第十三章实数计算题专题训练题(含答案)
第十三章实数_单元测试题含答案
第十三章实数_单元测试题含答案第十三章实数单元测试题一、选择题1、有下列说法错误的个数是()(1)无理数就是开方开不尽的数(2)无理数是带根号的数(3)无理数包括正无理数、零、负无理数(4)两个无理数的和是无理数A 、1B 、2C 、3D 、4 2、下列说法中,错误的是()。
A 、2是4的算术平方根B 、81的平方根是±3C 、8的立方根是±2D 、立方根等于-1的实数是-1 3、下列说法正确的是()A 、 a 2与(—a )2互为相反数,B 、a 2与)(2a -互为相反数C 、 3a 与3a - 是互为相反数D 、a 与a - 互为相反数4、在-1.732,2,π,2+3,0.151151115…,3.14这些数中,无理数的个数为( ). A 、1 B 、2 C 、3 D 、45、若a 和a -都有意义,则a 的值是()A 、0≥aB 、0≤aC 、0=aD 、0≠a 6、下列说法中正确的是()A 、实数2a -是负数B 、 a a =2C 、a -一定是正数D 、实数a -的绝对值是a 7、下列说法正确的是().A 、064.0-的立方根是-0.4B 、9-的平方根是3±C 、16的立方根是4D 、0.01的立方根是0.1 8、下列运算中,错误的个数有().①1251144251=;②416±=;③22222-=-=-;④4)4(2=- ⑤2095141251161=+=+ A 、5 B 、2 C 、3 D 、49、若3,b a b ++a ,则的值为() A 、0 B 、1 C 、-1 D 、210、平方根等于它本身的数是()A 、0B 、1或1-C 、1或0D 、1或0或1- 11、若73-x 有意义,则x 的取值范围是()。
A 、x >37-B 、x ≥ 37- C 、x >37 D 、x ≥3711、下列说法错误的是()A. 1的平方根是1B. –1的立方根是-1C. 是2的平方根D. –3是的平方根12的平方根是()A. 4B. 2C. ±4D.±2 13、如图,数轴上表示1,的对应点分别为点A ,点B .若点B 关于点A 的对称点为点C 则点C 所表示的数是( ).A .B .C .D .14、若,,且,则的值为 ( )A .-1或11B .-1或-11C . 1D .1115、已知,是实数,且,则的值是().A .4B .-4C .D .-16、用计算器计算,,,…,根据你发现的规律,判断P=与Q=(n 为大于1的自然数)的值的大小关系为()A. P <QB.P=QC.P >QD.与n 的取值有关17 下列说法正确的是()A. 有理数只是有限小数B. 无理数是无限小数C. 无限小数是无理数D. 3π是分数18 下列说法错误的是()A. 1的平方根是1B. –1的立方根是-1C. 2是2的平方根D. –3是2)3(-的平方根 19 和数轴上的点一一对应的是()A 整数B 有理数D 实数 20. 下列说法正确的是()A.064.0-的立方根是0.4B.9-的平方根是3±C.16的立方根是316D.0.01的立方根是0.00000121a =-,则实数a 在数轴上的对应点一定在()A .原点左侧B .原点右侧 C .原点或原点左侧 D .原点或原点右侧 22.下列说法中正确的是()A. 实数2a -是负数B. a a =2C. a -一定是正数D. 实数a -的绝对值是a23、图中是一个数值转换机,若输入的a 值为,则输出的结果应为()A .2B .-2C .1D .-1 3. 下列各组数中互为相反数的是()C.-2 与12- D.2与2- 5.有如下命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数同号;④如果一个数的立方根是这个数本身,那么这个数是1或0。
实数计算题专题训练(含答案)(2)[1]
(直打版)实数计算题专题训练(含答案)(2)(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)实数计算题专题训练(含答案)(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)实数计算题专题训练(含答案)(2)(word版可编辑修改)的全部内容。
易错点巩固练习
一、实数的运算
一.计算题
1. |﹣2|﹣(1+
)0+. 2.﹣12009+4×(﹣3)2
+(﹣6)÷(﹣2)
3.. 4、 82016 (-0。
125)2015
5. 10)31()2(2-+--- 6、()()---+-⎛⎝ ⎫⎭⎪⨯--2121413320
7、2
23421212⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝
⎛-+x x x x 8、求x 的值:(x+10)2=16
二、整式的乘除巩固
1、先化简,再求值:()()()222b a b a b a b ---++,其中3-=a ,2
1=b .
