2014年春季新版新人教版八年级数学下学期17.1、勾股定理同步练习14
人教版八年级下册数学17.1勾股定理同步练习试题(含答案)
17.1 勾股定理同步练习题一、填空题1.假如直角三角形的两直角边长分别为a、 b,斜边长为c,那么 ______= c2;这必定理在我国被称为 ______.2.△ABC 中,△C= 90°, a、 b、c 分别是△A、△B、△C 的对边.(1)若 a= 5, b= 12,则 c= ______;(2)若 c= 41, a= 40,则 b= ______;(3)若△A= 30°, a= 1,则 c=______ ,b= ______;(4)若△A= 45°, a= 1,则 b= ______, c= ______.3.如图是由边长为1m 的正方形地砖铺设的地面表示图,小明沿图中所示的折线从A→ B→C 所走的行程为______.4.等腰直角三角形的斜边为10,则腰长为 ______,斜边上的高为______ .5.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为 ______.二、选择题6. Rt △ABC 中,斜边 BC= 2,则 AB 2+AC 2+ BC2的值为 ().(A)8(B)4(C)6(D) 没法计算7.如图,△ABC 中, AB= AC= 10, BD 是 AC 边上的高线, DC = 2,则 BD 等于 ().(A)4(B)6(C)8(D) 2 108.如图, Rt △ABC 中,△C= 90°,若 AB= 15cm,则正方形ADEC 和正方形BCFG 的面积和为().(A)150cm 2 (B)200cm 2(C)225cm 2 (D) 没法计算三、解答题9.在 Rt △ABC 中,△C=90°,△A、△B、△C 的对边分别为a、b、 c.(1)若 a△b= 3△4, c= 75cm,求 a、 b;(2)若 a△c= 15△ 17, b= 24,求△ABC 的面积;(3)若 c- a= 4, b= 16,求 a、 c;(4)若△A= 30°, c= 24,求 c 边上的高 h c;(5)若 a、 b、 c 为连续整数,求a+ b+ c.提升题一、选择题10.若直角三角形的三边长分别为2, 4, x,则x 的值可能有( ).(A)1 个(B)2 个(C)3 个(D)4 个二、填空题11.如图,直线l 经过正方形ABCD 的极点B,点A、 C 到直线l 的距离分别是1、 2,则正方形的边长是______.12.在直线上挨次摆着7 个正方形 (如图 ),已知倾斜搁置的 3 个正方形的面积分别为1, 2,3,水平搁置的 4 个正方形的面积是S1, S2, S3, S4,则 S1+ S2+ S3+ S4= ______.三、解答题13.如图, Rt △ABC 中,△C= 90°,△A= 30°, BD 是△ABC 的均分线, AD = 20,求BC 的长.14.如图,△ABC 中,△C= 90°.(1)以直角三角形的三边为边向形外作等边三角形(如图△),研究 S1+ S2与 S3的关系;图△(2)以直角三角形的三边为斜边向形外作等腰直角三角形(如图△),研究 S1+ S2与 S3的关系;图△(3)以直角三角形的三边为直径向形外作半圆(如图△),研究 S1+S2与 S3的关系.图△参照答案1. a 2+ b 2,勾股定理.2. (1)13 ;(2)9; (3)2, 3 ; (4)1, 2 .... 2 , .5 .132cm .6 . A.. .8 . . 3 2 54 557 BC9. (1)a =45cm . b = 60cm ; (2)540 ;(3) a =30, c = 34;(4)6 3 ;(5)12.10. B .11. 5.12. 4.13. 10 3.14. (1)S 1 +S 2=S 3; (2) S 1 +S 2= S 3; (3)S 1+S 2=S 3.。
(附答案解析)人教版八年级数学下册17.1勾股定理)精选同步练习
17.1勾股定理同步练习姓名:__________班级:__________学号:__________本节应掌握和应用的知识1.勾股定理:直角三角形两直角边的平方和等于斜边的平方.在△ABC 中,如果两直角边的长分别为a 、b,斜边长为c,那么a 2+b 2=c 2.2.勾股定理的验证:通常用面积法来验证勾股定理.3.在把实际问题转化为数学问题时,关键是画出符合题意的图形,把实际问题转化为几何问题,直接利用直角三角形或构造直角三角形,运用勾股定理求解.一、选择题1.如图,折叠直角三角形纸片ABC ,使两锐角顶点A C 、重合,设折痕为DE .若16AB =,8BC =,则BD 的长是( )A. 6B. 8C. 10D. 122.如图,在△ABC 中,AB=8,BC=10,AC=6,则BC 边上的高AD 为( )A. 245B. 8C. 9D. 10 3.直角三角形的两边长为5和12,则第三边的长为( )A. 13B. 13或119C. 119D. 无法确定4.如图,在Rt △ABC 中,∠ACB=90°,BC=12,AC=5,分别以点A ,B 为圆心,大于线段AB 长度的一半为半径作弧,相交于点E ,F ,过点E ,F 作直线EF ,交AB 于点D ,连接CD ,则△ACD 的周长为( )A. 13B. 17C. 18D. 255.如图,在△ABC 中,有一点P 在直线AC 上移动,若AB =AC =5,BC =6,则BP 的最小值为( )A. 24B. 5C. 4D. 4.86.如图在Rt △ABC 中,90C ∠=︒,AD 平分CAB ∠,AC=6,BC=8,则CD 的长为( )A. 1B. 2C. 3D. 47.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm.A 和B 是这个台阶上两个相对的端点,点A 处有一只蚂蚁,想到点B 处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B 的最短路程为()A. 481 dmB. 20dmC. 25dmD. 35dm8.如图,在平面直角坐标系xOy 中,已知AD 平分OAB ∠,DB AB ⊥,BC ∥OA ,点D 的坐标为()0,3D ,点B 的横坐标为1,则点C 的坐标是().A. ()0,2B. ()0,32+C. ()0,5 D. ()0,59.如图,将一边长为a 的正方形(最中间的小正方形)与四块边长为b 的正方形(其中b >a )拼接在一起,则四边形ABCD 的面积为( )A. b 2+(b ﹣a )2B. b 2+a 2C. (b +a )2D. a 2+2ab10.如图3,以Rt △ABC 的三边为斜边分别向外作等腰三角形,若斜边AB =3,则图中阴影部分的面积为( )A. 9B. 92C. 94D. 3 二、填空题11.在Rt ABC V 中,90BAC ∠=︒,AD BC ⊥,垂足为点D ,如果6AC =,8AB =,那么AD 的长度为________.12.如图,在三角形纸片ABC 中,∠C=90°,AC=18,将∠A 沿DE 折叠,使点A 与点B 重合,折痕和AC 交于点E ,EC=5,则BC 的长为______.13.已知,在△ABC 中,∠A =45°,AC =2,AB =31+,则边BC 的长为_________.14.在Rt △ABC 中,∠C =90°,①若a =5,b =13,则c =________;②若a =9,c =41,则b =________.15.在直线l 上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+2S 2+2S 3+S 4=________.16.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△11AB C 的位置,点B ,O 分别落在点1B ,1C 处,点1B 在x 轴上,再将△11AB C 绕点1B 顺时针旋转到△112A B C 的位置,点2C 在x 轴上,将△112A B C 绕点2C 顺时针旋转△222A B C 的位置,点2A 在x 轴上……依次进行下去。
人教版八年级下册数学 17.1 勾股定理 同步习题(含答案)
17.1 勾股定理同步习题知识点1 勾股定理1.如图,以直角三角形的三边a,b,c为边或直径,分别向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形个数是()A.1B.2C.3D.42.若一个直角三角形的两直角边的长分别为a,b,斜边长为c,则下列关于a,b,c的关系式中不正确的是()A.b2=c2-a2B.a2=c2-b2C.b2=a2-c2D.c2=a2+b23.一直角三角形的两边长分别为3和4,则第三边长为()A.5B. 7C.2D.5或74.如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5B.6C.8D.105.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10B.8C.6或10D.8或106.在△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8B.4.8或3.8C.3.8D.5知识点2 勾股定理与面积的关系7.如图,字母B所代表的正方形的面积是()A.12B.13C.144D.1948.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,则b的面积为()A.3B.4C. 5D.79.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.8010.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A.13B.26C.47D.94易错点考虑问题不全面而漏解(分类讨论思想)11.若一个直角三角形的三边长分别为a,b,c,且a2=9,b2=16,则c2为()A.25B.7C.7或25D.9或16提升训练考查角度1 利用勾股定理求直角三角形中的边长12.如图,在△ABC中,CD⊥AB于D,AC=4,BC=3,DB=.(1)求DC的长;(2)求AB的长.考查角度2 利用勾股定理求三角形的面积13.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.如图,作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x→利用勾股定理求出AD的长,再计算三角形面积探究培优拔尖角度1 利用勾股定理解非直角三角形问题(倍长中线法)14.如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)求△ABC中BC边上的高.拔尖角度2 利用勾股定理解四边形问题(补形法)15.如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,BC=6,CD=4,求: (1)AB的长;(2)四边形ABCD的面积.参考答案解:因为直角三角形的三边为a,b,c,所以应用勾股定理可得a2+b2=c2.第一个图形中,首先根据等边三角形的面积的求法,表示出3个等边三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第二个图形中,首先根据圆的面积的求法,表示出3个半圆形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积,然后根据a2+b2=c2,可得S1+S2=S3.2.【答案】C3.【答案】D解:当两直角边长分别为3和4时,斜边长为=5;当斜边长为4时,另一条直角边长为=.故选D.4.【答案】C5.【答案】C解:根据题意画出图形,如图①所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得BD==8,CD==2,此时BC=BD+CD=8+2=10;如图②所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得BD==8,CD==2,此时BC=BD-CD=8-2=6,则BC的长为6或10.故选C.6.【答案】A解:如图,过A点作AF⊥BC于F,连接AP,因为在△ABC中,AB=AC=5,BC=8,所以BF=4,所以在Rt△ABF中,AF2=AB2-BF2=9,所以AF=3,所以×8×3=×5×PD+×5×PE,即12=×5(PD+PE),解得PD+PE=4.8.7.【答案】C8.【答案】D解:利用勾股定理求出正方形的边长为10,阴影部分的面积为正方形面积与直角三角形面积之差.10.【答案】C11.错解:A诊断:容易忽略a,c为直角边长,b为斜边长这种情况,故很容易错选A.正解:C解题策略:解答此题要用分类讨论思想.此题有两种情况:a,b为直角边长,c为斜边长和a,c为直角边长,b为斜边长,利用勾股定理即可求解.12.解:(1)在Rt△BCD中,DC2=BC2-BD2=32-=,所以DC=.(2)在Rt△ACD中,AD2=AC2-CD2=42-=,所以AD=,所以AB=AD+BD=+=5.13.解:在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14-x,由勾股定理得AD2=AB2-BD2=152-x2,AD2=AC2-CD2=132-(14-x)2,所以152-x2=132-(14-x)2,解得x=9.在Rt△ABD中,AD===12.所以S△ABC=BC·AD=×14×12=84.14.解:(1)∵DB⊥BC,BC=4,CD=5,∴BD==3.(2)如图,延长BD至E,使DE=BD,连接AE.∵D是AC的中点,∴AD=DC.在△BDC和△EDA 中,∴△BDC≌△EDA(SAS),∴∠DAE=∠DCB,∴AE∥BC.∵BD⊥BC,∴BE⊥AE.∴BE为△ABC中BC边上的高,∴BE=2BD=6.15.解:(1)如图,延长AD,BC交于点E,在Rt△ABE中,∠A=60°,∴∠E=30°.在Rt△CDE中,CD=4,∴CE=2CD=8,∴BE=BC+CE=6+8=14.设AB=x,则有AE=2x,根据勾股定理得:x2+142=(2x)2,解得x=,则AB=.(2)在Rt△CDE中,∠CDE=90°,∴DE===4.∴S=S△ABE-S△CDE 四边形ABCD =·AB·BE-·CD·DE=××14-×4×4=.。
人教版八年级下册17.1 勾股定理 练习题(含答案)
