华杯赛赛前训练模拟题小学组决赛卷 (2)
第一届华杯赛全套试题
第一届华罗庚金杯赛少年数学邀请赛初赛试卷(小学组)1.1966、1976、1986、1996、2006这5个数的总和是多少?2.每边长是10厘米的正方形纸片,正中间挖一个正方形的洞,成为一个宽度是1厘米的方框.把5个这样的方框放在桌面上,成为这样的图案.问桌面上被这些方框盖住的部分面积是多少平方厘米?3.105的约数共有几个?4.妈妈让小明给客人烧水沏茶.洗开水壶要用1分钟,烧开水要用15分钟,洗茶壶要用1分钟,洗茶杯要用1分钟,拿茶叶要用2分钟.小明估算了一下,完成这些工作要花20分钟,为了使客人早点喝上茶,按你认为最合理的安排,多少分钟就能沏茶了?5.右面的算式里,4个小纸片各盖住了一个数字.被盖住的4个数字总和是多少?6.松鼠妈妈采松籽.晴天每天可以采20个.有雨的天每天只能采12个.它一连几天采了112个松籽,平均每天采14个.问这几天当中有几天有雨?7.边长1米的正方体2100个,堆成一个实心的长方体.它的高是10米,长、宽都大于高.问长方体的长与宽的和是几米?8.早晨8点多钟,有两辆汽车先后离开化肥厂,向幸福村开去.两辆汽车的速度都是每小时60公里.8点32分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的3倍.到了8点39分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的2倍.那么,第一辆汽车是8点几分离开化肥厂的?9.有一个整数,除300、262、205,得到相同的余数.问这个整数是几?10.甲、乙、丙、丁4个人比赛乒乓球,每两个人都要赛一场.结果甲胜了丁,并且甲、乙、丙3个胜的场数相同.问丁胜了几场?11.两个十位数1111111111和9999999999的乘积有几个数字是奇数?12.黑色、白色、黄色的筷子各有8根,混杂地放在一起.黑暗中想从这些筷子中取出颜色不同的两双筷子.问至少要取多少根才能保证达到要求?13.有一块菜地和一块麦地,菜地的21和麦地的31放在一起是13亩,麦地的21和菜地的31放在一起是12亩,那么,菜地是几亩?14.71427和19的积被7除,余数是几?15.科学家进行一项实验,每隔5小时做一次记录.做第十二次记录时,挂钟的时针恰好指向9,问做第一次记录时,时针指向几?16.有一路电车的起点站和终点站分别是甲站和乙站.每隔5分钟有一辆电车从甲站发出开往乙站.全程要走15分钟.有一个人从乙站出发沿电车路线骑车前往甲站.他出发的时候,恰好有一辆电车到达乙站.在路上他又遇到了10辆迎面开来的电车,才到达甲站.这时候,恰好又有一辆电车从甲站开出.问他从乙站到甲站用了多少分钟?17.在混合循环小数2.718281的某一位上再添上一个表示循环的圆点,使新产生的循环小数尽可能大.请写出新的循环小数.18.有6块岩石标本,它们的重量分别是8.5公斤、6公斤、4公斤、4公斤、3公斤、2公斤.要把它们分别装在3个背包里,要求最重的一个背包尽可能轻一些.请写出最重的背包里装的岩石标本是多少公斤?19.同样大小的长方形小纸片摆成了这样的图形.已知小纸片的宽是12厘米,求阴影部分的总面积.第一届华罗庚金杯赛少年数学邀请赛复赛试题(小学组)1、甲班和乙班共83人,乙班和丙班共86人,丙班和丁班共88人.问甲班和丁班共多少人?2、一笔奖金分一等奖、二等奖、三等奖,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍.如果评一、二、三等奖各两人,那么每个一等奖的奖金是308元;如果一个一等奖,两个二等奖,三个三等奖,那么一等奖的奖金是多少元?3、一个长方形,被两条直线分成四个长方形,其中三个的面积是20亩、25亩和30亩.问另一个长方形的面积是多少亩?4、在一条公路上,每隔一百公里有一个仓库,共有五个仓库.一号仓库存有10吨货物,二号仓库存有20吨货物,五号仓库存有40吨货物,其余两个仓库是空的.现在想把所有的货物集中存放在一个仓库里,如果每吨货物运输一公里需要0.5元的运费,那么最少要花多少运费才行?5、有一个数,除以3余数是2,除以4余数是1.问这个数除以12余数是几?6、四个一样的长方形和一个小的正方形(如图)拼成了一个大正方形.大正方形的面积是49平方米,小正方形的面积是4平方米.问长方形的短边长度是几米?7、有两条纸带,一条长21厘米,一条长13厘米,把两条纸带剪下同样长的一段以后,发现短纸带剩下的长度是长纸带的长度的八分之十三.问剪下有多长?8、将0、1、2、3、4、5、6这七个数字填在圆圈的方格内,每个数字恰好出现一次,组成只有一位数和两位数的整数式.问填在方格内的数是几?9、甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都比赛一盘.到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1盘.问小强赛了几盘?10、有三堆棋子,每堆棋子数一样多,并且都只有黑、白两色棋子.第一队里的黑子和第二堆里的白子一样多,第三堆里的黑子占全部黑子的五分之二,把这三堆棋子集中在一起,问白子占全部的几分之几?11、甲、乙两班的同学人数相等,各有一些同学参加课外天文小组,甲班参加天文小组的人数恰好是乙班没有参加的人数的三分之一,乙班参加天文小组的人数是甲班没有参加的人数的四分之一.问甲班没有参加的人数是乙班没有参加的人数的几分之几?12、上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4公里的地方追上了他,然后爸爸立刻回家,到家后又3立刻回头去追小明,再追上他时候,离家恰好是8公里.问这时是几点几分?13、把14分成几个自然数的和,再求出这些数的乘积,要使得到的乘积尽可能大,问这个乘积是几?14、43位同学,他们身上带的钱从8分到5角,钱数都各不相同.每个同学都把身上带的全部钱各自买了画片.画片只有两种,3分一张和5分一张,每没有都尽量多买5分一张的画片.问他们所买的3分画片的总数是多少张?第一届华罗庚金杯赛少年数学邀请赛决赛一试试卷(小学组)1. 计算: 872165433311361214187⨯÷-+⨯2.975×935×972×( ),要使这个连乘积的最后四个数字都是“0”,在括号内最小应填什么数?3.