七年级数学平面图形测试题
七下数学-平面图形的认识专项训练
期末复习:7章 平面图形的认识(二)2021-2022学年苏科版七年级数学下册一、选择题1、下列各组图形可以通过平移互相得到的是( )A .B .C .D . 2、如图所示,下列结论中正确的是()A .1∠和2∠是同位角B .2∠和3∠是同旁内角C .1∠和4∠是内错角D .3∠和4∠是对顶角3、要求画ABC 的边AB 上的高.下列画法中,正确的是( )A .B .C .D . 4、下面不能组成三角形的三条线段是( )A .a =b =100cm ,c =1cmB .a =b =c =3cmC .a =2cm ,b =3cm ,c =5cmD .a =2cm ,b =4cm ,c =5cm5、已知直线m n ∥,将一块含30°角的直角三角板ABC 按如图方式放置(∠ABC =30°),其中A ,B 两点分别落在直线m ,n 上,若∠1=20°,则∠2的度数为( )A .20°B .30°C .45°D .50°6、如图,在下列条件中,能判断AB ∥CD 的是()A .∠1=∠2B .∠BAD =∠BCDC .∠BAD +∠ADC =180°D .∠3=∠47、如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=60°,则∠2的度数是( ) A .50°B .45°C .35°D .30°8、如图所示,在ABC 中,D 、E 、F 分别为BC 、AD 、CE 的中点,且216cm ABC S =△,则DEF 的面积等于( )A .22cmB .24cmC .26cmD .28cm9、如图,AB ∥CD ,则∠A 、∠C 、∠E 、∠F 满足的数量关系是( )A .∠A =∠C +∠E +∠FB .∠A +∠E ﹣∠C ﹣∠F =180°C .∠A ﹣∠E +∠C +∠F =90°D .∠A +∠E +∠C +∠F =360°10、如图:AB ∥CD ,OE 平分∠BOC ,OF ⊥OE ,OP ⊥CD ,∠ABO =40°,则下列结论:①OF 平分∠BOD ;②∠POE =∠BOF ;③∠BOE =70°;④∠POB =2∠DOF ,其中结论正确的序号是( )A .①②③B .①②④C .①③④D .①②③④二、填空题11、一个多边形的内角和与外角和之和为2520°,则这个多边形的边数为_____.12、如图,将周长为8的△ABC 沿BC 方向平移1个单位得到△DEF ,则四边形ABFD 的周长为()A .6B .8C .10D .1213、如图,若∠1+∠2=180°,∠3=70°,则∠4=_______.14、将一块直角三角板的直角顶点放在长方形直尺的一边上,如143∠=,那么∠2的度数为______ 15、如图,已知AB ∥CD ,如果∠1=100°,∠2=120°,那么∠3=_____度.16、如图,四边形ABCD 中,点M ,N 分别在AB ,BC 上, 将BMN △沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠B =___°.17、某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转.某一指令规定:机器人先向前行走1米,然后左转45°,若机器人反复执行这一指令,则从出发到第一次回到原处,机器人共走了米. 18、如图,已知AD ∥CE ,∠BCF =∠BCG ,CF 与∠BAH 的平分线交于点F ,若∠AFC 的余角等于2∠ABC 的补角,则∠BAH 的度数是______.三、解答题19、如图所示,直线AB ∥CD ,直线AB 、CD 被直线EF 所截,EG 平分∠BEF ,FG 平分∠DFE ,(1)若∠AEF =50°,求∠EFG 的度数.(2)判断EG 与FG 的位置关系,并说明理由.20、已知:如图EF CD ∥,∠1+∠2=180°.(1)试说明GD CA ∥;(2)若CD 平分∠ACB ,DG 平分∠CDB ,且∠A =40°,求∠ACB 的度数.21、如图,已知180EFC BDC ︒∠+∠=,DEF B ∠=∠.(1)试判断DE 与BC 的位置关系,并说明理由.(2)若DE 平分ADC ∠,3BDC B ∠=∠,求EFC ∠的度数.22、如图,直线AE 、CF 分别被直线EF 、AC 所截,已知∠1=∠2,AB 平分∠EAC ,CD 平分∠ACG ,将下列证明AB //CD 的过程及理由填写完整.证明:因为∠1=∠2,所以//(),所以∠EAC =∠ACG (),因为AB 平分∠EAC ,CD 平分∠ACG ,所以=12EAC ∠,=12ACG ∠, 所以=,所以AB //CD ( ).23、画图并填空:如图,在12×8 的方格纸中,每个小正方形的边长都为1 ,△ABC 的顶点都在方格纸的格点上,将△ABC按照某方向经过一次平移后得到△A ' B 'C ' ,图中标出了点C 的对应点C ' .(1)请画出△A ' B 'C ' ;(2)利用方格纸,在△ABC 中画出AC 边上的中线BD 和BC 边上的高AE ;(3)点F 为方格纸上的格点(异于点B ),若S ∆ACB =S ∆ACF ,则图中格点F 共有个.(请在方格纸中标出点F )24、如图,四边形ABCD 中,∠A =∠C =90°,BE ,DF 分别是∠ABC ,∠ADC 的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.25、已知,直线AB∥CD(1)如图(1),点G为AB、CD间的一点,联结AG、CG.若∠A=140°,∠C=150°,则∠AGC的度数是多少?(2)如图(2),点G为AB、CD间的一点,联结AG、CG.∠A=x°,∠C=y°,则∠AGC的度数是多少?(3)如图(3),写出∠BAE、∠AEF、∠EFG、∠FGC、∠GCD之间有何关系?直接写出结论.26、将纸片△ABC沿DE折叠使点A落在A′处的位置.(1)如果A′落在四边形BCDE的内部(如图1),∠A′与∠1+∠2之间存在怎样的数量关系?并说明理由.(2)如果A′落在四边形BCDE的BE边上,这时图1中的∠1变为0°角,则∠A′与∠2之间的关系是.(3)如果A′落在四边形BCDE的外部(如图2),这时∠A′与∠1、∠2之间又存在怎样的数量关系?并说明理由.27、阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB//CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF//AB,则有∠BEF=.∵AB//CD,∴//,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a //b ,点A ,B 在直线a 上,点C ,D 在直线b 上,连接AD ,BC ,BE 平分∠ABC ,DE 平分∠ADC ,且BE ,DE 所在的直线交于点E .①如图1,当点B 在点A 的左侧时,若∠ABC =60°,∠ADC =70°,求∠BED 的度数;②如图2,当点B 在点A 的右侧时,设∠ABC =α,∠ADC =β,请你求出∠BED 的度数(用含有α,β的式子表示).28、已知,AB ∥CD ,点E 为射线FG 上一点.(1)如图1,若∠EAF =25°,∠EDG =45°,则∠AED =.(2)如图2,当点E 在FG 延长线上时,此时CD 与AE 交于点H ,则∠AE D 、∠EAF 、∠EDG 之间满足怎样的关系,请说明你的结论;(3)如图3,当点E 在FG 延长线上时,DP 平分∠EDC ,且∠EAP :∠BAP =l : 2,∠AED =32°,∠P =30°,求∠EKD 的度数.期末复习:7章 平面图形的认识(二)2021-2022学年苏科版七年级数学下册(答案)一、选择题1、下列各组图形可以通过平移互相得到的是( )A .B .C .D .【答案】C2、如图所示,下列结论中正确的是()A .1∠和2∠是同位角B .2∠和3∠是同旁内角C .1∠和4∠是内错角D .3∠和4∠是对顶角【答案】.B解:A 、∠1和∠2是同旁内角,故本选项错误;B 、∠2和∠3是同旁内角,故本选项正确;C、∠1和∠4是同位角,故本选项错误;D、∠3和∠4是邻补角,故本选项错误;故选:B.3、要求画ABC的边AB上的高.下列画法中,正确的是()A.B.C.D.【答案】C4、下面不能组成三角形的三条线段是()A.a=b=100cm,c=1cmB.a=b=c=3cmC.a=2cm,b=3cm,c=5cmD.a=2cm,b=4cm,c=5cm【答案】C【解析】解:A、因为1+100>100,所以能构成三角形,故A不符合题意;B、因为3+3>3,所以能构成三角形,故B不符合题意;C、因为2+3=5,所以不能构成三角形,故C符合题意;D、因为2+4>5,所以能构成三角形,故D不符合题意.故选:C.∥,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分5、已知直线m n别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【答案】D∥,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故选D.因为m n6、如图,在下列条件中,能判断AB∥CD的是()A.∠1=∠2B.∠BAD=∠BCDC.∠BAD+∠ADC=180°D.∠3=∠4【答案】C解:A .由∠1=∠2可判断AD ∥BC ,不符合题意;B .∠BAD =∠BCD 不能判定图中直线平行,不符合题意;C .由∠BAD +∠ADC =180°可判定AB ∥DC ,符合题意;D .由∠3=∠4可判定AD ∥BC ,不符合题意;故选择:C .7、如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=60°,则∠2的度数是( )A .50°B .45°C .35°D .30°如图,,∵直线a ∥b ,∴∠3=∠1=60°.∵AC ⊥AB ,∴∠3+∠2=90°,∴∠2=90°-∠3=90°-60°=30°,故选D .8、如图所示,在ABC 中,D 、E 、F 分别为BC 、AD 、CE 的中点,且216cm ABC S △,则DEF 的面积等于( )A .22cmB .24cmC .26cmD .28cm【答案】A解:∵S △ABC =16cm 2,D 为BC 中点,∴S △ADB =S △ADC =12S △ABC =8cm 2,∵E 为AD 的中点,∴S △CED =12S △ADC =4cm 2,∵F 为CE 的中点,∴S △DEF =12S △DEC =2cm 2;故选:A .9、如图,AB ∥CD ,则∠A 、∠C 、∠E 、∠F 满足的数量关系是( )A.∠A=∠C+∠E+∠F B.∠A+∠E﹣∠C﹣∠F=180°C.∠A﹣∠E+∠C+∠F=90°D.∠A+∠E+∠C+∠F=360°【答案】B延长AE、FC交于点G,过G作GH//CD,∵AB//CD,GH//CD,∴AB//GH//CD,∴∠A+∠AGH=180°,∠F=∠FCD,∴∠AEF=∠AGH+∠FGH+∠F=180°-∠A+∠FCD+∠F,整理得:∠A+∠AEF-∠FCD-∠F=180°,故选B.10、如图:AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①OF平分∠BOD;②∠POE=∠BOF;③∠BOE=70°;④∠POB=2∠DOF,其中结论正确的序号是()A.①②③B.①②④C.①③④D.①②③④【答案】A①∵OP⊥CD,∴∠POD=90°,又∵AB∥CD,∴∠BPO=90°,又∵∠ABO=40°,∴∠POB=90°-40°=50°,∴∠BOF=∠POF-∠POB=70°-50°=20°,∠FOD=40°-20°=20°,∴OF平分∠BOD,故①正确;②∵∠EOB=70°,∠POB=90°-40°=50°,∴∠POE=70°-50°=20°,又∵∠BOF=∠POF-∠POB=70°-50°=20°,∴∠POE=∠BOF,故②正确;③∵AB∥CD,∴∠BOD=∠ABO=40°,∴∠COB=180°-40°=140°,又∵OE平分∠BOC,∴∠BOE=12∠COB=12×140°=70°,故③正确;④由①可知∠POB=90°-40°=50°,∠FOD=40°-20°=20°,故∠POB≠2∠DOF,故④不正确.故结论正确的是①②③,故选A.二、填空题11、一个多边形的内角和与外角和之和为2520°,则这个多边形的边数为_____.【答案】14解:设这个多边形的边数为n.(n﹣2)×180°+360°=2520°.解得:n=14.故这个多边形的边数为14.故答案为:14.12、如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.6B.8C.10D.12【答案】.C解:根据题意,将周长为8个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选C.13、如图,若∠1+∠2=180°,∠3=70°,则∠4=_______.∴,解:如图,12180∠+∠=︒,a b∴∠=︒-∠=︒,故答案为:110︒.∠=︒,5370370∴∠=∠=︒,4180511014、将一块直角三角板的直角顶点放在长方形直尺的一边上,如143∠=,那么∠2的度数为______ 【答案】.47如图,,∵∠1=43°,∴∠3=∠1=47°,∴∠2=90°-43°=47°.故答案为47°.15、如图,已知AB ∥CD ,如果∠1=100°,∠2=120°,那么∠3=_____度.解:如图:过F 作FG 平行于AB ,//AB CD ,//FG CD ∴,1100EFG ∴∠=∠=︒,2180GFC ∠+∠=︒,即60GFC ∠=︒,31006040EFG GFC ∴∠=∠-∠=︒-︒=︒.故答案为:40.16、如图,四边形ABCD 中,点M ,N 分别在AB ,BC 上, 将BMN △沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠B =___°.∵MF //AD ,FN //DC ,∴∠BMF =∠A =100°,∠BNF =∠C =70°.∵△BMN 沿MN 翻折得△FMN ,∴∠BMN =12∠BMF =12×100°=50°,∠BNM =12∠BNF =12×70°=35°.在△BMN 中,∠B =180°-(∠BMN +∠BNM )=180°-(50°+35°)=180°-85°=95°.故答案为:9517、某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转.某一指令规定:机器人先向前行走1米,然后左转45°,若机器人反复执行这一指令,则从出发到第一次回到原处,机器人共走了米. 解:机器人转了一周共360度,360°÷45°=8,共走了8次,机器人走了8×1=8米.18、如图,已知AD ∥CE ,∠BCF =∠BCG ,CF 与∠BAH 的平分线交于点F ,若∠AFC 的余角等于2∠ABC 的补角,则∠BAH 的度数是______.解:设∠BAF =x °,∠BCF =y °∵∠BCF =∠BCG ,CF 与∠BAH 的平分线交于点F∴∠HAF =∠BAF =x °,∠BCG =∠BCF =x °,∠BAH =2x °,∠GCF =2y °,如图,过点B 作BM ∥AD ,过点F 作FN ∥AD∵AD∥CE;∴AD∥FN∥BM∥CE∴∠AFN=∠HAF=x°,∠CFN=∠GCF=2y°,∠ABM=∠BAH=2x°,∠CBM=∠GCB=y°∴∠AFC=(x+2y)°,∠ABC=(2x+y)°∵∠AFC的余角等于2∠ABC的补角∴90﹣(x+2y)=180﹣2(2x+y);解得:x=30;∴∠BAH=60°故答案为:60°.三、解答题19、如图所示,直线AB∥CD,直线AB、CD被直线EF所截,EG平分∠BEF,FG平分∠DFE,(1)若∠AEF=50°,求∠EFG的度数.(2)判断EG与FG的位置关系,并说明理由.【答案】(1)25°;(2)EG⊥FG解:(1)∵AB∥CD;∴∠EFD=∠AEF=50°∵FG平分∠DFE;∴∠EFG=12∠DFE=12×50°=25°(2)EG⊥FG理由:∵AB∥CD;∴∠BEF+∠EFD=180°∵EG平分∠BEF,FG平分∠DFE;∴∠GEF=12∠BEF,∠GFE=12∠DFE∴∠GEF+∠GFE=12∠BEF+12∠DFE=12(∠BEF+∠DFE)=12×180°=90°∴∠G=180°-(∠GEF+∠GFE)=90°;∴EG⊥FG20、已知:如图EF CD∥,∠1+∠2=180°.(1)试说明GD CA∥;(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠ACB的度数.【答案】解:(1)∵EF CD∥;∴∠1+∠ECD=180°又∵∠1+∠2=180°;∴∠2=∠ECD ;∴GD CA ∥;(2)由(1)得:GD CA ∥,∴∠BDG =∠A =40°,∠ACD =∠2,∵DG 平分∠CDB ,∴∠2=∠BDG =40°,∴∠ACD =∠2=40°,∵CD 平分∠ACB ,∴∠ACB =2∠ACD =80°.21、如图,已知180EFC BDC ︒∠+∠=,DEF B ∠=∠.(1)试判断DE 与BC 的位置关系,并说明理由.(2)若DE 平分ADC ∠,3BDC B ∠=∠,求EFC ∠的度数.【答案】(1)DE ∥BC ;(2)72°解:(1)DE ∥BC .理由:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC ,∴AD ∥EF ,∴∠DEF=∠ADE ,又∵∠DEF=∠B ,∴∠B=∠ADE ,∴DE ∥BC .(2)∵DE 平分∠ADC ,∴∠ADE=∠CDE ,又∵DE ∥BC ,∴∠ADE=∠B ,∵∠BDC=3∠B ,∴∠BDC=3∠ADE=3∠CDE ,又∵∠BDC+∠ADC=180°,3∠ADE+2∠ADE=180°,解得∠ADE=36°,∴∠ADF=72°,又∵AD ∥EF ,∴∠EFC=∠ADC=72°.22、如图,直线AE 、CF 分别被直线EF 、AC 所截,已知∠1=∠2,AB 平分∠EAC ,CD 平分∠ACG ,将下列证明AB //CD 的过程及理由填写完整.证明:因为∠1=∠2,所以//(),所以∠EAC =∠ACG (),因为AB 平分∠EAC ,CD 平分∠ACG ,所以=12EAC∠,=12ACG∠,所以=,所以AB//CD().证明:因为∠1=∠2,所以AE∥CF(同位角相等,两直线平行),所以∠EAC=∠ACG(两直线平行,内错角相等),因为AB平分∠EAC,CD平分∠ACG,所以∠3=12∠EAC,∠4=12∠ACG,所以∠3=∠4,所以AB∥CD(内错角相等,两直线平行).故答案为:AE;FG;同位角相等,两直线平行;两直线平行,内错角相等;∠3;∠4;∠3;∠4;内错角相等,两直线平行.23、画图并填空:如图,在12×8 的方格纸中,每个小正方形的边长都为1 ,△ABC 的顶点都在方格纸的格点上,将△ABC 按照某方向经过一次平移后得到△A' B'C ' ,图中标出了点C 的对应点C ' .(1)请画出△A' B'C ' ;(2)利用方格纸,在△ABC 中画出AC 边上的中线BD 和BC 边上的高AE ;(3)点F 为方格纸上的格点(异于点B ),若S ∆ACB =S ∆ACF ,则图中格点F 共有个.(请在方格纸中标出点F )解:(1)如图,△A'B'C'为所作;(2)如图,BD、AE为所作;(3)若S△ACB=S△ACF,则图中格点F共有5个,如图.故答案为5.24、如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.解:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.25、已知,直线AB∥CD(1)如图(1),点G为AB、CD间的一点,联结AG、CG.若∠A=140°,∠C=150°,则∠AGC的度数是多少?(2)如图(2),点G为AB、CD间的一点,联结AG、CG.∠A=x°,∠C=y°,则∠AGC的度数是多少?(3)如图(3),写出∠BAE、∠AEF、∠EFG、∠FGC、∠GCD之间有何关系?直接写出结论.【答案】(1)70°;(2)∠AGC=(x+y)°;(3)∠BAE+∠EFG+∠GCD=∠AEF+∠FGC.解:(1)如图,过点G作GE∥AB,∵AB∥GE,∴∠A+∠AGE=180°(两直线平行,同旁内角互补).∵∠A=140°,∴∠AGE=40°.∵AB∥GE,AB∥CD,∴GE∥CD.∴∠C+∠CGE=180°(两直线平行,同旁内角互补).∵∠C=150°,∴∠CGE=30°.∴∠AGC=∠AGE+∠CGE=40°+30°=70°.(2)如图,过点G作GF∥AB∵AB∥GF,∴∠A=AGF(两直线平行,内错角相等).∵AB∥GF,AB∥CD,∴GF∥CD.∴∠C=∠CGF.∴∠AGC=∠AGF+∠CGF=∠A+∠C.∵∠A=x°,∠C=y°,∴∠AGC=(x+y)°.(3)如图所示,过点E作EM∥AB,过点F作FN∥AB,过点G作GQ∥CD,∵AB∥CD,∴AB∥EM∥FN∥GQ∥CD.∴∠BAE=∠AEM,∠MEF=∠EFN,∠NFG=∠FGQ,∠QGC=∠GCD(两直线平行,内错角相等).∴∠AEF=∠BAE+∠EFN,∠FGC=∠NFG+GCD.∵∠EFN+∠NFG=∠EFG,∴∠BAE+∠EFG+∠GCD=∠AEF+∠FGC.26、将纸片△ABC沿DE折叠使点A落在A′处的位置.(1)如果A′落在四边形BCDE的内部(如图1),∠A′与∠1+∠2之间存在怎样的数量关系?并说明理由.(2)如果A′落在四边形BCDE的BE边上,这时图1中的∠1变为0°角,则∠A′与∠2之间的关系是.(3)如果A′落在四边形BCDE的外部(如图2),这时∠A′与∠1、∠2之间又存在怎样的数量关系?并说明理由.解:(1)图1中,2∠A=∠1+∠2,理由是:∵延DE折叠A和A′重合,∴∠AED=∠A′ED,∠ADE=∠A′DE,∵∠AED+∠ADE=180°﹣∠A,∠1+∠2=180°+180°﹣2(∠AED+∠ADE),∴∠1+∠2=360°﹣2(180°﹣∠A)=2∠A;(2)2∠A=∠2,如图∠2=∠A+∠EA′D=2∠A,故答案为:2∠A=∠2;(3)如图2,2∠A=∠2﹣∠1,理由是:∵延DE折叠A和A′重合,∴∠A=∠A′,∵∠DME=∠A′+∠1,∠2=∠A+∠DME,∴∠2=∠A+∠A′+∠1,即2∠A=∠2﹣∠1.27、阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB//CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF//AB,则有∠BEF=.∵AB//CD,∴//,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).【答案】(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣11 22 aβ+解:(1)过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案为:∠B ;EF ;CD ;∠D ;(2)①如图1,过点E 作EF ∥AB ,有∠BEF =∠EBA .∵AB ∥CD ,∴EF ∥CD .∴∠FED =∠EDC .∴∠BEF +∠FED =∠EBA +∠EDC .即∠BED =∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =30°,∠EDC =12∠ADC =35°,∴∠BED =∠EBA +∠EDC =65°.答:∠BED 的度数为65°;②如图2,过点E 作EF ∥AB ,有∠BEF +∠EBA =180°.∴∠BEF =180°﹣∠EBA ,∵AB ∥CD ,∴EF ∥CD .∴∠FED =∠EDC .∴∠BEF +∠FED =180°﹣∠EBA +∠EDC .即∠BED =180°﹣∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β, ∴∠BED =180°﹣∠EBA +∠EDC =180°﹣1122a β+. 答:∠BED 的度数为180°﹣1122a β+. 28、已知,AB ∥CD ,点E 为射线FG 上一点.(1)如图1,若∠EAF =25°,∠EDG =45°,则∠AED =.(2)如图2,当点E 在FG 延长线上时,此时CD 与AE 交于点H ,则∠AE D 、∠EAF 、∠EDG 之间满足怎样的关系,请说明你的结论;(3)如图3,当点E 在FG 延长线上时,DP 平分∠EDC ,且∠EAP :∠BAP =l : 2,∠AED =32°,∠P =30°,求∠EKD 的度数.(1)70°;(2)EAF AED EDG ∠=∠+∠,证明见解析;(3)122°解:(1)过E 作//EF AB ,//AB CD ,//EF CD ∴,25EAF AEH ∴∠=∠=︒,45EAG DEH ∠=∠=︒,70AED AEH DEH ∴∠=∠+∠=︒, 故答案为:70︒;(2)EAF AED EDG ∠=∠+∠.理由如下:过E 作//EM AB ,//AB CD ,//EM CD ∴,180EAF MEH ∴∠+∠=︒,180EDG AED MEH ∠+∠+=︒, 180EAF MEH ∴∠=︒-∠,180EDG AED MEH ∠+∠=︒-,EAF AED EDG ∴∠=∠+∠; (3):1:2EAP BAP ∠∠=,设EAP x ∠=,则3BAE x ∠=,32302AED P ∠-∠=︒-︒=︒,DKE AKP ∠=∠, 又180EDK DKE DEK ∠+∠+∠=︒,180KAP KPA AKP ∠+∠+∠=︒, 22EDK EAP x ∴∠=∠-︒=-︒, DP 平分EDC ∠,224CDE EDK x ∴∠=∠=-︒, //AB CD ,EHC EAF AED EDG ∴∠=∠=∠+∠,即33224x x =︒+-︒,解得28x =︒, 28226EDK ∴∠=︒-︒=︒,1802632122EKD ∴∠=︒-︒-︒=︒.。
苏科版七年级数学上册第6章平面图形的认识(一)单元测试卷 【含答案】