17.1 勾股定理练习题一、选择题1.如图所示,某公司举行周年庆典,准备在门口长25m,高7m的台阶上铺设红地毯,已知台阶的宽为3m,则一共需购买________m2的红地毯. ( C)A. 21B. 75C. 93D. 962如图所示,若∠A=60°,AC=20 m,则BC大约是(结果精确到0.1m) ( B)A.34.64 mB.34.6 mC.28.3 mD.17.3 m3.如图所示,字母B所代表的正方形的面积是( C)A.12B.13C.144D.1944.如图,在Rt△ABC中,∠C=90°,D为BC上的一点,AD=BD=2,AB=,则AC的长为( A )5.如图,一个高3 米,宽4 米的大门,需在相对角的顶点间加一个加固木条,则木条的长为( C )A.3米B.4米C.5米D.6米6.湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为( )A.50米B.120米C.100米D.130米7.若等腰三角形中相等的两边长为10cm,第三边长为16 cm,那么第三边上的高为( D)A. 12 cmB. 10 cmC. 8 cmD. 6 cm二、填空题8.在ABC中,C=90°,(1)若c=10,a:b=3:4,则a=__6__,b=__8_.(2)若a=9,b=40,则c=___41___.9.在 ABC中, C=90°,若AC=6,CB=8,则ABC面积为__24__,斜边为上的高为___4.8__.10.在Rt△ABC中,∠C=90°.(1)若a=3,b=4,则c=5;(2)若b=6,c=10,则a=8;(3)若a=5,c=13,则b=12;(4)若a=1.5,b=2,则c= 2.5.11、已知:数7和24,请你再写一个整数,使这些数恰好是一个直角三角形三边的长,则这个数可以是2512.如图,一棵大树被台风刮断,若树在离地面9 m处折断,树顶端落在离树底部12 m处,则大树折断之前的高度为____24____m.三、解答题13.如图所示,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长; (2)求△ADB的面积.解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE.∵CD=3,∴DE=3.(2)在Rt△ABC中,由勾股定理得,14.如图,已知长方形ABCD中,AB=8 cm,BC=10 cm,在边CD上取一点E,将△ADE折叠,使点D恰好落在BC边上的点F,求CE的长.15、如图,在△ABC中,AB=AC,D点在CB延长线上,求证:AD2-AB2=BD·CD16、如图,小颍同学折叠一个直角三角形的纸片,使A 与B 重合,折痕为DE ,若已知AC=10cm ,BC=6cm,你能求出CE 的长吗?解:连结BE由已知可知:DE 是AB 的中垂线,∴AE=BE设AE=xcm ,则EC=(10-x)cm在Rt △ABC 中,根据勾股定理:BE 2=BC 2+EC 2x 2=62+ (10-x)2解得x=6.8∴EC=10-6.8=3.2cm解得x=6.8∴EC=10-6.8=3.2cm。
人教版初中数学八年级下册《17.1 勾股定理》同步练习卷(含答案解析
人教新版八年级下学期《17.1 勾股定理》同步练习卷一.填空题(共19小题)1.在凸四边形ABCD中,AD=,AB+CD=2,∠BAD=60°,∠ADC=120°.M是BC的中点,则DM=.2.如图所示,A、B是4×5网络中的格点,网格中的每个小正方形的边长为1,请在图中清晰标出使以A、B、C为顶点的三角形是等腰三角形的所有格点C 的位置.3.如图,已知,直角△ABC中,∠ACB,从直角三角形两个锐角顶点所引的中线的长AD=5,BE=2,则斜边AB之长为.4.如图,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,当AP=时,才能使△ABC与△QPA全等.5.如图,P是长方形ABCD内一点,已知PA=3,PB=4,PC=5,那么PD2等于.6.如图所示的螺旋形是由一系列直角三角形组成的,则第10个直角三角形的斜边长为.7.直角三角形的两条直角边分别为3和4,则斜边上的高为.8.若一个直角三角形的其中两条边长分别为6和8,则第三边长为.9.如图,在△ABC中,∠C=90°,AD平分∠CAB,AD=10cm,AC=8cm,那么D 点到直线AB的距离是cm.10.直角三角形中,以直角边为边长的两个正方形的面积分别为7cm2,8cm2,则以斜边为边长的正方形的面积为cm2.11.两边长分别为3和5的直角三角形的第三边长为.12.课堂上,老师给同学们出了一道题:“有一直角三角形的两边长分别为6cm 和8cm,你们知道第三边的长度吗”刘飞立刻回答;“第三边是10cm.”你认为第三边应该是cm.13.已知:如图,△ABC中,过AB的中点F作DE⊥BC,垂足为E,交CA的延长线于点D.若EF=3,BE=4,∠C=45°,则DF:FE的值为.14.直角三角形的两条直角边长分别为cm、cm,则这个直角三角形的斜边长为,面积为.15.如图所示,以直角三角形ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=4,S2=8,则S3=.16.已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=5,则图中阴影部分的面积为.17.已知,如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,若AC=4,BC=3,则CD=.18.如图,每个小方格都是边长为1的正方形,点A,B是方格纸的两个格点(即正方形的顶点),在这个4×4的方格纸中,找出格点C,使△ABC是等腰三角形,这样的点C共有个.19.如图,三个正方形A,B,C如图放置,且正方形A,B的面积分别是2cm2和3cm2,则正方形C的面积等于cm2.二.解答题(共31小题)20.如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?21.如图,Rt△ABC的斜边AB=5,cosA=,(1)用尺规作图作线段AC的垂直平分线l(保留作图痕迹,不要求写作法、证明);(2)若直线l与AB、AC分别相交于D、E两点,求DE的长.22.如图,在边长为c的正方形中,有四个斜边为c的全等直角三角形,已知其直角边长为a,b.利用这个图试说明勾股定理.23.如图,四个全等的直角三角形的拼图,你能验证勾股定理吗?试试看.的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积.(3)如图3,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13、10、17①试说明△PQR、△BCR、△DEQ、△AFP的面积相等;②请利用第2小题解题方法求六边形花坛ABCDEF的面积.25.如图,在△ABC中,D为BC边上的一点,已知AB=13,AD=12,AC=15,BD=5,求CD的长.26.如图,△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.的面积.小明同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)△ABC的面积为.(2)若△DEF的三边DE、EF、DF长分别为,,,请在图2的正方形网格中画出相应的△DEF,并求出△DEF的面积为.(3)在△ABC中,AB=2,AC=4,BC=2,以AB为边向△ABC外作△ABD(D 与C在AB异侧),使△ABD为等腰直角三角形,则线段CD的长为.28.如图,AD⊥AB,BC⊥AB,AB=20,AD=8,BC=12,E为AB上一点,且DE=CE,求AE.29.如图,在△ABC中,∠BAC=90°,AB=20,AC=15,AD⊥BC,垂足为D,(1)求BC的长;(2)求AD的长.30.如图,已知△ABC中,∠ACB=90°,AC=BC,BE⊥CE,垂足为E,AD⊥CE,垂足为D,(1)判断直线BE与AD的位置关系是;BE与AD之间的距离是线段的长;(2)若AD=6cm,BE=2cm,求BE与AD之间的距离及AB的长.31.如图,将在Rt△ABC绕其锐角顶点A旋转90°得到在Rt△ADE,连接BE,延长DE、BC相交于点F,则有∠BFE=90°,且四边形ACFD是一个正方形.(1)判断△ABE的形状,并证明你的结论;(2)用含b代数式表示四边形ABFE的面积;(3)求证:a2+b2=c2.32.如图,在Rt△ABC中,∠ACB=90°,AC=BC=10,CD是射线,∠BCF=60°,点D在AB上,AF、BE分别垂直于CD(或延长线)于F、E,求EF的长.33.如图,直角坐标系中,已知A(2,4),B(5,0),动点P从B点出发,沿BO向终点O移动;动点Q从点A点出发,沿AB向终点B移动.两点同时出发,速度均为每秒1个单位.设从出发起运动了x秒.(1)点P的坐标是(,);(2)点Q的坐标是(,);(3)x为何值时,△APQ是以AP为腰的等腰三角形?34.在如图的5×5网格中,小方格的边长为1.(1)图中格点正方形ABCD的面积为;(2)若连接AC,则以AC为一边的正方形的面积为;(3)在所给网格中画一个格点正方形,使其各边都不在格线上且面积最大,你所画的正方形面积为.35.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小宝同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上;思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为、、(a>0),请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积填写在横线上;探索创新:(3)若△ABC中有两边的长分别为、(a>0),且△ABC的面积为2a2,试运用构图法在图3的正方形网格(每个小正方形的边长为a)中画出所有符合题意的△ABC(全等的三角形视为同一种情况),并求出它的第三条边长填写在横线上.36.已知:在四边形ABCD中,∠D=90°,DC=3cm,AD=4cm,AB=12cm,BC=13cm.求四边形ABCD的面积.37.已知a、b是一个直角三角形两条直角边的长,且(a2+b2)(a2+b2+1)=12,求这个直角三角形的斜边长.38.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,所得的差就是小数部分.又例如:因为,即,所以的整数部分为2,小数部分为.请解答:(1)如果的整数部分为a,那么a=.如果,其中b是整数,且0<c<1,那么b=,c=.(2)将(1)中的a、b作为直角三角形的两条直角边,请你计算第三边的长度.39.如图,正方形MNPQ网格中,每个小方格的边长都相等,正方形ABCD的顶点在正方形MNPQ的4条边的小方格顶点上.(1)设正方形MNPQ网格内的每个小方格的边长为1,求:①△ABQ,△BCM,△CDN,△ADP的面积;②正方形ABCD的面积;(2)设MB=a,BQ=b,利用这个图形中的直角三角形和正方形的面积关系,你能验证已学过的哪一个数学公式或定理吗?相信你能给出简明的推理过程.40.在第六册课本的阅读材料中,介绍了一个第七届国际数学教育大会的会徽.它的主题图案是由一连串如图所示的直角三角形演化而成的.设其中的第一个直角三角形OA1A2是等腰三角形,且OA1=A1A2=A2A3=A3A4=…=A8A9=1,请你先把图中其它8条线段的长计算出来,填在下面的表格中,然后再计算这8条线段的长的乘积.41.如图,是4个完全相同的直角三角形适当拼接后形成的图形,这些直角三角形的两直角边分别为a、b,斜边为c.你能利用这个图形验证勾股定理吗?42.在数轴上作出表示的点.43.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=6,BC=8,(1)求AB的长;(2)求CD的长.44.如图已知,每个小方格是边长为1的正方形,求△ABC的周长(结果用根号表示).45.图1、图2中的每个小正方形的边长都是1,在图1中画出一个面积是3的直角三角形;在图2中画出一个面积是5的四边形.46.问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形BC边上的高.杰杰同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处).借用网格等知识就能计算出这个三角形BC边上的高.(1)请在正方形网格中画出格点△ABC;(2)求出这个三角形BC边上的高.47.美国第二十届总统加菲尔德也曾经给出了勾股定理的一种证明方法,如图,他用两个全等的直角三角形和一个等腰直角三角形拼出了一个直角梯形,请你利用此图形验证勾股定理.48.在图中,BC长为3,AB长为4,AF长为12,求正方形的面积.(其中∠FAC 和∠ABC都为直角.)49.用直尺和圆规在如图所示的数轴上作出的点.50.我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所知道的特殊四边形中是勾股四边形的两种图形的名称,.(2)如下图(1),请你在图中画出以格点为顶点,OA、OB为勾股边,且对角线相同的所有勾股四边形OAMB.(3)如图(2),以△ABC边AB作如图正三角形ABD,∠CBE=60°,且BE=BC,连接DE、DC,∠DCB=30°.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.人教新版八年级下学期《17.1 勾股定理》同步练习卷参考答案与试题解析一.填空题(共19小题)1.在凸四边形ABCD中,AD=,AB+CD=2,∠BAD=60°,∠ADC=120°.M是BC的中点,则DM= 1.5.【分析】本题要靠辅助线的帮助.根据题意画出图形,作出辅助线,根据各边的关系求解.【解答】解:如图,延长DM、AB,交于E,在AE上取中点F,连接DF.∵∠BAD=60°,∠ADC=120°,∴∠BAD+∠ADC=180°,∴AB∥CD,∴∠EBM=∠DCM;在△EMB和△DMC中,,∴△EMB≌△DMC,∴BE=CD;∵AB+CD=2,点F为EA的中点,∠BAD=60°,AD=AF=EF=,∴∠EDA=90°;根据勾股定理可得ED=AD,∴ED=3∵M为ED的中点∴MD=1.5.【点评】本题是一道根据三角形的中线定义结合勾股定理求解的综合题,有利于锻炼学生综合分析、解答问题的能力.2.如图所示,A、B是4×5网络中的格点,网格中的每个小正方形的边长为1,请在图中清晰标出使以A、B、C为顶点的三角形是等腰三角形的所有格点C 的位置.【分析】根据等腰三角形的性质在表格中找出C点.【解答】解:以A为圆心,AB长为半径画圆,圆弧经过格点C2、C3;以B为圆心,AB长为半径画圆,圆弧经过格点C1,∴BC1=AC2=AC3=AB==,∵因为AB的中点不在格点上,因此AB的垂直平分线不会经过格点∴C1、C2、C3是所要找的点.【点评】心动不如行动,赶快拿起圆规,画出图形,根据数形结合思想,利用全等三角形的性质解答此题.3.如图,已知,直角△ABC中,∠ACB,从直角三角形两个锐角顶点所引的中线的长AD=5,BE=2,则斜边AB之长为.【分析】设BC=x,AC=y,根据已知列方程组,从而可求得斜边的平方,即求得斜边的长.【解答】解:设BC=x,AC=y根据题意运用勾股定理,得整理得,=65,即x2+y2=52∴斜边的长是2.