把+、-、×、÷分别填在适当的圆圈中,并在长方形中填上适当的整数,可以使下面的两个等式都成立,这时,长方形中的数是几?9O13O7=100 14O2O5=□4.一条1米长的纸条,在距离一端0.618米的地方有一个红点,把纸条对折起来,在对准红点的地方涂上一个黄点然后打开纸条从红点的地方把纸条剪断,再把有黄点的一段对折起来,在对准黄点的地方剪一刀,使纸条断成三段,问四段纸条中最短的一段长度是多少米?5.从一个正方形木板锯下宽为21米的一个木条以后,剩下的面积是1865平方米,问锯下的木条面积是多少平方米?6.一个数是5个2,3个3,2个5,1个7的连乘积.这个数当然有许多约数是两位数,这些两位的约数中,最大的是几?7.修改31743的某一个数字,可以得到823的倍数,问修改后的这个数是几?8.蓄水池有甲、丙两条进水管,和乙、丁两条排水管,要灌满一池水,单开甲管需3小时,单开丙管需要5小时,要排光一池水,单开乙管需要4小时,单开丁管需要6小时,现在池内有61池水,如果按甲、乙、丙、丁的顺序,循环各开水管,每天每管开一小时,问多少时间后水清苦始溢出水池?9. 一小和二小有同样多的同学参加金杯赛,学校用汽车把学生送往考场,一小用的汽车,每车坐15人,二小用的汽车,每车坐13人,结果二小比一小要多派一辆汽 车,后来每校各增加一个人参加竞赛,这样两校需要的汽车就一样多了,最后又决定每校再各增加一个人参加竞赛,二小又要比一小多派一辆汽车,问最后两校共有多少人参加竞赛?10.如下图,四个小三角形的顶点处有六个圆圈.如果在这些圆圈中分别填上六个质数,它们的和是20,而且每个小三角形三个顶点上的数之和相等.问这六个质数的积是多少?11.若干个同样的盒子排成一排,小明把五十多个同样的棋子分装在盒中,其中只有一个盒子没有装棋子,然后他外出了,小光从每个有棋子的盒子里各拿一个棋子放在空盒内,再把盒子重新排了一下,小明回来仔细查看了一番,没有发现有人动过这些盒子和棋子,问共有多少个盒子?12.如右图,把1.2,3.7, 6.5, 2.9, 4.6,分别填在五个O内,再在每个□中填上和它相连的三个O中的数的平均值,再把三个□中的数的平均值填在△中,找出一个填法,使△中的数尽可能小,那么△中填的数是多少?13.如下图,甲、乙、丙是三个站,乙站到甲、丙两站的距离相等.小明和小强分别从甲、丙两站同时出发相向而行,小明过乙站100米后与小强相遇,然后两人又继续前进,小明走到丙站立即返回,经过乙站后300米又追上小强.问甲、丙两站的距离是多少数?14.如右图,剪一块硬纸片可以做成一个多面体的纸模型(沿虚线折,沿实线粘),这个多面体的面数、顶点数和棱数的总和是多少?第一届华罗庚金杯赛少年数学邀请赛决赛二试试卷(小学组)1.请你举出一个例子,说明“两个真分数的和可以是个真分数,而且这三个分数的分母谁也不是谁的约数”.2.有人说:“任何七个连续整数中一定有质数”.请你举一个例子,说明这句话是错的.3.幼儿园有三个班,甲班比乙班多4人,乙班比丙班多4人,老师给小孩分枣,甲班每个小孩比乙班每个小孩少分3个枣;乙班每个小孩比丙班每个小孩少分5个枣,结果甲班比乙班总共多分3个枣,乙班比丙班总共分5个枣,问三个班总共分了多少枣?4.快、中、慢三辆车同时从同一地点出发,沿同一公路追赶前面的一个骑车人,这三辆车分别用6分钟、10分钟、12分钟追上骑车人,现在知道快车每小时走24千米,中车每小时走20千米,那么,慢车每小时走多少千米?5.老师在黑板上写了十三个自然数,让小明计算平均数(保留两位小数),小明计算出的答数是12.43,老师说最后一位数字错了,其他的数字都对,正确答案应该是多少?6. 有十个村,座落大县城出发的一条公路上(如下图所示,距离单位是千米),要安装水管,从县城送自来水供给各村,可以用粗细两种水管,粗管足够供应所有各村 用水,细管只能供一个村用水,粗管每千米要用8000元,细管每千米要用2000元,把粗管和细管适当搭配、互相连接,可以降低工程的总费用,按你认为最 节约的办法,费用应是多少?7.70个数排成一行,除了两头的两个数以外,每个数的三倍都恰好等于它两边两个数的和,这一行最左行的几个数是这样的:0,1,3,8,21,…问最右边一个数被6除余几?8.有9个分数的和为1,它们的分子都是1,其中的五个是31,71,91,111,331,其余四个数的分母个位数都是5,请写出这4个分数.9.一张长14厘米、宽11厘米的长方形纸片最多能裁出多少个长4厘米、宽1厘米的纸条?怎样裁?请画图说明.第一届华罗庚金杯赛少年数学邀请赛团体赛口试试卷(小学组)1. 这是七巧板拼成的正方形,正方形边长20厘米,问七巧板中平行四边形的一块(如右图中阴影部分)的面积是多少?2.从所有分母小于10的真分数中,找出一个最接近0.618的分数.3.有49个小孩子,每人胸前有一个号码,号码从1到49各不相同,请你挑选出若干个小孩,排成一个圆圈,使任何相邻两个小孩的号码数的乘积小于100,你最多能挑选出多少个小孩子?4.有一路公共汽车,包括起点和终点站共有15个车站,如果有一辆车,除终点到站外,每一站上车的乘客中,恰好各有一位乘客从这一站到以后的每一站,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?5.正方形的树林每边长1000米,里面有白杨树和榆树,小明从树林的西南角走入树林,碰见一株白杨树就往正北走,碰见一株榆树就往正东走,最后他走了东北角上,问:小明一共走了多少米的距离?6.自然数按从小到大的顺序排成螺旋形,在2处拐第一个弯,在3处拐第二个弯,在5处拐第三个弯……问拐第二十个弯的地方是哪一个数?。
华杯赛决赛试题及答案
华杯赛决赛试题及答案一、选择题(每题5分,共20分)1. 若一个数的平方根是a,则这个数是:A. a^2B. -a^2C. |a|D. a^32. 一个等差数列的前三项分别为2,5,8,则此数列的通项公式为:A. 3n - 1B. 3n - 2C. 3n + 2D. 3n - 33. 对于函数f(x) = ax^2 + bx + c,若a < 0,b > 0,则f(x)的图像可能是:A. 一个开口向上的抛物线B. 一个开口向下的抛物线C. 一个开口向上的双曲线D. 一个开口向下的双曲线4. 一个圆的半径为r,圆心到直线的距离为d,若圆与直线相交,则:A. d > rB. d < rC. d = rD. d ≤ r答案:1. A2. B3. B4. B二、填空题(每题5分,共10分)1. 一个圆的周长为2π,那么它的面积是______。