苏科版七年级数学上册第6章平面图形的认识(一)单元测试卷一、选择题1.如图所示,下列说法中正确的是( )A.∠ADE就是∠D B.∠ABC可以用∠B表示C.∠ABC和∠ACB是同一个角D.∠BAC和∠DAE是不同的两个角2.如图所示,关于线段、射线和直线的条数,下列说法正确的是( )A.五条线段,三条射线B.三条线段,两条射线,一条直线C.三条射线,三条线段D.三条线段,三条射线3.轩轩同学带领自己的学习小组成员预习了“线段、射线、直线”一节的内容后,对图展开了讨论,下列说法不正确的是( )A.直线MN与直线NM是同一条直线B.射线PM与射线MN是同一条射线C.射线PM与射线PN是同一条射线D.线段MN与线段NM是同一条线段4.如图,遵义的红军烈士陵园集中了建国后在遵义各处找到的红军遗骨,故又称红军山,陵园正面是在纪念遵义会议五十周年时兴建的一座别具特色的纪念碑.从山脚一点A到纪念碑底部一点B,沿右边楼梯直行和沿左边弯曲的盘山公路走相比,缩短了行走的路程,其中蕴含的数学道理是( )A .两点确定一条直线B .两点之间,线段最短C .垂线段最短D .同一平面内垂直于同一条直线的两直线平行5.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③利用圆规可以比较两条线段的大小;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )A .①④B .②③C .①②④D .①③④6.下列说法①一个角的补角大于这个角②小于平角的角是钝角③同角或等角的余角相等④若,123180∠+∠+∠= 则、、互为补角.其中正确的说法有( )1∠2∠3∠A .4个B .3个C .2个D .1个7.如图,AM 为∠BAC 的平分线,下列等式错误的是( )A .∠BAC =∠BAM B .∠BAM =∠CAM C .∠BAM =2∠CAM D .2∠CAM =∠BAC128.点P 为直线外一点,点A ,B ,C 在直线l 上,若PA=4cm ,PB=5cm ,PC=6cm ,则点P 到直线l 的距离是( )A. 4cmB. 5cmC. 不大于4cm D. 6cm 9.如果线段AB=5cm ,BC=4cm ,且A ,B ,C 在同一条直线上,那么A 、C 两点的距离是( ) A. 1cm B. 9cm C. 1cm 或9cmD. 以上答案都不正确10.同一平面内,三条不同直线的交点个数可能是( )个.A. 1或3B. 0、1或3C. 0、1或2 D. 0、1、2或3二、填空题11.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因_____.12将30°15′36″换算成度:30°15′36″= °.13如图,AB⊥CD,垂足为点B,EF平分∠ABD,则∠CBF的度数为 °.14如图,OC平分∠AOB,若∠AOC=25°,则∠AOB= 度.15如图,点A位于点O的 方向上.16.从12点整开始到1点,经过____分钟,钟表上时针和分针的夹角恰好为99°.三、解答题17.如图,已知同一平面内的四个点A、B、C、D,根据要求用直尺画图.(1)画线段AB,∠ADC;(2)找一点P,使P点既在直线AD上,又在直线BC上;(3)找一点Q,使Q到A、B、C、D四个点的距离和最短.18线段AB依次被分为2:3:4三部分,已知第一部分和第三部分中点的距离是5.4 cm,求线段AB的长.19.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.20已知∠AOB内部有三条射线,其中OE平分∠BOC,OF平分∠AOC.(1)如图1,若∠AOB=90°,∠AOC=30°,求EOF的度数;(2)如图2,若∠AOB=α,求∠EOF的度数(用含α的式子表示);(3)若将题中的“OE平分∠BOC,OF平分∠AOC”的条件改为“∠EOB=∠BOC,∠COF=∠AOC”,且∠AOB=α,求∠EOF的度数(用含α的式子表示)21.如图1直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,射线OE平分∠AOD.(1)若∠COE=40°,则∠BOD=.(2)若∠COE=α,求∠BOD(请用含α的代数式表示);(3)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE与∠BOD之间有怎样的数量关系?并说明理由.22.将一副三角板中的两块直角三角尺的直角顶点C按照如图①的方式叠放在一起(∠A=30°,∠ABC=60°,∠E=∠EDC=45°),且三角板ACB的位置保持不动.(1)将三角板DCE绕点C按顺时针方向旋转至图②,若∠ACE=60°,求∠DCB的度数.(2)将三角板DCE绕点C按顺时针方向旋转,当旋转到ED∥AB时,求∠BCE的度数(请先在备用图上补全相应的图形).(3)当0°<∠BCE<180°且点E在直线BC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠BCE所有可能的值;若不存在,请说明理由.23.如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C 在线段AP上,D在线段BP上),运动的时间为t.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.24.已知直线AB过点O,∠COD=90°,OE是∠BOC的平分线.(1)操作发现:①如图1,若∠AOC=40°,则∠DOE=②如图1,若∠AOC=α,则∠DOE=(用含α的代数式表示)(2)操作探究:将图1中的∠COD绕顶点O顺时针旋转到图2的位置,其他条件不变,②中的结论是否成立?试说明理由.(3)拓展应用:将图2中的∠COD绕顶点O逆时针旋转到图3的位置,其他条件不变,若∠AOC=α,求∠DOE 的度数,(用含α的代数式表示)答案一、选择题1.B2.解:如图:由直线、射线及线段的定义可知:线段有:AB、BC、CA;射线有:AD、AE;直线有:DE.即有三条线段,两条射线,一条直线.故选:B.3.解:A、直线MN与直线NM是同一条直线,原说法正确,故本选项不符合题意;B、射线PM与射线MN不一定是同一条射线,原说法错误,故本选项符合题意;C、射线PM与射线PN是同一条射线,原说法正确,故本选项不符合题意;D、线段MN与线段NM是同一条线段,原说法正确,故本选项不符合题意;故选:B.4.解:从山脚一点A到纪念碑底部一点B,沿右边楼梯直行和沿左边弯曲的盘山公路走相比,缩短了行走的路程,其中蕴含的数学道理是:两点之间,线段最短.故选:B.5.A 6.D 7.C8. C【考点】点到直线的距离解:∵4<5<6,∴根据从直线外一点到这条直线上所有点连线中,垂线段最短,可知点P到直线l的距离是4cm或比4cm小的数,即不大于4cm,故选C.【分析】根据垂线段最短得出点P到直线l的距离是4cm或比4cm小的数,即可得出选项9. C【考点】两点间的距离解:当点C在AB之间时,AC=AB﹣BC=5﹣4=1(cm);当点C在点B的右侧时,AC=AB+BC=5+4=9(cm).故选:C.【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据正确画出的图形解题.当点C在AB之间时,AC=AB﹣BC;当点C在点B的右侧时,AC=AB+BC.10. D【考点】点到直线的距离解:如图,三条直线的交点个数可能是0或1或2或3.故选D.【分析】根据两直线平行和相交的定义作出图形即可得解.二、填空题11.两点之间线段最短12将30°15′36″换算成度:30°15′36″= °.【考点】度分秒的换算.见试题解答内容【分析】先把36″除以60化为0.6′,再加上15′为15.6′,再除以60化为度,与30合并在一起即可.解:36″=36÷60=0.6′;30°15′36″=30+15.6÷60=30.26°.故30.26.13如图,AB⊥CD,垂足为点B,EF平分∠ABD,则∠CBF的度数为 °.【考点】角平分线的定义;垂线.见试题解答内容【分析】根据垂线的定义可知,∠ABD的度数是90°,根据角平分线的定义,可求∠DBE的度数,再根据对顶角相等可求∠CBF的度数.解:∵AB⊥CD,∴∠ABD=90°,∵EF平分∠ABD,∴∠DBE=45°,∴∠CBF=45°.故45.14如图,OC平分∠AOB,若∠AOC=25°,则∠AOB= 度.【考点】角平分线的定义.见试题解答内容【分析】根据角平分线的定义求解.解:∵∠AOC=25°,OC平分∠AOB,∴∠AOB=2∠AOC=50°,故答案为50°.15如图,点A位于点O的 方向上.【考点】方向角.见试题解答内容【分析】根据方位角的概念直接解答即可.解:点A 位于点O 的北偏西30°方向上.16.18或52211三、解答题17.解:(1)如图所示,线段AB 、∠ADC 即为所求;(2)直线AD 与直线BC 交点P 即为所求;(3)如图所示,点Q即为所求.18.73°.19.解:(1)∵M 是AB 的中点∴MB=40(2)∵N 为PB 的中点,且NB=14 ∴PB=2NB=2×14=28(3)∵MB=40,PB=28 ∴PM=MB﹣PB=40﹣28=1220.解:AB=8.1 cm21.解:(1)若∠COE =40°,∵∠COD =90°,∴∠EOD =90°﹣40°=50°,∵OE 平分∠AOD ,∴∠AOD =2∠EOD =100°,∴∠BOD =180°﹣100°=80°;(2)∵∠COE =α,∴∠EOD =90﹣α,∵OE 平分∠AOD ,∴∠AOD =2∠EOD =2(90﹣α)=180﹣2α,∴∠BOD =180°﹣(180﹣2α)=2α;(3)如图2,∠BOD +2∠COE =360°,理由是:设∠BOD =β,则∠AOD =180°﹣β,∵OE 平分∠AOD ,∴∠EOD = ∠AOD = =90°﹣β,121802β︒-12∵∠COD =90°,∴∠COE =90°+(90°﹣β)=180°﹣β,1212即∠BOD +2∠COE =360°.故(1)80°;(2)2α;(3)∠BOD +2∠COE =360°,理由见详解.22.解:(1)如图中,∵∠ACB =∠ECD =90°,∴∠ECB =∠ACD ,∵∠ACE =60°,∴∠BCE =∠ACD =30°,∴∠BCD =∠BCE +∠ECD =30°+90°=120°,故答案为120°;(2)如图中,当DE ∥AB 时,延长BC 交DE 于M ,∴∠B =∠DMC =60°,∵∠DMC =∠E +∠MCE ,∴∠ECM =15°,∴∠BCE =165°,当D ′E ′∥AB 时,∠E ′CB =∠ECM =15°,∴当ED ∥AB 时,∠BCE 的度数为165°或15°;(3)存在.如图,①CD ∥AB 时,∠BCE =30°,②DE ∥BC 时,∠BCE =45°,③CE ∥AB 时,∠BCE =120°,④DE ∥AB 时,∠BCE =165°,⑤当AC ∥DE 时,∠BCE =135°综上所述,当0°<∠BCE <180°且点E 在直线BC 的上方时,这两块三角尺存在一组边互相平行,∠BCE 的值为30°或45°或120°或165°或135°.23.(1) 因为点C 从P 出发以1(cm/s)的速度运动,运动的时间为t =1(s),所以(cm).111PC =⨯=因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t =1(s),所以(cm).故BD =2PC.212BD =⨯=因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP .因为AB =12cm ,所以(cm).1112433AP AB ==⨯=(2) 因为点C 从P 出发以1(cm/s)的速度运动,运动的时间为t =2(s),所以(cm).122PC =⨯=因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t =2(s),所以(cm).故BD =2PC.224BD =⨯=因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP .因为AB =12cm ,所以(cm).1112433AP AB ==⨯=(3) 因为点C 从P 出发以1(cm/s)的速度运动,运动的时间为t (s),所以(cm).PC t =因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t (s),所以(cm).故BD =2PC.2BD t =因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP .因为AB =12cm ,所以(cm).1112433AP AB ==⨯=(4) 本题需要对以下两种情况分别进行讨论.(i) 点Q 在线段AB 上(如图①).因为AQ -BQ =PQ ,所以AQ =PQ +BQ .因为AQ =AP +PQ ,所以AP =BQ .因为,所以.13AP AB =13BQ AP AB ==故.因为AB =12cm ,所以(cm).13PQ AB AP BQ AB =--=1112433PQ AB ==⨯=(ii) 点Q 不在线段AB 上,则点Q 在线段AB 的延长线上(如图②).因为AQ -BQ =PQ ,所以AQ =PQ +BQ .因为AQ =AP +PQ ,所以AP =BQ .因为,所以.故.13AP AB =13BQ AP AB ==1433AQ AB BQ AB AB AB =+=+=因为AB =12cm ,所以(cm).411233PQ AQ AP AB AB AB =-=-==综上所述,PQ 的长为4cm 或12cm.24.解:(1)如图1,∵∠COD=90°,∴∠AOC+∠BOD=90°,∵∠AOC=40°,∴∠BOD=50°,∴∠BOC=∠COD+∠BOD=90°+50°=140°,∵OE 平分∠BOC,∴∠BOE=∠BOC=70°,∴∠DOE=∠BOE-∠BOD=20°,12②如图1,由(1)知:∠AOC+∠BOD=90°,∵∠AOC=α,∴∠BOD=90°﹣α,∴∠BOC=∠COD+∠BOD=90°+90°﹣α=180°﹣α,∵OE 平分∠BOC,∴∠BOE=∠BOC=90°﹣α,1212∴∠DOE=∠BOE﹣∠BOD=90°﹣α﹣(90°﹣α)=α,1212(2)(1)中的结论还成立,理由是:如图2,∵∠AOC+∠BOC=180°,∠AOC=α,∴∠BOC=180°﹣α,∵OE 平分∠BOC,∴∠EOC=∠BOC=90°﹣α,1212∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣(90°﹣α)=α;1212(3)如图3,∵∠AOC+∠BOC=180°,∠AOC=α,∴∠BOC=180°﹣α,∵OE 平分∠BOC,∴∠EOC=∠BOC=90°﹣α,1212∵∠COD=90°,∴∠DOE=∠COD+∠COE=90°+(90°﹣α)=180°﹣α.1212。
初一数学七年级下平面图形的认识练习题
数学七年级下平面图形的认识练习题(一)选择题1、如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°2、已知一个多边形的内角和是外角和的2倍,则此多边形的边数为()A.6 B.7 C.8 D.93、如图,AB∥EF,∠C=90°,则α、β和γ的关系是()A.β=α+γB.α+β+γ=180°C.α+β-γ=90°D.β+γ-α=180°4、如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为()A.100米B.99米C.98米D.74米5、长度为1cm、2cm、3cm、4cm、5cm的五条线段,若以其中的三条线段为边构成三角形,可以构成不同的三角形共有()A.2个B.3个C.4个D.5个6、一个人驱车前进时,两次拐弯后,按原来的相反方向前进,这两次拐弯的角度可能是()A.向右拐85°,再向右拐95°B.向右拐85°,再向左拐85°C.向右拐85°,再向右拐85°D.向右拐85°,再向左拐95°7、如图:AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确结论有()A.①②③④B.①②③C.①③④D.①②④8、车库的电动门栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD 的大小是()A.150°B.180°C.270°D.360°(二)填空题1、如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为____________2、如图,已知AE∥BD,∠1=3∠2,∠2=28°.求∠C=___________3、正五边形的一个内角的度数是__________4、已知三角形的两边长分别是3cm和7cm,第三边长是偶数,则这个三角形的周长为_________5、一块四边形绿化园地,四角都做有半径为R的圆形喷水池,则这四个喷水池占去的绿化园地的面积为__________6、如图所示,直线l∥m,将含有45°角的三角形板ABC的直角顶点C放在直线m上.若∠1=25°,则∠2的度数为__________(三)解答题1、如图,AD∥BE,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AB∥CD.2、已知:∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O 重合),连接AC交射线OE于点D.设∠OAC=x°.3、已知△ABC中,∠A=60°.4、将纸片△ABC沿DE折叠使点A落在A′处的位置.5.如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.(1)求∠BAE的度数;(2)求∠DAE的度数;(3)探究:小明认为如果只知道∠B-∠C=40°,也能得出∠DAE的度数?你认为可以吗?若能,请你写出求解过程;若不能,请说明理由6.已知,如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边AB,AC和CB的延长线于点D,E,F.(1)求证:∠F+∠FEC=2∠A;(2)过B点作BM∥AC交FD于点M,试探究∠MBC与∠F+∠FEC的数量关系,并证明你的结论.7、已知△ABC,(1)如图1,若D点是△ABC内任一点、求证:∠D=∠A+∠ABD+∠ACD.(2)若D点是△ABC外一点,位置如图2所示.猜想∠D、∠A、∠ABD、∠ACD有怎样的关系?请直接写出所满足的关系式.(不需要证明)(3)若D点是△ABC外一点,位置如图3所示、猜想∠D、∠A、∠ABD、∠ACD之间有怎样的关系,并证明你的结论.8、如图,在△ABC中,点E在AC上,∠AEB=∠ABC.(1)图1中,作∠BAC的角平分线AD,分别交CB、BE于D、F两点,求证:∠EFD=∠ADC;(2)图2中,作△ABC的外角∠BAG的角平分线AD,分别交CB、BE的延长线于D、F两点,试探究(1)中结论是否仍成立?为什么?9、如图1,一副三角板的两个直角重叠在一起,∠A=30°,∠C=45°△COD固定不动,△AOB 绕着O点逆时针旋转α°(0°<α<180°)(1)若△AOB绕着O点旋转图2的位置,若∠BOD=60°,则∠AOC=_________;(2)若0°<α<90°,在旋转的过程中∠BOD+∠AOC的值会发生变化吗?若不变化,请求出这个定值;(3)若90°<α<180°,问题(2)中的结论还成立吗?说明理由;(4)将△AOB绕点O逆时针旋转α度(0°<α<180°),问当α为多少度时,两个三角形至少有一组边所在直线垂直?(请直接写出所有答案).10.如图,四边形ABCD中,∠F为四边形ABCD的∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的锐角,若设∠A=α,∠D=β;(1)如图①,α+β>180°,试用α,β表示∠F;(2)如图②,α+β<180°,请在图中画出∠F,并试用α,β表示∠F;(3)一定存在∠F吗?如有,求出∠F的值,如不一定,指出α,β满足什么条件时,不存在∠F.11、已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE和射线AF交于点G.12、已知,如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边AB,AC和CB 的延长线于点D,E,F.(1)求证:∠F+∠FEC=2∠A;(2)过B点作BM∥AC交FD于点M,试探究∠MBC与∠F+∠FEC的数量关系,并证明你的结论.13.已知,如图,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于点F,求证:∠CEF=∠CFE.14.如图,已知AB=AC=AD,且∠C=2∠D,求证AD∥BC15.(1)如图(1),在△ABC中,∠C>∠B,AD⊥BC于点D,AE平分∠BAC,你能找出∠EAD与∠B、∠C之间的数量关系吗?并说明理由.(2)如图(2),AE平分∠BAC,F为AE上一点,FM⊥BC于点M,这时∠EFM与∠B、∠C之间又有何数量关系?请你直接说出它们的关系,不需要证明.16.在△ABC中,AB=AC,AC边上的中线BD把三角形的周长分为12cm和15cm两部分,求三角形各边的长。
七年级数学《基本平面图形》单元测试题(含答案)
第五章《基本平面图形》单元测试题(后附答案)班级:_________ 姓名:___________题号一二171819202122附加总分分数一、选择题1.如图1,l是一条笔直的公路,在公路的两侧各有一个村庄A,B,两个村庄准备集资修建一个公交车站,经过协商,要求车站到两个村庄的路程和最短,小聪帮助设计了公交车站修建点M,则小聪设计的理由是()A.两点确定一条直线B.两点确定一条线段C.经过三点也可以确定一条直线D.两点之间线段最短图1 图22.下列表示方法正确的是()3.在下列四个图形中,能用∠1,∠AOB,∠O三种方法表示同一个角的图形是( )4.下图所示的图形中,其中两条线能相交的是( )5.下列图形中,是正六边形的是( )OBABOOABDCOCAACBEABDC1111AA BDC····BA BDC···CA BDC··DA BDC··A BC D6.已知线段AB=5cm ,在直线AB 上画线段AC=3cm ,则线段BC 的长为( ) A .8cm B .2 cm C . 2 cm 或8 cm D .不能确定7.已知点M 是∠AOB 内一点,作射线OM ,则下列不能说明OM 是∠AOB 的平分线的是( ) A.∠AOM=∠BOM B.∠AOB=2∠AOM C.∠BOM =21∠AOB D.∠AOM+∠BOM=∠AOB 8. 如图,圆的四条半径分别是OA ,OB ,OC ,OD ,其中点O ,A ,B 在同一条直线上,∠AOD =90°,∠AOC =3∠BOC ,那么圆被四条半径分成的四个扇形的面积的比是( )A. 1∶2∶2∶3B. 3∶2∶2∶3C. 4∶2∶2∶3D. 1∶2∶2∶1 9.现在的时间是9点30分,时钟面上的时针与分针的夹角是( ) A.100° B.105° C.110° D.120°10. 如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB=BC=3CD ,若A ,D 两点表示的数的分别为﹣5和6,点E 为BD 的中点,那么点E 表示的整数是( ) A.﹣1 B.0 C.1 D.2二、填空题11.把一根木条固定在墙上,至少要钉2颗钉子,这是根据 . 12.点O 是线段AB 的中点,OA=2cm,则AB=_______cm .13如图4所示,把一块三角尺的直角顶点放在一条直线l 上,若∠1=20º,则∠2的度数为 .图414.如图5,点A ,O ,B 在一条直线上,且∠BOC =130°,OD 平分∠AOC ,则图中∠BOD= 度.15.从六边形的一个顶点出发可以引出 条对角线,可将六边形分为 个三角形,六边形共有_____条对角线.16.我市某校某班有5名代课老师,过新年时,若每两人都互相握一次手,则共需要握 次手.三、解答题17. (每小题4分,共8分)计算:(1)将24.29°化为度、分、秒; (2)将36°40′30″化为度.18. (8分)如图6,把一个圆分成三个扇形,求出这三个扇形的圆心角度数.图619. (8分) 如图9,已知线段AB,请用尺规按下列要求作图:(1)延长线段AB到C,使BC=AB;延长线段BA到D,使AD=AC.(2)若AB=2cm,则AC=cm,BD=cm,CD=cm.图920. (8分) .如右图,∠BAD=90°,射线AC平分∠BAE.(1)当∠CAD=40°时,∠BAC=_______°.(2)当∠DAE=46°时,求∠CAD的度数.理由如下:由∠BAD=90°与∠DAE=46°,可得∠BAE =______________=_______°.由射线AC平分∠BAE,可得∠CAE =∠BAC =______________= _______°.所以∠CAD =_____________=_______°.21. (9分) 如图11,点P 是线段AB 上的一点,点M ,N 分别是线段AP ,PB 的中点. (1)如图①,若点P 是线段AB 的中点,且MP =4cm ,求线段AB 的长; (2)如图②,若点P 是线段AB 上的任一点,且AB =12cm ,求线段MN 的长.① ② 图1122. (11分)如图,已知数轴上点A 表示的数为8,B 是数轴上的一点,AB=12,动点P 从点A 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数 ,点P 表示的数 (用含t 的代数式表示);(2)若M 为AP 的中点,N 为PB 的中点.点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.附加题1.(6分) 如图1,在锐角∠AOB 内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;…照此规律,画10条不同射线,可得 个锐角.图12. (14分) 小知识:如图,我们称两臂长度相等(即CB CA =)的圆规为等臂圆规. 当等臂圆规的两脚摆放在一条直线上时,若张角︒=∠x ACB ,则底角︒-=∠=∠)290(xCBA CAB .请运用上述知识解决问题:如图,n 个相同规格的等臂圆规的两脚依次摆放在同一条直线上,其张角度数变化如下:112160AC A ∠=︒,22380A C A ∠=︒, 33440A C A ∠=︒,44520A C A ∠=︒,…(1)①由题意可得∠A 1A 2C 1= º;②若2A M 平分321A A C ∠,则22C MA ∠= º; (2)n n n C A A 1+∠= º(用含n 的代数式表示,n ≥1);(3)当3≥n 时,设11n n n A A C --∠的度数为a ,11n n n A A C +-∠的平分线N A n 与n n A C 构成的角的度数为β,那么α与β之间的等量关系是 ,请说明理由. (提示:可以借助下面的局部示意图)参考答案一、1.C2.D3.A4.C5.B6.C 提示:如图1所示,当点C 在线段AB 上时,BC=AB -AC=5-3=2(cm );如图2所示,当点C 在线段AB 外时,BC=AB+AC=5+3=8(cm ).图1 图2 7.D8.B 提示:9点30分时,时针与分针的夹角是3×30°+12×30°=105°. 9. A 10. D二、11. 两点确定一条直线 121. 4 13. 70° 14. 3 4 915. 155° 提示:∠BOD=∠BOC+∠COD=∠BOC+12∠AOC=∠BOC+12(180°-∠BOC )=130°+12(180°-130°)=155°.16. 10三、17. 解:(1) 24.29°=24°+0.29⨯60′=24°+17.4′= 24°+17′+0.4⨯60″=24°+17′+24″= 24°17′24″(2) 36°40′30″=36°+40′+30″=36°+40′+601⨯30′=36°+40.5′=36°+601⨯40.5°=36°+0.675°=36.675°. 18.解:因为一个周角为360°,所以分成三个扇形的圆心角分别是:360°×25%=90°,360°×30%=108°,360°×45%=162°. 19.(1)如图4所示:图4 (2)4 6 8 20.(1)50 (2)理由如下:由∠BAD=90°与 ∠DAE=46°,可得∠BAE =_90°+46°(或∠BAD+∠DAE )=136°. 由射线AC 平分∠BAE ,可得 ∠CAE =∠BAC =136°÷2(或∠BAE ÷2)=68°. 所以 ∠CAD =90°-68°(∠BAD -∠CAE )= 22 °.21.解:(1)因为M 是线段AP 的中点,MP=4 cm ,所以AP=2MP=2×4=8(cm ).ACB CAB又因为点P 是线段AB 的中点,所以AB=2AP=2×8=16(cm ). (2)因为点M 是线段AP 的中点,点N 是线段PB 的中点,所以MP=AP ,PN=PB. 所以MN=MP+PN=AP+PB=(AP+PB )=AB.因为AB =12 cm ,所以MN=6 cm. 22. (1)﹣4 8﹣6t(2)①如图1,点P 在AB 中间,因为AM=PM ,BN=PN ,所以MN=AB=6;图1②如图2,点P 在B 点左侧,PM=PA=(PB+AB ),PN=PB ,所以MN=PM ﹣PN=PA ﹣PB=AB=6. 综上所述,MN 在点P 运动过程中长度无变化.图2 1. 662. 解:(1)①10 ②35 (2)(90-1802n ) (3)α-β=45° 理由:不妨设∠C n -1=k.根据题意可知2n kC ∠=.由小知识可知11n n n A A C --∠=902kα=︒-.所以11n n n A A C +-∠=180α︒-=902k︒+.由小知识可知1n n n A A C +∠= 904k︒-.因为 N A n 平分11n n n A A C +-∠,所以 1∠=1211n n n A A C +-∠=454k ︒+.因为1n n n A A C +∠=1n n C A N ∠+∠,所以 904k ︒-=454kβ︒++.所以 902k︒-=45β︒+.所以α=45β︒+. 所以45αβ-=︒.212121212121。