【点评】注意此题的解题技巧:根据已知条件,在两个直角三角形中运用勾股定理列方程组.求解的时候,注意不必分别求出未知数的值,只需求出两条直角边的平方和,运用勾股定理即可.4.如图,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,当AP=5或10时,才能使△ABC与△QPA全等.【分析】分两种情形分别求解即可.【解答】解:当AP=5时,Rt△ABC≌Rt△QPA,理由是:∵∠C=90°,AQ⊥AC,∴∠C=∠QAP=90°,当AP=5=BC时,在Rt△ABC和Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL),当AP=AC=10,AQ=BC=5时,△ABC≌△PQA,故答案为:5或10.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.5.如图,P是长方形ABCD内一点,已知PA=3,PB=4,PC=5,那么PD2等于18.【分析】可过P作AD、AB的平行线,将矩形ABCD分割成四个小矩形,然后根据勾股定理求出PA、PB、PC、PD四条线段的长度的数量关系,然后再代值计算.【解答】解:如图,过P作AD、AB的平行线,原矩形被分成四个小矩形;由勾股定理得:PA2=a2+b2,PC2=c2+d2;PB2=b2+c2,PD2=a2+d2;因此:PA2+PC2=PB2+PD2,即:32+52=42+PD2,解得,PD2=18.【点评】此题考查了矩形的性质和勾股定理的应用,正确地得到PA、PB、PC、PD四条线段之间的数量关系至关重要.6.如图所示的螺旋形是由一系列直角三角形组成的,则第10个直角三角形的斜边长为.【分析】分别求出图中所给直角三角形的斜边长,找出规律,即可解答.【解答】解:根据图形,运用勾股定理知,第一个直角三角形的斜边是,第二个直角三角形的斜边是,推而广之,则第n个直角三角形的斜边是,所以第10个直角三角形的斜边长为.故答案为:.【点评】熟练运用勾股定理,能够根据具体数据进行推广,发现规律.7.直角三角形的两条直角边分别为3和4,则斜边上的高为 2.4.【分析】根据勾股定理求出斜边的长,利用面积法求出三角形斜边上的高.【解答】解:由勾股定理知,斜边c==5,设斜边上的高为h,根据直角三角形的面积公式得:S△=×3×4=×5h,∴h==2.4.【点评】本题利用了勾股定理和直角三角形的面积公式求解.8.若一个直角三角形的其中两条边长分别为6和8,则第三边长为10或2.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:设第三边为x,(1)若8是直角边,则第三边x是斜边,由勾股定理得,62+82=x2解得:x=10,(2)若8是斜边,则第三边x为直角边,由勾股定理得,62+x2=82,解得x=2.故第三边长为10或2.故答案为:10或2.【点评】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.9.如图,在△ABC中,∠C=90°,AD平分∠CAB,AD=10cm,AC=8cm,那么D 点到直线AB的距离是6cm.【分析】首先根据勾股定理求得CD的长,再根据角平分线上的点到角两边的距离相等,得D到AB得距离等于CD的长.【解答】解:∵AD=10cm,AC=8cm∴CD=6cm∵AD平分∠CAB∴D点到直线AB的距离=CD=6cm【点评】运用了勾股定理以及角平分线的性质.10.直角三角形中,以直角边为边长的两个正方形的面积分别为7cm2,8cm2,则以斜边为边长的正方形的面积为15cm2.【分析】设直角三角形ABC的两直角边是a和b,斜边是c,由勾股定理得出a2+b2=c2,求出以a b为边长的两个正方形的面积之和是a2+b2=15cm2,以斜边c为边长的正方形的面积是S=c2=a2+b2,代入求出即可.【解答】解:设直角三角形ABC的两直角边是a和b,斜边是c,则由勾股定理得:a2+b2=c2,则分别以a b为边长的两个正方形的面积之和是a2+b2=7cm2+8cm2=15cm2,以斜边c为边长的正方形的面积是S=c2=a2+b2=15cm2,故答案为:15.【点评】本题考查了勾股定理和正方形的面积,关键是得出c2=a2+b2=15cm2,题目具有一定的代表性,是一道比较好的题目.11.两边长分别为3和5的直角三角形的第三边长为4或.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即5是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:当5是斜边时,第三边长==4;当5是直角边时,第三边长==.【点评】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.12.课堂上,老师给同学们出了一道题:“有一直角三角形的两边长分别为6cm 和8cm,你们知道第三边的长度吗”刘飞立刻回答;“第三边是10cm.”你认为第三边应该是10或2cm.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边8既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:8是斜边时,第三边长=2cm;8是直角边时,第三边长=10cm.故第三边应该是10或2cm.【点评】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.13.已知:如图,△ABC中,过AB的中点F作DE⊥BC,垂足为E,交CA的延长线于点D.若EF=3,BE=4,∠C=45°,则DF:FE的值为7:3.【分析】过点A作AG⊥BC,垂足为G,根据DE⊥BC,F是AB中点,利用三角形中位线定理求出EG=BE=4,AG=2EF=6,再根据∠C=45°,DE⊥BC,求出DF,然后即可得出答案.【解答】解:过点A作AG⊥BC,垂足为G,∵DE⊥BC∴EF∥AG又∵F是AB中点∴E也为BG中点,==∴EG=BE=4 AG=2EF=6又∵∠C=45°∴AG=GC=6∴EC=EG+GC=10又∵∠C=45° DE⊥BC∴DE=EC=10∴DF=DE﹣EF=10﹣3=7∴DF:FE=7:3.故答案为:7:3.【点评】此题主要考查学生对勾股定理的理解和掌握,解答此题的关键是利用三角形中位线定理求出EG=BE=4,AG=2EF=6.14.直角三角形的两条直角边长分别为cm、cm,则这个直角三角形的斜边长为2cm,面积为cm2.【分析】此题直接利用勾股定理及三角形的面积解答即可.【解答】解:由勾股定理得,直角三角形的斜边长==2cm;直角三角形的面积=×=cm2.故填2cm,cm2.【点评】此题主要考查勾股定理及三角形的面积.15.如图所示,以直角三角形ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=4,S2=8,则S3=12.【分析】根据勾股定理的几何意义解答.【解答】解:∵△ABC直角三角形,∴BC2+AC2=AB2,∵S1=BC2,S2=AC2,S3=AB2,S1=4,S2=8,∴S3=S1+S2=12.故答案为12.【点评】此题是勾股定理题目,解决本题的关键是根据勾股定理得到三个面积之间的关.16.已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=5,则图中阴影部分的面积为.【分析】根据勾股定理和等腰直角三角形的面积公式,可以证明:以直角三角形的两条直角边为斜边的等腰直角三角形的面积和等于以斜边为斜边的等腰直角三角形的面积.则阴影部分的面积即为以斜边为斜边的等腰直角三角形的面积的2倍.【解答】解:在Rt△ABC中,AB2=AC2+BC2,AB=5,S阴影=S△AHC+S△BFC+S△AEB=×+×+×,=(AC2+BC2+AB2),=AB2,=×52=.故答案为.【点评】本题考查了勾股定理的知识,要求能够运用勾股定理证明三个等腰直角三角形的面积之间的关系.17.已知,如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,若AC=4,BC=3,则CD=.【分析】根据勾股定理求得AB的长,再根据三角形的面积公式求得CD即可.【解答】解:∵AC=4,BC=3,∴AB=5,∵S=×3×4=×5×CD,△ABC∴CD=.故答案为:.【点评】此题考查了直角三角形面积的不同表示方法及勾股定理的综合应用.18.如图,每个小方格都是边长为1的正方形,点A,B是方格纸的两个格点(即正方形的顶点),在这个4×4的方格纸中,找出格点C,使△ABC是等腰三角形,这样的点C共有8个.【分析】根据等腰三角形的性质和勾股定理分别求出以AB为腰的等腰三角形的个数和以AB为底边的等腰三角形的个数即可得出答案.【解答】解:如图所示:以AB为腰的等腰三角形共4个,其底边长为=2的共有4个;以AB为底边的等腰三角形共有4个,其中腰长为的2个,腰长为2的有2个.故答案为:8.【点评】此题主要考查学生对等腰三角形的性质和勾股定理的理解和掌握,此题难易程度适中,适合学生训练.19.如图,三个正方形A,B,C如图放置,且正方形A,B的面积分别是2cm2和3cm2,则正方形C的面积等于5cm2.【分析】先根据角之间的关系以及正方形的性质证明两空白三角形全等,然后根据勾股定理即可解答.【解答】解:如图所示∵∠1+∠5=90°,∠1+∠2=90°,∴∠5=∠2,同理∠1=∠3,又FD=DE,∴△FGD≌△EDH,可得,FG=DH,由勾股定理的几何意义可知S A+S B=S C即2+3=S C.∴S C=5.【点评】勾股定理包含几何与数论两个方面,几何方面,一个直角三角形的斜边的平方等于另外两边的平方和.这里边的平方的几何意义就是以该边为边的正方形的面积.二.解答题(共31小题)20.如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?【分析】(1)根据速度为每秒1cm,求出出发2秒后CP的长,然后就知AP的长,利用勾股定理求得PB的长,最后即可求得周长.(2)因为AB与CB,由勾股定理得AC=4 因为AB为5cm,所以必须使AC=CB,或CB=AB,所以必须使AC或AB等于3,有两种情况,△BCP为等腰三角形.【解答】解:(1)如图1,由∠C=90°,AB=5cm,BC=3cm,∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB==,∴△ABP的周长为:AP+PB+AB=2+5+;(2)①如图2,若P在边AC上时,BC=CP=3cm,此时用的时间为3s,△BCP为等腰三角形;②若P在AB边上时,有三种情况:i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,所以用的时间为6s,△BCP为等腰三角形;ii)如图4,若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为2.4cm,作CD⊥AB于点D,在Rt△PCD中,PD=1.8,所以BP=2PD=3.6cm,所以P运动的路程为9﹣3.6=5.4cm,则用的时间为5.4s,△BCP为等腰三角形;ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm 则所用的时间为6.5s,△BCP为等腰三角形;综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形.【点评】此题考查学生对等腰三角形的判定与性质的理解和掌握,但是此题涉及到了动点,对于初二学生来说是个难点,尤其是第(2)由两种情况,△BCP 为等腰三角形,因此给这道题又增加了难度,因此这是一道难题.21.如图,Rt△ABC的斜边AB=5,cosA=,(1)用尺规作图作线段AC的垂直平分线l(保留作图痕迹,不要求写作法、证明);(2)若直线l与AB、AC分别相交于D、E两点,求DE的长.【分析】(1)分别以点A,C为圆心,以大于AC为半径画弧,两弧相交于点C,D,过CD作直线l即可.(2)所求线段DE等于BC的一半,那么根据题中的数据利用三角函数求出BC 即可.【解答】解:(1)如图,(2)因为直线l垂直平分线段AC,所以CE=AE,又因为BC⊥AC,所以DE∥BC,所以DE=BC.因为在Rt△ABC中,AB=5,cosA=,所以AC=ABcosA=5×=3,由BC===4得DE=2.【点评】本题考查基本作图和利用三角函数来解决相关问题.22.如图,在边长为c的正方形中,有四个斜边为c的全等直角三角形,已知其直角边长为a,b.利用这个图试说明勾股定理.【分析】根据大正方形面积=四个相同直角三角形面积+小正方形面积,得c2=4×ab+(a﹣b)2即得c2=a2+b2,在每个直角边为a、b而斜边为c的直角三角形中,这个式子就是勾股定理.【解答】解:∵大正方形面积为:c2,直角三角形面积为ab,小正方形面积为:(a﹣b)2,所以c2=4×ab+(a﹣b)2,即c2=a2+b2,在每个直角边为a、b而斜边为c的直角三角形中,这个式子就是勾股定理.【点评】本题主要考查了勾股定理的证明,要认真理解勾股定理.23.如图,四个全等的直角三角形的拼图,你能验证勾股定理吗?试试看.【分析】根据题意,我们可在图中找等量关系,有中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.【解答】解:根据题意,中间小正方形的面积;化简得a2+b2=c2,即证在直角三角形中斜边的平方等于两直角边的平方和.【点评】本题考查了学生对定理的证明和对三角形和正方形面积公式的熟练掌握和运用.24.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积.(3)如图3,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13、10、17①试说明△PQR、△BCR、△DEQ、△AFP的面积相等;②请利用第2小题解题方法求六边形花坛ABCDEF的面积.。
17.1.1 勾股定理 人教版数学八年级下册分层作业(含答案)