2. 如果一个三角形的两边长分别为3和4,夹角为60度,那么第三边的长度是______。
答案:1. π2. √13三、解答题(每题15分,共30分)1. 证明:若一个三角形的两边长分别为a和b,且满足a^2 + b^2 = c^2,则这个三角形是直角三角形。
2. 解方程组:\[\begin{cases}x + y = 5 \\2x + 3y = 11\end{cases}\]答案:1. 证明:根据勾股定理的逆定理,如果三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
设三角形ABC,其中AB=a,BC=b,AC=c。
根据题目条件,有a^2 + b^2 = c^2。
根据勾股定理的逆定理,可以得出∠C=90°,即三角形ABC是直角三角形。
2. 解:将第一个方程乘以2得到2x + 2y = 10。
然后用这个新方程减去第二个方程,得到y = 1。
将y = 1代入第一个方程,得到x + 1 = 5,解得x = 4。
因此,方程组的解为x = 4,y = 1。
华杯赛试题及答案小学
华杯赛试题及答案小学一、选择题(每题5分,共20分)1. 下列哪个选项是最小的质数?A. 0B. 1C. 2D. 32. 如果一个数的因数只有1和它本身,那么这个数是:A. 合数B. 质数C. 偶数D. 奇数3. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是:A. 24立方厘米B. 26立方厘米C. 28立方厘米D. 30立方厘米4. 一个数的平方是36,那么这个数是:A. 6B. -6C. 6或-6D. 无法确定二、填空题(每题5分,共20分)1. 一个数的最小倍数是______。
2. 一个数的最大因数是______。
3. 一个数的因数的个数是______。
4. 一个数的倍数的个数是______。
三、解答题(每题10分,共30分)1. 一个长方体的长、宽、高分别是5cm、4cm、3cm,求它的体积。
2. 一个数的平方是64,求这个数。
3. 一个班级有45名学生,如果每排坐5名学生,那么需要排几排?四、应用题(每题15分,共30分)1. 小明买了3支铅笔和2本笔记本,每支铅笔的价格是1元,每本笔记本的价格是2元。
请问小明一共花了多少钱?2. 一个长方体的长是10cm,宽是8cm,高是6cm,求它的表面积。
答案:一、选择题1. C2. B3. A4. C二、填空题1. 它本身2. 它本身3. 有限个4. 无限个三、解答题1. 体积 = 长× 宽× 高= 5cm × 4cm × 3cm = 60立方厘米2. 这个数是8或-8(因为8^2 = 64且(-8)^2 = 64)3. 需要排的排数 = 学生总数÷ 每排人数= 45 ÷ 5 = 9排四、应用题1. 小明一共花了3 × 1元+ 2 × 2元 = 3元 + 4元 = 7元2. 表面积= 2 × (长× 宽 + 长× 高 + 宽× 高)= 2 × (10cm × 8cm + 10cm × 6cm + 8cm × 6cm) = 2 × (80平方厘米 + 60平方厘米 + 48平方厘米) = 2 × 188平方厘米 = 376平方厘米。
第9届华杯赛决赛试题及解答
8.
一 个最简 真分 数
干 位 的 数 字 之 和 等 于 2004 , 求 M 的 值 。
9.
小 丽 计 划 用 31 元 买 走 每 支 2 元 、3 元 、4 元 三 种 不 同 价 格 的 圆 珠 笔 , 每种至少买 1 支,问她最多 能买格 纸 上 ( 如 左 下 图 ) , 用铅笔涂其 中的 5 个方格,要求 每横行和 每竖列被 涂方格 的个数 都是奇 数。如果 两种涂 法经过 旋转 后相同, 则认为它 们是相 同类型 的涂法 ,否则是 不同类 型的涂 法。 例如下中 图和右下 图是相 同类型 的涂法 。最多有 多少种 不同类 型的 涂法?说明理由 。
675
钟,则蚂蚁乙从 洞穴 B 到达洞 穴 C 时爬 行了( 洞穴 C 到达洞穴 A 时爬行了( ) 米。
)米,蚂蚁 丙从
6.
如 下 图 ,甲 、乙 二 人 分 别 在 A ,B 两 地 同 时 相 向 而 行 ,于 E 处 相 遇 后 , 甲 继 续 向 B 地 行 走 ,乙 则 休 息 了 14 分 钟 ,再 继 续 向 A 地 行 走 。甲 和 乙到达 B 和 A 后立即折返, 仍在 E 处相遇 。 已 知 甲 每 分 钟 行 走 60 米 , 乙 每 分 钟 行 走 80 米 , 则 A 和 B 两 地 相 距 〔 )米。
二 、 解 答 下 列 各 题 , 要 求 写 出 简 要 过 程 ( 每 题 10 分 ) 7. 李 家 和 王 家 共 养 了 521 头 牛 ,李 家 的 牛 群 中 有 67 % 是 母 牛 ,而 王 家 的牛群中仅有下
1 是母牛,李 家和王家 各养了多少 头牛? 13 M ,化成小 数。 , 如果 从小 数点后 第一 位起连 续若 7
677
华杯赛小学(2)
“华杯赛”决赛赛前训练模拟题
(小学决赛卷)
1、计算:)59
541(4117541125.18-
÷-⨯=。
2、将∙∙⋅5245630⋅⨯的积写成小数的形式是。
3、24的约数有,其和为。
4、一列数1,1,2,3,5,8,13,21,…从第三项开始每一项是前两项的和,此数列的第2000项除以8的余数是。
5、八个自然数排成一行,从第三个数开始,每个数都等于它前面两个数的和。
已知第一个数是3,第八个数是180,那么第二个数是。
6、买一些4分、8分、1角的邮票共15张,用100分钱最多可买1角的张。
7、2002年北京召开的国际数学家大会,大会会标如图所示,它是由四个相同的直角三角形拼成的(直角边长为2和3)。
则大正方形的面积是多少?
8、已知等腰三角形的一个内角为70度,求其它的内角度数。
9、李云靠窗坐在一列时速60千米的火车里,看到一辆有30节车厢的货车迎面驶来,当货车车头经过窗口时,他开始记时,直到最后一节车厢驶过窗口时,所记的时间是18秒。
已知货车每节车厢长15.8米,车厢(包括和车头)间距1.2米,货车车头长10米。
问货车行驶的速度是多少?