苏科版七年级数学上册《平面图形的认识(一)》基础训练(六份)
第六章《平面图形》基础训练一一、选择题1.给出下列说法:①过两点有且只有一条直线;②连接两点的线段叫作两点间的距离;③两点之间,线段最短;④若AB=BC,则点B是线段AC的中点;⑤射线AB和射线BA是同一条射线;⑥直线有无数个端点.其中正确的个数是( )A.2 B.3 C.4 D.52.面上有三点,经过每两点作一条直线,则能作出的直线的条数是 ( )A.1条 B.3条 C.1条或3条 D.以上都不对3.在下面各图中,么1与么2是对顶角是 ( )A. B. C. D.4.如图,两条直线AB,CD交于点O,射线OM是∠AOC的平分线,若∠BOD=80°,则∠BOM等于 ( )A.40° B.120° C.140° D.100°(第4题) (第5题) (第6题)5.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于 ( )A.90° B.80° C.70° D.60°6.如图,把水渠中的水引到水池C,先过C点向渠岸AB画垂线,垂足为点D,再沿垂线CD开沟才能使沟最短,其依据是 ( )A.垂线最短 B.过一点确定一条直线与已知直线垂直C.垂线段最短 D.以上说法都不对二、填空题7.下列四个生活、生产的现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定一行树的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能够缩短路程,其中可用“两点之间,线段最短”来解释的现象是_______(填序号).8.一条直线上距离相等的立有10根标杆,一名学生匀速地从第1根标杆向第10根标杆行走,当他走到第6根标杆时用了6.5 s,则当他走到第10根标杆时所用时间是_________.9.平面内三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=___________.10.如图,小明把一块含60°的三角板绕60°角的顶点A逆时针旋转到DAE的位置.若已量出∠CAE=100°,则∠DAB=_______.三、解答题11.已知平面上的点A,B,C,D.按下列要求画出图形:(1) 作直线AB,射线CB;(2) 取线段AB的中点E,连接DE并延长与射线CB交于点O;(3) 连接AD并延长至点F,使得AD=DF.12.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为点H;(3)线段PH的长度是点P到直线________的距离,线段_________的长度是点C到直线OB的距离,PC、PH、OC这三条线段的大小关系是__________(用“<”连接).第12题13.如图,C是线段AB的中点,D是线段BC的中点,已知图中所有线段的长度之和为39,求线段BC的长第六章《平面图形》基础训练二一、选择题1.若∠α+∠β=90°,∠β+∠γ=90°,则∠α与∠γ的关系是 ( )A.互余B.互补C.相等D.没有关系2.体育课上,老师测量某个同学的跳远成绩的依据是 ( ) A.平行线间的距离相等B.两点之间线段最短C.垂线段最短D.两点确定一条直线3.某市汽车站A到火车站F有四条不同的路线,如图所示,其中路线最短的是 ( )A.从A经过BME到FB.从A经过线段BE到FC.从A经过折线BCE到FD.从A经过折线BCDE到F(第3题)(第4题)4.观察图形,下列说法正确的个数有 ( )(1)直线BA和直线AB是同一条直线;(2)射线AC和射线AD是同一条射线;(3)AB+BD>AD;(4)三条直线两两相交时,一定有三个交点.A.1个B.2个 C.3个D.4个5.若∠1和∠2互余,∠1与∠3互补,∠2与∠3的和等于周角的13,则∠1、∠2、∠3这三个角分别是 ( )A.50°,30°,130°B.70°,20°,110°C.75°,15°,105°D.60°,30°,120°二、填空题6.如图,从学校A到书店B最近的路线是________号路线,其中的道理用数学知识解释应是__________.(第6题)(第7题)7.如图,点C是线段AB上的点,点D是线段BC的中点,若AB=12,AC=8,则CD= __________.8.若把15°30′化成度的形式,则15°30′= _________°.9.若∠A=40°,则∠A的余角的度数是__________ .10.8点30分时,钟表的时针与分针的夹角为_________°.三、解答题11.按顺序画图:(1)画线段AB;(2)画射线AC;(3)用量角器和直尺画以AC为角平分线的∠BAM;(4)过点C画AB的垂线,垂足为P;(5)过点C画AB的平行线交AM于点Q;图形中线段CP和CQ的大小关系是_______.12.计算:(1) 93°19′41"-20°18′42"×2;(结果用度、分、秒表示)(2) 125°36′-98.85°.(结果用度表示)13.如图,已知B ,C 是线段AD 上的两点,且AB :BC :CD=2:4:3,M 是AD 的中点,CD=6 cm ,求线段MC 的长.14.如图,直线AB 、CD 相交于点O ,OE 平分∠AOD ,∠FOC=90°,∠1=40°,求∠2和∠3的度数.15.如图,已知∠COB=2∠AOC ,OD 平分∠AOB,且∠COD=22°,求∠AOB 的度数.AO BDC第六章《平面图形》基础训练三一、选择题1.如图,下列不正确的几何语句是( ) A.直线AB 与直线BA 是同一条直线 B.射线OA 与射线OB 是同一条射线C.射线OA 与射线AB 是同一条射线D.线段AB 与线段BA 是同一条线段2.如图,已知ON ⊥L ,OM ⊥L ,所以OM 与ON 重合,其理由是( ) A.两点确定一条直线B.在同一平面内,经过一点有且只有一条直线与已知直线垂直C.在同一平面内,过一点只能作一条垂线D.垂线段最短3.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,…,那么六条直线最多有( )A .21个交点B .18个交点C . 15个交点D .10个交点 4.如果∠α与∠β是邻补角,且∠α>∠β,那么∠β的余角是( )A.21(∠α+∠β)B.21∠αC.21(∠α-∠β) D.不能确定 5.已知α、β都是钝角,甲、乙、丙、丁四人计算61(α+β)的结果依次是28°、48°、60°、88°,其中只有一人计算正确,他是( ) A.甲B.乙C.丙D.丁二、填空题6.已知线段AB=10 cm,BC=5 cm,A、B、C三点在同一条直线上,则AC=_ _.7.已知线段AB=1 996 cm,P、Q是线段AB上的两个点,线段AQ=1 200 cm,线段BP=1 050 cm,则线段PQ=___________.8.如图,OM平分∠AOB,ON平分∠COD.若∠MON=50°,∠BOC=10°,则∠AOD= __________.9.如图,线段AB=BC=CD=DE=1 cm,那么图中所有线段的长度之和等于________cm.10.一条直线上距离相等的立有10根标杆,一名学生匀速地从第1杆向第10杆行走,当他走到第6杆时用了6.5 s,则当他走到第10杆时所用时间是_________.三、解答题11.已知一个角的补角比这个角的4倍大15,求这个角的余角.12.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为点H;(3)线段PH的长度是点P到直线________的距离,线段_________的长度是点C到直线OB的距离,PC、PH、OC这三条线段的大小关系是__________(用“<”号连接).13.如图,直线AB与CD相交于点O,OP是∠BOC的平分线,OE⊥AB,OF⊥CD. (1)如果∠AOD=40°,①那么根据__________,可得∠BOC=__________ 度.②∠POF的度数是__________度.(2)图中除直角外,还有相等的角吗?请写出三对:①__________ ;②__________;③__________ .14.如图所示, 直线AB、CD相交于O, OE平分∠AOD, ∠FOC=900, ∠1=400, 求∠2和∠3的度数.第六章《平面图形》基础训练四一、选择题1.如图,已知点P 是直线a 外的一点,点A 、B 、C 在直线a 上,且PB ⊥a ,垂足是B ,PA ⊥PC ,则下列错误的语句是( )A.线段PB 的长是点P 到直线a 的距离B.PA 、PB 、PC 三条线段中,PB 最短C.线段AC 的长是点A 到直线PC 的距离D.线段PC 的长是点C 到直线PA 的距离2.如图,已知ON ⊥L ,OM ⊥L ,所以OM 与ON 重合,其理由是( ) A.两点确定一条直线B.在同一平面内,经过一点有且只有一条直线与已知直线垂直C.在同一平面内,过一点只能作一条垂线D.垂线段最短3.用一副学生用的三角板的内角(其中一个三角板的内角是45°,45°,90°;另一个是30°,60°,90°)可以画出大于0°且小于等于150°的不同角度的角共有( )种. A.8B.9C.10D.114.如果∠α与∠β是邻补角,且∠α>∠β,那么∠β的余角是( )A.21(∠α+∠β)B.21∠αC.21(∠α-∠β) D.不能确定5.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角; ③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等; ⑤不在同一直线上的四个点可画6条直线;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角. 其中错误的有( ) A.2个 B.3个 C.4个 D.5个二、填空题6.已知线段AB=10 cm ,BC=5 cm ,A 、B 、C 三点在同一条直线上,则AC=___________.7.上午九点时分针与时针互相垂直,再经过 分钟后分针与时针第一次成一条直线.8.如图,OM 平分∠AOB ,ON 平分∠COD.若∠MON=50°,∠BOC=10°,则∠AOD= __________.9.如图,线段AB=BC=CD=DE=1 cm ,那么图中所有线段的长度之和等于_________cm.10.一条直线上距离相等的立有10根标杆,一名学生匀速地从第1根标杆向第10根标杆行走,当他走到第6根标杆时用了6.5 s ,则当他走到第10根标杆时所用时间是_________. 三、解答题11. 如图,点D 在∠BAC 的内部,请根据下列要求画图,并回答问题: (1) 过点D 画直线DE ∥AB ,交AC 于点E ; (2) 过点D 画直线DF ∥AC ,交AB 于点F ;(3) 通过测量判断AE 与DF 的大小关系以及∠A 与∠EDF 的大小关系.第8题图第9题图12.如图,C是线段AB的中点,D是线段BC的中点,已知图中所有的线段之和为39,求线段BC的长.13.如图,直线AB,CD相交于点O,OE把∠BOD分成两部分.(1) 直接写出图∠AOC的对顶角为,∠BOE的邻补角为;(2) 若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度数.14. 已知直线AB和CD相交于点O,射线OE⊥AB,垂足为点O,射线OF⊥CD,垂足为点O,且∠AOF=25°,求∠BOC与∠EOF的度数.第六章《平面图形》基础训练五一、填空题1.在儿时玩玩具手枪,在瞄准时总是半闭着眼,对着准星与目标,用数学知识解释为____________________________________.2.如图,图中共有线段_____条,若D 是AB 中点,E 是BC 中点, ⑴若3=AB ,5=BC ,=DE _________; ⑵若8=AC ,3=EC ,=AD _________.3.不在同一直线上的五点最多能确定_______条直线.4.2:35时钟面上时针与分针的夹角为______________.5.如图,在AOE ∠的内部从O 引出3条射线,那么图中共有_______个角;如果引出5条射线,有_______个角; 如果引出n 条射线,有_______个角. 二、填空题6.线段AB=10cm,BC=5cm,A 、B 、C 三点在同一条直线上,则AC=_______.7.如图,OM 平分∠AOB,ON 平分∠COD.若∠MON=50°,∠BOC=10°,则∠AOD= _______.8.如图,线段AB= BC= CD= DE= 1 厘米, 那么图中所有线段的长度之和等于______厘米.9.平面内三条直线两两相交,最多有a 个交点,最少有b 个交点,则a+b=_____ 10.上午九点时分针与时针互相垂直,再经过_______分钟后分针与时针第一次成一条直线. 三、解答题 11.画图⑴过点P 画直线MN ∥AB ; ⑵连结PB PA 、;⑶过B 画MN AB AP 、、的垂线,垂足为E D C 、、; ⑷过点P 画AB 的垂线,垂足为F ;12.如图,AD=12DB, E 是BC 的中点,BE=15AC=2cm,线段DE 的长,求线段DE 的长.EDB A13.如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.14.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC 的平分线.(1)求∠MON的大小.(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?15.在3×3的网格图中,标注了6个角,这些角中,有哪些互余的角,请分别写出来.(2)在5×5的网格图中,标注了一些线段AB、AI、CF、DF、EG、EI、CH、MH,哪些线段是平行的?哪些线段是垂直的?请你分别表示出来.第六章《平面图形》基础训练六一、选择题1.已知,如图:点P是直线a外的一点,点A、B、C在直线a上,且PB⊥a,垂足是B,PA⊥PC ,则下列错误的语句是()A.线段PB的长是点P到直线a的距离B.PA、PB、PC三条线段中,PB最短C.线段AC的长是点A到直线PC的距离D.线段PC的长是点C到直线PA的距离2.如图,ON⊥L,OM⊥L ,所以OM与ON重合,其理由是()A.过两点只有一条直线B.在同一平面内,经过一点只有一条直线与已知直线垂直C.在同一平面内,过一点只能作一条垂线 D.垂线段最短3..用一副学生用的三角板的内角(其中一个三角板的内角是45°,45°,90°;另一个是30°,60°,90°)可以画出大于0°且小于176°的不同角度的角共有_____种.()A.8B.9C.10D.11 aBA CP甲从A 出发向北偏东45度走到点B ,乙从点A 出发向北偏西30度走到点C ,则∠BAC 等于( )A.15度B.75度C.105度D.135度 5.下列说法中正确的有( )①过两点有且只有一条直线 ②连接两点的线段叫两点的距离 ③ 两点之间线段最短 ④ 如果AB=BC 则点B 是AC 的中点 A.1个 B.2个 C.3个 D.4个6.如果1∠与2∠互补,2∠与3∠互余,则1∠与3∠的关系是( ) A.1∠=3∠ B.31801∠-︒=∠ C.3901∠+︒=∠ D.以上都不对7.长为22cm 的线段AB 上有一点C ,那么AC 、BC 的中点间的距离是( ) A.12cmB.11cmC.10cmD.9cm8.已知OA OB ⊥,O 为垂足,且AOC ∠∶1AOB ∠=∶2,则BOC ∠是 ( ). A.45︒ B.135︒ C.45︒或135︒ D.60︒或20︒ 9.下列说法中,正确的个数是( )①两条不相交的直线叫平行线②两条地线相交所成的四个角相等,则这两条直线互相垂直 ③经过一点且只有一条直线与已知直线平行 ④如果直线a ∥b ,a ∥c ,则b ∥c A .1个B .2个C .3个D .4个10.轮船航行到A 处测得小岛B 的方向为北偏西36°,那么从B 点观察A 处的方向为( ) A.南偏西36° B.北偏西36° C.南偏东54° D.北偏东54°二、解答题:O BEACFD11.如图,在方格纸上有一条线段AB 和一点C. ①过点C 画出与AB 平行的直线; ②过点C 画出与AB 垂直的直线.12.已知一个角的补角比这个角的4倍大15,求这个角的余角.13.如图直线CD 、EF 相交于点O ,OA ⊥OB ,且OC 平分∠AOF ,∠BOE=2∠AOE ,求∠BOD 的度数.14.如图,直线CD 与直线EF 相交于点O ,OB 、OA 为射线,∠BOE =∠AOD =90°,∠EOD>∠EOC ,(1)找出图中相等的锐角,并说明它们相等的理由;(2)试找出∠DOF 的补角.15.下面是数学课堂的一个学习片段,阅读后,请回答下面的问题:CBA学习线段的中点有关内容后,张老师请同学们交流讨论这样一个问题:“已知线段AB=4 cm,C在直线AB上,且BC=2 cm,D为BC的中点,试求AD的长度.”同学们经片刻的思考与交流后,李明同学举手说:“AD=5 cm”;王华同学说:“AD =3 cm.”还有一些同学也提出了不同的看法……(1)假如你也在课堂中,你的意见如何?请你画出符合条件的图形,并写出解答过程.(2)通过上面数学问题的讨论,你有什么感受?(用一句话表示)。
苏科版七年级数学上册期末复习专题练第6章 平面图形的认识(一) 【含答案】
苏科版七年级数学上册期末复习专题练第6章 平面图形的认识(一)一、选择题1、下列结论:①两点确定一条直线;②直线AB 与直线BA 是同一条直线;③线段AB 与线段BA 是同一条线段;④射线OA 与射线AO 是同一条射线.其中正确的结论共有( )个.A .1B .2C .3D .42、根据下图,下列说法中不正确的是( ) A .图①中直线经过点B .图②中直线,相交于点l A a b AC .图③中点在线段上D .图④中射线与线段有公共点C AB CD AB 3、如图,是北偏东方向的一条射线,若射线 与射线垂直,则的方位角是()OA 30°OB OA OB A .北偏东 B .北偏西 C .西偏北 D .北偏西30°30°60︒60︒(3题) (7题) (8题)4、如图,C 是线段上一点,D 、E 分别是线段、的中点,若,,则的值为( AB AB AC 20AB =2CD =DE )A .6B .7C .8D .95、已知线段,点是直线上一点,,点是线段的中点,点是线段10cm AB =C AB 4cm BC =M AB N 的中点,则线段的长度是( )BC MN A . B . C .或 D .或3cm 5cm 3cm 7cm 5cm 7cm6、点分,时针与分针所夹的角为( )410A .B .C .D .55︒65︒70︒75︒7、如图,将一副三角板重叠放在一起,使直角顶点重合于点.若,则( )O 120AOC ∠=︒BOD ∠=A .30°B .40°C .50°D .60°8、如图,OD 平分∠AOB ,OC ⊥OD ,OE 平分∠AOC ,若∠BOE =15°,则∠AOD 的度数为( )A .18°B .20°C .22°D .30°9、如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部点E 处,若∠BFE =3∠BFH ,∠BFH =20°,则∠GFH 的度数是( )A .85°B .90°C .95°D .100°(9题) (10题)10、如图所示,已知∠AOB=64°,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,则∠AOA 4的大小为( )A .1°B .2°C .4°D .8°二、填空题11、下列生产和生活现象:①用两个钉子就可以把木条固定在墙上;②把弯曲的公路改直,就能缩短路程;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④从地到地架设电线,A B 总是尽可能沿着线段架设.其中能用“两点之间,线段最短”来解释的现象有________.(填序号)AB 12、如图:点C 为线段AB 上的一点,M 、N 分别为AC 、BC 的中点,AB =40,则MN =_____.13、已知,如图,直线AB 、CD 交于点O ,OE ⊥AB 于O ,∠COE =50°,则∠BOD =______.(13题) (14题) (16题) (17题)14、如图,把一张长方形纸片沿AB 折叠后,若∠1=50°,则∠2的度数为______.15、已知线段,是的中点,点在直线上,且,则线段的长度是______6cm AB =O AB C AB 5cm CA =OC .cm 16、如图所示,90AOC ∠=︒,点B ,O ,D 在同一直线上,若126∠=︒,则2∠的度数为______.17、如图,一副三角板按图示放置,已知∠AOC =65°,则∠AOB =______°.18、看下面小明和小丽的对话:小明:“我今天12点10分到达图书馆时,你已经开始看书了,你是什么时间到的呢?小丽:“我11点30分从家出发,到达图书馆时,钟表的时针与分针的夹角恰好是11°.”回答问题:小丽从家到图书馆共用了 分钟.三、解答题19、如图,在网格中有和点D ,请用无刻度的直尺在网格中按下列要求画图.BAC ∠(1)过点D 面;(在图①中画)//DM AC (2)以点D 为顶点作,使与互余.(在图② 中只画一个)EDF ∠EDF ∠BAC ∠20、已知:如图,点在线段上,点是中点,.求线段长,C D AB D AB 1,123AC AB AB ==CD 21、如图,点O 在直线AB 上,OC . OD 是两条射线,OC ⊥OD ,射线OE 平分∠BOC .(1)若∠DOE =140°,求∠AOC 的度数.(2)若∠DOE =α,则∠AOC = .( 请用含α的代数式表示);22、已知:如图,,平分,且.2COB AOC ∠=∠OD AOB ∠19COD ∠=︒(1)_____;AOB ∠=AOC ∠(2)____;COD ∠=AOC ∠(3)求的度数.AOB ∠23、如图,B 是线段AD 上一动点,沿A→D→A 以2cm/s 的速度往返运动1次,C 是线段BD 的中点,,设点B 运动时间为t 秒().10cm AD =010t ≤≤(1)当时,①________cm ,②此时线段CD 的长度=_______cm ;2t =AB =(2)用含有t 的代数式表示运动过程中AB 的长;(3)在运动过程中,若AB 中点为E ,则EC 的长度是否变化?若不变,求出EC 的长;若变化,请说明理由.24、如图,直线AB 、CD 相交于点O ,AOD ∠为锐角,OE CD ⊥,OF 平分BOD ∠(1)图中与AOE ∠互余的角为__________;(2)若EOB DOB ∠=∠,求AOE ∠的度数;(3)图中与锐角AOE ∠互补角的个数随AOE ∠的度数变化而变化,直接写出与AOE ∠互补的角的个数及对应的AOE ∠的度数25、如图,直角三角板的直角顶点在直线上,,是三角板的两条直角边,平O AB OC OD OE 分.AOD ∠(1)若,求的度数;20COE ∠=︒BOD ∠(2)若,则 ;(用含的代数式表示)COE α∠=BOD ∠=2α︒α(3)当三角板绕点逆时针旋转到图2的位置时,其他条件不变,请直接写出与之间有O COE ∠BOD ∠怎样的数量关系.26、(问题情境)苏科版义务教育教科书数学七上第178页第13题有这样的一个问题:“如图1,OC是∠AOB内一条射线,OD、OE分别平分∠AOB、∠AOC.若∠AOC=30°,∠BOC=90°,求∠DOE的度数”,小明在做题中发现:解决这个问题时∠AOC的度数不知道也可以求出∠DOE的度数.也就是说这个题目可以简化为:如图1,OC是∠AOB内一条射线,OD、OE分别平分∠AOB、∠AOC.若∠BOC=90°,求∠DOE的度数.(1)请你先完成这个简化后的问题的解答;(变式探究)小明在完成以上问题解答后,作如下变式探究:(2)如图1,若∠BOC=m°,则∠DOE= °;(变式拓展)小明继续探究:(3)已知直线AM、BN相交于点O,若OC是∠AOB外一条射线,且不与OM、ON重合,OD、OE分别平分∠AOB、∠AOC,当∠BOC=m°时,求∠DOE的度数(自己在备用图中画出示意图求解).答案一、选择题1、下列结论:①两点确定一条直线;②直线AB与直线BA是同一条直线;③线段AB与线段BA是同一条线段;④射线OA与射线AO是同一条射线.其中正确的结论共有()个.A.1B.2C.3D.4C【分析】根据直线、线段和射线以及直线的公理进行判断即可.解:①两点确定一条直线,正确;②直线AB与直线BA是同一条直线,正确;③线段AB与线段BA是同一条线段,正确;④射线OA与射线AO不是同一条射线,错误;故选C.2、根据下图,下列说法中不正确的是()l A a b AA.图①中直线经过点B.图②中直线,相交于点C AB CD ABC.图③中点在线段上D.图④中射线与线段有公共点C【分析】根据点和直线的位置关系、射线和线段的延伸性、直线与直线相交的表示方法等知识点对每一项进行分析,即可得出答案.【详解】解:A、图①中直线l经过点A,正确;B、图②中直线a、b相交于点A,正确;C、图③中点C在线段AB外,故本选项错误;D、图④中射线CD与线段AB有公共点,正确;故选:C.OA30°OB OA OB3、如图,是北偏东方向的一条射线,若射线与射线垂直,则的方位角是()A .北偏东B .北偏西C .西偏北D .北偏西30°30°60︒60︒D 【分析】根据垂直,可得∠AOB 的度数,根据角的和差,可得答案.【详解】解:∵射线OB 与射线OA 垂直,∴∠AOB =90°,∴∠1=90°-30°=60°,故射线OB 的方向角是北偏西60°,故选:D .4、如图,C 是线段上一点,D 、E 分别是线段、的中点,若,,则的值为( AB AB AC 20AB =2CD =DE )A .6B .7C .8D .9A 【分析】由D 是线段AB 的中点可计算出AD 的长度,结合CD =2可求得AC =8,再由E 是线段AC 的中点可求得CE 的长度,最后根据DE =CD +CE 即可得出答案.【详解】解:∵D 是线段AB 的中点,AB =20,∴AD =AB =10,12又∵CD =2,∴AC =AD -CD =10-2=8,∵E 是线段AC 的中点,AC =8,∴CE =AC =4,∴DE =CD +CE =2+4=6.故选:A .125、已知线段,点是直线上一点,,点是线段的中点,点是线段10cm AB =C AB 4cm BC =M AB N 的中点,则线段的长度是( )BC MN A . B . C .或D .或3cm 5cm 3cm 7cm 5cm 7cmC【分析】根据题意知,点在点左侧时,;点在点右侧时,,因为C B MN BM BN =-C B +MN BM BN =点是线段的中点,点是线段的中点,分别算出长度,代入计算即可.M AB N BC ,BM BN 【详解】解:因为点是直线上一点,所以需要分类讨论:C AB (1)点在点左侧时,作图如下:C B∵,,∴,,10cm AB =4cm BC =152BM AB cm ==122BN BC cm ==又∵,∴.MN BM BN =-=523MN cm -=(2)当点在点右侧时,作图如下:C B由(1)知,,,152BM AB cm ==122BN BC cm ==∵,∴,+MN BM BN =+=5+2=7cm MN BM BN =综上所述,的长度是或.故选:CMN 3cm 7cm 6、点分,时针与分针所夹的角为( )410A .B .C .D .55︒65︒70︒75︒B【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,找出4点10分时针和分针分别转动角度即可求出.【详解】解:点10分时,分针在指在2时位置处,时针指在4时过10分钟处,4 由于一大格是,10分钟转过的角度为,30°1030560⨯︒=︒因此4点10分时,分针与时针的夹角是.故选:.230565⨯︒+︒=︒B7、如图,将一副三角板重叠放在一起,使直角顶点重合于点.若,则( )O 120AOC ∠=︒BOD ∠=A .30°B .40°C .50°D .60°D 【分析】根据角的和差关系求解即可.【详解】解:∵∠AOC =120°,∴∠BOC =∠AOC -∠AOB =30°,∴∠BOD =∠COD -∠BOC =60°.