十实数计算题专题训练(含答案)复习过程

合集下载

中考数学专题特训第二讲:实数的运算(含详细参考答案)

中考数学专题特训第二讲:实数的运算(含详细参考答案)

中考数学专题复习第二讲:实数的运算【基础知识回顾】 一、实数的运算。

1、基本运算:初中阶段我们学习的基本运算有 、 、 、 、 、 和 共六种,运算顺序是先算 ,再算 ,最后算 ,有括号时要先算 ,同一级运算,按照 的顺序依次进行。

2、运算法则: 加法:同号两数相加,取 的符号,并把 相加,异号两数相加,取 的符号,并用较大的 减去较小 的,任何数同零相加仍得 。

减法,减去一个数等于 。

乘法:两数相乘,同号得 ,异号得 ,并把 相乘。

除法:除以一个数等于乘以这个数的 。

乘方:(-a ) 2n +1 = (-a ) 2n =3、运算定律:加法交换律:a+b= 加法结合律:(a+b)+c= 乘法交换律:ab= 乘法结合律:(ab )c= 分配律: (a+b )c= 二、零指数、负整数指数幂。

0a = (a ≠0) a -p = (a ≠0) 【赵老师提醒:1、实数的混合运算在中考考查时经常与0指数、负指数、绝对值、锐角三角函数等放在一起,计算时要注意运算顺序和运算性质。

2、注意底数为分数的负指数运算的结果,如:(31)-1= 】三、实数的大小比较: 1、比较两个有理数的大小,除可以用数轴按照 的原则进行比较以外,,还有 比较法、 比较法等,两个负数 大的反而小。

2、如果几个非负数的和为零,则这几个非负数都为 。

【赵老师提醒:比较实数大小的方法有很多,根据题目所给的实数的类型或形较的大小,可以先确定10和可以式灵活选用。

如:比65的取值范围,然后得结论:10+2 65-2。

】【重点考点例析】考点一:实数的大小比较。

例1 (•西城区)已知13的整数部分为a ,小数部分为b ,则代数式a 2-a-b 的值为 .思路分析:由于34a和b,然后代入代数式求值.解:∵34,∴a=3,,则a2-a-b=32-3-)故答案为:点评:此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.例 2 (•台湾)已知甲、乙、丙三数,甲=5=3,丙=1+乙、丙的大小关系,下列何者正确?()A.丙<乙<甲B.乙<甲<丙C.甲<乙<丙D.甲=乙=丙思路分析:乙,丙的取值范围,进而可以比较其大小.解:∵,∴8<9,∴8<甲<9;∵=5,∴7<<8,∴7<乙<8,∵4= =5,∴5<6,∴丙<乙<甲故选A.点评:本题考查了实数的比较大小:(1)任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.对应训练1.(•南京)12的负的平方根介于()A.-5与-4之间B.-4与-3之间C.-3与-2之间D.-2与-1之间1.B.2.(•宁夏)已知a 、b 为两个连续的整数,且a <b ,则a+b= . 2.7考点二:实数的混合运算。

实数计算题专题训练(含答案)

实数计算题专题训练(含答案)
易错点巩固练习
一、实数的运算
一.计算题
1.|﹣2|﹣(1+ )0+ .2.﹣12009+4×(﹣3)2+(﹣6)÷(﹣2)
3. .4、82016(-0.125 Nhomakorabea2015
7、对于生活中的一些废弃物,我们可以从垃圾中回收它们并重新加工利用。这样做不但能够减少垃圾的数量,而且能够节省大量的自然资源。
6、重新使用是指多次或用另一种方法来使用已用过的物品,它也是减少垃圾的重要方法。5. 6、
一、填空:
答:①尽可能地不使用一次性用品;②延长物品的使用寿命;③包装盒纸在垃圾中比例很大,购物时减少对它们的使用。
二、整式的乘除巩固
1、说说你身边物质变化的例子。1、先化简,再求值: ,其中 , 。
2、先化简,再求值: ,其中 , 。
3、
20、在水中生活着许我微生物,常见的有草履虫、变形虫、喇叭虫、眼虫、团藻等。
18、大多数生物都是由多细胞组成的,但也有一些生物,它们只有一个细胞,称为单细胞生物。如草履虫、变形虫、细菌等。
7、 8、求x的值:(x+10)2=16
答:①利用微生物的作用,我们可以生产酒、醋、酸奶、馒头和面包等食品。②土壤中的微生物可以分解动植物的尸体,使它们变成植物需要的营养素。③在工业生产和医药卫生中也都离不开微生物。
5、月球在圆缺变化过程中出现的各种形状叫作月相。月相变化是由于月球公转而发生的。它其实是人们从地球上看到的月球被太阳照亮的部分。4、
5、月球在圆缺变化过程中出现的各种形状叫作月相。月相变化是由于月球公转而发生的。它其实是人们从地球上看到的月球被太阳照亮的部分。三.解方程组
1、

中考数学专题特训 实数的运算(含详细参考答案)

中考数学专题特训 实数的运算(含详细参考答案)

中考数学专题复习 实数的运算【基础知识回顾】一、实数的运算。

1、基本运算:初中阶段我们学习的基本运算有 、 、 、 、 、 和 共六种,运算顺序是先算 ,再算 ,最后算 ,有括号时要先算 ,同一级运算,按照 的顺序依次进行。

2、运算法则:加法:同号两数相加,取 的符号,并把 相加,异号两数相加,取 的符号,并用较大的 减去较小 的,任何数同零相加仍得 。

减法,减去一个数等于 。

乘法:两数相乘,同号得 ,异号得 ,并把 相乘。

除法:除以一个数等于乘以这个数的 。

乘方:(-a ) 2n +1 = (-a ) 2n =3、运算定律:加法交换律:a+b=加法结合律:(a+b)+c=乘法交换律:ab=乘法结合律:(ab )c=分配律: (a+b )c=二、零指数、负整数指数幂。

0a = (a ≠0) a -p = (a ≠0)【赵老师提醒:1、实数的混合运算在中考考查时经常与0指数、负指数、绝对值、锐角三角函数等放在一起,计算时要注意运算顺序和运算性质。

2、注意底数为分数的负指数运算的结果,如:(31)-1= 】 三、实数的大小比较:1、比较两个有理数的大小,除可以用数轴按照 的原则进行比较以外,,还有 比较法、 比较法等,两个负数 大的反而小。

2、如果几个非负数的和为零,则这几个非负数都为 。

【赵老师提醒:比较实数大小的方法有很多,根据题目所给的实数的类型或形可以式灵活选用。

如:比较的大小,可以先确定10和65的取值范围,然后得结论:10+2 65-2。

】【重点考点例析】考点一:实数的大小比较。

例1 (2012•西城区)已知13的整数部分为a ,小数部分为b ,则代数式a 2-a-b 的值为 . 思路分析:由于3<13<4,由此可得13的整数部分和小数部分,即得出a 和b ,然后代入代数式求值.解:∵3<13<4,∴a=3,b=13-3,则a 2-a-b=32-3-(13-3)=9-3-13+3=9-13,故答案为:9-13.点评:此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.例 2 (2012•台湾)已知甲、乙、丙三数,甲=515+,乙=317+,丙=119+,则甲、乙、丙的大小关系,下列何者正确?( )A .丙<乙<甲B .乙<甲<丙C .甲<乙<丙D .甲=乙=丙思路分析:本题可先估算无理数15,17,19的整数部分的最大值和最小值,再求出甲,乙,丙的取值范围,进而可以比较其大小.解:∵3=9<15<16=4,∴8<5+15<9,∴8<甲<9;∵=5,∴7<<8,∴7<乙<8,∵4= =5,∴5<6,∴丙<乙<甲故选A .点评:本题考查了实数的比较大小:(1)任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.对应训练1.(2012•南京)12的负的平方根介于( )A .-5与-4之间B .-4与-3之间C .-3与-2之间D .-2与-1之间1.B .2.(2012•宁夏)已知a 、b 为两个连续的整数,且a <b ,则a+b= .2.7考点二:实数的混合运算。

[数学]-专题 实数的运算计算题(共45小题)(带答案)

[数学]-专题 实数的运算计算题(共45小题)(带答案)