10、A,B,C,D,E五个盒子中依次放有9,5,3,2,1个小球.第1个小朋友找到放球最少的盒子,然后从其它盒子中各取一个球放入这个盒子;第2个小朋友也先找到放球最少的盒子,然后也从其它盒子中各取一个球放入这个盒子;……当1000位小朋友放完后,A,B,C,D,E五个盒子中各放有几个球?。
第十九届“华杯赛”决赛小学中年级组试题与答案
第 1 页
共 1 页
8. 将 1~6 这六个自然数分成甲、乙两组, 则甲组数的和与乙组数的和的乘积最 大是________.
第 1 页
共 2 页
二、简答题(每小题 15 分, 共 60 分, 要求写出简要过程)
9. 如下图, 将一个大三角形纸板剪成四个小三角形纸板(第一次操作), 再将 每个小三角形纸板剪成四个更小的三角形纸板(第二次操作). 这样继续操 作下去, 完成第 5 次操作后得到若干个小三角形纸板. 甲和乙在这些小三角 形纸板上涂色, 每人每次可以在 1 至 10 个小三角形纸板上涂色, 谁最后涂完 谁赢. 在甲先涂的情况下, 请设置一个方案使得甲赢.
10. 如右图所示, 网格中每个小正方格的面积都为 1 平方厘 米. 小明在网格纸上画了一匹红鬃烈马的剪影(马的轮 廓由小线段组成 , 小线段的端点在格子点上或在格线 上), 则这个剪影的面积为多少平方厘米?
11. 从一块正方形土地上, 划出一块宽为 10 米的长方形土 地(如右图), 剩下的长方形土地面积是 1575 平方米. 那么, 划出的长方形土地的面积是多少?
12. 三位数190 19 (1 9 0) , 请 写出所有这样的三位数.
第 2 页
共 2 页
第十九届华罗庚金杯少年数学邀请赛
决赛试题参考答案 (小学中年级组) 一、填空(每题 10 分, 共 80 分)
题号 答案 1 56 2 132 3 60 4 36 5 15 6 16 7 114 8 110
3. 将学生分成 35 组, 每组 3 人. 其中只有 1 个男生的有 10 组, 不少于 2 个男生 的有 19 组 , 有 3 个男生的组数是有 3 个女生的组数的 2 倍 . 则男生有 ________人. 4. 从 1~8 这八个自然数中取三个数, 其中有连续自然数的取法有________种. 5. 如右图, 三个圆交出七个部分. 将整数 0~6 分别填到七个部 分中, 使得每个圆内的四个数字的和都相等, 那么和的最大 值是________. 6. 若干自然数的乘积为 324, 则这些自然数的和最小为________. 7. 在嫦娥三号着月过程中, 从距离月面 2.4 千米到距离月面 100 米这一段称为 接近段. 下面左图和右图分别是它到距月面 2.4 千米和月面 100 米处时, 录 像画面截图. 则嫦娥三号在接近段内行驶的时间是________秒(录像时间的 表示方法:30 : 28 / 2 : 10 : 48 表示整个录像时间长为 2 小时 10 分钟 48 秒, 当 前恰好播放到第 30 分钟 28 秒处).
第十六届华赛杯小学组决赛试题及答案
第十六届华罗庚金杯少年数学邀请赛决赛试题(深圳赛区小学组)(时间: 2011年4月16日)一、填空(每题 10 分, 共80分)1.11122181819 .2320320192020⎛⎫⎛⎫⎛⎫++++++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2.甲车从A 出发驶向B,往返来回;乙车从B 同时出发驶向A,往返来回.两车第一次相遇后,甲车继续行驶4小时到达B ,乙车继续行驶1小时到达A. 若A,B 两地相距100千米,那么当甲车第一次到达B 时,乙车的位置距离A 千米。
3.每个铅字上刻有一个数码.如果印刷十二页书,所用的页码铅字要以下15个:1,2,3,4,5,6,7,8,9,1,0,1,1,1,2。
现要印刷一本新书,从库房领出页码铅字共2011个,排版完成后有剩余.那么,这本书最多有页.最少剩余 个铅字.4. 一列数:8,3,1,4,.….., 从第三个开始,每个数都是最靠近它前两个数的和的个位数.那么第2011个数是 .5.编号从1到50的50个球排成一行,现在按照如下方法涂色:1)涂2个球;2)被涂色的2个球的编号之差大于2.如果一种涂法被涂色的两个球与另一种涂法被涂色的两个球至少有一个是不同号的,这两种涂法就称为”不同的”.那么不同的涂色方法有种.6. A,B两地相距100千米。
甲车从A到B要走m个小时,乙车从A 到B要走n个小时,m ,n是整数.现在甲车从A,乙车从B同时出发,相向而行,经过5小时在途中C点相遇。
若甲车已经走过路程的一半,那么C到A路程是千米。
7. 自然数b与175的最大公约数记为d. 如果176(111)51⨯-⨯+=⨯+,b d d则b = .8. 如右图. ABCD为平行四边形.AE=2EB.若三角形CEF的面积=1.那么,平行四边形ABCD的面积= .二、解答下列各题(每题10 分, 共40分, 要求写出简要过程)9.三位数的十位数字与个位数字的和等于百位数字的数,称为”好数”.共有多少个好数?10.在下列2n 个数中,最多能选出多少个数,使得被选出的数中任意两个数的比都不是2或12?2345213, 32, 32, 32, 32, 32,, 32.n -⨯⨯⨯⨯⨯⨯11 .一个四位数abcd 和它的反序数dcba 都是65 的倍数.求这个数.12. 用写有+1和-1的长方块放在10n方格中,使得每一列和每一行的数的乘积都是正的,n的最小值是多少?三、解答下列各题(每题15 分, 共30分, 要求写出详细过程)13. 十五个盒子,每个盒子装一个白球或一个黑球.,且白球不多于 12个.你可以任选三个盒子来提问:“这三个盒子中的球是否有白球?”并得到真实的回答. 那么你最少要问多少次,就能找出一个或更多的白球?14. 求与2001互质,且小于2001的所有自然数的和。
第九届“华杯赛”小学组总决赛一试题
677 第九届“华杯赛”小学组总决赛第一试试题
1. 计算:800
2.4
00.2 (结果用最简分数表示) 2. 水池装有一个排水管和若干每小时注水量相同的注水管,注水管注
水时,排水管同时排水。
若用12个注水管注水,8小时可注满水池;若用9个注水管注水,24小时可注满水池,现在用8个注水管注水,那么需要多少小时注满水池?