故选:D .8、如图,OD 平分∠AOB ,OC ⊥OD ,OE 平分∠AOC ,若∠BOE =15°,则∠AOD 的度数为( )A .18°B .20°C .22°D .30°B 【分析】根据垂线的性质、角平分线的定义得出含∠AOD 的等式求解即可.【详解】解:∵OC ⊥OD ,∴∠COD =90°,∴∠AOC =∠COD +∠AOD =90°+∠AOD ,∵OD 平分∠AOB ,OE平分∠AOC ,∠BOE =15°,∴∠AOE =∠AOC =∠BOE +∠AOB =15°+2∠AOD ,12∴15°+2∠AOD =(90°+∠AOD ),∴∠AOD =20°,故选:B .129、如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部点E 处,若∠BFE =3∠BFH ,∠BFH =20°,则∠GFH 的度数是( )A .85°B .90°C .95°D .100°D 【分析】根据折叠求出∠CFG =∠EFG =∠CFE ,根据∠BFE =3∠BFH ,∠BFH =20°,即可求出12∠GFH =∠GFE +∠HFE 的度数.【详解】解:∵将长方形纸片ABCD 的角C 沿着GF 折叠(点F 在BC 上,不与B ,使点C 落在长方形内部点E 处,∴∠CFG =∠EFG =∠CFE ,12∵∠BFE =3∠BFH ,∠BFH =20°,∴∠BFE =60°,∴∠CFE =120°,∴∠GFE =60°,∵∠EFH =∠EFB ﹣∠BFH ,∴∠EFH ==40°,∴∠GFH =∠GFE +∠EFH =60°+40°=100°.故选:D .10、如图所示,已知∠AOB=64°,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,则∠AOA 4的大小为( )A .1°B .2°C .4°D .8°C【分析】根据角平分线定义求出∠AOA 1=∠AOB=32°,同理即可求出答案.12∵∠AOB=64°,OA 1平分∠AOB ,∴∠AOA 1=∠AOB=32°,12∵OA 2平分∠AOA 1,∴∠AOA 2=∠AOA 1=16°,12同理∠AOA 3=8°,∠AOA 4=4°,故选:C .二、填空题11、下列生产和生活现象:①用两个钉子就可以把木条固定在墙上;②把弯曲的公路改直,就能缩短路程;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④从地到地架设电线,A B 总是尽可能沿着线段架设.其中能用“两点之间,线段最短”来解释的现象有________.(填序号)AB ②④【分析】根据两点之间,线段最短的性质,对各个选项逐个分析,即可得到答案.【详解】①用两个钉子就可以把木条固定在墙上,可用两点可确定一条直线解释;②把弯曲的公路改直,就能缩短路程,可用两点之间,线段最短解释;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,可用两点可确定一条直线解释;④从地到地架设电线,总是尽可能沿着线段架设,可用两点之间,线段最短解释;故②④.A B AB 12、如图:点C 为线段AB 上的一点,M 、N 分别为AC 、BC 的中点,AB=40,则MN =_____.20【分析】由题意易得,进而可得,进而问题可11,22MC AC CN CB ==111222MN MC CN AC CB AB =+=+=求解.【详解】解:∵M 、N 分别为AC 、BC 的中点,∴,11,22MC AC CN CB ==∵AB =40,∴;11120222MN MC CN AC CB AB =+=+==故答案为20.13、已知,如图,直线AB 、CD 交于点O ,OE ⊥AB 于O ,∠COE =50°,则∠BOD =______.40°【分析】运用对顶角的定义如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角、邻补角的定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,叫做邻补角,求解即可.【详解】解:∵OE ⊥AB ,∴∠AOE =90°,∵∠COE =50°,∴∠AOC =90°﹣∠COE =90°﹣50°=40°,∴∠BOD =∠AOC =40°.故40°.14、如图,把一张长方形纸片沿AB 折叠后,若∠1=50°,则∠2的度数为______.65°【详解】∵把一张长方形纸片沿AB 折叠,∴∠2=∠3,∵∠1+∠2+∠3=180°,∠1=50°,∴∠2=(180°-∠1)2=65°.÷15、已知线段,是的中点,点在直线上,且,则线段的长度是______6cm AB =O AB C AB 5cm CA =OC .cm 2或8【分析】根据点C 在直线AB 上,可以从两种情况进行分析计算:当点C 在线段AB 上时和当点C 不在线段AB 上时,即可计算得到答案.【详解】解:当点C 在A 、B 之间时,如图1所示∵线段AB =6cm ,O 是AB 的中点,∴OA =AB =×6cm =3c m ,1212∴OC =CA ﹣OA =5cm ﹣3cm =2cm .当点C 在点A 的左边时,如图2所示,∵线段AB =6cm ,O 是AB 的中点,CA =5cm ,∴OA =AB =×6c m =3cm ,1212∴OC =CA +OA =5cm +3c m =8c m 故答案为2或8.16、如图所示,90AOC ∠=︒,点B ,O ,D 在同一直线上,若126∠=︒,则2∠的度数为______.116°【分析】由图示可得,∠1与∠BOC互余,结合已知可求∠BOC,又因为∠2与∠COB互补,即可求出∠2的度数.∠=︒,∠AOC=90°,∴∠BOC=64°,【详解】解:∵126∵∠2+∠BOC=180°,∴∠2=116°.故116°.17、如图,一副三角板按图示放置,已知∠AOC=65°,则∠AOB=______°.155【分析】根据图形中角之间的关系即可求得∠AOB的度数.【详解】解:∵∠BOC=90°,∴∠AOB=∠AOC+∠BOC=65°+90°=155°故155.18、看下面小明和小丽的对话:小明:“我今天12点10分到达图书馆时,你已经开始看书了,你是什么时间到的呢?小丽:“我11点30分从家出发,到达图书馆时,钟表的时针与分针的夹角恰好是11°.”回答问题:小丽从家到图书馆共用了 分钟.【思路点拨】11点30分时,时针与分针的夹角为165°,分针每分钟转过6°,而时针每分钟转过0.5°,此问题可以转化为追及问题,当分针从与时针的夹角为165°减少到还有11°时所用的时间,以及超过时针11°时所用的时间,设未知数,列方程解答即可,同时注意分钟在时针前11°和在时针后11°两种情况.【解答过程】解:11点30分时,时针与分针的夹角为165°,由钟表时针、分针的旋转规律得,分针每分钟转过6°,而时针每分钟转过0.5°,设小丽从家出发用x 分钟到达图书馆,由题意得:(6°﹣0.5°)x =165°﹣11°或(6°﹣0.5°)x =165°+11°,解得:x =28或x =32,经检验,28分,32分钟均符合题意,故28或32.三、解答题19、如图,在网格中有和点D ,请用无刻度的直尺在网格中按下列要求画图.BAC ∠(1)过点D 面;(在图①中画)//DM AC (2)以点D 为顶点作,使与互余.(在图② 中只画一个)EDF ∠EDF ∠BAC ∠(1)画图见解析,(2)画图见解析【分析】(1)连接点D 与点D 向左平移一个单位,向下平移三个单位的点的直线即可;(2)过点D ,连接以D 为顶点边长为2的正方形对角线,和以D 为顶点边长为1和3的长方形对角线,两条对角线组成的角就是所求的角.【详解】解:(1)如图所示,DM 就是所求直线;(2)如图所示,就是所求角.EDF ∠20、已知:如图,点在线段上,点是中点,.求线段长,C D AB D AB 1,123AC AB AB ==CD 2【分析】根据中点的定义以及题意,分别求出线段AD 与线段AC 的长度,即可得出结论.【详解】∵D 为线段AB 的中点,∴AD =AB =×12=6,1212∵AC =AB ,13∴AC =×12=4,13∴CD =AD -AC =6-4=2.21、如图,点O 在直线AB 上,OC . OD 是两条射线,OC ⊥OD ,射线OE 平分∠BOC .(1)若∠DOE =140°,求∠AOC 的度数.(2)若∠DOE =α,则∠AOC = .( 请用含α的代数式表示);(1)80°;(2)360°-2α【分析】(1)根据OC ⊥OD ,∠DOE =140°可求出∠COE ,再根据射线OE 平分∠BOC .求出BOE ,最后根据平角的意义求出答案;(2)利用(1)的方法,用代数式表示角度即可.【详解】解:(1)∵OC ⊥OD ,∠DOE =140°,∴∠COE =∠DOE -∠COD =140°-90°=50°,∵射线OE 平分∠BOC .∴∠COE =∠BOE =50°,∴∠AOC =180°-∠COE -∠BOE =180°-50°-50°=80°;(2)∵OC ⊥OD ,∠DOE =α,∴∠COE =∠DOE -∠COD =α-90°,∵射线OE 平分∠BOC .∴∠COE =∠BOE =α-90°,∴∠AOC =180°-∠COE -∠BOE =180°-(α-90°)-(α-90°)=360°-2α,故360°-2α.22、已知:如图,,平分,且.2COB AOC ∠=∠OD AOB ∠19COD ∠=︒(1)_____;AOB ∠=AOC ∠(2)____;COD ∠=AOC ∠(3)求的度数.AOB ∠(1)3;(2);(3)12114AOB ∠=︒【分析】(1)根据∠COB=2∠AOC ,∠COB+∠AOC=∠AOB 可得∠AOB=3∠AOC ,(2)由OD 平分 ∠AOB ,∠COD=∠AOD-∠AOC 可得∠COD 与∠AOC 的关系.(3)由OD 平分∠AOB 得到∠AOD=∠AOB 又由∠AOD=∠AOC+∠COD ,可得∠COD 与∠AOB12的关系,从而求出∠AOB 的度数.【详解】解:(1)∵∠COB=2∠AOC , ∠COB+∠AOC=∠AOB∴∠AOB=∠AOC+2∠AOC=3∠AOC (2)∵∠COD=∠AOD-∠AOC= ∠AOB- ∠AOB= ∠AOB121316又∵∠AOB=3∠AOC ∴∠COD=∠AOB=×3∠AOC=∠AOC161612(3)∵OD 平分∠AOB ∴∠AOD=∠AOB 12又∵∠AOD=∠AOC+∠COD ∴∠AOB=∠AOB+19°1213∠AOB=19° ∠AOB=114° 故(1) 3;(2) ;(3) ∠AOB=114°161223、如图,B 是线段AD 上一动点,沿A→D→A 以2cm/s 的速度往返运动1次,C 是线段BD 的中点,,设点B 运动时间为t 秒().10cm AD =010t ≤≤(1)当时,①________cm ,②此时线段CD 的长度=_______cm ;2t =AB =(2)用含有t 的代数式表示运动过程中AB 的长;(3)在运动过程中,若AB 中点为E ,则EC 的长度是否变化?若不变,求出EC 的长;若变化,请说明理由.(1)①4;②3;(2),;(3)不变,.()2cm 05AB t t =≤≤()()202cm 510AB t t =-<≤5EC =【分析】(1)①根据即可得出结论;②先求出BD 的长,再根据C 是线段BD 的中点即可得到CD 2AB t =的长;(2)分类讨论即可;(3)直接根据中点定义即可得到结论;【详解】(1)①当时,(cm ),2t =224AB =⨯=②此时,(cm ),∵C 是线段BD 的中点,则;1046BD =-=3CD cm =(2)①∵B 是线段AD 上一动点,沿A→D→A 以2cm/s 的速度往返运动,∴当时,,∴;05t ≤≤2AB t =()2cm 05AB t t =≤≤②当时,,∴;510t <≤()10210202A B t t =--=-()()202cm 510AB t t =-<≤(3)不变;因为AB 的中点为E ,C 是BD 的中点,所以,,所以,.()1122EC AB BD AD =+=11052EC =⨯=24、如图,直线AB 、CD 相交于点O ,AOD ∠为锐角,OE CD ⊥,OF 平分BOD ∠(1)图中与AOE ∠互余的角为__________;(2)若EOB DOB ∠=∠,求AOE ∠的度数;(3)图中与锐角AOE ∠互补角的个数随AOE ∠的度数变化而变化,直接写出与AOE ∠互补的角的个数及对应的AOE ∠的度数(1)AOD ∠、BOC ∠;(2)45︒;(3)见解析.【分析】(1)根据余角的定义可解答;(2)根据补角的定义列方程可解答;(3)设出∠AOE 的度数,依次表达图中的补角,可解.【详解】(1)由题意可得于∠AOE 互余的角为:AOD ∠、BOC∠(2)设AOD x ∠=︒.∵AOD x ∠=︒,∴180180BOD AOD x ∠=︒-∠=︒-︒,BOC AOD x ∠=∠=︒.∵OE CD ⊥,∴90EOC EOD ∠=∠=︒.又∵EOB DOB ∠=∠,∴90180x x ︒+︒=︒-︒,即45x =.∴904545AOE EOD AOD ∠=∠-∠=︒-︒=︒.(3)设∠AOE =α,且0°<α<90°由(1)可知,∠AOD =∠BOC =90°-α,∠BOE =180°-α,∴∠BOD =180°-∠AOD =180°-(90°-α)=90°+α,∵OF 平分∠BOD ,∴∠BOF =∠DOF =45°+2α,∴∠AOF =∠AOD +∠DOF =90°-α+45°+2α=135°-2α,∠EOF =∠AOF +∠AOE =135°+2α,∠COF =∠BOC +∠BOF =90°-α+45°+2α=135°-2α=∠AOF ,①当∠AOF +∠AOE =180°时,即135°-2α+α=180°,解得α=90°,不符合题意;②当∠EOF +∠AOE =180°时,即135°+2α+α=180°,解得α=30°,符合题意;③当∠BOD +∠AOE =180°时,即90°+α+α=180°,解得α=45°,符合题意;综上可知,当锐角30AOE ∠=︒时,互补角有2个,为EOB ∠、EOF ∠.当锐角45AOE ∠=︒时,互补角有3个,为EOB ∠、AOC ∠、DOB ∠.当锐角AOE ∠不等于45︒和30°时,互补角有1个,为EOB ∠.25、如图,直角三角板的直角顶点在直线上,,是三角板的两条直角边,平O AB OC OD OE 分.AOD ∠(1)若,求的度数;20COE ∠=︒BOD ∠(2)若,则 ;(用含的代数式表示)COE α∠=BOD ∠=2α︒α(3)当三角板绕点逆时针旋转到图2的位置时,其他条件不变,请直接写出与之间有O COE ∠BOD ∠怎样的数量关系.【分析】(1)先根据直角计算的度数,再根据角平分线的定义计算的度数,最后利用平角DOE ∠AOD ∠的定义可得结论;(2)类似(1)的方法解答即可;(3)设,则,根据角平分线的定义表示,再利用互余的关系求BOD β∠=180AOD β∠=︒-BOE ∠的度数,可得结论.COE ∠(1)若,20COE ∠=︒,,90COD ∠=︒ 902070EOD ∴∠=︒-︒=︒平分,,OE AOD ∠2140AOD EOD ∴∠=∠=︒;18014040BOD ∴∠=︒-︒=︒(2)若,,COE α∠=90EOD α∴∠=-平分,,OE AOD ∠22(90)1802AOD EOD αα∴∠=∠=-=-;180(1802)2BOD αα∴∠=︒--=故;2α(3),理由是:2BOD COE ∠=∠设,则,BOD β∠=180AOD β∠=︒-平分,,OE AOD ∠118090222EOD AOD ββ︒-∴∠=∠==︒-,,即.90COD ∠=︒ 90(90)22COE ββ∴∠=︒-︒-=2BOD COE ∠=∠26、(问题情境)苏科版义务教育教科书数学七上第178页第13题有这样的一个问题:“如图1,OC 是∠AOB 内一条射线,OD 、OE 分别平分∠AOB 、∠AOC .若∠AOC =30°,∠BOC =90°,求∠DOE 的度数”,小明在做题中发现:解决这个问题时∠AOC 的度数不知道也可以求出∠DOE 的度数.也就是说这个题目可以简化为:如图1,OC 是∠AOB 内一条射线,OD 、OE 分别平分∠AOB 、∠AOC .若∠BOC =90°,求∠DOE 的度数.(1)请你先完成这个简化后的问题的解答;(变式探究)小明在完成以上问题解答后,作如下变式探究:(2)如图1,若∠BOC =m °,则∠DOE = °;(变式拓展)小明继续探究:(3)已知直线AM 、BN 相交于点O ,若OC 是∠AOB 外一条射线,且不与OM 、ON 重合,OD 、OE 分别平分∠AOB 、∠AOC ,当∠BOC =m °时,求∠DOE 的度数(自己在备用图中画出示意图求解).(1)45°;(2);(3)2m °2m °【分析】(1)首先假设∠AOC =a °,然后用a 表示∠AOB ,再根据OD ,OE 两条角平分线,推出∠DOE 即可;(2)首先假设∠AOC =a °,然后用a 表示∠AOB ,再根据OD ,OE 两条角平分线,用m °表示∠DOE 即可;(3)分三种情况讨论,第一种:OC 在AM 上,第二种:OC 在AM 下侧,∠MON 之间,第三种:OC 在∠AON 之间,即可得到∠DOE ,【详解】解:(1)设∠AOC =a °,则∠AOB =∠AOC +∠BOC =a °+90°,∵OD 平分∠AOB ,OE 平分∠AOC ,∴∠DOE =∠AOD ﹣∠AOE =∠AOB ﹣∠AOC =(a °+90°)﹣a °==45°;121212121902⨯︒(2)设∠AOC =a °,则∠AOB =∠AOC +∠BOC =a °+m °,∵OD 平分∠AOB ,OE 平分∠AOC ,∴∠DOE =∠AOD ﹣∠AOE =∠AOB ﹣∠AOC =(a °+m °)﹣a °=,故;121212122m °2m °(3)①当OC 在AM 上,即OC 在∠BOM 之间,设∠AOC =a °,则∠AOB =∠AOC +∠BOC =a °+m °,∵OD 平分∠AOB ,OE 平分∠AOC ,∴∠DOE =∠AOD ﹣∠AOE =∠AOB ﹣∠AOC =(a °+m °)﹣a °=;121212122m °②当OC 在直线AM 下方,且OC 在∠MON 之间时,∠BOC =∠AOB +∠AOC =m °,∠DOE =∠AOE ﹣∠AOD =∠AOC +∠AOB =∠BOC =;1212122m °③当OC 在直线AM 下方,且OC 在∠AON 之间时,由②得,∠BOC =m °,∠DOE =∠AOC +∠AOB =12∠BOC =2m °;综上所述,∠DOE =2m °.1212。
七年级数学上册《第四章基本平面图形》单元测试卷及答案-北师大版
七年级数学上册《第四章基本平面图形》单元测试卷及答案-北师大版一、选择题1.下列各线段的表示方法中,正确的是( )A .线段AB .线段abC .线段ABD .线段Ab2.下列命题是假命题的是( )A .等角的补角相等B .垂线段最短C .两点之间,线段最短D .无限小数是无理数3.下列四个图中,能用1∠,O ∠与AOB ∠三种方法表示同一个角的是( )A .B .C .D .4.利用一副三角板不能画出的角的度数是( )A .105︒B .100︒C .75︒D .15︒5.从多边形的一个顶点出发,可以画出4条对角线,则该多边形的边数为( )A .5B .6C .7D .86.要在墙上钉牢一根木条,至少要钉两颗钉子.能正确解释这一现象的数学知识是( )A .两点之间,线段最短B .垂线段最短C .两点确定一条直线D .经过一点有且只有一条直线与已知直线垂直7.如图,已知ABC ,点D 是BC 边中点,且ADC BAC.∠∠=若BC 6=,则AC =( )A .3B .4C .42D .328.一条船从海岛A 出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C 在海岛A 的北偏西30︒方向上,在海岛B 的北偏西60︒方向上,则海岛B 到灯塔C 的距离是( ) A .15海里B .20海里C .30海里D .60海里9.如图,直线AB 、CD 交于点O ,OE 平分BOC ∠,若136∠=︒,则DOE ∠等于( )A .72︒B .90︒C .108︒D .144︒10.下列命题正确的是( )A .三点确定一个圆B .圆的任意一条直径都是它的对称轴C .等弧所对的圆心角相等D .平分弦的直径垂直于这条弦二、填空题11.要在墙上订牢一根木条,至少需要2颗钉子,其理由是 .12.如图,在菱形ABCD 中,10AB =,M ,N 分别为BC ,CD 的中点,P 是对角线BD 上的一个动点,则PM PN +的最小值是 .13.如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,若80BOC ∠=︒,则COE ∠的度数是 .14.一个多边形的每个内角都等于150°,则这个多边形的边数为 ,对角线总数是条。
七年级数学平面图形的认识同步测试
第六章 平面图形的认识(一) 单元测试一、选择题(共每题4分,共32分)1.①平角是一条直线. ②线段AB 是点A 与点B 的距离.③射线AB 与射线BA 表示同一条直线. ④过一点有且只有一条直线与已知直线平行. ⑥圆柱的侧面是长方形.以上说法正确的有( )A .0个 B.1个 C.2个 D.3个2.在下列立体图形中,不属于多面体的是( )A .正方体B .三棱柱C .长方体D .圆锥体 3.两个锐角的和( )A .一定是锐角B 一定是直角C 一定是钝角D 可能是钝角、直角或锐角4.平面上有三点A 、B 、C ,如果AB=8,AC=5,BC=3,则( ) A 点C 在线段AB 上 B 点B 在线段AB 的延长线上C 点C 在直线AB 外D 点C 可能在直线AB 上,也可能在直线AB 外5.如右图所示,C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 中点,若MN=a ,BC=b ,则线段AD 的长是( )A 2(a-b )B 2a-bC a+bD a-b 6.如图,115︒∠=,90AOC ︒∠=,点B 、O 、D 在同一直线上, 则2∠的度数为( )A . 75︒B .15︒C .105︒D .165︒7.在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的( )A 南偏西50度方向B 南偏西40度方向C 北偏东50度方向D 北偏东40度方向8.如图,////,//AB EF DC EG BD , 则图中与1∠相等的角共有( )个A 6个B .5个C .4个 D.2个二、填空题(3+3+3+4+8=21分)9.不在同一直线上的四点最多能确定 条直线。
10.如右图,点C 是 A O B ∠的边OA 上一点,D 、E 是OB 上两点, 则图中共有 条线段, 条射线,个小于平角的角.11.如图,点C 是线段AB 上一点,点D 、E 分别是 线段AC 、BC 的中点. 如果AB=a,AD=b, 其中a>2b,那么CE=12.(1) ?'2330︒= ︒ 78.36_________'_︒︒= (2)5245'3246'_________'︒︒︒-= 18.32634'______︒︒︒+= 13.如图,①如果12∠=∠,那么根据 ,可得 // ; 如果180D AB ABC ∠+∠=︒,可得 // .DABCDEFGH1ABCDE OABC DECABCDO12②当 // 时,根据 , 得180C ABC ∠+∠=︒; 当 // 时,根据 ,得3C ∠=∠.三、作图题(共9分)14.如图,A O B ∠为已知角,请用圆规和直尺准确地画一个角等于A O B ∠(请保留作图痕迹)(4分)15.在如图所示,将方格中的图形向右平移3格,再向上平移4格,画出平移后的图形.(4分)四、解答题(7+6+6+7+6+6=38分)16.(1) 一个角的余角比它的补角29还多1︒,求这个角.(2)已知互余两角的差为20︒ ,求这两个角的度数.17.如图,AD=12DB, E 是BC 的中点,BE=15AC=2cm,线段DE 的长,求线段DE 的长.ABCDE18如图,直线//a b ,1(225)x ∠=-︒,2(175)x ∠=-︒,求1,2∠∠的度数.ABOab12L。
第四章 基本平面图形(A卷提升卷 单元重点综合测试)(教师版)24-25学年七年级数学上册(成都专用
