36||||6,3a BC c BA b =====, 由余弦定理得2227cos 212a cb ABC ac +-∠==. 【整体点评】(2)方法一:两次应用余弦定理是一种典型的方法,充分利用了三角形的性质和正余弦定理的性质解题;方法二:等面积法是一种常用的方法,很多数学问题利用等面积法使得问题转化为更为简单的问题,相似是三角形中的常用思路;方法三:正弦定理和余弦定理相结合是解三角形问题的常用思路;方法四:构造辅助线作出相似三角形,结合余弦定理和相似三角形是一种确定边长比例关系的不错选择;方法五:平面向量是解决几何问题的一种重要方法,充分利用平面向量基本定理和向量的运算法则可以将其与余弦定理充分结合到一起;方法六:建立平面直角坐标系是解析几何的思路,利用此方法数形结合充分挖掘几何性质使得问题更加直观化.12.(I )3B π=;(II )32⎤⎥⎝⎦【分析】(I )方法二:首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定角B 的大小;(II )方法二:结合(Ⅰ)的结论将含有三个角的三角函数式化简为只含有角A 的三角函数式,然后由三角形为锐角三角形确定角A 的取值范围,最后结合三角函数的性质即可求得cos cos cos A B C ++的取值范围.【详解】(I ) [方法一]:余弦定理由2sin b A =,得22223sin 4a A b ==⎝⎭,即22231cos 4a A b -=.结合余弦定222cos 2b c a A bc +-=,∴2222223124b c a a bc b ⎛⎫+--= ⎪⎝⎭,即224442222222242223b c b c a b c b a c a a c ----++=, 即444222222220a b c a c a b b c +++--=, 即44422222222222a b c a c a b b c a c +++--=, 即()()22222a c b ac +-=,∵ABC 为锐角三角形,∴2220a c b +->, ∴222a c b ac +-=,所以2221cos 22a cb B ac +-==, 又B 为ABC 的一个内角,故3B π=.[方法二]【最优解】:正弦定理边化角由2sin b A =,结合正弦定理可得:2sin sin ,sin B A A B =∴=ABC 为锐角三角形,故3B π=.(II ) [方法一]:余弦定理基本不等式因为3B π=,并利用余弦定理整理得222b a c ac =+-,即223()ac a c b =+-.结合22a c ac +⎛⎫≤ ⎪⎝⎭,得2a c b +≤. 由临界状态(不妨取2A π=)可知a cb+=而ABC为锐角三角形,所以a cb+>由余弦定理得2222221cos cos cos 222b c a a b c A B C bc ab+-+-++=++,222b a c ac =+-,代入化简得1cos cos cos 12a c A B C b +⎛⎫++=+⎪⎝⎭故cos cos cos A B C ++的取值范围是32⎤⎥⎝⎦.[方法二]【最优解】:恒等变换三角函数性质 结合(1)的结论有: 12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭11cos cos 22A A A =-+11cos 22A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则sin 6A π⎤⎛⎫+∈⎥ ⎪⎝⎭⎝⎦,13sin 622A π⎤⎛⎫++∈⎥ ⎪⎝⎭⎝⎦. 即cos cos cos A B C ++的取值范围是32⎤⎥⎝⎦.【整体点评】(I )的方法一,根据已知条件,利用余弦定理经过较复杂的代数恒等变形求得222a c b ac +-=,运算能力要求较高;方法二则利用正弦定理边化角,运算简洁,是常用的方法,确定为最优解;(II )的三种方法中,方法一涉及到较为复杂的余弦定理代入化简,运算较为麻烦,方法二直接使用三角恒等变形,简洁明快,确定为最优解.。
专题解三角形大题(含答案)
解三角形专题1.在△ABC中,角A,B,C的对边分别为a,b,c,且b cos A+a=c.(1)求B的大小;(2)若c=,a+b=2,求△ABC的面积.2.在△ABC中,角A,B,C所对的边分别为a,b,c,若(b-a)sin B+a sin A=c sin C,且c=2.(Ⅰ)求角C的度数;(Ⅱ)求△ABC面积的最大值.靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。
余生,无需3.已知在△ABC中,,a=13,c=15.(Ⅰ)求sin C;(Ⅱ)若△ABC是钝角三角形,求△ABC的面积.4.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(1)求角C;(2)若c=2,求△ABC面积的最大值.靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。
余生,无需5.如图,在四边形ABCD中,∠D=2∠B,且AD=2,CD=6,cos B=.(1)求△ACD的面积;(2)若BC=6,求AB的长.6.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b sin(A+C)=a sin C,且a=2c.(1)求sin B;(2)若△ABC的面积为4,求△ABC的周长.高三几何每日一题(5 )答案靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。
余生,无需1.【答案】解:(1)∵b cos A+a=c,∴由正弦定理可得sin B cos A+sin A=sin C,又sin C=sin(A+B)=sin A cos B+cos A sin B,∴sin A=sin A cos B,∵sin A ≠0,∴cos B=,∵B∈(0,π),∴B=.(2)∵B=,c=,∴由余弦定理可得cos B==,整理可得a2-b2+3=3a ,又a+b=2,解得a=b=1,∴S△ABC=ac sin B==.2.【答案】解:(Ⅰ)由正弦定理得(b-a)b+a2=c2,即a2+b2-c2=ab由余弦定理得,∵C∈(0,π),∴.(Ⅱ)由面积公式,由a2+b2-c2=ab,得到ab+4=a2+b2,由不等式a2+b2≥2ab,得到ab +4≥2ab,∴ab≤4,从而,当且仅当a =b=2时取等号.所以△ABC面积的最大值为,3.【答案】解:(Ⅰ)在△ABC中根据正弦定理得,即,∴,(Ⅱ)因为a2=b2+c2-2bc cos A,所以.解得b=8或b=7.当b=7时,所以C为钝角,所以△ABC的面积,当b=8时,.此时C为锐角,不满足题意,所以△ABC的面积.4.【答案】解:(1)△ABC中,2cos C(a cos B+b cos A)=c,由正弦定理可得:2cos C(sin A cos B+sin B cos A)=sin C,即2cos C sinC=sin C,又0<C<π,sin C≠0,∴cos C=,求得C=;(2)由c=2,C=,利用余弦定理可得:4=c2=a2+b2-2ab cos C≥2ab-ab=ab,靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。
(完整版)解三角形高考大题-带答案
解三角形高考大题,带答案1. (宁夏17)(本小题满分12分)如图,ACD △是等边三角形,ABC △是等腰直角三角形,90ACB =∠,BD 交AC 于E ,2AB =.(Ⅰ)求cos CAE ∠的值; (Ⅱ)求AE .解:(Ⅰ)因为9060150BCD =+=∠,CB AC CD ==,所以15CBE =∠.所以6cos cos(4530)4CBE =-=∠. ···················································· 6分 (Ⅱ)在ABE △中,2AB =, 由正弦定理2sin(4515)sin(9015)AE =-+.故2sin 30cos15AE=124⨯== 12分2. (江苏17)(14分) 某地有三家工厂,分别位于矩形ABCD 的顶点A 、B 及CD 的中点P 处,已知AB=20km ,BC=10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A 、B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO 、BO 、OP ,设排污管道的总长为ykm 。
(1)按下列要求写出函数关系式:①设∠BAO=θ(rad ),将y 表示成θ的函数关系式; ②设OP=x (km ),将y 表示成x 的函数关系式;(2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短。
高考数学-解三角形-专题复习100题(含答案详解)
⾼考数学-解三⾓形-专题复习100题(含答案详解)⾼考数学-解三⾓形-专题复习100题(含答案详解)2018年⾼考数学解三⾓形专题复习100题1.如图在△ABC中,D是边AC上的点,且AB=AD,,BC=2BD.(1)求的值;(2)求sinC的值.2.△ABC中,⾓A,B,C所对的边分别为a,b,c.已知 .求sinA和c的值.3.△ABC的内⾓A,B,C的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2.(1)求c;(2)设D为BC边上⼀点,且AD AC,求△ABD的⾯积.4.在中,内⾓A,B,C所对的边分别为a,b,c,.(1)若,求c的值;(2)若,求的⾯积.5.的内⾓A,B,C的对边分别为a,b,c,已知,,.(1)求c;(2)设为边上⼀点,且,求的⾯积.6.在△ABC中, =60°,c= a.(Ⅰ)求sinC的值;(Ⅱ)若a=7,求△ABC的⾯积.7.△ABC的三个内⾓A,B,C所对的边分别为a,b,c,asin Asin B+bcos2A= a.(1)求;8.△ABC的内⾓A,B,C的对边分别为、、,且.(1)若,求的值;(2)若,求的值.9.的内⾓A,B,C的对边分别为a,b,c,其中,且,延长线段到点,使得.(Ⅰ)求证:是直⾓;(Ⅱ)求的值.10.在△ABC中,内⾓A,B,C的对边分别为a,b,c,且.(1)求⾓A的值;(2)若的⾯积为,△ABC的周长为,求边长a.11.为绘制海底地貌图,测量海底两点C,D间的距离,海底探测仪沿⽔平⽅向在A,B两点进⾏测量,A,B,C,D在同⼀个铅垂平⾯内. 海底探测仪测得同时测得海⾥。