2、先化简,再求值:()()()xy xy y x y x y x 28433÷---+,其中1-=x ,3
3=y 。
3、
4、
三.解方程组1、。
初三实数运算练习题及答案
初三实数运算练习题及答案以下是初三实数运算练习题及答案,每题都包含详细的解答过程,希望对你的学习有所帮助。
1. 计算以下两个实数的和,并化简结果:3.8 + (-2.4)解答过程:3.8 + (-2.4) = 1.42. 计算以下两个实数的差,并化简结果:7.5 - (-4.2)解答过程:7.5 - (-4.2) = 7.5 + 4.2 = 11.73. 计算以下两个实数的积,并化简结果:(-0.6) × (-5)解答过程:(-0.6) × (-5) = 34. 计算以下两个实数的商,并化简结果:15 ÷ (-3)解答过程:15 ÷ (-3) = -55. 计算以下两个实数的和,并将结果写成科学计数法的形式: 2.5 × 10^6 + 8.7 × 10^5解答过程:2.5 × 10^6 + 8.7 × 10^5 = 2.5 × 10^6 + 0.87 × 10^6 =3.37 × 10^6 6. 计算以下两个实数的差,并将结果写成科学计数法的形式: 6.3 × 10^7 - 2.5 × 10^6解答过程:6.3 × 10^7 - 2.5 × 10^6 = 6.3 × 10^7 - 0.25 × 10^7 = 6.05 × 10^77. 计算以下两个实数的积,并将结果写成科学计数法的形式: (3.2 × 10^4) × (2.5 × 10^3)解答过程:(3.2 × 10^4) × (2.5 × 10^3) = (3.2 × 2.5) × 10^(4+3) = 8 × 10^7 8. 计算以下两个实数的商,并将结果写成科学计数法的形式: (6 × 10^6) ÷ (3 × 10^2)解答过程:(6 × 10^6) ÷ (3 × 10^2) = (6 ÷ 3) × 10^(6-2) = 2 × 10^4通过以上题目的练习,你可以巩固实数运算的基础知识,并学会了如何将结果写成科学计数法的形式。
最新第十三章实数计算题专题训练(含答案)
专题一计算题训练一.计算题1.计算题:|﹣2|﹣(1+)0+.2.计算题:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2)3.4 . ||﹣.5.计算题:.6.计算题:(1);7 .8. (精确到0.01).9.计算题:.10.(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2);11.| ﹣|+﹣12. ﹣12+×﹣213. .14. 求x的值:9x2=121.15. 已知,求x y的值.16. 比较大小:﹣2,﹣(要求写过程说明)17.求x的值:(x+10)2=1618. .19. 已知m<n,求+的值;20.已知a<0,求+的值.第一章文化产业管理概述第一节文化与文化产业一.文化1.文化活动:文化的提炼与凝结、文化作品的创作与存储、文化的传播、文化的消费、文化的促进等。
2.文化产业:文化活动发展到一定规模就促成产业的出现,并按照产业的运作规则促进文化活动的发展,进而生产出优秀的精神文化消费品。
二.产业(机械取代人的一个过程)三.文化产业1.又名:创意产业、文化内容产业、版权产业、信息内容产业2.国外学者对文化产业的定义围绕以下几点:(1)以文化内容作为获取商业价值的手段;(2)以服务为目的;(3)内容具有创意。
3.国内文化产业定义:为社会公众提供文化产品和文化相关产品的生产活动的集合。
四.文化产业的基本属性1.文化产业属于第三产业2.文化产业属于精神性生产3.文化产业是知识经济时代的主导产业文化产业是“知识密集型”产业、“高文化含量”产业。
第二节文化产业管理一.文化产业管理的概念1.定义:是一项综合性的社会经济活动,是对文化产业活动这一经济活动进行管理。
2.微观管理:生产文化产品和提供文化服务的企业的经营和管理活动。
宏观管理:文化产业主管部门从促进国家文化产业和文化事业发展的角度来管理文化产业活动。
(包括文化产业活动的引导和管理、文化产业的行业管理)注:从管理者、管理对象、管理目标来区分文化产业的微观、宏观管理。
实数计算题专题训练(含答案)