3. 在操场上做游戏,上午8:00从A 地出发,匀速地行走,每走5分
钟就折转90°。
问(1)上午9:20能否恰好回到原处?
(2)上午9:10 能否恰好回到原处?
如果能,请说明理由,并设计一条路线。
如果不能请说明理由。
4. 在1到100的所有自然数中,与100互质的各数之和是多少?
5. 老王和老张各有5角和8角的邮票若干张,没有其它面值的邮票,
但是他们邮票的总张数一样多。
老王的5角邮票的张数与8角邮票张数相同,老张的5角邮票的总金额等于8角邮票的总金额。
用他们的邮票共同支付110元的邮资足够有余,但不够支付160元的邮资。
问他们各有8角邮票多少张?
6. 在下面一列数中,从第M 个数开始,每个数都比它前面相邻的数大
7:
8,15,22,29,36,43……它们前(n -l )个数相乘的积的末尾0的个数比前n 个数相乘的积的末尾0的个数少3个,求n 的最小值。
第三届华杯赛全套试题
第三届华罗庚金杯赛少年数学邀请赛初赛试题(小学组)1.光的速度是每秒30万千米,太阳离地球1亿5千万千米.问:光从太阳到地球要用几分钟(得数保留一位小数)? 2.计算?712631351301=⨯⎪⎭⎫⎝⎛++3.有3个箱子,如果两箱两箱地称它们的重量,分别是83千克、85千克和86千克.问:其中最轻的箱子重多少千克?4.请将算式100.010.01.0 ++的结果写成最简分数.5.(如右图)将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体.求这个物体的表面积(取π=3).6.一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.问:在无风的时候,他跑100米要用多少秒?7.一个矩形分成4个不同的三角形(如右图),绿色三角形面积占矩形面积的15%,黄色三角形的面积是21平方厘米.问:矩形的面积是多少平方厘米?8.有一对紧贴的传动胶轮,每个轮子上都画有一条通过轴心的标志线(如下图).主动轮的半径是105 厘米,从动轮的半径是90厘米.开始转动时,两个轮子上的标志线在一条直线上.问:主动轮至少转了几转后,两轮的标志线又在一条直线上?9.小明参加了四次语文测验,平均成绩是68分.他想在下一次语文测验后,将五次的平均成绩提高到70分以上,那么,在下次测验中,他至少要得多少分?10.如下图中共有7层小三角形,求白色小三角形的个数与黑色小三角形的个数之比.11.下面的算式里,每个方框代表一个数字.问:这6个方框中的数字的总和是多少?12.在所有的两位数中,十位数字比个位数字大的两位数有多少个?13.有甲、乙两个同样的杯子,甲杯中有半杯清水,乙杯中盛满了含50%酒精的溶液.先将乙杯中酒精溶液的一半倒入甲杯,搅匀后,再将甲杯中酒精溶液的一半倒入乙杯.问这时乙杯中的酒精是溶液的几分之几?14.射箭运动的箭靶是由10个同心圆组成,两个相邻的同心圆半径之差等于最里面的小圆半径.最里面的小圆叫做10环(如右图所示),最外面的圆环叫做1环.问:10环的面积是1环面积的几分之几?15.王师傅在某个特殊岗位上工作、他每上8天班后,就连续休息2天.如果这个星期六和星期天他休息,那么,至少再过几个星期后他才能又在星期天休息?第三届华罗庚金杯赛少年数学邀请复赛赛试题(小学组)1.计算:9819375.4121314532852÷⎪⎭⎫⎝⎛+⨯-2.某年的10月里有5个星期六,4个星期日.问:这年的10月1日是星期几?3. 电子跳蚤每跳一步,可从一个圆圈跳到相邻的圆圈.现在,一只红跳蚤从标有数字“0”的圆圈按顺时针方向跳了1991步,落在一个圆圈里.一只黑跳蚤也从标 有数字“0”的圆圈起跳,但它是沿着逆时针方向跳了1949步,落在另一个圆圈里.问:这两个圆圈里数字的乘积是多少?4.173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?5.我们知道:339⨯=,4416⨯=,这里,9、16叫做“完全平方数”,在前300个自然数中,去掉所有的“完全平方数”,剩下的自然数的和是多少?6.如图,从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长2厘米的正方形,然后,沿虚线折叠成长方体容器.这个容器的体积是多少立方厘米?7.在射箭运动中,每射一箭得到的环数或者是“0”(脱靶),或者是不超过10的自然数.甲、乙两名运动员各射了5箭,每人5箭得到的环数的积都是1764,但是甲的总环数比乙少4环.求甲、乙的总环数.8.下图中有6个点,9条线段.一只甲虫从A 点出发,要沿着某几条线段爬到F 点.行进中,同一个点或同一条线段只能经过1次.这只甲虫最多有多少种不同的走法?9.下图中的正方形被分成9个相同的小正方形,它们一共有16个顶点(共同的顶点算一个),以其中不在一条直线上的3个点为顶点,可以构成三角形.在这些三角形中,与阴影三角形有同样大小面积的有多少个?10.已知:199111982119811198011++++=S ,求:S 的整数部分.11.今年,祖父的年龄是小明的年龄的6倍.几年后,祖父的年龄将是小明的年龄的5倍.又过几年以后,祖父的年龄将是小明的年龄的4倍.求:祖父今年是多少岁?12.某个班的全体学生进行了短跑、游泳、篮球三个项目的测试,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一个项目达到优秀,这部分学生达到优秀的项目、人数如下表: 求这个班的学生数.13.恰好能被6、7、8、9整除的五位数有多少个?14.计算:200119991197531+--+-+-15.五环图由内圆直径为8,外圆直径为10的五个圆环组成,其中两两相交的小曲边四边形(阴影部分)的面积都相等.已知五个圆环盖住的总面积是112.5,求每个小曲边四边形的面积(圆周率π取3.14).16.下图中8个顶点处标注的数字:a 、b 、c 、d 、e 、f 、g 、h ,其中的每一个数都等于相邻三个顶点处数的和的31,求:()()h g f e d c b a +++-+++的值.第三届华罗庚金杯赛少年数学邀请赛决赛一试试题(小学组)1.计算:99163135115131++++2.说明:360这个数的约数有多少个?这些约数的和是多少?3.观察下面数表(横排为行):根据前5行数所表达的规律,说明19491991这个数位于由上而下的第几行?在这一行中,它位于由左向右的第几个?4.将一个圆形纸片用直线划分成大小不限的若干小纸片,如果要分成不少于50个小纸片,至少要画多少条直线?请说明.5.某校和某工厂之间有一条公路,该校下午2点钟派车去该厂接某劳模来校作报告,往返需用1小时.