七年级下册数学《第六章 实 数》 专题 实数的运算计算题(共45小题)1.(2022秋•招远市期末)计算: (1)(√5)2+√(−3)2+√−83;(2)(﹣2)3×18−√273×(−√19).【分析】(1)原式利用平方根及立方根定义计算即可求出值; (2)原式利用乘方的意义,算术平方根及立方根定义计算即可求出值. 【解答】解:(1)原式=5+3+(﹣2) =8﹣2 =6;(2)原式=(﹣8)×18−3×(−13) =(﹣1)﹣(﹣1) =﹣1+1 =0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 2.(2022•庐江县二模)计算:√0.04+√−83−√1−925. 【分析】先计算被开方数,再开方,最后加减. 【解答】解:原式=0.2﹣2−√1625 =0.2﹣2−45 =0.2﹣2﹣0.8 =﹣2.6.【点评】本题考查了实数的混合运算,掌握开方运算是解决本题的关键. 3.(2022春•上思县校级月考)计算: (1)−12+√16+|√2−1|+√−83; (2)2√3+|√3−2|−√643+√9. 【分析】(1)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案;(2)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案. 【解答】解:(1)−12+√16+|√2−1|+√−83; =﹣1+4+√2−1﹣2 =√2;(2)原式=2√3+2−√3−4+3 =√3+1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.4.(2022春•渝中区校级月考)实数的计算: (1)√16+√(−3)2+√273; (2)√−33+|1−√33|﹣(−√3)2.【分析】(1)先计算平方根和立方根,再计算加减; (2)先计算平方根、立方根和绝对值,再计算加减; 【解答】解:(1)√16+√(−3)2+√273=4+3+3 =10;(2)√−33+|1−√33|﹣(−√3)2=−√33+√33−1﹣3 =﹣4.【点评】此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.5.(2022秋•原阳县月考)计算: (1)√−83+√4−(−1)2023;(2)(−√9)2−√643+|−5|−(−2)2.【分析】(1)先化简各式,然后再进行计算即可解答; (2)先化简各式,然后再进行计算即可解答. 【解答】解:(1)√−83+√4−(−1)2023=﹣2+2﹣(﹣1) =0+1 =1;(2)(−√9)2−√643+|−5|−(−2)2 =9﹣4+5﹣4 =6.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.6.(2022春•牡丹江期中)计算: (1)−12−√0.64+√−273−√125;(2)√3+√(−5)2−√−643−|√3−5|.【分析】(1)先计算平方、平方根和立方根,再进行加减运算; (2)先计算平方根、立方根和绝对值,再进行加减运算. 【解答】解(1)−12−√0.64+√−273−√125 =﹣1﹣0.8﹣3﹣0.2 =﹣5;(2)√3+√(−5)2−√−643−|√3−5| =√3+5+4+√3−5 =2√3+4.【点评】此题考查了运用平方根和立方根进行有关运算的能力,关键是能准确理解并运用以上知识.7.(2022秋•南关区校级期末)计算:√16−(−1)2022−√273+|1−√2|.【分析】直接利用有理数的乘方运算法则、绝对值的性质、平方根的性质分别化简,进而得出答案. 【解答】解:原式=4﹣1﹣3+√2−1 =√2−1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.8.(2022秋•成武县校级期末)计算:﹣12022−√643+|√3−2|.【分析】这里,先算﹣12022=﹣1,√643=4,|√3−2|=2−√3,再进行综合运算.【解答】解:﹣12022−√643+|√3−2|=﹣1﹣4+2−√3 =﹣3−√3.【点评】本题考查了实数的综合运算,计算过程中要细心,注意正负符号,综合性较强.9.(2022春•昌平区校级月考)√1253+√(−3)2−√1−35273.【分析】先化简各式,然后再进行计算即可解答.【解答】解:√1253+√(−3)2−√1−35273=5+3−√−8273=5+3﹣(−23) =5+3+23=823.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.10.(2022春•舒城县校级月考)计算:√−273+12√16+|−√2|+1.【分析】首先计算开方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:√−273+12√16+|−√2|+1=﹣3+12×4+√2+1 =﹣3+2+√2+1 =√2.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用. 11.(2022春•舒城县校级月考)计算:﹣12+|﹣2|+√−83+√(−3)2.【分析】先化简各式,然后再进行计算即可解答.【解答】解:﹣12+|﹣2|+√−83+√(−3)2=﹣1+2+(﹣2)+3 =﹣1+2﹣2+3 =2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.12.(2021秋•镇巴县期末)计算:(−1)10+|√2−2|+√49+√(−3)33. 【分析】按照实数的运算顺序进行运算即可. 【解答】解:原式=1+2−√2+7−3 =7−√2.【点评】本题考查了实数的运算,掌握对值,立方根以及平方根的运算法则是关键.13.(2022春•阳新县期末)计算:|√3−2|+√−83×12+(−√3)2.【分析】先算开方和乘方,再化简绝对值算乘法,最后加减. 【解答】解:原式=2−√3+(﹣2)×12+3 =2−√3−1+3 =4−√3.【点评】本题考查了实数的运算,掌握乘方、开方及绝对值的意义是解决本题的关键.14.(2022春•十堰期中)计算:﹣12022+√(−4)2+√83+10√925.【分析】先算乘方、开方,再算乘法,最后算加减. 【解答】解:原式=﹣1+4+2+10×35=﹣1+4+2+6 =11.【点评】本题考查了实数的混合运算,掌握实数的运算法则、实数的运算顺序是解决本题的关键. 15.(2021秋•峨边县期末)计算:|√5−3|+√(−2)2−√−83+√5. 【分析】直接利用绝对值的性质以及立方根的性质分别化简,进而得出答案. 【解答】解:原式=3−√5+2+2+√5【点评】此题主要考查了实数的运算,正确化简各数是解题关键.16.(2021秋•乳山市期末)计算:√(−3)2−2×√94+52×√−0.0273.【分析】应用实数的运算法则:先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行,进行计算即可得出答案. 【解答】解:原式=3﹣2×32+52×(﹣0.3) =3﹣3−52×310=0−34=−34.【点评】本题主要考查了实数的运算,熟练掌握实数的运算进行求解是解决本题的关键.17.(2022秋•横县期中)计算:(﹣1)2022+√9−(2﹣3)÷12.【分析】先计算乘方与开方和小括号里的,再计算除法,最后计算加减即可. 【解答】解:原式=1+3﹣(﹣1)×2 =4+2 =6.【点评】此题考查的实数的运算,掌握其运算法则是解决此题的关键.18.(2022秋•儋州校级月考)计算: (1)√643−√81+√1253+3; (2)|−3|−√16+√83+(−2)2.【分析】(1)直接利用立方根的性质、平方根的性质分别化简,进而计算得出答案; (2)直接利用立方根的性质、平方根的性质、绝对值的性质分别化简,进而计算得出答案. 【解答】解:(1)原式=4﹣9+5+3 =3;(2)原式=3﹣4+2+4【点评】此题主要考查了实数的运算,正确化简各数是解题关键.19.(2022秋•海曙区校级期中)计算: (1)﹣23+√−273−(﹣2)2+√1681; (2)(﹣3)2×(﹣2)+√643+√9.【分析】(1)先计算乘方、立方根和平方根,再计算加减; (2)先计算乘方、立方根和平方根,再计算乘法,最后计算加减. 【解答】解:(1)﹣23+√−273−(﹣2)2+√1681=﹣8﹣3﹣4+49=﹣1459;(2)(﹣3)2×(﹣2)+√643+√9=﹣9×2+4+3 =﹣18+4+3 =﹣11.【点评】此题考查了实数的混合运算能力,关键是能准确确定运算顺序和方法.20.(2022秋•安岳县校级月考)计算: (1)(√3)2−√16+√−83;(2)(﹣2)3×√1214+(﹣1)2013−√273;(3)√(−4)2+√214+√3383−√32+42.【分析】(1)先化简各式,然后再进行计算即可解答; (2)先化简各式,然后再进行计算即可解答; (3)先化简各式,然后再进行计算即可解答. 【解答】解:(1)(√3)2−√16+√−83=3﹣4+(﹣2)(2)(﹣2)3×√1214+(﹣1)2013−√273=﹣8×112+(﹣1)﹣3=﹣44﹣1﹣3=﹣48;(3)√(−4)2+√214+√3383−√32+42=4+32+32−5=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.21.(2022秋•隆昌市校级月考)计算:(1)|−3|−√16+√−83+(−2)2;(2)√−273+|2−√3|−(−√16)+2√3.【分析】(1)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.(2)首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)|−3|−√16+√−83+(−2)2=3﹣4+(﹣2)+4=1.(2)√−273+|2−√3|−(−√16)+2√3=﹣3+(2−√3)﹣(﹣4)+2√3=﹣3+2−√3+4+2√3=3+√3.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.22.(2021秋•泉州期末)计算:√(−3)2×√−183−(12)2+(−1)2022.【分析】先算乘方和开方,再算乘法,最后算加减. 【解答】解:原式=3×(−12)−14+1 =−32−14+1 =−12−14 =−34.【点评】本题主要考查了实数的运算,掌握平方根的性质、乘方运算、开方运算是解决本题的关键.23.(2022秋•新野县期中)计算:√−83+√9−√1916+(−1)2022+|1−√2|. 【分析】利用立方根的定义,算术平方根的定义,乘方运算,绝对值的定义计算即可. 【解答】解:√−83+√9−√1916+(−1)2022+|1−√2|. =﹣2+3−54+1+√2−1 =−14+√2.【点评】本题考查了实数的运算,解题的关键是掌握立方根的定义,算术平方根的定义,乘方运算,绝对值的定义.24.(2021秋•新兴区校级期末)计算下列各题: (1)√1−19273+√(14−1)2; (2)√53−|−√53|+2√3+3√3.【分析】(1)先化简各式,然后再进行计算即可解答; (2)先化简各式,然后再进行计算即可解答. 【解答】解:(1)√1−19273+√(14−1)2=√8273+√(−34)2=23+34=1712; (2)√53−|−√53|+2√3+3√3 =√53−√53+2√3+3√3 =5√3.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.25.(2022秋•绥德县期中)计算:2(√3−1)−|√3−2|−√643. 【分析】先去括号,化简绝对值,开立方,再计算加减即可. 【解答】解:原式=2√3−2﹣(2−√3)﹣4 =2√3−2﹣2+√3−4 =3√3−8.【点评】本题考查实数的混合运算,平方根加法,熟练掌握实数的混合运算法则是解题的关键.26.(2022秋•义乌市校级期中)计算:﹣22×(﹣112)2−√−643−√169×|﹣3|.【分析】先算乘方,再算乘法,后算加减,即可解答. 【解答】解:﹣22×(﹣112)2−√−643−√169×|﹣3| =﹣4×94−(﹣4)−43×3 =﹣9+4﹣4 =﹣9.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.27.(2022秋•西湖区校级期中)计算: (1)|7−√2|﹣|√2−π|−√(−7)2;(2)﹣22×√(−4)2+√(−8)33×(−12)−√273.【分析】(1)先化简绝对值和平方根,再计算加减; (2)先算乘方和根式,再计算乘法,最后加减.【解答】解:(1)|7−√2|﹣|√2−π|−√(−7)2=7−√2−(π−√2)﹣7=7−√2−π+√2−7=﹣π;(2)﹣22×√(−4)2+√(−8)33×(−12)−√273 =﹣4×4+(﹣8)×(−12)﹣3=﹣16+4﹣3=﹣15.【点评】本题考查了实数的混合运算,实数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行实数的混合运算时,注意各个运算律的运用,使运算过程得到简化.28.(2022秋•沈丘县校级月考)计算:√0.01×√121+√−11253−√0.81. 【分析】直接利用平方根的性质、立方根的性质分别化简,进而得出答案.【解答】解:原式=0.1×11−15−0.9=1.1﹣0.2﹣0.9=0.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.29.(2022春•西山区校级期中)计算:5−2×(√7−2)+√−83+|√3−2|.【分析】直接利用立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=5﹣2√7+4﹣2+2−√3=9﹣2√7−√3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2022春•东莞市期中)计算:√(−3)2+(﹣1)2020+√−83+|1−√2| 【分析】先化简各式,然后再进行计算即可解答.【解答】解:√(−3)2+(﹣1)2020+√−83+|1−√2|=3+1+(﹣2)+√2−1=3+1﹣2+√2−1=1+√2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.31.(2022秋•安溪县月考)计算:√16+√−273−√3−|√3−2|+√(−5)2.【分析】直接利用立方根的性质、绝对值的性质算术平方根的性质分别化简,进而合并得出答案.【解答】解:原式=4﹣3−√3−2+√3+5=4.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.32.(2022秋•仁寿县校级月考)计算:√−8 273+√(−4)2×(−12)3−|1−√3|.【分析】先化简各式,然后再进行计算即可解答.【解答】解:√−8 273+√(−4)2×(−12)3−|1−√3|=−23+4×(−18)﹣(√3−1)=−23+(−12)−√3+1=−76−√3+1=−16−√3.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.33.(2022春•海淀区校级期中)计算:√81+√−273−2(√3−3)−|√3−2|.【分析】本题涉及去掉绝对值、根式化简考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=9﹣3﹣2√3+6﹣(2−√3)=6﹣2√3+6﹣2+√3=10−√3.【点评】本题主要考查了实数的综合运算能力,解决此类题目的关键是准确熟练地化简各式是解题的关键.34.(2022春•梁平区期中)计算:√(−1)33+√−273+√(−2)2−|1−√3|.【分析】利用算术平方根,立方根和绝对值的意义化简运算即可.【解答】解:原式=﹣1+(﹣3)+2﹣(√3−1)=﹣1﹣3+2−√3+1=﹣1−√3.【点评】本题主要考查了实数的运算,算术平方根,立方根和绝对值的意义,正确利用上述法则与性质化简运算是解题的关键.35.(2022春•东莞市校级期中)计算:﹣12020+√(−2)2−√643+|√3−2|. 【分析】直接利用有理数的乘方运算法则、平方根的性质、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=﹣1+2﹣4+2−√3=﹣1−√3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.36.计算下列各题:(1)√1+√−273−√14+√0.1253+√1−6364(2)|7−√2|﹣|√2−π|−√(−7)2【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义计算即可求出值.【解答】解:(1)原式=1﹣3−12+0.5+18=−178; (2)原式=7−√2−π+√2−7=﹣π.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.37.计算:√0.0083×√1916−√172−82÷√−11253. 【分析】首先计算开方、乘法和除法,然后计算减法,求出算式的值是多少即可.【解答】解:√0.0083×√1916−√172−82÷√−11253=0.2×54−15÷(−15)=14+75=7514 【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.38.计算:3√3−2(1+√3)+√(−2)2+|√3−2|【分析】首先利用去括号法则以及绝对值的性质和算术平方根的定义分别化简得出答案.【解答】解:原式=3√3−2﹣2√3+2+2−√3=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.39.计算:(1)√(−2)2×√214−23×√(−18)23(2)√9+|1−√2|−√125273×√(−3)2+|4√0.25−√2|【分析】(1)首先计算开方和乘法,然后计算减法,求出算式的值是多少即可.(2)首先计算开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)√16+√32+√−83=4+3﹣2=5(2)√(−2)2×√214−23×√(−18)23=2×32−8×14=3﹣2=1(3)√9+|1−√2|−√125273×√(−3)2+|4√0.25−√2|=3+√2−1−53×3+2−√2=﹣1【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.40.计算:(﹣2)2×√14+|√−83|+√2×(﹣1)2022 【分析】原式利用平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可得到结果;【解答】解:原式=2+2+√2=4+√2;【点评】此题考查了实数的运算,平方根、立方根,熟练掌握各自的性质是解本题的关键.41.计算:﹣22+√16+√83+1014×934. 【分析】原式第一项利用乘方的意义计算,第二项利用算术平方根定义计算,第三项利用立方根定义计算,最后一项利用乘法法则计算即可得到结果.【解答】解:原式=﹣4+4+2+414×394=2+159916=1011516. 【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.42.计算:|﹣5|−√273+(﹣2)2+4÷(−23). 【分析】根据绝对值的性质、立方根的性质以及实数的运算法则化简计算即可;【解答】解:原式=5﹣3+4﹣6=0【点评】本题考查实数的混合运算,解题的关键是:掌握先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.43.(2022秋•城关区校级期中)计算:(1)√12+(√3)2+14√48−9√13; (2)√(−3)2+(−1)2022+√83+|1−√2|.【分析】(1)直接利用平方根的性质分别化简,进而计算得出答案;(2)直接利用平方根的性质、有理数的乘方运算法则、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=2√3+3+14×4√3−9×√33 =2√3+3+√3−3√3=3;(2)原式=3+1+2+√2−1=5+√2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.44.(2021春•濉溪县期末)计算:√49−√273+|1−√2|+√(1−43)2. 【分析】原式第一项利用算术平方根定义计算,第二项利用立方根定义计算,第三项利用绝对值的代数意义化简,最后一项利用平方根性质化简即可得到结果.【解答】解:原式=7﹣3+√2−1+13=103+√2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.45.(2022秋•岳麓区校级月考)计算−12022+(12)2+|√2−3|−√(−3)2.【分析】根据乘方,绝对值的意义,平方根的性质将原式进行化简,然后根据实数运算法则进行计算即可.【解答】解:原式=−1+14+3−√2−3,=−34−√2.【点评】本题考查了乘方,绝对值的意义,平方根的性质,掌握相关运算法则是关键.。

十实数计算题专题训练(含答案)

十实数计算题专题训练(含答案)

一.计算题1 计算题:2|-(1+1 :)°+ I..2.计算题:—12009+4X(—3) 2+ (- 6) -(- 2)3- —一丄丨:一:6•计算题:(1)丨—_ I 「;;7(^-2)°-皈话苗.8. I ' :卜二(精确到0.01).3 2 210. (- 2) + (- 3) >i (- 4) +2] -(- 3) r-2);11. | 硬—逅+佰-h/12512. - 12+ . X. :-213. M (-刃2 - (~2)3- IV?_4I+( -1)°9.214. 求 x 的值:9x =121 . 15. 已知 「1 - - _|-,求x y 的值.16. 比较大小:-2,- 一】(要求写过程说明)217•求 x 的值:(x+10) =1619.已知m < n ,求 + 的值;20.已知 a <0,求 ■■+ ' 的值.专题一计算题训练参考答案与试题解析.解答题(共13小题)1.计算题:|- 2|-( 1+ :':) 0+ ■■.解答:解:原式=2 - 1+2 ,=3.2.计算题:—12009+4X(—3) 2+ (- 6) -(- 2) 解答:解:-12009+4X (- 3) 2+ (- 6) - (- 2),=-1+4 >9+3,=38.3•:——T-■ ' _4.卩':| -二原式=14 - 11+2=5 ;(2)原式=【J 1匕-1.点评:此题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型•解决此类题目的关键是熟练掌握二次根式、绝对值等考点的运算.5.计算题:-如(-2) 5 (匕)考点:有理数的混合运算。

分析:首先进行乘方运算、然后根据乘法分配原则进行乘法运算、同时进行除法运算,最后进行加减法运算即可. 解答:解:原式=-4+8 r- 8)-(丄-1)43=-4 - 1 -(_ 丁) =』=:.点评:本题主要考查有理数的混合运算,乘方运算,关键在于正确的去括号,认真的进行计算即可.6.1 +1 ::;7.一_ * :巧有亍考点:实数的运算;立方根;零指数幕;二次根式的性质与化简。

初一数学实数计算题附答案(2021年整理)

初一数学实数计算题附答案(2021年整理)

(完整)初一数学实数计算题附答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)初一数学实数计算题附答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)初一数学实数计算题附答案(word版可编辑修改)的全部内容。