实数计算题专题训练(含答案) 专题一计算题训练一、计算题1.计算题:| -2 | - (1 + 2) ÷ 2,求解。
2.计算题:- + 4 × (-3)² + (-6) ÷ (-2),求解。
3.计算题:√2 - √3 + √6 ÷ √2,求解。
4.计算题:||-14|-|-11||+2,求解。
5.计算题:-4 + 8 ÷ (-8) - (-1),求解。
6.计算题:∛(π - 2) + 1 ÷ 2,求解。
7.计算题:√(2 + √3) + √(3 - √2),求解。
8.计算题:√(3+ √5) + √(5 + √3),求解,精确到0.01.二、解答题(共13小题)1.计算题:| -2 | - (1 + 2) ÷ 2,求解。
解答:原式=|-2| - (1 + 2) ÷ 2。
2 - 1.5。
0.5.2.计算题:- + 4 × (-3)² + (-6) ÷ (-2),求解。
解答:原式=- + 4 × 9 + (-6) ÷ (-2)。
+ 36 + 3。
.3.计算题:√2 - √3 + √6 ÷ √2,求解。
解答:原式=√2 - √3 + √6 ÷ √2。
2 - √3 + √3。
2.4.计算题:||-14|-|-11||+2,求解。
解答:原式=||-14| - |-11|| + 2。
14 - 11| + 2。
5.5.计算题:-4 + 8 ÷ (-8) - (-1),求解。
解答:原式=-4 + 8 ÷ (-8) - (-1)。
4 - 1 + 1。
4.6.计算题:∛(π - 2) + 1 ÷ 2,求解。
解答:原式=∛(π - 2) + 1 ÷ 2。
π - 2) + 0.5.7.计算题:√(2 + √3) + √(3 - √2),求解。
实数练习题及答案
实数练习题及答案实数是数学中非常重要的概念,它们包括有理数和无理数。
掌握实数的概念和运算是解决许多数学问题的基础。
下面是一些实数的练习题,以及相应的答案,供学习者练习和参考。
练习题1:判断下列数中哪些是有理数,哪些是无理数。
- √2- π- 1/3- 0.5- √3- √8答案1:- √2(无理数)- π(无理数)- 1/3(有理数)- 0.5(有理数,即1/2)- √3(无理数)- √8(无理数,因为8可以分解为2^3,而√8 = 2√2)练习题2:计算下列表达式的值。
- √4 + √9- √16 - √25- (√2)^2- √(1/4)答案2:- √4 + √9 = 2 + 3 = 5- √16 - √25 = 4 - 5 = -1- (√2)^2 = 2- √(1/4) = 1/2练习题3:解下列方程。
- √x = 4- x^2 = 16- √(x - 3) = 2答案3:- √x = 4,两边平方得 x = 16- x^2 = 16,解得x = ±4- √(x - 3) = 2,两边平方得 x - 3 = 4,解得 x = 7练习题4:将下列无理数化为最简二次根式。
- √48- √75答案4:- √48 = √(16 * 3) = 4√3- √75 = √(25 * 3) = 5√3练习题5:求下列表达式的值。
- √(√3 + 1)^2- √(√2 - 1)^2答案5:- √(√3 + 1)^2 = √3 + 1- √(√2 - 1)^2 = √2 - 1练习题6:判断下列表达式是否正确。
- √(-4) 是否有实数解?- √(-9) 是否有实数解?答案6:- √(-4) 没有实数解,因为负数没有实数平方根。
- √(-9) 同样没有实数解。
通过这些练习,可以帮助学习者更好地理解实数的概念和运算规则。
希望这些练习题和答案对学习者有所帮助。
在数学学习中,不断的练习和思考是提高解题能力的关键。
实数练习题及答案
实数练习题及答案实数是指所有的有理数和无理数的集合,它们可以用来描述现实世界中的各种量和现象。
在数学学习中,对于实数的理解和运用是非常重要的。
下面是一些实数练习题,供大家进行巩固和提高。
题目一:将下列数按照从小到大的顺序排列:-3,5,-2/3,根号2,6/7答案一:首先,我们可以将所有的数转化为小数的形式,然后再进行比较。
-3 = -3.0005 = 5.000-2/3 ≈ -0.667根号2 ≈ 1.4146/7 ≈ 0.857所以从小到大的顺序排列为:-3,-2/3,6/7,根号2,5。