人教版初中数学八年级下册17.1.1 勾股定理同步练习夯实基础篇一、单选题:1.在△ABC中,∠A,∠B,∠C的对应边分别是a,b,c,若∠B=90°,则下列等式中成立的是()A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2﹣a2=b2【答案】C【分析】利用勾股定理即可得到结果.【详解】解:在△ABC中,∠B=90°,∴△ABC为直角三角形,则根据勾股定理得:.故选:C.【点睛】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.2.在△ABC中,∠C=90°,AB=3,则AB2+BC2+AC2的值为()A.6B.9C.12D.18【答案】D【分析】根据,利用勾股定理可得,据此求解即可.【详解】解:如图示,∴在中,∴,故选:D.【点睛】本题主要考查了勾股定理的性质,掌握直角三角形中,三角形的三边长,,满足是解题的关键.3.如图,是由两个直角三角形和三个正方形组成的图形,大直角三角形的斜边和直角边长分别是13,12.则图中阴影部分的面积是()A.16B.25C.144D.1【答案】B【分析】根据勾股定理可进行求解【详解】解:如图所示:根据勾股定理得出:,,阴影部分面积是,故选:B.【点睛】此题考查勾股定理,解决此题的关键是清楚阴影部分的两个正方形的面积和等于的平方.4.直角三角形两边长为3,4,则第三边长为()A.5B.C.5或D.不能确定【答案】C【分析】分两种情况,3,4为直角边时和4为斜边时,利用勾股定理求解即可.【详解】解:当3,4为直角边时,第三边的长为,当4为斜边时,第三边的长为,则第三边的长为或,故选:C【点睛】此题考查了勾股定理,解题的关键是掌握勾股定理,直角三角形的两个直角边的平方和等于斜边的平方,注意分类讨论.5.如图,在中,,,垂足为D .若,,则的长为( )A .2.4B .2.5C .4.8D .5【答案】A【分析】先由勾股定理求出的长,再运用等面积法求得的长即可.【详解】解:∵在中,,,,∴,∴,即.故选A .【点睛】本题主要考查了勾股定理、等面积法等知识点,掌握运用等面积法求三角形的高是解题的关键.6.等腰三角形的腰长为5,底边上的中线长为4,它的面积为( )A .24B .20C .15D .12【答案】D【分析】根据等腰三角形的性质可知上的中线,同时也是边上的高线,根据勾股定理求出的长即可求得.【详解】解:如图所示,∵等腰三角形中,,是上的中线,,同时也是上的高线,,,,故选:D.【点睛】本题考查了勾股定理及等腰三角形的性质.解题关键是得出底边上的中线是上的高线.7.在中,,,,则的长为( )A.3B.3或C.3或D.【答案】A【分析】在中,已知与的长,利用勾股定理求出的长即可;【详解】解:在中,,,,由勾股定理得:,∴的长为3;故选:A【点睛】本题考查了勾股定理,能灵活运用定理进行计算是解题的关键.二、填空题:8.在中,,,,则____.【答案】4【分析】直接根据勾股定理求解即可.【详解】解:∵在中,,,,.故答案为:4.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方和等于斜边长的平方是解答此题的关键.9.一直角三角形的两直角边长满足,则该直角三角形的斜边长为________.【答案】【分析】根据算术平方根的非负性,绝对值的非负性,得出的值,根据勾股定理即可求解.【详解】解:∵,∴,解得:,∴该直角三角形的斜边长为,故答案为:.【点睛】本题考查了算术平方根的非负性,绝对值的非负性,勾股定理,得出的值是解题的关键.10.在中,,.则的面积为______.【答案】60【分析】画出图形,过点作于,利用等腰三角形的三线合一性质得到,再利用勾股定理求得即可求解.【详解】解:如图,过点作于,则,∵,,∴,∴在中,,∴,故答案为:60.【点睛】本题考查等腰三角形的性质、勾股定理、三角形的面积公式,熟练掌握等腰三角形的三线合一性质解答的关键.11.如图,在中,.以、为边的正方形的面积分别为、.若,,则的长为______.【答案】3【分析】根据正方形的面积求得,,再根据勾股定理求解即可.【详解】解:∵以、为边的正方形的面积分别为、,,,∴,,在中,,由勾股定理得:,故答案为:3.【点睛】本题考查勾股定理、正方形的面积,熟练掌握勾股定理是解答的关键.12.若直角三角形的两边长为a、b,且满足,则该直角三角形的斜边长的平方为_____.【答案】25或16##16或25【分析】先根据非负数的性质求出两直角边长、,已知两直角边求斜边可以根据勾股定理求解.【详解】解:,,解得:,,,,解得,,①当a,b为直角边,该直角三角形的斜边长的平方为,②4也可能为斜边,该直角三角形的斜边长的平方为16,故答案为:25或16.【点睛】本题考查了非负数的性质,根据勾股定理计算直角三角形的斜边,正确的运用勾股定理是解题的关键.13.如图,为中斜边上的一点,且,过作的垂线,交于,若,,则的长为________.【答案】【分析】连接,根据已知条件,先证明,再根据全等三角形的性质,求得的长度,进而勾股定理即可求解.【详解】解:如图,连接.∵为中斜边上的一点,且,过作的垂线,交于,∴,∴在和中,,∴,∴,又∵,∴.在中,,∴故答案为:.【点睛】本题主要考查了直角三角形全等的判定()以及全等三角形的性质,勾股定理,连接是解决本题的关键.14.如图,Rt中,,现将沿进行翻折,使点A刚好落在上,则_____.【答案】##2.5【分析】设,将沿进行翻折,使点A刚好落在上,则.则直角中根据勾股定理,即可得到一个关于的方程,即可求得.【详解】解:设,则在Rt中,.则.在Rt中:.即:.解得:【点睛】此题考查了勾股定理的运用,根据勾股定理把求线段的长的问题转化为方程问题是解决本题的关键.三、解答题:15.如图,在△ABC中,AD⊥BC于点D,AB=3,BD=2,DC=1,求AC的长.解:在Rt△ABD中,AB=3,BD=2,由勾股定理得AD2=AB2-BD2=32-22=5.在Rt△ACD中,CD=1,由勾股定理得16.如图,在△ABC中,AB=AC,BC=10,CD⊥AB,垂足为D,CD=8.求AC的长.解∵CD⊥AB,∴∠ADC=∠BDC=90°.在Rt△BCD中,设AC=AB=x,则AD=x-6.在Rt△ACD中,AC2=AD2+CD2,即x2=(x-6)2+82,解得x=,即AC的长为.17.、、是的三边,且有.若是直角三角形,求的值.【答案】或【分析】先根据完全平方公式把原式变形为,可得,,再分两种情况讨论,即可求解.【详解】解:∵∴∴∴∴,,解得:,,当,为直角边时,;当为斜边时,;综上所述,的值为或.【点睛】本题主要考查了完全平方公式的应用,勾股定理,熟练掌握完全平方公式的应用,勾股定理,利用分类讨论思想解答是解题的关键.18.已知:如图,在中,,点是中点,于点,求证:.【答案】见解析【分析】在、、中,运用三次勾股定理,然后利用等量代换即可证明结论.【详解】证明:在中,,在中,,∴,又∵是中点,∴,∴,即:.【点睛】题目主要考查勾股定理的重复运用,熟练掌握勾股定理且准确应用等量代换是解题关键.能力提升篇一、单选题:1.如图,在△ABC中,AB=AC=6,∠BAC=120°,过点A作AD⊥BA交BC于点D,过点D作DE⊥BC 交AC于点E,则AE的长为( )A.1B.2C.3D.4【答案】B【分析】根据等腰三角形的性质可得,根据含角的直角三角形的性质可得的长,再求出的长,即可确定的长.【详解】解:,,,,,设,则,根据勾股定理,可得,解得或(舍去),,,,,,,设,则,根据勾股定理,得,或(舍去),,,故选:B.【点睛】本题考查了等腰三角形的性质,勾股定理、直角三角形的性质,熟练掌握这些性质是解题的关键.2.如图,在四边形中,,,点是边上一点,,,.下列结论:①;②;③四边形的面积是;④;⑤该图可以验证勾股定理.其中正确的结论个数是()A.2个B.3个C.4个D.5个【答案】D【分析】利用可证,故①正确;由全等三角形的性质可得出,,求出,即可得到②正确;根据梯形的面积公式可得③正确;根据列式,可得④正确;整理后可得,即⑤正确.【详解】解:∵,,∴,∴,在和中,,∴,故①正确;∴,,∵,∴,∵,∴,故②正确;∵,,∴梯形的面积是,故③正确;∵,∴,故④正确;整理得:,∴该图可以验证勾股定理,故⑤正确;正确的结论个数是5个,故选:D.【点睛】本题考查了全等三角形的判定及性质的运用,梯形的面积计算,三角形的面积计算,勾股定理等知识,解答时证明三角形全等是关键.3.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列结论:①;②x﹣y=2;③2xy+4=49;④x+y=7.其中正确的结论是( )A.①②B.②④C.①②③D.①③【答案】C【分析】由题意知,①﹣②可得2xy=45记为③,①+③得到,由此即可判断.【详解】解:由题意知,①﹣②可得2xy=45记为③,①+③得到,∴,∴.∵x>y,由②可得x-y=2由③得2xy+4=49∴结论①②③正确,④错误.故选:C.【点睛】本题考查勾股定理中弦图的有关计算,准确找出图中的线段关系,并利用完全平方公式求出各个式子的关系是解题的关键.二、填空题:4.如图,点在边长为5的正方形内,满足,若,则图中阴影部分的面积为______.【答案】19【分析】根据勾股定理求出,分别求出和正方形的面积,即可求出答案.【详解】解:∵在中,,,,由勾股定理得:,∴正方形的面积是,∵的面积是,∴阴影部分的面积是,故答案为:19.【点睛】本题考查了正方形的性质,三角形的面积,勾股定理的应用,主要考查学生的计算能力和推理能力.5.如图,在中,,AB的垂直平分线交AB于点D,交BC的延长线于点E.若,,则EC的长为______.【答案】【分析】连接,根据垂直平分线的性质得出,再由勾股定理确定,设,则,利用勾股定理求解即可.【详解】解:连接,如图所示:∵的垂直平分线交于点D,交的延长线于点E,∴,∵,,,∴,设,则,在中,,即,解得:,∴,故答案为:.【点睛】题目主要考查垂直平分线的性质,勾股定理解三角形等,理解题意,综合运用这些知识点是解题关键.6.如图,已知直角三角形的周长为24,且阴影部分的面积为24,则斜边的长为______.【答案】10【分析】根据阴影部分面积等于以为直径的半圆面积之和加上的面积减去以为直径的半圆面积进行求解即可.【详解】解;∵直角三角形的周长为24,∴,,∴,∵阴影部分的面积为24,∴,∴∴∴,∴,故答案为:10.【点睛】本题主要考查了勾股定理,完全平方公式,熟知相关知识是解题的关键.三、解答题:7.已知:在中,,、、所对的边分别记作a、b、c.如图1,分别以的三条边为边长向外作正方形,其正方形的面积由小到大分别记作、、,则有,(1)如图2,分别以的三条边为直径向外作半圆,其半圆的面积由小到大分、、,请问与有怎样的数量关系,并证明你的结论;(2)分别以直角三角形的三条边为直径作半圆,如图3所示,其面积由小到大分别记作S1、S2Sa,根据(2)中的探索,直接回答与有怎样的数量关系;(3)若中,,,求出图4中阴影部分的面积.【答案】(1),证明见解析(2)(3)24【分析】(1)由扇形的面积公式可知,,,在Rt△ABC中,由勾股定理得AC2+BC2=AB2,即S1+S2=S3;(2)根据(1)中的求解即可得出答案;(3)利用(2)中的结论进行求解.(1)解:①,根据勾股定理可知:,;(2)解:由(1)知,同理根据根据勾股定理:,从而可得;(3)解:由(2)知.【点睛】本题考查勾股定理的应用,解题关键是对勾股定理的熟练掌握及灵活运用.。
初中数学人教版八年级下册第十七章17.1勾股定理
初中数学·人教版·八年级下册——第十七章勾股定理17.1 勾股定理基础闯关全练拓展训练1.在△ABC中,∠C=90°,2∠A=∠B,∠A,∠B,∠C的对边分别为a,b,c,则a∶b∶c等于()A.1∶2∶1B.1∶√2∶1C.1∶√3∶2D.1∶2∶√3答案C设∠A=x°,则∠B=2x°,∵△ABC中∠C=90°,∴∠A+∠B=90°,即x°+2x°=90°,解得x=30,∴∠A=30°,∠B=60°,设a=1,∴c=2,由勾股定理得b=√c2-a2=√4-1=√3,∴a∶b∶c=1∶√3∶2.故选C.2.如图是由5个正方形和5个等腰直角三角形组成的图形,已知③号正方形的面积是1,那么①号正方形的面积是()A.4B.8C.16D.32答案C如图,根据勾股定理知④号正方形的边长为√12+12=√2,则②号正方形的边长为√(√2)2+(√2)2=2,⑤号正方形的边长为√22+22=2√2,则①号正方形的边长为√(2√2)2+(2√2)2=4,所以①号正方形的面积为4×4=16.故选C.3.(2016广西防城港期中)如图,长方体的长、宽、高分别为4cm,3cm,12cm,则BD'=.答案13cm解析连接BD,则BD=√42+32=5(cm),故BD'=√52+122=13(cm).4.(2016江西宜春高安期中)已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于.答案24cm2解析∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得a2+b2=c2,即(a+b)2-2ab=c2,∴196-2ab=100,即ab=48,则Rt△ABC的面积为1ab=24cm2.2能力提升全练拓展训练1.图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt△ABC中,若直角边AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是.答案76解析在题图乙的四个大直角三角形中,两直角边长分别为5,12,所以斜边长为13,所以这个风车的外围周长为4×13+4×6=76.2.(2014山东潍坊中考)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,所以该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是尺.答案25解析由题意可知葛藤绕圆柱五周到达点B,故先把圆柱平均分成五段,将最下边一段圆柱的侧面展开图画出,并连接其对角线,则该对角线的长即为每段的最短长度,为√32+42=5(尺),所以葛藤的最短长度为5×5=25尺,故答案为25.3.(2016山东聊城莘县期中)如图,已知直角△ABC的两直角边长分别为6,8,分别以其三边为直径向外作半圆,则图中阴影部分的面积为.答案24解析在Rt△ABC中,AC=6,BC=8,根据勾股定理得:AB=√AC2+BC2=10,则S阴影=S半圆AC+S半圆BC+S△ABC-S半圆AB=322π+12×42×π+12×6×8-522π=24.4.如图,在长方形ABCD中,AD=4,DC=3,将△ADC按逆时针方向绕点A旋转到△AEF(点A、B、E在同一直线上),连接CF,则CF=.答案5√2解析△AEF是由△ADC旋转得来的,可得△AEF≌△ADC,所以∠EAF=∠DAC,AF=AC.则△CAF是等腰直角三角形,所以CF=√FA2+CA2,又AC=√DA2+DC2=√42+32=5,所以CF=√52+52=5√2.三年模拟全练拓展训练1.(2016广东深圳翰林学校第一次月考,15,★★☆)如图,长方体的长为15cm,宽为10cm,高为20cm,点B到点C的距离为5 cm,一只蚂蚁如果沿着长方体的表面从A点爬到B点,需要爬行的最短距离是.答案25cm解析(1)当长方形NFGC与长方形CGAD展开在一个面上时,AB=√BD2+AD2=√152+202=25(cm);(2)当长方形NMDC与长方形CDAG展开在一个面上时,AB=√AG2+BG2=√102+252=5√29(cm);(3)当长方形NCGF与长方形FGAE展开在一个面上时,AB=√AC2+BC2=√302+52=5√37(cm).因为25<5√29<5√37,所以蚂蚁需要爬行的最短距离是25cm.2.