实数计算题练习1=2.===5。

=6。

=7。

==9。

10。

=11。

=12。

=13。

=14。

()2013112+-+=15。

==17。

((-==20。

=2=23。

=24)425. ====212⎛⎫-= ⎪⎝⎭31. ()()2013312014-+-⨯-=1120142⎛⎫--= ⎪⎝⎭33。

3122=34。

116+==36. 21+==38。

+=39。

243÷⨯=13++==42。

3= 43. ()3211250x --= 44。

()24190x --=45. 41x -= 46。

()36112164x +-= 47. ()320.1x +=2= 49。

33264x -=50. ()22110x +=51。

2322x = 52. ()30.70.027x -= 53.32540x -=54。

398127x +=-55. ()29218x -=实数计算题答案:1。

1472。

3- 3。

94. 455. 0。

26. 0.87. 2 8。

23- 9. 1 10。

32-11. 2 12。

1124- 13。

214.。

-21. 133- 22。

6。

0.15- 24. —1 25。

4 26。

32527。

323 28。

2。

实数计算100道专项基础复习偏重无理数

实数计算100道专项基础复习偏重无理数

专项复习:实数的运算100题(侧重无理数)第一部分,基础知识复习根式化简(根号内不能有小数、不能有分数、不能有平方因子、不能有带分数):9 25 49.0 36163 75 98.0 72249 6436 312564- 327102互等公式:a a a a a11==,如:51 = 55= 551 快速练习:31= 51= 273=加法减法(根式不变,系数相加减) a m +a n =a n m )(+ a m -a n =a n m )(-快速计算:35+32 35-32537-53127+7152乘法除法(系数相乘除,根式相乘除。

一般是先乘除,后化简)。

如果a,b 为正数,且b 不为0,则: a m ×b n =b a n m ⨯⨯)( 及 ban m b n a m =,反之亦成立。

快速计算:123 35123⨯ 2095⨯ 8612⨯平方差公式与完全平方公式(平方差公式:22))((b a b a b a -=-+ ,完全平方公式:2)(b a + 222b ab a ++= 及 2222)(b ab a b a +-=-)(1)2)2(n m - (2)2)3m (n + (3)2)13(+(4)2)23(-(5)2(34)y -分母有理化(凑分母为平方差) 例:32343232)32(1321+=-+=++⨯=-练习:(1)321+(2)531-★ ★ ★ ★ ★ ★第二部分:实数的运算综合练习(一)(1)3823250+- (2)48512739+-(3) 101252403--(4)2)32)(347(-+ (5)20)21(821)73(4--⨯++(6)102006)21()23()1(-+--- (7)10)21()2006(312-+---+(8)02)36(2218)3(----+-- (9)326⨯(10)4327-⨯ (11)2)13(- (13)36(12)22)52()2511(- (14)75.0125.204112484--+-(15)1215.09002.0+ (16)250580⨯-⨯(17)3721⨯ (18))25)(51(-+ (19)2)313(-(20)892334⨯÷ (21)20032002)23()23(+⋅-(22)75.04216122118+-+ (23)3333222271912105+-⨯---(24)753131234+- (25)3122112--第二部分:实数的运算综合练习(二)(1)3181083315275--+(2)7581312325.0---+(3)⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-5.0431381448 (4)()1471627527223+-+(5)⎪⎪⎭⎫ ⎝⎛-+-67.123256133223(6)()326125.021322--⎪⎪⎭⎫ ⎝⎛-+(7)344273125242965++-+(8)⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛+121580325.12712(9)))((36163--⋅-;(10)63312⋅⋅(11))(102132531-⋅⋅(12)z y x 10010101⋅⋅-(13)20245-(14)14425081010⨯⨯..(15)521312321⨯÷(16))(ba b b a 1223÷⋅.213⨯(17)91448⨯⨯(18)1575⨯(19)105⨯(20)0.524⨯(21)222610-(22)122718÷⨯(23)253353+-+(24)2753273-+ (25)()223131-++第二部分:实数的运算综合练习(三)(1)22332332-+--(2)338251196--+---(3)()()3233110.25 2.891864--+-- (4)93712548+-(5)24126+- (6)()2623-⨯(7)3032÷⨯ (8)6151+(9))22(28+-—2(10)=-2)3.0((11)=-2)52((12)=∙y xy 82(13)=∙2712(14)3393aa a a -+(15))169()144(-⨯-(16)22531- (17)5102421⨯-(18)n m 218(19)21437⎪⎪⎭⎫ ⎝⎛-(20)225241⎪⎪⎭⎫ ⎝⎛--(21))459(43332-⨯(22)⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-126312817(23)2484554+-+(24)2332326--( 25 ) 507218+- ( 26 ) 332)3()2(-+-( 27 ) 3122112-+ ( 28 ) )223)(322(---( 29 )(27-48)×3 ( 30 ) 2363327⨯-+ ( 31 ) 5232232⨯÷ ( 32 ) 8、 ( 33 ) 0)31(33122-++ ( 34 ) 2)3322(+( 35 ) ()401022+- ( 36 )63145520∙-+。

(完整版)十实数计算题专题训练(含答案)

(完整版)十实数计算题专题训练(含答案)

一.计算题1.计算题:|﹣2|﹣(1+)0+.2.计算题:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2)3.4 . ||﹣.5.计算题:.6.计算题:(1);7 .8. (精确到).9.计算题:.10.(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2);11.| ﹣|+﹣12. ﹣12+×﹣213. .14. 求x的值:9x2=121.15. 已知,求x y的值.16. 比较大小:﹣2,﹣(要求写过程说明)17.求x的值:(x+10)2=1618. .19. 已知m<n,求+的值;20.已知a<0,求+的值.专题一计算题训练参考答案与试题解析一.解答题(共13小题)1.计算题:|﹣2|﹣(1+)0+.解答:解:原式=2﹣1+2,=3.2.计算题:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2)解答:解:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2),=﹣1+4×9+3,=38.3.4. ||﹣.原式=14﹣11+2=5;(2)原式==﹣1.点评:此题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、绝对值等考点的运算.5.计算题:.考点:有理数的混合运算。

分析:首先进行乘方运算、然后根据乘法分配原则进行乘法运算、同时进行除法运算,最后进行加减法运算即可.解答:解:原式=﹣4+8÷(﹣8)﹣(﹣1)=﹣4﹣1﹣(﹣)=﹣5+=﹣.点评:本题主要考查有理数的混合运算,乘方运算,关键在于正确的去括号,认真的进行计算即可.6.;7..考点:实数的运算;立方根;零指数幂;二次根式的性质与化简。

分析:(1)注意:|﹣|=﹣;(2)注意:(π﹣2)0=1.解答:解:(1)(==;(2)=1﹣+2=.点评:保证一个数的绝对值是非负数,任何不等于0的数的0次幂是1,注意区分是求二次方根还是三次方根.8.(精确到).考点:实数的运算。

人教版七年级数学下册同步精讲精练专题实数的运算计算题(共45小题)(原卷版+解析)

人教版七年级数学下册同步精讲精练专题实数的运算计算题(共45小题)(原卷版+解析)