题目二:计算下列各式的值:|4-6| + |-3| + √9答案二:要计算这个式子的值,我们需要按照运算的优先级进行计算。
首先计算绝对值,|4-6| = |-2| = 2,| -3 | = 3。
然后计算平方根,√9 = 3。
所以,|4-6| + |-3| + √9 = 2 + 3 + 3 = 8。
题目三:已知 a + b = 5,a - b = 1,求 a 的值。
答案三:我们可以通过联立方程的方法求解该题目。
首先,可以通过将两个方程相加消去 b,得到 2a = 6,即 a = 3。
所以 a 的值为 3。
题目四:求下列各式的值:2√3 + 5(√2 - √3) - √8答案四:要计算这个式子的值,我们需要按照运算的优先级进行计算。
首先计算含有√的项,√3 - √8 = √3 - 2√2。
然后结合其他数字进行计算,2√3 + 5(√2 - √3) = 2√3 + 5√2 - 5√3 = -3√3 + 5√2。
所以,2√3 + 5(√2 - √3) - √8 = -3√3 + 5√2。
通过上述题目的练习,我们可以对实数的概念和运算规则有更深入的理解,同时也能够锻炼我们的计算能力和逻辑思维能力。
希望大家能够多加练习,不断提高自己的数学水平。
人教版七年级上册第十三章实数测试卷(含答案解析)
人教版七年级上册第十三章实数测试卷(含答案解析) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.实数a b c d ,,,在数轴上的对应点的位置如图所示,则正确的结论是()A.a c >B.0bc >C.0a d +>D.2b <-2A.4±B.2±C.+4D.+2 3.下列说法正确的是( )A .-2是4的平方根B .4的平方根是2C .2没有平方根D 32 4.在下列式子中,正确的是( )A =B .0.6=-C 13=-D 6=± 5.下列说法正确的是( )A .﹣a 一定是负数B .一个数的绝对值一定是正数C .一个数的平方等于16,则这个数是4D .平方等于本身的数是0和16 )A.2B.﹣2C.D.±27 )A .3到4之间B .4到5之间C .5到6之间D .6到7之间8.在下列实数中:﹣0.6,3π,227,0.010010001……,3.14,无理数有( )A.2个B.3个C.4个D.5个9 3.14,2π,﹣0.3,0.5858858885…,227中无理数有( )10 ).A .4.99B .2.4C .2.5D .2.3二、填空题11 _____.12.比较实数的大小:“>”、“<”或“=”).13﹣y|=0,则x ﹣y 的值是___.14____.15.9的平方根是_________.三、解答题16.已知一个正数的两个平方根分别为a 和3a ﹣8(1)求a 的值,并求这个正数;(2)求1﹣7a 2的立方根. 17.已知2a+1的平方根是±3,5a+2b-2的算术平方根是4,求:3a-4b 的平方根. 18.求下列各式中未知数x 的值:(1)x²-225=0;(2)(2x-1)³=-8 19.已知|a|=3,b 2=25,且a<0,求a –b 的值.20.计算(1 ()21--参考答案1.A【解析】【分析】根据数轴上右边的数大于左边的数,及绝对值意义,有理数加法运算法则可分别判断.【详解】(1)表示a 的点离原点较远,所以a c >,故选项A 正确;(2)b,c 异号,所以bc<0,故选项B 错误;(3)因为a<0,b>0,|a|>|b|,所以a+b<0,故选项C 错误;(4)因为b 在-2的右边,所以b>-2,故选项B 错误.故选:A【点睛】本题考核知识点:数的大小比较. 解题关键点:掌握比较数的大小的方法,要看绝对值,还要看符号.2.B【解析】【详解】,4的平方根是±2. 故选B.3.A【解析】【分析】依据平方根的定义和性质以及平方法估算无理数大小的方法求解即可.【详解】A. −2是4的平方根,正确;B. 4的平方根是±2,故B 错误;C. 2的平方根是,故C 错误;D. 32=,3<278<32,故D 错误. 故选:A.【点睛】本题考查立方根, 平方根,估算无理数大小,解题的关键是熟练掌握平方根的定义和性质. 4.A【解析】【分析】根据立方根的定义、二次根式的性质依次计算各项后即可解答.【详解】选项A=,选项A正确;=-,选项B错误;选项B,5=,选项C错误;选项C,13=,选项D错误。