这位劳模在下午1点钟便离厂步行向学校走来,途中遇到接他的汽车,更立刻上车驶向学校,在下午2点40分到达.问:汽车速度是劳模步行速度的几倍?6.在一个圆周上放了1枚黑色的和1990枚白色的围棋子(如右图).一个同学进行这样的操作:从黑子开始,按顺时针方向,每隔一枚,取走一枚.当他取到黑子时,圆周上还剩下多少枚白子?第三届华罗庚金杯赛少年数学邀请赛二试试题(小学组)1.写出从360到630的自然数中有奇数个约数的数.2,四边形ABCD被AC和DB分成甲,乙,丙,丁4个三角形(如右图).已知:BE=80cm.CE=60cm,DE=40cm,AE=30cm.问:丙、丁两个三角形面积之和是甲、乙两个三角形面积之和的多少倍?3.已知:,问:a除以13所得余数是几?4.某班在一次数学考试中,平均成绩是78分,男、女生各自的平均成绩是75.5分、81分.问:这个班男、女生人数的比是多少?5.某玩具厂生产大小一样的正方体形状的积木,每个面分别涂上红、黄、蓝3种颜色中的1种,每色各涂2个面.当两个积木经过适当的翻动以后,能使各种颜色的面所在位置相同时,它们就被看作是同一种积木块.试说明:最多能涂成多少种不同的积木块?6.一条双向铁路上有11个车站,相邻两站都相距7千米.从早晨7点开始,有18列货车由第十一站顺次发出,每隔5分钟发出一列,都驶向第一站,速度都是每小时60千米.早晨8点,由第一站发出一列客车,向第十一站驶去,时速是100千米.在到达终点站前,货车与客车都不停靠任何一站.问:在哪两个相邻站之间,客车能与3列货车先后相遇?11。
2020年华杯赛四年级组试题
2020年华杯赛四年级组试题一、选择题(每小题10分,共40分。
以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。
)1. 6月1日,星期三下午,冬冬接到一封来自上海的信。
原来冬冬是一位勤学多思的好学生,他在全国小学数学奥林匹克比赛中获得一等奖,主办单位在信中邀请他于6月25日到上海参加颁奖大会呢!你能算一算,冬冬领奖的那一天是星期( )。
(A ) 日(B ) 一 (C ) 五 (D ) 六2. 在下面的阴影三角形中,不能由右图中的阴影三角形经过旋转、平移 得到的是图( )中的三角形。
3. 几个小朋友在屋子里玩石头剪子布,丁丁在门外问他们一共有几个人,其中一个小朋友说:“不能告诉你人数,不过我们现在一共伸出来了22根手指,并且有3个人出石头。
”请问:屋子里至少有( )个人在玩游戏。
(出石头的不伸手指,出剪子的伸2根,出布的伸5根) (A ) 5(B ) 8 (C ) 11 (D ) 144. 唐僧师徒四人途径一个桃园,被园主发现有人偷吃了桃子,盘问中,四人回答如下: 孙悟空:“八戒偷吃了”;猪八戒:“我和沙师弟两人至多有一个人偷吃了”; 沙 僧:“二师兄(猪八戒)没有偷吃,偷吃的是我”; 唐 僧:“如果八戒偷吃了,沙僧一定也吃了”。
现在知道,师徒四人中只有一个说假话,那么,说假话的是( )。
(A ) (B ) (C ) (D )(A ) 孙悟空 (B ) 猪八戒 (C ) 沙 僧 (D ) 唐 僧 二、填空题(每小题10分,共40分。
)5. 如果2只香蕉能换6个苹果,4个苹果能换16个梨,那么 3只香蕉能换 个梨。
6. 如右图,在方框内填入数字,使算式成立,那么所得的积 是 。
7.将一个正六边形切割成三个完全相同的小正六边形和三个完全相同的菱形(如右图)。
如果大正六边形的面积为360平方厘米,那么 每个菱形的面积是 平方厘米。
8. 老师让丁丁写出3个非零的自然数,且3个数的和是9。
“华杯赛”赛前训练模拟题(小学组决赛卷二)
“华杯赛”赛前训练模拟题(小学组决赛卷2)1、 找规律填数:31,21,32,43,98, ( ) 2、 将1至9这9个数排成一行,使得第二个数能整除第一个数,第三个数能整除前两个数的和,第四个数能整除前3个数的和……第九个数能整除前8个数的和.如果第一个数是6,第四个数是2,第五个数是1,请问排在最后的数是几?3、 从1开始,依次写出1234…20032004,这个多位数除以9的余数是多少?4、 某种商品,如果减少定价的5%卖出,可得6250元的利润;如果减去定价的25%卖出,就会亏损1750元.问这种商品的购入价是多少元?5、 李师傅计划做一批零件,如果他每小时多做10个,可提前1小时完成任务;如果他每小时再多做20个,则又可提前1小时完成任务.问李师傅计划做多少个零件?6、 如图所示,在三角形ABC 中,D 为BC 的中点,AE CE 31,AD 和BE 相交F 点,已知三角形ABC 的面积为42平方厘米,求三角形BDF 的面积.7、上表中“全月应纳税所得额”是从月工资薪金收入中减去800元后的余额,它与相应税率的乘积就是应交的税款数.(1) 李医生在2000年六月份的工资薪金收入为2860元,这个月他应纳税款是多少元?(2) 赵先生在2000年五月份共交纳了1185元个人工资薪金收入所得税,问这个月赵先生的工资薪金收入共多少元?8、如图所示,从A 到B ,步行走粗线道ADB 需要32分钟,乘车细线道A →C →D →E →B 需22.5分钟.已知D →E →B 段的距离是D →B 段距离的4倍,A →C→D 段的距离是A →D 段的距离的5倍,车速是步行速度的6倍,问先从A 至D 步行,再从D →E →B 乘车所需要的总时间是多少分钟?9、某省博物馆早晨7∶30开门,晚上8∶30关门.某天下午在博物馆门口有一少年问一长者:“现在是几点?”长者回答说:“从开门到现在时间的21,加上现在到关门时间的31,就是现在的时间.”问现在的时间是下午几点?。
第十一届“华杯赛”小学组决赛试题
第十一届“华杯赛”决赛试卷(小学组)一、填空(每题10 分,共80 分)1.计算:1510(30.85)126.3206⎡⎤+-÷÷⎢⎥⎣⎦=( )2.图la 是一个长方形,其中阴影部分由一副面积为1 的七巧板拼成(如图lb ) ,那么这个长方形的面积是( ) .3.有甲、乙、丙、丁四支球队参加的足球循环赛,每两队都要赛一场,胜者得3 分,负者得O 分,如果踢平,两队各得1 分.现在甲、乙和丙分别得7 分、1 分和6 分,已知甲和乙踢平,那么丁得()分.4.图2 中,小黑格表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大的信息量.现在从结点A 向结点B 传递信息,那么单位时间内传递的最大信息量是( ) .5.先写出一个两位数62 ,接着在62 右端写这两个数字的和8 ,得到628 ,再写末两位数字2 和8 的和10 ,得到62810 ,用上述方法得到一个有2006 位的整数:628101123 ……,则这个整数的数字之和是( ) .6.