(2016河北保定模拟,23,★★☆)(1)如图①所示,分别以Rt△ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间的关系(不必证明);(2)如图②,分别以Rt△ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,确定它们的关系并证明;(3)如图③,分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S2,S3表示,确定它们的关系并证明.解析(1)S2+S3=S1.(2)S2+S3=S1.证明:S3=π8AC2,S2=π8BC2,S1=π8AB2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=π8(BC2+AC2)=π8AB2=S1,∴S2+S3=S1.(3)S2+S3=S1.证明:S1=√34AB2,S2=√34BC2,S3=√34AC2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=√34(BC2+AC2)=√34AB2=S1,∴S2+S3=S1.五年中考全练拓展训练1.(2016湖南株洲中考,8,★☆☆)如图,以直角三角形的边a、b、c为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形个数为()A.1B.2C.3D.4答案D根据勾股定理可得a2+b2=c2.(1)第一个图形中,首先根据等边三角形的面积的求法,表示出3个三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.(2)第二个图形中,首先根据圆的面积的求法,表示出3个半圆的面积,然后根据a2+b2=c2,可得S1+S2=S3.(3)第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.(4)第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积,然后根据a2+b2=c2,可得S1+S2=S3.故满足S1+S2=S3的图形个数为4.2.(2016浙江杭州中考,9,★☆☆)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形.若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0B.m2-2mn+n2=0C.m2+2mn-n2=0D.m2-2mn-n2=0答案C根据题意画图,如图.在Rt△ABC中,n>m且△ABE和△AEC均为等腰三角形,∴AB=BE=m,则AE=EC=n-m,根据勾股定理可得AE=√2AB,即n-m=√2m,两边平方整理得,m2+2mn-n2=0,故选C.3.(2014广西钦州中考,12,★☆☆)如图,在6个边长为1的小正方形及其部分对角线构成的图形中,从A点到B点只能沿图中的线段走,那么从A点到B点的最短路程的走法共有()A.1种B.2种C.3种D.4种答案C根据题意得出最短路径如图所示,最短路程为√22+22+1=2√2+1,则从A点到B点的最短路程的走法共有3种.故选C.4.(2013四川雅安中考,17,★★☆)在平面直角坐标系中,已知点A(-√5,0),B(√5,0),点C在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标.答案(0,2),(0,-2),(-3,0),(3,0)解析如图,①当点C位于y轴上时,设C(0,b).则√(√5)2+b2+√(√5)2+b2=6,解得b=2或b=-2,此时C(0,2)或C(0,-2).②当点C位于x轴上时,设C(a,0).则|-√5-a|+|a-√5|=6,即2a=6或-2a=6,解得a=3或a=-3,此时C(-3,0)或C(3,0).综上所述,满足条件的所有点C的坐标是(0,2),(0,-2),(-3,0),(3,0).核心素养全练拓展训练1.(2014浙江温州中考改编)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感.他惊喜地发现:当两个全等的直角三角形如图①或图②摆放时,都可以用“面积法”来证明.下面是小聪利用图①证明勾股定理的过程:将两个全等的直角三角形按图①所示方式摆放,其中∠DAB=90°.求证:a2+b2=c2.图①图②证明:连接DB,过点D作BC边上的高DF,则DF=EC=b-a.∵S四边形ADCB=S△ACD+S△ABC=12b2+12ab,又∵S四边形ADCB=S△ADB+S△DCB=12c2+12a(b-a),∴12b2+12ab=12c2+12a(b-a).∴a2+b2=c2.请参照上述证法,利用图②完成下面的证明.将两个全等的直角三角形按图②所示方式摆放,其中∠DAB=90°.求证:a2+b2=c2.证明:连接.∵S五边形ACBED=,又∵S五边形ACBED=,∴.∴a2+b2=c2.证明连接BD,过点B作DE边上的高BF,则BF=b-a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=12ab+12b2+12ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=12ab+12c2+12a(b-a),∴12ab+12b2+12ab=12ab+12c2+12a(b-a),∴a2+b2=c2.2.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的规律和结论,请构图求出代数式√x2+4+√(12-x)2+9的最小值.解析(1)√(8-x)2+25+√x2+1.(2)当A、C、E三点共线时,AC+CE的值最小.(3)如图所示,作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,且AB=2,ED=3,连接AE交BD于点C.设BC=x,AE的长即为代数式√x2+4+√(12-x)2+9的最小值.过点A作AF∥BD交ED的延长线于点F,得长方形ABDF,则AB=DF=2,AF=BD=12.所以AE=√122+(3+2)2=13.即√x2+4+√(12-x)2+9的最小值为13.。
新人教版八年级下17.1勾股定理练习题
17.1勾股定理练习题一、选择题1.在Rt △ABC 中,∠C=90°,若AC=6,BC=8,则AB 的长为( ) A.6 B.8 C.10 D.122.在Rt △ABC 中,斜边AB=1,则222AC BC AB ++的值是( ) A.2 B.4 C.6 D.83. 如图所示,有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10 cm ,∠D=120°,则该零件另一腰AB 的长是______ cm (结果不取近似值).4.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π=3)是( ).A20cm B10cm C14cm D 无法确定5.如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对 6. 如果Rt △的两直角边长分别为n 2-1,2n (n >1),那么它的斜边长是( )A.2nB.n+1C.n 2-1D.n 2+17.已知直角三角形两边的长为3和4,则此三角形的周长为( ).A .12B .7+7C .12或7+7D .以上都不对 8.△ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+ 9.在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A .42B .32C .42 或 32D .37 或 3310.在Rt ∆ABC 中,∠C=900,周长为60,斜边与一条直角边的比为13:5,则这个三角形的三边 长分别是( )A .5,4,3 B.13,12,5 C. 10,8,6 D.26,24,1011.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A.90°B.60°C.45°D.30°12. 如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为( )A.4B.6C.16D.5513. 如图,AB ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).A.12B.7C.5D.13DC BACBCBA 4题图 3题图 5题图 11题图 12题图 13题图14. 将一个有45°角的三角板的直角顶点放在一张宽为3cm 的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为( ) A.3 B.6 C. 23 D. 2615. 如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF=3,则AB 的长为( ) A.3 B.4 C.5 D.616. 直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )2ddC.2dD.d 17.下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则222c b a =+B.若 a 、b 、c 是Rt △ABC 的三边,则222c b a =+C.若a 、b 、c 是Rt △ABC 的三边, 90=∠A ,则222c b a =+D.若a 、b 、c 是Rt △ABC 的三边, 90=∠C ,则222c b a =+. 18. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33 二、填空题1.直角三角形两直角边长分别为5和12,则它斜边上的高为_______.2.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是_________3. 某楼梯的侧面视图如图4所示,其中4AB =米,30BAC ∠=°,90C ∠=°,因某种活动要求铺设红色地毯,则在AB 段楼梯所铺地毯的长度应为 .4.已知等边三角形的边长为2cm ,则它的高为 ,面积为 .5. 如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是__________Bl 3l 2l 1CBAA 14题图 15题图 2题图 3题图 5题图 6题图6. 如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是_____________.7. 某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要 元.8. 种盛饮料的圆柱形杯(如图),测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做 ㎝。
人教版初中数学八年级下册第十七章《勾股定理》17.1勾股定理同步练习题(含答案)
人教版初中数学八年级下册第十七章《勾股定理》17.1勾股定理同步练习题(含答案)1 / 6 《17.1勾股定理》同步练习题一、选择题(每小题只有一个正确答案)1.如图,每个小正方形的边长为 ,在 中,点 为 的中点,则线段 的长为( ).A. B. C. D.2.2.如图是一张探宝图,根据图中的尺寸,起点A 与起点B 的距离是( )A. B. 8 C. 9 D. 103.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 处与灯塔P 之间的距离为( )A. 60海里B. 45海里C. 20 海里D. 30 海里4.如图,有一块直角三角形纸片,两直角边AB =6,BC =8,将△ABC 折叠,使AB 落在斜边AC 上,折痕为AD ,则BD 的长为( )A. 3B. 4C. 5D. 65.如图1,一架梯子AB 长为 ,斜靠在一面墙上,梯子底端B 离墙 ,若梯子的顶端A 下滑了 (如图2),则梯子的底端在水平方向上滑动的距离 为( )A. B. 大于C. 介于和之间D. 介于和之间6.如图,,且,,,则线段AE的长为().A. B. C. D.7.如果Rt△的两直角边长分别为k2-1,2k(k >1),那么它的斜边长是()A. 2k B. k+1 C. k2-1 D. k2+1二、填空题8.若一个三角形的三边长分别为1、a、8(其中a为正整数),则以a-2、a、a+2为边的三角形的面积为______.9.如图,D为ABC的边BC上一点,已知AB = 13,AD = 12,AC =15,BD=5,则BC的长为________.10.若三角形的三个内角的比是1:2:3,最短边长为1cm,最长边长为2cm,则这个三角形三个角度数分别是______,另外一边的平方是______.11.如图,点A、C都在直线l上,AE⊥AB且AE=AB,BC⊥CD且BC=CD,点E、B、D 到直线l的距离分别是6,3,4,计算图中由线段AB、BC、CD、DE、EA所围成的图形的面积是____.12.如图,长方体的长、宽、高分别为6cm,4cm,2cm,现有一只蚂蚁点A出发,沿长方体表面达到B处,则所走的最短路径是__________ cm。
人教版八年级下册数学 17.1 勾股定理 同步练习题 (含答案)
17.1 勾股定理同步练习题[基础过关作业]1.在Rt△ABC中,已知∠C=90°,a=40,b=9,则c=________。
2.在Rt△ABC中,∠C=90。
,已知c=25,b=15,则a=__________.3.已知数1和2,请再写出一个数,使这三个数恰好是一个直角三角形三边的长,则这个数可以是___________。
4.在直角三角形ABC中,斜边AB=2,则AB2+BC2+CA2=__________.5.在等腰三角形ABC中,AB=AC=13,BC=10,则S△ABC=___________.6.若线段a,b,c能构成直角三角形,则它们的比为( )A.2:3:4 B.3:4:6C.5:12:13 D.4:6:77. 如果一个直角三角形的两条直角边长分别为n2-1、2n(n>0),那么它的斜边长为( )A.2n B.n+1C.n2-l D.n2+18.如图所示,AC=3cm,AB=4 cm,BD=12 cm,求CD的长。
[综合创新作业]9.(综合题)如图,阴影部分是一个半圆,则这个半圆的面积是_________.10.(创新题)如图,在△ABC中,AB=AC=13 cm。
AD是高,且AD=5 cm.(1)图中还有相等的线段吗?如果有,请把它们写出来________;(2)BC=_________cm;(3)△ABC的面积是________cm2.11.(综合题)如图,在矩形ABCD中,BC=13,DC=1,如果将该矩形沿对角线BD折叠,使点C落在点F处,那么图中阴影部分的面积是____________(保留根号).12.(易错题)如果一个直角三角形的两条边长分别为3cm ,4cm ,则这个三角形的面积是多少?13.(创新题)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点。