七年级下册数学《第六章 实 数》专题 实数的运算计算题(共45小题)1.(2022秋•招远市期末)计算:(1)(√5)2+√(−3)2+√−83; (2)(﹣2)3×18−√273×(−√19).2.(2022•庐江县二模)计算:√0.04+√−83−√1−925.3.(2022春•上思县校级月考)计算:(1)−12+√16+|√2−1|+√−83;(2)2√3+|√3−2|−√643+√9.4.(2022春•渝中区校级月考)实数的计算:(1)√16+√(−3)2+√273;(2)√−33+|1−√33|﹣(−√3)2.5.(2022秋•原阳县月考)计算:(1)√−83+√4−(−1)2023;(2)(−√9)2−√643+|−5|−(−2)2.6.(2022春•牡丹江期中)计算:(1)−12−√0.64+√−273−√125; (2)√3+√(−5)2−√−643−|√3−5|.7.(2022秋•南关区校级期末)计算:√16−(−1)2022−√273+|1−√2|.8.(2022秋•成武县校级期末)计算:﹣12022−√643+|√3−2|.9.(2022春•昌平区校级月考)√1253+√(−3)2−√1−35273.10.(2022春•舒城县校级月考)计算:√−273+12√16+|−√2|+1.11.(2022春•舒城县校级月考)计算:﹣12+|﹣2|+√−83+√(−3)2.12.(2021秋•镇巴县期末)计算:(−1)10+|√2−2|+√49+√(−3)33.13.(2022春•阳新县期末)计算:|√3−2|+√−83×12+(−√3)2.14.(2022春•十堰期中)计算:﹣12022+√(−4)2+√83+10√925.15.(2021秋•峨边县期末)计算:|√5−3|+√(−2)2−√−83+√5.16.(2021秋•乳山市期末)计算:√(−3)2−2×√94+52×√−0.0273.17.(2022秋•横县期中)计算:(﹣1)2022+√9−(2﹣3)÷12.18.(2022秋•儋州校级月考)计算:(1)√643−√81+√1253+3;(2)|−3|−√16+√83+(−2)2.19.(2022秋•海曙区校级期中)计算:(1)﹣23+√−273−(﹣2)2+√1681; (2)(﹣3)2×(﹣2)+√643+√9.20.(2022秋•安岳县校级月考)计算:(1)(√3)2−√16+√−83; (2)(﹣2)3×√1214+(﹣1)2013−√273; (3)√(−4)2+√214+√3383−√32+42.21.(2022秋•隆昌市校级月考)计算:(1)|−3|−√16+√−83+(−2)2;(2)√−273+|2−√3|−(−√16)+2√3.22.(2021秋•泉州期末)计算:√(−3)2×√−183−(12)2+(−1)2022.23.(2022秋•新野县期中)计算:√−83+√9−√1916+(−1)2022+|1−√2|.24.(2021秋•新兴区校级期末)计算下列各题:(1)√1−19273+√(14−1)2; (2)√53−|−√53|+2√3+3√3.25.(2022秋•绥德县期中)计算:2(√3−1)−|√3−2|−√643.26.(2022秋•义乌市校级期中)计算:﹣22×(﹣112)2−√−643−√169×|﹣3|.27.(2022秋•西湖区校级期中)计算:(1)|7−√2|﹣|√2−π|−√(−7)2;(2)﹣22×√(−4)2+√(−8)33×(−12)−√273.28.(2022秋•沈丘县校级月考)计算:√0.01×√121+√−11253−√0.81.29.(2022春•西山区校级期中)计算:5−2×(√7−2)+√−83+|√3−2|.30.(2022春•东莞市期中)计算:√(−3)2+(﹣1)2020+√−83+|1−√2|31.(2022秋•安溪县月考)计算:√16+√−273−√3−|√3−2|+√(−5)2.32.(2022秋•仁寿县校级月考)计算:√−8273+√(−4)2×(−12)3−|1−√3|.33.(2022春•海淀区校级期中)计算:√81+√−273−2(√3−3)−|√3−2|.34.(2022春•梁平区期中)计算:√(−1)33+√−273+√(−2)2−|1−√3|.35.(2022春•东莞市校级期中)计算:﹣12020+√(−2)2−√643+|√3−2|.36.计算下列各题:(1)√1+√−273−√14+√0.1253+√1−6364(2)|7−√2|﹣|√2−π|−√(−7)237.计算:√0.0083×√1916−√172−82÷√−11253.38.计算:3√3−2(1+√3)+√(−2)2+|√3−2|39.计算:(1)√(−2)2×√214−23×√(−18)23(2)√9+|1−√2|−√125273×√(−3)2+|4√0.25−√2|40.计算:(﹣2)2×√14+|√−83|+√2×(﹣1)202241.计算:﹣22+√16+√83+1014×934.42.计算:|﹣5|−√273+(﹣2)2+4÷(−23).43.(2022秋•城关区校级期中)计算:(1)√12+(√3)2+14√48−9√13; (2)√(−3)2+(−1)2022+√83+|1−√2|.44.(2021春•濉溪县期末)计算:√49−√273+|1−√2|+√(1−43)2.45.(2022秋•岳麓区校级月考)计算−12022+(12)2+|√2−3|−√(−3)2.七年级下册数学《第六章 实 数》专题 实数的运算计算题(共45小题)1.(2022秋•招远市期末)计算:(1)(√5)2+√(−3)2+√−83; (2)(﹣2)3×18−√273×(−√19). 【分析】(1)原式利用平方根及立方根定义计算即可求出值;(2)原式利用乘方的意义,算术平方根及立方根定义计算即可求出值.【解答】解:(1)原式=5+3+(﹣2)=8﹣2=6;(2)原式=(﹣8)×18−3×(−13)=(﹣1)﹣(﹣1)=﹣1+1=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2.(2022•庐江县二模)计算:√0.04+√−83−√1−925. 【分析】先计算被开方数,再开方,最后加减.【解答】解:原式=0.2﹣2−√1625=0.2﹣2−45=0.2﹣2﹣0.8=﹣2.6.【点评】本题考查了实数的混合运算,掌握开方运算是解决本题的关键.3.(2022春•上思县校级月考)计算:(1)−12+√16+|√2−1|+√−83;(2)2√3+|√3−2|−√643+√9.【分析】(1)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案;(2)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案.【解答】解:(1)−12+√16+|√2−1|+√−83;=﹣1+4+√2−1﹣2=√2;(2)原式=2√3+2−√3−4+3=√3+1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.4.(2022春•渝中区校级月考)实数的计算:(1)√16+√(−3)2+√273;(2)√−33+|1−√33|﹣(−√3)2. 【分析】(1)先计算平方根和立方根,再计算加减;(2)先计算平方根、立方根和绝对值,再计算加减;【解答】解:(1)√16+√(−3)2+√273=4+3+3=10;(2)√−33+|1−√33|﹣(−√3)2 =−√33+√33−1﹣3=﹣4.【点评】此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.5.(2022秋•原阳县月考)计算:(1)√−83+√4−(−1)2023;(2)(−√9)2−√643+|−5|−(−2)2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)√−83+√4−(−1)2023=﹣2+2﹣(﹣1)=0+1=1;(2)(−√9)2−√643+|−5|−(−2)2=9﹣4+5﹣4=6.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.6.(2022春•牡丹江期中)计算: (1)−12−√0.64+√−273−√125;(2)√3+√(−5)2−√−643−|√3−5|.【分析】(1)先计算平方、平方根和立方根,再进行加减运算; (2)先计算平方根、立方根和绝对值,再进行加减运算. 【解答】解(1)−12−√0.64+√−273−√125=﹣1﹣0.8﹣3﹣0.2 =﹣5;(2)√3+√(−5)2−√−643−|√3−5| =√3+5+4+√3−5 =2√3+4.【点评】此题考查了运用平方根和立方根进行有关运算的能力,关键是能准确理解并运用以上知识.7.(2022秋•南关区校级期末)计算:√16−(−1)2022−√273+|1−√2|.【分析】直接利用有理数的乘方运算法则、绝对值的性质、平方根的性质分别化简,进而得出答案.【解答】解:原式=4﹣1﹣3+√2−1 =√2−1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.8.(2022秋•成武县校级期末)计算:﹣12022−√643+|√3−2|.【分析】这里,先算﹣12022=﹣1,√643=4,|√3−2|=2−√3,再进行综合运算.【解答】解:﹣12022−√643+|√3−2|=﹣1﹣4+2−√3 =﹣3−√3.【点评】本题考查了实数的综合运算,计算过程中要细心,注意正负符号,综合性较强.9.(2022春•昌平区校级月考)√1253+√(−3)2−√1−35273.【分析】先化简各式,然后再进行计算即可解答.【解答】解:√1253+√(−3)2−√1−35273=5+3−√−8273=5+3﹣(−23) =5+3+23 =823.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.10.(2022春•舒城县校级月考)计算:√−273+12√16+|−√2|+1.【分析】首先计算开方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:√−273+12√16+|−√2|+1=﹣3+12×4+√2+1 =﹣3+2+√2+1 =√2.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.11.(2022春•舒城县校级月考)计算:﹣12+|﹣2|+√−83+√(−3)2.【分析】先化简各式,然后再进行计算即可解答. 【解答】解:﹣12+|﹣2|+√−83+√(−3)2=﹣1+2+(﹣2)+3 =﹣1+2﹣2+3 =2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.12.(2021秋•镇巴县期末)计算:(−1)10+|√2−2|+√49+√(−3)33. 【分析】按照实数的运算顺序进行运算即可. 【解答】解:原式=1+2−√2+7−3 =7−√2.【点评】本题考查了实数的运算,掌握对值,立方根以及平方根的运算法则是关键.13.(2022春•阳新县期末)计算:|√3−2|+√−83×12+(−√3)2.【分析】先算开方和乘方,再化简绝对值算乘法,最后加减. 【解答】解:原式=2−√3+(﹣2)×12+3 =2−√3−1+3 =4−√3.【点评】本题考查了实数的运算,掌握乘方、开方及绝对值的意义是解决本题的关键.14.(2022春•十堰期中)计算:﹣12022+√(−4)2+√83+10√925.【分析】先算乘方、开方,再算乘法,最后算加减. 【解答】解:原式=﹣1+4+2+10×35 =﹣1+4+2+6 =11.【点评】本题考查了实数的混合运算,掌握实数的运算法则、实数的运算顺序是解决本题的关键.15.(2021秋•峨边县期末)计算:|√5−3|+√(−2)2−√−83+√5. 【分析】直接利用绝对值的性质以及立方根的性质分别化简,进而得出答案. 【解答】解:原式=3−√5+2+2+√5 =7.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.16.(2021秋•乳山市期末)计算:√(−3)2−2×√94+52×√−0.0273.【分析】应用实数的运算法则:先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行,进行计算即可得出答案. 【解答】解:原式=3﹣2×32+52×(﹣0.3) =3﹣3−52×310=0−34=−34.【点评】本题主要考查了实数的运算,熟练掌握实数的运算进行求解是解决本题的关键.17.(2022秋•横县期中)计算:(﹣1)2022+√9−(2﹣3)÷12.【分析】先计算乘方与开方和小括号里的,再计算除法,最后计算加减即可. 【解答】解:原式=1+3﹣(﹣1)×2 =4+2 =6.【点评】此题考查的实数的运算,掌握其运算法则是解决此题的关键.18.(2022秋•儋州校级月考)计算: (1)√643−√81+√1253+3; (2)|−3|−√16+√83+(−2)2.【分析】(1)直接利用立方根的性质、平方根的性质分别化简,进而计算得出答案; (2)直接利用立方根的性质、平方根的性质、绝对值的性质分别化简,进而计算得出答案. 【解答】解:(1)原式=4﹣9+5+3 =3;(2)原式=3﹣4+2+4 =5.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.19.(2022秋•海曙区校级期中)计算: (1)﹣23+√−273−(﹣2)2+√1681;(2)(﹣3)2×(﹣2)+√643+√9.【分析】(1)先计算乘方、立方根和平方根,再计算加减; (2)先计算乘方、立方根和平方根,再计算乘法,最后计算加减. 【解答】解:(1)﹣23+√−273−(﹣2)2+√1681=﹣8﹣3﹣4+49 =﹣1459;(2)(﹣3)2×(﹣2)+√643+√9=﹣9×2+4+3 =﹣18+4+3 =﹣11.【点评】此题考查了实数的混合运算能力,关键是能准确确定运算顺序和方法.20.(2022秋•安岳县校级月考)计算:(1)(√3)2−√16+√−83;(2)(﹣2)3×√1214+(﹣1)2013−√273;(3)√(−4)2+√214+√3383−√32+42.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答;(3)先化简各式,然后再进行计算即可解答.【解答】解:(1)(√3)2−√16+√−83=3﹣4+(﹣2)=﹣3;(2)(﹣2)3×√1214+(﹣1)2013−√273=﹣8×112+(﹣1)﹣3=﹣44﹣1﹣3=﹣48;(3)√(−4)2+√214+√3383−√32+42=4+32+32−5=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.21.(2022秋•隆昌市校级月考)计算:(1)|−3|−√16+√−83+(−2)2;(2)√−273+|2−√3|−(−√16)+2√3.【分析】(1)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.(2)首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)|−3|−√16+√−83+(−2)2=3﹣4+(﹣2)+4=1.(2)√−273+|2−√3|−(−√16)+2√3=﹣3+(2−√3)﹣(﹣4)+2√3=﹣3+2−√3+4+2√3 =3+√3.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.22.(2021秋•泉州期末)计算:√(−3)2×√−183−(12)2+(−1)2022.【分析】先算乘方和开方,再算乘法,最后算加减. 【解答】解:原式=3×(−12)−14+1=−32−14+1=−12−14=−34.【点评】本题主要考查了实数的运算,掌握平方根的性质、乘方运算、开方运算是解决本题的关键.23.(2022秋•新野县期中)计算:√−83+√9−√1916+(−1)2022+|1−√2|. 【分析】利用立方根的定义,算术平方根的定义,乘方运算,绝对值的定义计算即可. 【解答】解:√−83+√9−√1916+(−1)2022+|1−√2|. =﹣2+3−54+1+√2−1 =−14+√2.【点评】本题考查了实数的运算,解题的关键是掌握立方根的定义,算术平方根的定义,乘方运算,绝对值的定义.24.(2021秋•新兴区校级期末)计算下列各题: (1)√1−19273+√(14−1)2; (2)√53−|−√53|+2√3+3√3.【分析】(1)先化简各式,然后再进行计算即可解答; (2)先化简各式,然后再进行计算即可解答. 【解答】解:(1)√1−19273+√(14−1)2=√8273+√(−34)2=23+34 =1712; (2)√53−|−√53|+2√3+3√3 =√53−√53+2√3+3√3 =5√3.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.25.(2022秋•绥德县期中)计算:2(√3−1)−|√3−2|−√643. 【分析】先去括号,化简绝对值,开立方,再计算加减即可. 【解答】解:原式=2√3−2﹣(2−√3)﹣4 =2√3−2﹣2+√3−4 =3√3−8.【点评】本题考查实数的混合运算,平方根加法,熟练掌握实数的混合运算法则是解题的关键.26.(2022秋•义乌市校级期中)计算:﹣22×(﹣112)2−√−643−√169×|﹣3|. 【分析】先算乘方,再算乘法,后算加减,即可解答. 【解答】解:﹣22×(﹣112)2−√−643−√169×|﹣3| =﹣4×94−(﹣4)−43×3 =﹣9+4﹣4 =﹣9.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.27.(2022秋•西湖区校级期中)计算: (1)|7−√2|﹣|√2−π|−√(−7)2;(2)﹣22×√(−4)2+√(−8)33×(−12)−√273.【分析】(1)先化简绝对值和平方根,再计算加减; (2)先算乘方和根式,再计算乘法,最后加减. 【解答】解:(1)|7−√2|﹣|√2−π|−√(−7)2 =7−√2−(π−√2)﹣7 =7−√2−π+√2−7 =﹣π;(2)﹣22×√(−4)2+√(−8)33×(−12)−√273=﹣4×4+(﹣8)×(−12)﹣3 =﹣16+4﹣3 =﹣15.【点评】本题考查了实数的混合运算,实数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行实数的混合运算时,注意各个运算律的运用,使运算过程得到简化.28.(2022秋•沈丘县校级月考)计算:√0.01×√121+√−11253−√0.81.【分析】直接利用平方根的性质、立方根的性质分别化简,进而得出答案. 【解答】解:原式=0.1×11−15−0.9 =1.1﹣0.2﹣0.9 =0.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.29.(2022春•西山区校级期中)计算:5−2×(√7−2)+√−83+|√3−2|. 【分析】直接利用立方根的性质、绝对值的性质分别化简,进而计算得出答案. 【解答】解:原式=5﹣2√7+4﹣2+2−√3 =9﹣2√7−√3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2022春•东莞市期中)计算:√(−3)2+(﹣1)2020+√−83+|1−√2|【分析】先化简各式,然后再进行计算即可解答. 【解答】解:√(−3)2+(﹣1)2020+√−83+|1−√2|=3+1+(﹣2)+√2−1 =3+1﹣2+√2−1 =1+√2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.31.(2022秋•安溪县月考)计算:√16+√−273−√3−|√3−2|+√(−5)2.【分析】直接利用立方根的性质、绝对值的性质算术平方根的性质分别化简,进而合并得出答案.【解答】解:原式=4﹣3−√3−2+√3+5 =4.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.32.(2022秋•仁寿县校级月考)计算:√−8273+√(−4)2×(−12)3−|1−√3|. 【分析】先化简各式,然后再进行计算即可解答. 【解答】解:√−8273+√(−4)2×(−12)3−|1−√3| =−23+4×(−18)﹣(√3−1)=−23+(−12)−√3+1 =−76−√3+1 =−16−√3.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.33.(2022春•海淀区校级期中)计算:√81+√−273−2(√3−3)−|√3−2|.【分析】本题涉及去掉绝对值、根式化简考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 【解答】解:原式=9﹣3﹣2√3+6﹣(2−√3) =6﹣2√3+6﹣2+√3 =10−√3.【点评】本题主要考查了实数的综合运算能力,解决此类题目的关键是准确熟练地化简各式是解题的关键.34.(2022春•梁平区期中)计算:√(−1)33+√−273+√(−2)2−|1−√3|. 【分析】利用算术平方根,立方根和绝对值的意义化简运算即可. 【解答】解:原式=﹣1+(﹣3)+2﹣(√3−1) =﹣1﹣3+2−√3+1 =﹣1−√3.【点评】本题主要考查了实数的运算,算术平方根,立方根和绝对值的意义,正确利用上述法则与性质化简运算是解题的关键.35.(2022春•东莞市校级期中)计算:﹣12020+√(−2)2−√643+|√3−2|.【分析】直接利用有理数的乘方运算法则、平方根的性质、立方根的性质、绝对值的性质分别化简,进而计算得出答案. 【解答】解:原式=﹣1+2﹣4+2−√3 =﹣1−√3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.36.计算下列各题:(1)√1+√−273−√14+√0.1253+√1−6364 (2)|7−√2|﹣|√2−π|−√(−7)2【分析】(1)原式利用平方根、立方根定义计算即可求出值; (2)原式利用绝对值的代数意义计算即可求出值. 【解答】解:(1)原式=1﹣3−12+0.5+18=−178;(2)原式=7−√2−π+√2−7=﹣π.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.37.计算:√0.0083×√1916−√172−82÷√−11253. 【分析】首先计算开方、乘法和除法,然后计算减法,求出算式的值是多少即可.【解答】解:√0.0083×√1916−√172−82÷√−11253=0.2×54−15÷(−15) =14+75 =7514【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.38.计算:3√3−2(1+√3)+√(−2)2+|√3−2|【分析】首先利用去括号法则以及绝对值的性质和算术平方根的定义分别化简得出答案.【解答】解:原式=3√3−2﹣2√3+2+2−√3=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.39.计算:(1)√(−2)2×√214−23×√(−18)23(2)√9+|1−√2|−√125273×√(−3)2+|4√0.25−√2| 【分析】(1)首先计算开方和乘法,然后计算减法,求出算式的值是多少即可.(2)首先计算开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)√16+√32+√−83=4+3﹣2=5(2)√(−2)2×√214−23×√(−18)23 =2×32−8×14=3﹣2=1(3)√9+|1−√2|−√125273×√(−3)2+|4√0.25−√2| =3+√2−1−53×3+2−√2=﹣1【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.40.计算:(﹣2)2×√14+|√−83|+√2×(﹣1)2022 【分析】原式利用平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可得到结果;【解答】解:原式=2+2+√2=4+√2;【点评】此题考查了实数的运算,平方根、立方根,熟练掌握各自的性质是解本题的关键.41.计算:﹣22+√16+√83+1014×934. 【分析】原式第一项利用乘方的意义计算,第二项利用算术平方根定义计算,第三项利用立方根定义计算,最后一项利用乘法法则计算即可得到结果.【解答】解:原式=﹣4+4+2+414×394=2+159916=1011516. 【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.42.计算:|﹣5|−√273+(﹣2)2+4÷(−23). 【分析】根据绝对值的性质、立方根的性质以及实数的运算法则化简计算即可;【解答】解:原式=5﹣3+4﹣6=0【点评】本题考查实数的混合运算,解题的关键是:掌握先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.43.(2022秋•城关区校级期中)计算:(1)√12+(√3)2+14√48−9√13;(2)√(−3)2+(−1)2022+√83+|1−√2|.【分析】(1)直接利用平方根的性质分别化简,进而计算得出答案;(2)直接利用平方根的性质、有理数的乘方运算法则、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=2√3+3+14×4√3−9×√33 =2√3+3+√3−3√3=3;(2)原式=3+1+2+√2−1=5+√2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.44.(2021春•濉溪县期末)计算:√49−√273+|1−√2|+√(1−43)2.【分析】原式第一项利用算术平方根定义计算,第二项利用立方根定义计算,第三项利用绝对值的代数意义化简,最后一项利用平方根性质化简即可得到结果.【解答】解:原式=7﹣3+√2−1+13=103+√2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.45.(2022秋•岳麓区校级月考)计算−12022+(12)2+|√2−3|−√(−3)2.【分析】根据乘方,绝对值的意义,平方根的性质将原式进行化简,然后根据实数运算法则进行计算即可.【解答】解:原式=−1+14+3−√2−3,=−34−√2.【点评】本题考查了乘方,绝对值的意义,平方根的性质,掌握相关运算法则是关键.。