第四章 基本平面图形(A 卷·提升卷)(考试时间:120分钟 试卷满分:150分)A 卷(共100分)第Ⅰ卷(选择题,共32分)一、单项选择题:本题共8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图所示,点E 、F 分别是线段AC 、AB 的中点,若EF =2,则BC 的长为( )A .3B .4C .6D .8【答案】B【分析】根据线段的中点,可得AE 与AC 的关系,AF 与AB 的关系,根据线段的和差,可得答案.【详解】解:E 、F 分别是线段AC 、AB 的中点,AC =2AE =2CE ,AB =2AF =2BF ,EF =AE ﹣AF =22AE ﹣2AF =AC ﹣AB =2EF =4,BC =AC ﹣AB =4,故选:B .【点睛】本题考查了两点间的距离,根据中点的性质求出线段AC -AB =4是解题关键.2.若45,45n n a b Ð=°-°Ð=°+°,则a Ð与Ðb 的关系是( )A .互补B .互余C .和为钝角D .和为周角【答案】B【分析】本题考查了互余,解题关键是掌握若两个角的和等于90°,即这两个角互余.根据已知条件,得出90a b Ð+Ð=°,即可得到答案.【详解】解:∵45,45n n a b Ð=°-°Ð=°+°,454590n n a b \Ð+Ð=°-°+°+°=°,a \Ð与Ðb 互余,故选:B .3.钟面上3点20分时,时针与分针的夹角度数是( )A .30°B .25°C .15°D .20°4.如图所示图形中,共有( )条线段.A .10B .12C .15D .30【答案】A【分析】根据线段的定义即可获得答案.【详解】解:该图形中,线段有AB BC CD DE AC BD CE AD BE AE 、、、、、、、、、,共计10条.故选:A .【点睛】本题主要考查了线段数量的知识,数量掌握线段的定义是解题关键.5.如图,线段10AB =,点C 、D 分别是线段AB 上两点()CD AC CD BD >>,,用圆规在线段CD 上分别截取CE AC DF BD ==,,若点E 与点F 恰好重合,则CD 的长度为( )A .3B .4C .5D .66.下列说法中正确的是()A.两点之间,直线最短B.由两条射线组成的图形叫做角C.若过多边形的一个顶点可以画5条对角线,则这个多边形是八边形=,则点C是线段AB的中点D.对于线段AC与BC,若AC BC【答案】C【分析】根据两点之间线段最短,角的定义,多边形的对角线以及线段中点的定义对各小题分析判断即可得解【详解】A、两点之间,线段最短,故本选项不合题意;B、有公共端点是两条射线组成的图形叫做角,故本选项不合题意;C、若过多边形的一个顶点可以画5条对角线,则这个多边形是八边形,故本选项符合题意;=,则点C是线段AB的中点,错误,A、B、C三点不一定共线,故本选项不合题意;D、若线段AC BC故选:C.【点睛】本题考查了两点之间线段最短,角的定义,线段中点的定义,多边形的对角线,熟练掌握概念是解题的关键.7.正多边形通过镶嵌能够密铺成一个无缝隙的平面,下列组合中不能镶嵌成一个平面的是( )A.正三角形和正方形B.正三角形和正六边形C.正方形和正六边形D.正方形和正八边形【答案】C【分析】由正多边形的内角拼成一个周角进行判断,ax+by=360°(a、b表示多边形的一个内角度数,x、y 表示多边形的个数).【详解】解:A、∵正三角形和正方形的内角分别为60°、90°,3×60°+2×90°=360°,∴正三角形和正方形可以镶嵌成一个平面,故A选项不符合题意;B、∵正三角形和正六边形的内角分别为60°、120°,2×60°+2×120°=360°,或4×60°+1×120°=360°,∴正三角形和正六边形可以镶嵌成一个平面,故B选项不符合题意;C、∵正方形和正六边形的内角分别为90°、120°,2×90°+1×120°=300°<360°且3×90°+1×120°=390°>360°,∴正方形和正六边形不能镶嵌成一个平面,故C 选项符合题意;D 、正方形和正八边形的内角分别为90°、135°,1×90°+2×135°=360°,∴正方形和正八边形可以镶嵌成一个平面,故D 选项不符合题意;故选:C .【点睛】本题主要考查了平面镶嵌,两种或两种以上几何图形向前成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.8.如图,已知点C 是线段AB 上一点,点D 是AC 的中点,点E 是BC 的中点.若12AB =,则DE 的长为( )A .7B .6C .5D .4第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.已知1672832¢¢¢Ð=°,则它的余角是.【答案】223128¢¢¢°【分析】根据余角的定义求即可.【详解】解:∵1672832¢¢¢Ð=°,∴它的余角是90672832223128¢¢¢¢¢¢°-°=°,故答案为:223128¢¢¢°.【点睛】本题考查了余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.10.82.3°用度、分、秒可表示为 .【答案】8218¢°【分析】根据1分等于60分,将0.3度转化为用分表示即可.【详解】解:0.30.36018¢°=´=,∴82.38218¢°=°,故答案为:8218¢°.【点睛】本题考查度、分、秒之间的转化,能够掌握三个单位之间的转换方法是解决本题的关键.11.如图,100AOB Ð=°,OM 平分AOC Ð,ON 平分BOC Ð,则MON Ð= .12.如图,线段AB 和CD 的公共部分1134BD AB CD ==,线段AB 、CD 的中点E 、F 之间距离是10,则AB = ,CD = .13.如图1,一款暗插销由外壳AB ,开关CD ,锁芯DE 三部分组成,其工作原理如图2,开关CD 绕固定点O 转动,由连接点D 带动锁芯DE 移动.图3为插销开启状态,此时连接点D 在线段AB 上,如1D 位置.开关CD 绕点O 顺时针旋转180°后得到22C D ,锁芯弹回至22D E 位置(点B 与点2E 重合),此时插销闭合如图4.已知72mm CD =,2150mm AD AC -=,则1BE = mm .【答案】22【分析】本题主要考查了线段的和差计算,结合图形得出当点D 在O 的右侧时,即1D 位置时,B 与点E 的距离为1BE ,当点D 在O 的左侧时,即2D 位置时,B 与点E 重合,即2E 位置,得出11222BE OD OD OD =+=,再由图形中线段间的关系得出12225072mm CD OC OD OD OD =+=++=,即可求解.【详解】解:由图3得,当点D 在O 的右侧时,即1D 位置时,B 与点E 的距离为1BE ,由图4得,当点D 在O 的左侧时,即2D 位置时,B 与点E 重合,即2E 位置,∴11222BE OD OD OD =+=,∵2150mm AD AC -=,∴()()2150mm AO OD AO OC ---=,∴1250mm OC OD -=,∴1250OC OD =+,∵11CD OC OD OC OD =+=+,∴12225072mm CD OC OD OD OD =+=++=,∴2222mm OD =,∴122mm BE =,故答案为:22.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.计算(结果用度、分、秒表示).(1)58496731¢¢°+°;(2)47.6251236¢¢¢°-°;(3)384572.5¢°+°;(4)()180583570.3¢°-°+°.【答案】(1)12620¢°(2)222324¢¢¢°(3)11115¢°(4)517¢°【分析】本题考查度,分,秒的计算,解题的关键是掌握160¢°=,160¢¢¢=进行计算,即可.(1)根据160¢°=,进行计算,即可;(2)根据160¢°=,160¢¢¢=,进行计算,即可;(3)根据160¢°=,160¢¢¢=,进行计算,即可;(4)根据160¢°=,160¢¢¢=,进行计算,即可.【详解】(1)解:58496731¢¢°+°12580¢=°+12620¢=°.(2)解:47.6251236¢¢¢°-°4736251236¢¢¢¢=°-°473560251236¢¢¢¢¢¢=°-°222324¢¢¢=°.(3)解:384572.5¢°+°38457230¢¢=°+°11075¢=°11115¢¢=.(4)解:()180583570.3¢°-°+°()180********¢¢=°-°+°18012835¢=°-°517¢=°.15.如图是依依家到学校的行走路线图.(1)小公园在依依家的 偏 ° 米处.(2)小公园在银行的 偏 ° 米处.(3)学校西偏南20°,距离250m 处是超市,请用★标出超市的位置.(1cm 表示100m )【答案】(1)北;西20;距离80.(2)南;西30;距离100(3)见解析【分析】本题主要考查了方位角的表示,解题的关键是熟练掌握方位角的定义.(1)根据方位角的定义进行解答即可;(2)根据方位角的定义进行解答即可;(3)根据学校西偏南20°,距离250m处是超市,进行解答即可.【详解】(1)解:小公园在依依家的北偏西20°距离80米处.故答案为:北;西20;80.(2)解:∵银行在小公园的北偏东30°距离100米处;∴小公园在银行的南偏西30°距离100米处.故答案为:南;西30;距离100.(3)解:如图所示:A B C D.根据下列语句按要求画图.16.如图,已知平面内有四个点,,,(1)连接AB;=;(2)作射线AD,并在线段AD的延长线上用圆规截取DE AD+>,得出这个结论的依据是:______.(3)作直线BC与射线AD交于点F.观察图形发现,线段AF BF AB【答案】(1)见解析(2)见解析(3)见解析;两点之间,线段最短【分析】本题考查了作图-复杂作图,直线、射线、线段,线段的性质:两点之间,线段最短,解决本题的关键是掌握基本的作图方法.(1)根据题意,求解即可;=(以(2)根据射线和线段的定义,作出射线AD,端点为A,并在线段AD的延长线上用圆规截取DE AD点D为圆心,AD为半径)即可;(3)根据直线和射线的定义即可作出直线BC与射线AD交于点F,进而可得出结论的依据.【详解】(1)如图,AB即为所作;(2)如图,点E即为所作;(3)如图,点F即为所作;观察图形发现,线段AF BF AB+>,得出这个结论的依据是:两点之间,线段最短.17.如图,线段16AB=,点C是线段AB的中点,点D是线段BC的中点.(1)求线段AD的长;(2)若在线段AB上有一点E,14CE BC=,求AE的长.18.(1)如图1,射线OC 在AOB Ð的内部,OM 平分AOC Ð,ON 平分BOC Ð,若110AOB Ð=°,求MON Ð的度数;(2)射线OC ,OD 在AOB Ð的内部,OM 平分AOC Ð,ON 平分BOD Ð,若100AOB Ð=°,20COD Ð=°,求MON Ð的度数;(3)在(2)中,AOB m Ð=°,COD n Ð=°,其他条件不变,请用含m ,n 的代数式表示MON 的度数(不用说理).B 卷(共50分)一、填空题(本大题共5个小題,每小題4分,共20分,答案写在答题卡上)19.如图,总共有 个角.【答案】10【分析】根据图形分别表示出所有角即可.【详解】解:图中的角有:AOC Ð,AOD Ð,AOE Ð,AOB Ð,COD Ð,COE Ð,COB Ð,DOE Ð,Ð共有10个角.Ð,EOBDOB故答案为:10.【点睛】本题考查了角的概念,正确会表示角,做到不重不漏是关键.20.已知点C是线段AB的三等分点,点D是线段AC的中点.若线段2AD=,则AB=.21.如图,将一副三角尺的直角顶点O重合在一起.若∠COB与∠DOA的比是2:7,OP平分∠DOA,则∠POC =度.22.已知:90AOB Ð=°,30BOC Ð=o ,OM 平分AOC Ð,则MOB Ð的度数为.Ð②当OC在AOBQÐ=°ÐAOB BOC90,\Ð=ÐAOC AOBQ OM平分AOCÐ1\Ð=ÐCOM AOC故答案为:30°或23.如图,在数轴上剪下6个单位长度(从1-到5)的一条线段,并把这条线段沿某点向左折叠,然后在::,则折痕处对应的点表示的数可重叠部分的某处剪一刀得到三条线段,发现这三条线段的长度之比为112能是.如图所示:①二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.如图,点C 、D 为线段AB 上两点,点M 为线段AC 的中点,点N 为线段BD 的中点.(1)若14cm AB =,4cm CD =.求AC BD +的长及MN 的长.(2)若AB a =,CD b =.直接用含a 、b 的式子表示MN 的长.CD= 25.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长2AB=(单位长度),慢车长4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数a=,c是代数式轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是c,其中8 2-+的二次项系数.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个x x1625单位长度/秒的速度向左匀速继续行驶.(1)此时刻a=________,c=________;(2)从此时刻开始算起,问再行驶多少秒钟两列火车的车头AC相距16个单位长度?(3)此时在快车AB上有一位爱动脑筋的乘客——天桥少年M,他发现行驶中有一段时间t秒钟,他的位置M+++为定到两列火车头AC的距离和加上到两列火车尾BD的距离和是一个不变的值(即MA MC MB MD 值).你认为天桥少年M发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.(2)解:()()241662-¸+88=¸1=(秒),或()()2416625+¸+=(秒),答:再行驶1秒或5秒两列火车行驶到车头AC 相距16个单位长度;(3)解:这个结论正确,当M 在CD 之间时,MC MD +是定值4,()462t =¸+48=¸0.5=(秒),∵2MA MB AB +==,∴此时()()246MA MC MB MD MA MB MC MD +++=+++=+=(单位长度),故这个时间是0.5秒,定值是6单位长度.26.钟面上的数学基本概念:钟面角是指时钟的时针与分针所成的角.如图1,AOB Ð即为某一时刻的钟面角,通常0180AOB °£Ð£°[简单认识]时针和分针在绕点O 一直沿着顺时针方向旋转,时针每小时转动的角度是30°,分针每小时转动一周,角度为360°.由此可知:(1)时针每分钟转动 °,分针每分钟转动 °:[初步研究](2)已知某一时刻的钟面角的度数为a ,在空格中写出一个与之对应的时刻:①当90a =°时, ;②当180a =°时, ;(3)如图2,钟面显示的时间是8点04分,此时钟面角AOB Ð= .[深入思考](4)在某一天的下午2点到3点之间(不包括2点整和3点整).①时针恰好与分针重叠,则这一时刻是;时针恰好与分针垂直,求此时对应的时刻是;、所在射线与射线OC中恰有一条是另两条射线所②记钟面上刻度为3的点为C,当钟面角的两条边OA OB成角的角平分线时,请直接写出此时对应的时刻.。
七年级上册数学 平面图形的认识(一)单元试卷(word版含答案)
一、初一数学几何模型部分解答题压轴题精选(难)1.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为________;(2)当△PMN所放位置如图②所示时,求证:∠PFD−∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.【答案】(1)∠PFD+∠AEM=90°(2)过点P作PG∥AB∵AB∥CD,∴PG∥AB∥CD,∴∠AEM=∠MPG,∠PFD=∠NPG∵∠MPN=90°∴∠NPG-∠MPG=90°∴∠PFD-∠AEM=90°;(3)设AB与PN交于点H∵∠P=90°,∠PEB=15°∴∠PHE=180°-∠P-∠PEB=75°∵AB∥CD,∴∠PFO=∠PHE=75°∴∠N=∠PFO-∠DON=45°.【解析】【解答】(1)过点P作PH∥AB∵AB∥CD,∴PH∥AB∥CD,∴∠AEM=∠MPH,∠PFD=∠NPH∵∠MPN=90°∴∠MPH+∠NPH=90°∴∠PFD+∠AEM=90°故答案为:∠PFD+∠AEM=90°;【分析】(1)过点P作PH∥AB,然后根据平行于同一条直线的两直线平行可得PH∥AB∥CD,根据平行线的性质可得∠AEM=∠MPH,∠PFD=∠NPH,然后根据∠MPH+∠NPH=90°和等量代换即可得出结论;(2)过点P作PG∥AB,然后根据平行于同一条直线的两直线平行可得PG∥AB∥CD,根据平行线的性质可得∠AEM=∠MPG,∠PFD=∠NPG,然后根据∠NPG-∠MPG=90°和等量代换即可证出结论;(3)设AB与PN 交于点H,根据三角形的内角和定理即可求出∠PHE,然后根据平行线的性质可得∠PFO=∠PHE,然后根据三角形外角的性质即可求出结论.2.将一副三角板放在同一平面内,使直角顶点重合于点O(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.【答案】(1)解:∵而同理:∴∴(2)解:∠AOD与∠BOC的大小关系为:∠AOB与∠DOC存在的数量关系为:(3)解:仍然成立.理由如下:∵又∵∴【解析】【分析】(1)先计算出再根据(2)根据(1)中得出的度数直接写出结论即可.(3)根据即可得到利用周角定义得∠AOB+∠COD+∠AOC+∠BOD=360°,而∠AOC=∠BOD=90°,即可得到∠AOB+∠DOC=180°.3.如图(1),将两块直角三角板的直角顶点C叠放在一起.(1)试判断∠ACE与∠BCD的大小关系,并说明理由;(2)若∠DCE=30°,求∠ACB的度数;(3)猜想∠ACB与∠DCE的数量关系,并说明理由;(4)若改变其中一个三角板的位置,如图(2),则第(3)小题的结论还成立吗?(不需说明理由)【答案】(1)解:∠ACE=∠BCD,理由如下:∵∠ACD=∠BCE=90°,∠ACE+∠ECD=∠ECB+∠ECD=90°,∴∠ACE=∠BCD(2)解:若∠DCE=30°,∠ACD=90°,∴∠ACE=∠ACD﹣∠DCE=90°﹣30°=60°,∵∠BCE=90°且∠ACB=∠ACE+∠BCE,∠ACB=90°+60°=150°(3)解:猜想∠ACB+∠DCE=180°.理由如下:∵∠ACD=90°=∠ECB,∠ACD+∠ECB+∠ACB+∠DCE=360°,∴∠ECD+∠ACB=360°﹣(∠ACD+∠ECB)=360°﹣180°=180°(4)解:成立【解析】【分析】(1)根据同角的余角相等即可求证;(2)根据余角的定义可先求得∠ACE=∠ACD-∠DCE,再由图可得∠ACB=∠ACE+∠BCE,把∠ACE和∠BCE 的度数代入计算即可求解;(3)由图知,∠ACB=∠ACD+∠BCE-∠ECD,则∠ACB+∠ECD=∠ACD+∠BCE,把∠ACD和∠BCE的度数代入计算即可求解;(4)根据重叠的部分实质是两个角的重叠可得。
七年级数学下册《平面图形的认识》单元测试卷(含答案解析)
七年级数学下册《平面图形的认识》单元测试卷(含答案解析)一.选择题(共10小题,满分30分)1.如果过一个多边形的一个顶点的对角线有5条,则该多边形是()A.九边形B.八边形C.七边形D.六边形2.如图,人字梯中间一般会设计一“拉杆”,以增加使用梯子时的安全性,这样做蕴含的道理是()A.两点之间线段最短B.三角形具有稳定性C.经过两点有且只有一条直线D.垂线段最短3.如图,△ABC中,点D是BC上的一点,点E是AB的中点,若BD:CD=2:1,且△ABC的面积是9cm2,则△AED的面积为()A.1cm2B.2cm2C.3cm2D.4cm24.如图,在△ABC中,D是AB上的一点,且AD=3BD,E是BC的中点,CD、AE相交于点F.若△ABC的面积为28,则△EFC的面积为()A.1 B.2 C.2.5 D.35.如图,∠ABD、∠ACD的角平分线交于点P,若∠A>∠D,∠ACD﹣∠ABD=64°,∠P=18°,则∠A的度数为()A.50°B.46°C.48°D.80°6.由所有到已知点O的距离大于或等于2,并且小于或等于3的点组成的图形的面积为()A.4πB.9πC.5πD.13π7.下列图形中,是直角三角形的是()A.B.C.D.8.在五边形ABCDE中,∠A,∠B,∠C,∠D,∠E的度数之比为3:5:3:4:3,则∠D的外角等于()A.60°B.75°C.90°D.120°9.如图,在△ABC中,BD为AC边上的中线,已知BC=8,AB=5,△BCD的周长为20,则△ABD的周长为()A.17 B.23 C.25 D.2810.下列长度的三条线段与长度为4的线段首尾依次相连能组成四边形的是()A.1,1,2 B.1,1,1 C.1,2,2 D.1,1,6二.填空题(共10小题,满分30分)11.从五边形的一个顶点出发的所有对角线,把这个五边形分成个三角形.12.如图,学校大门口的电动伸缩门,其中间部分都是四边形的结构,这是应用了四边形13.过圆O内一点P的最长的弦、最短弦的长度分别是10cm,8cm,则OP=cm.14.若一个多边形的内角和为1800°,则这个多边形是边形,其对角线条数是.15.如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多2cm,已知AB =4cm,则AC的长为cm.16.如图,在△ABC中,中线AD、BE相交于点O,如果△AOE的面积是4,那么四边形OECD 的面积是.17.在△ABC内有1个点,三边上有三个点(不与顶点重合),则这4个点和三个顶点最多可构成个互不重叠的小三角形;如果把1个点改成2021个点,其他条件不变,那么,最多可构成个互不重叠的小三角形.18.如图所示的自行车架设计成三角形,这样做的依据是三角形具有.19.已知a,b,c是△ABC三边的长,化简|a+b﹣c|+|a﹣b﹣c|+|c﹣a﹣b|+|b﹣a﹣c|=.20.如图,在△ABC中,在AB上存在一点D,使得∠ACD=∠B,角平分线AE交CD于点F.△ABC的外角∠BAG的平分线所在直线MN与BC的延长线交于点M,若∠M=35°,则∠三.解答题(共6小题,满分90分)21.某中学七年级数学课外兴趣小组在探究:“n边形(n>3)共有多少条对角线”这一问题时,设计了如下表格,请在表格中的横线上填上相应的结果:多边形的边数 4 5 6 …n从多边形的一个1 2 …顶点出发2 …多边形对角线的总条数应用得到的结果解决以下问题:①求十二边形有多少条对角线?②过多边形的一个顶点的所有对角线条数与这些对角线分多边形所得的三角形个数的和可能为2016吗?若能,请求出这个多边形的边数;若不能,请说明理由.22.在△ABC中,BC=8,AB=1;(1)若AC是整数,求AC的长;(2)已知BD是△ABC的中线,若△ABD的周长为17,求△BCD的周长.23.在△ABC中.(1)如图1,AB=AC,BE⊥AC于E,BE=6,CE=3,求AB的长.(2)如图2,AD⊥BC于D,∠DAC=2∠DAB,BD=3,DC=8,求△ABC的面积.24.如图,在△BCD中,CD=5,BD=7.(1)求BC的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=115°,求∠C的度数.25.对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在点A,使得∠APC =30°,则称P为⊙C的半角关联点.当⊙O的半径为1时,(1)在点D(,﹣),E(2,0),F(0,)中,⊙O的半角关联点是;(2)直线l:交x轴于点M,交y轴于点N,若直线l上的点P(m,n)是⊙O 的半角关联点,求m的取值范围.26.如图,已知△ABC中,E为AB上一点,DG∥BA交CA于G,∠1=∠2.(1)求证:EF∥AD;(2)若∠FEA=150°,∠FEA与∠DAE的角平分线相交于O,求∠EOA的度数.参考答案与解析一.选择题(共10小题,满分30分)1.解:∵过一个多边形的一个顶点的对角线有5条,∴多边形的边数为5+3=8,故选:B.2.解:人字梯中间一般会设计一“拉杆”,以增加使用梯子时的安全性,这样做的道理是三角形具有稳定性,故选:B.3.解:∵BD:CD=2:1,∴BD:BC=2:3,∴S△ABD=S△ABC=×9=6(cm2),∵点E是AB的中点,∴S△AED=S△ABD=×6=3(cm2).故选:C.4.解:连接BF,设△EFC的面积为x,∵E是BC的中点,∴△BEF的面积为x,∵△ABC的面积为28,且AD=3BD,∴△BCD的面积为7,∴△BDF的面积为(7﹣2x),∵AD=3BD,∴△ADF的面积为3(7﹣2x),∴△ABE的面积为3(7﹣2x)+(7﹣2x)+x,∵E是BC的中点,△ABC的面积为28,∴△ABE的面积为14,即3(7﹣2x)+(7﹣2x)+x=14,解得x=2,故选:B.5.解:如图,∵∠ABD、∠ACD的角平分线交于点P,∴∠ABP=∠ABD,∠ACP=∠ACD,∵∠1=∠2,∴∠ABP+∠A=∠ACP+∠P,∴∠A=∠ACP﹣∠ABP+∠P=(∠ACD﹣∠ABD)+∠P=×64°+18°=50°.故选:A.6.解:由所有到已知点O的距离大于或等于2,并且小于或等于3的点组成的图形的面积为以3为半径的圆与以2为半径的圆组成的圆环的面积,即π×32﹣π×22=5π,故选:C.7.解:A、第三个角的度数是180°﹣60°﹣60°=60°,是等边三角形,不符合题意;B、第三个角的度数是180°﹣55.5°﹣34.5°=90°,是直角三角形,符合题意;C、第三个角的度数是180°﹣30°﹣30°=120°,是钝角三角形,不符合题意;D、第三个角的度数是180°﹣40°﹣62.5°=77.5°,不是直角三角形,不符合题意;故选:B.8.解:设∠A=3x°,则∠B=5x°,∠C=3x°,∠D=4x°,∠E=3x°,∴(3x°+5x°+3x°+4x°+3x°)=540°,解得:x=30.∴∠D=4×30°=120°.∵180°﹣120°=60°,∴∠D的外角等于60°.故选:A.9.解:∵BD是AC边上的中线,∴AD=CD,∵△BCD的周长为20,BC=8,∴CD+BD=BC+BD+CD﹣BC=20﹣8=12,∴CD+BD=AD+BD=12,∵AB=5,∴△ABD的周长=AB+AD+BD=5+12=17.故选:A.10.解:A、∵1+1+2=4=4,∴此三条线段与长度为4的线段不能组成四边形,故不符合题意;B、∵1+1+1=3<4,∴此三条线段与长度为5的线段能组成四边形,故不符合题意;C、∵1+2+2=5>4,∴此三条线段与长度为4的线段不能组成四边形,故符合题意;D、∵1+1+4=6,∴此三条线段与长度为4的线段不能组成四边形,故不符合题意;故选:C.二.填空题(共10小题,满分30分)11.解:∵从n边形的一个顶点出发,分成了(n﹣2)个三角形,∴当n=5时,5﹣2=3.即可以把这个五边形分成了3个三角形,故答案为:3.12.解:学校大门口的电动伸缩门,其中间部分都是四边形的结构,这是应用了四边形的不稳定性.故答案为:不稳定性.13.解:如图所示,CD⊥AB于点P.根据题意,得AB=10cm,CD=6cm.∵CD⊥AB,∴CP=CD=4cm.根据勾股定理,得OP==3(cm).故答案为:3.14.解:设多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12,∴多边形的对角线的条数是:==54,故答案为:十二;54.15.解:∵AD是BC边上的中线,∴CD=BD,∵△ADC的周长比△ABD的周长多2cm,∴(AC+CD+AD)﹣(AD+DB+AB)=2cm,∴AC﹣AB=2cm,∵AB=4cm,∴AC=6cm,故答案为:6.16.解:在△ABC中,中线AD、BE相交于点O,∴点O是△ABC的重心,∴AO:OD=2:1,BO:OE=2:1,∵△AOE的面积是4,∴△AOB的面积=2×△AOE的面积=8,∴△BOD的面积=×△AOB的面积=4,∴△ABD的面积=△AOB的面积+△BOD的面积=12,∴△ADC的面积=△ABD的面积=12,∴四边形OECD的面积=△ADC的面积﹣△AOE的面积=12﹣4=8.故答案为:8.17.解:∵三角形内角和为180°,内部每个点所构成角之和为360°,三边所构成角为180°,当三角形内有1个点,三边有三个点时,所有三角形的内角和为180°+360°+3×180°=1080°,∵一个三角形内角和为180°,∴三角形个数为1080°÷180°=6(个)当三角形内有2021个点,三边有三个点时,所有三角形的内角和为180°+2021×360°+3×180°=4046×180°,∵一个三角形内角和为180°,∴三角形个数为4046个,故答案为:6;4046.18.解:自行车的主框架采用了三角形结构,这样设计的依据是三角形具稳定性,故答案为:稳定性.19.解:∵a、b、c是△ABC的三边的长,∴a+b﹣c>0,a﹣b﹣c<0,c﹣a﹣b<0,b﹣a﹣c<0,∴原式=a+b﹣c﹣a+b+c﹣c+a+b﹣b+a+c=2a+2b.故答案为:2a+2b.20.证明:∵C、A、G三点共线AE、AN为角平分线,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.∴∠CFE=90°﹣∠M=90°﹣35°=55°.故答案为:55°.三.解答题(共6小题,满分90分)21.解:①把n=12代入得,=54.∴十二边形有54条对角线.②不能.由题意得,n﹣3+n﹣2=2016,解得n=.∵多边形的边数必须是正整数,∴过多边形的一个顶点的所有对角线条数与这些对角线分多边形所得的三角形个数的和不可能为2016.22.解:(1)由题意得:BC﹣AB<AC<BC+AB,∴7<AC<9,∵AC是整数,∴AC=8;(2)∵BD是△ABC的中线,∴AD=CD,∵△ABD的周长为17,∴AB+AD+BD=17,∵AB=1,∴AD+BD=16,∴△BCD的周长=BC+BD+CD=BC+AD+CD=8+16=24.23.解:(1)∵AB=AC,CE=3,∴AE=AB﹣3,∵BE⊥AC于E,∴∠BEA=90°,∴AB2=AE2+BE2,∵BE=6,∴AB2=(AB﹣3)2+62,∴AB=;(2)作∠DAC的角平分线交BC于点E,过点E作EM⊥AC于点M,则∠DAE=∠CAE=∠DAC,∵∠DAC=2∠DAB,∴∠DAB=∠DAE,∵AD⊥BC于D,∴∠ADB=∠ADE=90°,在△ABD和△AED中,,∴△ABD≌△AED(ASA),∴DE=BD=3,∵ED⊥AD,EM⊥AC,AE平分∠DAC,∴EM=DE=3,∵DC=8,∴CE=8﹣3=5,∴CM==4,∴tan C===,∴AD=6,∴△ABC的面积=BC•AD=×(3+8)×6=33.24.解:(1)因为,所以2<BC<12;(2)∵AE∥BD,∠A=55°,∴∠CBD=∠A=55°.∵∠BDE=115°,∴∠BDC=65°.∴∠C=180°﹣55°﹣65°=60°.25.解:(1)由题意可知在圆上存在点A使∠ADO=30°和∠AEO=30°,∴D,E是,⊙O的半角关联点,故答案为D,E;(2)由直线解析式可直接求得,以O为圆心,ON长为半径画圆,交直线MN于点G,可得m≤0,设小圆⊙O与y轴负半轴的交点为H,连接OG,HG∵M(,0),N(0,2)∴OM=,ON=2,tan∠OMN=∴∠OMN=30°,∠ONM=60°∴△OGN是等边三角形∴GH⊥y轴,∴点G的纵坐标为﹣1,代入,可得,横坐标为,∴m≥,∴≤m≤0;26.证明:(1)∵DG∥BA,∴∠1=∠DAE.∵∠1=∠2,∴∠2=∠DAE.∴EF∥AD;(2)∵EF∥AD,∴∠FEA+∠BAD=180°.∵∠FEA与∠DAE的角平分线相交于O,∴∠OEA=∠FEA,∠OAE=∠BAD.∴∠OEA+∠OAE=(∠FEA+∠BAD)=90°.∴∠EOA=180°﹣(∠OEA+∠OAE)=90°.。
(好题)初中数学七年级数学上册第四单元《基本平面图形》检测题(有答案解析)