以格点为顶点,你能做出边长分别为3、22,5的三角形吗?与同伴交流你的做法.14.(综合题)如图,在△ABC 中,AB=13,BC=14,AC=15,求BC 边上的高AD 的长.[名校培优作业]15.(探究题)已知Rt △ABC 中,∠A ,∠B ,∠C 的对边分别为a 、b 、c ,设AABC 的面积为S ,周长为l .(1)请你完成下面的表格:(2)仔细观察上表中你填写的数据规律,如果a ,b ,c 为已知的正实数,且a+b-c=m ,那么猜想 lS __________(用m 表示); (3)请说明你的猜想的正确性.[参考答案]1. 41点拨:411681811600940c 22==+=+= 2. 20点拨:20)1525)(1525(1525a 22=-+=-= 3. 53或点拨:第三个数可以作斜边的长,已知的1、2作直角边的长,也可以把2当作斜边的长,第三个数与1作直角边的长。
人教版八年级下册第十七章勾股定理17.1勾股定理同步练习(包含答案)
勾股定理同步练习一、选择题1、以下四组线段中,能构成直角三角形的是()A. a=1, b=2, c=3 B . a=4, b=2, c=3C. a=4, b=2, c=5D.a=4,b=5,c=32、五根小木棒,其长度分别为7,15,20,24,25 ,现将它们摆成各选项所示的两个直角三角形,此中正确的选项是()3、若直角三角形的三边长分别为2, 4,x,则x的值可能有 () .A.1 个B.2 个C.3个D.4 个4222) .、 Rt △ABC中,斜边BC= 2,则AB+AC+BC的值为(A.8B.4C.6D. 没法计算5、如图,分别以直角三角形的三边为边长向外作等边三角形,面积分别记为S1、 S2、 S3,则 S1、 S2、 S3之间的关系是()A.S22= S2 B .S+S>S C .S +S<S D .S +S=S+S1231231231236、一根旗杆在离地面12 米处断裂,旗杆顶部落在离旗杆底部 5 米处.旗杆折断以前有()米.A. 23 米B. 15 米 C. 25 米 D.22 米7、如图,一个高 1.5米,宽 3.6 米的大门,需要在相对的极点间用一条木板加固,则这条木板的长度是()A.3.8 米米 C.4 米米8、在长、宽、高分别为12 cm 、 4 cm 、 3 cm 的木箱中,放一根木棒,能放进去的木棒的最大长度为()A.5 cmB.12 cmC.13 cmD.cm9、直角三角形的两直角边分别为5cm, 12cm,其斜边上的高为()A. 6cm B. 8.5cm C.cm D.cm10、假如一个直角三角形的两条直角边分别为n2﹣ 1, 2n( n> 1),那么它的斜边长是()A. 2n B. n+1 C . n2﹣ 1 D . n2+111、等腰三角形的腰长为10,底长为12 ,则其底边上的高为()A. 13B. 8 C . 25 D . 6412、为迎接新年的到来,同学们做了很多拉花部署教室,准备召开新年晚会,小刘搬来一架高 2.5 米的木梯,准备把拉花挂到 2.4米高的墙上,则梯脚与墙角距离应为()A. 0.7米 B . 0.8 米 C . 0.9 米 D . 1.0米二、填空题13、如图,某人欲横渡一条河,因为水流的影响,实质登岸地址 C 偏离欲抵达点B200 m,结果他在水中实质游了520 m,该河流的宽度为__________m.14、如图,小方格都是边长为 1 的正方形,求四边形ABCD的面积.15、一艘轮船以16km/h 的速度走开港口向东北方向航行,行,它们走开港口半小时后相距km.另一艘轮船同时走开港口以30km/h的速度向东南方向航16、一个直角三角形的三边长为三个连续偶数,则它的三边长分别为.17、少走了如图,学校有一块长方形花铺,有很少量人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们只是步路(假定 2 步为 1 米),却踩伤了花草.18、如图,四边形ABCD是正方形, AE 垂直于 BE,且 AE=3, BE=4,暗影部分的面积是.三、简答题19、在 Rt △ABC中,∠C=90 °,∠A、∠B、∠C的对边分别为a、 b、c.(1)若 a∶ b=3∶4, c=75cm,求 a、 b;(2)若 a∶ c=15∶17, b=24,求△ ABC的面积;(3)若 c- a=4, b=16,求 a、 c;(4)若∠ A=30°, c=24,求 c 边上的高 h c;(5) 若a、b、c为连续整数,求a+ b+ c.20、小明想知道学校旗杆的高,他发现旗杆上的绳索垂到地面还多了1m,当他把绳索的下端拉开5m后,发现下端恰好接触地面,求旗杆的高.21、如图,在一棵树的10 米高 B 处有两只猴子,此中一只爬下树走向离树20 米的池塘C,而另一只爬到树顶D后直扑池塘C,结果两只猴子经过的距离相等,问这棵树有多高?22、如下图,在Rt △ ABC中,∠ C=90°,∠ A=30°, BD是∠ ABC的均分线,C D=5 cm,求 AB的长 .23、在B港有甲、乙两艘渔船,若甲船沿北偏东 60°方向以每小时 8 海里的速度行进,乙船沿南偏东某个角度以每小时 15 海里的速度行进, 2 小时后,甲船到M岛,乙船到P岛,两岛相距 34 海里,你知道乙船是沿哪个方向航行的吗?参照答案一、选择题1、 D;2、 C;3、 B.;4、A.;5、D;6、C;7、B;8、C;9、D; 10、 D; 11、 B; 12、 A;二、填空题13、 480.15、 17 .16、 6, 8, 1017、 8.18、 19.三、简答题19、 (1) a= 45cm.b= 60c m;(2)540;(3)a=30, c=34;(4)6;(5)12.20、设旗杆的高AB 为 xm,则绳索 AC的长为( x+1)m 222在 Rt △ ABC中, AB+BC=AC222∴x +5 =( x+1)解得 x=12∴AB=12∴旗杆的高12m.21、设 BD=x米,则 AD=( 10+x)米, CD=( 30-x )米,依据题意,得:(30-x )2- ( x+10)2=202,解得 x=5.即树的高度是 10+5=15 米.22、解:.∵在Rt△ ABC中,∠ C=90°,∠ A=30°,BD是∠ ABC的均分线,∴∠ ABD=∠ CBD=30° .∴A D=DB.又∵ Rt △CBD中, CD=5 cm,∴B D=10 cm.∴BC===5(cm).∴AB=2BC=10cm.23、南偏东30°.。
人教版八年级下册数学 17.1勾股定理 同步练习 (含答案)
x=______①x 86②y=______y6.56③m=______m4140④n=______n 151217.1勾股定理 同步练习17.1.1 勾股定理(1)1.填空:(1)如图,在下列横线上填上适当的值:(2)求出下列各图中阴影部分的面积(单位:cm 2).0.640.36(1)225144(2)2cm1(3)图(1)阴影部分的面积为____; 图(2)阴影部分的面积为____; 图(3)阴影部分的面积为____;(3)直角三角形的两直角边分别为5、12,则斜边上的高为______.2.选择题:(1) 如图,在等腰△ABC 中,AB=AC=13,BC=1O,则高AD 的长为( )A. 10B. 5C.12D. 69 (2)在Rt △ABC 中,∠C=90,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是( ) A 、5、4、3、; B 、13、12、5; C 、10、8、6; D 、26、24、10 3.你能用面积法来验证勾股定理吗?4.如图,小明准备建一个鲜花大棚,棚宽4米,高3米,长20米,棚的斜面用玻璃遮盖,不计墙的厚度,请计算阳光透过的最大面积..34米ACDB17.1.2 勾股定理(2)1. 填空:(1)△ABC 中,AB=AC=10cm ,BC=16cm ,AD ⊥BC 于D ,则AD=____ (2)如图(1)某养殖厂有一个长2米、宽1.5米的矩形栅栏,现在要在相对角的顶点间加固一条木板,则木板的长应_________米. (3)如图(2)为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要________米. 2.选择题:(1) 两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm ,另一只朝左挖,每分钟挖6cm ,10分钟之后两只小鼹鼠相距( )A. 50cmB. 100cmC. 140cmD. 80cm(2) 一直角三角形的斜边长比直角边长大2,另一直角边长为6,则斜边长为 ( ) (A )4 (B )8 (C )10 (D )123. 如图,在一块由边长为1米的正方形的地砖铺设的广场上,一只鸽子飞来落在点A 处,鸽子要吃到小朋友撒在B 、C 处的鸟食,最少需要走多远?4.如图,一个圆柱状的杯子,由内部测得其底面直径为4cm ,高为10cm ,现有一支11cm 的吸管任意斜放于杯中,则吸管能否露出杯口外?若能请求出露在外面的长度,若不能请说明理由?10cm5米3米图(2)B1.52A 图(1)17.1.3 勾股定理(3)1.填空题:(1)如果梯子底端离建筑物9m ,那么15m 长的梯子可达到建筑物的高度是_______.___。
人教版八年级数学下册《17.1勾股定理》同步练习(含答案)
17.1 勾股定理同步练习一、选择题1.如图,在△ABC中,∠BAC=90°,∠B=30°,AC=5cm,AD⊥BC于D,则BD=()A. 10cmB.C.D.2.设直角三角形的两条直角边分别为a和b,斜边长为c,已知b=12,c=13,则a=()A. 1B. 5C. 10D. 253.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度hcm,则h的取值范围是()A. B.C. D.4.在△ABC中,已知AB=15,AC=13,BC边上的高AD=12,则△ABC的周长为()A. 14B. 42C. 32D. 42或325.如图所示,某人到岛上去探宝,从A处登陆后先往北走9km,又往东走6km,再折回向北走3km,往西一拐,仅走1km就找到宝藏问登陆点A与宝藏埋藏点B之间的距离是.A. 10B. 11C. 12D. 136.E为正方形ABCD内部一点,且AE=3,BE=4,∠E=90°,则阴影部分的面积为()A.25B. 12C. 13D. 197.如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A. 25海里B. 30海里C. 40海里D. 50海里8.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A. B. 或 C. D. 5二、填空题9.如图,△ABC中,∠C=90°,∠B=∠BAD=30°,DE⊥AB,若CD=2,则DE= ______ .10.如图,一旗杆离地面6m处折断,旗杆顶部落在离旗杆底部8m处,旗杆折断之前的高度是______ m.11.如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,则这块地的面积为______ m2.12.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°-∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有______(填序号)13.在Rt△ABC中,∠C=90°,且a:b=2:3,c=,则a= ______ ,b= ______ .三、计算题14.在一棵树的10m高的D处有两只猴子,其中一只猴子爬下树走到离树20m的池塘A处,另一只猴子爬到树顶后直接跃向池塘A处,如果两只猴子所经过的距离相等,试问这棵树有多高?15.如图 , AB⊥CB于B,AD=24,AB=20,BC=15,CD=7,求四边形ABCD的面积.16.如图,甲轮船以16海里/小时的速度离开港口O向东南方向航行,乙轮船同时同地向西南方向航行,已知他们离开港口一个半小时后分别到达B、A两点,且知AB=30海里,问乙轮船每小时航行多少海里?答案和解析1.【答案】B【解析】解:∵∠BAC=90°,∠B=30°,∴BC=2AC=10cm,∵∠BAC=90°,AD⊥BC,∴∠CAD=∠B=30°,∴CD=AC=2.5cm,∴BD=BC-CD=7.5cm,故选:B.2.【答案】B【解析】解:∵直角三角形的两条直角边分别为a和b,斜边长为c,b=12,c=13,∴a===5.故选:B.3.【答案】D【解析】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24-8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB==17,∴此时h=24-17=7cm,所以h的取值范围是7cm≤h≤16cm.故选D.4.【答案】D【解析】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=5+9=14.∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9-5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.故选D.5.【答案】D【解析】解:如图,作过点A的东西方向的直线AD,过点B作BC⊥AD于C,则AC=6-1=5km,BC=9+3=12km,在Rt△ABC中,由勾股定理求得AB===13(km).6.【答案】D【解析】解:∵在Rt△AEB中,∠AEB=90°,AE=3,BE=4,由勾股定理得:AB=5,∴正方形的面积是5×5=25,∵△AEB的面积是AE×BE=×3×4=6,∴阴影部分的面积是25-6=19,故选D.7.【答案】C【解析】解:连接BC,由题意得:∠CAB=90°,AC=16×2=32(海里),AB=12×2=24(海里),CB==40(海里),故选:C.8.【答案】A【解析】解:过A点作AF⊥BC于F,连结AP,∵△ABC中,AB=AC=5,BC=8,∴BF=4,∴△ABF中,AF==3,∴×8×3=×5×PD+×5×PE,12=×5×(PD+PE)PD+PE=4.8.故选:A.9.【答案】2【解析】解:∵∠C=90°,∠B=30°,∴∠CAB=60°,∵∠B=∠BAD=30°,∴∠CAD=30°,∵CD=2,∴AD=4,∵∠BAD=30°,∴DE=AD=2,故答案为:2.10.【答案】16解:旗杆折断后,落地点与旗杆底部的距离为8m,旗杆离地面6m折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形.根据勾股定理,折断的旗杆为=10m,所以旗杆折断之前高度为10m+6m=16m.故答案为16.11.【答案】216【解析】解:连接AC,则在Rt△ADC中,AC2=CD2+AD2=122+92=225,∴AC=15,在△ABC中,AB2=1521,AC2+BC2=152+362=1521,∴AB2=AC2+BC2,∴∠ACB=90°,∴S△ABC -S△ACD=AC•BC-AD•CD=×15×36-×12×9=270-54=216(平方米),故答案为:216.12.【答案】①②③【解析】解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∠C=90°,则该三角形是直角三角形;②∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=90°,则该三角形是直角三角形;③∠A=90°-∠B,则∠A+∠B=90°,∠C=90°.则该三角形是直角三角形;④∠A=∠B=∠C,则该三角形是等边三角形.故能确定△ABC是直角三角形的条件有①②③.13.【答案】2;3【解析】解:∵∠C=90°,且a:b=2:3,c=,∴设a=2x,b=3x,则(2x)2+(3x)2=()2,解得:x=1,故a=2,b=3,故答案为:2,3.14.【答案】解:已知BD=10米,AB=20米,设CD=x,则根据AB+BD=CD+AC,可求得AC=30-x,且BC=10+x,在Rt△ABC中,AC为斜边,则AC2=AB2+BC2,即(30-x)2=202+(10+x)2,解得:x=5,故BC=BD+CD=10+5(米)=15米,答:此树高为15米.15.【答案】解:∵AC===25,故有AD2+CD2=242+72=252=AC2,∴∠D=90°,∴S四边形ABCD=S△ABC+S△ACD=×20×15+×7×24=150+84=234.16.【答案】解:∵甲轮船向东南方向航行,乙轮船向西南方向航行,∴AO⊥BO,∵甲轮船以16海里/小时的速度航行了一个半小时,∴OB=16×1.5=24海里,AB=30海里,∴在Rt△AOB中,AO===18,∴乙轮船每小时航行18÷1.5=12海里.。