(完整版)十实数计算题专题训练(含答案)

(完整版)十实数计算题专题训练(含答案)

一.计算题1.计算题:|﹣2|﹣(1+)0+.2.计算题:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2)3.4 . ||﹣.5.计算题:.6.计算题:(1);7 .8. (精确到0.01).9.计算题:.10.(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2);11.| ﹣|+﹣12. ﹣12+×﹣213. .14. 求x的值:9x2=121.15. 已知,求x y的值.16. 比较大小:﹣2,﹣(要求写过程说明)17.求x的值:(x+10)2=1618. .19. 已知m<n,求+的值;20.已知a<0,求+的值.专题一计算题训练参考答案与试题解析一.解答题(共13小题)1.计算题:|﹣2|﹣(1+)0+.解答:解:原式=2﹣1+2,=3.2.计算题:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2)解答:解:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2),=﹣1+4×9+3,=38.3.4. ||﹣.原式=14﹣11+2=5;(2)原式==﹣1.点评:此题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、绝对值等考点的运算.5.计算题:.考点:有理数的混合运算。

分析:首先进行乘方运算、然后根据乘法分配原则进行乘法运算、同时进行除法运算,最后进行加减法运算即可.解答:解:原式=﹣4+8÷(﹣8)﹣(﹣1)=﹣4﹣1﹣(﹣)=﹣5+=﹣.点评:本题主要考查有理数的混合运算,乘方运算,关键在于正确的去括号,认真的进行计算即可.6.;7..考点:实数的运算;立方根;零指数幂;二次根式的性质与化简。

分析:(1)注意:|﹣|=﹣;(2)注意:(π﹣2)0=1.解答:解:(1)(==;(2)=1﹣0.5+2=2.5.点评:保证一个数的绝对值是非负数,任何不等于0的数的0次幂是1,注意区分是求二次方根还是三次方根.8.(精确到0.01).考点:实数的运算。

实数的混合运算(计算题专项训练)(浙教版)(解析版)

实数的混合运算(计算题专项训练)(浙教版)(解析版)

专题05 实数的混合运算1.(2023春·北京朝阳·七年级校考阶段练习)计算:(1)√83+√0+√14(2)2√2+|√2−√3|(3)√0.04−√(−2)2+|√3−2|+√3【思路点拨】(1)利用立方根和算术平方根的定义化简各式,然后再进行计算即可解答;(2)利用绝对值的意义化简,然后再进行计算即可解答;(3)算术平方根的定义、绝对值的意义化简各式,然后再进行计算即可解答.【解题过程】(1)解:√83+√0+√14=2+0+12=52; (2)解:2√2+|√2−√3|=2√2+√3−√2=√2+√3;(3)解:√0.04−√(−2)2+|√3−2|+√3=0.2−2+2−√3+√3=0.2.2.(2023春·天津东丽·七年级统考期中)计算:(1)(−12)2+√−83+|1−√9|; (2)4√3−2(√2−√3).【思路点拨】(1)首先根据有理数的乘方法则、立方根的定义和绝对值的意义,计算和化简各数,然后再根据有理数的加减法,计算即可;(2)首先去括号,然后再计算实数的加减运算即可.【解题过程】(1)解:(−12)2+√−83+|1−√9|=14+(−2)+(3−1) =14−2+2 =14;(2)解:4√3−2(√2−√3)=4√3−2√2+2√3=6√3−2√2.3.(2023春·天津南开·七年级统考期中)计算:(1)3√3−|√3−√5|;(2)√−83−√(−12)2+√0.04. 【思路点拨】(1)直接利用绝对值的性质以及二次根式的加减运算法则计算得出答案;(2)直接利用二次根式的性质以及立方根的性质分别化简,进而得出答案.【解题过程】(1)3√3−|√3−√5|=3√3−(√5−√3)=3√3−√5+√3=4√3−√5;(2)√−83−√(−12)2+√0.04 =−2−12+0.2 =−2.3.4.(2022秋·浙江·七年级专题练习)计算:(1)√49+√9+16−√144(2)√2163−√−3−383×√400【思路点拨】(1)根据算术平方根的意义计算即可.(2)根据算术平方根、立方根的定义计算即可.【解题过程】(1)√49+√9+16−√144=7+5−12=0.(2)√2163−√−3−383×√400=6−(−32)×20 =6−(−30)=36.5.(2022秋·浙江·七年级专题练习)计算:(1)√0.25−√−273+√(−14)2; (2)|√3−√2|+|√3−2|−|√2−1|.【思路点拨】(1)根据算术平方根、立方根的性质化简,再计算即可;(2)根据绝对值的性质化简,再合并即可.【解题过程】(1)解:原式=0.5+3+14 =334;(2)解:原式=(√3−√2)−(√3−2)−(√2−1)=√3−√2−√3+2−√2+1=3−2√2.6.(2023春·江苏南通·七年级如皋市实验初中校考阶段练习)计算:(1)√−8273×√14−√(−2)2;(2)√3−√25+|√3−3|+√1−63643.【思路点拨】(1)先利用立方根,算术平方根的性质化简,再进行计算;(2)先利用立方根,算术平方根、绝对值的性质化简,再进行计算.【解题过程】(1)解:原式=−23×12−√4=−13−2 =−213;(2)解:原式=√3−5+3−√3+√1643=−2+14=−74. 7.(2022春·黑龙江牡丹江·七年级校考期中)计算:(1)√−83−√3+(√5)2+|1−√3|(2)√36+√214+√−273【思路点拨】(1)根据立方根定义、平方根的性质、绝对值的意义等计算即可;(2)根据立方根、算术平方根的定义计算即可.【解题过程】(1)解:√−83−√3+(√5)2+|1−√3|=−2−√3+5+√3−1=2;(2)解:√36+√214+√−273=6+32−3=92. 8.(2022·全国·七年级专题练习)计算(1)−12+√643−(−2)×√9;(2)√81+√−273+√(−23)2(3)√(−5)2−|2−√2|−√−273+(−√3)2【思路点拨】(1)先计算有理数的乘方,立方根,算术平方根,再进行加减计算即可;(2)先计算算术平方根、立方根、根据√a 2={a(a ≥0)−a(a <0)计算√(−23)2,再进行加减计算即可; (3)先根据√a 2={a(a ≥0)−a(a <0)计算√(−5)2、去绝对值、计算立方根、根据(√a)2=a(a ≥0)计算(−√3)2,再进行加减计算即可.【解题过程】(1)解:−12+√643−(−2)×√9=−1+4+2×3=3+6=9;(2)解:√81+√−273+√(−23)2=9−3+23=203;(3)解:√(−5)2−|2−√2|−√−273+(−√3)2=5−2+√2+3+3=9+√2.9.(2023春·全国·七年级专题练习)计算:(1)(−1)2021+|−√3|+√83−√16.(2)−12−√273+|1−√2|.【思路点拨】(1)先计算乘方、绝对值、平方根和立方根,再进行加减运算即可;(2)先计算乘方、绝对值和立方根,再进行加减运算即可.【解题过程】(1)解:(−1)2021+|−√3|+√83−√16=−1+√3+2−4=−3+√3.(2)解:−12−√273+|1−√2|=−1−3+√2−1=−5+√2.10.(2023春·河北唐山·七年级统考期中)计算:(1)(√2)2−√273+|√3−3|;(2)√9×√4+√102−(−4)2;【思路点拨】(1)先计算平方、立方根,去绝对值符号,再进行加减运算;(2)先计算开平方,有理数的乘方,再进行乘法运算,最后进行加减运算.【解题过程】(1)解:原式=2−3+(−√3+3)=2−3−√3+3=2−√3;(2)解:原式=3×2+10−16=6+10−16=0.11.(2022秋·浙江·七年级专题练习)计算:(1)−12+√−273−2×√9;(2)2(√3−1)−|√3−2|+√643.【思路点拨】(1)先计算乘方运算,立方根运算,算术平方根的运算,再计算乘法,再合并即可;(2)先去括号,化简绝对值,计算立方根,再合并即可.【解题过程】(1)解:−12+√−273−2×√9=−1−3−2×3=−4−6=−10(2)2(√3−1)−|√3−2|+√643=2√3−2−(2−√3)+4=2√3−2−2+√3+4=3√312.(2023春·四川泸州·七年级统考期中)计算:(1)√(−2)2+√−273+2√14. (2)(−1)2017×(−3)−|√3−3|+√16.【思路点拨】(1)直接利用算术平方根的定义,立方根的定义分别化简得出答案;(2)首先计算开方,乘法,然后从左向右依次计算,求出算式的值即可.【解题过程】(1)解:原式=√4+(−3)+2×12 =2−3+1=0.(2)解:原式=(−1)×(−3)−3+√3+4=3−3+√3+4=4+√3.13.(2023春·重庆江津·七年级校联考期中)计算:(1)−42×(−1)2023+√83−√25;(2)2√14−|2−√3|+√(−9)2+√−273. 【思路点拨】(1)根据幂的运算法则,根式性质,立方根的定义直接计算即可得到答案;(2)根据根式的性质,立方根的定义直接计算即可得到答案;【解题过程】(1)解:原式=−16×(−1)+2−5=16+2−5=13;(2)解:原式=2×12−2+√3+9+(−3)=1−2+√3+9−3=5+√3.14.(2023春·山东滨州·七年级统考期中)计算:(1)(−1)2023+√−273+|−√3|+√16;(2)√(−3)2−|2−√6|+2√6;【思路点拨】(1)利用乘方、立方根、绝对值、算术平方根分别化简后,再计算加减法即可;(2)先利用算术平方根、绝对值化简后,再进行实数的混合运算即可.【解题过程】(1)(−1)2023+√−273+|−√3|+√16=−1−3+√3+4=√3(2)√(−3)2−|2−√6|+2√6=3+(2−√6)+2√6=3+2−√6+2√6=5+√6.15.(2023春·四川德阳·七年级四川省德阳市第二中学校校考期中)计算:(1)√(−3)2×(−13)−√273÷√14(2)√−83−√2+(√3)2+|1−√2|−(−1)2023【思路点拨】(1)先分别求解算术平方根、立方根,然后进行乘除运算,最后进行减法运算即可;(2)先分别求解立方根,乘方,绝对值,然后进行加减运算即可.【解题过程】(1)解:√(−3)2×(−13)−√273÷√14=3×(−13)−3÷12=−1−6=−7;(2)解:√−83−√2+(√3)2+|1−√2|−(−1)2023=−2−√2+3+√2−1−(−1)=−2+3−1+1−√2+√2=1.16.(2023春·广东汕头·七年级校考期中)计算(1)√9−√(−5)33÷√(34)2(2)(−1)2021−√9+√−83+|√3−2|【思路点拨】(1)先分别计算算术平方根、立方根,再进行实数的加减运算即可;(2)先分别计算乘方、算术平方根、立方根和化简绝对值,再进行实数的加减运算即可;【解题过程】(1)解:√9−√(−5)33÷√(34)2=3−(−5)÷34=3+5×43=293;(2)(−1)2021−√9+√−83+|√3−2|=−1−3+(−2)+(2−√3)=−4−2+2−√3=−4−√3.17.(2022春·浙江台州·七年级台州市书生中学校考阶段练习)计算:(1)9×(﹣23)+√4+|﹣3| (2)√0.04+√−83+√14+|√3−2|+√3【思路点拨】(1)分别利用实数的乘法法则、开方的定义及绝对值的意义计算,再进行加法运算即可;(2)利用平方根及立方根的定义及绝对值的意义进行计算,再合并,即可得出结论.【解题过程】解:(1)9×(−23)+√4+|−3| =−6+2+3=−1;(2)√0.04+√−83+√14+|√3−2|+√3=0.2−2+12+2−√3+√3=0.7.18.(2022春·广东广州·七年级广州大学附属中学校考期中)计算:(1)√3+|√3−2|−√−83+√(−2)2.(2)√81+√(−3)2×√169−√1214+√−273.【思路点拨】(1)分别计算化简绝对值,开立方根和开算术平方根,再按照实数加减混合运算即可.(2)分别计算开立方根、开算术平方根和实数乘除,再按照有理数加减乘除混合运算即可.【解题过程】(1)解:√3+|√3−2|−√−83+√(−2)2=√3+2−√3+2+2=6(2)解:√81+√(−3)2×√169−√1214+√−273=9+3×43−72−3 =9+4−72−3 =132.19.(2023春·七年级课时练习)计算:(1)−√−83+√1253+√(−2)2;(2)|7−√2|−|√2−π|−√(−7)2;(3)√1+√−273−√14+√0.1253+√1−6364;(4)−42+√16−√(−3)33−|√2−2|.【思路点拨】(1)根据立方根的定义和算术平方根的定义计算即可;(2)根据绝对值的意义、算术平方根的定义计算即可;(3)根据立方根的定义和算术平方根的定义计算即可;(4)根据有理数的乘方、立方根、算术平方根的定义、绝对值的意义进行计算即可.【解题过程】(1)解:原式=−(−2)+5+2=9;(2)解:原式=7−√2+√2−π−7=−π;(3)解:原式=1+(−3)−12+12+√164 =−2+18=−158;(4)解:原式=−16+4−(−3)+√2−2=−16+4+3+√2−2=−11+√2.20.(2023春·广西钦州·七年级校考阶段练习)计算:(1)|1−√2|+|√2−√3|+|√3−2|+|2−√5|;(2)(−2)3×√(−4)2+√(−4)33×(−12)2−√273;(3)|√−183|−(√0.1253)3+√6.25−|√1273|−1 【思路点拨】(1)首先化简绝对值,再进行实数的加减运算,即可求解;(2)首先进行有理数的乘方运算,再分别求一个数的平方根及立方根,最后进行有理数的混合运算,即可求解;(3)首先分别求一个数的平方根及立方根,再进行有理数的混合运算,即可求解.【解题过程】(1)解:|1−√2|+|√2−√3|+|√3−2|+|2−√5|=√2−1+√3−√2+2−√3+√5−2=√5−1(2)解:(−2)3×√(−4)2+√(−4)33×(−12)2−√273=−8×√16+√−643×14−3 =−8×4+(−4)×14−3=−36(3)解:|√−183|−(√0.1253)3+√6.25−|√1273|−1 =|−12|−(0.5)3+2.5−13−1 =12−18+52−13−1 =3724。