一、选择题1.如图,棋盘上有黑、白两色棋子若干,如果在一条至少有两颗棋子的直线(包括图中没有画出的直线)上只有颜色相同的棋子,我们就称“同棋共线”.图中“同棋共线”的线共有( )A .12条B .10条C .8条D .3条2.如图甲,用边长为4的正方形做了一幅七巧板,拼成图乙所示的一座桥,则桥中阴影部分面积为( )A .16B .12C .8D .43.若线段,,AP BP AB 满足AP BP AB +>,则关于P 点的位置,下列说法正确的是( ) A .P 点一定在直线AB 上 B .P 点一定在直线AB 外 C .P 点一定在线段AB 上D .P 点一定在线段AB 外4.若线段122A A =,在线段12A A 的延长线上取一点3A ,使2A 是13A A 的中点;在线段13A A 的延长线上取一点4A ,使3A 是41A A 的中点;在线段41A A 的延长线上取一点5A ,使4A 是15A A 的中点……,按这样操作下去,线段2021A A 的长度为( )A .182B .192C .202D .2125.若线段AB =13cm ,MA +MB =17cm ,则下列说法正确的是( )A .点M 在线段AB 上B .点M 在直线AB 上,也有可能在直线AB 外C .点M 在直线AB 外D .点M 在直线AB 上6.如图,点C 、D 是线段AB 上任意两点,点M 是AC 的中点,点N 是DB 的中点,若AB a ,MN b =,则线段CD 的长是( )A .2b a -B .()2a b -C .-a bD .1()2a b + 7.如图,线段CD 在线段AB 上,且2CD =,若线段AB 的长度是一个正整数,则图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和可能是( )A .28B .29C .30D .318.某一时刻钟表上时针和分针所成的夹角是105°,那么这一时刻可能是( )A .8点30分B .9点30分C .10点30分D .以上答案都不对9.如图,OA OB ⊥,若15516'∠=︒,则∠2的度数是( )A .3544︒'B .3484︒'C .3474︒'D .3444︒' 10.钟表上12时15分时,时针和分针的夹角是( )A .120°B .90°C .82.5°D .60°11.已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm12.如图,∠PQR 等于138°,SQ ⊥QR ,QT ⊥PQ .则∠SQT 等于( )A .42°B .64°C .48°D .24°二、填空题13.点A 、B 在数轴上的位置如图所示,点A 表示的数是5,线段AB 的长是线段OA 的1.2倍,点C 在数轴上,M 为线段OC 的中点,(1)点B 表示的数为 ;(2)若线段BM 的长是4,求线段AC 的长. 14.将一副三角板按图甲的位置放置,(1)∠AOD ∠BOC (选填“<”或“>”或“=”);(2) 猜想∠AOC 和∠BOD 在数量上的关系是 .(3)若将这副三角板按图乙所示摆放,三角板的直角顶点重合在点O 处.(1)(2)中的结论还成立吗?请说明理由.15.如图:已知直线AB 、CD 相于点O ,90COE ∠=︒.(1)若32AOC ∠=︒,求∠BOE 的度数; (2)若:2:7BOD BOC ∠∠=,求BOD ∠的度数. 16.根据下列要求画图(不写作法,保留作图痕迹) (1)连接线段OB ; (2)画射线AO ,射线AB ;(3)用圆规在射线AB 上截取AC ,使得AC OB =,画直线OC .17.如图,O 为直线AB 上一点,∠AOC 与∠AOD 互补,OM 、ON 分别是∠AOC 、∠AOD 的平分线.(1)根据题意,补全下列说理过程: 因为∠AOC 与∠AOD 互补, 所以∠AOC+∠AOD =180°. 又因为∠AOC+∠ =180°, 根据 ,所以∠ =∠ . (2)若∠MOC =72°,求∠AON 的度数.18.如图,线段AB 的中点为M ,C 点将线段MB 分成MC ,CB 两段,且:1:3MC CB =,若20AC =,求AB 的长.19.如图,已知点C 是线段AB 上一点,且2AC CB =,点D 是AB 的中点,且6AD =,(1)求DC 的长;(2)若点F 是线段AB 上一点,且12CF CD =,求AF 的长. 20.(1)计算:()535112 2.5147⎛⎫---÷-- ⎪⎝⎭(2)如图,OD 平分AOC ∠,75BOC ∠=︒,15BOD ∠=︒.求AOB ∠的度数.三、解答题21.如图,已知C ,D 两点将线段AB 分成三部分,且这三部分的长度之比为2:3:4,点M 为线段AB 的中点,BD=8cm ,求线段DM 的长.22.如图,已知点A ,B ,C ,D .按要求画图:①连接AD ,画射线BC ;②画直线CD 和直线AB ,两条直线交于点E ;+++的值最小.③画点P,使PA PB PC PD23.计算(1)58°32′36″+36.22°(2)-32×(-2)+42÷(-2)3÷10-丨-22丨÷524.如图,已知直线l和直线外三点A,B,C,按下列要求画图:(1)画射线AB;(2)连接BC;(3)反向延长BC至D,使得BD=BC;(4)在直线l上确定点E,使得AE+CE最小;(5)请你判断下列两个生活情景所蕴含的数学道理.情景一:如图从A地到B到地有4条道路,除它们外能否再修一条从A地到B地的最短道路?如果能,请你联系所学知识,在图上画出最短中线.情景二:同学们做体操时,为了保证一队同学站成一条直线,先让两个同学站好不动,其他同学依次往后站,要求目视前方只能看到各自前面的那个同学,请你说明其中的道理:.25.如图,已知直线AB,CD相交于点O,OE,OF为射线,∠AOE=90°,OF平分∠BOC,(1)若∠EOF=30°,求∠BOD的度数;(2)试问∠EOF与∠BOD有什么数量关系?请说明理由.AB=,M是线段AB的中点,P是线段AB上任意一点,N是线段26.已知,线段20PB的中点.(1)当P是线段AM的中点时,求线段NB的长;MP=时,求线段NB的长;(2)当线段1(3)若点P在线段BA的延长线上,猜想线段PA与线段MN的数量关系,并画图加以证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】把问题转化两白棋子共线和两黑棋子共线两种情形求解即可.【详解】结合图形,从横行、纵行、斜行三个方面进行分析;一条直线上至少有两颗棋子并且颜色相同,如下,共有10条:故选B.【点睛】本题考查了新定义问题,准确理解新定义的内涵,并灵活运用分类的思想是解题的关键.2.C解析:C【分析】读图分析阴影部分与整体的位置关系,易得阴影部分的面积即为原正方形的面积的一半;【详解】读图分析阴影部分与整体的位置关系,易得阴影部分的面积即为原正方形的面积的一半,⨯÷=;则阴影部分的面积为4428故答案选C.【点睛】本题主要考查了七巧板求面积的知识点,准确分析计算是解题的关键.3.D解析:D【分析】根据P点在线段AB上时,AP+BP=AB,进行判断即可.【详解】解:A. P点在线段AB上时,AP+BP=AB,此时点P在直线AB上,故错误;B. P点在线段AB延长线上时,AP BP AB+>,故错误;C. P点在线段AB上时,AP+BP=AB,故错误;D. P点在线段AB上时,AP+BP=AB,P点一定在线段AB外时,AP BP AB+>,故正确;故选:D.【点睛】本题考查了点和直线、线段的位置关系,解题关键是抓住当P点在线段AB上时,AP+BP=AB这一结论,进行判断.4.B解析:B【分析】根据线段中点的定义,和两点之间的距离,找出题目中的规律,即可得到结论.【详解】由题意可知:如图写出线段的长,A1A2=2,A2是 A1A3的中点得A1A2=A2A3=2,A1A3=4,A3是 A1A4的中点得A1A3=A3A4=4,A1A4=8,A4是 A1A5的中点得A1A4=A4A5=8,……根据线段的长,找出规律,∵A1A2=2,A2A3=2=21,A3A4=4=22,A4A5=8=23,A5A6=16=24,A7A8=……,总结通项公式,∴线段 A n A n+1=2n-1(n为正整数)∴线段 A20A21=219故此题选:B【点睛】本题考查了两点间的距离,线段中点的定义,找出题目中的规律是解题的关键.5.B解析:B 【分析】此题要分多种可能情况讨论:当M 点在直线外时,根据两点之间线段最短,能出现MA+MB=17;当M 点在线段AB 延长线上,也可能出现MA+MB=17;由此解答即可. 【详解】(1)当M 点在直线外时,M ,A ,B 构成三角形,两边之和大于第三边,能出现MA+MB=17;(2)当M 点在线段AB 延长线上,也可能出现MA+MB=17. 故选:B . 【点睛】此题考查比较线段的长短,正确认识直线、线段,注意对各个情况的分类,讨论可能出现的情况.6.A解析:A 【分析】先由AB MN a b -=-,得AM BN a b +=-,再根据中点的性质得22AC BD a b +=-,最后由()CD AB AC BD =-+即可求出结果.【详解】解:∵AB a ,MN b =, ∴AB MN a b -=-, ∴AM BN a b +=-,∵点M 是AC 的中点,点N 是DB 的中点, ∴AM MC =,BN DN =,∴()()2222AC BD AM MC BN DN AM BN a b a b +=+++=+=-=-, ∴()()222CD AB AC BD a a b b a =-+=--=-. 故选:A . 【点睛】本题考查与线段中点有关的计算,解题的关键是掌握线段中点的性质.7.B解析:B 【分析】根据数轴和题意可知,所有线段的长度之和是AC+CD+DB+AD+CB+AB ,然后根据CD=2,线段AB 的长度是一个正整数,依次对选项进行判断即可解答本题. 【详解】解:由题意可得,图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和是: AC+CD+DB+AD+CB+AB=(AC+CD+DB )+(AD+CB )+AB=AB+AB+CD+AB=3AB+CD , ∵CD=2,∴AC+CD+DB+AD+CB+AB=3AB+2,∴A选项中:当和为28时,即3AB+2=28,解得:AB=263,与AB长度是正整数不符,故不符合要求;B选项中:当和为29时,即3AB+2=29,解得:AB=9,AB长度是正整数,故符合要求;C选项中:当和为30时,即3AB+2=30,解得:AB=283,与AB长度是正整数不符,故不符合要求;D选项中:当和为31时,即3AB+2=31,解得:AB=293,与AB长度是正整数不符,故不符合要求;故选:B.【点睛】本题考查线段的长度,解题的关键是明确题意,找出所求问题需要的条件.8.B解析:B【分析】根据时间得到分针和时针所在位置,算出夹角度数,判断选项的正确性.【详解】A选项,分针指向6,时针指向8和9的中间,夹角是3021575︒⨯+︒=︒;B选项,分针指向6,时针指向9和10的中间,夹角是30315105︒⨯+︒=︒;C选项,分针指向6,时针指向10和11的中间,夹角是30415135︒⨯+︒=︒D选项错误,因为B是正确的.故选:B.【点睛】本题考查角度求解,解题的关键是掌握钟面角度的求解方法.9.D解析:D【分析】根据OA⊥OB,得到∠AOB=90°∠AOB=∠1+∠2=90°,即可求出.【详解】解:∵OA⊥OB∴∠AOB=90°∵∠AOB=∠ 1+∠ 2=90°∠1=55°16′∴∠ 2=90°-55°16′=34°44′故选:D【点睛】此题主要考查了角度的计算,熟记度分秒之间是六十进制是解题的关键. 10.C解析:C【分析】求出时针和分针每分钟转的角度,由此即可得.【详解】因为时针每分钟转的角度为3600.51260︒=︒⨯,分针每分钟转的角度为360660︒=︒,所以当钟表上12时15分时,时针转过的角度为0.5157.5︒⨯=︒,分针转过的角度为61590︒⨯=︒,所以时针和分针的夹角为907.582.5︒-︒=︒,故选:C.【点睛】本题考查了钟面角,熟练掌握时钟表盘特征和时针、分针每分钟转的角度数是解题关键.11.A解析:A【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.12.A解析:A【分析】利用垂直的概念和互余的性质计算.【详解】解:∵∠PQR=138°,QT⊥PQ,∴∠PQS=138°﹣90°=48°,又∵SQ⊥QR,∴∠PQT=90°,∴∠SQT=42°.故选A.【点睛】本题是对有公共部分的两个直角的求角度的考查,注意直角的定义和度数.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.(1)-1;(2)1或15【分析】(1)根据点A表示的数为5线段AB的长为线段OA长的12倍即可得点B表示的数;(2)根据线段BM的长为45即可得线段AC的长【详解】解:(1)∵点A表示的数为5线段解析:(1)-1;(2)1或15【分析】(1)根据点A表示的数为5,线段AB的长为线段OA长的1.2倍.即可得点B表示的数;(2)根据线段BM的长为4.5,即可得线段AC的长.【详解】解:(1)∵点A表示的数为5,线段AB的长为线段OA长的1.2倍,∴AB=1.2×5=6∵OA=5,∴OB=AB-OA=1,∴点B表示的数为-1.故答案为-1;(2)若点M在点B的右边,点B表示的数是-1,且|BM|=4,所以点M表示的数是3,即|OM|=3又M是线段OC的中点,所以|OC|=6,即点C所表示的数是6,点A表示的数是5,所以|AC|=1;若点M在点B的左边,点B表示的数是-1,且|BM|=4,所以点M表示的数是-5,所以|OM|=5而M是线段OC的中点,所以|OC|=10,即点C所表示的数是-10,点A表示的数是5,所以|AC|=15【点睛】本题考查了数轴,解决本题的关键是用数轴表示两点之间的距离.14.(1)∠AOD=∠BOC;(2)∠AOC+∠BOD=180°;(3)任然成立理由如见解析【分析】(1)根据角的和差关系解答(2)利用周角的定义和直角解答;(3)根据同角的余角相等解答∠AOD和∠BO解析:(1)∠AOD=∠BOC;(2)∠AOC+∠BOD=180°;(3)任然成立,理由如见解析【分析】(1)根据角的和差关系解答,(2)利用周角的定义和直角解答;(3)根据同角的余角相等解答∠AOD和∠BOC的关系,根据图形,表示出∠BOD+∠AOC=∠BOD+∠AOB+∠COB整理即可得到原关系仍然成立.【详解】解:(1)∠AOD和∠BOC相等,∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD,∴∠AOD=∠COB;(2)∠AOC和∠BOD互补.∵∠AOB=∠COD=90°,∴∠BOD+∠AOC=360°-∠AOB-∠COD=360°-90°-90°=180°,∴∠AOC和∠BOD互补;⑶成立.∵∠AOB=∠COD=90°,∴∠AOB-∠BOD=∠COD-∠BOD,∴∠AOD=∠COB,∵∠AOB=∠COD=90°,∴∠BOD+∠AOC=∠BOD+∠AOB+∠COB,=90°+∠BOD+∠COB,=90°+∠DOC,=90°+90°,=180°.【点睛】本题主要考查角的和、差关系,互余互补的角关系,理清角的和或差,互余与互补关系是解题的关键.15.(1)58°;(2)40°【分析】(1)根据平角的定义结合角的和差进行计算;(2)根据平角的定义结合角的比进行求解计算【详解】解:(1)直线ABCD 相交于点O (2)【点睛】本题考查几何图形中角度的和解析:(1)58°;(2)40°【分析】(1)根据平角的定义,结合角的和差进行计算;(2)根据平角的定义,结合角的比进行求解计算.【详解】解:(1)直线AB 、CD 相交于点O180AOC COE BOE ∴∠+∠+∠=︒180BOE AOC COE ∴∠=︒-∠-∠90,32COE AOC ∠=︒∠=︒BOE 180329058∴∠=︒-︒-︒=︒(2)180COD ∠=︒,:2:7BOD BOC ∠∠= 2180409BOD ∴∠=︒⨯=︒. 【点睛】 本题考查几何图形中角度的和差计算,理解题意,列出角的和差关系,正确计算是解题关键.16.(1)见解析;(2)见解析;(3)见解析【分析】(1)连接OB 即可;(2)连接AOAB 并延长;(3)先用圆规在射线上截取AC=OB 再画直线OC【详解】解:(1)如图所示线段即为所求;(2)如图所示射解析:(1)见解析;(2)见解析;(3)见解析【分析】(1)连接OB 即可;(2)连接AO 、AB 并延长;(3)先用圆规在射线AB 上截取AC=OB ,再画直线OC .【详解】解:(1)如图所示,线段OB 即为所求;(2)如图所示,射线AO 、射线AB 即为所求;(3)如图所示,直线OC 即为所求.【点睛】本题考查了画线段、射线、和直线,解题关键是遵循题意画图,注意直线、射线、线段的区别.17.(1)BOC ;同角的补角相等;AOD ;BOC ;(2)∠AON=18°【分析】(1)由题意可得∠AOC+∠AOD =180°∠AOC+∠COB =180°可以根据同角的补角相等得到∠AOD =∠COB ;(2解析:(1)BOC ;同角的补角相等;AOD ;BOC ;(2)∠AON=18°【分析】(1)由题意可得∠AOC+∠AOD =180°,∠AOC+∠COB =180°,可以根据同角的补角相等得到∠AOD =∠COB ;(2)首先根据角平分线的性质可得∠AOC =2∠COM ,∠AON =12∠AOD ,然后计算出∠AOC =144°,进而得到∠AON =18°.【详解】解:(1)因为∠AOC 与∠AOD 互补,所以∠AOC+∠AOD =180°.又因为∠AOC+∠BOC =180°,根据同角的补角相等,所以∠AOD =∠BOC ,故答案为:BOC ;同角的补角相等;AOD ;BOC ;(2)∵OM 是∠AOC 的平分线.∴∠AOC =2∠MOC =2×72°=144°,∵∠AOC 与∠AOD 互补,∴∠AOD =180°﹣144°=36°,∵ON 是∠AOD 的平分线.∴∠AON =12∠AOD =18°. 【点睛】本题考查了补角的定义和角平分线的定义,解题关键是熟练运用相关知识建立角之间的联系. 18.32【分析】本题需先设根据已知条件C 点将线段MB 分成的两段求出MB=4x 利用M 为AB 的中点列方程求出x 的长即可求出AB 的长;【详解】解:∵设则∴∴解得∵M 为AB 的中点∴【点睛】本题主要考查了两点间的 解析:32【分析】本题需先设MC x =,根据已知条件C 点将线段MB 分成:1:3MC CB =的两段,求出MB=4x ,利用M 为AB 的中点,列方程求出x 的长,即可求出AB 的长;【详解】解:∵ :1:3MC CB =,设MC x =,则3CB x =,∴4AM MB MC CB x ==+=,∴4520AC AM MC x x x =+=+==,解得4x =.∵M 为AB 的中点∴832AB x ==.【点睛】本题主要考查了两点间的距离,在解题时要能根据两点间的距离,求出线段的长是解本题的关键;19.(1)2;(2)7或9【分析】(1)根据中点平分线段长度即可求得AB 的长再由可得AC 的长度即可求出CD 的长度;(2)分当点在线段上时和当点在延长线上时即可求出的长度【详解】(1)∵点是的中点且∴∵∴解析:(1)2;(2)7或9【分析】(1)根据中点平分线段长度即可求得AB 的长,再由2AC CB =,可得AC 的长度,即可求出CD 的长度;(2)分当F 点在线段DC 上时和当F 点在DC 延长线上时,即可求出AF 的长度.【详解】(1)∵点D 是AB 的中点,且6AD =,∴212AB AD ==,∵2AC CB =,∴8AC =,∴862CD AC AD =-=-=;(2)由(1)可得1CF =,当F 点在线段DC 上时,817AF AC CF =-=-=,当F 点在DC 延长线上时,819AF AC CF =+=+=,综上所述,7AF =或9【点睛】本题考查了线段的长度问题, 掌握中点平分线段长度是解题的关键.20.(1);(2)【分析】(1)先计算有理数的乘方将除法转化为乘法小数化为分数再计算有理数的乘法与加减法即可得;(2)先根据角的和差可得再根据角平分线的定义可得然后根据角的和差即可得【详解】(1)解:;解析:(1)9-;(2)45︒.【分析】(1)先计算有理数的乘方、将除法转化为乘法、小数化为分数,再计算有理数的乘法与加减法即可得;(2)先根据角的和差可得60COD ∠=︒,再根据角平分线的定义可得60AOD COD ∠=∠=︒,然后根据角的和差即可得.【详解】(1)解:()535112 2.5147⎛⎫---÷-- ⎪⎝⎭ ()55187142=---⨯-- 55922=-+- 9=-;(2)解:75BOC ∠=︒,15BOD ∠=︒,751560COD BOC BOD ∴∠=∠-∠=︒-︒=︒,∵OD 平分AOC ∠, ∴60AOD COD ∠=∠=︒,∴601545AOB AOD BOD ∠=∠-∠=︒-︒=︒.【点睛】本题考查了含乘方的有理数混合运算、与角平分线有关的角度计算,熟练掌握各运算法则和角平分线的定义是解题关键.三、解答题21.=1cm DM【分析】根据按比例分配的意义、线段中点的意义及线段的和差运算解答.【详解】解:由图可知:AC:CD:DB=2:3:4, ∴49DB AB =, ∵BD=8cm , ∴98184AB =⨯=cm , ∵点M 为线段AB 的中点,∴BM=18192⨯=cm , ∴DM=BM-BD=9-8=1cm .【点睛】本题考查线段的应用,熟练掌握按比例分配的意义、线段中点的意义及线段的和差运算是解题关键.22.①见解析;②见解析;③见解析【分析】①连接AD ,作射线BC 即可;②作直线CD 和AB ,交点为点E③画点P ,使PA+PB+PC+PD 的值最小即可;【详解】解:如图所示:【点睛】本题考查了作图——复杂作图、线段的性质:两点之间线段最短、两点间的距离,解决本题的关键是根据语句准确画图.23.(1)94°45′48″;(2)17【分析】(1)根据度分秒的加法,相同的单位相加,满60时向上以单位进1,可得答案;(2)原式先计算乘方,再计算乘除,最后进行加减运算即可.【详解】解:(1)58°32′36″+36.22°=58°32′36″+36°13′12″=94°45′48″;(2)-32×(-2)+42÷(-2)3÷10-丨-22丨÷5=-9×(-2)+16÷(-8)÷10-4÷5=18-0.2-0.8=17.【点睛】本题考查了度分秒的换算,度分秒的加减,同一单位向加减,度分秒的乘法,从小单位算起,满60时向上以单位进1.同时还考查了含有乘方的有理数的混合运算.24.作图见详解;两点确定一条直线.【分析】根据射线,线段、两点之间线段最短,以及两点确定一条直线,即可解决问题;【详解】解:(1)射线AB,如图所示;(2)线段BC,如图所示,(3)线段BD如图所示(4)点E即为所求;(5)情景一:如图:由两点之间线段最短,即可得到线段AB;情景二:同学们做体操时,为了保证一队同学站成一条直线,先让两个同学站好不动,其他同学依次往后站,要求目视前方只能看到各自前面的那个同学,请你说明其中的道理:两点确定一条直线.故答案为:两点确定一条直线.【点睛】本题考查作图——复杂作图、直线、射线、线段的定义、两点之间线段最短,两点确定一条直线等知识,解题的关键是掌握所学的基本知识,属于中考常考题型.25.(1)∠BOD=60°;(2)∠BOD=2∠EOF,理由见解析【分析】(1)求出∠FOB=90°-∠EOF=60°,由OF平分∠BOC求出∠BOC=120°,进而求出∠BOD=180°-120°=60°;(2)设∠EOF=α,将∠FOB、∠BOC分别用α的代数式表示,最后∠BOD=180°-∠BOC即可求解.【详解】解:(1)∠BOE=180°-∠AOE=180°-90°=90°,∵∠EOF=30°,∴∠FOB=90°-30°=60°,∵OF为∠BOC的角平分线,∴∠BOC=2∠FOB=120°,∴∠BOD=180°-∠BOC=180°-120°=60°;(2)设∠EOF=α,则∠FOB=90°-α,∵OF为∠BOC的角平分线,∴∠BOC=2∠FOB=2(90°-α),∴∠BOD=180°-∠BOC=180°-2(90°-α)=2α,即∠BOD=2∠EOF.【点睛】本题主要考查了垂线,角平分线的定义以及平角的综合运用,掌握角平分线平分角,垂线得到直角这两个性质是解决本题的关键.26.(1)7.5;(2)4.5或5.5;(3)2PA MN =,画图证明见解析.【分析】(1)画出符合题意的图形,先求解10AM =,再求解5AP =, 可得15PB =, 再利用中点的含义可得答案;(2)分两种情况讨论:当P 在M 左边时,当P 在M 右边时,先求解,PB 再利用中点的含义可得答案;(3)当P 在线段BA 延长线上时,如图,设PA t =,求解1102NB t =+,再求解12MN NB MB t =-=,从而可得结论. 【详解】解:(1)如图,∵M 是线段AB 的中点,20AB =∴1102MA AB == ∵P 是线段AM 的中点, ∴152AP AM == ∴20515PB AB AP =-=-=∵N 是线段PB 的中点∴17.52NB PB == (2)∵1MP =, ∴当P 在M 左边时,如图,11BP MB MP =+=,∵N 是线段PB 的中点,∴1 5.52NB PB ==, 如图,当P 在M 右边时,9BP MB MP =-=,∵N 是线段PB 的中点,∴1 4.52NB PB ==. (3)线段PA 和线段MN 的数量关系是:2PA MN =,理由如下:当P 在线段BA 延长线上时,如图,设PA t =,则20PB t =+∵N 是线段PB 的中点∴111022NB PB t ==+ ∵M 是线段AB 的中点,20AB = ∴1102MB AB == ∴12MN NB MB t =-=又∵PA t =∴2PA MN =【点睛】本题考查的是线段的和差关系,线段的中点的含义,整式的加减运算,分类思想的运用,掌握以上知识是解题的关键.。
七年级数学上第六章平面图形的认识(一)练习题及答案
七年级数学上第六章平面图形的认识(一)练习题及答案盛年不重来,一日难再晨,及时当勉励,岁月不待人。
惜取时间认真对待七年级数学练习题。