(1)求AD的长度;(2)求C,D之间的距离.12.在中,⾓A,B,C对边分别为a,b,c,⾓,且.(1)证明:;(2)若⾯积为1,求边c的长.13.在△ABC 中,边a,b,c分别是内⾓A,B,C所对的边,且满⾜,设B的最⼤值为B.0(Ⅰ)求B0的值;(Ⅱ)当B=B0,a=1,c=3,D为AC的中点时,求BD的长.14.△ABC的内⾓A,B,C的对边分别为a,b,c,已知.(Ⅰ)求⾓C;(Ⅱ)若c=,△ABC的⾯积为,求△ABC的周长.15.在中,⾓,,的对边分别是,,,已知,.(Ⅰ)求的值;(Ⅱ) 若⾓为锐⾓,求的值及的⾯积.16.在△ABC中,已知.(1)求的长;(2)求的值.17.△ABC的内⾓A,B,C所对的边分别为a,b,c,向量与平⾏.(I)求A;(II)若,求△ABC的⾯积.18.的内⾓A,B,C的对边分别为a,b,c,已知的⾯积为.(1)求;(2)若,,求的周长.19.在△ABC中,⾓的对边分别为,且满⾜.(1)求⾓的值;(2)设,当取到最⼤值时,求⾓A.⾓C的值.20.在△ABC中,⾓的对边分别为a,b,c, ,c=,⼜△ABC的⾯积为,求:(1)⾓的⼤⼩;(2)的值.21.在△ABC中,⾓A,B,C所对的边分别为a,b,c,且cos2﹣sinB?sinC=.(1)求A;(2)若a=4,求△ABC⾯积的最⼤值.22.在△ABC中,已知⾓A,B,C的对边分别是a,b,c,且.(I)求⾓C的⼤⼩;(II)如果,,求实数m的取值范围.23.已知向量=(2cosx,sinx),=(cosx,2cosx),函数f(x)=?﹣1.(Ⅰ)求函数f(x)的单调递减区间;(Ⅱ)在锐⾓△ABC中,内⾓A.B、C的对边分别为a,b,c,tanB=,对任意满⾜条件的A,求fA.的取值范围.24.设△ABC的内⾓A,B,C的对边分别为,且.(Ⅰ)求B;(Ⅱ)若,求C.25.在△ABC中,a、b、c分别为内⾓A.B、C的对边,且2sinAcosC=2sinB﹣sinC.(1)求∠A的⼤⼩;(2)在锐⾓△ABC中,a=,求c+b的取值范围.26.在ABC中,(I)求的⼤⼩(II)求的最⼤值27.设函数,其中向量,,.(Ⅰ)求的最⼩正周期与单调递减区间;(Ⅱ)在△ABC中,a、b、c分别是⾓A.B、C的对边,已知fA.=2,b=1,△ABC的⾯积为,求的值.28.△ABC 中,⾓A ,B ,C 的对边分别是a ,b ,c ,已知(2a+b )sinA+(2b+a )sinB=2csinC .(Ⅰ)求C 的⼤⼩;(Ⅱ)若,求△ABC 周长的最⼤值.29.已知A .B 、C 是△ABC 的三内⾓,向量m=(-1,3),n=(cosA ,sinA),且m ·n=1.(1)求⾓A ;(2)若3)4tan(-=+B π,求tanC.30.在△ABC 中,⾓A ,B ,C 的对边分别为a ,b ,c ,且C=,a=6.(Ⅰ)若c=14,求sinA 的值;(Ⅱ)若△ABC 的⾯积为3,求c 的值.31.在△ABC 中,a,b,c 分别为内⾓A,B,C 的对边,且(Ⅰ)求A 的⼤⼩;(Ⅱ)求的最⼤值.32.△ABC 的内⾓A ,B ,C 的对边分别为a ,b ,c ,已知2cosC (acosB+bcosA )=c .(Ⅰ)求C ;(Ⅱ)若c=,△ABC 的⾯积为,求△ABC 的周长.33.在△ABC 中,⾓A ,B ,C 所对的边分别是a ,b ,c ,且。
2024年高考数学复习大题全题型专练:专题07 解三角形(解析版)
专题7解三角形一、解答题1.(2022·全国·高考真题(理))记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A .(1)证明:2222a b c ;(2)若255,cos 31a A ,求ABC 的周长.【答案】(1)见解析(2)14【解析】【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c ,即可得解.(1)证明:因为 sin sin sin sin C A B B C A ,所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C ,所以2222222222222a c b b c a a b c ac bc ab ac bc ab,即22222222222a c b a b c b c a ,所以2222a b c ;(2)解:因为255,cos 31a A,由(1)得2250b c ,由余弦定理可得2222cos a b c bc A ,则50502531bc ,所以312bc,故 2222503181b c b c bc ,所以9b c ,所以ABC 的周长为14a b c .2.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos 2A B A B.(1)若23C ,求B ;(2)求222a b c 的最小值.【答案】(1)π6;(2)5.【解析】【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos 2A B A B 化成 cos sin A B B ,再结合π02B ,即可求出;(2)由(1)知,π2C B ,π22A B ,再利用正弦定理以及二倍角公式将222a b c 化成2224cos 5cos B B ,然后利用基本不等式即可解出.(1)因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B B A B B B ,即 1sin cos cos sin sin cos cos 2B A B A B A BC ,而π02B ,所以π6B ;(2)由(1)知,sin cos 0BC ,所以πππ,022C B ,而πsin cos sin 2B C C,所以π2C B ,即有π22A B .所以222222222sin sin cos 21cos sin cos a b A B B B c C B2222222cos 11cos 24cos 555cos cos B B B BB .当且仅当22cos 2B 时取等号,所以222a b c的最小值为5.3.(2022·浙江·高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知34,cos 5a C .(1)求sin A 的值;(2)若11b ,求ABC 的面积.【答案】(2)22.【解析】【分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab以及4a 可解出a ,即可由三角形面积公式in 12s S ab C 求出面积.(1)由于3cos 5C ,0πC ,则4sin 5C.因为4a ,由正弦定理知4sin A C,则sin 45A C .(2)因为4a ,由余弦定理,得2222221612111355cos 22225a a a abc C ab a a ,即26550a a ,解得5a ,而4sin 5C ,11b ,所以ABC 的面积114sin 51122225S ab C .4.(2022·北京·高考真题)在ABC 中,sin 2C C.(1)求C ;(2)若6b ,且ABC 的面积为ABC 的周长.【答案】(1)6 (2)6+【解析】【分析】(1)利用二倍角的正弦公式化简可得cos C 的值,结合角C 的取值范围可求得角C 的值;(2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得ABC 的周长.(1)解:因为 0,C ,则sin 0C2sin cos C C C ,可得cos 2C ,因此,6C .(2)解:由三角形的面积公式可得13sin 22ABC S ab C a,解得a .由余弦定理可得2222cos 48362612c a b ab C ,c所以,ABC 的周长为6a b c .5.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B.(1)求ABC 的面积;(2)若sin sin A C,求b .【答案】(2)12【解析】【分析】(1)先表示出123,,S S S ,再由123S S S2222a c b ,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得22sin sin sin b ac B A C,即可求解.(1)由题意得22221231,,2S a S S,则222123S S S a b c 即2222a c b ,由余弦定理得222cos 2a c b B ac ,整理得cos 1ac B ,则cos 0B ,又1sin 3B ,则22cos 3B ,1cos 4ac B ,则12sin 28ABC S ac B ;(2)由正弦定理得:sin sin sin b a c B A C,则229sin sin sin sin sin 423b a c ac B A C A C ,则3sin 2b B ,31sin 22b B .6.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知 sin sin sin sin C A B B C A .(1)若2A B ,求C ;(2)证明:2222a b c 【答案】(1)5π8;(2)证明见解析.【解析】【分析】(1)根据题意可得, sin sin C C A ,再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得 sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A ,再根据正弦定理,余弦定理化简即可证出.(1)由2A B , sin sin sin sin C A B B C A 可得, sin sin sin sin C B B C A ,而π02B ,所以 sin 0,1B ,即有 sin sin 0C C A ,而0π,0πC C A ,显然C C A ,所以,πC C A ,而2A B ,πA B C ,所以5π8C.(2)由 sin sin sin sin C A B B C A 可得,sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A ,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C ,然后根据余弦定理可知,22222222222211112222a cb bc a b c a a b c ,化简得:2222a b c ,故原等式成立.7.(2022·上海·高考真题)如图,矩形ABCD 区域内,D 处有一棵古树,为保护古树,以D 为圆心,DA 为半径划定圆D 作为保护区域,已知30AB m ,15AD m ,点E 为AB 上的动点,点F 为CD 上的动点,满足EF 与圆D 相切.(1)若∠ADE 20 ,求EF 的长;(2)当点E 在AB 的什么位置时,梯形FEBC 的面积有最大值,最大面积为多少?(长度精确到0.1m ,面积精确到0.01m²)【答案】(1)23.3m(2)当8.7AE 时,梯形FEBC 的面积有最大值,最大值为255.14【解析】【分析】(1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ,15DH AD ,在直角HED △和直角FHD △中分别求出,EH HF ,从而得出答案.(2)先求出梯形AEFD 的面积的最小值,从而得出梯形FEBC 的面积的最大值.(1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ,15DH AD 则AE EH ,所以直角ADE 与直角HED △全等所以20ADE HDE在直角HED △中,tan 2015tan 20EH DH90250HDF ADE在直角FHD △中,tan 5015tan 50HF ADsin 20sin 5015tan 20tan 5015cos 20cos50EF EH HFsin 2050sin 20cos50cos 20sin 501515cos 20cos50cos 20cos50sin 70151523.3cos 20cos50cos50(2)设ADE ,902HDF ,则15tan AE ,15tan 902FH 115151515tan 15tan 90215tan 222tan 2EFD S EF DHV 11515tan 22ADE S AD AE V 所以梯形AEFD 的面积为215152251tan 30tan 2tan 2tan 222tan ADE DEF S S S22512253tan 4tan 42当且当13tan tan ,即tan 时取得等号,此时15tan 158.73AE即当tan 3 时,梯形AEFD 的面积取得最小值2则此时梯形FEBC 的面积有最大值1530255.142所以当8.7AE 时,梯形FEBC 的面积有最大值,最大值为255.148.(2022·全国·模拟预测)在 ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,其面积为S ,且 sin sin sin 6b a b c A B C S .(1)求角B 的大小;(2)若1a b ,2c b ,求cos A ,cos C 的值.