中考复习 实数的计算(含答案)

中考复习   实数的计算(含答案)

实数的计算一.解答题(共30小题)1.计算:+(2﹣π)0﹣|1﹣|2.|﹣1|+(π﹣3.14)0﹣(﹣)﹣1﹣.3.计算:|﹣2|+(﹣1)2017×(π﹣3)0﹣+()﹣2.4.计算:+()﹣3+20160.5.计算:﹣(﹣2016)0+|﹣3|﹣4cos45°.6.计算:cos60°﹣2﹣1+﹣(π﹣3)0.7.化简求值:(),其中a=2+.8.计算:(﹣1)2016+2sin60°﹣|﹣|+π0.9.计算:|﹣3|﹣+()0.10.计算:﹣|﹣5|+()﹣1.11.计算:(π﹣3.14)0﹣|sin60°﹣4|+()﹣1.12.计算:.13.计算:﹣|﹣1|+•cos30°﹣(﹣)﹣2+(π﹣3.14)0.14.计算:(﹣1)2016﹣+(cos60°)﹣1+(﹣)0+ 83×(﹣0.125)3.15.(﹣1)2016+2•cos60°﹣(﹣)﹣2+()0.16.计算:()﹣2﹣(2016﹣π)0﹣2sin45°+|﹣1|17.计算:()﹣1﹣6cos30°﹣()0+.18.计算:.19.计算:.20.计算:()0+(﹣1)2016﹣|﹣|+2sin60°.21.计算:20160+2|1﹣sin30°|﹣()﹣1+.22.计算:(π﹣)0+|﹣1|+()﹣1﹣2sin45°.23.计算:()﹣1﹣+2tan60°﹣(2﹣)0.24.计算:﹣14+sin60°+()﹣2﹣()0.25.计算:.26.计算:20160+﹣sin45°﹣3﹣1.27.计算:||+()0+2sin45°﹣2cos30°+()﹣1.28.计算:+(3﹣π)0﹣2sin60°+(﹣1)2016+||.29.计算:.30.计算:(﹣)﹣1+3tan30°﹣+(﹣1)2016.实数的计算答案参考答案与试题解析一.解答题(共30小题)1.(2017•新城区校级模拟)计算:+(2﹣π)0﹣|1﹣|【分析】本题涉及零指数幂、绝对值、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:+(2﹣π)0﹣|1﹣|=+1+1﹣3=+2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、二次根式、绝对值等考点的运算.2.(2017•罗平县一模)|﹣1|+(π﹣3.14)0﹣(﹣)﹣1﹣.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及算术平方根定义计算即可得到结果.【解答】解:原式=1+1+2﹣4=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.3.(2017•曲靖一模)计算:|﹣2|+(﹣1)2017×(π﹣3)0﹣+()﹣2.【分析】先计算|﹣2|、(﹣1)2017、(π﹣3)0、()﹣2的值,再计算最后的结果.【解答】解:|﹣2|+(﹣1)2017×(π﹣3)0﹣+()﹣2=2+(﹣1)×1﹣2+4=2﹣1﹣2+4=5﹣2.【点评】本题考查了0指数幂、负整数指数幂及实数的运算.实数的运算顺序是先乘方,再乘除最后加减.4.(2017秋•海宁市校级月考)计算:+()﹣3+20160.【分析】原式利用零指数幂、负整数指数幂法则,以及算术平方根定义计算即可得到结果.【解答】解:原式=3+8+1﹣=9+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.5.(2016•达州)计算:﹣(﹣2016)0+|﹣3|﹣4cos45°.【分析】原式利用二次根式性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=2﹣1+3﹣4×=2.【点评】此题考查了平方根,绝对值,零指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.6.(2016•安顺)计算:cos60°﹣2﹣1+﹣(π﹣3)0.【分析】原式第一项利用特殊角的三角函数值计算,第二项利用负整数指数幂法则计算,第三项利用二次根式性质化简,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=﹣+2﹣1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.7.(2016•宁夏)化简求值:(),其中a=2+.【分析】原式第一项括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分后两项化简得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=[+]•+=•+==,当a=2+时,原式=+1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.8.(2016•黄石)计算:(﹣1)2016+2sin60°﹣|﹣|+π0.【分析】根据实数的运算顺序,首先计算乘方和乘法,然后从左向右依次计算,求出算式(﹣1)2016+2sin60°﹣|﹣|+π0的值是多少即可.【解答】解:(﹣1)2016+2sin60°﹣|﹣|+π0=1+2×﹣+1=1+﹣+1=2【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.9.(2016•莆田)计算:|﹣3|﹣+()0.【分析】根据绝对值、算术平方根和零指数幂的意义计算.【解答】解:原式=3﹣﹣4+1=﹣.【点评】本题考查了绝对值的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.注意零指数幂的意义.10.(2016•天门)计算:﹣|﹣5|+()﹣1.【分析】原式利用算术平方根定义,零指数幂、负整数指数幂法则,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=9﹣1﹣5+2=5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.11.(2016•绵阳)计算:(π﹣3.14)0﹣|sin60°﹣4|+()﹣1.【分析】本题涉及零指数幂、二次根式化简、绝对值、特殊角的三角函数值四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解::(π﹣3.14)0﹣|sin60°﹣4|+()﹣1=1﹣|2×﹣4|+2=1﹣|﹣1|+2=2.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、二次根式化简、绝对值等考点的运算.12.(2016•毕节市)计算:.【分析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质化简,进而求出答案.【解答】解:原式=1+﹣1﹣﹣2×+1=﹣﹣+1=1﹣.【点评】此题主要考查了实数运算,正确记忆特殊角的三角函数值是解题关键.13.(2016•随州)计算:﹣|﹣1|+•cos30°﹣(﹣)﹣2+(π﹣3.14)0.【分析】本题涉及绝对值、二次根式化简、特殊角的三角函数值、负指数幂、零指数幂5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣1+2×﹣4+1=﹣1+3﹣4+1=﹣1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.14.(2016•铜仁市)计算:(﹣1)2016﹣+(cos60°)﹣1+(﹣)0+83×(﹣0.125)3.【分析】根据有理数的乘方法则、零次幂的性质、特殊角的三角函数值计算即可.【解答】解:原式=1﹣3+2+1﹣1=0.【点评】本题考查的是实数的运算,掌握有理数的乘方法则、零次幂的性质、特殊角的三角函数值是解题的关键.15.(2016•朝阳)(﹣1)2016+2•cos60°﹣(﹣)﹣2+()0.【分析】根据零指数幂和负整数指数幂的运算法则、特殊角的锐角三角函数值计算即可.【解答】解:运算=1+2×﹣4+1=1+1﹣4+1=﹣1.【点评】本题考查的是实数的运算,掌握零指数幂和负整数指数幂的运算法则、熟记特殊角的锐角三角函数值是解题的关键.16.(2016•通辽)计算:()﹣2﹣(2016﹣π)0﹣2sin45°+|﹣1|【分析】根据零指数幂的性质、负整数指数幂的性质和特殊角的三角函数值计算即可.【解答】解:原式=4﹣1﹣2×+﹣1=4﹣1﹣+﹣1=2.【点评】本题考查的是实数的运算,掌握零指数幂的性质、负整数指数幂的性质和特殊角的三角函数值是解题的关键.17.(2016•德阳)计算:()﹣1﹣6cos30°﹣()0+.【分析】根据锐角三角函数,负整数和零指数幂的法则,二次根式的性质即可求出答案.【解答】解:=2﹣6×﹣1+3=2﹣3﹣1+3=1,【点评】本题考查实数运算,涉及锐角三角函数,二次根式的性质,属于基础题型.18.(2016•眉山)计算:.【分析】分别利用零指数幂的性质、特殊角的三角函数值和负整数指数幂的性质分别化简求出答案.【解答】解:原式=1﹣3×+1﹣2=1﹣+1﹣2=﹣.【点评】此题主要考查了零指数幂的性质、特殊角的三角函数值和负整数指数幂的性质等知识,正确化简各数是解题关键.19.(2016•张家界)计算:.【分析】首先计算绝对值、零次幂、负整数指数幂、特殊角的三角函数值,然后再计算乘法,最后计算加减即可.【解答】解:原式=+1+2﹣2×,=+3﹣,=3.【点评】此题主要考查了实数的运算,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(2016•郴州)计算:()0+(﹣1)2016﹣|﹣|+2sin60°.【分析】根据实数的运算顺序,首先计算乘方,然后从左向右依次计算,求出算式()0+(﹣1)2016﹣|﹣|+2sin60°的值是多少即可.【解答】解:()0+(﹣1)2016﹣|﹣|+2sin60°=1+1﹣+2×=2﹣+=2.【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.21.(2016•怀化)计算:20160+2|1﹣sin30°|﹣()﹣1+.【分析】根据实数的运算顺序,首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式20160+2|1﹣sin30°|﹣()﹣1+的值是多少即可.【解答】解:20160+2|1﹣sin30°|﹣()﹣1+=1+2×|1﹣|﹣3+4=1+2×+1=1+1+1=3.【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.(4)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p =(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.22.(2016•娄底)计算:(π﹣)0+|﹣1|+()﹣1﹣2sin45°.【分析】直接利用特殊角的三角函数值以及绝对值、零指数幂的性质分析得出答案.【解答】解:(π﹣)0+|﹣1|+()﹣1﹣2sin45°=1+﹣1+2﹣=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.23.(2016•岳阳)计算:()﹣1﹣+2tan60°﹣(2﹣)0.【分析】原式利用零指数幂、负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=3﹣2+2﹣1=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.24.(2016•常德)计算:﹣14+sin60°+()﹣2﹣()0.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式﹣14+sin60°+()﹣2﹣()0的值是多少即可.【解答】解:﹣14+sin60°+()﹣2﹣()0=﹣1+2×+4﹣1=﹣1+3+3=5【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.(4)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p =(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.25.(2016•凉山州)计算:.【分析】直接利用绝对值的性质以及特殊角的三角函数值和零指数幂的性质、二次根式的性质分别化简求出答案.【解答】解:=﹣1﹣3+2+1+1=1.【点评】此题主要考查了绝对值的性质以及特殊角的三角函数值和零指数幂的性质、二次根式的性质,正确化简各数是解题关键.26.(2016•乐山)计算:20160+﹣sin45°﹣3﹣1.【分析】原式利用零指数幂、负整数指数幂法则,分母有理化,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=1+﹣﹣=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.27.(2016•鄂州)计算:||+()0+2sin45°﹣2cos30°+()﹣1.【分析】直接利用零指数幂的性质以及绝对值的性质、负整数指数幂的性质、特殊角的三角函数值分别化简求出答案.【解答】解:||+()0+2sin45°﹣2cos30°+()﹣1=﹣+1+2×﹣2×+2015=﹣+1+﹣+2015=2016.【点评】此题主要考查了实数运算,根据相关运算法则正确化简是解题关键.28.(2016•龙岩)计算:+(3﹣π)0﹣2sin60°+(﹣1)2016+||.【分析】本题涉及零指数幂、特殊角三角函数值、立方根、绝对值.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2+1﹣2×+1+﹣1=﹣1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.29.(2016•荆州)计算:.【分析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质、二次根式的性质、零指数幂的性质化简,进而求出答案.【解答】解:原式=+3×2﹣2×﹣1=+6﹣﹣1=5.【点评】此题主要考查了实数运算,正确利用负整数指数幂的性质化简是解题关键.30.(2016•赤峰)计算:(﹣)﹣1+3tan30°﹣+(﹣1)2016.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式(﹣)﹣1+3tan30°﹣+(﹣1)2016的值是多少即可.【解答】解:(﹣)﹣1+3tan30°﹣+(﹣1)2016=﹣3+3×﹣3+1=﹣3+﹣3+1=﹣2﹣2【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.(3)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p =(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.第11页(共11页)。

初中数学:专题1 实数的运算专项训练50道(举一反三)(解析版)

初中数学:专题1 实数的运算专项训练50道(举一反三)(解析版)