人教版数学八年级下册1711《勾股定理》同步训练(有答案)
17.1 勾股定理课时1 勾股定理基础训练知识点1 勾股定理1.(2018山东滨州中考)在直角三角形中,若勾为3,股为4,则弦为( )A.5B.6C.7D.82.(2018甘肃张掖高台南华中学月考)下列说法中正确的是 ( )A.已知a,b,c是三角形的三边长,则a2+b2=c2B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt△ABC中,若∠C=90°,则BC2+AC2=AB2D.在Rt△ABC中,若∠B=90°,则BC2+AC2=AB23.在Rt△ABC中,AB=c,BC=a,AC=b,∠B=90°.(1)已知a=6,b=10,求c;(2)已知a=5,c=12,求b.知识点2 勾股定理的验证4.(2018贵州遵义期中)如图,在Rt△ABC和Rt△BDE中,∠C=90°,∠D=90°,AC=BD=a,BC=DE=b,AB=BE=c,试利用图形证明勾股定理.知识点3 勾股定理的简单应用5.(2018天津南开区期中)在Rt△ABC中,斜边AB=2,则AB2+AC2+BC2= ( )A.2B.4C.8D.166.(2018湖南邵阳武冈期中)等腰三角形的腰长为13,底边长为10,则它底边上的高为()A.12B.7C.6D.57.(2018山东济南商河期末)已知直角三角形两边的长分别为3和4,则此三角形的周长为( )A.12C.12或7+以上都不对8.(2018河北唐山路南区三模)如图,点E在正方形ABCD内,且∠AEB=90°,AE=3,BE=4,则阴影部分的面积为( )A.16B.18C.19D.219.(2017广东佛山顺德区教研联盟测试)如图,已知正方形B的面积为100,正方形C的面积为169,那么正方形A的面积为 .10.如图,∠B=∠ACD=90°,AD=13,CD=12,BC=3,求AB的长.参考答案 1.A解析:在直角三角形中,因为勾为3,股为4,故选A. 2.C3.解析:(1)在Rt △ABC 中,∵∠B=90°,a=6,b=10, ∴c 2=b 2-a 2=100-36=64, ∴c=8.(2)在Rt △ABC 中,∵∠B=90°,a=5,c=12, ∴b 2=a 2+c 2=52+122=169, ∴b=13.名师点睛:应用勾股定理应注意的问题:(1)勾股定理使用的前提是必须在直角三角形中;(2)要分清斜边和直角边,在Rt △ABC 中,直角不一定是∠C. 4.解析:∵∠C=∠D=90°,AC=BD,BC=DE,AB=BE, ∴Rt △ACB ≌Rt △BDE,∴∠ABC=∠BED,∠BAC=∠EBD. ∵∠ABC+∠BAC=90°,∴∠ABC+∠DBE=90°,∴∠ABE=90°. 由题图,可知S △ACB +S △BDE +S △ABE =S 梯形ACDE ,∴221111(),2222ab ab c a b ++=+∴222.a b c += 名师点睛:此题通过面积法证明勾股定理.解决问题的关键是通过面积之间的相等关系,将“形”的问题转化为“数”的问题. 5.C解析:根据勾股定理,得AC 2+BC 2=AB 2=4,故AB 2+AC 2+BC 2=4+4=8.故选C. 6.A解析:如图,在△ABC 中,AB=AC=13,BC=10,AD ⊥BC,∴BD=DC=12BC=5.在Rt △ABD 中,由勾股定理,得12.=故选A.7.C解析:设此三角形第三边的长为x.①当4为直角边长时,x为斜边长,由勾股定理,得x=则此三角形的周长为3+4+5=12;②当4为斜边长时,x为直角边长,由勾股定理,得则此三角形的周长为所以此三角形的周长为12或7+故选C.8.C解析:∵∠AEB=90°,AE=3,BE=4,∴5==,∴阴影部分的面积为S正方形ABCD -S△ABE=52-12×3×4=25-6=19.故选C.9.69解析:根据题意,得正方形A的面积=正方形C的面积-正方形B的面积=169-100=69.名师点睛:分别以直角三角形的两条直角边为边长的两个正方形面积的和等于以斜边为边长的正方形的面积.10.解析:在Rt△ACD中,∠ACD=90°,AD=13,CD=12,∴由勾股定理得5=.在Rt△ABC中,∠B=90°,AC=5,BC=3,∴由勾股定理得 4.=17.1 勾股定理课时1 勾股定理提升训练1.(2018陕西师大附中课时作业)如图,在△ABC中∠B=40°,EF//AB,∠1=50°,CE=3,EF=CF+1,则EF的长为 ( )A.3B.4C.5D.62.(河南新乡一中课时作业)如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心、正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系为( )A.S1+S2>S3B.S1+S2=S3C.S1+S2<S3D.无法确定3.(2018山东济南外国语学校课时作业)如图Rt△ABC的周长为斜边AB的长为则Rt△ABC的面积为 .4.(2018江西临川一中课时作业)如图,在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为 .5.(2018四川成都七中课时作业)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,分别以AB,AC,BC为边在AB的同侧作正方形ABEF,ACPQ,BCMN,四块阴影部分的面积分别为S1,S2,S3,S4,则S1+S2+S3+S4等于 .6.(2018广东揭阳惠来溪西中学月考)如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.(1)作AD⊥BC于点D,设BD=x,用含x的代数式表示CD,则CD= ;(2)请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;(3)利用勾股定理求出AD的长,再计算三角形的面积.7.(2018安徽合肥四十五中)如图,∠B=∠ADC=90°,∠A=60°,AB=4, CD=2,求四边形ABCD的面积.参考答案 1.C解析:∵EF//AB,∴∠A=∠1=50°,∴∠A+∠B=50°+40°=90°,∴∠C=90°. 设CF=x,则EF=x+1,在Rt △CEF 中,CE 2+CF 2=EF 2,∴32+x 2=(x+1)2,解得x=4, ∴EF=4+1=5.故选C. 2.B解析:由勾股定理,得最大正方形的面积等于其余两个小正方形的面积和,由于在正方形中作圆,圆的直径就是正方形的边长,利用圆的面积公式,得S 1+S 2=S 3.故选B. 3.1解析:∵Rt △ABC的周长为444,AB AC BC +=+=+=∴2222222()16,216.12,1216124,2, 1.2AC BC AC AC BC BC AC BC AB AC BC AC BC Rt ABC AC BC +=+⋅+=+===⋅=-=⋅=⋅=∴∴∵∴∴∴△的面积为 4.4解析:在Rt △ABC 中,根据勾股定理得∵AM=AC,BN=BC, ∴AM=12,BN=5,∴MN=AM+BN-AB=12+5-13=4. 5.18解析:如图,过点F 作FD ⊥AM 于点D,可证明Rt △ADF ≌Rt △BCA, Rt △DFK ≌Rt △CAT,所以S 2=S Rt △ABC .连接PF,由Rt △DFK ≌Rt △CAT 可证得 Rt △FPT ≌Rt △EMK,所以S 3=S Rt △EPT .又可证得Rt △AFQ ≌Rt △ABC,所以S 1+S 3= S Rt △AQF =S Rt △ABC .易证Rt △ABC ≌Rt △EBN,所以S 4=S Rt △ABC .所以 S 1+S 2+S 3+S 4=(S 1+S 3)+S 2+S 4=S Rt △ABC +S Rt △ABC +S Rt △ABC =3S Rt △ABC =3×12×3×4=18.6.解析(1)14-x22222222222222(2),90,,,,13(14)15,x=9.AD BC ADC ADB AD AC CD AD AB BD AC CD AB BD x x ⊥===-=--=---=-∵∴∠∠∴∴∴解得(3)由(2)得12==,∴ S △ABC=11141284.22BC AD ⋅=⨯⨯=7.解析:如图:分别延长AD,BC 交于点E.90,18090.90,60,30.24,12290,4,30,28,142CDEABE ABE CDE ADC EDC ADC B A E CE CD DE S B AB E AE AB BE S ABCD S S ==-=========⨯⨯=========⨯⨯=-==△△△△∵∠∴∠∠∵∠∠∴∠∴∴∵∠∠∴∴∴∴四边形的面积名师点睛:求不规则图形的面积,可以转化为求一些规则图形的面积的和或差.。
人教版数学八年级下册-17.1-勾股定理-同步练习
人教版数学八年级下册17.1 勾股定理 课堂练一、选择题1.如图,△ABC 中,AD ⊥BC 于D ,AB=5,BD=4,DC=2,则AC 等于(B )A.13B.C.D.52.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 处与灯塔P 之间的距离为( D )A. 60海里B. 45海里3.一直角三角形的三边分别为2、3、x ,那么x 为( C )A. B. C.或 D.无法确定4. 右图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是( C )A. 黄金分割B. 垂径定理C. 勾股定理D. 正弦定理5.如图,是台阶的示意图.已知每个台阶的宽度都是20cm ,每个台阶的高度都是10cm ,连接AB ,则AB 等于( B )A.120cmB.130cmC.140cmD.150cm6.如图,每个小正方形的边长为1,A,B,C 是小正方形的顶点,则∠ABC 的度数为( D )A. 90°B. 60°C. 30°D. 45°7.如图所示的图形中,所有四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形边长为7cm ,设正方形A 、B 、C 、D 、E 、F 面积分别为S A 、S B 、S C 、S D 、S E 、S F ,则下列各式正确有( D )个. ① S A +S B +S C +S D =49;② S E +S F =49;③ S A +S B +S F =49;④ S C +S D +S E =49A.1 B .2 C.3 D .48.如图,90ACB ∠=,AC BC =,BE CE ⊥,AD CE ⊥,垂足分别为E ,D ,13AC =,5BE =,则DE =(A ) A.7 B.8 C.9 D.109.图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图②所示的“数学风车”,则这个风车的外围周长是( C )A.51B.49C.76D.无法确定10.在测量旗杆的方案中,若旗杆高为21m,目测点到杆的距离为15 m,则目测点到杆顶的距离为(设目高为1 m)( B ).A.20m B.25mC.30m D.35m11.如图,圆柱底面半径为cm,高为9cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为( C )A.12cmB.cmC.15 cmD.cm12.直角三角形的面积为S,斜边上的中线长为d,则这个三角形周长为( C )A. B. C. D.二、填空题:13.在△ABC中,∠B=90度,BC=6,AC=8,则AB= .【答案】2.14. 我国古代有这样一道数学问题:枯木一根直立地上高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.【答案】2515.如图所示,在数轴上点A所表示的数为a,则a的值为.【答案】﹣1﹣.16.如图,在三角形纸片ABC中,∠C=90°,AC=6,折叠该纸片,使点C落在AB边上的D点处,折痕BE与AC 交于点E,若AD=BD,则折痕BE的长为________.【答案】417.如图,小巷左右两侧是竖直的墙.一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7m,顶端距离地面2.4m.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面2m,则小巷的宽度为m.【答案】2.218. 已知等腰三角形的一边长为10,面积为30,该三角形的周长为.【答案】10+2或20+2或20+6三、解答题:19.如图,已知AD是△ABC的高,∠BAC=60°,BD=2CD=2,试求AB的长.解:过点B作BE⊥AC于E,则.设AE=x,则.∵BD=2CD=2,∴BD=2,CD=1,BC=3.∴.由AB2﹣BD2=AD2=AC2﹣CD2,得.∴,,9x4﹣36x2+36=9x2﹣3x44x4﹣15x2+12=0,∴.又,所以不合题意.故,从而.20.如图,圆柱形玻璃杯的高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为多少?【答案】如图:作A关于EF的对称点A',连接A'B,易知A'B的长为最短距离,由勾股定理得得A'B==20 (cm).21.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)求证:CD=BE;(2)已知CD=2,求AC的长;(3)求证:AB=AC+CD.(1)证明:∵在△ABC中,AC=BC,∠C=90°,∴△ABC是等腰直角三角形,∴∠B=45°,∵DE⊥AB,∴△BDE是等腰直角三角形,∴DE=BE.∵AD是△ABC的角平分线,∴CD=D E,∴CD=BE;(2)解:∵由(1)知,△BDE是等腰直角三角形,DE=BE=CD,∴DE=BE=CD=2,∴BD===2,∴AC=BC=CD+BD=2+2;(3)证明:∵AD是△ABC的角平分线,DE⊥AB,∴CD=DE.在Rt△ACD与Rt△AED中,∵,∴Rt△ACD≌Rt△AED,∴AE=AC.∵由(1)知CD=BE,∴AB=AE+BE=AC+CD.22.在△ABC中,∠C=90°,M是BC的中点,MD⊥AB于D,求证:.解:连接AM,根据题意△ACM,△AMD,△BMD为直角三角形,由勾股定理得:①;②;.∵M是BC的中点,∴CM=BM,∴③分别把②,③代入①整理得:,所以.23.如图,一架梯子AB长13米,斜靠在一面墙上,梯子底端离墙5米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了5米,那么梯子的底端在水平方向滑动了多少米?解:(1)根据勾股定理:所以梯子距离地面的高度为:AO===12(米);答:这个梯子的顶端距地面有12米高;(2)梯子下滑了1米即梯子距离地面的高度为OA′=12﹣5=7(米),根据勾股定理:OB′===2(米),∴BB′=OB′﹣OB=(2﹣5)米答:当梯子的顶端下滑1米时,梯子的底端水平后移了(2﹣5)米.。