智慧老人到小明的年级访问,小明说他们年级共一百多同学.老人请同学们按三人一行排队,结果多出一人,按五人一行排队,结果多出二人,按七人一行排队,结果多出一人,老人说我知道你们年级的人数应该是()人.7.如图3 所示,点B 是线段AD的中点,由A , B , C , D 四个点所构成的所有线段的长度均为整数,若这些线段的长度之积为10500 ,则线段AB 的长度是( ) .8. 100 个非O 自然数的和等于2006 ,那么它们的最大公约数最大可能值是( )二.解答下列各题,要求写出简要过程(每题10 分,共40 分)9.如图4 ,圆O 中直径AB 与CD 互相垂直,AB = 10 厘米.以C 为圆心,CA 为半径画弧AEB.求月牙形ADBEA(阴影部分)的面积.10.甲、乙和丙三只蚂蚁爬行的速度之比是8 : 6 : 5 ,它们沿一个圆圈从同一点同时同向爬行,当它们首次同时回到出发点时,就结束爬行.问蚂蚁甲追上蚂蚁乙一共多少次?(包括结束时刻).11.如图5 ,ABCD是矩形,BC= 6c m ,AD=10cm ,AC 和BD 是对角线.图中的阴影部分以CD为轴旋转一周,则阴影部分扫过的立体的体积是多少立方厘米?( 取3.14 )12.将一根长线对折后,再对折,共对折10 次,得到一束线.用剪刀将这束线束剪成10 等份,问:可以得到不同长度的短线段各多少根?三、解答下列各题,要求写出详细过程(每题15 分,共30 分)13.华罗庚爷爷在一首诗文中勉励青少年:“猛攻苦战是第一,熟练生出百巧来,勤能补拙是良训,一分辛劳一分才.”现在将诗文中不同的汉字对应不同的自然数,相同的汉字对应相同的自然数,并且不同汉字所对应的自然数可以排列成一串连续的自然数.如果这28 个自然数的平均值是23 ,问“分”字对应的自然数的最大可能值是多少?14.一根长为L 的木棍,用红色刻度线将它分成m 等份,用黑色刻度线将分成n等份(m>n )①设x 是红色与黑色刻度线重合的条数,请说明:x +1 是m和n 的公约数;②如果按刻度线将该木棍锯成小段,一共可以得到170 根长短不等的小棍,其中最长的小棍恰有100 根.试确定m 和n 的值.。
2012华杯小学试题复赛模拟题十套修改版111
华杯赛决赛赛前培训模拟试题(一)一、填空题1.如图,正六边形ABCDEF 的面积是54平方厘米. AP=2PF ,CQ=2BQ ,阴影四边形CEPQ 的面积是_________.2.轮船从武汉到九江要行驶5小时,从九江到武汉要行驶7小时,问长江飘流队员要从武汉乘木筏自然飘流到九江需要_______ 小时.3.用面积为1,2,3,4的四张长方形纸片拼成如图所示的一个大长方形,问:图中阴影部分面积是______.4.在1,2,3,…,1996,1997这1997个自然数中,含数码1的数共有________个。
5. 7+=数学竞赛华罗庚金杯,上面算式中,华、罗、庚、金、杯、数、学、竞、,赛九个字,代表数字l ,2,3,4,5,6,7,8,9(不同的文字代表不同的数字).已知:竞=8,赛=6.请把这个等式恢复出来.7+=( )( )( )( )6.将l,2,3,4,5,6,?,8,9九个数排成一行,使得第二个数整除第一个数,第三个数整除前两个数的和,第四个数整除前三个数的和,……,第九个数整除前八个数的和,如果第一个数是6,第四个数是2,第五个数是1.问排在最后的数是__________.二、简答题7.两千个数写成一行,它们中任意三个相邻数的和都相等,这两千个数的和是53324.如果擦去从左数第1个,第1949个,第1975个以及最后一个数,剩下的数之和是53236,问剩下的数中从左数第50个数是几?8.圆柱形的售报亭的高与底面直径相等.如图7-17,开有一个边长等于底面半径的正方形售报窗口,问:窗口处挖去的圆柱部分的面积占圆柱侧面面积的几分之几?9.五个比0大的数它们两两的乘积是1,80,35,1.4,50,56,1.6,2,40,70这十个值,问这五个数中最大数是最小数的多少倍?10.六张大小不同的正方形纸片拼成所示的图形。
已知最小的正方形面积是1,问:图中阴影正方形的面积是?11.由四个不同的非0数字组成的所有四位数中,数字和等于12的共有多少个?三、解答题12.某城市东西路与南北路交汇于路口A。
“华杯赛”总决赛赛前训练模拟题(8套).docx
“华杯赛”决赛赛前训练模拟题•小学组决赛卷一.填空题8 4(16 ——x 2.375+ 12 ——x 4.75) x 19.98 247 285 ----------- 167 ------- = 6.66x(48x2一-) 1952、一次数学竞赛满分是100分,某班前六名同学的平均得分是95.5分,排第六名同学的得分是89 分,每人得分是互不相同的整数,那么排名第三的同学最少得 ___________ 分。
7、相同的正方块码放在桌面上,从正面看,如图4;从侧面看,如图5,则正方块最多有 个,最少有 个.8、有一种饮料的瓶身如下图所示,容积是3升。
现在它里面装了一些饮料,正放时饮料高度为20厘米,倒放时空于部分的高度为5厘米。
那么瓶内现有饮料 ____________ 升。
二、解答题9、如图,两个正方形边长分别是5厘米和4厘米,图中阴影部分为重叠部分。
则两个正方形的空白 AD 4、在梯形ABCD 中,上底长5厘米,下底长10厘米,S^oc=20 平方丿車米,则梯形ABCD 的面积是平方丿車米。
厶 B C3、在下血的等式中,和同的字母表示同一数字,不同字母表示不同的数字:若abed —dcba= □ 997,那么□中应填 ________________5、 已知:10A3=14, 8A7=2,丄△丄=14 4 1.计算: X= ____________________ O6、 图中共有 __________ 个三角形。
图5 (从侧血看)部分的面积相差多少平方厘米?1()、水桶中装有水,水中插有A、B、C二根竹杆,露出水面的部分依次是总长的.?.二根竹杆长度总和为98厘米,求水深。
11、养猪专业户王大们说:“如果卖掉75头猪,那么饲料可维持20天,如果买进100头猪,那么饲料只能维持15天。
”问:王大们一共养了多少头猪?12、A、B两地之间是山路,相距60千米,具中一部分是上坡路,具余是下坡路,某人骑电动车从A地到B地,再沿原路返回,去时用了 4.5小时,返冋时用了 3.5小时。
第十届“华杯赛”小学组总决赛二试题
699 第十届 “华杯赛”总决赛小学组二试试题
l.如下页图,四边形ABCD 中,对角线AC 和BD 交于O 点。
已知:AO =l ,并且5
3CBD ABD =的面积三角形的面积三角形,那么OC 的长是多少?