为大家整理了七年级数学上第六章平面图形的认识(一)练习题,欢迎大家阅读!七年级数学上第六章平面图形的认识(一)习题1.已知线段AB=12cm,直线AB上有一点C,且BC=6cm,M是线段AC 的中点,求线段AM的长.2.如图,B、C两点把线段AB分成2:3:4的三部分,M点AD的中点,CD=8,求MC的长.3.A车站到B车站之间还有3个车站,那么从A车站到B车站方向发出的车辆.一共有多少种不同的车票( )A.8B.9C.10D.114.如图,线段AB-4,点O是线段AB上一点,C、D分别是线段OA、OB的中点,小明据此很轻松地求得CD=2,但他在反思的过程中突发奇想:若点O运动到AB的延长线上时,原有的结论“CD=2”是否仍成立?请帮小明画出图形并说明理由.5.如图,A、B、C表示3个村庄,它们被三条河隔开,现在打算在每两个村庄之间都修一条笔直公路,则一共需架多少座桥?请你在图上用字母标明桥的位置.6.如图已知∠AOB+∠AOC=180°,OP、OQ分别平分∠AOB、∠AOC且∠POQ=50°.求∠AOB、∠AOC的度数.7.已知∠AOB=30°,又自∠AOB的顶点O引射线OC.若∠AOC:∠AOB=4:3,那么∠BOC= ( )A.10°B.40°C.45°D.70°或10°8.小明晚上6点多外出购物.看手表上时针与分针的夹角为110°,接近7点回到家,发现时针与分针的夹角又是110°,问小明外出时用了多少时间?9.考点办公室设在校园中心O点,带队老师休息室A位于O点的北偏东45°,某考室B位于O点南偏东60°,请在图中画出射线OA、OB,并计算∠AOB的度数.10.已知∠a与∠β之和的补角等于∠a与∠β之差的余角,则∠β=( )A.60°B.45°C.75°D.无法求出11.为了解决四个村庄用电问题,政府投资在已建电厂与这四个村庄之间架设输电线路,现已知四个村庄及电厂之间距离如图所示(距离单位:公里),则能把电力输送到这四个村庄的输电A.19.5B.20.5C.21.5D.25.512.已知线段AB=6.(1)取线段AB的三等分点,这些点连同线段AB的两个端点可以组成多少条线段?求这些线段长度的和;(2)再在线段AB上取两种点:第一种是线段AB的四等分点;第二种是AB的六等分点,这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段?求这些线段长度的和.13.如图,已知∠AOB与∠BOC互为补角,OD是∠AOB的角平分线,OE在∠BOC内,∠BOE= ∠EOC,∠DOE=72°,求∠EOC的度数.14.如图所示,直线l与∠O的两边分别交于点A、B,则图中以O、A、B为端点的射线的条数总和为( )A.5B.6C.7D.815.如图所示,同一直线上有A、B、C、D四点,已知:AD:DB=5:9.AC:CB=9:5,且CD=4cm,求线段AB的长是多少?16.In the figure,Mon is a straight 1ive,If the angles α、β and γ ,satisfgβ:α=2:1,and γ:β=3:1,then the ang1e β=_______,(英汉小词典straight 1ive直线;ang1e角;satisfg满足)17.五位朋友,a、b、c、d、e在公园聚会,见面时握手致意问候,已知a握了4次,b握了1次,C握了3次,d握了2次,到目前为止,e握了( )次.A.1B.2C.3D.418.如图,已知B是线段AC上一点,M是线段AB的中点,N是线段AC的中点,P为NA的中点,Q为MA的中点,则MN:PQ等于( )A.1B.2C.3D.419.如图,某汽车公司所营运的公路AB段共有4个车站依次为A、C、D、B,且AC=CD=DB,现想在AB段建一个加油站M,要求使A、B、C、D站的各辆汽车到加油站M所花费的总时间最少,试找出M的位置.20.如图,B、C、D依次是线段AE上的三点,已知AE=8.9cm,BD=3cm 则图中以A、B、C、D、E这5个点为端点的所有线段长度的和为_______cm.21.如图是一个3×3的正方形,则图中∠1+∠2+∠3+…+∠9的度数(degree)是_______.23.电子跳蚤游戏盘为△ABC,AB=8a,AC=9a,BC=10a,如果电子跳蚤开始时在BC边上P0处,BP0=4a,第一步跳蚤跳到AC边上P1处且CP1=CP0;第二步跳蚤以P1跳到AB边上P2处,且AP2=AP1;第三步跳蚤跳到BC边上P3处,且BP3=BP2……跳蚤按上述规则跳下去,第2001次落到P2001,请计算P0与P2001之间的距离.24.如图,已知C是线段AB的中点D是线段AC的中点,且图中所有线段的长度和为2010,求线段AC的长度.25.设有甲、乙、丙三人,他们的步行速度相同,骑车速度也相同,骑车的速度为步行速度的3倍,现甲自A地去B地,乙、丙则从B地去A地,双方同时出发,出发时,甲、乙为步行,丙骑车,途中,当甲、丙相遇时,丙将车给甲骑,自己改为步行,三人仍按各自原有方向继续前进;当甲、乙相遇时,甲将车给乙骑,自己又步行,三人仍按各自方向继续前进,问:三人之中谁最选到达自己的目的地?谁最后到达目的地?26.如图,∠A1OA11为一平角,∠A3OA2-∠A2OA1=∠A4OA3-∠A3OA2=…=∠A11OA10-∠A10OA9=2°.求七年级数学上第六章平面图形的认识(一)练习题参考答案1.3cm或9cm2.13.C4.25.共建5座桥,分别在M、N、P、Q、R五处(如图所示).6.140°.7.D8.40分钟.9.75°. 10.B11.B12.(1)6条,20;(2)36条,88. 13.72° 14.D15. cm. 16.40° 17.B18.B 19.M应选在CD段(包括C、D)任意一点均可. 20.41.6 21.405°22.共有四次23.a 24. 25.丙最先到达目的地,甲最后到达目的地.26.9°看了“七年级数学上第六章平面图形的认识(一)练习题”的人还看了:2.人教版七年级数学下单元达标试卷平面图形的认识3.七年级数学复习计划大全4.2017七年级数学复习计划5.北师大版七年级数学上册教学计划。
北师大版七年级数学上册单元目标检测:第四章-基本平面图形(含答案)
数学北师版七年级上第四章基本平面图形单元检测参考完成时间:90分钟实际完成时间:______分钟总分:100分得分:______一、选择题(本题共10小题,每小题3分,共30分)1.平面上有四点,经过其中的两点画直线最多可画出( ).A.三条B.四条C.五条D.六条2.在实际生产和生活中,下列四个现象:①用两个钉子把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设天线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有().A.①②B.①③C.②④D.③④3.平面上有三点A,B,C,如果AB=8,AC=5,BC=3,那么( ).A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外4.下列各角中,是钝角的是().A。
14周角 B.23周角 C.23平角D。
14平角5.如图,O为直线AB上一点,∠COB=26°30′,则∠1=( ).A.153°30′B.163°30′C.173°30′D.183°30′6.在下列说法中,正确的个数是().①钟表上九点一刻时,时针和分针形成的角是平角;②钟表上六点整时,时针和分针形成的角是平角;③钟表上十二点整时,时针和分针形成的角是周角;④钟表上差一刻六点时,时针和分针形成的角是直角;⑤钟表上九点整时,时针和分针形成的角是直角.A.1 B.2 C.3 D.47.如图,C是AB的中点,D是BC的中点,下面等式不正确的是( ).A.CD=AC-DB B.CD=AD-BCC.CD=12AB-BD D.CD=13AB8.如图,C,D是线段AB上两点,若CB=4 cm,DB=7 cm,且D是AC的中点,则AC的长等于( ).A.3 cm B.6 cm C.11 cm D.14 cm9.A,B,C,D,E五个景点之间的路线如图所示.若每条路线的里程a(km)及行驶的平均速度b(km/h)用(a,b)表示,则从景点A到景点C用时最少....的路线是().A.A→E→C B.A→B→C C.A→E→B→C D.A→B→E→C 10.如图所示,云泰酒厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在金斗大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该厂的接送车打算在这个路段上只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( ).A .点AB .点BC .AB 之间D .BC 之间二、填空题(本题共4小题,每小题4分,共16分)11.如图所示,线段AB 比折线AMB __________,理由是:____________________.12.如图,点C 是线段AB 上的点,点D 是线段BC 的中点,若AB =10,AC =6,则CD =__________.13.现在是9点20分,此时钟面上的时针与分针的夹角是__________.14.如图所示,由泰山到青岛的某一次列车,运行途中停靠的车站依次是:泰山——济南—-淄博——潍坊-—青岛,那么要为这次列车制作的火车票有__________种.三、解答题(本题共4小题,共54分)15.(12分)计算:(1)将24.29°化为度、分、秒;(2)将36°40′30″化为度.16.(7分)请以给定的图形“”(两个圆,两个三角形,两条线段)构思独特而且又有意义的图形,并且写上一句贴切的解说词.17.(8分)已知线段a ,b (如图),画出线段x ,使x =a +2b .18.(8分)已知在平面内,∠AOB =70°,∠BOC =40°,求∠AOC 的度数.19.(9分)如图,已知AB 和CD 的公共部分BD =13AB =14CD 。
七年级数学第四章《平面图形及其位置关系》专项练习(含答案)
第四章《平面图形及其位置关系》专项练习在本章中,我们不仅能从测量、折纸、画图等活动中学到线段、直线、射线、角等简单的平面图形,以及两直线平行、垂直的位置关系和特征,而且还可以自己创作出新颖、有趣的七巧板拼图,用尺规设计出精美、别致的图案,这样,你自己也会成为一名小小的设计师,更会感受到美就在我们身边.考点一:直线、射线线段 1.考点分析:考查直线、射线、线段的性质以及直线与线段计数问题,线段的计算及简单的语言的认识与应用,多以填空、选择的形式出现2.典例剖析例1.在表示直线时,常常要用到直线上的两个点表示,这条直线为什么不用一个点,三个点或更多的点表示直线?答:因为过一点可作无数条直线,即一点不能确定一条直线,所以不能用一点表示一条直线,而两点确定一直线,用直线上三个点或更多的点表示太繁,一般来说也没必要,因此用两点最简单明了.例2.(1)如图1,从教室门A 到图书馆B ,总有少数同学不走边上的路而横穿草坪,这是为什么?请你用所学的数学知识来说明这个问题.(2)如图2,A 、B 是河流L 两旁的两个村庄,现在要在河边修一个引水站向两村供水,问引水站修在什么地方才能使所需要的管道最短?请在图中表示出点P 的位置,并说明你的理由.(3)你赞同以上的做法吗?你认为应用 科学知识为人民服务应注意什么?分析:利用“两点之间,线段最短”.答:(1利用的是两点之间,线段最短.(2)连接A 、B两点与L 相交,交点就是P 的位置,根据两点之间,线段最短. (3)第一种做法不对,践踏草坪不道德;第二种做法对,节省物质.例3.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,求线段AC 的长. 解:当点C 在线段AB 的延长线时,如图3, AC=AB+BC=8+3=11(cm ) 当点C 在射线BA 上时,如图4,AC=AB-BC=8-3=5(cm ) 所以线段AC 的长为11cm 或5cm .评注:这是一道读句画图计算题,只要按照题意,正确地画出图形,这里还要注意分类讨论的数学思想,否则容易漏解. 专练一: 1.一般来说,把门安装在门框上需要两个合页,这是为什么呢?2.“已知线段AB ,在BA 的延长线上取一点C ,使CA=3AB ,(1)线段CB 是线段AB 的几倍?(2)线段AC 是线段CB 的几分之几?”3.如图5,平原上有A 、B 、C 、D 四个村庄,为了解决当地缺水问题,政府准备投资修建一个蓄水池.不考虑其他因素,A L图2·· · A C B 图4 ·· · B A C 图3H B · A · ·C ·D E F ┒ ≈ ≈ ≈≈ ≈ ≈图5请你画图确定蓄水池H 点的位置,使它与四个村庄的距离之和最小. 4. 如图6,在正方体两个相距最远的顶点处有一只苍蝇B 和蜘蛛A , 蜘蛛可从哪条最短的路径爬到苍蝇处?试说明你的理由.5.在同一平面上,1条直线把一个平面分成22112++=2个部分,2条直线把一个平面最多分成22222++=4个部分,3条直线把一个平面最多分成22332++=7个部分,那么8条直线把一个平面最多分成 部分, n 条直线把一个平面最多分成 部分.6.问题:在直线上有n 个不同点,则此直线上共有多少条线段?考点二:角的度量、表示与比较 1.考点分析:角的度、分、秒的转换与计算,角的计数等内容是中考的热点,多以填空题、选择题的形式出现2.典例剖析例1.下图中有几个角?是哪几个角?分析:由一点引n 条射线所组成的角的个数共有(1)1234(1)2n n n -+++++-=L 个,此题从O 出发有4条射线,n=4,此时(1)62n n -=.解:图中有6个角,分别为∠AOB 、∠AOC 、∠AOD 、∠BOC 、∠BOD 、∠COD . 例2.如图7,一幅三角板的两个直角顶点重合在一起,(1)比较∠EOM 和∠FON 的大小,并说明为什么?(2)∠EON 与∠FOM 的和是多少度?为什么?解:由三角板可知∠EOM+∠FOM=900,∠FOM+∠FON=900, 所以∠EOM=∠FON ,又因为∠EON=∠EOM+∠FOM+∠FON , 所以∠EON+∠FOM=∠EOM+∠FOM+∠FON+∠FOM= 900+900=1800.例3.如图8,OA 是表示北偏东300方向的一条射线,仿照这条射线,画出展示下列方向的射线:(1)南偏东250;(2)北偏西600.分析:(1)以正南方向的射线为始边,向东旋转250, 所成的角的终边OB 即为所求的射线.(2)以正北方向的射线为始边,向西旋转600, 所成的角的终边OC 即为所求的射线.解:如图8所示:B图6 O A BCD图6东 O 西 南 北 30A 600东 O 西 南 北 250B C 图8 图9 图7O A B P QR图1专练二: 1.(2006年潍坊市)用A B C ,,分别表示学校、小明家、小红家,已知学校在小明家的南偏东25︒,小红家在小明家正东,小红家在学校北偏东35︒,则ACB ∠等于( ) A .35︒ B .55︒ C .60︒ D .65︒ 2.如图10,已知∠AOC =∠BOD =75°,∠BOC =30°,求∠A OD.3.如图11,已知O 是直线AB 上的点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线,求∠DOE 的度数.4.如图12,∠AOB=900,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线, 求∠MON 的大小.考点三:直线与直线的位置关系1.考点分析:直线与直线的位置关系有两种:平行与垂直,有关平行线的定义的辨析题和平行线性质的应用以及垂线、垂线段的概念、性质是中考的主要考点,多以填空题、选择题为主2.典例剖析例1.已知:如图1,∠A0B 的两边 0A 、0B 均为平面反光镜, ∠A0B =40o.在0B 上有一点P,从P 点射出一束光线经0A 上的Q 点反射后,反射光线QR 恰好与0B 平行,则∠QPB 的度数是( )A .60°B .100 °C . 80°D .120°分析:本题考察相交线、平行线的问题,题目非常简单. 答案为C .评注:本题把考察相交线、平行线的问题,放置在生活中的实际背景中,贴近生活,体现了数学的现实性、实用性,题目灵活,重点考察学生的数学素养.例2.按如图所示的方法将圆柱切开,所得的截面中 有没有互相平行的线段?答案:有.即:AB ∥CD AD ∥BC评注:由于圆柱的上、下底面平行,按照这样截法 阴影部分为平行四边形例3.体育课上,老师是怎样测量同学们的跳远成绩的? 你能尝试说明其中的理由吗?理由:将尺子拉直与踏板边沿所在的直线垂直,量取最近的脚印与踏板边沿之间的距离. “垂线段最短”.专练三:1.下列说法错误的是( )A.直线a ∥b ,若c 与a 相交,则b 与c 也相交BAC M N O图12图10图12G C FMA HED BNB.直线a 与b 相交,c 与a 相交,则b ∥cC.直线a ∥b ,b ∥c ,则a ∥cD.直线AB 与CD 平行,则AB 上所有点都在CD 同侧2.如右图,过C 点作线段AB 的平行线,说法正确的是( )A.不能作B.只能作一条C.能作两条D.能作无数条 3.将一张长方形纸对折,使OA 与OB 重合,这时∠AOC 是什么角?为什么?4.如图,哪些线段是互相垂直的,请利用量角器或直尺等工具将它们找出来.5.如图,所示是楼梯台阶的一部分,与面AB-DC 垂直的棱有哪些?6.读下列语句作图(1)任意作一个∠AOB . (2)在角内部取一点P .(3)过P 分别作PQ ∥OA ,PM ∥OB .(4)若∠AOB =30°,猜想∠MPQ 是多少度?考点四:平面图形问题1.考点分析:这部分内容主要是指:有趣的七巧板与图案设计两部分,利用七巧板的原理拼图以及用基本的图形,通过想象,设计一些个性化的图案,多以填空题、选择题为主2.典例剖析例1.如图1,用一块边长为22的正方形ABCD 厚纸板,按照下面的作法,做了一套七巧板:作对角线AC ,分别取AB 、BC 中点E 、F ,连结EF ;作DG ⊥EF 于G ,交AC 于H ;过G 作GL ∥BC ,交AC 于L ,再由E 作EK ∥DG ,交AC 于K ;将正方形ABCD 沿画出的线剪开,现用它拼出一座桥(如图2),这座桥的阴影部分的面积是( )A.8B.6C.4D.5分析:本题先将正方形割成七巧板,然后再拼成一座桥,因此不难发现阴影部分是由5个小板构成的,由于拼图前后图形的总面积以及7个小板的面积不变,所以这座桥的阴影部分的面积应是正方形面积的一半,即阴影部分的面积为4,故选C例2.(1)在七巧板中(如图1),找几组平行线或垂直的线段? (2)在七巧板中(如图),直角、锐角、钝角有哪些? 分析:根据七巧板中每个图形的特点可以得到: (1)平行线有:AB ∥DC ;EK ∥HG ;LG ∥CF 等; 垂直的线段有:EK ⊥AC ;GH ⊥AC ;EG ⊥HG 等(2)锐角12个:∠BAH ;∠FGL ;∠HGL 等,它们均为450 直角有:∠AHG ;∠HKE ;∠LHG ;∠KEG 等; 钝角有:∠CLG ;∠CFG ,它们均内为1350例3.如图3,将标号为A 、B 、C 、D 的正方形沿图中的虚线剪开后得到标号为P 、Q 、M 、N 的四组图形.试按照“哪个正方形剪开后得到哪组图形”的对应关系,填空:A 、与____对应B 、与____对应C 、与____对应D 、与_____对应分析:根据剪拼前后,小块图形的大小,形状不变的特点,仔细观察每个正方形中的小块图形的特征,以此判断出:A 与M 对应;B 与P 对应;C 与Q 对应;D 与N 对应专练四:1.如图1是利用七巧拼成风的图案,在这个图案中找出二组平行线是_ __.(1)E C FM A HD BG(2)EC FA DBG(3)2.如图2是利用七巧板拼成的山峰的图案, 在这个图案中找出二组互相垂直的线段是___________________.3.如图3是利用七巧板拼成的数字3,这个图案中直角的个数是( ) A.5 B.9 C.7 D.8图3 图2 图14.七巧板是我国祖先创造的一种智力玩具,它来源于勾股法,如图4①整幅七巧板是由正方形ABCD 分割成七小块(其中:五块等腰直角三角形、一块正方形和一块平行四边形)组成,如图4②是由七巧板拼成的一个梯形,若正方形ABCD 的边长为12 cm ,则梯形MNGH 的周长是____cm (结果保留根号).5.用你所制作的七巧板,拼成一个等腰直角三角形与一个梯形,并在纸上画出所拼的图案. 6.今有一块正方形土地,要在其上修筑两条笔直的道路,使道路把这片土地分成形状相同且面积相等的4部分,若道路的宽度忽略不计,请你设计三种不同的修筑方案.(只需画简图)7种不同形状的平面图形?请你画出拼成的图形.参考答案专练一:1.答:是因为经过两点有一条直线且只有一条直线.2.若学生不会画图,很难得到其数量关系,但学生只要把图画出来,其数量关系就一目了然.3.解:如图5所示:连结AD 、BC ,交于点H ,则H 为所求蓄水池点. 4.解:分析:我们可以借助正方体的展开图找到解题的办法,由于正方体的 展开有不同的方法,因而从A 到B 可用6种不同的方法选取最短的 路径,但每条路径都通过连接正方体两个顶点的棱的中点.因为蜘蛛只能在正方体的表面爬行,所以只要找到这个正方体的展开图,应用“两点之间,线段最短”就可确定最短路径(如图6). 5.分析:在同一平面上,1条直线把一个平面分成22112++=2个部分,2条直线把一个平面最多分成22222++=4个部分,3条直线把一个平面最多分成22332++=7个部分,可以猜想:8条直线把一个平面最多分成部分2882372++=部分,那么n 条直线把一个平面图5图6A 图6图4最多分成222n n++部分.6.1+2+3+4+…+n=2)1(-⨯nn条线段,专练二:1.1100;2.120°;3.90°4.450.专练三:1.B;2.B;3.90°4.BC⊥AB BC⊥BE BC⊥AE BC⊥CD5.有棱DF,CE,HN,GM6.如图;30°或150°专练四:1.AB∥DC,HG∥BC;2.AG⊥AB,BC⊥CD ___3.B;4.略;5.如答图所示:(1)(2) 6.答案不唯一(如图7)7.答案不唯一(如图8)图7①②③④⑤图8。
苏科版七年级下册数学第7章 平面图形的认识(二) 含答案
苏科版七年级下册数学第7章平面图形的认识(二)含答案一、单选题(共15题,共计45分)1、如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,则∠2的度数为()A. B. C. D.2、如图,在四边形ABCD中,∠ABC=90°,AB=BC=2 ,E、F分别是AD、CD 的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2B.C.D.33、已知在ΔABC中,AB=AC,周长为24,AC边上的中线BD把ΔABC分成周长为9和15的两个部分,则ΔABC各边的长分别为()A.10、10、4B.6、6、12C.5、9、10D.10、10、4或6、6、124、给出下列说法:①两条直线被第三条直线所截,同位角相等;②平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;③相等的两个角是对顶角;④从直线外一点到这条直线的垂线段,叫做这点到直线的距离.其中正确的有()A.0个B.1个C.2个D.3个5、如图,在方格纸中,线段a,b,c,d的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有()A.3种B.6种C.8种D.12种6、如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于()A.3:4B. :C. :D. :7、已知等腰三角形的两条边长分别为2和3,则它的周长为 ( )A.7B.8C.5D.7或88、如图,一副三角板叠在一起,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,AC与DE交于点M,如果,则的度数为()A.80B.85C.90D.959、如图,点A是反比例函数y= (x>0)图象上任意一点,AB⊥y轴于点B,点C是x轴上的一个动点,则△ABC的面积为( )A.1B.2C.4D.无法确定10、如图所示,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,BD ⊥AC于点D,则BD的长为()A.3B.2C.4D.1.511、如图,一个四边形花坛ABCD,被两条线段MN,EF分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S1,S2,S3,S4,若MN∥AB∥CD,EF∥DA∥CB,则有()A.S1=S4B.S1+S4=S2+S3C.S1S4=S2S3D.都不对12、如图,在△ABC中,AB=AC,∠B=30°,点D、E分别为AB、AC上的点,且DE∥BC.将△ADE绕点A逆时针旋转至点B、A、E在同一条直线上,连接BD、EC.下列结论:①△ADE的旋转角为120°;②BD=EC;③BE=AD+AC;④DE⊥AC,其中正确有( )A.②③B.②③④C.①②③D.①②③④13、不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的中位线14、如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同 C.左、右两个几何体的俯视图不相同 D.左、右两个几何体的三视图不相同15、已知:如图,AB,BC,AC是⊙O的三条弦,∠OBC=50°,则∠A=( )A.25°B.40°C.80°D.100°二、填空题(共10题,共计30分)16、完成下面的证明.已知:如图,∠1+∠2=180°,∠3+∠4=180°.求证:AB∥EF.证明:∵∠1+∠2=180°,∴AB∥________(________).∵∠3+∠4=180°,∴________∥________.∴AB∥EF(________).17、如图,在△ABC中,AB=AC,DE∥BC,∠1=65°,则∠2=________°18、如图,将纸片△ABC沿DE折叠,点A落在点A′处,已知∠A=50°,则∠1+∠2=________°19、已知如图所示,∠MON=40°,P为∠MON内一点,A为OM上一点,B为ON 上一点,则当△PAB的周长取最小值时,∠APB的度数为________.20、如图,若,BF平分,DF平分,,则________.21、如图,直线m∥n,△ABC的顶点B,C分别在直线n,m上,且∠ACB=90°,若∠1=40°,则∠2等于________度.22、如图,已知∠B=∠1,CD是△ABC的角平分线,求证:∠5=2∠4.请在下面横线上填出推理的依据:证明:∵∠B=∠1,(已知)∴DE∥BC.(________)∴∠2=∠3.(________)∵CD是△ABC的角平分线,(________)∴∠3=∠4.(________)∴∠4=∠2.(________)∵∠5=∠2+∠4,(________)∴∠5=2∠4.(________)23、如果一个三角形的各内角与一个外角的和是225°,则与这个外角相邻的内角是________度.24、如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=________°.25、如图,分别切⊙于点,若,点为⊙上任一动点,则的大小为________°.三、解答题(共5题,共计25分)26、化简,并求值,其中a与2,3构成△ABC的三边,且a为整数.27、如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.28、如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4,求证:AD∥BE.29、已知AD⊥BC,BE=CE,∠ABC=2∠C,BF为∠B的平分线.求证:AB=2DE.30、如图,已知AB∥CD,∠AED+∠C=180°。
(好题)初中数学七年级数学上册第四单元《基本平面图形》检测卷(包含答案解析)(2)