人教版八年级下册数学 17.1 勾股定理同步练习(解析版)
17.1勾股定理同步练习一.选择题(共10小题)1.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A.5个B.4个C.3个D.2个选C2.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为()A.3B.4 C.2D.4解:在Rt△AOB中,AO2=AB2﹣BO2;Rt△DOC中可得:DO2=DC2﹣CO2;∴可得AD2=AO2+DO2=AB2﹣BO2+DC2﹣CO2=18,即可得AD==3.故选A.3.如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC能作出()A.2个B.3个C.4个D.6个解:当AB是斜边时,则第三个顶点所在的位置有:C、D,E,H四个;当AB是直角边,A是直角顶点时,第三个顶点是F点;当AB是直角边,B是直角顶点时,第三个顶点是G.因而共有6个满足条件的顶点.故选D.4.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是()A.72 B.52 C.80 D.76解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+52=169所以x=13所以“数学风车”的周长是:(13+6)×4=76.故选:D.5.勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=3,AC=4,点D、E、F、G、H、I 都在长方形KLMJ的边上,则长方形KLMJ的面积为()A.90 B.100 C.110 D.121解:延长AB交KF于点O,延长AC交GM于点P,如图所示:则四边形OALP是矩形.∵∠CBF=90°,∴∠ABC+∠OBF=90°,又∵Rt△ABC中,∠ABC+∠ACB=90°,∴∠OBF=∠ACB,在△OBF和△ACB中,,∴△OBF≌△ACB(AAS),∴AC=OB,同理:△ACB≌△PGC,∴PC=AB,∴OA=AP,∴矩形AOLP是正方形,边长AO=AB+AC=3+4=7,∴KL=3+7=10,LM=4+7=11,∴长方形KLMJ的面积为10×11=110.故选:C.6.已知△ABC中,∠A=∠B=∠C,则它的三条边之比为()A.1:1:B.1::2 C.1::D.1:4:1解:∵∠A=∠B=∠C,∠A+∠B+∠C=180°,∴∠A=30°,∠B=60°,∠C=90°,∴c=2a,b=a,∴三条边的比是1::2.故选:B.7.利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图.观察图形,可以验证()公式.A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2﹣2ab+b2C.c2=a2+b2D.(a﹣b)2=a2﹣2ab+b2解:∵大正方形的面积表示为:c2又可以表示为:ab×4+(b﹣a)2,∴c2=ab×4+(b﹣a)2,c2=2ab+b2﹣2ab+a2,∴c2=a2+b2.故选:C.8.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B 与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm2解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选C.9.已知x、y为正数,且|x2﹣4|+(y2﹣3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A.5 B.25 C.7 D.15解:依题意得:x2﹣4=0,y2﹣3=0,∴x=2,y=,斜边长==,所以正方形的面积=()2=7.故选C.10.一直角三角形两边分别为3和5,则第三边为()A.4 B.C.4或D.2解:①当5是斜边时,根据勾股定理,得:第三边是4;②当5是直角边时,根据勾股定理,得:第三边是=.故选C.二.填空题(共5小题)11.如图,在四边形ABCD中,对角线AC、BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=,则AE=2(提示:可过点A作BD的垂线)解:过A作AF⊥BD,交BD于点F,∵AD=AB,∠DAB=90°,∴AF为BD边上的中线,∴AF=BD,∵AB=AD=,∴根据勾股定理得:BD==2,∴AF=,在Rt△AFE中,∠EAF=∠DCA=30°,∴EF=AE,设EF=x,则有AE=2x,根据勾股定理得:x2+3=4x2,解得:x=1,则AE=2.故答案为:212.如图,Rt△ABC的周长为,以AB、AC为边向外作正方形ABPQ 和正方形ACMN.若这两个正方形的面积之和为25 cm2,则△ABC的面积是5 cm2.解:如图,a2=c2+b2=25,则a=5.又∵Rt△ABC的周长为,∴a+b+c=5+3,∴b+c=3(cm).∴△ABC的面积=bc=[(c+b)2﹣(c2+b2)]÷2=[(3)2﹣25]÷2=5(cm2).故答案是:5.13.如图中的螺旋形由一系列直角三角形组成,则第5个三角形的面积为,第n个三角形的面积为.解:根据勾股定理:第一个三角形中:OA12=1+1,S1=1×1÷2=;第二个三角形中:OA22=OA12+1=1+1+1,S2=OA1×1÷2=×1÷2=;第三个三角形中:OA32=OA22+1=1+1+1+1,S3=OA2×1÷2=×1÷2=;…∴第5个三角形的面积=第n个三角形的面积S n=.故答案为:,.14.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是 1.5.解:连接DF,如图所示:∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB==5,∵AD=AC=3,AF⊥CD,∴CE=DE,BD=AB﹣AD=2,∴CF=DF,在△ADF和△ACF中,,∴△ADF≌△ACF(SSS),∴∠ADF=∠ACF=90°,∴∠BDF=90°,设CF=DF=x,则BF=4﹣x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4﹣x)2,解得:x=1.5;∴CF=1.5;故答案为:1.5.15.把两个全等的直角三角形拼成如图图形,那么图中三角形面积之和与梯形面积之间的关系用式子可表示为(a+b)(a+b)=ab×2+c2,整理后即为a2+b2=c2.解:梯形面积:(a+b)(a+b)=ab×2+c2,整理得:(a+b)2=2ab+c2,a2+2ab+b2=2ab+c2,a2+b2=c2,故答案为:(a+b)(a+b)=ab×2+c2;a2+b2=c2.三.解答题(共5小题)16.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.解:如图,在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14﹣x,由勾股定理得:AD2=AB2﹣BD2=152﹣x2,AD2=AC2﹣CD2=132﹣(14﹣x)2,故152﹣x2=132﹣(14﹣x)2,解之得:x=9.∴AD=12.=BC•AD=×14×12=84.∴S△ABC17.学完了勾股定理后,张老师给同学们布置了这样一道题:有两个形状、大小完全相同的香烟盒按照图1放置,从正前方看图1得到的图形如图2所示,你能运用这个图形证明勾股定理吗?赶紧试一试吧,相信你一定能行!(提示:连接AC、CF、AF)证明:连接AC、CF、AF.由上图我们根据梯形的面积公式可知,梯形的面积=(a+c)(a+c).从上图我们还发现梯形的面积=三个三角形的面积,即ac+ac+b2.两者列成等式化简即可得:a2+c2=b2.18.在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.解:如图,连接BD,由AB=AD,∠A=60°.则△ABD是等边三角形.即BD=8,∠1=60°.又∠1+∠2=150°,则∠2=90°.设BC=x,CD=16﹣x,由勾股定理得:x2=82+(16﹣x)2,解得x=10,16﹣x=6所以BC=10,CD=6.19.如图,在四边形ABCD中,AD∥BC,AB⊥BC,对角线AC⊥CD,点E在边BC上,且∠AEB=45°,CD=10.(1)求AB的长;(2)求EC的长.解:(1)在Rt△ACD中,∵∠D=60°,CD=10,∴AC=,∠DAC=30°,又∵AD∥BC,∵∠ACB=∠DAC=30°,∴在Rt△ACB中,AB=AC==.(2)在Rt△ABE中,∠AEB=45°,∴BE=AB=,由(1)可知,BC=AB==15,∴EC=BC﹣BE=.20.如图,点C在线段BD上,AC⊥BD,CA=CD,点E在线段CA上,且满足DE=AB,连接DE并延长交AB于点F.(1)求证:DE⊥AB;(2)若已知BC=a,AC=b,AB=c,设EF=x,则△ABD的面积用代数式可表示为;你能借助本题提供的图形,证明勾股定理吗?试一试吧.(2)解:由题意知:S△ABD=S△BCE+S△ACD+S△ABE=a2+b2+cx,∵,∴.∴a2+b2=c2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理专题证明题练习
1.我们给出如下定义:若一个四边形中存在一组相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边。
(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称:----------,---------- ;
(2)如图1,已知格点(小正方形的顶点) O(0,0),A(3,0),B(0,4) 请你画出以格点为顶点,OA,OB为勾股边且对角线相等的两个勾股四边形OAMB ;
(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连结AD,DC,∠DCB= 30°。
写出线段DC,AC,BC的数量关系为----------------;
2.(1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF 是平行四边形,请你只用无刻度的直尺在图中画出∠AOB的平分线.(保留作图痕迹,不要求写作法)
(2)如图2 ,10×10的正方形网格中,点A(0,0)、B(5,0)、C(3,6)、D(-1,3),
①依次连结A、B、C、D四点得到四边形ABCD,四边形ABCD的形状是------------;
②在x轴上找一点P,使得△PCD的周长最短(直接画出图形,不要求写作法);
此时,点P的坐标为------------ ,最短周长为------------------;
3. 如图正方形ABCD ,E 为AD边上一点,F为CD边上一点,∠FEB=∠EBC,若AE= kED, 探究DF与CF的数量关系;
4.如图1 等腰直角△ABC,将等腰直角△DMN如图放置,△DMN的斜边MN与△ABC的一直角边AC重合.
⑴在图1中,绕点 D旋转△DMN,使两直角边DM、DN分别与交于点E ,F如图2 ,求证:AE2+BF2=EF2 ;
⑵在图1 中,绕点 C旋转△DMN,使它的斜边CM、直角边 CD的延长线分别与 AB交于点E ,F,如图3,此时结论AE2+BF2=EF2 是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
⑶如图4,在正方形 ABCD中,E、F 分别是边BC、CD 上的点且满足△CEF 的周长等于正方形ABCD 的周长的一半,AE、AF 分别与对角线 BD交于点M、N . 线段BM 、MN 、DN 恰能构成三角形. 请指出线段BM 、MN 、DN 所构成的三角形的形状,并给出证明;
5. 将一块直角三角板的直角顶点绕矩形ABCD(AB<BC)的对角线的交点O旋转(如图①②
③),图中的M、N分别为直角三角形的直角边与矩形ABCD的边CD、BC的交点,
⑴如图①三角板一直角边与OD重合,则线段BN、CD、CN间的数量关系为-----------------------;
⑵如图②三角板一直角边与OC重合,则线段BN、CD、CN间的数量关系为-----------------------;
⑶如图③,探究线段BN、CN、CM、DM间的数量关系,写出你的结论,加以说明;
④若将矩形ABCD改为边长为1的正方形ABCD,直角三角板的直角顶点绕O点旋转到图④,两直角边与AB、BC分别交于M、N,探究线段BN、CN、CM、DM间的数量关系,写出你的结论,加以说明;
6. 如图,四边形ABCD, AD∥BC,AD≠BC ,∠B=90°,AD=AB , 点E是AB边上一动点(点E不与点A、B重合),连结ED,过ED的中点F作ED的垂线,交AD于点G,交BC于点K,过点K作KM⊥AD于M.若AB=k AE , 探究DM与DG 的数量关系;(用含的式子表示).。