【答案】(1)3(2)17,1114【解析】【分析】(1)由三角形的面积公式结合正弦余弦定理化简即可得到答案;(2)由余弦定理计算即可.(1)由in 12s S ab C ,又 sin sin sin 3sin b a b c A B C ab C ,由0b ,则 sin sin sin 3sin a b c A B C a C .由正弦定理得 3a b c a b c ac ,所以222a c b ac .由余弦定理得2221cos 222a cb ac B ac ac ,因为0B ,所以3B .(2)因为222a c b ac ,1a b ,2c b ,所以 2221212b b b b b ,解得7b ,所以8a ,5c .所以2222227581cos 2707b c a A bc ,22222287511cos 211214a b c C ab .9.(2022·全国·模拟预测)在ABC 中,角A B C ,,的对边长分别为a b c ,,,ABC 的面积为S ,且24cos cos tan S a B ab A B.(1)求角B 的大小;(2)若322AB BC ,,点D 在边AC 上,______,求BD 的长.请在①AD DC ;②DBC DBA ;③BD AC 这三个条件中选择一个,补充在上面的横线上,并完成解答.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)π3B (2)答案不唯一,具体见解析【解析】【分析】(1)根据面积公式可得2cos cos cos c B a B b A ,利用正弦定理以及和角关系可得1cos 2B ,进而可求.(2)根据余弦定理可求出AC ,然后在ABD △和在DBC △中分别用余弦定理即可求①.根据面积公式即可求解②③.(1)因为24cos cos tan S a B ab A B ,所以214sin 2cos cos sin cos ac B a B ab A B B,所以22cos cos cos ac B a B ab A ,即2cos cos cos c B a B b A .由正弦定理,得2sin cos sin cos sin cos C B A B B A ,所以 2sin cos sin sin C B A B C .因为 0,πC ,所以sin 0C ,所以1cos 2B.又 0,πB ,所以π3B.(2)若选①.法一:在ABC 中,由余弦定理,得2222233π132cos 222cos 2234AC AB BC AB BC B ,所以ACAD DC 在ABD △中,由余弦定理,得2222cos AB BD DA BD DA ADB ,即2134cos 16BD BD ADB .在DBC △中,由余弦定理,得2222cos BC BD DC BD DC CDB ,即2913cos 416BD CDB .又πADB CDB ,所以cos cos 0ADB CDB .所以29134248BD ,所以374BD .法二:因为AD DC ,所以D 为AC 的中点,所以 12BD BA BC ,所以222124BD BA BC BA BC 19337422cos6044216.所以BD BD 若选②.在ABC 中,ABC ABD CBD S S S ,即1π1π1πsin sin sin 232626BA BC BA BD BD BC ,即1311131222222222BD BD ,解得BD 若选③.在ABC 中,由余弦定理,得2222cos AC AB BC AB BC B2233π13222cos 2234 ,所以AC .因为1sin 2ABC S BA BC B △12ABC S BD AC △,BD 10.(2022·全国·模拟预测)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos 2cos tan sin C A B C ,a b .(1)求角B ;(2)若3a ,7b ,D 为AC 边的中点,求BCD △的面积.【答案】(1)23B (2)1538【解析】【分析】(1)根据同角三角函数的关系,结合两角和差的正余弦公式化简即可(2)由余弦定理可得5c ,再根据BCD △的面积为ABC 面积的一半,结合三角形的面积公式求解即可(1)由cos 2cos tan sin C A B C,有tan sin cos 2cos B C C A ,两边同乘cos B 得sin sin cos cos 2cos cos B C B C A B ,故 cos 2cos cos B C A B ,即cos 2cos cos A A B .因为a b ,所以A 为锐角,cos 0A ,所以1cos 2B .又因为 0,B ,所以23B .(2)在ABC 中,由余弦定理2221cos 22a c b B ac ,即2949162c c ,故23400c c ,解得5c 或8c 舍).故11235sin 223BCD ABC S S △△11.(2022·福建·三明一中模拟预测)已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且22cos c b a C .(1)求角A ;(2)若M 为BC 的中点,AM ABC 面积的最大值.【答案】(1)π3A 【解析】【分析】(1)解法一:根据正弦定理边化角求解即可;解法二:利用余弦定理将cos C 用边表示再化简即可;(2)解法一:根据基底向量的方法得1()2AM AB AC ,两边平方化简后可得2212b c bc ,再结合基本不等式与面积公式求面积最大值即可;解法二:设BM MC m ,再分别在ABM ,ACM △和ABC 中用余弦定理,结合cos cos 0AMB AMC 可得2212b c bc ,再结合基本不等式与面积公式求面积最大值即可(1)解法一:因为22cos c b a C ,由正弦定理得:sin 2sin 2sin cos C B A C ,所以sin 2sin()2sin cos C A C A C 2sin cos 2cos sin 2sin cos 2cos sin A C A C A C A C ,因为sin 0C ,所以12cos 1,cos 2A A,为0πA ,所以π3A .解法二:因为22cos c b a C ,由余弦定理得:222222a b c c b a ab,整理得222bc b c a ,即222a b c bc ,又由余弦定理得2222cos a b c bc A所以12cos 1,cos 2A A,因为0πA ,所以π3A .(2)解法一:因为M 为BC 的中点,所以1()2AM AB AC ,所以222124AM AB AB AC AC ,即22132cos 43c b bc ,即2212b c bc ,而222b c bc ,所以122bc bc 即4bc ,当且仅当2b c 时等号成立所以ABC 的面积为113sin 4222ABC S bc A △即ABC 解法二:设BM MC m ,在ABM 中,由余弦定理得2232cos c m AMB ,①在ACM △中,由余弦定理得2232cos b m AMC ,②因为πAMB AMC ,所以cos cos 0AMB AMC 所以①+②式得22262b c m .③在ABC 中,由余弦定理得22242cos m b c bc A ,而π3A ,所以2224m b c bc ,④联立③④得:22222212b c b c bc ,即2212b c bc ,而222b c bc ,所以122bc bc ,即4bc ,当且仅当2b c 时等号成立.所以ABC 的面积为11sin 4222ABC S bc A △ABC 12.(2022·北京市第十二中学三模)ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos sin a B A .(1)求角B 的大小;(2)从以下4个条件中选择2个作为已知条件,使三角形存在且唯一确定,并求ABC 的面积.条件①:3a ;条件②:b ;条件③:2cos 3C ;条件④:2c .【答案】(1)6B(2)答案不唯一,见解析【解析】【分析】(1)由正弦定理化简可得出tan B 的值,结合角B 的取值范围可求得角B 的值;(2)选①②,利用余弦定理可判断ABC 不唯一;选①③或②③或③④,利用三角形的内角和定理可判断ABC 唯一,利用正弦定理结合三角形的面积可判断ABC 的面积;选①④,直接判断ABC 唯一,再利用三角形的面积公式可求得ABC 的面积;选②④,利用余弦定理可判断ABC 唯一,再利用三角形的面积公式可求得ABC 的面积.(1)解:由cos sin a B A 及正弦定理可得sin cos sin A B A B ,A ∵、 0,B ,则sin 0A ,cos 0 B B ,tanB 6B .(2)解:若选①②,由余弦定理可得2222cos b a c ac B ,即210c ,解得 c ,此时,ABC 不唯一;若选①③,已知3a ,6B,21cos 32C ,且 0,C ,则25,36C ,所以,5,6B C,则ABC 唯一,sin C, sin sin sin cos cos sin 66A C B C C由正弦定理sin sin b a B A 可得 92sin sin 11a B b A,所以, 9211sin 32211ABC S ab C △;若选①④,已知3a ,6B,2c ,此时ABC 唯一,1322sin ABC S ac B;若选②③,已知b 6B ,21cos 32C,且 0,C ,则25,36C ,所以,5,6B C,则ABC 唯一,sin C, sin sin sin cos cos sin 66A CBC C 由正弦定理sin sin b c B C 可得sin 410sin 3b C c B ,所以,120385sin 29ABC S bc A △;若选②④,已知b 6B,2c ,由余弦定理可得2222cos b a c ac B ,可得240a ,0a ∵,解得a ABC 唯一,1sin2ABC S ac B △若选③④,已知6B ,2c ,231cos 322C,且 0,C ,则25,36C ,所以,5,6B C,则ABC 唯一,5sin 3C, 152sin sin sin cos cos sin 666A CBC C ,由正弦定理sin sin b c B C 可得sin sin 5c B b C ,1sin 210ABC S bc A △.13.(2022·内蒙古·海拉尔第二中学模拟预测(文))在ABC 中,角A ,B ,C 的对边分别为,,a b c ,且sin cos (cos )sin .232B BC C (1)当π3B,求sin sin C A 的值(2)求B 的最大值.【答案】(1)sin C +sin A =1(2)2π3【解析】【分析】(1)代入π3B ,解得313sin cos 223C C ,对sin sin C A 变形得到1sin sin sin cos 12C A C C ,求出答案;(2)对题干条件两边同乘以2cos2B ,变形得到sin sin sin C A B ,利用正弦定理得到a c ,利用余弦定理和基本不等式求出B 的最大值.(1)由题意得:ππsin coscos )sin 66C C ,1cos 2C C则π31sin sin sin sin sin cos sin cos 1322C A C C C C C C(2)sin cos cos )sin 22B B C C ,两边同乘以2cos 2B 得:22sin cos cos )2sin cos 222B B B C C ,即 sin 1cos cos )sin C B C B ,整理得:sin sin sin C A B ,由正弦定理得:3a cb ,由余弦定理得: 2222222cos 1226ac b ac a c b b B ac ac ac,因为 22143a c acb ,当且仅当ac 时等号成立,此时21cos 162b B ac ,由于 0,πB ,而cos y x 在 0,π上单调递减,故B 的最大值为2π314.