专题6.5 实数的运算专项训练(50道)参考答案与试题解析3+(﹣1)2021.1.(1分)(2021春•陆河县校级期末)计算:√9+|√5−3|+√−64【分析】先求算术平方根、绝对值、立方根运算,再进行计算即可.3+(﹣1)2021【解答】解:√9+|√5−3|+√−64=3+3−√5−4﹣1=1−√5.3+|√3−2|.2.(1分)(2021春•珠海期中)计算:(﹣2)2+√(−3)2−√27【分析】运用负数的平方、二次根式、三次根式,绝对值的定义及性质进行计算.3+2−√3【解答】解:原式=4+√32−√33=4+3﹣3+2−√3=6−√3.3.(1分)(2021•天心区开学)计算:|7−√2|−|√2−π|−√(−7)2.【分析】由去绝对值及算术平方根运算法则计算即可.【解答】解:原式=7−√2−(π−√2)﹣7=7−√2−π+√2−7=﹣π.3+|2−√5|+|3−√5|.4.(1分)(2021春•浏阳市期末)计算:√81+√−27【分析】本题涉及绝对值、二次根式化简、三次根式化简3个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.3+|2−√5|+|3−√5|【解答】解:√81+√−27=9﹣3+√5−2+3−√5=7.3+(﹣3)2−√25+|√3−2|+(√3)2.5.(1分)(2021春•淮北期末)√(−5)3【分析】先计算开方、乘方、绝对值的运算,再合并即可得到答案.【解答】解:原式=−5+9−5+2−√3+3=4−√3.3−√4.6.(1分)(2021春•昆明期末)计算:(﹣1)3+|−√2|+√27【分析】直接利用立方根的性质以及绝对值的性质、有理数的乘方运算法则分别化简得出答案.【解答】解:原式=﹣1+√2+3﹣2=√2. 7.(1分)(2021春•宁乡市期末)计算:√−13+√49+|3−π|−(−√3)2.【分析】直接利用立方根的性质以及绝对值的性质和二次根式的性质分别化简,再利用实数加减运算法则计算得出答案.【解答】解:原式=﹣1+7+π﹣3﹣3=π. 8.(1分)(2021春•临沧期末)计算:√83−(−1)2021+√(−3)2−|1−√3|.【分析】首先计算乘方、开方、开立方和绝对值,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:√83−(−1)2021+√(−3)2−|1−√3|=2﹣(﹣1)+3﹣(√3−1)=6−√3+1=7−√3.9.(1分)(2021春•曲靖期末)计算:﹣22×√14−√83+√9×(﹣1)2021. 【分析】先化简有理数的乘方,算术平方根,立方根,然后先算乘法,再算加减.【解答】解:原式=﹣4×12−2+3×(﹣1)=﹣2﹣2﹣3=﹣7. 10.(1分)(2021春•海拉尔区期末)计算:√−83÷√0.04+√14×(−2)2−(−1)2020.【分析】先化简立方根,算术平方根,有理数的乘方,然后先算乘除,再算加减.【解答】解:原式=﹣2÷0.2+12×4﹣1=﹣10+2﹣1=﹣9.11.(1分)(2021春•红塔区期末)计算:(﹣1)2020﹣(﹣2)2+√4+√−273. 【分析】直接利用有理数的乘方运算法则以及立方根的性质、算术平方根分解化简得出答案.【解答】解:原式=1﹣4+2﹣3=﹣4.12.(1分)(2021春•盘龙区期末)计算:(﹣1)2021+|3﹣π|+√16+√−83−π.【分析】根据﹣1的奇、偶次方,绝对值、算术平方根、立方根的运算法则进行计算即可得出答案.【解答】解:原式=﹣1﹣(3﹣π)+4﹣2﹣π=﹣1﹣3+π+2﹣π=﹣2. 13.(1分)(2021春•开福区校级期末)√(−1)2+√273+(−1)2021+|√3−3|.【分析】先计算平方根、乘方和绝对值运算,再合并同类项即可.【解答】解:原式=|﹣1|+3+(﹣1)+3−√3=1+3﹣1+3−√3=6−√3.14.(1分)(2021春•利川市期末)计算|√2−√3|﹣2(14+√22)−√−183. 【分析】根据绝对值的性质、立方根的定义以及实数的加减运算以及乘除运算法则即可求出答案. 【解答】解:原式=√3−√2−12−√2+12 =√3−2√2. 15.(1分)(2021春•永城市期末)计算:√16+√−643−√1−(35)2−|π﹣3.2|. 【分析】直接利用立方根的性质以及二次根式的性质、绝对值的性质分别化简得出答案.【解答】解:原式=4﹣4−45−(3.2﹣π)=4﹣4−45−3.2+π=﹣4+π. 16.(1分)(2021春•鹿邑县期末)计算:√(−1)33−√3116+√(1−78)23. 【分析】首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:√(−1)33−√3116+√(1−78)23=﹣1−74+14=−52. 17.(1分)(2021春•恩平市期末)计算:√25+√−83−√49+√8273+(−1)2021. 【分析】利用实数的运算法则对所求式子进行求解即可.【解答】解:√25+√−83−√49+√8273+(−1)2021 =5﹣2−23+23−1=2.18.(1分)(2021春•潮阳区期末)计算:−12021+√(−2)2−√−1253+|√2−3|.【分析】直接利用绝对值的性质和立方根的性质和二次根式的性质分别化简得出答案.【解答】解:原式=﹣1+2+5+3−√2=9−√2. 19.(1分)(2021春•白云区期末)计算:√−273−√256−√116+√1−63643. 【分析】实数的混合运算,先分别化简立方根,算术平方根,然后再计算.【解答】解:原式=﹣3﹣16−14+√1643 =﹣3﹣16−14+14=﹣19. 20.(1分)(2021春•杨浦区期中)计算:√−0.0013−(√23−√10003)−√162.【分析】直接利用立方根以及二次根式的性质分别化简得出答案.【解答】解:原式=﹣0.1−√23+10−42 =﹣0.1−√23+10﹣2 =7.9−√23.21.(2分)(2021春•青川县期末)计算:(1)(﹣3)2+2×(√2−1)﹣|﹣2√2|;(2)√−83−√1−1625+|2−√5|+√(−4)2.【分析】(1)先算乘方,化简绝对值,去括号,然后再算加减;(2)先化简立方根,算术平方根,绝对值,然后再计算.【解答】解:(1)原式=9+2√2−2﹣2√2=7; (2)原式=﹣2−√925+√5−2+4=﹣2−35+√5−2+4=√5−35.22.(2分)(2021春•西城区校级期中)计算:(1)(−√7)2−√62+√−83;(2)√49−√273+|1−√2|+√(1−54)2.【分析】(1)先化简,再计算加减法;(2)先算二次根式、三次根式,再计算加减法.【解答】解:(1)原式=7﹣6+(﹣2)=7﹣6﹣2=﹣1;(2)原式=7﹣3+√2−1+54−1=2+54+√2=134+√2. 23.(2分)(2021春•抚顺期末)计算:(1)√−83+√36−√49;(2)√254+√−273−|2−√3|+√(−2)2. 【分析】(1)根据立方根,算术平方根的运算法则进行运算,即可得出答案;(2)根据算术平方根,立方根,绝对值的法则进行运算,即可得出答案.【解答】解:(1)解:原式=﹣2+6﹣7=﹣3;(2)原式=52−3﹣2+√3+2 =−12+√3. 24.(2分)(2021春•乾安县期末)计算:(1)|√3−2|−(√3−1)+√−643;(2)√9+|﹣2|+√273+(﹣1)2021. 【分析】(1)直接利用绝对值的性质以及立方根的性质分别化简得出答案;(2)直接利用绝对值的性质以及立方根的性质、有理数的乘方运算法则分别化简得出答案.【解答】解:(1)原式=2−√3−√3+1﹣4=﹣2√3−1;(2)原式=3+2+3﹣1=7.25.(2分)(2021春•曾都区期末)计算下列各式:(1)√(−1)2+√14×(﹣2)2−√−643;(2)|√3−√2|+|√3−2|﹣|√2−1|.【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简得出答案;(2)直接利用绝对值的性质化简,再合并二次根式得出答案.【解答】解:(1)原式=1+12×4+4=1+2+4=7;(2)原式=√3−√2+2−√3−(√2−1)=√3−√2+2−√3−√2+1=3﹣2√2.26.(2分)(2021春•林州市期末)计算:(1)|3−√13|+√−273−√13+√25;(2)−12−(−2)3×18+√−273×|−13|+|1−√3|.【分析】(1)直接利用绝对值的性质、立方根的性质、二次根式的性质分别化简得出答案;(2)直接利用绝对值的性质、立方根的性质、二次根式的性质分别化简得出答案.【解答】解:(1)原式=√13−3﹣3−√13+5=﹣1;(2)原式=﹣1+8×18−3×13+√3−1=﹣1+1﹣1+√3−1=√3−2.27.(2分)(2021春•黄冈期末)计算:(1)(−√2)2+|1−√2|+√−83; (2)﹣22+√(−4)2+√32+42−(﹣1)2021.【分析】(1)首先计算乘方、开立方和绝对值,然后从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘方和开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)(−√2)2+|1−√2|+√−83=2+√2−1+(﹣2)=√2−1.(2)﹣22+√(−4)2+√32+42−(﹣1)2021=﹣4+4+5﹣(﹣1)=6.28.(2分)(2021春•越秀区期末)(1)计算:√183+√(−2)2+√14;(2)计算:2(√3−1)﹣|√3−2|−√−643.【分析】(1)根据立方根以及算术平方根的定义解决此题.(2)由|√3−2|=2−√3,√−643=−4,得2(√3−1)−|√3−2|−√−643=3√3.【解答】解:(1)√183+√(−2)2+√14=12+2+12=3.(2)2(√3−1)−|√3−2|−√−643=2√3−2−(2−√3)−(−4)=2√3−2−2+√3+4=3√3.29.(2分)(2021春•西城区校级期末)计算题(1)√83+√0−√14+√−183+|3−√2|; (2)√−273−√0−√14+√0.1253+√1−63643.【分析】(1)根据立方根,算术平方根,绝对值的性质计算即可;(2)先化简,再求这个数的立方根,化简即可.【解答】解:(1)原式=2+0−12−12+3−√2=4−√2;(2)原式=﹣3﹣0−12+√183+√1643 =﹣3−12+12+14=−114.30.(2分)(2020春•合川区期末)计算:(1)|﹣2|+(﹣1)2020+√214−√−183; (2)(﹣24)﹣(12−23)÷(−16)×[﹣2−√(−3)2]﹣|14−0.52|. 【分析】(1)直接利用有理数的乘方运算法则以及立方根的性质、算术平方根、绝对值的性质分别化简得出答案;(2)直接利用有理数的混合运算以及二次根式的性质、绝对值的性质分别化简得出答案. 【解答】解:(1)原式=2+1+√94+12=2+1+32+12=5;(2)原式=﹣16﹣(36−46)×(﹣6)×(﹣2﹣3)﹣|14−(12)2| =﹣16+16×(﹣6)×(﹣5)﹣0=﹣16+5﹣0=﹣11.31.(2分)(2020春•甘南县期中)计算下列各式:(1)√16−√273+√−183+√94 (2)|1−√2|+√−8273×√14−√2【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义,平方根、立方根定义计算即可求出值.【解答】解:(1)原式=4﹣3−12+32=2;(2)原式=√2−1−23×12−√2=−43.32.(2分)(2020春•岳麓区校级月考)计算:(1)√83−√4−√(−3)2+|1−√2|(2)√6×(√6−√6)−√214−|2﹣π| 【分析】(1)首先计算立方根,化简二次根式,计算绝对值,然后再计算加减即可;(2)首先计算乘法、化简二次根式,计算绝对值,然后再计算加减即可.【解答】解:(1)原式=2﹣2﹣3+√2−1=√2−4;(2)原式=1﹣6−32−(π﹣2),=1﹣6−32−π+2,=﹣412−π. 33.(2分)(2020春•蕲春县期中)计算:(1)√−273+√(−3)2+√−13;(2)√16+√−27643×√(−43)2−|2−√5|. 【分析】(1)首先根据二次根式和立方根的性质进行化简,再计算加减即可;(2)首先根据二次根式和立方根和绝对值的性质进行化简,再计算乘法,后算加减即可.【解答】解:(1)原式=﹣3+3﹣1=﹣1;(2)原式=4−34×43−(√5−2)=4﹣1−√5+2=5−√5.34.(2分)(2020春•西市区期末)计算:(1)√−13−√83÷√(−6)2;(2)(2−√3)2020×(2+√3)2021﹣2√34.【分析】(1)首先计算乘方、开方,然后计算除法,最后计算减法,求出算式的值是多少即可.(2)首先根据积的乘方计算,然后计算乘法、减法,求出算式的值是多少即可.【解答】解:(1)√−13−√83÷√(−6)2=﹣1﹣2÷6=﹣1−13=−43.(2)(2−√3)2020×(2+√3)2021﹣2√34 =[(2−√3)×(2+√3)]2020×(2+√3)﹣2×√32=2+√3−√3=2.35.(2分)(2020春•渝北区校级月考)计算下列各题. (1)|3−2√3|−√643+(√6)2;(2)√1.44+√1033−√0.04−√83−√−13.【分析】(1)直接利用立方根的性质以及二次根式的性质、绝对值的性质等知识分别化简得出答案;(2)直接利用立方根的性质以及二次根式的性质等知识分别化简得出答案.【解答】解:(1)原式=2√3−3﹣4+6=2√3−1;(2)原式=1.2+10﹣0.2﹣2+1=10.36.(2分)(2020春•牡丹江期中)计算题:(1)√81+√−273+√(−2)2+|√3−2|;(2)√22−√214+√78−13−√−13. 【分析】各式利用算术平方根、立方根性质计算即可求出值.【解答】解:(1)原式=9﹣3+2+2−√3=10−√3;(2)原式=2−32−12−(﹣1)=2﹣2+1=1.37.(2分)(2020春•凉州区校级期中)计算:(1)√2549+|﹣5|+√−643−(﹣1)2020; (2)√16+√−273−√3−|√3−2|+√(−5)2.【分析】利用二次根式的性质、绝对值得先年改制、立方根的性质、乘方的意义进行计算,再算加减即可.【解答】解:(1)原式=57+5﹣4﹣1=57;(2)原式=4﹣3−√3−2+√3+5=4.38.(2分)(2020秋•东港市期中)(1)(√6−√7)2019×(√6+√7)2020.(2)√32−√−273−√(−23)2+|1−√2|.【分析】(1)直接利用积的乘方运算法则,将原式变形得出答案;(2)直接利用立方根以及算术平方根的性质、绝对值的性质分别化简得出答案.【解答】解:(1)原式=[(√6−√7)(√6+√7)]2019×(√6+√7)=﹣1×(√6+√7) =−√6−√7;(2)原式=4√2+3−23+√2−1 =5√2+43.39.(2分)(2020春•越秀区校级月考)计算:(1)√36−√273+√(−2)2−√214;(2)|√3−2|−√4−(3−√3).【分析】(1)直接利用立方根的定义和算术平方根的定义分别化简得出答案;(2)直接利用绝对值的性质以及算术平方根的定义分别化简得出答案.【解答】解:(1)原式=6﹣3+2−32=3.5;(2)原式=2−√3−2﹣3+√3=﹣3.40.(2分)(2020春•和平区校级月考)计算(1)√273+|3−√5|﹣(√9−√83)2+√5; (2)√16−√83−√13+√1+916+|1−√2|﹣|√3−√2|.【分析】(1)直接利用立方根的性质以及绝对值的性质分别化简得出答案;(2)直接利用立方根的性质以及绝对值的性质分别化简得出答案.【解答】解:(1)原式=3+3−√5−(3﹣2)2+√5=3+3−√5−1+√5=5;(2)原式=4﹣2﹣1+54+√2−1﹣(√3−√2)=4﹣2﹣1+54+√2−1−√3+√2 =2√2−√3+54.41.(4分)(2020春•硚口区期中)(1)计算:①√−8273×√14−√(−2)2;②√3−√25+|√3−3|+√1−63643.(2)求下列式子中的x 的值:①4(x ﹣2)2=49;②(x ﹣1)3=64.【分析】(1)①直接利用立方根以及二次根式的性质分别化简得出答案;②直接利用立方根以及二次根式的性质分别化简得出答案;(2)①直接利用平方根的定义化简得出答案;②直接利用立方根的定义化简得出答案.【解答】解:(1)①原式=−23×12−2=﹣213;②原式=√3−5+3−√3+14=−74;(2)①∵4(x ﹣2)2=49, ∴(x −2)2=494, ∴x −2=±72,∴x =2±72,∴x =112或x =−32.②∵(x ﹣1)3=64,∴x ﹣1=4,∴x =5.42.(4分)(2020秋•射洪市月考)(1)计算:√16+√−643−√(−3)2+|√3−1|;(2)解方程:18﹣2x 2=0;(3)解方程:(x +1)3+27=0;(4)(2−√3)2020×(2+√3)2021﹣2√1−(35)2.【分析】(1)利用平方根与立方根的定义及绝对值的意义,先化简,再利用实数混合运算进行运算即可;(2)对方程进行转化,利用平方根的定义即可解答;(3)对方程进行转化,利用立方根的定义即可解答;(4)先利用幂运算法则和平方差公式进行简便运算,利用算术平方根的定义进行化简,再利用实数混合运算进行运算即可;【解答】解:(1)原式=4﹣4﹣3+√3−1=﹣4+√3;(2)∵18﹣2x 2=0,∴2x 2=18,即x 2=9,∴x =±3;(3)∵(x +1)3+27=0,∴(x +1)3=﹣27,∴x +1=﹣3,∴x =﹣4;(4)(2−√3)2020×(2+√3)2021﹣2√1−(35)2 =[(2−√3)×(2+√3)]2020×(2+√3)﹣2×45=2+√3−85=25+√3.43.(4分)(2021春•南开区期中)(1)化简|1−√2|+|√2−√3|+|√3−2|.(2)计算:√−643+√16×√94÷(−√2)2.(3)解方程(x ﹣1)3=27.(4)解方程2x 2﹣50=0.【分析】(1)去掉绝对值符号,合并同类二次根式即可;(2)利用实数的混合运算法则进行运算即可;(3)利用立方根的意义解答;(4)利用平方根的意义解答.【解答】解:(1)原式=√2−1+√3−√2+2−√3=1;(2)原式=﹣4+4×32÷2=﹣4+3=﹣1;(3)两边开立方得:x ﹣1=3.∴x =4.∴原方程的解为:x =4.(4)原方程变为:2x 2=50.∴x 2=25.两边开平方得:x =±5.∴原方程的解为:x 1=5,x 2=﹣5.44.(4分)(2021春•红桥区期中)计算:(1)3√2+√2−6√2;(2)√5(√5+1√5); (3)√−273+√(−2)2−|1−√3|;(4)√9−√−83+√(−3)2−(√2)2. 【分析】(1)直接利用二次根式的加减运算法则计算得出答案;(2)直接利用二次根式的混合运算法则计算得出答案;(3)直接利用立方根以及二次根式、绝对值的性质分别化简得出答案;(4)直接利用立方根以及二次根式、绝对值的性质分别化简得出答案.【解答】解:(1)原式=﹣2√2;(2)原式=5+1=6;(3)原式=﹣3+2﹣(√3−1)=﹣3+2−√3+1=−√3;(4)原式=3+2+3﹣2=6.45.(4分)(2021春•硚口区期中)(1)计算:①√16−√273+√214;②√3(√3√3)+|2−√5|. (2)求下列式子中的x 的值:①(x ﹣2)2=9;②3(x +1)3+81=0.【分析】(1)①首先计算开方,然后从左向右依次计算即可.②首先计算绝对值和乘法,然后从左向右依次计算即可.(2)①根据平方根的含义和求法,求出x 的值是多少即可.②根据立方根的含义和求法,求出x 的值是多少即可.【解答】解(1)①√16−√273+√214=4﹣3+32=52.②√3(√31√3)+|2−√5| =3﹣1+√5−2=√5.(2)①∵(x ﹣2)2=9,∴x ﹣2=±3,解得:x =5或﹣1.②∵3(x +1)3+81=0,∴3(x +1)3=﹣81,∴(x +1)3=﹣27,∴x +1=﹣3,解得:x =﹣4.46.(4分)(2021春•岷县月考)计算:(1)√−8×(−0.5).(2)√4+√225−√400.(3)√−13+√(−1)33+√(−1)23.(4)√183−52×√−11253+√−3433−√−273. 【分析】根据算术平方根和立方根的定义,分别计算即可.【解答】解:(1)原式=√4=2;(2)原式=2+15﹣20=﹣3;(3)原式=﹣1+√−13+√13=﹣1+(﹣1)+1=﹣1;(4)原式=12−52×(−15)+(﹣7)﹣(﹣3)=12−(−12)+(﹣7)+3=12+12+(﹣7)+3 =1﹣7+3=﹣3.47.(4分)(2020秋•海曙区期中)计算.(1)−34×(−8+23−13).(2)17﹣8÷(﹣4)+4×(﹣5).(3)√25+(√−1273+13)−6. (4)−32×[−32×(−23)2−2].【分析】(1)利用乘法分配律使得计算简便;(2)先算乘除,然后再算加减;(3)先化简算术平方根,立方根,然后算小括号里面的,再算括号外面的;(4)先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【解答】解:(1)原式=34×8−34×23+34×13=6−12+14 =512+14=524+14 =534;(2)原式=17+2﹣20=19﹣20=﹣1; (3)原式=5+(−13+13)﹣6=5+0﹣6=5﹣6=﹣1;(4)原式=−32×(﹣9×49−2)=−32×(﹣4﹣2)=−32×(﹣6)=9.48.(4分)(2020秋•嵊州市期中)计算:(1)(+1013)+(﹣11.5)+(﹣1013)﹣4.5; (2)(﹣6)2×(13−12)﹣23; (3)(﹣270)×14+0.25×21.5+(﹣812)×(﹣0.25); (4)−√36+6÷(−23)×√−83.【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用乘法分配律以及有理数的混合运算法则计算得出答案;(3)直接提取公因式14,进而计算得出答案; (4)直接利用算术平方根的性质以及立方根的性质分别化简得出答案.【解答】解:(1)原式=﹣11.5﹣4.5+(1013−1013) =﹣16+0=﹣16;(2)(﹣6)2×(13−12)﹣23 =36×13−36×12−8=12﹣18﹣8=﹣14;(3)(﹣270)×14+0.25×21.5+(﹣812)×(﹣0.25) =14×(﹣270+21.5+812) =14×(﹣240)=﹣60;(4)−√36+6÷(−23)×√−83=﹣6﹣9×(﹣2)=﹣6+18=12.49.(4分)(2020秋•北仑区期中)计算:(1)(﹣3)2﹣(112)3×29−6÷|−23|; (2)﹣12020+|﹣3|+√−1273−√(−4)2; (3)3×(√3−√5)+2×(−32×√3+32);(4)|√6−√2|+|√2−1|﹣|3−√6|.【分析】(1)直接利用有理数的混合运算法则计算得出答案;(2)直接利用立方根以及绝对值的性质、算术平方根的性质分别化简得出答案;(3)直接利用二次根式的混合运算法则计算得出答案;(4)直接利用绝对值的性质化简,进而得出答案.【解答】解:(1)(﹣3)2﹣(112)3×29−6÷|−23|=9−278×29−6×32=9−34−9=−34;(2)﹣12020+|﹣3|+√−1273−√(−4)2=﹣1+3−13−4=﹣213; (3)3×(√3−√5)+2×(−32×√3+32)=3√3−3√5−3√3+3=﹣3√5+3;(4)|√6−√2|+|√2−1|﹣|3−√6|=√6−√2+√2−1﹣(3−√6)=√6−√2+√2−1﹣3+√6=2√6−4.50.(4分)(2020秋•下城区校级期中)计算.(1)(+15)﹣(+11)﹣(﹣18)+(﹣15);(2)(﹣72)×(49−38+512−13); (3)﹣12﹣(1﹣0.5)÷15×[2﹣(﹣2)2];(4)|1−√2|+|√2−√3|+|√3−√4|+……+|√2019−√2020|.(结果保留根号形式)【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用乘法分配律进而计算得出答案;(3)直接利用有理数的混合运算法则计算得出答案;(4)直接去绝对值进而计算得出答案.【解答】解:(1)(+15)﹣(+11)﹣(﹣18)+(﹣15)=15﹣11+18﹣15=7;(2)(﹣72)×(49−38+512−13) =(﹣72)×49+(﹣72)×(−38)+(﹣72)×512+(﹣72)×(−13)=﹣32+27﹣30+24=﹣11;(3)﹣12﹣(1﹣0.5)÷15×[2﹣(﹣2)2]=﹣1−12×5×(2﹣4)=﹣1−52×(﹣2)=﹣1+5=4;(4)|1−√2|+|√2−√3|+|√3−√4|+……+|√2019−√2020| =√2−1+√3−√2+√4−√3+⋯+√2020−√2019 =√2020−1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.计算题
1.计算题:|﹣2|﹣(1+)0+.
2.计算题:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2)
3.
4 . ||﹣.
5.计算题:.
6.计算题:(1);
7 .
8. (精确到0.01).
9.计算题:.
10.(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2);
11.| ﹣|+﹣
12. ﹣12+×﹣2
13. .
14. 求x的值:9x2=121.
15. 已知,求x y的值.
16. 比较大小:﹣2,﹣(要求写过程说明)
17.求x的值:(x+10)2=16
18. .
19. 已知m<n,求+的值;
20.已知a<0,求+的值.
专题一计算题训练
参考答案与试题解析
一.解答题(共13小题)
1.计算题:|﹣2|﹣(1+)0+.
解答:解:原式=2﹣1+2,
=3.
2.计算题:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2)
解答:解:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2),
=﹣1+4×9+3,
=38.
3.
4. ||﹣.
原式=14﹣11+2=5;
(2)原式==﹣1.
点评:此题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、绝对值等考点的运算.
5.计算题:.
考点:有理数的混合运算。