实数练习题与答案
实数练习题与答案实数是数学中最基本的数系之一,包括有理数和无理数。
它们在数学的各个领域中都有广泛的应用。
以下是一些实数的练习题,以及对应的答案,供同学们学习和参考。
练习题1:判断下列哪些数是有理数,哪些是无理数。
- √2- 1/3- π- √3- 0.333...(无限循环小数)答案1:有理数:1/3,0.333...(无限循环小数)无理数:√2,π,√3练习题2:计算下列表达式的值。
- √4 + √9- 3π - 2√3- (√2 + √3)²答案2:- √4 + √9 = 2 + 3 = 5- 3π - 2√3 无法计算具体数值,因为π和√3都是无理数- (√2 + √3)² = 2 + 2√6 + 3 = 5 + 2√6练习题3:解下列方程。
- 2x + 5 = 3x - 1- x² - 4 = 0答案3:- 2x + 5 = 3x - 1解:将2x移到右边得 5 + 1 = x,所以 x = 6- x² - 4 = 0解:将-4移到右边得 x² = 4,所以x = ±√4 = ±2练习题4:化简下列表达式。
- √(2²) + √(3 * 4)- √(81/16)答案4:- √(2²) + √(3 * 4) = 2 + √12 = 2 + 2√3- √(81/16) = √(81) / √(16) = 9 / 4 = 2.25练习题5:判断下列不等式是否有解,并求出解集。
- x² > 4- x² < 9答案5:- x² > 4解:x² - 4 > 0,即(x - 2)(x + 2) > 0,解集为 x < -2 或 x > 2- x² < 9解:x² - 9 < 0,即(x - 3)(x + 3) < 0,解集为 -3 < x < 3通过这些练习题,同学们可以加深对实数概念的理解,提高解决实际问题的能力。
实数计算题专题训练(含答案)
专题一计算题训练一.计算题1.计算题:|﹣2|﹣(1+)0+.2.计算题:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2)3. 4 . ||﹣.5..6.;7..8.9.计算题:.10.(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2);11. |﹣|+﹣12. ﹣12+×﹣2 13. .14. 求x的值:9x2=121.15. 已知,求x y的值.16. 比较大小:﹣2,﹣(要求写过程说明)17.求x的值:(x+10)2=1618. .19. 已知m<n,求+的值;20.已知a<0,求+的值.参考答案与试题解析一.解答题(共13小题)1.计算题:|﹣2|﹣(1+)0+.解答:解:原式=2﹣1+2,=3.2.计算题:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2)解答:解:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2),=﹣1+4×9+3,=38.3.4. ||﹣.原式=14﹣11+2=5;(2)原式==﹣1.点评:此题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、绝对值等考点的运算.5.计算题:.考点:有理数的混合运算。
分析:首先进行乘方运算、然后根据乘法分配原则进行乘法运算、同时进行除法运算,最后进行加减法运算即可.解答:解:原式=﹣4+8÷(﹣8)﹣(﹣1)=﹣4﹣1﹣(﹣)=﹣5+=﹣.点评:本题主要考查有理数的混合运算,乘方运算,关键在于正确的去括号,认真的进行计算即可.6.;7..考点:实数的运算;立方根;零指数幂;二次根式的性质与化简。
分析:(1)注意:|﹣|=﹣;(2)注意:(π﹣2)0=1.解答:解:(1)(==;(2)=1﹣0.5+2=2.5.点评:保证一个数的绝对值是非负数,任何不等于0的数的0次幂是1,注意区分是求二次方根还是三次方根.8.(精确到0.01).考点:实数的运算。
人教版八年级数学上册第十三章实数测试题(有答案)