(2022·广东·大埔县虎山中学模拟预测)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且222ab a b c .(1)求角C ;(2)若△ABC 的面积534S ,且c △ABC 的周长.【答案】(1)π3(2)6【解析】【分析】(1)利用余弦定理求得cos C 的值,进而求得角C 的值;(2)依据题给条件得到关于a b ,的方程组,求得+a b 的值,进而求得△ABC 的周长.(1)因为222ab a b c ,由余弦定理,得到2221cos 22a b c C ab ,又0πC ,所以π3C ;(2)因为△ABC 的面积4S ,且c π3C所以有221sin 212S ab C ab a b ,联立22526ab a b ,则6a b ,所以△ABC 的周长为6a b c 15.(2022·四川·宜宾市叙州区第一中学校模拟预测(理))已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,tan tan tan 0B C B C .(1)求角A 的大小;(2)若2B D D C ,2AD ,且AD 平分BAC ,求ABC 的面积.【答案】(1)60A (2)332【解析】【分析】(1)由两角和的正切公式化简后求解(2)由AD 是角平分线得到2c b ,再利用面积公式求解(1)tan tantan tan tan tan 0tan()1tan tan B C B C B C B C B C故tan A 60A ;(2)设BC 边的高为h ,所以11sin 22ABD S AB AD BAD BD h ,11sin 22ABC S AC AD DAC CD h 又AD 是角平分线,所以BAD DAC所以AB BD AC DC,即2c b ,又ABC ABD ACD S S S ,则111sin 602sin 302sin 30222bc c b ,解得b c ,133sin 6022ABC S bc △.16.(2022·全国·模拟预测)在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,3a ,2b ,sin A m .(1)若ABC 唯一确定,求m 的值;(2)设I 是ABC 的内切圆圆心,r 是ABC 内切圆半径,证明:当21c r 时,IC IA IB .【答案】(1)1(2)证明见解析【解析】【分析】(1)若01m ,根据sin A m ,b a ,可知A 可以为锐角,也可以为钝角,ABC 有两种情况,若1m ,则三角形为直角三角形,ABC 有唯一解.(2)由21c r 可推导出ABC 为直角三角形,故可计算出,,IC IA IB 的值,即得证.(1)设AB 边上的高为c h ,则sin 20c h b A m .当1m 时,由勾股定理,若A 为锐角,则c A 为钝角,则c ABC 存在两种情况,不能被唯一确定.当1m 时,ABC 为直角三角形,其中A 为直角顶点,c 可以唯一确定,即ABC 唯一确定,故m 的值为1.(2)当21c r 时,由余弦定理,22223cos 23a b c r r C ab ,故由同角三角函数的关系可得sin C所以ABC 的面积1sin 2S ab C另一方面, 132S a b c r r r3r r ,两边平方可得 213r r r r ,解得r ,21c r ABC 是以A 为直角顶点的直角三角形.因此有222112922IC,IC22211322IA 2IA ;22211322IB ,IB 所以有IC IA IB 成立.17.(2022·上海市光明中学模拟预测)已知在三角形ABC 中,2a b ,三角形的面积12S .(1)若4b ,求 tan A B ;(2)若3sin 5C ,求sin sin A B ,.【答案】(1)(2)25sin 5A ,sin B 或6205sin 205A ,sin B 【解析】【分析】(1)根据面积公式及4b ,得到3sin 4C ,分C 为锐角和C 为钝角时,求出cos C ,进而求出tan C ,求出 tan A B ;(2)由面积公式求出b a ,分C 为锐角和C 为钝角,由余弦定理和正弦定理求出答案.(1)∵2113sin 2sin 16sin 12sin 224S ab C b C C C 而sin tan()tan(π)tan cos CA B C C C分情况讨论,当C 为锐角时,cos 0cos C C∴tan()A B当C 为钝角时,cos 0cos C Ctan()A B (2)22113sin 2sin 12225S ab C b C b ,因为0b ,所以b a分情况讨论,当C 为锐角时,4cos 0cos 5C C由余弦定理,222cos 366c a b ab C c由正弦定理,10sin sin sin sin sin sin 5a b c A A B C A B ,sin 5B当C 为钝角时,4cos 0cos 5C C ,由余弦定理,222cos 164c a b ab C c由正弦定理,sin sin sin sin a b c A A B C,sin B 18.(2022·辽宁·渤海大学附属高级中学模拟预测)ABC 的内角A 、B 、C 所对边的长分别为a 、b 、c,已知cos sin B b C .(1)求C 的大小;(2)若ABC为锐角三角形且c 22a b 的取值范围.【答案】(1)3C(2)(5,6]【解析】【分析】(1)利用正弦定理边化角,再分析求解即可;(2)22224sin 4sin 3a b A A,再利用三角函数求值域即可.(1)cos sin B b C及正弦定理可得sin sin sin )B C B C A B Ccos sin B C B C ,所以sin sin cos B C B C ,因为B 、(0,)C ,则sin 0Bsin 0C C,则tan C 3C.(2)依题意,ABC为锐角三角形且c2sin sin sin a b c A B C ,所以2sin a A ,2sin 2sin()2sin 3b B A C A,所以222221cos 21cos 234sin 4sin 44322A A a b A A142cos 2222cos 222c 2cos 2222os 23A A A A A2c 42co os 242sin 246s 2cos 2sin 2A A A A A A,由于23A B ,所以022032A A,解得62A ,所以23A ,52666A ,所以푠� 2�∈12,1,所以2sin 2(1,2]6A ,所以2sin 24(5,6]6A.所以22a b 的取值范围是(5,6].19.(2022·辽宁实验中学模拟预测)在① sin sin sin sin A C a b c B C ,② 2222cos 2a b c a c B a,③ sin cos 6a B C B b这三个条件中选一个,补充在下面问题中,并解答.已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且__________.(1)求B(2)若b ABC 的平分线交AC 于点D ,且5BD,求ABC 的面积.【答案】(1)=3B【解析】【分析】(1)若选条件①,先用正弦定理将角转化为边的关系,再利用余弦定理即可;若选条件②,先用余弦定理将边转化为角的关系,再利用正弦定理即可;若选条件③,先用三角形的内角之和为 ,再利用正弦定理即可;(2)利用角平分线的性质得到ABC ABD BCD S S S △△△,结合余弦定理和三角形的面积公式即可(1)选择条件①:根据正弦定理,可得:a c abc b c 可得:222a c b ac 根据余弦定理,可得:2221cos 22a cb B ac 0,,=3B B 选择条件②:根据余弦定理,可得:2cos (2)cos =cos 2abC a c B b C a根据正弦定理,可得:(2sin sin )cos sin cos A C B B C整理可得:2sin cos sin()sin A B B C A可得:1cos 2B 0,,=3B B选择条件③:易知:A B C可得:sin cos()6a A B b根据正弦定理,可得:sin sin cos(sin 6A A B B可得:1sin cos()sin 62B B B B整理可得:tan B 0,,=3B B(2)根据题意,可得:ABC ABD BCDS S S △△△可得:1143143sin sin sin 23256256ac a 整理可得:54a c ac 根据余弦定理,可得:2222cosb ac ac ABC可得:2213=a c ac ,即2()313a c ac 可得:225()482080ac ac 解得:4ac 或5225ac (舍)故1=sin 23ABC S ac △20.(2022·全国·南京外国语学校模拟预测)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且5sin sin 35cos cos cos 2B C B C A .(1)求角A 的大小;(2)若a 2bc 的最大值.【答案】(1)3A (2)【解析】【分析】(1)利用两角和的余弦公式、二倍角的余弦公式可得出关于cos A 的方程,结合1cos 1A 可求得cos A 的值,再结合角A 的取值范围可求得角A 的值;(2)由正弦定理结合三角恒等变换化简得出 2b c B ,结合正弦型函数的有界性可求得2b c 的最大值.(1)解:由已知可得 cos 25cos cos sin sin cos 25cos A B C B C A B C 2cos 25cos 2cos 5cos 13A A A A ,即22cos 5cos 20A A ,0A ∵,则1cos 1A ,解得1cos 2A ,因此,3A .(2)解:由正弦定理可得2sin sin sin b c aBC A,所以, 24sin 2sin 4sin 2sin 4sin 2sin 3b c B C B B A B B 4sin sin 5sin B B B B B B,其中 为锐角,且tan,因为3A ,则203B ,23B ,所以,当2B 时,即当2B 时,2b c 取得最大值。
2024届新高考数学复习:专项(解三角形的综合运用大题)历年好题练习(附答案)