分析:首先进行乘方运算、然后根据乘法分配原则进行乘法运算、同时进行除法运算,最后进行加减法运算即可.解答:
解:原式=﹣4+8÷(﹣8)﹣(﹣1)
=﹣4﹣1﹣(﹣)
=﹣5+
=﹣.
点评:本题主要考查有理数的混合运算,乘方运算,关键在于正确的去括号,认真的进行计算即可.
6.;
7..
考点:实数的运算;立方根;零指数幂;二次根式的性质与化简。

分析:(1)注意:|﹣|=﹣;
(2)注意:(π﹣2)0=1.
解答:解:(1)(
=
=;
(2)
=1﹣0.5+2
=2.5.
点评:保证一个数的绝对值是非负数,任何不等于0的数的0次幂是1,注意区分是求二次方根还是三次方根.
8.(精确到0.01).
考点:实数的运算。

专题:计算题。

分析:(1)先去括号,再合并同类二次根式;
(2)先去绝对值号,再合并同类二次根式.
解答:解:(1)原式=2
=;
(2)原式=
=
≈1.732+1.414
≈3.15.
点评:此题主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.注意精确到0.01.
9.计算题:.
考点:实数的运算;绝对值;算术平方根;立方根。

专题:计算题。

分析:根据绝对值、立方根、二次根式化简等运算法则进行计算,然后根据实数的运算法则求得计算结果.
解答:解:原式
=5×1.2+10×0.3﹣3﹣3+2﹣
=5﹣.
点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、立方根、绝对值等考点的运算.
10.(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2);
考点:有理数的混合运算。

专题:计算题。

分析:(1)根据理数混合运算顺序:先算乘方,再算乘除,最后算加减;如果有括号,要先做括号内的运算.(2)可以先把2.75变成分数,再用乘法分配律展开计算.
解答:解:(1)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)
=﹣8+(﹣3)×18+
=﹣62+
=﹣
11. |﹣|+﹣
12. ﹣12+×﹣2
解答:解:(1)原式==﹣4+2;
(2)原式=﹣1+9﹣2=6;
13..
考点:实数的运算;绝对值;立方根;零指数幂;二次根式的性质与化简。

专题:计算题。

分析:(1)根据算术平方根和立方根进行计算即可;
(2)根据零指数幂、绝对值、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
解答:(1)解:原式=2+2﹣4 …3′
=0 …4′
(2)解:原式=3﹣(﹣2)﹣(4﹣)+1 …3′
=2+…4′
点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、立方根、二次根式、绝对值等考点的运算.
14求x的值:9x2=121.
15已知,求x y的值.
16比较大小:﹣2,﹣(要求写过程说明)
考点:实数的运算;非负数的性质:绝对值;平方根;非负数的性质:算术平方根;实数大小比较。

专题:计算题。

分析:(1)根据平方根、立方根的定义解答;
(2)利用直接开平方法解答;
(3)根据非负数的性质求出x、y的值,再代入求值;
(4)将2转化为进行比较.
解答:解:①原式=3﹣3﹣(﹣4)=4;
②9x2=121,
两边同时除以9得,
x2=,
开方得,x=±,
x1=,x2=﹣.
③∵,
∴x+2=0,y﹣3=0,
∴x=﹣2,y=3;
则x y=(﹣2)3=﹣8;
④∵<,
∴﹣>﹣,
∴﹣2>﹣.
点评:本题考查了非负数的性质:绝对值和算术平方根,实数比较大小,平方根等概念,难度不大.
17. 求x的值:(x+10)2=16
18..
考点:实数的运算;平方根。

专题:计算题。

分析:(1)根据平方根的定义得到x+10=±4,然后解一次方程即可;
(2)先进行乘方和开方运算得到原式=﹣8×4+(﹣4)×﹣3,再进行乘法运算,然后进行加法运算即可.
解答:解:(1)∵x+10=±4,
∴x=﹣6或﹣14;
(2)原式=﹣8×4+(﹣4)×﹣3
=﹣32﹣1﹣3
=﹣37.
点评:本题考查了实数的运算:先进行乘方或开方运算,再进行加减运算,然后进行加减运算.也考查了平方根以及立方根.
19. 已知m<n,求+的值;
20. 已知a<0,求+的值.
考点:实数的运算。

专题:综合题。

分析:
①先由m<n,化简+,再计算;
②由a<0,先去根号,再计算.
解答:解:①∵m<n,
∴+
=n﹣m+n﹣m
=2n﹣2m,
②∵a<0,
∴+
=﹣a+a
=0.
点评:本题考查了二次根式的化简和立方根的求法,是基础知识要熟练掌握.。

相关文档
最新文档