一、选择题1.如图,C 、D 是线段AB 上的两点,且D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则BD 的长为( )A .6cmB .7cmC .8cmD .9cm2.两条长度分别为20cm 和24cm 的线段有一端点重合,且在一条直线上,则此两条线段的中点之间的距离为( )A .2cmB .22cmC .2cm 或22cmD .4cm 或20cm 3.若线段,,AP BP AB 满足AP BP AB +>,则关于P 点的位置,下列说法正确的是( ) A .P 点一定在直线AB 上B .P 点一定在直线AB 外C .P 点一定在线段AB 上D .P 点一定在线段AB 外 4.如图,将一副三角板叠在一起使直角顶点重合于点O ,(两块三角板可以在同一平面内自由转动),下列结论一定成立的是( )A .∠BOA >∠DOCB .∠BOA ﹣∠DOC =90° C .∠BOA +∠DOC =180°D .∠BOC ≠∠DOA5.如图,从8点钟开始,过了20分钟后,分针与时针所夹的度数是( )A .120︒B .130︒C .140︒D .150︒ 6.永定河,“北京的母亲河”.近年来,我区政府在永定河治理过程中,有时会将弯曲的河道改直,图中A ,B 两地间的河道改直后大大缩短了河道的长度.这一做法的主要依据是( )A .两点确定一条直线B .垂线段最短C .过一点有且只有一条直线与已知直线垂直D .两点之间,线段最短7.某一时刻钟表上时针和分针所成的夹角是105°,那么这一时刻可能是( ) A .8点30分B .9点30分C .10点30分D .以上答案都不对8.如图,OA OB ⊥,若15516'∠=︒,则∠2的度数是( )A .3544︒'B .3484︒'C .3474︒'D .3444︒' 9.点A ,B ,C 在同一条直线上,6cm AB =,2cm BC =,M 为AB 中点,N 为BC 中点,则MN 的长度为( )A .2cmB .4cmC .2cm 或4cmD .不能确定 10.下列生活、生产现象:①用两颗钉子就可以把木条固定在墙上;②从甲地到乙地架设电线,总是沿线段架设;③把弯曲的公路改直就能缩短路程;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线.其中能用“两点之间线段最短”来解释的现象是( )A .①②B .②③C .①④D .③④11.如图,A 点在B 点的北偏东40°方向,C 点在B 点的北偏东75°方向,A 点在C 点的北偏西50°方向,则∠BAC 的度数是( )A .85°B .80°C .90°D .95° 12.如图,张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案不能铺满地面的是( ) A . B . C . D .二、填空题13.如图,已知C ,D 两点将线段AB 分成三部分,且这三部分的长度之比为2:3:4,点M 为线段AB 的中点,BD=8cm ,求线段DM 的长.14.如图,B 、C 是线段AD 上的任意两点,M 是AB 的中点,N 是CD 的中点,如果MN =3cm ,BC =1.5cm ,求AD 的长.15.已知直线AB 与射线OC 相交于点O .(1)如图,90AOC ∠=︒,射线OD 平分AOC ∠,求BOD ∠的度数;(2)如图,120AOC ∠=︒,射线OD 在AOC ∠的内部,射线OE 在BOC ∠的内部,且4BOD BOE ∠=∠,2COD COE ∠=∠.若射线OF 使12COF COE ∠=∠,请在图中作出射线OF ,并求出BOF ∠的度数.16.如图,OB,OC 是AOD 内部的两条射线,OM 平分AOB ,ON 平分COD ,BOC=40,(1)若20AOM ∠=︒,求AOC ∠的度数;(2)若118AOD ∠=︒,求MON ∠的度数.17.如图,已知120AOB ∠=︒,30BOC ∠=︒,OD 是AOC ∠的角平分线,求BOD ∠的度数.18.计算(1)58°32′36″+36.22°(2)-32×(-2)+42÷(-2)3÷10-丨-22丨÷519.如图,已知60cm AB =,点C 为线段AB 的中点,点D 是线段AB 上的点,且AD 与DB 的长度之比2:1.(1)求BD 的长.(2)求CD 的长.20.如图,OC 在BOD ∠内.(1)如果AOC ∠和BOD ∠都是直角.①若60BOC ∠=︒,求AOD ∠的度数;②猜想BOC ∠与AOD ∠的数量关系;(2)如果AOC BOD x ∠=∠=︒,AOD y ∠=︒,求BOC ∠的度数(用含x 、y 的式子表示).三、解答题21.将一副三角板按图甲的位置放置,(1)∠AOD ∠BOC (选填“<”或“>”或“=”);(2) 猜想∠AOC 和∠BOD 在数量上的关系是 .(3)若将这副三角板按图乙所示摆放,三角板的直角顶点重合在点O 处.(1)(2)中的结论还成立吗?请说明理由.22.如图,已知C ,D 两点将线段AB 分成三部分,且这三部分的长度之比为2:3:4,点M 为线段AB 的中点,BD=8cm ,求线段DM 的长.23.如图,平面上有三个点A 、B 、C ,根据下列要求画图.(1)画直线AB 、AC ;(2)作射线BC ;(3)在线段AB 上取点E 、在线段AC 上取点F ,连接EF ,并延长EF .24.如图,已知直线AB ,CD 相交于点O ,OE ,OF 为射线,∠AOE=90°,OF 平分∠BOC , (1)若∠EOF=30°,求∠BOD 的度数;(2)试问∠EOF 与∠BOD 有什么数量关系?请说明理由.25.如图,点,C D 在线段AB 上,点M 是线段AC 的中点,点N 是线段DB 的中点,若8,3MN CD ==,求线段AB 的长.26.已知:80AOB COD ∠=∠=︒(1)如图1,AOC BOD ∠=∠吗?请说明理由.(2)如图2,直线MN 平分AOD ∠,直线MN 平分BOC ∠吗?请说明理由. (3)若150BOD ∠=︒,20BOE ∠=︒,求COE ∠的大小.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用线段和的定义和线段中点的意义计算即可.【详解】∵AB=AC+BC,且AB=10,BC=4,∴AC=6,∵D是线段AC的中点,∴AD=DC=1AC=3,2∴BD=BC+CD=4+3=7,故选B.【点睛】本题考查了线段和的意义和线段中点的意义,熟练掌握两个概念并灵活运用进行线段的计算是解题的关键.2.C解析:C【分析】设较长的线段为AB,较短的线段为BC,根据中点定义求出BM、BN的长度,然后分①BC 不在AB上时,MN=BM+BN,②BC在AB上时,MN=BM−BN,分别代入数据进行计算即可得解.【详解】解:如图,设较长的线段为AB=24cm,较短的线段为BC=20cm,∵M、N分别为AB、BC的中点,∴BM=12cm,BN=10cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22cm,②如图2,BC在AB上时,MN=BM−BN=12−10=2cm,综上所述,两条线段的中点间的距离是2cm或22cm;故选:C.【点睛】本题考查了两点间的距离,主要利用了线段的中点定义,难点在于要分情况讨论,作出图形更形象直观.3.D解析:D【分析】根据P点在线段AB上时,AP+BP=AB,进行判断即可.【详解】解:A. P点在线段AB上时,AP+BP=AB,此时点P在直线AB上,故错误;B. P点在线段AB延长线上时,AP BP AB+>,故错误;C. P点在线段AB上时,AP+BP=AB,故错误;D. P点在线段AB上时,AP+BP=AB,P点一定在线段AB外时,AP BP AB+>,故正确;故选:D.【点睛】本题考查了点和直线、线段的位置关系,解题关键是抓住当P点在线段AB上时,AP+BP=AB这一结论,进行判断.4.C解析:C【分析】根据角的和差关系以及角的大小比较的方法,并结合图形计算后即可得出结论.【详解】解:A.∠BOA与∠DOC的大小不确定,故此结论不成立;B.∠BOA−∠DOC的值不固定,故此结论不成立;C.∵是直角三角板,∴∠BOD=∠AOC=90°,∴∠BOC+∠DOC+∠DOC+∠DOA=180°,即∠DOC+∠BOA=180°,故此结论成立;D.∵是直角三角板,∴∠BOD=∠AOC=90°,∴∠BOD −∠COD=∠AOC −∠DOC,即∠BOC=∠DOA,故此结论不成立;故选:C.【点睛】本题考查了角的比较与运算,正确根据图形进行角的运算与比较是解题的关键.5.B解析:B【分析】此时时针超过8点,分针指向4,根据每2个数字之间相隔30度和时针1分钟走0.5度可得夹角度数.【详解】解:时针超过20分所走的度数为20×0.5=10°,分针与8点之间的夹角为4×30=120°,∴此时时钟面上的时针与分针的夹角是120+10=130°.故选:B.【点睛】本题考查钟面角的计算,用到的知识点为:钟面上每2个数字之间相隔30度;时针1分钟走0.5度.6.D解析:D【分析】根据线段的性质分析得出答案.【详解】由题意中改直后A,B两地间的河道改直后大大缩短了河道的长度,其注意依据是:两点之间,线段最短,故选:D.【点睛】此题考查线段的性质:两点之间线段最短,掌握题中的改直的结果是大大缩短了河道的长度的含义是解题的关键.7.B解析:B【分析】根据时间得到分针和时针所在位置,算出夹角度数,判断选项的正确性.【详解】︒⨯+︒=︒;A选项,分针指向6,时针指向8和9的中间,夹角是3021575︒⨯+︒=︒;B选项,分针指向6,时针指向9和10的中间,夹角是30315105︒⨯+︒=︒C选项,分针指向6,时针指向10和11的中间,夹角是30415135D选项错误,因为B是正确的.故选:B.【点睛】本题考查角度求解,解题的关键是掌握钟面角度的求解方法.8.D解析:D【分析】根据OA⊥OB,得到∠AOB=90°∠AOB=∠1+∠2=90°,即可求出.【详解】解:∵OA⊥OB∴∠AOB=90°∵∠AOB=∠ 1+∠ 2=90°∠ 1=55°16′∴∠ 2=90°-55°16′=34°44′故选:D【点睛】此题主要考查了角度的计算,熟记度分秒之间是六十进制是解题的关键.9.C解析:C【分析】分点C在直线AB上和直线AB的延长线上两种情况,分别利用线段中点的定义和线段的和差解答即可.【详解】解:①当点C在直线AB上时∵M为AB中点,N为BC中点∴AM=BM=12AB=3,BN=CN=12BC=1,∴MN=BM-BN=3-1=2;②当点C在直线AB延长上时∵M为AB中点,N为BC中点∴AM=CM=12AB=3,BN=CN=12BC=1,∴MN=BM+BN=3+1=4综上,MN的长度为2cm或4cm.故答案为C.【点睛】本题主要考查了线段中点的定义以及线段的和差运算,掌握分类讨论思想成为解答本题的关键.10.B解析:B【分析】根据两点确定一条直线,两点之间线段最短的性质对各选项分析判断即可得出结果.【详解】解:①用两颗钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故错误;②从甲地到乙地架设电线,总是沿线段架设是利用了“两点之间线段最短”,故正确;③把弯曲的公路改直就能缩短路程是利用了“两点之间线段最短”,故正确;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故错误.故选:B【点睛】本题主要考查的是线段的性质和直线的性质,正确的掌握这两个性质是解题的关键.11.C解析:C【分析】根据方位角的概念,画图正确表示出方位角,利用平行线的性质即可求解.【详解】∵∠DBA =40°,∠DBC =75°,∴∠ABC =∠DBC−∠DBA =75°−40°=35°,∵DB ∥EC ,∴∠DBC +∠ECB =180°,∴∠ECB =180°−∠DBC =180°−75°=105°,∴∠ACB =∠ECB−∠ACE =105°−50°=55°,∴∠BAC =180°−∠ACB−∠ABC =180°−55°−35°=90°.【点睛】本题考查了方向角.解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.12.D解析:D【分析】分别计算各正多边形每个内角的度数,看是否能整除360°,即可判断.【详解】解:A .正六边形每个内角为120°,能够整除360°,不合题意;B .正三角形每个内角为60°,能够整除360°,不合题意;C .正方形每个内角为90°,能够整除360°,不合题意;D .正五边形每个内角为108°,不能整除360°,符合题意.故选:D .【点睛】能够铺满地面的图形是看拼在同一顶点的几个角是否构成周角.二、填空题13.【分析】根据按比例分配的意义线段中点的意义及线段的和差运算解答【详解】解:由图可知:AC:CD:DB=2:3:4∴∵BD=8cm ∴cm ∵点M 为线段AB 的中点∴BM=18cm ∴DM=BM-BD=9-8解析:=1cm DM【分析】根据按比例分配的意义、线段中点的意义及线段的和差运算解答.【详解】解:由图可知:AC:CD:DB=2:3:4, ∴49DB AB ,∵BD=8cm , ∴98184AB =⨯=cm , ∵点M 为线段AB 的中点,∴BM=18192⨯=cm , ∴DM=BM-BD=9-8=1cm .【点睛】本题考查线段的应用,熟练掌握按比例分配的意义、线段中点的意义及线段的和差运算是解题关键.14.AD 的长为45cm 【分析】由已知条件可知MN =MB+CN+BC 又因为M 是AB 的中点N 是CD 中点则AB+CD =2(MB+CN )故AD =AB+CD+BC 可求【详解】解:∵MN =MB+BC+CN ∵MN =3解析:AD 的长为4.5cm .【分析】由已知条件可知,MN =MB+CN+BC ,又因为M 是AB 的中点,N 是CD 中点,则AB+CD =2(MB+CN ),故AD =AB+CD+BC 可求.【详解】解:∵MN =MB+BC+CN ,∵MN =3cm ,BC =1.5cm ,∴MB+CN =3﹣1.5=1.5cm ,∴AD =AB+BC+CD =2(MB+CN )+BC=2×1.5+1.5=4.5cm .答:AD 的长为4.5cm .【点睛】本题考查了线段的计算,线段中点的意义,线段和的意义,线段差的意义,熟练掌握线段的中点的意义,灵活运用线段和与线段差表示线段是解题的关键.15.(1);(2)45°或75°【分析】(1)由可求由OD 是的平分线得可求;(2)由可求∠BOC=60º由设∠BOE=xº可得∠BOD=4x°∠DOE=3x°由可求可得∠COE=∠BOE=由可求当OF 在解析:(1)135︒;(2)45°或75°.【分析】(1)由90AOC ∠=︒可求90BOC ∠=°,由OD 是AOC ∠的平分线得=45AOD DOC ∠∠=︒,可求=+135BOD DOC BOC ∠∠∠=︒;(2)由120AOC ∠=︒,可求∠BOC=60º,由4BOD BOE ∠=∠,设∠BOE=xº可得∠BOD=4x°,∠DOE=3x°由2COD COE ∠=∠, 可求2,COD x COE x ∠=︒∠=︒,可得∠COE=∠BOE=30由12COF COE ∠=∠,可求15COF ∠=︒,当OF 在∠EOC 内部时,当OF 在∠DOC 内部时利用角和差计算即可.【详解】证明:(1)∵90AOC ∠=︒∴18090BOC AOC ∠=︒-∠=︒∵OD 是AOC ∠的平分线,∴AOD DOC ∠=∠. ∴=45AOD DOC ∠∠=︒,∴=+4590135BOD DOC BOC ∠∠∠=︒+︒=︒;(2)∵120AOC ∠=︒,∴∠BOC=180º-∠AOC=60º,∵4BOD BOE ∠=∠,设∠BOE=xº,∴∠BOD=4x°,∠DOE=3x°,∵2COD COE ∠=∠,+=3COD COE DOE x ∠∠∠=︒,∴2,COD x COE x ∠=︒∠=︒,∴∠COE=∠BOE=11BOC=60=3022∠⨯︒︒, ∵12COF COE ∠=∠, ∴11=30=1522COF COE ∠=∠⨯︒︒,当OF 在∠EOC 内部时,=601545BOF BOC COF ∠∠-∠=︒-︒=︒,当OF 在∠DOC 内部时,=+60+1575BOF BOC COF ∠∠∠=︒︒=︒,BOF ∠的度数为45°或75°.【点睛】本题考查了角平分线的定义及角的和差,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.16.(1)∠AOC=80°;(2)∠MON=79°【分析】(1)根据角平分线的定义可得相加可得∠MON 的度数;(2)先求得根据角平分线的定义可得相加可得∠MON 的度数【详解】(1)∵平分∴∴;(2)∵∵解析:(1)∠AOC=80°;(2)∠MON=79°.【分析】(1)根据角平分线的定义可得40AOB ∠=︒,相加可得∠MON 的度数;(2)先求得78COD AOB ∠+∠=︒,根据角平分线的定义可得39CON BOM ∠+∠=︒,相加可得∠MON 的度数.【详解】(1)∵20AOM ∠=︒,OM 平分AOB ∠,∴240AOB AOM ∠=∠=︒,∴404080AOC AOB BOC ∠=∠+∠=︒+︒=︒;(2)∵1184078COD AOB AOD BOC ∠+∠=∠-∠=︒-︒=︒,∵OM 平分AOB ∠,ON 平分COD ∠, ∴11()783922CON BOM COD AOB ∠+∠=∠+∠=⨯︒=︒, ∴()403979MON BOC CON BOM ∠=∠+∠+∠=︒+︒=︒. 【点睛】本题是有关角的计算,考查了角平分线的定义及角的和差倍分,注意利用数形结合的思想.17.75°【分析】根据角的和差性质计算得∠AOC ;根据角平分线的性质计算得;再根据角的和差性质计算即可得到答案【详解】∵∠AOB =120°∠BOC =30°∴∠AOC =∠AOB-∠BOC =90°又∵OD 是解析:75°【分析】根据角的和差性质计算,得∠AOC ;根据角平分线的性质计算,得COD ∠;再根据角的和差性质计算,即可得到答案.【详解】∵∠AOB =120°,∠BOC =30°∴∠AOC =∠AOB -∠BOC =90°又∵OD 是∠AOC 的角平分线, ∴1452COD AOC ∠=∠=︒ ∴∠BOD =∠COD+∠BOC =45°+30°=75°.【点睛】本题考查了角的和差和角平分线的知识;解题的关键是熟练掌握角的和差和角平分线的性质,从而完成求解.18.(1)94°45′48″;(2)17【分析】(1)根据度分秒的加法相同的单位相加满60时向上以单位进1可得答案;(2)原式先计算乘方再计算乘除最后进行加减运算即可【详解】解:(1)58°32′36″解析:(1) 94°45′48″;(2)17【分析】(1)根据度分秒的加法,相同的单位相加,满60时向上以单位进1,可得答案; (2)原式先计算乘方,再计算乘除,最后进行加减运算即可.【详解】解:(1)58°32′36″+36.22°=58°32′36″+36°13′12″=94°45′48″;(2)-32×(-2)+42÷(-2)3÷10-丨-22丨÷5=-9×(-2)+16÷(-8)÷10-4÷5=18-0.2-0.8=17.【点睛】本题考查了度分秒的换算,度分秒的加减,同一单位向加减,度分秒的乘法,从小单位算起,满60时向上以单位进1.同时还考查了含有乘方的有理数的混合运算. 19.(1)20cm ;(2)10cm 【分析】(1)根据AD 与DB 的长度之比2:1列式求解即可;(2)根据中点的定义求出BC 再由CD=BC-BD 可得出答案【详解】解:(1)∵AD 与DB 的长度之比2:1∴(2解析:(1)20cm ;(2)10cm【分析】(1)根据AD 与DB 的长度之比2:1列式求解即可;(2)根据中点的定义求出BC ,再由CD=BC-BD ,可得出答案.【详解】解:(1)∵60cm AB =,AD 与DB 的长度之比2:1, ∴16020cm 3BD =⨯= (2)∵60cm AB =,点C 为线段AB 的中点, ∴130cm 2BC AB ==, ∴CD BC BD =- 3020=-10cm =【点睛】本题考查了两点间的距离,解答本题的关键是掌握线段中点的定义,注意数形结合思想的运用.20.(1)①;②;(2)【分析】(1)①根据直角的定义先求出∠AOB 再根据角的和差关系即可得出答案;②先得到再得出代入求出即可;(2)类比②可得:∠AOD+∠BOC=∠BOD+∠AOC 依此代入计算即可求解析:(1)①120AOD ∠=︒;②180BOC AOD ∠+∠=︒;(2)()2BOC x y ∠=-︒【分析】(1)①根据直角的定义先求出∠AOB ,再根据角的和差关系即可得出答案; ②先得到90AOD BOD AOB AOB ∠=∠+∠=︒+∠,再得出9090BOC AOD BOC AOB AOC ∠+∠=∠+︒+∠=︒+∠,代入求出即可; (2)类比②可得:∠AOD+∠BOC=∠BOD+∠AOC ,依此代入计算即可求解.【详解】解:(1)①∵AOC ∠和BOD ∠都是直角,60BOC ∠=︒,∴30AOB ∠=︒,∴120AOD AOB BOD ∠=∠+∠=︒;②猜想180BOC AOD ∠+∠=︒.证明:∵90BOD ∠=︒,∴90AOD BOD AOB AOB ∠=∠+∠=︒+∠,∵90AOC ∠=︒,∴90909090180BOC AOD BOC AOB AOC ∠+∠=∠+︒+∠=︒+∠=︒+︒=︒; (2)类比②可得:AOD BOC BOD AOC ∠+∠=∠+∠,∵BOD AOC x ∠=∠=︒,∴2AOD BOC BOD AOC x ∠+∠=∠+∠=︒,∵AOD y ∠=︒,∴()2BOC x y ∠=-︒.【点睛】本题考查了角的有关计算,主要考查学生根据图形进行计算的能力,题目比较好,但有一定的难度.三、解答题21.(1)∠AOD=∠BOC ;(2)∠AOC+∠BOD=180°;(3)任然成立,理由如见解析【分析】(1)根据角的和差关系解答,(2)利用周角的定义和直角解答;(3)根据同角的余角相等解答∠AOD 和∠BOC 的关系,根据图形,表示出∠BOD+∠AOC=∠BOD+∠AOB+∠COB 整理即可得到原关系仍然成立.【详解】解:(1)∠AOD 和∠BOC 相等,∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD ,∴∠AOD=∠COB ;(2)∠AOC 和∠BOD 互补 .∵∠AOB=∠COD=90°,∴∠BOD+∠AOC=360°-∠AOB-∠COD=360°-90°-90°=180°,∴∠AOC 和∠BOD 互补;⑶成立.∵∠AOB=∠COD=90°,∴∠AOB-∠BOD=∠COD-∠BOD ,∴∠AOD=∠COB ,∵∠AOB=∠COD=90°,∴∠BOD+∠AOC=∠BOD+∠AOB+∠COB ,=90°+∠BOD+∠COB ,=90°+∠DOC ,=90°+90°,=180°.【点睛】本题主要考查角的和、差关系,互余互补的角关系,理清角的和或差,互余与互补关系是解题的关键.22.=1cm DM【分析】根据按比例分配的意义、线段中点的意义及线段的和差运算解答.【详解】解:由图可知:AC:CD:DB=2:3:4, ∴49DB AB =, ∵BD=8cm , ∴98184AB =⨯=cm , ∵点M 为线段AB 的中点,∴BM=18192⨯=cm , ∴DM=BM-BD=9-8=1cm .【点睛】本题考查线段的应用,熟练掌握按比例分配的意义、线段中点的意义及线段的和差运算是解题关键.23.见解析【分析】(1)画直线AB、AC注意两端延伸;(2)以B点为端点,向点C方向延伸;(3)根据几何语言画出对应的几何图形即可.【详解】解:(1)直线AB、AC为所作;(2)射线BC为所作;(3)EF为所作.【点睛】本题考查了直线、线段、射线的画法,解决此类题目的关键是熟悉基本几何图形的性质,能区别直线、线段、射线.24.(1)∠BOD=60°;(2)∠BOD=2∠EOF,理由见解析【分析】(1)求出∠FOB=90°-∠EOF=60°,由OF平分∠BOC求出∠BOC=120°,进而求出∠BOD=180°-120°=60°;(2)设∠EOF=α,将∠FOB、∠BOC分别用α的代数式表示,最后∠BOD=180°-∠BOC即可求解.【详解】解:(1)∠BOE=180°-∠AOE=180°-90°=90°,∵∠EOF=30°,∴∠FOB=90°-30°=60°,∵OF为∠BOC的角平分线,∴∠BOC=2∠FOB=120°,∴∠BOD=180°-∠BOC=180°-120°=60°;(2)设∠EOF=α,则∠FOB=90°-α,∵OF为∠BOC的角平分线,∴∠BOC=2∠FOB=2(90°-α),∴∠BOD=180°-∠BOC=180°-2(90°-α)=2α,即∠BOD=2∠EOF.【点睛】本题主要考查了垂线,角平分线的定义以及平角的综合运用,掌握角平分线平分角,垂线得到直角这两个性质是解决本题的关键.25.13【分析】根据已知条件得出2,2==AC MC BD DN ,再求出22+=+AC BD MC DN =10,根据AB AC BD CD =++求出A B 的长即可;【详解】解: 8,3MN CD ==835,MC DN ∴+=-=点M 是AC 的中点,点N 是BD 的中点2,2,AC MC BD DN ∴==22,AC BD MC DN ∴+=+()2MC DN =+25=⨯10=.AB AC BD CD ∴=++103=+13=【点睛】本题考查了两点之间的距离的应用,主要考查学生的观察图形的能力和计算能力. 26.(1)AOC BOD ∠=∠,见解析;(2)直线MN 平分BOC ∠,见解析;(3)150°或110°【分析】(1)根据角的和差关系可得结论;(2)根据角平分线的定义求解即可;(3)分OE 在AOB ∠内部和外部两种情况进行求解即可.【详解】解:(1)AOC BOD ∠=∠.理由如下:80AOB COD ∠=∠=︒AOB AOD COD AOD ∴∠+∠=∠+∠即BOD AOC ∠=∠(2)直线MN 平分BOC ∠.理由如下:180AOB MOA NOB ∠+∠+∠=︒,180COD MOD NOC ∠+∠+∠=︒又80AOB COD ∠=∠=︒100MOA NOB MOD NOC ∠+∠=∠+∠=︒∴直线MN 平分AOD ∠MOA MOD ∠=∠∴NOB NOC ∠=∠∴即直线MN 平分BOC ∠.(3)150BOD ∠=︒,80AOB COD ∠=∠=︒ 70AOD ∴∠=︒,130COB ∠=︒①当OE 在AOB ∠内部时,如图所示:13020150COE BOC BOE ∠=∠+∠=︒+︒=︒ ②当OE 在AOB ∠外部时,如图所示:13020110COE BOC BOE ∠=∠-∠=︒-︒=︒ 综上所述,COE ∠的度数为150°或110°.【点睛】本题考查了解度的计算,角平分线的定义,正确识别图形是解题的关键.。
2022-2023学年七年级上学期数学:基本平面图形(附答案解析)
2022-2023学年七年级上学期数学:基本平面图形
一.选择题(共5小题)
1.如果A看B的方向是南偏西20°,那么B看A的方向是()
A.北偏东70°B.南偏西70°C.北偏东20°D.北偏西20°2.如图,AC>BD,比较线段AB与线段CD的大小()
A.AB=CD B.AB>CD C.AB<CD D.无法比较
3.如图,点B在点A的()方向.
A.北偏东35°B.北偏东55°C.北偏西35°D.北偏西55°4.只借助一副三角尺拼摆,不能画出下列哪个度数的角()
A.15°B.65°C.75°D.135°
5.下列四个说法:①一个有理数不是整数就是分数;②绝对值等于本身的数只有0;③如果AB=BC,则点B是线段AC的中点;④一个角的两边越长,角度越大.其中不正确的是()
A.②④B.①②③C.②③④D.①②③④
二.填空题(共5小题)
6.如图,点B在线段AC上,BC =AB,点D是线段AC的中点,已知线段AC=14,则BD =.
7.如图,射线OA所表示的方向是.
第1页(共15页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.4平面图形
◆随堂检测
1、下列图形中,不是多边形的是( )
2、下列图形中,是四边形的是( )
A 、①③
B 、②③④
C 、③④
D 、①②④⑤
3、给下面的多边形写出一个合适的名称:
4、如图,每一个多边形都可以按如图的方法分割成若干个三角形。
按如图所示的方法,十五边形可以分成个三角形。
5、画出下列多边形。
(1)八边形(2)六边形(3)七边形
◆典例分析
例:八边形至少可以分割成多少个三角形?过八边形边上一点连接各个顶点,能分成几个三角形?过八边形内一点与各个顶点相连,可分割成多少个三角形?请画出图形。
想一想,一个n边形至少可以分割成多少个三角形?过n边形边上一点连接各个顶点,能分成几个三角形?过n边形内一点与各个顶点相连,可分割出多少个三角形?解:6个,7个,8个。
(n—2)个,(n—1)个,n个。
如图:
评析:将一个多边形分割成若干个三角形的常见情形主要有三种:点作为多边形的顶点,点在多边形的一边上,点在多边形内。
判别时应准确把握各种情形的特点。
◆课下作业
●拓展提高
1、下列图形中,是多边形的是()
A、6个
B、4个
C、3个
D、2个
2、用不同的方法把图形全部分割成三角形,至少可以分割成十个三角形的多边形是()
A、8
B、10
C、12
D、14
3、如图,将标号为A、B、C、D的正方形沿图中的虚线剪开后,得到标号为P, Q, M, N的四组图,试按照“哪个图形剪开后,得到哪组图形”的对应关系,填空:
A与对应;B与对应;C与对应;D与对应。
4、图中有多少个三角形,请你数一数。
5、把一个正方形用两条线分成大小、形状完全相同的四块,你能有几种办法?
6、生活中经常看到一些简单的平面图形组成的优美图案,你能举例说出下图中的神秘图案由哪些平面图形组成的吗?
7、如a、b、c、d四个图都称作平面图,请观察图b和表中对应数值,探究
计数的方法并解答:
·······
···············
a b ···
c d
(1)数一数每个图中各有多少个顶点、多少条边,这些边围出多少区域,并将结果填入下表(其中b已填好,如下表所示)
(2)根据表中数值写出平面图的顶点数、边数、区域数之间的一种关系:。
(3)如果一个平面图有20个顶点和11个区域,那么利用(2)中得出的关系,这个平面图有条边。
●体验中考
1、(2009年湖北孝感中考题改编)下列图形,( )不是四边形。
A B C
D
2、(2009年湖北宜昌中考题改编)将下列各纸片沿虚线剪开后,能
拼成右图的是( )
参考答案:
◆随堂检测
1、D
2、C
3、(1)五边形,(2)三角形,。
(3)四边形
4、13
5、(1)(2)(3)
◆课下作业
●拓展提高
1、D
2、C
3、M,P,Q,N
4、16个
5、有无数
种方法。
如图是其中的一种方法,由中间两条线绕着它们
的交点旋转可以得到其他一些方法。
6、(1)正方形;(2)正五边形,三角形;(3)正六边形,三角形,
平行四边形,正方形
7、(1)
(2)V+F—E=1;(3)30。
●体验中考
1、
2、C。