《实数》 基础测试题(一)、精心选一选1. 有下列说法:(1)无理数就是开方开不尽的数; (2)无理数包括正无理数、零、负无理数;(3)无理数是无限不循环小数;(4)无理数都可以用数轴上的点来表示。
其中正确的说法的个数是( )A .1B .2C .3D .42.如果一个实数的平方根与它的立方根相等,则这个数是( )A . 0B . 正整数C . 0和1D . 13.能与数轴上的点一一对应的是( )A 整数B 有理数C 无理数D 实数4. 下列各数中,不是无理数的是 ( ) A.7 B. 0.5 C. 2π D. 0.151151115…)个之间依次多两个115( 5.()20.7-的平方根是( )A .0.7-B .0.7±C .0.7D .0.496. 下列说法正确的是( )A . 0.25是0.5 的一个平方根B ..正数有两个平方根,且这两个平方根之和等于0C . 7 2 的平方根是7D . 负数有一个平方根(二)、细心填一填7.在数轴上表示的点离原点的距离是 。
设面积为5的正方形的边长为x ,那么x =8. 9的算术平方根是 ;94的平方根是 ,271的立方根是 , -125的立方根是 .9. 25-的相反数是 ,32-= ; 10. =-2)4( ; =-33)6( ; 2)196(= .38-= .11. 比较大小;5.; (填“>”或“<”) 12. 要使62-x 有意义,x 应满足的条件是(三)、用心做一做13.将下列各数填入相应的集合内。
-7,0.32, 13,0,3125-,π,0.1010010001…①有理数集合{ … }②无理数集合{ … }③负实数集合{ … }14.化简①2+32—52 ② 7(71-7)③ |23- | + |23-|- |12- | ④ 41)2(823--+15.求下列各式中的x(1)12142=x (2)125)2(3=+x16.比较下列各组数的大少(1) 4 与 36317. 一个底为正方形的水池的容积是486m 3,池深1.5m ,求这个水底的底边长.18...一个正数.....a .的平方根是.....3.x .―.4.与.2.―.x .,则..a .是多少?....(四)、附参考答案(一)、精心选一选(每小题4分,共24分)1.B2.A3.D4.B5.B6.B(二)、细心填一填(每小题4分,共24分)7.3、58. 3 、 32± 、 31 、 -5 9. 52- 、 23-10. 4 、 -6 、196 、 -2;215- > 5.0; 12. 3≥x(三)、用心做一做 13.(6分)将下列各数填入相应的集合内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题实数计算题训练一.计算题
1.|﹣2|﹣(1+)0+.
2.﹣12009+4×(﹣3)2+(﹣6)÷(﹣2)
3.
4 . ||﹣.
5..
6.(1);
7 .
8. (精确到0.01).
9..
10.(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2);
11|﹣|+﹣
12. ﹣12+×﹣2
13..
14. 求x的值:9x2=121.
15. 已知,求x y的值.
16. 比较大小:﹣2,﹣(要求写过程说明)
17.求x的值:(x+10)2=16
18. .
19. 已知m<n,求+的值;
20.已知a<0,求+的值.
专题一计算题训练
参考答案与试题解析
一.解答题(共13小题)
1.计算题:|﹣2|﹣(1+)0+.
解答:解:原式=2﹣1+2,
=3.
2.计算题:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2)
解答:解:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2),
=﹣1+4×9+3,
=38.
3.
4. ||﹣.
原式=14﹣11+2=5;
(2)原式==﹣1.
5.计算题:.
考点:有理数的混合运算。
分析:首先进行乘方运算、然后根据乘法分配原则进行乘法运算、同时进行除法运算,最后进行加减法运算即可.解答:
解:原式=﹣4+8÷(﹣8)﹣(﹣1)
=﹣4﹣1﹣(﹣)
=﹣5+
=﹣.
点评:本题主要考查有理数的混合运算,乘方运算,关键在于正确的去括号,认真的进行计算即可.
6.;
7..