2024届新高考数学复习:专项(解三角形的综合运用大题)历年好题练习1.[2023ꞏ新课标Ⅰ卷]已知在△ABC中,A+B=3C,2sin (A-C)=sin B.(1)求sin A;(2)设AB=5,求AB边上的高.2.△ABC中,sin2A-sin2B-sin2C=sin B sin C.(1)求A;(2)若BC=3,求△ABC周长的最大值.3.[2023ꞏ新课标Ⅱ卷]记△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC面积为3,D为BC的中点,且AD=1.(1)若∠ADC=π3,求tan B;(2)若b2+c2=8,求b,c.4.[2022ꞏ新高考Ⅰ卷,18]记△ABC的内角A,B,C的对边分别为a,b,c,已知cos A 1+sin A=sin 2B1+cos 2B.(1)若C=2π3,求B;(2)求a2+b2c2的最小值.5.[2023ꞏ全国乙卷(理)]在△ABC 中,已知∠BAC =120°,AB =2,AC =1. (1)求sin ∠ABC ;(2)若D 为BC 上一点,且∠BAD =90°,求△ADC 的面积.6.[2023ꞏ河北石家庄模拟]在①cos C =217 ,②a sin C =c cos ⎝⎛⎭⎫A -π6 ,这两个条件中任选一个,补充在下面问题中的横线处,并完成解答.问题:△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,B =π3 ,D 是边BC 上一点,BD =5,AD =7,且________,试判断CD 和BD 的大小关系________.注:如果选择多个条件分别解答,按第一个解答计分.7.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B -sin C )2=sin 2A -sin B sin C . (1)求A ;(2)若2 a +b =2c ,求sin C .8.[2022ꞏ全国乙卷(理),17]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin C sin (A -B )=sin B sin (C -A ).(1)证明:2a 2=b 2+c 2;(2)若a =5,cos A =2531 ,求△ABC 的周长.参考答案1.答案解析:方法一 (1)在△ABC 中,A +B =π-C ,因为A +B =3C ,所以3C =π-C ,所以C =π4 . 因为2sin (A -C )=sin B ,所以2sin (A -π4 )=sin (3π4 -A ),展开并整理得2 (sin A -cos A )=22 (cos A +sin A ), 得sin A =3cos A ,又sin 2A +cos 2A =1,且sin A >0,所以sin A =31010 .(2)由正弦定理BCsin A =AB sin C ,得BC =AB sin C ×sin A =522×31010 =35 ,由余弦定理AB 2=AC 2+BC 2-2AC ꞏBC cos C ,得52=AC 2+(35 )2-2AC ꞏ35 cos π4 , 整理得AC 2-310 AC +20=0, 解得AC =10 或AC =210 ,由(1)得,tan A =3>3 ,所以π3 <A <π2 ,又A +B =3π4 ,所以B >π4 ,即C <B ,所以AB <AC ,所以AC =210 ,设AB 边上的高为h ,则12 ×AB ×h =12 ×AC ×BC sin C ,即5h =210 ×35 ×22 ,解得h =6,所以AB 边上的高为6.方法二 (1)在△ABC 中,A +B =π-C ,因为A +B =3C ,所以3C =π-C ,所以C =π4 . 因为2sin (A -C )=sin B ,所以2sin (A -C )=sin [π-(A +C )]=sin (A +C ),所以2sin A cos C -2cos A sin C =sin A cos C +cos A sin C , 所以sin A cos C =3cos A sin C , 易得cos A cos C ≠0,所以tan A =3tan C =3tan π4 =3,又sin A >0,所以sin A =332+12 =31010 . (2)由(1)知sin A =31010 ,tan A =3>0,所以A 为锐角,所以cos A =10,所以sin B =sin (3π4 -A )=22 (cos A +sin A )=22 ×(1010 +31010 )=255 ,由正弦定理AC sin B =ABsin C ,得AC =AB ꞏsin Bsin C =5×25522=210 ,故AB 边上的高为AC ×sin A =210 ×31010 =6.2.答案解析:(1)由正弦定理和已知条件得BC 2-AC 2-AB 2=AC ꞏAB .① 由余弦定理得BC 2=AC 2+AB 2-2AC ꞏAB cos A .②由①②得cos A =-12 .因为0<A <π,所以A =2π3 .(2)由正弦定理及(1)得AC sin B =AB sin C =BCsin A =23 ,从而AC =23 sin B ,AB =23 sin (π-A -B )=3cos B -3 sin B .故BC +AC +AB =3+3 sin B +3cos B =3+23 sin ⎝⎛⎭⎫B +π3 . 又0<B <π3 ,所以当B =π6 时,△ABC 周长取得最大值3+23 . 3.答案解析:(1)因为D 为BC 的中点,所以S △ABC =2S △ADC =2×12 ×AD ×DC sin ∠ADC =2×12 ×1×DC ×32 =3 , 解得DC =2,所以BD =DC =2,a =4.因为∠ADC =π3 ,所以∠ADB =2π3 .在△ABD 中,由余弦定理,得c 2=AD 2+BD 2-2AD ꞏBD cos ∠ADB =1+4+2=7,所以c =7 .在△ADC 中,由余弦定理,得b 2=AD 2+DC 2-2AD ꞏDC ꞏcos ∠ADC =1+4-2=3,所以b =3 .在△ABC 中,由余弦定理,得cos B =c 2+a 2-b 22ac =7+16-32×4×7=5714 ,所以sin B =1-cos 2B =2114 .(2)因为D 为BC 的中点,所以BD =DC .因为∠ADB +∠ADC =π,所以cos ∠ADB =-cos ∠ADC ,则在△ABD 与△ADC 中,由余弦定理,得AD 2+BD 2-c 22AD ꞏBD =-AD 2+DC 2-b 22AD ꞏDC , 得1+BD 2-c 2=-(1+BD 2-b 2),所以2BD 2=b 2+c 2-2=6,所以BD =3 ,所以a =23 .在△ABC 中,由余弦定理,得cos ∠BAC =b 2+c 2-a 22bc =8-122bc =-2bc ,所以S △ABC =12 bc sin ∠BAC =12 bc 1-cos 2∠BAC=12 bc 1-⎝⎛⎭⎫-2bc 2=12 b 2c 2-4 =3 ,解得bc =4.则由⎩⎪⎨⎪⎧bc =4b 2+c 2=8 ,解得b =c =2. 4.答案解析:(1)由已知条件,得sin 2B +sin A sin 2B =cos A +cos A cos 2B .所以sin 2B =cos A +cos A cos 2B -sin A sin 2B =cos A +cos (A +2B )=cos [π-(B +C )]+cos [π-(B +C )+2B ]=-cos (B +C )+cos [π+(B -C )]=-2cos B cos C ,所以2sin B cos B =-2cos B cos C , 即(sin B +cos C )cos B =0.由已知条件,得1+cos 2B ≠0,则B ≠π2 ,所以cos B ≠0,所以sin B =-cos C =12 .又0<B <π3 ,所以B =π6 .(2)由(1)知sin B =-cos C >0,则B =C -π2 ,所以sin A =sin (B +C )=sin (2C -π2 )=-cos 2C .由正弦定理,得a 2+b 2c 2 =sin 2A +sin 2B sin 2C =cos 22C +cos 2Csin 2C =(1-2sin 2C )2+(1-sin 2C )sin 2C =2+4sin 4C -5sin 2C sin 2C=2sin 2C +4sin 2C -5≥22sin 2C ꞏ4sin 2C -5=42 -5,当且仅当sin 2C =22 时,等号成立,所以a 2+b 2c 2 的最小值为42 -5. 5.答案解析:(1)如图,由余弦定理得BC 2=AB 2+AC 2-2AB ꞏAC ꞏcos ∠BAC =22+12+2×2×1×12 =7,得BC =7 .方法一 由正弦定理ACsin ∠ABC =BC sin ∠BAC ,得sin ∠ABC =1×327=2114 .方法二 由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ꞏBC =4+7-12×2×7 =5714 , 所以sin ∠ABC =1-cos 2∠ABC =21 .(2)方法一 由sin ∠ABC =2114 ,得tan ∠ABC =35 ,又tan ∠ABC =DA AB =DA 2 ,所以DA =235 ,故△ADC 的面积为12 DA ꞏAC ꞏsin (120°-90°)=12 ×235 ×1×12 =3 .方法二 △ABC 的面积为12 AC ꞏAB ꞏsin ∠BAC =12 ×1×2×32 =32 ,S △ADC S △BAD=12AC ꞏAD ꞏsin ∠CAD12AB ꞏAD ꞏsin ∠BAD =sin 30°2×sin 90° =14 ,故△ADC 的面积为15 S △ABC =15 ×3 =3.6.答案解析:设AB =x ,在△ABD 中由余弦定理可得:49=x 2+25-2ꞏx ꞏ5ꞏcos π3 =x 2+25-5x , 即x 2-5x -24=0,解得x =8. 方案一 选条件①.由cos C =217 得sin C =277 , ∵A +B +C =π,∴sin A =sin (B +C )=32 ×217 +12 ×277 =5714 ,在△ABC 中由正弦定理可得:BC 5714 =8277,解得:BC =10,∴CD =BD =5. 方案二 选条件②.由正弦定理可得:a =2R sin A ,c =2R sin C ,代入条件a sin C =c cos ⎝⎛⎭⎫A -π6 得:sin A sin C =sin C ꞏ⎝⎛⎭⎫32cos A +12sin A =32 cos A sin C +12 sin A sin C ,∴12 sin A sin C =3cos A sin C ,因为A 为三角形内角,所以tan A =3 ,故A =π3 , 所以△ABC 为等边三角形,所以BC =8,∴CD =3,所以CD <BD .7.答案解析:(1)由已知得sin 2B +sin 2C -sin 2A =sin B sin C ,故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12 . 因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2 sin A +sin (120°-C )=2sin C ,即62 +3 cos C +12 sin C =2sin C ,可得cos (C +60°)=-2.由于0°<C <120°,所以sin (C +60°)=22 ,故 sin C =sin (C +60°-60°)=sin (C +60°)cos 60°-cos (C +60°)sin 60°=6+2 .8.答案解析:(1)证明:∵sin C sin (A -B )=sin B sin (C -A ),∴sin C sin A cos B -sin C cos A sin B =sin B sin C cos A -sin B cos C sin A , ∴sin C sin A cos B =2sin B sin C cos A -sin B cos C sin A . 由正弦定理,得ac cos B =2bc cos A -ab cos C .由余弦定理,得a 2+c 2-b 22 =b 2+c 2-a 2-a 2+b 2-c 22. 整理,得2a 2=b 2+c 2.(2)由(1)知2a 2=b 2+c 2.又∵a =5,∴b 2+c 2=2a 2=50.由余弦定理,得a 2=b 2+c 2-2bc cos A ,即25=50-5031 bc ,∴bc =312 .∴b +c =b 2+c 2+2bc =50+31 =9, ∴a +b +c =14.故△ABC 的周长为14.。
三角函数与解三角形高考专题大题练习(含答案)
【详解】
解法一:(1)因为 且 ,
所以 ,
根据正弦定理,得 ,
因为 ,所以 ,所以 ,
因为 ,所以 ;
(2)由(1)知, ,
因为 , ,
所以 的面积 ,
因为 是 上的点, 平分 ,
所以 ,
因为 ,
所以 .
【详解】
(Ⅰ)由正弦定理得 ,
所以 ,因 ,故 .
,故 .
(Ⅱ) ,由正弦定理 ,及 得 ,∴ ,
∴ 周长
∵ ∴当 即 时
所以 周长 的最大值为6.
【点睛】
在解三角形中,如果题设条件是边角的混合关系,那么我们可以利用正弦定理或余弦定理把这种混合关系式转化为边的关系式或角的关系式.三角形中的关于边的最值问题,可以利用正弦定理化为关于某角的三角函数式的最值问题(多元问题转化为一元函数问题).
三角函数与解三角形专题练习
1. 的内角 的对边分别为 ,且
(Ⅰ)求 ;
(Ⅱ)若 ,设 , 的周长为 ,求 的解析式并求 的最大值.