2.将1/2化成小数等于0.5,是个有限小数;将1/11化成小数等于
0.0909……,简记为90
.0 ,是纯循环小数;将1/6化成小数等于0.l666……,简记为6
01.0 ,是混循环小数。
现在将2004个分数,2005
1,41,31,21 化成小数,问:其中纯循环小数有多少个? 3.计算:2005
200320011975175315311⨯⨯++⨯⨯+⨯⨯+⨯⨯ 4.abc 表示一个十进制的三位数,若abc 等于由a ,b ,c 三个数码所组成的全体两位数的和,写出所有满足上述条件的三位数。
5.由26=12+52=12+32 +42,可以断定26最多能表示为3个互不相等的非零自然数的平方和,请你判定360最多能表示为多少个互不相等的非零自然数的平方之和?
6.有若干名小朋友,第一名小朋友的糖果比第二名小朋友的糖果多2块,第二名小朋友的糖果比第三名小朋友的糖果多2块……即前一名小朋友总比后一名小朋友多二块糖果。
他们按次序围成圆圈做游戏,从第一名小朋友开始给第二名小朋友2块糖果,第二名小朋友给第三名小朋友4块糖果……即每一名小朋友总是将前面传来的糖果再加上自己的2块传给下一名小朋友。
当游戏进行到某一名小朋友收到上一名小朋友传来的糖果但无法按规定给出糖果时,有两名相邻小朋友的糖果数的比是13:1,问最多有多少名小朋友?。
第八届“华杯赛”小学组决赛一试题
669 第八届“华杯赛”小学组决赛第一试试题
1.计算:900
30010027931862931400
2001001263842421⨯⨯++⨯⨯+⨯⨯+⨯⨯⨯⨯++⨯⨯+⨯⨯+⨯⨯ 2.李经理的司机每天早上7点30分到家接他去公司上班,有一天李经理7点从家出发步行去公司,路上遇到按时来接他的车,乘车去公司,结果早到5分钟。
问李经理什么时间遇上汽车?汽车速度是步行速度的几倍?
3.如右图,p -ABC 是一个四面体,各棱互不相等。
现有红、黄两种颜色将四面染色,规则如下:l )首先将p ,A ,B ,C 染成红、黄二色之一;
2)在一个面的三角形中,若两个或三个顶点同色,则将这个面染成这种颜色。
问有多少种不同的染法?(两个染好了的四面体,四个对应面的颜色相同,则认为是同一种染法,不计四个顶点的颜色是否相同)
4.如下图,CDEF 是正方形的,ABCD 是等腰梯形,它的上底AD =23厘米,下底BC =35厘米。
求三角形ADE 的面积。
5.求1-2001的所有自然数中,有多少个整数x 使2x 与x 2被7除余数相同?
6.12个小朋友每人一件编号1,2,3··12的行李包,各自用号牌取行李。
行李按编号顺序排成一列,小朋友随意排成一列,但只有当未取走行李中编号最小的行李才能被取走,否则取行李的小朋友要排到队尾去(取到行李的小朋友不再排队),而验一个号需要一分钟,四点开始验号牌,3号行李在4:33被取走,8号行李在4:40被取走。
问拿1,2,3和8号牌的小朋友最初的排队次序各是第几名?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“华杯赛”赛前训练模拟题
小学组决赛卷
一、填空题
1、计算:3.14159-2.71828+1.414×0.732=( ).
2、你心里想好一个数,将你想的数乘以2,然后加上6,再加上你想的数,然后将得到的数除以3,由此得到一个新的数,要使新的数为一个三位数,则你想的数至少为().
3、一个数学兴趣小组共有10个人,小马和小虎同时计算这个小组在一次考试中的平均成绩.小马计算时,将小牛的成绩多加了一次,而小虎计算时,却漏加了小牛的成绩,结果他们算出来的这10个人的平均成绩分别是99
和79.那么小牛的成绩是().
4、如图,在边长为1的正方形中以边长为直径画两个半圆,若圆面积
的计算公式为:⨯
.3
S半径×半径,则图中阴影部分的面积为
=14
m
().
5、将一根细线对折10次,然后拦腰剪断,则这根细线被剪成了()段.
6、试将8个数1,1,2,2,3,3,4,4排成一行,使两个1之间夹着1个数,两个2之间夹着2个数,两个3之间夹着3个数,两个4之间夹着4个数,则合乎要求的一种排列结果为().
二、解答下列各题,要求写出简要过程
7、设S是分母不大于30的所有真分数的和,请求出S的值.
8、将1到1000这些自然数由小到大紧凑地排列在一起,得到一个“大数”:12345678910111213141516171819202122232425…9979989991000,求这个“大数”从左至右的第1000个数字.
9、如图,在4×4的方格纸的每个方格中分别填上数1,2,3,4,…,16.现在要从中选取4个数,使任何两个数不在同一行也不在同一列,问共有多少种不同的取数方法?
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
10、王老师教学生学习两位数,他准备用90张卡片分别写上10,11,12,13,…,99这90个两位数供教学使用,但后来他发现有些卡片写上一个两位数之后,将卡片倒过来看便是另一个两位数.比如:16倒过来看是91.这样一来,有些卡片可以做两个两位数用,那么,王老师用这种方法可以少做多少张卡片?
11、一项工程,甲乙两人合做x天能完成.若甲做乙所完成的那部分工程量,则需要8天;若乙做甲所完成的那部分工程量,则需要2天,求x.
12、要用小刀将一个大蛋糕划分为15块,每次划分后不能将蛋糕叠合,至少要划几刀?请说明理由并给出一种具体的划分方法.。