考点:实数的运算;立方根;零指数幂;二次根式的性质与化简。
分析:(1)注意:|﹣|=﹣;
(2)注意:(π﹣2)0=1.
解答:解:(1)(
=
=;
(2)
=1﹣0.5+2
=2.5.
点评:保证一个数的绝对值是非负数,任何不等于0的数的0次幂是1,注意区分是求二次方根还是三次方根.8.(精确到0.01).
考点:实数的运算。
专题:计算题。
分析:(1)先去括号,再合并同类二次根式;
(2)先去绝对值号,再合并同类二次根式.
解答:解:(1)原式=2
=;
(2)原式=
=
≈1.732+1.414
≈3.15.
点评:此题主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.注意精确到0.01.
9.计算题:.
考点:实数的运算;绝对值;算术平方根;立方根。
专题:计算题。
分析:根据绝对值、立方根、二次根式化简等运算法则进行计算,然后根据实数的运算法则求得计算结果.
解答:解:原式
=5×1.2+10×0.3﹣3﹣3+2﹣
=5﹣.
10.(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2);
考点:有理数的混合运算。
专题:计算题。
分析:(1)根据理数混合运算顺序:先算乘方,再算乘除,最后算加减;如果有括号,要先做括号内的运算.(2)可以先把2.75变成分数,再用乘法分配律展开计算.
解答:解:(1)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)
=﹣8+(﹣3)×18+
=﹣62+
=﹣
11. |﹣|+﹣
12. ﹣12+×﹣2
解答:解:(1)原式==﹣4+2;
(2)原式=﹣1+9﹣2=6;
13..
考点:实数的运算;绝对值;立方根;零指数幂;二次根式的性质与化简。
专题:计算题。
分析:(1)根据算术平方根和立方根进行计算即可;
(2)根据零指数幂、绝对值、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
解答:(1)解:原式=2+2﹣4 …3′
=0 …4′
(2)解:原式=3﹣(﹣2)﹣(4﹣)+1 …3′
=2+…4′
点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、立方根、二次根式、绝对值等考点的运算.
14求x的值:9x2=121.
15已知,求x y的值.
16比较大小:﹣2,﹣(要求写过程说明)
考点:实数的运算;非负数的性质:绝对值;平方根;非负数的性质:算术平方根;实数大小比较。
专题:计算题。
分析:(1)根据平方根、立方根的定义解答;
(2)利用直接开平方法解答;
(3)根据非负数的性质求出x、y的值,再代入求值;
(4)将2转化为进行比较.
解答:解:①原式=3﹣3﹣(﹣4)=4;
②9x2=121,
两边同时除以9得,
x2=,
开方得,x=±,
x1=,x2=﹣.
∴x+2=0,y﹣3=0,
∴x=﹣2,y=3;
则x y=(﹣2)3=﹣8;
④∵<,
∴﹣>﹣,
∴﹣2>﹣.
点评:本题考查了非负数的性质:绝对值和算术平方根,实数比较大小,平方根等概念,难度不大.
17. 求x的值:(x+10)2=16
18..
考点:实数的运算;平方根。
专题:计算题。
分析:(1)根据平方根的定义得到x+10=±4,然后解一次方程即可;
(2)先进行乘方和开方运算得到原式=﹣8×4+(﹣4)×﹣3,再进行乘法运算,然后进行加法运算即可.
解答:解:(1)∵x+10=±4,
∴x=﹣6或﹣14;
(2)原式=﹣8×4+(﹣4)×﹣3
=﹣32﹣1﹣3
=﹣37.
点评:本题考查了实数的运算:先进行乘方或开方运算,再进行加减运算,然后进行加减运算.也考查了平方根以及立方根.
19. 已知m<n,求+的值;
20. 已知a<0,求+的值.
考点:实数的运算。
专题:综合题。
分析:
①先由m<n,化简+,再计算;
②由a<0,先去根号,再计算.
解答:解:①∵m<n,
∴+
=n﹣m+n﹣m
=2n﹣2m,
②∵a<0,
∴+
=﹣a+a
=0.
点评:本题考查了二次根式的化简和立方根的求法,是基础知识要熟练掌握.。