2. 的内角 的对边分别为 , 且 .
(1)求 ;
(2)若 , 是 上的点, 平分 ,求 的面积.
3.已知 的内角A,B,C的对边分别为a,b,c,若
(1)证明: 是直角三角形:
若①③成立,则 ;若②③成立,则 ,不成立,所以①②成立.
(2) , ,故 ,
所以在 中,由余弦定理
,
故 ,当且仅当 时取等.
.
【点睛】
本题考查了三角恒等变换,正余弦定理,向量平行求参数,面积公式,意在考查学生的计算能力和综合应用能力.
高三数学解三角形试题答案及解析
高三数学解三角形试题答案及解析1.在△ABC中,,,则△ABC的面积为()A.3B.4C.6D.【答案】A【解析】由已知,所以,,三角形的面积为,故选.【考点】1.平面向量的数量积;2.三角形的面积.2.在中,角所对的边为,已知,.(1)求的值;(2)若的面积为,求的值.【答案】(1);(2)或.【解析】(1)利用正弦定理对已知条件化简可求sinB,利用三角形的大边对大角可求B;(2)利用余弦定理可求a,b之间的关系,进而结合三角形的面积可ac,再把a,b的关系代入可求a,b的值.试题解析:(1),,或,,所以 4分(2)由解得或①又②③由①②③或 9分【考点】1.正弦定理;2.余弦定理.3.在平行四边形ABCD中,对角线AC=,BD=,周长为18,则这个平行四边形的面积为()A.16B.C.18D.32【答案】A【解析】如图,设AB=CD=a,AD=BC=b,则即解得,或∴cos∠BAD==,∴sin∠BAD=,从而SABCD=4×5×=16.▱4.△ABC中内角A,B,C的对边分别为a,b,c,已知a=b cos C+c sin B.(1)求B;(2)若b=2,求△ABC面积的最大值.【答案】(1)(2)+1【解析】(1)由已知及正弦定理,得sin A=sin B cos C+sin C sin B,①又A=π-(B+C),故sin A=sin(B+C)=sin B cos C+cos B sin C.②由①,②和C∈(0,π)得sin B=cos B.又B∈(0,π),所以B=.(2)△ABC的面积S= ac sin B= ac.由已知及余弦定理,得4=a2+c2-2ac cos .又a2+c2≥2ac,故ac≤,当且仅当a=c时,等号成立.因此△ABC面积的最大值为+1.5.在中,若,,,则的长度为 .【答案】【解析】∵,∴,又∵,,∴由余弦定理得:,∴,即的长度为.【考点】1.正弦定理;2.余弦定理.6.设的内角所对的边长分别为,且满足(Ⅰ)求角的大小;(Ⅱ)若,边上的中线的长为,求的面积.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求角的大小,由于三角形的三边满足,含有平方关系,可考虑利用余弦定理来解,由余弦定理得,把代入,可求得,从而可得角的值;(Ⅱ)由于,关系式中,即含有边,又含有角,需要进行边角互化,由于,故利用正弦定理把边化成角,通过三角恒等变换求出,得三角形为等腰三角形,由于边上的中线的长为,可考虑利用余弦定理来求的长,由于的长与的长相等,又因为,从而可求出的面积.试题解析:(Ⅰ)因为,由余弦定理有,故有,又,即: 5分(Ⅱ)由正弦定理: 6分可知:9分,设 10分由余弦定理可知: 11分. 12分【考点】解三角形,求三角形的面积.7.在锐角中,,(Ⅰ)求角的大小;(Ⅱ)当时,求面积的最大值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)本小题考查正弦定理的边角转化,可求得,因为为锐角三角形,所以;(Ⅱ)本小题首先利用余弦定理建立边角关系,然后利用基本不等式得到,代入面积公式中可得面积的最大值为.试题解析:(Ⅰ),, 2分,故, 5分因为为锐角三角形,所以 7分(Ⅱ)设角所对的边分别为.由题意知,由余弦定理得 9分又,11分, 13分当且且当为等边三角形时取等号,所以面积的最大值为. 14分【考点】1.正弦定理;2.余弦定理;3.面积公式.8.在△ABC中,内角A,B,C的对边分别为a,b,c,且满足 (a-c)cosB=bcosC.(1)求角B的大小;(2)若b=,求△ABC面积的最大值.【答案】(1);(2)面积的最大值为.【解析】(1)首先利用正弦定理将式子边化为角,化为只含有角的式子再利用三角形内角和定理及诱导公式即可求得角的大小(可以利用余弦定理把角化为边来求得角的大小);(2) 根据余弦定理可得.由基本不等式可得的范围,再利用三角形面积公式即可求得面积的最大值.试题解析:(1) 根据正弦定理有即.即.(可以利用余弦定理把角化为边也可酌情给分)(2)根据余弦定理可得.由基本不等式可知,即,故的面积,即当时,的最大值为.(另解:可利用圆内接三角形,底边一定,当高经过圆心时面积最大).【考点】1.利用正弦定理、余弦定理解三角形;2.求三角形的面积;3.均值不等式的应用.9.在中,角、、所对的边分别为、、,若,,则()A.B.C.D.【答案】B【解析】,所以,由余弦定理得,,,故选B.【考点】1.边角互化;2.余弦定理10.在中,分别为角所对的三边,,(Ⅰ)求角;(Ⅱ)若,角等于,周长为,求函数的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据题目条件,容易联想到余弦定理,求出角; (Ⅱ)求函数的取值范围,这是一个函数的值域问题,需先找出函数关系式,因此要先把各边长求出来,或用表示出来,方法是利用正弦定理来沟通三角形的边角关系,求出函数关系式后,不要忘记求函数的定义域,根据函数定义域去求函数的值域,这显然又是一个三角函数的值域问题,可化为的类型求解.试题解析:(Ⅰ)由,得,3分又, 6分(Ⅱ)同理: 9分故,,. 12分【考点】正弦定理、余弦定理、三角函数的值域.11.在△ABC中,角A,B,C的对边分别为a,b,c.已知2cos(B-C)+1=4cosBcosC.(Ⅰ)求A;(Ⅱ)若a=2,△ABC的面积为2,求b+c.【答案】(Ⅰ);(Ⅱ)6.【解析】(Ⅰ) 对于2cos(B-C)+1=4cosBcosC通过三角恒等变换,再结合角的范围即可得;(Ⅱ)利用余弦定理、面积公式可求.试题解析:(Ⅰ) 由2cos(B-C)+1=4cosBcosC,得2(cosBcosC+sinBsinC)+1=4cosBcosC,即2(cosBcosC-sinBsinC)=1,亦即2cos(B+C)=1,∴cos(B+C)=.∵0<B+C<π,∴B+C=.∵A+B+C=π,∴A=. 6分(Ⅱ)由(Ⅰ),得A=.=2,得bcsin=2,∴bc=8.①由S△ABC由余弦定理a2=b2+c2-2bccosA,得(2)2=b2+c2-2bccos,即b2+c2+bc=28,∴(b+c)2-bc=28.②将①代入②,得(b+c)2-8=28,∴b+c=6. 12分【考点】解三角形,正、余弦定理,面积公式12.在中,角所对的边分别为满足,,,则的取值范围是 .【答案】【解析】由得,得为钝角,故,由正弦定理可知:,,所以.【考点】正余弦定理,辅助角公式.13.已知A、B、C为的三个内角且向量与共线.(Ⅰ)求角C的大小;(Ⅱ)设角的对边分别是,且满足,试判断的形状.【答案】(Ⅰ);(Ⅱ)等边三角形.【解析】(Ⅰ)利用共线向量的坐标运算,二倍角公式,辅助角公式变形求得;(Ⅱ)根据余弦定理及已知条件求出边、的关系,再结合判断出结论.试题解析:(Ⅰ)∵与共线,∴3分得,∴. 6分(Ⅱ)方法1:由已知(1)根据余弦定理可得:(2) 8分(1)、(2)联立解得:,又. ,所以△为等边三角形, 12分方法2:由正弦定理得:,∴, 10分∴,∴在△中∠又. ,所以△为等边三角形, 12分方法3:由(Ⅰ)知,又由题设得:,在中根据射影定理得:, 10分,又,所以△为等边三角形, 12分【考点】共线向量的坐标运算,二倍角公式,余弦定理,正弦定理.14.在中,边、、分别是角、、的对边,且满足.(Ⅰ)求;(Ⅱ)若,,求边,的值.【答案】(1)(2)或【解析】(1)由正弦定理和,得, 2分化简,得即, 4分故.所以. 6分(2)因为,所以所以,即. (1) 8分又因为,整理得,. (2) 10分联立(1)(2),解得或. 12分【考点】正弦定理和余弦定理点评:主要是考查了正弦定理和余弦定理的运用,属于基础题。
(完整版)解三角形高考大题-带答案
解三角形高考大题,带答案1. (宁夏17)(本小题满分12分)如图,ACD △是等边三角形,ABC △是等腰直角三角形,90ACB =∠,BD 交AC 于E ,2AB =.(Ⅰ)求cos CAE ∠的值; (Ⅱ)求AE .解:(Ⅰ)因为9060150BCD =+=∠,CB AC CD ==,所以15CBE =∠.所以6cos cos(4530)4CBE =-=∠. ···················································· 6分 (Ⅱ)在ABE △中,2AB =, 由正弦定理2sin(4515)sin(9015)AE =-+.故2sin 30cos15AE=124⨯== 12分2. (江苏17)(14分) 某地有三家工厂,分别位于矩形ABCD 的顶点A 、B 及CD 的中点P 处,已知AB=20km ,BC=10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A 、B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO 、BO 、OP ,设排污管道的总长为ykm 。
(1)按下列要求写出函数关系式:①设∠BAO=θ(rad ),将y 表示成θ的函数关系式; ②设OP=x (km ),将y 表示成x 的函数关系式;(2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短。
解三角形高考试题及答案
解三角形高考试题及答案高考数学题中,三角形相关的内容一直以来都是考点之一。
解三角形题目需要运用几何图形的性质和相关定理,是对学生综合运用知识的考察。
下面将通过几个常见的三角形题目,来分析解题的思路和方法。
题目一:已知三角形ABC,∠B=50°,∠C=70°,AB=5 cm,BC=3 cm,求AC的长度。
解题思路:根据三角形的内角和定理,得知∠A=180°-∠B-∠C=60°。
通过已知的两边和一个夹角,我们可以运用正弦定理或余弦定理来求解。
这里我们选择使用余弦定理。
根据余弦定理,有:AC²=AB²+BC²-2×AB×BC×cos∠A。
将已知数值带入公式计算,得到AC≈5.98 cm。
题目二:已知三角形ABC,∠B=45°,AB=12 cm,BC=8 cm,求∠A和AC的长度。
解题思路:我们先通过已知条件来求∠A。
根据三角形的内角和定理,有∠A+∠B+∠C=180°,即∠A+45°+∠C=180°,从而可以得出∠A=135°。
然后,根据余弦定理,可以得到AC²=AB²+BC²-2×AB×BC×cos∠A。
代入已知数值,计算得到AC≈12.24 cm。
题目三:已知三角形ABC,AB=3 cm,BC=4 cm,AC=5 cm,求∠A、∠B和∠C的大小。
解题思路:根据余弦定理,我们可以得到cos∠A=(BC²+AC²-AB²)/(2×BC×AC),cos∠B=(AC²+AB²-BC²)/(2×AC×AB),cos∠C=(AB²+BC²-AC²)/(2×AB×BC)。
较为全面的解三角形专题高考题附答案
这是经过我整理的一些解三角形的题目,部分题目没有答案,自己去问老师同学,针对高考数学第一道大题,一定不要失分。
——(下载之后删掉我)1、在 b、c,向量 m 2sin B, 3 , n cos2B, 2cos2B 1 ,且 m // n 。
2( I )求锐角 B 的大小;(II )如果 b 2 ,求 ABC 的面积 S ABC的最大值。
B(1) 解: m∥ n2sinB(2cos22-1) =- 3cos2B2sinBcosB =- 3cos2B tan2B =- 3 ⋯⋯4 分2ππ∵ 0< 2B<π , ∴ 2B=3 ,∴锐角 B=3⋯⋯2分π 5π(2) 由 tan2B=- 3 B =3或6π①当 B=3时,已知 b=2,由余弦定理,得:4=a2+c2- ac≥2ac- ac=ac( 当且仅当 a= c= 2 时等号成立 ) ⋯⋯3 分1 3∵△ ABC的面积 S△ ABC=2 acsinB =4 ac≤ 3∴△ ABC的面积最大值为 3 ⋯⋯1分5π②当 B=6时,已知 b=2,由余弦定理,得:4=a2+c2+3ac≥2ac+3ac= (2 +3)ac( 当且仅当 a=c=6-2时等号成立 ) ∴ ac≤4(2 -3) ⋯⋯ 1 分1 1∵△ ABC的面积 S△ ABC=2 acsinB =4ac≤ 2- 3∴△ ABC的面积最大值为2- 3 ⋯⋯ 1 分5、在△ ABC中,角 A, B, C 的对边分别为 a,b, c,且 b cosC 3a cosB ccosB.()求cos B 的值;(II)若 BA BC 2 ,且 b 2 2 ,求和 b 的值.I a c解:( I )由正弦定理得a 2R sin A, b 2R sinB, c2R sin C ,则2Rsin B cosC6Rsin AcosB 2Rsin C cosB,故 sin B cosC 3sin AcosB sin C cosB,可得 sin B cosC sin C cosB3sin A cosB,即sin(B C) 3sin AcosB,可得sin A又3sin A cosB. sin A 0,cosB 1 .因此3⋯⋯⋯⋯6分(II)解:由 BA BC 2,可得 a cosB 2 ,又 cosB 1 ,故ac 6,3由 b 2a2 c 22ac cosB,可得 a 2c212,所以(a c) 20,即a c ,所以 a=c= 66、在 ABC 中, cos A 5 , cos B 10 .5 10(Ⅰ)求角 C ;(Ⅱ)设 AB 2 ,求 ABC 的面积 .cos A 5 10A、 B 0,cos B(Ⅰ)解:由 5 ,10 ,得 2 ,所以sinA2, sin B 3 .5 10 ⋯⋯3分cosC cos[( A B)] cos( A B) cos Acos B2 sin Asin B因为2⋯6分且0 CC.⋯⋯⋯⋯ 7 分故4(Ⅱ)解:根据正弦定理得ABACACAB sin B6sin C sin B sin C 10 , ⋯⋯⋯⋯ .. 10 分1AB AC sin A6 . 所以ABC 的面积为 257、在△ ABC 中, A 、B 、C 所对边的长分别为 a 、 b 、 c ,已知向量 m (1,2sin A) ,n (sin A,1 cos A), 满足 m // n,b c3a. ( I )求 A 的大小;(II )求 sin( B 6) 的值.解:( 1)由 m//n 得2 sin 2A 1cos A 0⋯⋯2 分即 2 cos 2A cos A 1cos A 1或 cosA 12 ⋯⋯⋯⋯⋯⋯ 4 分A 是 ABC 的内角 , cos A1舍去A⋯⋯⋯⋯⋯⋯ 6 分3( 2) bc 3asin B sin C3 sin A32 ⋯⋯⋯⋯⋯⋯ 8 分 由正弦定理,B C 2sin Bsin( 2B) 3 ⋯⋯⋯⋯⋯⋯ 10 分33 23 cos B 3sin B 3 即sin( B )3 2 2 2 628、△ ABC 中, a , ,分别是角 , , 的对边,且有sin2C+ 3cos (), 当b cA B CA+B =0 .a4, c13 ,求△ ABC 的面积。
高三数学复习专题练习题:解三角形(含答案)
⾼三数学复习专题练习题:解三⾓形(含答案)⾼三数学复习专题练习:解三⾓形(含答案)⼀. 填空题(本⼤题共15个⼩题,每⼩题5分,共75分)1.在△ABC 中,若2cosBsinA=sinC,则△ABC ⼀定是三⾓形.2.在△ABC 中,A=120°,AB=5,BC=7,则CBsin sin 的值为 . 3.已知△ABC 的三边长分别为a,b,c,且⾯积S △ABC =41(b 2+c 2-a 2),则A= . 4.在△ABC 中,BC=2,B=3π,若△ABC 的⾯积为23,则tanC 为 . 5.在△ABC 中,a 2-c 2+b 2=ab,则C= .6.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则C= .7.在△ABC 中,⾓A ,B ,C 所对的边分别为a,b,c ,若a=1,b=7,c=3,则B= . 8.在△ABC 中,若∠C=60°,则c b a ++ac b+= . 9.如图所⽰,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km, 灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为 km.10.⼀船⾃西向东匀速航⾏,上午10时到达⼀座灯塔P 的南偏西75°距塔68海⾥的M 处,下午2时到达这座灯塔的东南⽅向的N 处,则这只船的航⾏速度为海⾥/⼩时. 11. △ABC 的内⾓A 、B 、C 的对边分别为a 、b 、c ,若c=2,b=6,B=120°,则a= .12. 在△ABC 中,⾓A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tanB=3ac ,则⾓B 的值为 . 13. ⼀船向正北航⾏,看见正西⽅向有相距10 海⾥的两个灯塔恰好与它在⼀条直线上,继续航⾏半⼩时后,看见⼀灯塔在船的南偏西600,另⼀灯塔在船的南偏西750,则这艘船是每⼩时航⾏________ 海⾥.14.在△ABC 中,A=60°,AB=5,BC=7,则△ABC 的⾯积为 .15.在△ABC 中,⾓A 、B 、C 所对的边分别为a 、b 、c.若(3b-c )cosA=acosC ,则cosA= .(资料由“⼴东考神”上传,如需更多⾼考复习资料,请上 tb ⽹搜“⼴东考神”)⼆、解答题(本⼤题共6个⼩题,共75分)1、已知△ABC 中,三个内⾓A ,B ,C 的对边分别为a,b,c,若△ABC 的⾯积为S ,且2S=(a+b )2-c 2,求tanC 的值. (10分)2、在△ABC 中,⾓A ,B ,C 所对的边分别为a,b,c ,并且a 2=b(b+c). (11分)(1)求证:A=2B ;(2)若a=3b,判断△ABC 的形状.3、在△ABC 中,a 、b 、c 分别是⾓A ,B ,C 的对边,且C B cos cos =-ca b+2. (12分)(1)求⾓B 的⼤⼩;(2)若b=13,a+c=4,求△ABC 的⾯积.4、△ABC 中,⾓A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-a 2+bc=0. (12分) (1)求⾓A 的⼤⼩;(2)若a=3,求bc 的最⼤值;(3)求cb C a --?)30sin(的值.5、已知△ABC 的周长为)12(4+,且sin sin B C A +=. (12分)(1)求边长a 的值;(2)若A S ABC sin 3=?,求A cos 的值.6、在某海岸A 处,发现北偏东 30⽅向,距离A 处)(13+n mile 的B 处有⼀艘⾛私船在A 处北偏西 15的⽅向,距离A 处6n mile 的C 处的缉私船奉命以35n mile/h 的速度追截⾛私船. 此时,⾛私船正以5 n mile/h 的速度从B 处按照北偏东 30⽅向逃窜,问缉私船⾄少经过多长时间可以追上⾛私船,并指出缉私船航⾏⽅向. (12分)ACB3015· ·参考答案:⼀、填空题:1、等腰;2、53;3、45°;4、33;5、60°;6、45°或135°;7、65π;8、1;9、3a ;10、2617;11、2;12、3π或32π;13、10;14、103;15、33。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
..这是经过我整理的一些解三角形的题目,部分题目没有答案,自己去问老师同学,针 对高考数学第一道大题,一定不要失分。
——(下载之后删掉我)1、在b 、c ,向量m2sinB,3,2 BnB ,且m//n 。
cos2,2cos12(I )求锐角B 的大小;(II )如果b2,求ABC 的面积S ABC 的最大值。
(1)解:m ∥n2sinB(2cos2B -1)=-3cos2B 22sinBcosB =-3cos2Btan2B =-3⋯⋯4分2ππ∵0<2B <π,∴2B =3,∴锐角B =3⋯⋯2分 (2)由tan2B =-3B =5ππ 或 36π ①当B = 3时,已知b =2,由余弦定理,得: 4=a2+c2-ac ≥2ac -ac =ac(当且仅当a =c =2时等号成立)⋯⋯3分1 2∵△ABC 的面积S △ABC =acsinB = 3ac ≤3 4∴△ABC 的面积最大值为3⋯⋯1分5π ②当B =时,已知b =2,由余弦定理,得:64=a2+c2+3ac ≥2ac +3ac =(2+3)ac(当且仅当a =c =6-2时等号成立) ∴ac ≤4(2-3)⋯⋯1分1 2 1acsinB =ac ≤2-34∵△ABC的面积S△ABC=2-3⋯⋯1分∴△ABC的面积最大值为..5、在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC3acosBccosB.(I)求cosB的值;(II)若BABC2,且b22,求a和c b的值. 解:(I)由正弦定理得a2RsinA,b2RsinB,c2RsinC,则2RsinBcosC6RsinAcosB2RsinCcosB,故sinBcosC3sinAcosBsinCcosB,可得sinBcosCsinCcosB3sinAcosB,即sin(BC)3sinAcosB,可得sinA3sinAcosB.sinA0,又因此cosB13.⋯⋯⋯⋯6分(II)解:由BABC2,可得acosB2,又cosB13,故ac 6,2 由b2a2c2accosB, 2可得a2c 12, 2所以(ac)0,ac,即所以a=c=66、在ABC中,cos5A,5cos10B.10(Ⅰ)求角C;(Ⅱ)设A B2,求ABC的面积.cosA55 ,cos B1010 ,得A、B0,2(Ⅰ)解:由,所以23sinA,sinB.510⋯⋯3分cosCcos[(A B)]cos(AB)cosAcosBsinAsinB 因为22⋯6分C.且0C故4⋯⋯⋯⋯7分(Ⅱ)解:..根据正弦定理得ABACABsinB6ACsinCsinBsinC10,⋯⋯⋯⋯..10分16ABACsinA.所以ABC的面积为257、在△ABC中,A、B、C所对边的长分别为a、b、c,已知向量m(1,2sinA),nAA满足m nbca(I)求A的大小;(II)求sin(B6)的值.(sin,1cos),//,3.2AA⋯⋯2分解:(1)由m//n得2sin1cos02AA 即2coscos101cosA或cosA21⋯⋯⋯⋯⋯⋯4分AA是的内角cos舍去3ABC,A1⋯⋯⋯⋯⋯⋯6分(2)bc3a3sinBsinC3sinA由正弦定理,2⋯⋯⋯⋯⋯⋯8分BC 232sinBsin(B)332⋯⋯⋯⋯⋯⋯10分3 2 33cosBsinB即sin(22 B)6328、△ABC中,a,b,c分别是角A,B,C的对边,且有sin2C+3cos(A+B)=0,.当a4,c13,求△ABC的面积。
解:由sin2C3cos(AB)0且ABC32sinCcosC3cosC0所以,cosC0或sinC有2⋯⋯6分3a4,c13,有ca,所以只能sinC,则C由23,⋯⋯8分2ababCbbbb222由余弦定理2cos430,13c有解得或当11b3时,S absinC33当b1时,S absinC223...9、在△ABC中,角A、B、C所对边分别为a,b,c,已知tan1,tan1AB,且最长边23的边长为l.求:(I)角C的大小;(II)△ABC最短边的长.119、解:(I)tanC=tan[π-(A+B)]=-tan(A+B)tanAtanB231111tanAtanB123C 3 4∵0C,∴⋯⋯⋯⋯⋯⋯⋯⋯5分(II)∵0<tanB<tanA,∴A、B均为锐角,则B<A,又C为钝角,∴最短边为b,最长边长为c⋯⋯⋯⋯⋯⋯⋯⋯7分tanB 13 ,解得sin B1010由⋯⋯⋯⋯⋯⋯⋯⋯9分bc b101cBsin105sinC25由sinBsinC,∴2⋯⋯⋯⋯⋯⋯12分10、在△ABC中,角A、B、C的对边分别为a、b、c.已知a+b=5,c=7,且4sin AB2Ccos2 2 72 .(1)求角C的大小;(2)求△ABC的面积.10、解:(1)∵A+B+C=18°02ABC7得CC724sincos24coscos2由2222⋯⋯⋯⋯1分1cosC7⋯⋯⋯⋯⋯⋯3分4(2cos1)2C2C∴222CC⋯⋯⋯⋯4分整理,得4cos4cos101cosC解得:2⋯⋯5分∵0C180∴C=60°⋯⋯⋯⋯⋯⋯6分(2)解:由余弦定理得:c2=a2+b2-2abcosC,即7=a2+b2-ab⋯⋯⋯⋯7分2∴7(a b)3ab ⋯⋯⋯⋯⋯⋯8分由条件a+b=5得7=25-3ab⋯⋯9分ab=6⋯⋯10分11333SabsinC6ABC∴2222⋯⋯⋯⋯12分12、在ABC中,角A、B、C的对边分别为a、b、c,m(2bc,a),n(cosA,cosC),且mn。
⑴求角A的大小;⑵当2y2sinBsin(2B)取最大值时,求角B的大小6解:⑴由mn,得mn0,从而(2bc)cosAacosC0 由正弦定理得2sinBcosAsinCcosAsinAcosC0 2sinBcosAsin(AC)0,2sinBcosAsinB0AB,,(0,) sinB0,cosA12A,3 (6分)⑵2y2sinBsin(2B)(1cos2B)sin2Bcoscos2Bsin666311sin2Bcos2B1sin(2B)226由(1)得,270B,2B,366662时,B即3 时,y取最大值213、在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若ABACBABCk(kR). (Ⅰ)判断△ABC 的形状;(Ⅱ)若c2,求k 的值.解:(I )ABACcbcosA,BABCcacosB ⋯⋯⋯⋯1分 又ABACBABC bccosAaccosB sin ⋯⋯⋯⋯3分BcosAsinAcosB 即sinAcosBsinBcosA0 sin(AB ⋯⋯⋯⋯5分)0AB ABABC 为等腰三角形.⋯⋯⋯⋯7分 (II )由(I )知abABACbccosAbcb 22c 22ca 2bc2⋯⋯⋯⋯10分c2 k ⋯⋯⋯⋯12分1cosB14、在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cosCb 2ac.(I )求角B 的大小;(II )若b13,ac4,求△ABC 的面积.ab c sinAsinBsinC2R解:(I )解法一:由正弦定理得a2RsinA ,b2RsinB ,cR2sinC将上式代入已知c osBcosCbcosB得2accosC2sinBsinAsinC即2sinAcosBsinCcosBcosCsinB0即2sinAcosBsin(BC)0∵ABC,∴sin(BC)sinA,∴2sinAcosBsinA0∵1 sinA≠0,∴cosB,2∵B为三角形的内角,∴B23.解法二:由余弦定理得222222acbabccosB,cosC2ac2ab将上式代入cosBcosC222bacb得×2ac2ac2ab222abcb2ac222 整理得acbac∴cosB222acbac2ac2ac12∵B为三角形内角,∴B23(II)将b13ac4B,,23 2222cos得代入余弦定理bacacB2()222cosbacacacB,∴113162ac(1),∴ac23∴1S ABC acsinB△2343.15、(2009全国卷Ⅰ理)在ABC中,内角A、B、C的对边长分别为a、b、c,已知222acb,且sinAcosC3cosAsinC,求 b15、解:在ABC中sinAcosC3cosAsinC,则由正弦定理及余弦定理有: 222222 abcbca a3c, 22abbc 化简并整理得:2222(ac)b.又由已知222 acb4bb 2.解得b4或b0(舍). 16、(2009浙江)在ABC 中,角A,B,C 所对的边分别为a,b,c ,且满足cosA 25 25,ABAC3.(I )求ABC 的面积;(II )若bc6,求a 的值.A252A34cosA2cos1,sinAcos25,又由ABAC3,255解析:(I )因为,得bccosA3,bc5,1 SbcsinA2 ABC221世纪教育网(II )对于bc5,又bc6,b5,c1或b1,c5,由余弦定理得 2222cos20 abcbcA ,a2517、6.(2009北京理)在ABC 中,角A,B,C 的对边分别为,,,abcB ,34cosA,b 3。
5(Ⅰ)求sinC 的值;(Ⅱ)求ABC 的面积.18、(2009全国卷Ⅱ文)设△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c , 3 2,求B.cos(AC)cosB,bac2119、(2009安徽卷理)在ABC中,sin(CA)1,sinB=.3(I)求sinA的值,(II)设AC=6,求ABC的面积.20、(2009江西卷文)在△ABC中,A,B,C所对的边分别为a,b,c,A,6 (13)c2b...(1)求C ;(2)若CBCA13,求a,b ,c .21、(2009江西卷理)△ABC 中,A,B,C 所对的边分别为a,b,c ,tanCsinAsinB cosAcosB,sin(BA)cosC.(1)求A,C ;(2)若S ABC 33,求a,c.21世纪教育网 22、(2009天津卷文)在ABC 中,BC5,AC3,sinC2sinA(Ⅰ)求AB 的值。
(Ⅱ)求)sin(2A 的值。
423、(2010年高考天津卷理科7)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若 223abbc ,sinC=23sinB ,则A=(A )30°(B )60°(C )120°(D )150° 24.(2010年高考全国2卷理数17)(本小题满分10分)ABC 中,D 为边BC 上的一点,BD33,sin5 B ,13cos3 ADC ,求AD525.(2010年高考浙江卷理科18)在ABC 中,角A ,B,C 所对的边分别为a ,b ,c , 已知cos2C=-1 4。